
SIMATIC HMI

WinCC (TIA Portal)

System Manual

11/2022

Installation 1
Read me 2
WinCC Unified 3
Configuring screens 4
Configuring tags 5
Configuring alarms 6
Archiving data 7
Configuring parameter sets 8
Using system functions 9
Programming scripts 10
Planning tasks 11
Using the diagnostics
functions 12
Configuring users and roles 13
Connectivity 14
Configuring plant
hierarchies 15
Compiling and loading 16
Runtime and simulation 17
Using distributed systems 18
Options 19
Runtime Openness 20

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended or
approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance
are required to ensure that the products operate safely and without any problems. The permissible ambient
conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

Siemens AG
Digital Industries
Postfach 48 48
90026 NÜRNBERG
GERMANY

Ⓟ 11/2022 Subject to change
Copyright © Siemens AG 2022.
All rights reserved

Table of contents

1 Installation... 31
1.1 Notes on the installation .. 31
1.2 Licensing ... 32
1.2.1 Notes on licenses ... 32
1.2.2 Licensing STEP 7 and WinCC... 33
1.2.3 Licensing of WinCC Unified options .. 42
1.2.3.1 Logging ... 42
1.2.3.2 Parameter sets ... 44
1.2.3.3 Process diagnostics .. 45
1.2.3.4 Client... 45
1.2.3.5 Reporting .. 46
1.2.3.6 Openness .. 47
1.2.3.7 Unified Collaboration ... 47
1.2.3.8 Audit ... 48
1.2.4 Licensing of Plant Intelligence options.. 49
1.2.4.1 Calendar.. 49
1.2.4.2 Performance Insight... 50
1.2.4.3 Sequence... 51
1.2.4.4 Line Coordination .. 52
1.2.5 Handling licenses and license keys ... 53
1.3 System requirements for installation .. 56
1.3.1 Notes on licenses ... 56
1.3.2 General software and hardware requirements .. 57
1.3.3 Product-specific special characteristics .. 60
1.3.3.1 Uninstalling WinCC Unified... 60
1.3.3.2 Installation of WinCC Runtime Unified .. 60
1.4 Overview of processes and services of TIA Portal components... 67
1.5 Using Security Logging .. 74
1.5.1 Security Logging in the TIA Portal... 74
1.5.2 Activating and deactivating Security Logging.. 75
1.5.3 Overview of events .. 76
1.5.4 Displaying and managing events .. 83
1.6 Installation log... 84
1.7 Starting installation.. 84
1.8 Displaying the installed software.. 86
1.9 Modifying or updating installed products ... 87
1.10 Repairing installed products ... 88
1.11 Starting to uninstall ... 89
1.12 Installing updates and support packages .. 91
1.12.1 Checking availability of updates and support packages and installing them......................... 91

System Manual, 11/2022 3

1.12.2 Working with a company-internal server... 94
1.12.2.1 Properties and advantage of a corporate server .. 94
1.12.2.2 Configuring a corporate server for updates ... 95
1.12.2.3 Distributing updates to different areas .. 114
1.12.2.4 Providing updates on a corporate server ... 115
1.13 Installing support packages automatically .. 117
1.13.1 Installing support packages automatically .. 117
1.13.2 Return values from the installation process... 118
1.13.3 Log file .. 119

2 Read me ... 121
2.1 Security information (Unified) .. 121
2.2 Breaking changes... 122
2.3 Notes on use.. 124
2.4 Screens and screen objects... 127
2.5 Alarms and alarm view... 129
2.6 "Smoothing" property for logging tags.. 130
2.7 System functions and scripts .. 130
2.8 Parameter sets and parameter set display ... 131
2.9 WinCC Unified PC ... 132
2.9.1 Notes on the operation of Unified PC .. 132
2.9.2 Internet browsers for WinCC Unified PC .. 133
2.9.3 Activating and testing ASIA licenses ... 134
2.10 Notes on the operation of Unified Comfort Panel .. 136
2.11 Remote access to a Unified device .. 139
2.12 Working with plant objects and plant views .. 141
2.13 Audit ... 142

3 WinCC Unified .. 143
3.1 Introduction... 143
3.2 Additional documentation ... 144
3.3 Creating a user interface efficiently .. 145
3.4 Controlling with parameter sets ... 147
3.5 Using distributed systems .. 148
3.6 Dynamization and automation through scripts ... 151
3.7 Central user management.. 152
3.8 Connectivity .. 153
3.9 Logging and traceability... 154
3.10 Configuring plant hierarchies ... 155
3.11 Working with libraries .. 157
3.11.1 Re-using libraries ... 157

Table of contents

4 System Manual, 11/2022

3.11.2 Basics on libraries .. 158
3.11.3 Types and master copies .. 160
3.11.4 Creating types and master copies ... 161
3.11.5 Managing libraries ... 161
3.11.5.1 Overview of the library management ... 161
3.11.5.2 Opening library management .. 163
3.11.5.3 Filtering types in the library management .. 164
3.11.5.4 Creating a global library ... 165
3.11.5.5 Saving a Shared Library.. 166
3.11.5.6 Opening a global library... 167
3.11.5.7 Showing logs of global libraries.. 168
3.11.5.8 Updating a project with the contents of a project library ... 168
3.11.5.9 Updating a library with the contents of another library ... 169
3.11.5.10 Exporting and importing library texts ... 170
3.11.6 Managing objects in a library ... 172
3.11.6.1 Displaying library objects ... 172
3.11.6.2 Storing an object as master copy .. 174
3.11.6.3 Inserting a library object .. 176
3.11.7 Using types and their versions.. 176
3.11.7.1 Status of versions of a type .. 176
3.11.7.2 Adding types to a project library... 177
3.11.7.3 Create a new version of a type ... 178
3.11.7.4 Editing a type .. 178
3.11.7.5 Consistency status of types .. 179
3.11.7.6 Generating a faceplate as a type... 179
3.11.7.7 Generating a HMI user data type as type .. 180
3.11.7.8 Generating HMI user data type from PLC data type ... 181
3.11.7.9 Creating a graphic and dynamic SVG as type... 182
3.11.7.10 Editing dynamic SVG type .. 182
3.11.7.11 Creating a script module as a type .. 184
3.11.8 Using master copies... 185
3.11.8.1 Basics .. 185
3.11.8.2 Using a script as a master copy... 186
3.11.8.3 Using a screen as a master copy ... 186
3.12 Using WinCC version compatibility ... 187
3.12.1 Basics on version compatibility... 187
3.12.1.1 Installed Runtime version for Unified Comfort Panel.. 191
3.12.1.2 Installed Runtime version for Unified PC.. 192
3.12.1.3 Use cases... 193
3.12.2 Upgrade project ... 194
3.12.3 Devices not fully supported .. 197
3.12.4 Unsupported devices ... 198
3.12.5 Matching objects after upgrading... 200
3.12.6 Replacing the configured HMI device .. 202
3.12.6.1 Basics for replacing the configured HMI device.. 202
3.12.6.2 Replacing the configured HMI device .. 203
3.12.6.3 Adapting the configuration of the connection... 204
3.12.7 Upgrading a global library .. 205
3.12.8 Changing the configured runtime version... 206
3.12.9 Upgrading the installed Runtime version of a device ... 207
3.12.9.1 Upgrading a Unified PC... 207
3.12.9.2 Upgrading a Unified Comfort Panel... 208

Table of contents

System Manual, 11/2022 5

3.12.10 Replacing a device ... 209
3.12.10.1 Basics .. 209
3.12.10.2 Replacing a Unified Comfort Panel.. 210
3.12.10.3 Replacing a Unified PC ... 212
3.12.10.4 Adjusting screens to the new HMI device.. 213
3.13 Using cross-references ... 216
3.13.1 General notes about cross-references ... 216
3.13.2 Textual cross-references ... 217
3.13.3 Invalid cross-references .. 218
3.13.4 Displaying the "Cross-references" editor .. 219
3.13.5 Display cross-references in the Inspector window ... 221
3.13.6 Restoring cross-references after project upgrade... 222
3.14 Configuring cycles.. 223
3.14.1 Basics of cycles .. 223
3.14.2 Defining cycles... 224
3.15 Configuring in multiple languages.. 225
3.15.1 Languages in WinCC .. 225
3.15.2 Settings for languages in the operating system... 227
3.15.3 Settings for Asian languages in the operating system.. 227
3.15.4 Setting project languages... 228
3.15.4.1 Selecting the user interface language... 228
3.15.4.2 Enabling project languages .. 229
3.15.4.3 Selecting the reference language and editing language .. 229
3.15.5 Creating one project in multiple languages... 231
3.15.5.1 Working with multiple languages ... 231
3.15.5.2 Basics of project texts... 232
3.15.5.3 Translating texts directly .. 233
3.15.5.4 Translating texts using reference texts.. 234
3.15.5.5 Exporting project texts ... 235
3.15.5.6 Importing project texts... 237
3.15.6 Using language-specific graphics .. 238
3.15.6.1 "Project graphics" editor ... 238
3.15.6.2 Storing an image in the project graphics... 239
3.15.6.3 Storing an external image in the project graphics.. 240
3.15.6.4 Editing a graphic.. 241
3.15.7 Languages and fonts in runtime ... 242
3.15.7.1 Using multiple runtime languages.. 242
3.15.7.2 Own fonts ... 243
3.15.7.3 Methods for language switching .. 244
3.15.7.4 Starting a project in a different language .. 245
3.15.7.5 Enabling the runtime language .. 246
3.15.7.6 Standardizing font for all languages ... 247
3.15.7.7 Specific features of Asian and Eastern languages in runtime.. 247
3.16 Performance features... 248
3.16.1 General technical data ... 248
3.16.1.1 SIMATIC Unified Comfort Panel ... 248
3.16.1.2 SIMATIC Unified PC... 252
3.16.2 Permitted special characters... 256

Table of contents

6 System Manual, 11/2022

4 Configuring screens... 259
4.1 Basics .. 259
4.1.1 Basics of screens .. 259
4.1.2 Changing the screen resolution.. 260
4.1.3 Using styles .. 261
4.1.3.1 Basics on working with styles ... 261
4.1.3.2 Defining the style... 263
4.1.3.3 Switching styles by means of user-defined functions... 264
4.1.4 Task cards .. 265
4.1.5 Defining the start screen: ... 266
4.1.6 Screen zooming... 267
4.2 Overview of screen objects .. 269
4.2.1 Show object type and name in the tooltip .. 269
4.2.2 Basic objects .. 269
4.2.2.1 Text box... 269
4.2.2.2 Graphic view.. 272
4.2.2.3 Line ... 274
4.2.2.4 Rectangle .. 275
4.2.2.5 Circle ... 275
4.2.2.6 Ellipse.. 276
4.2.2.7 Polyline ... 277
4.2.2.8 Polygon ... 278
4.2.2.9 Circular arc .. 279
4.2.2.10 Elliptical arc ... 280
4.2.2.11 Circle segment... 281
4.2.2.12 Ellipse segment ... 282
4.2.2.13 Example: Configuring a rectangle ... 283
4.2.3 Elements ... 284
4.2.3.1 IO field... 284
4.2.3.2 Symbolic IO field .. 286
4.2.3.3 List box.. 288
4.2.3.4 Button ... 289
4.2.3.5 Switch ... 292
4.2.3.6 Bar .. 293
4.2.3.7 Slider... 295
4.2.3.8 Gauge ... 297
4.2.3.9 Clock ... 298
4.2.3.10 Check box.. 299
4.2.3.11 Radio button.. 301
4.2.3.12 Touch area... 303
4.2.3.13 Examples ... 304
4.2.4 Controls... 308
4.2.4.1 Configuring the toolbar and information bar... 308
4.2.4.2 Alarm control... 309
4.2.4.3 Trend control ... 315
4.2.4.4 Function trend control ... 319
4.2.4.5 Trend companion... 323
4.2.4.6 Screen window .. 325
4.2.4.7 Faceplate container.. 327
4.2.4.8 Parameter set control ... 329
4.2.4.9 System diagnostics display ... 332

Table of contents

System Manual, 11/2022 7

4.2.4.10 Process control... 335
4.2.4.11 Web control ... 337
4.2.4.12 Media Player .. 341
4.2.4.13 GRAPH overview .. 343
4.2.4.14 PLC code view.. 346
4.2.5 My Controls ... 347
4.2.5.1 Using custom web controls .. 347
4.2.5.2 Updating Custom Web Controls.. 348
4.2.5.3 My Controls - Overview.. 350
4.2.6 Graphics .. 353
4.2.6.1 External graphics ... 353
4.2.6.2 Managing external graphics ... 354
4.2.6.3 Managing SVG graphics ... 356
4.2.6.4 Restrictions on SVG graphics .. 357
4.2.7 Dynamic widgets ... 358
4.2.7.1 Managing dynamic SVG graphics ... 358
4.3 Configuring screen objects ... 361
4.3.1 Select multiple objects ... 361
4.3.2 Copying objects ... 363
4.3.3 Creating objects automatically ... 363
4.3.4 Defining the output format .. 364
4.3.5 Disable remote control ... 371
4.3.6 Hotkeys ... 372
4.3.7 Configuring object properties ... 375
4.3.7.1 Managing object properties ... 375
4.3.7.2 "Filter" function.. 376
4.3.7.3 Adding an object property to favorites.. 377
4.3.7.4 Changing a property for multiple objects.. 379
4.3.7.5 Automatically filling in of property values for an object collection 379
4.3.8 Designing objects .. 381
4.3.8.1 Changing the object size .. 381
4.3.8.2 Changing the position of an object... 383
4.3.8.3 Transfer format .. 384
4.3.8.4 Designing the fill pattern.. 390
4.3.8.5 Designing the border of an object .. 391
4.3.8.6 Configuring reordering of the columns ... 392
4.3.8.7 Rearranging columns in runtime .. 393
4.3.9 Moving objects .. 395
4.3.9.1 Aligning objects ... 395
4.3.9.2 Move objects ... 397
4.3.9.3 Rotating object .. 397
4.3.9.4 Rotating an object around a pivot point .. 399
4.3.10 Designing colors .. 400
4.3.10.1 Designing the background color ... 400
4.3.10.2 Defining color gradients ... 400
4.3.10.3 Central color management... 401
4.3.11 Formatting text in the object.. 406
4.3.11.1 Enter text directly into the object.. 406
4.3.11.2 Entering multiline text ... 407
4.3.11.3 Show default entry of text and graphic list in the object.. 409
4.3.11.4 Displaying tag value in the object dynamically .. 410
4.3.11.5 Dynamically displaying a text list in the object .. 413

Table of contents

8 System Manual, 11/2022

4.3.12 Linking objects... 415
4.3.12.1 Linking an object to a text list... 415
4.3.12.2 Linking an object to a graphic list ... 416
4.3.12.3 Linking an object to tags .. 417
4.3.13 Using layers ... 418
4.3.13.1 Basic information on using layers ... 418
4.3.13.2 Renaming a layer ... 419
4.3.13.3 Moving objects between layers .. 420
4.3.13.4 Specifying the active layer.. 421
4.3.13.5 Hiding and showing layers ... 421
4.3.13.6 Toggle the visibility of layers in runtime in the ES.. 422
4.3.13.7 Toggling the visibility of layers in runtime using the JScript function 423
4.3.14 Using groups ... 424
4.3.14.1 Basics of groups ... 424
4.3.14.2 Grouping objects ... 426
4.3.14.3 Managing groups... 428
4.3.14.4 Changing the size of the group .. 429
4.3.14.5 Moving a group ... 430
4.3.14.6 Moving groups between layers... 431
4.3.14.7 Groups in editing mode.. 431
4.3.14.8 Adding an object to the group.. 433
4.3.14.9 Managing objects in groups ... 434
4.3.14.10 Rotating a group and objects in the group .. 434
4.3.14.11 Aligning objects in the group ... 436
4.3.14.12 Properties of the group .. 438
4.3.14.13 Adding a property of the group to favorites .. 439
4.3.14.14 Aggregated properties of the objects in groups... 440
4.3.14.15 Group as part of a multiple selection .. 441
4.3.15 Two-hand operation of operator controls.. 442
4.3.15.1 Two-hand operation of operator controls.. 442
4.3.15.2 Locking and unlocking operator controls .. 442
4.3.15.3 Configuring the release button in the screen... 444
4.4 Configuring text lists and graphics lists ... 446
4.4.1 Configuring text lists .. 446
4.4.1.1 Basics of text lists... 446
4.4.1.2 Creating a text list .. 447
4.4.1.3 Assigning texts and values to an area text list ... 448
4.4.1.4 Assigning texts and values to a bit text list .. 450
4.4.1.5 Assigning texts and values to a bit number text list ... 451
4.4.1.6 Configuring object with a text list ... 453
4.4.2 Configuring graphics lists ... 454
4.4.2.1 Basics of graphic lists ... 454
4.4.2.2 Creating a graphic list .. 455
4.4.2.3 Assigning graphics and values to an area graphic list .. 456
4.4.2.4 Assigning graphics and values to a bit graphic list... 458
4.4.2.5 Assigning graphics and values to a bit number graphic list .. 459
4.4.2.6 Configuring objects with a graphic list .. 461
4.5 Configuring dynamization .. 462
4.5.1 Basics of dynamizing screens ... 462
4.5.2 Displaying dynamization of the properties.. 463
4.5.3 Find type of dynamization.. 465

Table of contents

System Manual, 11/2022 9

4.5.4 Changing a dynamization for multiple objects .. 467
4.5.5 Dynamizing object properties... 467
4.5.5.1 Dynamizing an object property with a tag .. 467
4.5.5.2 Dynamizing an object property with a script ... 473
4.5.5.3 Dynamizing an object property with a resource list ... 475
4.5.5.4 Dynamizing an object property with flashing ... 476
4.5.5.5 Dynamization by expressions ... 477
4.5.5.6 Examples ... 479
4.6 Trigger events .. 490
4.6.1 Basics on the events... 490
4.6.2 Triggering "Activated" and "Deactivated" events .. 493
4.6.3 Triggering a "Press" event ... 494
4.6.4 Triggering a "Release" event ... 495
4.6.5 "Press key" and "Release key" events:... 500
4.6.6 Trigger "Click left mouse button" event ... 502
4.6.7 Trigger "Click right mouse button" event... 503
4.6.8 "Loaded" event... 504
4.6.9 "Cleared" event .. 505
4.6.10 "Connected" event ... 505
4.6.11 Triggering the "Status changed" event .. 505
4.6.12 Trigger "Command fired" event ... 506
4.6.13 Trigger "Gesture detected" event .. 508
4.6.14 Triggering events through touch operation... 510
4.6.15 Example: Configure the system function "Screen change" ... 512
4.6.16 Events on the "Media Player" object .. 514
4.6.16.1 Trigger "Pause" event ... 514
4.6.16.2 Triggering a "Play" event... 515
4.6.16.3 Triggering a "Playback finished" event ... 516
4.6.17 Events at the "Plant overview" object .. 518
4.6.17.1 Triggering a "Selection changed" event... 518
4.6.17.2 Triggering an "Expand" event.. 519
4.6.17.3 Triggering an "Expand all" event ... 520
4.6.17.4 Triggering a "Minimize" event... 521
4.6.17.5 Triggering a "Minimize all" event .. 522
4.7 Configuring faceplates ... 524
4.7.1 Basics .. 524
4.7.1.1 Basics of faceplates .. 524
4.7.1.2 Device dependency of faceplates ... 526
4.7.1.3 "Faceplate types" editor .. 526
4.7.1.4 Lowest device version of a faceplate type ... 529
4.7.1.5 Faceplates and TIA version upgrade.. 530
4.7.2 Creating and managing faceplates ... 531
4.7.2.1 Creating a faceplate type in the project library.. 531
4.7.2.2 Creating a faceplate type from a screen.. 532
4.7.2.3 Working with faceplate types and versions ... 533
4.7.2.4 Editing the visualization of a faceplate type .. 541
4.7.2.5 Configuring multilingualism for objects of a faceplate type ... 542
4.7.2.6 Configuring tags in the faceplate type .. 543
4.7.2.7 Interface properties in faceplates ... 548
4.7.2.8 Interface events in faceplates ... 554
4.7.2.9 Checking the version consistency and fixing inconsistencies ... 559

Table of contents

10 System Manual, 11/2022

4.7.2.10 Checking the consistency at the faceplate type and fixing inconsistencies 560
4.7.2.11 Releasing a faceplate version of a type ... 562
4.7.2.12 Creating a faceplate instance ... 564
4.7.2.13 Using a PLC user data type ... 566
4.7.2.14 Using an HMI user data type... 569
4.7.2.15 Using a faceplate type in another faceplate type... 570
4.7.2.16 Copying faceplate types and faceplate instances to other projects..................................... 571
4.7.3 Connecting faceplate types to OPC UA.. 573
4.7.4 Dynamizing faceplates ... 574
4.7.4.1 Basics for the dynamization of faceplates ... 574
4.7.4.2 Dynamizing a faceplate type .. 576
4.7.4.3 Dynamizing a faceplate instance .. 578
4.7.4.4 Accessing properties of the faceplate container with a script... 579
4.7.4.5 Configure faceplate as pop-up .. 581
4.7.5 Example: Creating and using faceplates.. 585
4.7.5.1 Example: Configuring faceplates... 585
4.7.5.2 Example: Introduction.. 586
4.7.5.3 Example: Create HMI tags .. 587
4.7.5.4 Example: Creating faceplate types .. 588
4.7.5.5 Example: Configuring interface tags in faceplate types.. 591
4.7.5.6 Example: Configure local tags in faceplate types. .. 593
4.7.5.7 Instead of tags: Using PLC user data type in the faceplate type.. 594
4.7.5.8 Example: Instantiate the inner faceplate type in the outer faceplate type 595
4.7.5.9 Example: Configuring interface properties in faceplate types .. 597
4.7.5.10 Example: Create an interface event .. 598
4.7.5.11 Example: Using e script to change tags... 599
4.7.5.12 Example: Creating a local script for opening the pop-up.. 600
4.7.5.13 Example: Create local script to close the pop-up.. 601
4.7.5.14 Example: Configure the screen and instantiate the faceplate type. 601
4.7.5.15 Example: Displaying a project in runtime. ... 603

5 Configuring tags .. 607
5.1 Basics .. 607
5.1.1 Basics of tags ... 607
5.1.2 Overview of HMI tag tables .. 609
5.1.3 External tags.. 610
5.1.4 Addressing external tags .. 612
5.1.5 Indirect addressing... 614
5.1.6 Internal tags .. 615
5.1.7 System tags ... 616
5.1.8 Updating the tag value in runtime.. 617
5.1.9 Limits and start values of a tag... 618
5.1.10 Data logging.. 619
5.1.11 Basics of tag management ... 620
5.1.12 Basics of user data types .. 621
5.1.13 Export and import of tags .. 622
5.2 Configuring tags .. 624
5.2.1 Working with tag tables ... 624
5.2.2 Creating external tags .. 626
5.2.3 Creating OPC tags .. 628
5.2.4 Creating internal tags... 629
5.2.5 Configuring multiple tags... 631

Table of contents

System Manual, 11/2022 11

5.2.6 Adapting the data type of a tag .. 633
5.2.7 Defining the acquisition cycle for a tag ... 635
5.2.8 Specify tag persistency... 636
5.2.9 Defining limits for a tag.. 637
5.2.10 Specify "Local session" scope.. 638
5.2.11 Synchronizing tags... 640
5.2.12 Importing and exporting tags... 641
5.2.13 Defining a substitute value ... 643
5.2.14 Connecting a tag to another PLC .. 644
5.3 Configuring user data types.. 645
5.3.1 Creating an HMI user data type .. 645
5.3.2 Creating HMI user data type elements .. 647
5.3.3 Adding a PLC user data type to the project library ... 648
5.3.4 Managing versions of user data types... 649
5.3.5 Setting a user data type version as default.. 650
5.3.6 Creating tags with a HMI user data type ... 651
5.4 Logging tags.. 653
5.4.1 Basics .. 653
5.4.1.1 Basics of data logging .. 653
5.4.1.2 Size of a log entry in the data log ... 654
5.4.1.3 Logging modes and logging process... 654
5.4.2 Configuring logging tags.. 657
5.4.3 Configuring multiple logging tags .. 659
5.4.4 Configuring tag triggers ... 660
5.4.5 Configuring limit values ... 661
5.4.6 Configuring smoothing .. 663
5.4.7 Configuring compression.. 667
5.5 Displaying tags .. 671
5.5.1 Basics .. 671
5.5.1.1 Outputting the tag values .. 671
5.5.1.2 Outputting tag values as trends.. 673
5.5.1.3 Representing multiple trends ... 674
5.5.1.4 Basics of time range... 676
5.5.1.5 Representing trend directions... 677
5.5.1.6 Outputting tag values in tabular format.. 678
5.5.1.7 Configuring tag evaluation ... 679
5.5.2 Configuring a trend control .. 680
5.5.3 Configuring the function trend control ... 682
5.5.4 Configuring bit-triggered trends ... 683
5.5.5 Configuring the process control.. 688
5.5.6 Configuring the trend companion... 689
5.5.7 Configuring the toolbar and information bar... 691
5.5.8 Defining the data source .. 692
5.6 Reference .. 694
5.6.1 Quality codes of HMI tags .. 694
5.6.2 Data types ... 701
5.6.2.1 Data types for SIMATIC S7-300/400 .. 701
5.6.2.2 Data types for SIMATIC S7-1200 ... 702
5.6.2.3 Data types for SIMATIC S7-1500 ... 703
5.6.2.4 User-defined PLC data types (UDT).. 705

Table of contents

12 System Manual, 11/2022

6 Configuring alarms .. 707
6.1 Basics .. 707
6.1.1 Alarm system... 707
6.1.2 Alarms... 709
6.1.2.1 User-defined alarms ... 709
6.1.2.2 System-defined alarms ... 712
6.1.3 Alarm states... 714
6.1.4 Acknowledgment model .. 715
6.1.5 Alarm classes ... 717
6.1.6 Acknowledging alarms... 721
6.1.7 Alarm components and properties ... 722
6.2 Configuring alarms... 724
6.2.1 Workflow for configuring alarms... 724
6.2.2 Creating alarm classes.. 726
6.2.3 Using common alarm classes ... 729
6.2.4 Configuring state texts of alarms .. 733
6.2.5 Configuring discrete alarms .. 734
6.2.5.1 Configuring discrete alarms .. 734
6.2.5.2 Configure trigger.. 736
6.2.5.3 Sending alarm acknowledgments to the PLC... 738
6.2.6 Configuring analog alarms ... 738
6.2.6.1 Configuring analog alarms ... 738
6.2.6.2 Configure trigger.. 740
6.2.7 Integrating OPC UA server alarm instances ... 742
6.2.8 Configuring alarm texts .. 742
6.2.9 Configuring info texts... 744
6.2.10 Parameter output in a discrete or analog alarm... 745
6.2.11 Configuring optional parameters for discrete alarms and analog alarms 745
6.2.12 Configuring multilingual alarm texts... 747
6.2.13 Editing system events .. 748
6.2.14 Filtering controller alarms via display classes .. 748
6.2.15 Configuring alarm acknowledgment... 749
6.3 Exporting and importing alarms ... 751
6.3.1 Exporting alarms.. 751
6.3.2 Importing alarms ... 752
6.4 Configuring an alarm control.. 753
6.4.1 Configuring an alarm control.. 753
6.4.2 Display all information about an alarm ... 756
6.4.3 Configuring the toolbar .. 757
6.4.4 Configuring the information bar ... 759
6.4.5 Configuring columns and sorting.. 760
6.4.6 Configuring filters in the alarm control.. 762
6.4.7 Configuring alarm export ... 764
6.4.8 Configuring the printing of alarms.. 764
6.4.9 Show logged alarms .. 765
6.4.10 Configuring alarm statistics .. 766
6.4.11 Configuring the display of system diagnostic alarms ... 767
6.5 Logging alarms .. 769
6.5.1 Basics of alarm logging .. 769

Table of contents

System Manual, 11/2022 13

6.5.2 Size of a log entry in the alarm log ... 770
6.5.3 Assign alarm class .. 771
6.5.4 Multilingual logging of alarms.. 772
6.6 Displaying and using alarms... 773
6.6.1 Operating the alarm control and displaying it in runtime .. 773
6.6.2 Sorting alarms in runtime .. 775
6.6.3 Filtering alarms in runtime ... 778
6.6.4 Displaying logged alarms in runtime... 779
6.6.5 Displaying alarm statistics .. 781
6.6.6 Operating alarm statistics .. 783
6.6.7 Acknowledging alarms... 784
6.6.8 Group acknowledgement of alarms.. 786
6.6.9 Exporting alarms.. 787
6.6.10 Shelving alarms ... 788
6.6.11 Unshelving an alarm .. 789
6.6.12 Lock alarms ... 791
6.6.13 Printing alarms in runtime.. 793
6.7 Display security events ... 794
6.7.1 Display security events on the HMI device... 794
6.7.2 Configuring the display of security events... 795
6.8 Sending complete alarm from the controller to the HMI device ... 796
6.8.1 Sending and automatically updating complete alarm from the controller to the HMI device... 796
6.8.2 Configuring automatic update of controller alarms on the HMI device 797
6.9 Reference .. 798
6.9.1 Terminology used for alarms .. 798
6.9.2 System events ... 800
6.9.2.1 Basics of System Events ... 800
6.9.2.2 S7Plus system events ... 802
6.9.2.3 Parameter set system events .. 803
6.9.2.4 Reporting system events .. 804
6.9.2.5 Scripting system events.. 805
6.9.2.6 Communication system events... 806
6.9.2.7 VCS system events ... 808
6.9.2.8 Runtime system events .. 808

7 Archiving data ... 837
7.1 Log basics.. 837
7.2 How it works ... 839
7.3 Storage locations of logs .. 843
7.4 Creating a data log and an alarm log .. 848
7.5 Editing log contents with scripts and system functions ... 850

8 Configuring parameter sets ... 853
8.1 Basics .. 853
8.1.1 Basics of parameter control .. 853
8.1.2 Limitations .. 855
8.1.3 "Parameter set types" editor ... 856
8.1.4 Parameter set control ... 860

Table of contents

14 System Manual, 11/2022

8.2 Configuring parameter sets .. 863
8.2.1 Creating a parameter set type with elements via an HMI user data type 863
8.2.2 Creating a parameter set type with elements via a PLC user data type 866
8.2.3 Changing a parameter set type with elements .. 870
8.2.4 Assigning a tag of the data type HMI user data type to a parameter set type...................... 873
8.2.5 Assigning a tag of the data type "PLC user data type" to a parameter set type 875
8.2.6 Transferring and deleting parameter sets automatically .. 876
8.2.7 Transferring parameter sets via scripts .. 879
8.2.8 Configuring the parameter set view.. 880
8.2.9 Assigning an edit tag to a parameter set item ... 882
8.2.10 Configuring parameter sets without parameter set control .. 883
8.3 Using parameter sets in runtime... 885
8.3.1 Managing parameter sets... 885
8.3.2 Exporting and importing parameter sets... 891
8.3.3 Transferring parameter sets.. 897

9 Using system functions.. 901
9.1 Working with function lists... 901
9.1.1 Basics of the function list ... 901
9.1.2 Input support... 902
9.1.3 Configuring a function list .. 905
9.1.4 Editing a function list ... 906
9.1.5 Using a screen item to specify the value of a parameter .. 907
9.1.6 Adapt the function list to changed scripts ... 908
9.2 System functions ... 909
9.2.1 LogOff ... 909
9.2.2 UpdateTag ... 910
9.2.3 InsertElectronicRecord ... 910
9.2.4 ExecuteReport ... 911
9.2.5 EjectStorageMedium.. 912
9.2.6 IncreaseTag ... 913
9.2.7 CreateParameterSet ... 914
9.2.8 CreateScreenshot... 915
9.2.9 CreateOperatorInputInformation.. 915
9.2.10 CreateSystemInformation... 916
9.2.11 CreateSystemAlarm.. 917
9.2.12 ExportParameterSets.. 918
9.2.13 GoToPLC .. 920
9.2.14 ImportParameterSets ... 920
9.2.15 InvertBitInTag... 922
9.2.16 IsAlarmJumpPossible.. 923
9.2.17 LoadParameterSet.. 923
9.2.18 LoadAndWriteParameterSet.. 924
9.2.19 GetDHCPState .. 925
9.2.20 GetBrightness .. 926
9.2.21 GetIPV4Address ... 927
9.2.22 GetNetworkInterfaceState.. 928
9.2.23 ReadParameterSet.. 929
9.2.24 ReadParameterSetName .. 929
9.2.25 ReadParameterSetTypeName.. 930
9.2.26 GetSmartServerState.. 931

Table of contents

System Manual, 11/2022 15

9.2.27 ReadAndSaveParameterSet .. 932
9.2.28 ClearAlarmLog ... 933
9.2.29 DeleteParameterSet ... 933
9.2.30 ClearTagLog... 934
9.2.31 OpenScreenInPopup .. 935
9.2.32 OpenScreenWithNumberInPopup... 936
9.2.33 OpenViewGRAPHByBlock ... 937
9.2.34 OpenGRAPHViewFromOverview... 937
9.2.35 OpenPLCCodeViewByAlarm.. 938
9.2.36 ResetBitInTag ... 938
9.2.37 ShiftAndMask .. 939
9.2.38 ClosePopup.. 941
9.2.39 WriteParameterSet ... 942
9.2.40 WriteManualValue.. 942
9.2.41 SetBitInTag... 943
9.2.42 SetDHCPState .. 945
9.2.43 SetPropertyValue ... 946
9.2.44 SetBrightness... 946
9.2.45 SetIPV4Address .. 947
9.2.46 SetNetworkInterfaceState .. 948
9.2.47 SetLanguage.. 949
9.2.48 SetSmartServerState .. 950
9.2.49 SetTagValue... 951
9.2.50 SetConnectionMode .. 951
9.2.51 SaveParameterSet .. 952
9.2.52 StartProgram ... 953
9.2.53 StopRuntime.. 954
9.2.54 LookUpText.. 955
9.2.55 RenameParameterSet... 956
9.2.56 ToggleGRAPHViewerMode.. 957
9.2.57 ToggleNetworkDisplay ... 957
9.2.58 ToggleLanguage .. 958
9.2.59 ZoomIn.. 958
9.2.60 ZoomOut... 959
9.2.61 DecreaseTag .. 960
9.2.62 ChangeScreen ... 961
9.2.63 ChangeScreenAsync... 961
9.2.64 ChangeScreenAsyncWithNumber ... 962
9.2.65 ChangeScreenWithNumber .. 963
9.2.66 ChangeConnection .. 964
9.2.67 Next .. 965
9.2.68 ShowControlPanel ... 965
9.2.69 ShowSoftwareVersion.. 966
9.2.70 Previous... 967

10 Programming scripts.. 969
10.1 Runtime scripting... 969
10.1.1 Introduction to runtime scripting.. 969
10.1.2 Basics .. 970
10.1.3 Notes on creating scripts .. 972
10.1.3.1 Data types ... 974
10.1.3.2 Object instances .. 975

Table of contents

16 System Manual, 11/2022

10.1.3.3 Enumerations .. 975
10.1.3.4 Asynchronous operations... 977
10.1.3.5 Support for errors .. 978
10.1.3.6 Global modules.. 978
10.1.3.7 Local scripts ... 980
10.1.4 "Scripts" editor ... 981
10.1.4.1 Structure of the "Scripts" editor... 981
10.1.4.2 Input support... 982
10.1.4.3 Script and execution context .. 985
10.1.4.4 Configuring a script to an event.. 987
10.1.4.5 Dynamizing object properties by script ... 988
10.1.4.6 Creating a global definition in a local script ... 988
10.1.5 Examples ... 989
10.1.5.1 Notes on the code examples .. 989
10.1.5.2 Dynamizing the position of an object ... 989
10.1.5.3 Reading and writing tag values .. 991
10.1.5.4 Simulating value changes in tags ... 992
10.1.5.5 Using tag values globally.. 995
10.1.5.6 Converting values .. 997
10.1.5.7 Change language... 998
10.1.5.8 Dynamically changing the output format of an object... 1000
10.1.5.9 Reading and writing binary files ... 1002
10.1.5.10 Reading and writing text files ... 1004
10.1.5.11 Setting bits .. 1005
10.1.5.12 Changing the date format .. 1009
10.1.5.13 Monitoring alarms ... 1010
10.1.5.14 Set alarm filter ... 1012
10.1.5.15 Creating an alarm subscription ... 1013
10.1.5.16 Creating alarms with multilingual alarm texts ... 1015
10.1.5.17 Opening and closing a screen in a pop-up window ... 1017
10.1.5.18 Triggering a screen change with a tag .. 1020
10.1.6 Troubleshooting... 1022
10.1.6.1 RTIL Trace Viewer ... 1022
10.1.6.2 Integrate RTIL Trace Viewer as an external application... 1023
10.1.6.3 Tracing with the RTIL Trace Viewer ... 1023
10.1.7 Debugging scripts .. 1025
10.1.7.1 Basics of debugging... 1025
10.1.7.2 Design and function of the debugger ... 1025
10.1.7.3 Enabling the debugger... 1028
10.1.7.4 Starting the debugger.. 1029
10.1.7.5 Working with breakpoints .. 1030
10.1.7.6 Step-by-step execution of scripts .. 1033
10.1.7.7 Show values .. 1035
10.2 WinCC Unified object model ... 1037
10.2.1 WinCC Unified object model ... 1037
10.2.2 HMIRuntime .. 1040
10.2.2.1 HMIRuntime.Language .. 1041
10.2.2.2 HMIRuntime.GetDetailedErrorDescription() .. 1044
10.2.2.3 HMIRuntime.Trace() ... 1045
10.2.2.4 Alarming ... 1046
10.2.2.5 AlarmLogging .. 1106
10.2.2.6 Audit ... 1132

Table of contents

System Manual, 11/2022 17

10.2.2.7 Connections .. 1147
10.2.2.8 Database ... 1153
10.2.2.9 Device ... 1162
10.2.2.10 FileSystem ... 1182
10.2.2.11 Math ... 1195
10.2.2.12 OLEAutomation ... 1229
10.2.2.13 ParameterSetTypes... 1233
10.2.2.14 PlantModel .. 1267
10.2.2.15 Reporting .. 1301
10.2.2.16 Resources .. 1303
10.2.2.17 TagLogging.. 1313
10.2.2.18 Tags... 1333
10.2.2.19 Timers ... 1390
10.2.2.20 UI .. 1395
10.2.2.21 UserManagement .. 6850

11 Planning tasks.. 6853
11.1 Basics .. 6853
11.1.1 Field of application of the Scheduler .. 6853
11.1.2 Basic of the scheduler .. 6853
11.2 Creating tasks with the "Time" trigger... 6856
11.3 Creating tasks with the "Tags" trigger ... 6857
11.4 Creating tasks with the "Alarms" trigger.. 6857

12 Using the diagnostics functions .. 6859
12.1 Configuring system diagnostics objects .. 6859
12.1.1 Activating system diagnostics (S7-1200/1500) ... 6859
12.1.2 Configuring diagnostics indicators (S7-1200/1500)... 6860
12.1.3 Configuring system diagnostics of the controller (S7-1200/1500).................................... 6863
12.1.4 System diagnostics display ... 6868
12.2 Example: System diagnostics with all objects.. 6874
12.2.1 Example: Procedures overview ... 6874
12.3 Process diagnostics .. 6875
12.3.1 Basics of supervision with ProDiag.. 6875
12.3.2 Requirements and licensing ... 6875
12.3.3 Objects for the supervision and diagnostics of plants.. 6877
12.3.4 GRAPH overview .. 6878
12.3.5 Configuring a GRAPH overview... 6880
12.3.6 PLC code view.. 6882
12.3.7 Configuring the PLC code view ... 6884

13 Configuring users and roles... 6887
13.1 Basics .. 6887
13.1.1 User management in the TIA Portal .. 6887
13.1.2 Central user management and UMC ... 6888
13.1.3 Local and central user management... 6889
13.1.4 Roles and function rights ... 6893
13.2 Configuring user management in the engineering system for Runtime............................ 6894
13.2.1 Specifying local or central user management.. 6894

Table of contents

18 System Manual, 11/2022

13.2.2 Configuring a connection to the central user management ... 6895
13.2.3 Server ID.. 6896
13.2.4 Users and user groups.. 6900
13.2.4.1 Managing local users ... 6900
13.2.4.2 Downloading local user management .. 6901
13.2.4.3 Managing central users and user groups .. 6903
13.2.4.4 Loading central user management ... 6906
13.2.5 HMI roles ... 6909
13.2.5.1 Managing HMI roles... 6909
13.2.5.2 Assigning HMI roles ... 6910
13.2.5.3 HMI role "HMI Monitor Client" .. 6911
13.2.6 Function rights .. 6914
13.2.6.1 System-defined function rights... 6914
13.2.6.2 User-defined function rights ... 6916
13.2.6.3 Assigning function rights to an HMI role ... 6917
13.2.7 Examples ... 6918
13.2.7.1 Example: Setup of the local user management ... 6918
13.2.7.2 Example: Add user and assign to a role... 6920
13.2.7.3 Example: Add roles and assign function rights .. 6922
13.2.7.4 Example: Configuring a button with access protection .. 6923
13.3 Using the user management on the Unified Comfort Panel ... 6925
13.3.1 Notes on commissioning.. 6925
13.3.2 User management on the Unified Comfort Panel .. 6925
13.3.3 Protecting the Control Panel from being accessed... 6926
13.3.4 Managing local users ... 6927
13.3.4.1 Options for local user management.. 6927
13.3.4.2 Using local user management in the Control Panel ... 6927
13.3.4.3 Opening local user management in the "Browser" screen object...................................... 6928
13.3.4.4 Opening local user management in the Internet browser.. 6929
13.3.4.5 Managing local users in Runtime.. 6930
13.3.5 Using central user management... 6940
13.3.5.1 Using central user management in the Control Panel.. 6940
13.3.5.2 Simulating a central user management .. 6943
13.4 Using user management on the WinCC Unified PC .. 6944
13.4.1 Notes on commissioning.. 6944
13.4.2 Setting the user management with WinCC Unified Configuration 6944
13.4.3 Managing multiple projects in the SIMATIC Runtime Manager... 6946
13.4.4 SIMATIC Runtime Manager users .. 6947
13.4.5 Managing local users ... 6947
13.4.5.1 Checking local user management in the SIMATIC Runtime Manager................................ 6947
13.4.5.2 Managing local users in Runtime.. 6950
13.4.6 Using central user management... 6966
13.4.6.1 Setting central user management in the SIMATIC Runtime Manager................................ 6966
13.4.6.2 Simulating a central user management .. 6968
13.4.6.3 SwacLogin: Errors after complete download ... 6969

14 Connectivity... 6973
14.1 Basics .. 6973
14.1.1 Basics of communication ... 6973
14.1.1.1 Communication between devices... 6973
14.1.1.2 Configuring communication... 6975

Table of contents

System Manual, 11/2022 19

14.1.1.3 Secure communication and certificates... 6976
14.1.1.4 Networks and connections ... 6978
14.1.1.5 Synchronization... 6983
14.1.2 Configuring an HMI connection .. 6985
14.1.2.1 Configuring an integrated HMI connection ... 6985
14.1.2.2 Configuring a non-integrated HMI connection .. 6991
14.1.2.3 Setting up switch on/switch off of a connection in runtime ... 6993
14.1.3 Device configuration .. 6994
14.1.3.1 HMI devices ... 6994
14.1.3.2 Inserting a HMI device into the project ... 6994
14.2 Communication with SIMATIC PLCs .. 6996
14.2.1 Communicating with SIMATIC S7-1200/1500 ... 6996
14.2.1.1 Communication with S7-1200/1500... 6996
14.2.1.2 Permitted data types for SIMATIC S7-1200/1500 ... 6996
14.2.1.3 Symbolic addressing .. 6997
14.2.1.4 Interface and communication parameters .. 6999
14.2.1.5 Troubleshooting for SIMATIC S7-1200/1500.. 7000
14.2.2 Communicating with SIMATIC S7-300/400 ... 7003
14.2.2.1 Communication with SIMATIC S7-300/400 ... 7003
14.2.2.2 Permissible data types for SIMATIC S7-300/400... 7003
14.2.2.3 Interface and communication parameters .. 7004
14.2.2.4 Configuring a connection via "Named connections" .. 7006
14.2.2.5 Cyclic operation ... 7007
14.2.2.6 Troubleshooting for SIMATIC S7-300/400.. 7008
14.3 Communication with other devices .. 7011
14.3.1 Communication with WinCC Unified Open Pipe... 7011
14.4 OPC UA - Open Platform Communications .. 7011
14.4.1 Introduction... 7011
14.4.1.1 Principle .. 7011
14.4.1.2 OPC UA specifications and compatibility ... 7011
14.4.2 Using OPC UA certificates ... 7012
14.4.2.1 Introduction to OPC UA certificates ... 7012
14.4.2.2 Providing certificates on a Unified PC .. 7014
14.4.2.3 Providing certificates on a Unified Comfort Panel .. 7019
14.4.2.4 Providing certificates for the engineering systems as OPC UA client 7025
14.4.3 WinCC Unified OPC UA server ... 7025
14.4.3.1 General information about Unified OPC UA servers ... 7025
14.4.3.2 Using the Unified PC as OPC UA server.. 7038
14.4.3.3 Using the Unified Comfort Panel as OPC UA server .. 7042
14.4.4 WinCC Unified OPC UA client .. 7044
14.4.4.1 Using the WinCC Unified OPC UA client... 7044
14.4.4.2 Defining connection settings to the OPC UA server ... 7045
14.4.4.3 Defining the security settings for communication with the OPC UA server 7045
14.4.4.4 Integrating OPC UA server alarm instances into a Unified client 7046

15 Configuring plant hierarchies.. 7051
15.1 Basics .. 7051
15.1.1 Introduction... 7051
15.1.2 Applications... 7053
15.1.3 Type/instance concept in object-oriented configuration... 7055
15.1.4 Configuration concept.. 7058

Table of contents

20 System Manual, 11/2022

15.1.5 Plant model and target systems.. 7060
15.1.6 Structure of a plant model.. 7061
15.1.7 Contexts .. 7063
15.2 Elements and basic settings ... 7065
15.2.1 Overview... 7065
15.2.2 Options for creating plant objects... 7068
15.3 Object- and technology-oriented configuration... 7069
15.3.1 Working with plant views ... 7069
15.3.1.1 Creating a plant hierarchy .. 7069
15.3.1.2 Assigning a plant hierarchy to a HMI device .. 7070
15.3.1.3 Creating plant nodes.. 7071
15.3.2 Working with plant objects and plant object types .. 7071
15.3.2.1 Creating plant object types... 7071
15.3.2.2 Creating plant objects .. 7072
15.3.2.3 Configure plant object types... 7073
15.3.2.4 Configuring plant object types from the data blocks of an S7-1500 7075
15.3.2.5 Assigning process data to plant objects .. 7076
15.3.3 Configuring screens ... 7077
15.3.3.1 Basic information on configuring screens.. 7077
15.3.3.2 Configuring screens for plant objects.. 7080
15.3.4 Configuring the controls... 7082
15.3.4.1 Configuring "Plant overview" control and companion controls... 7082
15.3.4.2 Configuring an alarm control for plant objects .. 7084
15.3.4.3 Configuring trend control for plant objects ... 7085
15.3.5 Configuring alarms... 7087
15.3.5.1 Basic information on configuring alarms... 7087
15.3.5.2 Configure discrete alarms for plant objects ... 7088
15.3.5.3 Configuring analog alarms for plant objects.. 7091
15.3.6 Configuring the logging of plant object types ... 7094
15.3.7 Good Manufacturing Practice ... 7095
15.3.8 Example .. 7096
15.3.8.1 Example: Scenario ... 7096
15.3.8.2 Example: Implementation concept ... 7097
15.3.8.3 Example: Determine plant object type .. 7098
15.3.8.4 Example: Creating a plant view .. 7100
15.3.8.5 Example: Creating plant objects and plant object types... 7101
15.3.8.6 Example: Configuring screens for brewery production lines... 7103
15.3.8.7 Example: Configuring plant overview and companion controls.. 7105
15.3.8.8 Example: Configuring analog alarms for temperature monitoring.................................... 7106
15.3.8.9 Example: Configuring the alarm control for fill level monitoring....................................... 7107
15.3.8.10 Example: Configuring a trend view for temperature monitoring 7109
15.3.8.11 Example: Configuring the logging of production values .. 7111
15.4 Visualizing plant objects in runtime.. 7113
15.4.1 Displaying plant objects in runtime... 7113
15.4.2 Operating "Plant overview" in runtime.. 7114
15.4.3 Display process data of the plant objects in a trend control ... 7116
15.4.4 Displaying alarms for plant objects in runtime .. 7120
15.5 Options ... 7123
15.5.1 Plant Intelligence Options .. 7123

Table of contents

System Manual, 11/2022 21

16 Compiling and loading .. 7125
16.1 Basics .. 7125
16.1.1 Overview... 7125
16.1.2 Power Tags .. 7126
16.1.3 Workflow ... 7126
16.1.4 Secure communication .. 7129
16.1.5 Loading project encrypted.. 7130
16.1.6 Loading project unencrypted.. 7131
16.1.7 Restrictions in compiling and loading changes.. 7132
16.2 Unified Comfort Panel .. 7134
16.2.1 Specifying runtime settings.. 7134
16.2.1.1 Introduction... 7134
16.2.1.2 General ... 7135
16.2.1.3 Alarms... 7135
16.2.1.4 Services ... 7136
16.2.1.5 Language & font .. 7136
16.2.1.6 Remote access ... 7137
16.2.1.7 Storage system .. 7138
16.2.1.8 Settings for tags... 7140
16.2.1.9 Good Manufacturing Practice ... 7141
16.2.1.10 User management ... 7142
16.2.1.11 OPC UA server.. 7142
16.2.1.12 Layers.. 7144
16.2.1.13 Reporting .. 7145
16.2.2 Compiling a project.. 7145
16.2.3 Downloading projects .. 7147
16.2.3.1 Basics for downloading projects ... 7147
16.2.3.2 Initial download of a project... 7150
16.2.3.3 Complete reloading of a project ... 7152
16.2.3.4 Download changes only ... 7154
16.2.3.5 Loading projects of multiple HMI devices simultaneously.. 7155
16.2.3.6 Using external storage medium.. 7156
16.2.4 Compiling and loading with team engineering ... 7157
16.2.4.1 Compiling and loading with team engineering (overview) .. 7157
16.2.4.2 Compiling in the server project view... 7158
16.2.5 Error messages during loading of projects .. 7159
16.2.6 Starting runtime .. 7160
16.2.7 Reducing the project size ... 7162
16.2.8 Maintenance of the HMI device .. 7163
16.2.8.1 Overview of the service for Unified Comfort Panels... 7163
16.2.8.2 ProSave ... 7164
16.2.8.3 Data backup of the HMI device ... 7164
16.2.8.4 Backing up and restoring data of the HMI device .. 7165
16.2.8.5 Updating the operating system .. 7166
16.2.8.6 Updating the operating system of the HMI device... 7167
16.2.8.7 Updating the operating system of the HMI device from a data storage medium............... 7169
16.3 WinCC Unified PC ... 7170
16.3.1 Specifying runtime settings.. 7170
16.3.1.1 Introduction... 7170
16.3.1.2 General ... 7170

Table of contents

22 System Manual, 11/2022

16.3.1.3 Alarms... 7171
16.3.1.4 Process diagnostics .. 7172
16.3.1.5 Services ... 7172
16.3.1.6 Language & font .. 7172
16.3.1.7 Collaboration... 7173
16.3.1.8 Storage system .. 7173
16.3.1.9 Settings for tags... 7175
16.3.1.10 Good Manufacturing Practice ... 7176
16.3.1.11 User management ... 7177
16.3.1.12 OPC UA server.. 7177
16.3.1.13 Layers.. 7179
16.3.1.14 Reporting .. 7180
16.3.2 Compiling a project.. 7181
16.3.3 Downloading projects .. 7182
16.3.3.1 Basics of downloading projects .. 7182
16.3.3.2 Initial download of a project... 7185
16.3.3.3 Complete reloading of a project ... 7187
16.3.3.4 Download changes only ... 7190
16.3.3.5 Loading projects of multiple HMI devices simultaneously.. 7191
16.3.3.6 Using external storage medium.. 7192
16.3.4 Compiling and loading with team engineering ... 7194
16.3.4.1 Basics on compiling and loading with team engineering ... 7194
16.3.4.2 Compiling in the server project view and in the exclusive session.................................... 7195
16.3.5 Error messages during loading of projects .. 7196
16.3.6 Starting and stopping runtime ... 7197
16.3.7 Managing users in Runtime.. 7198
16.4 Simulating control with PLCSIM.. 7199
16.4.1 Using PLCSIM... 7199
16.4.2 Starting simulation and simulating behavior... 7200
16.4.3 Preparing simulation with PLCSIM .. 7201
16.4.4 Working with PLCSIM ... 7202

17 Runtime and simulation .. 7205
17.1 Simulate runtime ... 7205
17.1.1 Simulate Unified Comfort Panel .. 7205
17.1.1.1 Basics of simulation ... 7205
17.1.1.2 Skip "Load preview" dialog ... 7206
17.1.1.3 Simulating a project ... 7207
17.1.1.4 Simulating a central user management .. 7209
17.1.2 Simulating Unified PC... 7210
17.1.2.1 Basics of simulation ... 7210
17.1.2.2 Skip "Load preview" dialog ... 7211
17.1.2.3 Simulating a project ... 7211
17.1.2.4 Simulating a central user management .. 7213
17.2 Operating Unified Panel ... 7214
17.2.1 Users in runtime .. 7214
17.2.2 Viewing memory card data .. 7215
17.2.2.1 Basics .. 7215
17.2.2.2 Working with backups.. 7215
17.2.3 Operation in Unified Runtime ... 7218
17.2.3.1 Overview... 7218

Table of contents

System Manual, 11/2022 23

17.2.3.2 Operation with the touch screen .. 7218
17.2.3.3 Triggering an action ... 7228
17.2.3.4 Entering a value... 7228
17.2.3.5 Moving operator controls ... 7229
17.2.3.6 Changing Runtime language .. 7229
17.2.3.7 Web browser of WebKit engine... 7230
17.2.4 Entering barcodes via handheld readers ... 7235
17.3 Operating Unified PC.. 7236
17.3.1 Basics .. 7236
17.3.1.1 Process screens .. 7236
17.3.1.2 Tags... 7238
17.3.1.3 Alarms... 7239
17.3.1.4 Logs .. 7240
17.3.1.5 Contexts .. 7240
17.3.2 Starting and displaying runtime ... 7242
17.3.2.1 Internet browsers for WinCC Unified PC .. 7242
17.3.2.2 Displaying runtime... 7243
17.3.2.3 Installing a certificate when accessing via web client (Unified PC).................................... 7247
17.3.2.4 SwacLogin: Errors after complete download ... 7253
17.3.2.5 Logging out user.. 7257
17.3.2.6 Changing users in runtime ... 7257
17.3.2.7 Starting and stopping a project .. 7259
17.3.2.8 Switching the Runtime language.. 7259
17.3.3 Runtime operation... 7260
17.3.3.1 Overview... 7260
17.3.3.2 Operation with the touch screen .. 7261
17.3.3.3 Triggering an action ... 7265
17.3.3.4 Entering a value... 7266
17.3.3.5 Moving operator controls ... 7266
17.3.3.6 Placing the focus on objects ... 7267
17.3.3.7 Operating objects with transparent fill .. 7267
17.3.3.8 Flashing... 7268
17.3.4 Controls... 7268
17.3.4.1 Overview of controls.. 7268
17.3.4.2 Operating alarms ... 7269
17.3.4.3 Displaying tags in Runtime ... 7306
17.3.4.4 Screen window .. 7335
17.3.4.5 Web control ... 7336
17.3.4.6 Media player.. 7338
17.3.4.7 System diagnostics view .. 7340
17.3.4.8 Plant overview ... 7342
17.3.4.9 Plant overview with companion controls .. 7346
17.3.4.10 Parameter set control ... 7347
17.3.4.11 Reports.. 7354
17.3.4.12 Rearranging columns at runtime .. 7451
17.3.4.13 Process diagnostics .. 7453
17.3.5 Elements ... 7464
17.3.5.1 Overview of elements .. 7464
17.3.5.2 Using elements.. 7465
17.3.6 Basic objects .. 7478
17.3.7 Popup window... 7479
17.3.8 Tests and error analysis .. 7479

Table of contents

24 System Manual, 11/2022

17.3.8.1 Trace logs for function calls and tag values ... 7479
17.3.8.2 Debugging scripts .. 7480
17.4 SIMATIC Runtime Manager ... 7491
17.4.1 Functions in the SIMATIC Runtime Manager.. 7491
17.4.2 Start Runtime Manager .. 7492
17.4.3 The Runtime Manager user interface.. 7493
17.4.4 Starting the project .. 7495
17.4.5 Adding a project .. 7497
17.4.6 Selecting an autostart project... 7499
17.4.7 Restoring and deleting log segments.. 7499
17.4.8 Enter password .. 7500
17.4.9 Setting general settings ... 7501
17.4.10 Activating automatic login ... 7502
17.4.11 Allowing start of external processes ... 7503
17.4.12 Managing certificates ... 7504
17.4.13 Exporting tags via the OPC UA server.. 7507
17.4.14 Activating user management ... 7508
17.4.15 Setting the Runtime Script Debugger settings ... 7509
17.4.16 Enabling telemetry service ... 7510
17.4.17 Operation via command line .. 7511
17.5 Certificate Manager.. 7517
17.5.1 Basics .. 7517
17.5.1.1 Introduction to the WinCC Unified Certificate Manager.. 7517
17.5.1.2 Certificate authority ... 7518
17.5.1.3 Required certificates... 7519
17.5.1.4 Password requirements .. 7521
17.5.2 Certificate Manager interface ... 7522
17.5.2.1 Structure of the user interface.. 7522
17.5.2.2 "CA configuration" tab.. 7523
17.5.2.3 "Installed certificates" tab ... 7525
17.5.2.4 Customize surface ... 7525
17.5.2.5 Changing the user interface language .. 7527
17.5.3 Making certificates available... 7527
17.5.4 Creating a certificate authority and root certificate .. 7530
17.5.5 Adding devices .. 7531
17.5.6 Add application certificates .. 7533
17.5.7 Export options ... 7535
17.5.8 Exporting, importing and installing for Unified PCs ... 7536
17.5.8.1 Exporting certificate configuration (Unified PC) ... 7536
17.5.8.2 Importing certificate configuration (Unified PC)... 7538
17.5.8.3 Installing certificates (Unified PC) ... 7539
17.5.9 Export, import and installation for Unified Comfort Panels .. 7540
17.5.9.1 Exporting the certificate configuration (UCP) .. 7540
17.5.9.2 Importing and installing certificate configuration (UCP) .. 7541
17.5.9.3 Importing and installing certificates manually (UCP) ... 7542
17.5.10 Exporting a single application certificate... 7542
17.5.11 Exporting root certificate and CRL file ... 7543
17.5.12 Installing root certificate for access via web client (Unified PC) .. 7545
17.5.13 Recreating certificates .. 7551
17.5.13.1 Recreating the entire configuration .. 7552
17.5.13.2 Recreating application certificates .. 7553

Table of contents

System Manual, 11/2022 25

17.5.13.3 Updating a CRL file ... 7553
17.5.14 Create backup.. 7554

18 Using distributed systems ... 7557
18.1 Overview... 7557
18.2 Unified Collaboration ... 7557
18.2.1 Basics .. 7557
18.2.1.1 Basics .. 7557
18.2.1.2 Requirements .. 7559
18.2.1.3 Restrictions.. 7560
18.2.1.4 User management ... 7561
18.2.1.5 System functions and scripts .. 7561
18.2.2 Preparing Unified Collaboration.. 7564
18.2.2.1 Creating certificates ... 7564
18.2.2.2 Distributing and installing certificates ... 7567
18.2.2.3 Configuring system events for Unified Collaboration ... 7570
18.2.2.4 Defining collaboration settings ... 7572
18.2.2.5 Changing the collaboration settings ... 7574
18.2.3 Using Unified Collaboration.. 7575
18.2.3.1 Configuring a screen window within a project .. 7575
18.2.3.2 Configuring screen windows from different projects ... 7577
18.2.3.3 Display messages from participating devices .. 7583
18.2.4 Example: Connecting HMI devices from two projects with Unified Collaboration.............. 7584
18.3 Web Client ... 7589
18.3.1 Web client basics ... 7589
18.3.2 Mode of operation of the web client... 7590
18.3.3 Activate web client for Unified Comfort Panel ... 7592
18.3.4 Using the web client .. 7592
18.3.5 Installing a certificate in the browser when accessing via web client (Unified PC)............. 7594
18.3.6 Installing a certificate in the browser when accessing via web client (UCP) 7601
18.3.7 SwacLogin: Errors after complete download ... 7601
18.3.8 Logging out user.. 7605
18.4 WinCC Smart Server ... 7606
18.4.1 General ... 7606
18.4.2 Application scenarios ... 7607
18.4.3 Security concept for the Smart Server... 7608
18.4.4 Settings in the TIA Portal .. 7609
18.4.5 Settings in the Control Panel of the Smart Server.. 7610
18.4.6 Configuring the Smart Client application .. 7611
18.4.6.1 Dialog "New SmartServer: Connection"... 7611
18.4.6.2 "Options" dialog, "Connections" tab .. 7611
18.4.6.3 "Options" dialog, "Globals" tab.. 7612
18.4.7 Remote control by means of the Smart Client application ... 7613
18.4.8 Use and limitations of the Smart Server.. 7616

19 Options .. 7617
19.1 WinCC Audit .. 7617
19.1.1 Basics .. 7617
19.1.1.1 GMP compliance .. 7617
19.1.1.2 GMP-compliant configuration... 7618
19.1.1.3 Audit option .. 7618

Table of contents

26 System Manual, 11/2022

19.1.1.4 Scope of logging.. 7620
19.1.1.5 Performance features of the GMP-compliant configuration ... 7621
19.1.2 Using the Audit trail ... 7621
19.1.2.1 Enabling GMP compliant configuration ... 7621
19.1.2.2 Creating an audit trail .. 7622
19.1.2.3 Audit Trail reports .. 7624
19.1.2.4 Audit trail logging concept ... 7630
19.1.3 Configuring audit functions.. 7634
19.1.3.1 Logging tag value changes... 7634
19.1.3.2 Logging user actions.. 7636
19.1.3.3 Recording system functions ... 7638
19.1.3.4 Standard entries in the Audit Trail... 7643
19.2 Creating production reports ... 7645
19.2.1 Basics .. 7645
19.2.1.1 Introduction... 7645
19.2.1.2 Basics of Reporting .. 7647
19.2.1.3 General requirements and restrictions .. 7649
19.2.1.4 Version compatibility ... 7651
19.2.2 Complete workflow for using production reports .. 7652
19.2.3 Configuring production reports in the engineering system .. 7655
19.2.3.1 Configuring Reporting-specific Runtime settings ... 7655
19.2.3.2 Inserting a "Reporting" control in a screen .. 7655
19.2.4 Creating report templates for production reports .. 7655
19.2.4.1 Requirements .. 7655
19.2.4.2 Login... 7662
19.2.4.3 Setting up a data source... 7663
19.2.4.4 Configuring report templates ... 7668
19.2.4.5 Making general settings ... 7716
19.2.4.6 Undo and redo... 7717
19.2.4.7 Tips on design and layout... 7717
19.2.5 Working with production reports in Runtime .. 7719
19.2.5.1 Workflow for working with reports in Runtime.. 7719
19.2.5.2 The user interface of the "Reports" control.. 7722
19.2.5.3 Setting global email settings .. 7725
19.2.5.4 Configuring task parameters... 7727
19.2.5.5 Configuring report tasks... 7734
19.2.5.6 Running a report job manually ... 7742
19.2.5.7 Downloading reports ... 7742
19.2.5.8 Exporting an offline configuration file ... 7743
19.2.5.9 Transferring the control configuration .. 7744
19.2.5.10 Configuring enable paging ... 7745
19.2.5.11 Inconsistencies and error diagnostics ... 7745
19.2.5.12 Dynamic placeholder ... 7746

20 Runtime Openness... 7749
20.1 WinCC Unified Open Pipe ... 7749
20.1.1 Introduction... 7749
20.1.2 Safety-related settings.. 7751
20.1.3 Behavior of the browse commands... 7751
20.1.4 Using basic syntax ... 7752
20.1.4.1 Basics of basic syntax ... 7752
20.1.4.2 Commands .. 7754

Table of contents

System Manual, 11/2022 27

20.1.4.3 Reference ... 7764
20.1.5 Using expert syntax ... 7764
20.1.5.1 Basics of expert syntax... 7764
20.1.5.2 Commands .. 7768
20.1.5.3 Reference ... 7784
20.1.5.4 Syntax of the alarm filter .. 7789
20.2 Programming Custom Web Controls ... 7790
20.2.1 Custom web controls ... 7790
20.2.2 General structure and folder structure .. 7791
20.2.3 Contract-based interaction and the manifest file ... 7792
20.2.3.1 Basics for the manifest ... 7792
20.2.3.2 Manifest structure.. 7792
20.2.3.3 Data types and references in the manifest .. 7800
20.2.4 Interaction between control and container via the API .. 7801
20.2.5 Extensions ... 7804
20.2.5.1 Basics of extensions ... 7804
20.2.5.2 HMI extension ... 7805
20.2.5.3 Formatting extension... 7809
20.2.5.4 Dialog extension .. 7810
20.2.6 Revision of a graphical user interface ... 7813
20.2.7 Creating the ZIP file .. 7819
20.2.8 Restrictions.. 7819
20.2.9 Installing and using Custom Web Controls .. 7820
20.2.10 Updating Custom Web Controls.. 7821
20.3 Runtime API... 7822
20.3.1 Basics .. 7822
20.3.2 Creating a minimal ODK client.. 7823
20.3.3 Authorizing users... 7826
20.3.4 Startup and shutdown behavior of an ODK application ... 7826
20.3.4.1 Autostart of an ODK application ... 7826
20.3.4.2 Shutdown behavior.. 7827
20.3.4.3 Restart behavior... 7827
20.3.5 Syntax of the alarm filter .. 7828
20.3.6 Locale IDs of the supported languages ... 7829
20.3.7 Code samples .. 7832
20.3.8 Description of the C# interfaces ... 7833
20.3.8.1 Releasing objects ... 7833
20.3.8.2 Interfaces of the Runtime environment .. 7834
20.3.8.3 Error-handling interfaces.. 7841
20.3.8.4 Interfaces of the tags ... 7844
20.3.8.5 Interfaces of the alarms ... 7872
20.3.8.6 Interfaces for connections.. 7910
20.3.8.7 Interfaces of the Plant Model ... 7921
20.3.8.8 Interfaces of the Calendar option ... 7940
20.3.8.9 Interfaces of the contexts... 7971
20.3.9 Description of the C++ interfaces ... 7986
20.3.9.1 Error codes of the C++ interfaces.. 7986
20.3.9.2 Interfaces of the Runtime environment .. 7986
20.3.9.3 Interfaces of the tags ... 8003
20.3.9.4 Interfaces of the alarms ... 8046
20.3.9.5 Interfaces for connections.. 8094

Table of contents

28 System Manual, 11/2022

20.3.9.6 Interfaces of the Plant Model ... 8108
20.3.9.7 Interfaces of the Calendar option ... 8134
20.3.9.8 Interfaces of the contexts... 8194
20.3.10 Reference of the ODK error codes... 8217
20.4 WinCC Unified GraphQL.. 8221
20.4.1 Introduction... 8221
20.4.2 Basics .. 8222
20.4.2.1 Limitations .. 8222
20.4.2.2 Security ... 8222
20.4.2.3 More information... 8223
20.4.3 Quick start ... 8223
20.4.3.1 Purpose of this quick start .. 8223
20.4.3.2 Requirements .. 8223
20.4.3.3 Setting up the GraphQL client .. 8224
20.4.3.4 Logging in to the GraphQL server... 8226
20.4.3.5 Executing a GraphQL operation.. 8227
20.4.3.6 Authorizing an operation request ... 8231
20.4.3.7 Using the syntax highlighting and autocompletion functions of Apollo 8232
20.4.4 Schema ... 8234
20.4.4.1 Basics on the schema ... 8234
20.4.4.2 Structure of a client query .. 8235
20.4.5 Reference of GraphQL API .. 8236
20.4.5.1 General information on GraphQL API.. 8236
20.4.5.2 GraphQL operation types ... 8237
20.4.5.3 Operations for tags .. 8238
20.4.5.4 Operations for alarms .. 8243
20.4.5.5 Other operations ... 8250
20.4.5.6 Reference for Unified-specific types and enumerations.. 8254
20.4.6 Code examples .. 8264
20.4.7 Recommended procedures... 8264
20.4.7.1 Performance optimization.. 8264
20.4.7.2 Disconnection by server ... 8266
20.4.8 Troubleshooting... 8267
20.4.8.1 Top-level and item-level errors.. 8267
20.4.8.2 GraphQL server doesn't start .. 8269
Index .. 8271

Table of contents

System Manual, 11/2022 29

Table of contents

30 System Manual, 11/2022

Installation 1
1.1 Notes on the installation

Content
Information that could not be included in the online help and important information about
product characteristics.

Installation in a virtual environment (private cloud)
You can find instructions on how to install TIA Portal in a virtual environment (private cloud) on
the installation data medium in the directory "Documents\Readme\<language directory>". You
can open the PDF document "TIAPortalCloudConnectorHowTo<language ID>.pdf" here.

Automatic installation
A description of automated installation is available on the product DVD in the directory
"Documents\Readme\<Language directory>".

Use of the same versions of TIA Portal products during installation
When installing different TIA Portal products, make sure that you use the same versions of
service packs and updates for the installation. For example, if you have installed SP1 for STEP 7
V13, you must also install SP1 for WinCC V13. The service packs and updates must be installed
for all products at the same time. Do not start TIA Portal until all products have been upgraded.
You can download the service packs from the Internet under Siemens Industry Online
Support (https://support.industry.siemens.com/cs/de/en/).

Target directory of the installation
Do not use any UNICODE characters (for example, Chinese characters) in the installation path.
The installation path cannot be changed after installing one of the TIA Portal products.

Security settings for the installation of WinCC
When you install WinCC, security settings are changed in your operating system. These security
settings are listed during the installation.
You must confirm the changes to the security settings.
If you make changes to your operating system after installing it, the security settings can be
changed by installing TIA Portal.
You can restore the security settings by installing TIA Portal as follows:
"Start > All Programs > Siemens Automation > Security Controller > Restore settings".

System Manual, 11/2022 31

https://support.industry.siemens.com/cs/de/en/

Use of antivirus programs
During the installation, read and write access to already installed files is necessary. Some
antivirus programs block this access. Therefore, configure your antivirus program for the
installation of TIA Portal so that access to these files is possible.

Installation of PCT V3.5.2
PCT V3.5.1 is automatically uninstalled with the installation of TIA Portal V18.
If necessary, install PCT V3.5.2 manually from DVD 2.

FAQs on TIA Portal
FAQs on TIA Portal are available under FAQs.

1.2 Licensing

1.2.1 Notes on licenses

Availability of licenses
The licenses for the products of the TIA Portal are shipped on an installation data medium or via
online software delivery (OSD).
Before you uninstall the TIA Portal, you must transfer and back up the licenses still required.
Use the Automation License Manager for this purpose.

Provision of the Automation License Manager
The Automation License Manager is supplied on the installation data medium and is transferred
automatically during the installation process.
If you uninstall the TIA Portal, the Automation License Manager remains installed on your
system.

Working with the Automation License Manager
The Automation License Manager is a product of Siemens AG, which is used for handling license
keys (technical representatives of licenses).
Software products that require license keys for operation, such as the TIA Portal, register the
need for license keys automatically with the Automation License Manager . If the Automation
License Manager finds a valid license key for this software, the software can be used
according to the license usage terms associated with this license key.

Installation
1.2 Licensing

32 System Manual, 11/2022

Note
For additional information on how to manage your licenses with the Automation License
Manager , refer to the documentation supplied with the Automation License Manager .

1.2.2 Licensing STEP 7 and WinCC

Introduction
You require a License Key to license the following STEP 7 editions:
• STEP 7 Basic
• STEP 7 Professional
You can install the corresponding License Key for STEP 7 using the
Automation License Manager after the installation has been completed.
There are other licenses available for the optional packages of STEP 7. You can get detailed
information in the documentation of the corresponding option package.
You can transfer the corresponding license keys for STEP 7 and STEP 7 options after the
installation with the Automation License Manager.
For licensing the following editions in WinCC, you need a License Key:
• WinCC Engineering System
• WinCC Runtime
• Options for WinCC Engineering System
• Options for WinCC Runtime system
You transfer licenses for WinCC and the WinCC add-ons after installation with the Automation
License Manager.

Note
The licensee also recognizes that the software (SW) from the Microsoft Corporation or
subsidiaries contains licensed software. The licensee hereby agrees to be bound by and comply
with the terms of the attached license agreement between Microsoft SQL Server and End User.

Licenses
The following licenses with the corresponding License Keys are available:
• STEP 7 Basic
• STEP 7 Professional
• STEP 7 Professional Combo

Installation
1.2 Licensing

System Manual, 11/2022 33

• WinCC Basic
• WinCC Comfort
• WinCC Comfort Combo
• WinCC Advanced
• WinCC Advanced Combo
• WinCC Professional
• WinCC Professional Combo
• WinCC Unified Basic Engineering
• WinCC Unified Comfort Engineering
• WinCC Unified PC Engineering
• WinCC RT Advanced
• WinCC RT Professional
• WinCC Unified PC Runtime

Usage possibilities of licenses and devices
The following table shows which devices you can use with which license:

Existing
license

Devices that can be used

 Unified Devices Classic Devices
WinCC

Unified PC
Comfort
Panels

Basic
Panels

RT Professional RT Advanced Comfort
Panels

Basic
Panels

WinCC Unified Basic ES** No No Yes No No No Yes
WinCC Unified Comfort ES No Yes Yes No No Yes Yes
WinCC Unified PC 10k ES Yes (10k*) Yes Yes No Yes Yes Yes

WinCC Unified PC 100k ES Yes
(100k*)

Yes Yes Yes Yes Yes Yes

WinCC Unified PC max ES Yes Yes Yes Yes Yes Yes Yes
WinCC Basic No No Yes No No No Yes

WinCC Comfort No Yes Yes No No Yes Yes
WinCC Advanced Yes (10k*) Yes Yes No Yes Yes Yes

WinCC Professional 512 Yes (10k*) Yes Yes Yes (512*) Yes Yes Yes
WinCC Professional 4096 Yes (10k*) Yes Yes Yes (4096*) Yes Yes Yes
WinCC Professional max Yes

(100k*)
Yes Yes Yes Yes Yes Yes

* Maximum possible number of PowerTags
** Released with HSP.

Installation
1.2 Licensing

34 System Manual, 11/2022

Validity of license keys for older versions of STEP 7
With a valid License Key for V18.x of STEP 7 Professional and STEP 7 Professional Combo, you can
also operate older versions of STEP 7 without restrictions. The following table provides more
detailed information about this:

Edition License Valid for
STEP 7 Basic V18.x STEP 7 Basic • STEP 7 Basic V18.x

• STEP 7 Basic V17.x
• STEP 7 Basic V16.x
• STEP 7 Basic V15.x
• STEP 7 Basic V14.x
• STEP 7 Basic V13.x
• STEP 7 Basic V12.x
• STEP 7 Basic V11.x

STEP 7 Professional V18.x STEP 7 Professional • STEP 7 Professional V18.x
• STEP 7 Professional V17.x
• STEP 7 Professional V16.x
• STEP 7 Professional V15.x
• STEP 7 Professional V14.x
• STEP 7 Professional V13.x
• STEP 7 Professional V12.x
• STEP 7 Professional V11.x
• STEP 7 Basic V18.x
• STEP 7 Basic V17.x
• STEP 7 Basic V16.x
• STEP 7 Basic V15.x
• STEP 7 Basic V14.x
• STEP 7 Basic V13.x
• STEP 7 Basic V12.x
• STEP 7 Basic V11.x

Installation
1.2 Licensing

System Manual, 11/2022 35

Edition License Valid for
STEP 7 Professional V18.x STEP 7 Professional Combo • STEP 7 Professional V18.x

• STEP 7 Professional V17.x
• STEP 7 Professional V16.x
• STEP 7 Professional V15.x
• STEP 7 Professional V14.x
• STEP 7 Professional V13.x
• STEP 7 Professional V12.x
• STEP 7 Professional V11.x
• STEP 7 Basic V18.x
• STEP 7 Basic V17.x
• STEP 7 Basic V16.x
• STEP 7 Basic V15.x
• STEP 7 Basic V14.x
• STEP 7 Basic V13.x
• STEP 7 Basic V12.x
• STEP 7 Basic V11.x
• STEP 7 V5.6
• STEP 7 V5.5
• STEP 7 V5.4
• STEP 7 Professional 2017
• STEP 7 Professional 2010
• STEP 7 Professional 2006

Validity of license keys for older versions of WinCC
With a valid License Key for WinCC V18.x, you can also operate older versions of WinCC without
restrictions.
You can find more detailed information in the following table:

Installation
1.2 Licensing

36 System Manual, 11/2022

WinCC Engineering System

Edition License Valid for
WinCC Basic V18.x WinCC Basic • WinCC Basic V18.x

• WinCC Basic V17.x
• WinCC Basic V16.x
• WinCC Basic V15.x
• WinCC Basic V14.x
• WinCC Basic V13.x
• WinCC Basic V12.x
• WinCC Basic V11.x
• WinCC Unified Basic V18.x*

Installation
1.2 Licensing

System Manual, 11/2022 37

Edition License Valid for
WinCC Comfort/Advanced V18.x

WinCC Comfort • WinCC Basic, Comfort V18.x
• WinCC Basic, Comfort V17.x
• WinCC Basic, Comfort V16.x
• WinCC Basic, Comfort V15.x
• WinCC Basic, Comfort V14.x
• WinCC Basic, Comfort V13.x
• WinCC Basic, Comfort V12.x
• WinCC Basic, Comfort V11.x
• WinCC Unified Basic V18.x*

WinCC Comfort Combo • WinCC flexible Compact, Standard >= 2005
• WinCC Basic, Comfort V18.x
• WinCC Basic, Comfort V17.x
• WinCC Basic, Comfort V16.x
• WinCC Basic, Comfort V15.x
• WinCC Basic, Comfort V14.x
• WinCC Basic, Comfort V13.x
• WinCC Basic, Comfort V12.x
• WinCC Basic, Comfort V11.x
• WinCC Unified Basic V18.x*

WinCC Advanced • WinCC Basic, Comfort, Advanced V18.x
• WinCC Basic, Comfort, Advanced V17.x
• WinCC Basic, Comfort, Advanced V16.x
• WinCC Basic, Comfort, Advanced V15.x
• WinCC Basic, Comfort, Advanced V14.x
• WinCC Basic, Comfort, Advanced V13.x
• WinCC Basic, Comfort, Advanced V12.x
• WinCC Basic, Comfort, Advanced V11.x
• WinCC Unified Basic V18.x*
• WinCC Unified Comfort V18.x
• WinCC Unified Comfort V17.x
• WinCC Unified Comfort V16.x
• WinCC Unified PC V18.x
• WinCC Unified PC V17.x
• WinCC Unified PC V16.x

WinCC Advanced Combo • WinCC flexible Compact, Standard, Advanced >= 2005
• WinCC Basic, Comfort, Advanced V18.x
• WinCC Basic, Comfort, Advanced V17.x
• WinCC Basic, Comfort, Advanced V16.x
• WinCC Basic, Comfort, Advanced V15.x
• WinCC Basic, Comfort, Advanced V14.x
• WinCC Basic, Comfort, Advanced V13.x

Installation
1.2 Licensing

38 System Manual, 11/2022

Edition License Valid for
• WinCC Basic, Comfort, Advanced V12.x
• WinCC Basic, Comfort, Advanced V11.x
• WinCC Unified Basic V18.x*
• WinCC Unified Comfort V18.x
• WinCC Unified Comfort V17.x
• WinCC Unified Comfort V16.x
• WinCC Unified PC V18.x
• WinCC Unified PC V17.x
• WinCC Unified PC V16.x

WinCC Professional V18.x WinCC Professional (512)
WinCC Professional
(4096)
WinCC Professional
(max.)

• WinCC Basic, Comfort, Advanced, Professional V18.x
• WinCC Basic, Comfort, Advanced, Professional V17.x
• WinCC Basic, Comfort, Advanced, Professional V16.x
• WinCC Basic, Comfort, Advanced, Professional V15.x
• WinCC Basic, Comfort, Advanced, Professional V14.x
• WinCC Basic, Comfort, Advanced, Professional V13.x
• WinCC Basic, Comfort, Advanced, Professional V12.x
• WinCC Basic, Comfort, Advanced, Professional V11.x
• WinCC Unified Basic V18.x*
• WinCC Unified Comfort V18.x
• WinCC Unified Comfort V17.x
• WinCC Unified Comfort V16.x
• WinCC Unified PC V18.x
• WinCC Unified PC V17.x
• WinCC Unified PC V16.x

WinCC Professional (512)
Combo
WinCC Professional
(4096) Combo
WinCC Professional
(max.) Combo

• WinCC flexible Compact, Standard, Advanced >= 2008 SP3
• WinCC Basic, Comfort, Advanced, Professional V18.x
• WinCC Basic, Comfort, Advanced, Professional V17.x
• WinCC Basic, Comfort, Advanced, Professional V16.x
• WinCC Basic, Comfort, Advanced, Professional V15.x
• WinCC Basic, Comfort, Advanced, Professional V14.x
• WinCC Basic, Comfort, Advanced, Professional V13.x
• WinCC Basic, Comfort, Advanced, Professional V12.x
• WinCC Basic, Comfort, Advanced, Professional V11.x
• WinCC Unified Basic V18.x*
• WinCC Unified Comfort V18.x
• WinCC Unified Comfort V17.x
• WinCC Unified Comfort V16.x
• WinCC Unified PC V18.x
• WinCC Unified PC V17.x
• WinCC Unified PC V16.x

Installation
1.2 Licensing

System Manual, 11/2022 39

Edition License Valid for
WinCC Unified Basic V18.x* WinCC Unified Basic ES • WinCC Basic V18.x

• WinCC Unified Basic V18.x*
WinCC Unified Comfort V18.x WinCC Unified Comfort ES • WinCC Basic, Comfort V18.x

• WinCC Basic, Comfort V17.x
• WinCC Basic, Comfort V16.x
• WinCC Unified Basic V18.x*
• WinCC Unified Comfort V18.x
• WinCC Unified Comfort V17.x
• WinCC Unified Comfort V16.x

WinCC Unified PC V18.x WinCC Unified PC (10k) ES • WinCC Basic, Comfort, Advanced V18.x
• WinCC Basic, Comfort, Advanced V17.x
• WinCC Basic, Comfort, Advanced V16.x
• WinCC Unified Basic V18.x*
• WinCC Unified Comfort V18.x
• WinCC Unified Comfort V17.x
• WinCC Unified Comfort V16.x
• WinCC Unified PC V18.x
• WinCC Unified PC V17.x
• WinCC Unified PC V16.x

WinCC Unified PC (100k)
ES
WinCC Unified PC (max.)
ES

• WinCC Basic, Comfort, Advanced, Professional V18.x
• WinCC Basic, Comfort, Advanced, Professional V17.x
• WinCC Basic, Comfort, Advanced, Professional V16.x
• WinCC Unified Basic V18.x*
• WinCC Unified Comfort V18.x
• WinCC Unified Comfort V17.x
• WinCC Unified Comfort V16.x
• WinCC Unified PC V18.x
• WinCC Unified PC V17.x
• WinCC Unified PC V16.x

* Released with HSP.

Installation
1.2 Licensing

40 System Manual, 11/2022

WinCC Runtime

Edition License Valid for
WinCC RT Advanced V18.x WinCC RT Advanced (16384)

WinCC RT Advanced (8192)
WinCC RT Advanced (4096)
WinCC RT Advanced (2048)
WinCC RT Advanced (512)
WinCC RT Advanced (128)

• WinCC RT Advanced V17.x
• WinCC RT Advanced V16.x
• WinCC RT Advanced V15.x
• WinCC RT Advanced V14.x
• WinCC RT Advanced V13.x
• WinCC RT Advanced V12.x
• WinCC RT Advanced V11.x

WinCC RT Professional V18.x WinCC RT Professional (262144)
WinCC RT Professional (153600)
WinCC RT Professional (102400)
WinCC RT Professional (65536)
WinCC RT Professional (8192)
WinCC RT Professional (4096)
WinCC RT Professional (2048)
WinCC RT Professional (512)
WinCC RT Professional (128)

• WinCC RT Professional V18.x
• WinCC RT Professional V17.x
• WinCC RT Professional V16.x
• WinCC RT Professional V15x
• WinCC RT Professional V14.x
• WinCC RT Professional V13.x
• WinCC RT Professional V12.x
• WinCC RT Professional V11.x

WinCC Unified PC V18.x WinCC Unified PC (150) RT
WinCC Unified PC (500) RT
WinCC Unified PC (1k) RT
WinCC Unified PC (2,5k) RT
WinCC Unified PC (5k) RT
WinCC Unified PC (10k) RT
WinCC Unified PC (50k) RT
WinCC Unified PC (100k) RT
WinCC Unified PC (max.) RT

• WinCC Unified PC V18.x
• WinCC Unified PC V17.x
• WinCC Unified PC V16.x

Validity of licenses for WinCC options
WinCC options with version-independent license keys can also be used for future versions.

Starting without a valid license key
If you start the TIA Portal without a valid License Key , the system alerts you that you are working
in non-licensed mode. You have the one-time option of activating a Trial License. However, this
license is valid for a limited period only and expires after 21 days.
When the Trial License expires, the following scenarios can occur:
• TIA Portal has never been licensed on the PC in question:

– No license-based actions can be performed in the TIA Portal.
• TIA Portal was already licensed on the PC in question:

– A window requiring acknowledgment presents an alert for non-licensed mode every 10
minutes and for every action requiring a license.

Installation
1.2 Licensing

System Manual, 11/2022 41

License requirement for simulation In STEP 7
You do not require additional licenses when you use the menu command "Online > Simulation"
to start the simulation in STEP 7.
If the following conditions are met, you need the appropriate licenses for the edition of
STEP 7 that you have installed, even for the simulation:
• The connection to the PLC is configured and active.

License requirement for simulation In WinCC Runtime
If the following conditions are fulfilled, you also need the appropriate licenses for WinCC
Runtime and for licensed options for the simulation:
• Start the simulator with the menu command "Online > Simulation".
If you do not have a valid license, you can activate the simulation for one hour.

Licenses for the TIA Portal Cloud Connector
For working with the TIA Portal Cloud Connector, you need a valid License Key for each device
that you specify as "User device" in the TIA Portal Cloud Connector. The License Key is also
required if the TIA Portal is installed on this device. A License Key is not required for devices that
you are using as "remote device".

1.2.3 Licensing of WinCC Unified options

1.2.3.1 Logging

Logging
You have two options for logging your data in WinCC Unified:
• File-based logging
• Database-based logging

File-based logging
File-based logging allows you to log up to 5000 logging tags in an SQL Lite database.
Requirement
WinCC Unified Comfort Panel:
• You need a WinCC Unified Engineering System (ES) license for configuring.
• No license is required for logging.

Installation
1.2 Licensing

42 System Manual, 11/2022

WinCC Unified PC:
• You need a WinCC Unified Engineering System (ES) license for configuring.
• You need a WinCC Unified Runtime (RT) license for logging.
Licensing
To log up to a maximum of 5000 logging tags you need one or more licenses depending on
the number of tags to be logged. To do this, refer to the licenses in the table below.
Upgrade
You do not need an upgrade license for logging when you upgrade the system.
Trial
If you do not have a valid license, you can configure the logging tags in trial mode.

Database-based logging
Database-based logging allows you to log all logging tags up to the high limit in an MS SQL
database.
Requirement
WinCC Unified Comfort Panel:
• Not available
WinCC Unified PC:
• You need a WinCC Unified Engineering System (ES) license for configuring.
• You need a WinCC Unified Runtime (RT) license for logging.
Licensing
Besides the functionality, database-based logging also includes an MS SQL server. Therefore,
you need the "WinCC Unified Database Storage" license.
You also need one or more license(s) according to the number of tags to be logged. To do
this, refer to the licenses in the table below.
File-based or database-based licenses
The license(s) required for the number of tags to be logged can be found in the table below:

License1 Number of logging tags File-based Database-based
WinCC Unified PC 100 Logging
Tags

100 X X

WinCC Unified PC 500 Logging
Tags

500 X X

WinCC Unified PC 1000 Log‐
ging Tags

1000 X X

WinCC Unified PC 5000 Log‐
ging Tags

5000 X X

WinCC Unified PC 10000 Log‐
ging Tags

10000 --- X

Installation
1.2 Licensing

System Manual, 11/2022 43

License1 Number of logging tags File-based Database-based
WinCC Unified PC 30000 Log‐
ging Tags

30000 --- X

WinCC Unified Database Stor‐
age2

--- Not required X

1 You can cumulate the logging tag licenses. This means that the sum of licenses corresponds to the number of tags that need
to be logged.

2 The license allows logging in the MS SQL database.
Upgrade
Depending on the MS SQL server, an upgrade license for WinCC Unified Database Storage
may be required when upgrading the system.
Old licenses must be updated if required.
Trial
No trial mode is available for database-based logging.

1.2.3.2 Parameter sets

Parameter sets
Requirement
WinCC Unified Comfort Panel:
• You need a WinCC Unified Engineering System (ES) license for configuring.
WinCC Unified PC:
• You need a WinCC Unified Engineering System (ES) license for configuring.
• You need a WinCC Unified Runtime (RT) license for use in runtime.
Licensing
To use parameter sets on a Runtime PC, you need a license:

License WinCC Unified PC WinCC Unified Comfort Panel
WinCC Unified Parameter Control (PC) X Not required

Upgrade
The license is version dependent and requires the corresponding upgrade license for the
upgrade.
Trial
If you do not have a valid license, you can configure the parameter sets in trial mode.

Installation
1.2 Licensing

44 System Manual, 11/2022

1.2.3.3 Process diagnostics

Process diagnostics
Requirement
WinCC Unified PC:
• You need a WinCC Unified Engineering System (ES) license for configuring.
• You need a WinCC Unified Runtime (RT) license for use in runtime.
Licensing
To use process diagnostics on a Runtime PC, you need a license:

License WinCC Unified PC WinCC Unified Comfort Panel
WinCC Unified ProDiag X Not required

Trial
If you do not have a valid license, you can configure the process diagnostics in trial mode.

1.2.3.4 Client

Requirement
WinCC Unified Comfort Panel:
• You need a WinCC Unified Engineering System (ES) license for configuring.
• A WinCC Unified Comfort Panel can be accessed by a maximum of 3 simultaneous remote

access operations.
• The license for first access is free of charge.
• The use of remote access must be approved in the firmware.

Licensing
For remote access, you need a license depending on the number and type of accesses. The
required license is listed in the table below:

 Monitoring only Operator control and monitoring
WinCC Unified Panel Client Monitor (1) X ---
WinCC Unified Panel Client Operate (1) --- X

Requirement
WinCC Unified PC:
• You need a WinCC Unified Engineering System (ES) license for configuring.
• You need a WinCC Unified Runtime (RT) license for use in runtime.

Installation
1.2 Licensing

System Manual, 11/2022 45

The following client functions are included in the license for WinCC Unified Runtime:
• Two accesses for operator control and monitoring (two local accesses or one local and one

remote access)
• One access for monitoring (one local access or one remote access)

Licensing
For remote access, you need a license depending on the number and type of accesses. The
required license is listed in the table below:

 Monitoring only Operator control and monitoring
WinCC Unified Client Monitor (1) X ---
WinCC Unified Client Monitor (3) X ---
WinCC Unified Client Monitor (10) X ---
WinCC Unified Client Monitor (30) X ---
WinCC Unified Client Monitor (100) X ---
WinCC Unified Client Operate (1) --- X
WinCC Unified Client Operate (3) --- X
WinCC Unified Client Operate (10) --- X
WinCC Unified Client Operate (30) --- X
WinCC Unified Client Operate (100) --- X

Upgrade
The license is version independent and does not require any upgrade to a new version.

Trial
If you do not have a valid license, you can configure the client in trial mode.

1.2.3.5 Reporting

Reporting
Requirement
WinCC Unified Comfort Panel:
• You need a WinCC Unified Comfort (ES) license for configuring.
• You need a WinCC Unified Runtime (RT) license for use in runtime.
WinCC Unified PC:
• You need a WinCC Unified Engineering System (ES) license for configuring.
• You need a WinCC Unified Runtime (RT) license for use in runtime.
Licensing

Installation
1.2 Licensing

46 System Manual, 11/2022

You do not need a license to configure the Reporting option.
License
The option license "Configuration and manual Report Execution" is included in the WinCC
Unified Engineering System and WinCC Unified RT licenses.
You need the "WinCC Unified Report Execution" license for automatic execution of Reporting
(time, event).

License WinCC Unified Comfort Panel WinCC Unified PC
WinCC Unified Report Execution X X

Upgrade
The license is version dependent and requires the corresponding upgrade license for the
upgrade.
Trial
If you do not have a valid license, you can configure the Reporting option in trial mode.

1.2.3.6 Openness

Openness
Requirement
WinCC Unified PC:
• You need a WinCC Unified Engineering System (ES) license for configuring.
• You need a WinCC Unified Runtime (RT) license for use in runtime.
Licensing
No license is required for the Openness option.
Upgrade
No license is required for the upgrade.
Trial
If you do not have a valid license, you can configure the Openness option in trial mode.

1.2.3.7 Unified Collaboration

Unified Collaboration
Requirement
WinCC Unified Comfort Panel:
• You need a WinCC Unified Engineering System (ES) license for configuring.
• You need a WinCC Unified Runtime (RT) license for use in runtime.

Installation
1.2 Licensing

System Manual, 11/2022 47

WinCC Unified PC:
• You need a WinCC Unified Engineering System (ES) license for configuring.
• You need a WinCC Unified Runtime (RT) license for use in runtime.
Licensing
You do not need a license to configure the Unified Collaboration option.
You need a license for each device involved to use the Unified Collaboration option.

License WinCC Unified Comfort Panel WinCC Unified PC
WinCC Unified Collaboration X X

Upgrade
The license is version dependent and requires the corresponding upgrade license for the
upgrade.
Trial
If you do not have a valid license, you can configure the Unified Collaboration option in trial
mode.

1.2.3.8 Audit

Audit
Requirement
WinCC Unified Comfort Panel:
• You need a WinCC Unified Engineering System (ES) license for configuring.
• You need a WinCC Unified Runtime (RT) license for use in runtime.
WinCC Unified PC:
• You need a WinCC Unified Engineering System (ES) license for configuring.
• You need a WinCC Unified Runtime (RT) license for use in runtime.
Licensing
You do not need a license to configure the Audit option.
You need a license to use the Audit option in runtime.
License

Installation
1.2 Licensing

48 System Manual, 11/2022

You can use the following licenses for the Audit option in WinCC Runtime:

License Description
WinCC Unified Audit Basis Secured communication

Logging the Audit Trail
Recording of process data changes (automatically, via script or system function)
Confirmation with / without comment
Exporting Audit Trail entries
Audit Trail report and tamper indication
Logging in and logging out Audit Trail entries
Simple electronic signature
Backing up and restoring Audit Trail database segments

WinCC Unified Audit En‐
hanced

In addition:
Multiple electronic signature (2 persons)
Display and analysis of the Audit Trail in the Audit Viewer
Alias name for tag names

You need a license for each device involved to use the Audit option.

License WinCC Unified Comfort Panel WinCC Unified PC
WinCC Unified Audit Basis X X
WinCC Unified Audit Enhanced X X

Upgrade
The license is version dependent and requires the corresponding upgrade license for the
upgrade.
Trial
If you do not have a valid license, you can configure the Audit option in trial mode.

1.2.4 Licensing of Plant Intelligence options

1.2.4.1 Calendar
Requirement
WinCC Unified PC:
• You need a WinCC Unified Engineering System (ES) license for configuring.
• You need a WinCC Unified Runtime (RT) license for the Calendar PI option in Runtime.
Licensing
You do not need an additional license to configure the Calendar PI option.

Installation
1.2 Licensing

System Manual, 11/2022 49

You need the following licenses to use the Calendar PI option in Runtime:

License Description
WinCC Unified Calendar Base Per server:

• Three independent basic calendars
• Unlimited number of derived calendars
• Unrestricted use of the option
• Version-based

WinCC Unified Calendar Exten‐
sion (1)*

• One additional basic calendar

* Valid per extension, is independent of version and cumulative
Example:
WinCC Unified Calendar Base + WinCC Unified Calendar Extension (1) → 3 + 1 = 4
Upgrade
When upgrading to the next higher version, you need a WinCC Unified Calendar Base
Upgrade license.
On the other hand, the WinCC Unified Calendar Extension (1) license is version-independent.
Trial
If you do not have a valid license, you can configure the Calendar PI option in trial mode.

1.2.4.2 Performance Insight
Requirement
WinCC Unified PC:
• You need a WinCC Unified Engineering System (ES) license for configuring.
• You need a WinCC Unified Runtime (RT) license for the Performance Insight PI option in

Runtime.
Licensing
You do not need an additional license to configure the Performance Insight PI option.
You need the following licenses to use the Performance Insight PI option in Runtime:

License Description
WinCC Unified Performance In‐
sight Base

Per server:
• Three analyzed plant objects
• Unrestricted use of the option
• Version-based

WinCC Unified Performance In‐
sight Extension (10)*

• 10 additional analyzed plant objects

WinCC Unified Performance In‐
sight Extension (30)*

• 30 additional analyzed plant objects

Installation
1.2 Licensing

50 System Manual, 11/2022

License Description
WinCC Unified Performance In‐
sight Extension (100)*

• 100 additional analyzed plant objects

WinCC Unified Performance In‐
sight Extension (300)*

• 300 additional analyzed plant objects

* Valid per extension, is independent of version and cumulative
Example:
WinCC Unified Performance Insight Base + WinCC Unified Performance Insight Extension(10)
→ 3 + 10 = 13
WinCC Unified Performance Insight Base + WinCC Unified Performance Insight Extension (10)
+ WinCC Unified Performance Insight Extension (30) → 3 + 10 + 30 = 43
Upgrade
When upgrading to the next higher version you need a WinCC Unified Performance Insight
Base Upgrade license.
On the other hand, the WinCC Unified Performance Insight Extension licenses are version-
independent.
Trial
If you do not have a valid license, you can configure the Performance Insight PI option in trial
mode.

1.2.4.3 Sequence
Requirement
WinCC Unified PC:
• You need a WinCC Unified Engineering System (ES) license for configuring.
• You need a WinCC Unified Runtime (RT) license for the Sequence PI option in Runtime.
Licensing
You do not need an additional license to configure the Sequence PI option.
You need the following licenses to use the Sequence PI option in Runtime:

License Description
WinCC Unified Sequence Base Per server:

• 3 concurrent equipment modules
• Unrestricted use of the option
• Version-based

WinCC Unified Sequence Exten‐
sion (5)*

• 5 additional concurrent equipment modules

* Valid per extension, is independent of version and cumulative
Example:
WinCC Unified Sequence Base + WinCC Unified Sequence Extension(5) → 3 + 5 = 8

Installation
1.2 Licensing

System Manual, 11/2022 51

WinCC Unified Sequence Base + WinCC Unified Sequence Extension (5) + WinCC Unified
Sequence Extension (5) → 3 + 5 + 5 = 13
Upgrade
When upgrading to the next higher version you need a new WinCC Unified Sequence Base
Upgrade license.
On the other hand, the WinCC Unified Sequence Extension (5) license is version-independent.
Trial
If you do not have a valid license, you can configure the Sequence PI option in trial mode.

1.2.4.4 Line Coordination
Requirement
WinCC Unified PC:
• You need a WinCC Unified Engineering System (ES) license for configuring.
• You need a WinCC Unified Runtime (RT) license for the Line Coordination PI option in Runtime.
Licensing
You do not need an additional license to configure the Line Coordination PI option.
You need the following licenses to use the Line Coordination PI option in Runtime:

License Description
WinCC Unified Line Coordination
Base

Per server:
• 3 units
• Unrestricted use of the option
• Version-based

WinCC Unified Line Coordination
Extension (5)*

• 5 units

WinCC Unified Line Coordination
Extension (10)*

• 10 units

WinCC Unified Line Coordination
Extension (50)*

• 50 units

* Valid per extension, is independent of version and cumulative
Example:
WinCC Unified Line Coordination Base + WinCC Unified Line Coordination Extension (5)
→ 3 + 5 = 8
WinCC Unified Line Coordination Base + WinCC Unified Line Coordination Extension (5) +
WinCC Unified Line Coordination Extension (10)
→ 3 + 5 + 10 = 18
Upgrade
When upgrading to the next higher version you need a new WinCC Unified Line Coordination
Base Upgrade license.

Installation
1.2 Licensing

52 System Manual, 11/2022

On the other hand, the WinCC Unified Line Coordination Extension licenses are version-
independent.
Trial
If you do not have a valid license, you can configure the Line Coordination PI option in trial
mode.

1.2.5 Handling licenses and license keys

Introduction
You need a valid License Key in each case to use STEP 7 Basic, STEP 7 Professional as well as
WinCC Engineering System, options for WinCC Engineering System and WinCC Runtime.

NOTICE
Destruction of license keys by copying
A License Key cannot be copied. The copy protection prevents the License Keys from being
copied. If there is an attempt to copy a License Key, the License Key gets destroyed.

Trial License
If you start the TIA Portal without a valid License Key, the system alerts you that you are working
in non-licensed mode. You can activate a trial license once. The trial license expires after 21 days.
When the trial license has expired, the TIA Portal only runs with restrictions. For the full
version of the TIA Portal, you need to purchase the corresponding license.

Installing license keys for STEP 7 and WinCC
Install the license with the Automation License Manager from the accompanying data storage
medium to your PC.
You need additional License Keys to use WinCC Runtime or simulation on the Engineering-PC
with the menu command "Online > Simulation > Start". You need to use Automation License
Manager for this.
When you install a license, the relevant License Key will be removed from the original storage
location of the License Keys.

Transferring license keys to the HMI device
You must transfer the License Keys to the HMI device to operate WinCC.
You transfer a License Key to the HMI device in the following cases:
• To operate WinCC Runtime
• To use add-ons for WinCC Runtime

Installation
1.2 Licensing

System Manual, 11/2022 53

When you transfer a license to an HMI device, the associated License Key is removed from the
License Keys storage location.
If you no longer need the license or want to back up data, you must transfer the License Keys
from the operator panel. You can then use this license on another PC or HMI device.

Uninstalling license keys
License Keys are always uninstalled using the Automation License Manager. Call the Automation
License Manager before uninstalling
and back up the license key to be uninstalled to another storage location.
You uninstall a License Key in the following cases:
• When backing up data.
• If you no longer require the license.
You can also use a valid license on another PC.

Modification to the data media of the engineering system
Modifying the data medium of the engineering system can destroy the License Key. To do this
before such modifications, open the Automation License Manager and back up License Key to be
uninstalled to another storage location.

NOTICE
Destruction of license keys on PCs
If one of the following cases applies, first, uninstall all License Keys :
• Format the hard disk
• Compress the hard disk
• Restore the hard disk
• Start an optimization program that moves fixed blocks
• Install a new operating system
Read the description of Automation License Manager ("Start > Siemens Automation >
Documentation"). Comply with all warnings and notices.

Installation
1.2 Licensing

54 System Manual, 11/2022

Data backup of operating panels (Backup/Restore)
When backing up data on the HMI device, remove the License Keys on the HMI device. To do this,
open the Automation License Manager and back up the License Key to another storage location.

NOTICE
Destruction of license keys on non-PC-based HMI devices
License keys transferred as a result of backup/restore operations are destroyed in the case of the
following HMI devices:
• 270s series
• 370s series
Proceed as follows before restoring:
1. Use the Automation License Manager and ProSave to check if there are License Keys on the

HMI device.
2. Transfer the existing License Keys from the HMI device.
After restoring has been carried out, transfer the License Keys back to the HMI device.

Invalid license after time zone change
The installed licenses will no longer work if you change the time zone on a PC as follows: from
a full-hour time zone to a time zone that is not based on a full hour.
To avoid this inconvenience, uninstall the License Key with the Automation License Manager
under the time zone setting that was set when the License Keys was installed.
Example: You want to use the HMI device from the time zone "GMT +3:00" in the time zone
"GMT +3:30".
1. Uninstall the License Key with the time zone setting "GMT +3:00".
2. Change the time zone settings accordingly on your PC.
3. Install the License Key.
This behavior does not apply to the Trial License.

Defective license
A license is defective in the following cases:
• If the License Key is no longer accessible at the storage area.
• If the License Key disappears during its transfer to the destination drive.

Note
If you reset the system date to an earlier time, all licenses are invalidated.

You can use the Automation License Manager to repair the defective license. Use
the "Restore" function or the "Restore wizard" of the Automation License Manager

Installation
1.2 Licensing

System Manual, 11/2022 55

for this purpose. Contact Customer Support to restore them. You can find
more detailed information on the Internet: Siemens Industry Online Support (https://
support.industry.siemens.com/cs/de/en/)

Note
Runtime can also be operated without errors if the license is missing or defective. The system
alerts you at brief intervals that you are working in non-licensed mode.

Microsoft SQL Server
A license is required for use of the Microsoft SQL Server database. The license is included in a
properly licensed and installed version of WinCC.
The SQL Server which is licensed with the installation of WinCC can only be used in
connection with WinCC.
 Its use for other purposes requires an additional license. These include, for example:
• Use for custom databases
• Use for third-party applications
• Use of SQL access mechanisms which are not provided via WinCC.
Uninstalling
After uninstalling WinCC, you must uninstall the "WinCC" SQL server instance. To do this,
select the entry "Microsoft SQL Server 20.." under "Control Panel > Programs" and uninstall it.

1.3 System requirements for installation

1.3.1 Notes on licenses

Availability of licenses
The licenses for the products of the TIA Portal are shipped on an installation data medium or via
online software delivery (OSD).
Before you uninstall the TIA Portal, you must transfer and back up the licenses still required.
Use the Automation License Manager for this purpose.

Provision of the Automation License Manager
The Automation License Manager is supplied on the installation data medium and is transferred
automatically during the installation process.
If you uninstall the TIA Portal, the Automation License Manager remains installed on your
system.

Installation
1.3 System requirements for installation

56 System Manual, 11/2022

https://support.industry.siemens.com/cs/de/en/
https://support.industry.siemens.com/cs/de/en/

Working with the Automation License Manager
The Automation License Manager is a product of Siemens AG, which is used for handling license
keys (technical representatives of licenses).
Software products that require license keys for operation, such as the TIA Portal, register the
need for license keys automatically with the Automation License Manager . If the Automation
License Manager finds a valid license key for this software, the software can be used
according to the license usage terms associated with this license key.

Note
For additional information on how to manage your licenses with the Automation License
Manager , refer to the documentation supplied with the Automation License Manager .

1.3.2 General software and hardware requirements

System requirements for installation
The following table shows the minimum software and hardware requirements that have to be
met for the installation:

Hardware/software Requirement
Processor Intel® Core™ i3-6100U, 2.30 GHz
RAM 8 GB
Hard disk S-ATA with at least 20 GB available space
Network From 100 Mbit

Installation
1.3 System requirements for installation

System Manual, 11/2022 57

Hardware/software Requirement
Screen resolution 1024 x 768
Operating systems * Windows 10 (64-bit)

• Windows 10 Professional Version 21H1
• Windows 10 Professional Version 21H2
• Windows 10 Enterprise Version 2009/20H2
• Windows 10 Enterprise Version 21H1
• Windows 10 Enterprise Version 21H2
• Windows 10 Enterprise 2016 LTSB
• Windows 10 Enterprise 2019 LTSC
• Windows 10 Enterprise 2021 LTSC
Windows 11 (64-bit)
• Windows 11 Home Version 21H2
• Windows 11 Professional Version 21H2
• Windows 11 Enterprise 21H2
Windows Server (64-bit)
• Windows Server 2016 Standard (full installation)
• Windows Server 2019 Standard (complete installation)
• Windows Server 2022 Standard (full installation)

* Including all security updates up to Microsoft Security Bulletin Summary for August 2022
(MS22-AUG). For more detailed information on operating systems, refer to the help on
Microsoft Windows or the Microsoft Web site.
Some protocols might also support additional Windows versions. You can find more
information in the product-specific requirements or check the compatibility with
the compatibility tool. The compatibility tool is available on the Internet at https://
support.industry.siemens.com/kompatool/pages/main/index.jsf?.

Recommended PC hardware
The following table shows the recommended hardware requirements:

Hardware/software Requirement
Computer SIMATIC FIELD PG M6 Comfort or higher (or comparable PC)
Processor Intel® Core™ i5-8400H (2.5 to 4.2 GHz; 4 cores + Hyper-threading; 8 MB Smart Cache)
RAM 16 GB or more (32 GB for large projects)
Hard disk SSD with at least 50 GB available memory space
Network 1 GBit (for multiuser)
Monitor 15.6" Full HD Display (1920 x 1080 or higher)

Installation
1.3 System requirements for installation

58 System Manual, 11/2022

Supported virtualization platforms
You can install the software packages "SIMATIC STEP 7" and "SIMATIC WinCC" on a virtual
machine. For this purpose, use one of the following virtualization platforms in the specified
version or a newer version:
• VMware vSphere Hypervisor (ESXi) 6.7 or higher
• VMware Workstation 12.5.5 (only WinCC)
• VMware Workstation 15.5.0 or higher
• VMware Player 12.5.5 (WinCC only)
• VMware Player 15.5.0 or higher
• Microsoft Hyper-V Server 2019 or higher
The following host and guest operating systems are recommended for these virtualization
platforms:

Operating system VMware vSphere Hyper‐
visor (ESXi)

VMware Worksta‐
tion

VMware Player Microsoft Hyper-
V

Windows Server 2016 Standard (full
installation)

G - - G

Windows Server 2019 Standard
(complete installation)

G - - H/G

Windows Server 2022 Standard (full
installation)

G - - H/G

Windows 10 Enterprise Version
2009/20H2

H/G H/G H/G G

Windows 10 Enterprise 2016 LTSB H/G H/G H/G G
Windows 10 Enterprise 2019 LTSC H/G H/G H/G G
Windows 10 Enterprise 2021 LTSC H/G H/G H/G G

H: Can be used as host operating system
G: Can be used as guest operating system
H/G: Can be used as host and guest operating system
-: Cannot be used as the host or guest operating system

Note
• The same hardware requirements apply to the host operating system as for the respective TIA

products.
• The plant operator must ensure that sufficient system resources are available for the host

operating systems.
• The hardware certified by the manufacturers is recommended for the use of HyperV server

and ESXi.
• When you use Microsoft Hyper-V, accessible stations cannot be displayed.

Installation
1.3 System requirements for installation

System Manual, 11/2022 59

Supported security programs
The following security programs are compatible with "SIMATIC STEP 7 Basic" and "SIMATIC
WinCC":
• Antivirus programs:

– Symantec Endpoint Protection 14.3
– Trend Micro Office Scan 14.0
– McAfee Endpoint Security (ENS) 10.6 and 10.7
– Windows Defender
– Qihoo 360 "Safe Guard 12.1" + "Virus Scanner"

Note
Make sure that your virus scanner and its databases are always up-to-date.
The last update of the virus pattern was on 13 Sept. 2022.

• Encryption software:
– Microsoft Bitlocker

• Host-based Intrusion Detection System:
– McAfee Application Control 8.3.3

1.3.3 Product-specific special characteristics

1.3.3.1 Uninstalling WinCC Unified

Uninstalling WinCC
If you have already installed an update for WinCC Unified V16 and want to install WinCC V17,
proceed as follows:
1. Open the Control Panel.
2. Start the uninstallation of SIMATIC WinCC Unified PC V16.0 UPDx.
3. When selecting the components, select "SIMATIC WinCC Update 16.0 UPDx" for

uninstallation.
4. After completing this uninstallation, uninstall all desired components of WinCC V16 via the

installation medium.
The information is contained in the readme under "Important notes (WinCC Unified)".

1.3.3.2 Installation of WinCC Runtime Unified
Specific requirements for the operating system and software configuration must be met for the
installation.

Installation
1.3 System requirements for installation

60 System Manual, 11/2022

Installation in domains and workgroups
WinCC Unified is generally approved for operation in a domain or workgroup.
However, be aware that domain group policies and restrictions of the domain might hinder
the installation. In this case, remove the computer from the domain before installing WinCC
Unified and Microsoft SQL Server. Log on to the local machine with administrator rights.
Perform the installation. After successful installation, you can restore the WinCC computer to
the domain. If the domain group policies and restrictions of the domain do not impede the
installation, the computer need not be removed from the domain during the installation.
Be aware that domain group policies and restrictions of the domain might also hinder
operation. If you cannot avoid these restrictions, run the WinCC computer in a workgroup.
Consult with the domain administrator if needed.

Operation on a network server
It is not permitted to operate WinCC Unified Runtime on a network server (e.g. domain
controller, file server, name service server, router, software firewall, media server, exchange
server).

Windows computer name
Before you start the WinCC installation, specify the Windows computer name. Follow the
Windows naming rules.

Note
How to proceed after a subsequent change of the computer name is described in the WinCC
Unified Runtime installation manual in the section "Changing the computer name or IP address".

The following characters are not permitted for the computer name:
• . , ; : ! ? " ' ^ ` ~ _
• + = / \ | @ * # $ % &
• () [] { } < >
• Space
Follow these recommendations when assigning the Windows computer name:
• Only uppercase letters may be used.
• The first character must be a letter.
• The first 12 characters of the computer name must be unique.
• The computer name can have a maximum of 15 characters.

Installation
1.3 System requirements for installation

System Manual, 11/2022 61

Hardware requirements for the installation
The following table shows the minimum hardware requirements that have to be met for the
installation:

Hardware Requirement
Processor type Intel Core i3
RAM 4 GB
Free hard disk space 10 GB, 8 GB CF

Software requirements for the installation
Operating system

Software Configuration Comments
Windows 10 Pro Windows 10 Pro Version 1909 (OS Build 18363)

Windows 10 Pro Version 2004 (OS Build 19041)
Windows 10 Pro Version 2009/20H2 (OS Build
19042)
Windows 10 Pro Version 21H1 (OS Build 19043)
Windows 10 Pro Version 21H2 (OS Build 19044)

64-bit

Windows 10 Enterprise Windows 10 Enterprise Version 1909 (OS Build
18363)
Windows 10 Enterprise Version 2004 (OS Build
19041)
Windows 10 Enterprise Version 2009/20H2 (OS
Build 19042)
Windows 10 Enterprise Version 21H1 (OS Build
19043)
Windows 10 Enterprise Version 21H2 (OS Build
19044)

Windows 10 IoT Enterprise
LTSB

Windows 10 Enterprise 2016 LTSB (OS Build
14393) (Test for IPC)
Windows 10 Enterprise 2019 LTSC (OS Build
17763) (Test for IPC)
Windows 10 Enterprise 2021 LTSC (OS Build
19044) (Test for IPC)

Windows 11 Windows 11 Home Version 21H2 (OS Build 22000) 64-bit
Windows 11 Pro Windows 11 Pro Version 21H2 (OS Build 22000)
Windows 11 Enterprise Windows 11 Pro Version 21H2 (OS Build 22000)
Windows Server 2016 Stand‐
ard
Windows Server 2019 Stand‐
ard
Windows Server 2022 Stand‐
ard

Full installation 64-bit

Installation
1.3 System requirements for installation

62 System Manual, 11/2022

Note
Number of supported clients and connections
Desktop operating systems support a maximum of 5 clients. In server operating systems, more
than 5 clients can connect to the server.
Windows limits the number of incoming connections on desktop operating systems to 20. This
limits the number of possible accesses to runtime.

Compatible browsers

Operating system Browser
Microsoft Windows • Google Chrome

• Microsoft Edge
• Mozilla Firefox, Mozilla Firefox ESR

Android • Google Chrome
• Firefox
• Edge

iOS, Mac • Safari
• Google Chrome
• Firefox
• Edge

More information on the use of browsers is available in the SIMATIC Unified PC Readme in the
section "Internet browsers for WinCC Unified PC".
Windows specific software settings for IIS (Internet Information Services)
The following settings for IIS are automatically enabled in Windows during the installation of
WinCC Runtime Unified:
• HTTP error
• HTTP Redirection
• Default document
• Static content
• .NET extensibility 3.5
• ASP
• ASP.NET 4.5
• ISAPI extensions
• ISAPI filters
• Dynamic Content Compression
• Static Content Compression
• Request Filtering

Installation
1.3 System requirements for installation

System Manual, 11/2022 63

Table 1-1 Additional software requirements
Topic Version / setting Comment
Web browser The browser must support HTML 5.
User rights for instal‐
lation

Administrator rights

SOFTNET-IE S7 Lean
Single License

 You need this license to be able to op‐
erate Runtime Unified with up to 10
connections.

SIMATIC NET V13 SP1 You need this license to be able to op‐
erate Runtime Unified with more than
10 connections.

Previously installed versions of WinCC Unified PC Runtime
The installation of Unified PC Runtime V18 is possible on devices for which the following
applies:
• No Unified PC Runtime installed, or
• WinCC Unified PC Runtime V17 installed

The V17 installation must not have been upgraded from V16.

Ports
When a Windows firewall is used, the installation routine of WinCC Unified Runtime sets up the
following ports:
• HTTPS: 443
• Network Discovery (IS): 137
• Totally Integrated Automation administrator: 8888
• UMC AttachAgent: 4002
• OPC UA Discovery: 4840
If your system uses a different firewall solution, make sure the ports are set up accordingly.
You can find a list of the ports used by Unified Runtime in the user help SIMATIC Unified PC
readme in the section "Security information".

Note
Disable HTTP port
For security reasons, it is recommended to disable port 80 on the IIS server:
1. On the Unified PC, launch "Internet Information Services (IIS) Manager".
2. Click "Default Web Sites" on the right.
3. Select "Remove" or "Manage Website > Exit".

Installation
1.3 System requirements for installation

64 System Manual, 11/2022

Note
Blocked ports after operating system update or upgrade
Updating or upgrading the operating system of the Unified PC, e.g. from Windows Server 2016
to Windows Server 2019, may change the firewall settings. As a result, the OPC UA ports may be
blocked.
If this happens, start the Siemens "Security Controller" tool and run "Restore settings".

Virtualization
You can install the "SIMATIC WinCC Runtime Unified" software package on a virtual machine. The
following virtualization systems were tested:
• VMware vSphere Hypervisor (ESXi) 6.7 (or higher)
• VMware Workstation 12.5.5 and VMware Workstation 15.5.0 (or higher)
• VMware Player 12.5.5 and VMware Player 15.5.0 (or higher)
• Microsoft Hyper-V Server 2019 (or higher)
In a virtualization platform, all approved operating systems can be used as host operating
system.
Requirement
The performance data of the virtual computers must meet the minimum requirements of
WinCC clients.

Note
• Ensure that terminal and PLC networks are separated on the host system by using separate

network adapters (dedicated, physically separated network adapters).
• The same hardware requirements apply to the host operating system as for the respective TIA

products.
• The plant operator must ensure that sufficient system resources are available for the host

operating systems.
• The hardware certified by the manufacturers is recommended for the use of HyperV server

and ESXi.

Supported security programs
The following security programs are compatible with Unified Runtime:

Virus scanner Symantec Endpoint Protection 14.3
McAfee Endpoint Security (ENS) 10.6 and 10.7
Trend Micro Office Scan 14.0
Windows Defender (as part of the Windows operating system)
Qihoo 360 "Safe Guard 12.1" + "Virus Scanner"

Installation
1.3 System requirements for installation

System Manual, 11/2022 65

Whitelisting McAfee Application Control 8.3.3
Hard disk encryption Microsoft BitLocker (as part of the Windows operating system)

Principle
Care must be taken to ensure that the use of the antivirus software does not impair the
process operation of a plant.
 Rules for antivirus software (virus scanning clients)
• Integrated virus scanner firewall

In WinCC Unified, the local Windows firewall used is configured with SIMATIC Security
Control. Do not install or enable the integrated firewall of the antivirus software.

• Manual scan
You must not perform a manual scan while Runtime is running. Perform disk on regular
intervals on all plant PCs, for example, during the maintenance interval.

• Automatic scan
For automatic scan it is sufficient to scan the incoming data traffic.

• Scheduled scan
You must not perform a scheduled scan while Runtime is running.

• Pattern update
The pattern update of the virus scanning clients (the plant PCs which are checked for viruses)
performed by the higher-level virus scanning server (the plant PC which centrally manages
the virus scanning clients).

• Dialog
To avoid impairing the process operation, no dialog messages can be displayed on the virus
scanning clients.

• Drives
To prevent overlapping scans on network drives, only the local drives are scanned.

Otherwise apply the default settings.
What is secured?
The incoming data traffic is checked for viruses. The impairment of the process mode is
minimized.

Note
If you are using an anti-virus scanner, make sure that the computer has sufficient system
resources.

Supported database types
The following database types are supported by SIMATIC WinCC Unified PC:

HMI device Supported database type
SIMATIC WinCC Unified PC SQLite

Microsoft SQL

Installation
1.3 System requirements for installation

66 System Manual, 11/2022

Microsoft SQL for Unified PC
WinCC Unified PC uses SQLite as the default database type. To use Microsoft SQL, the system
provides an installation option with a setup package.
• Logging with SQLite is not possible after the installation of Microsoft SQL.
• Existing SQLite files are retained, but they cannot be accessed in runtime.
• No backup can be created for SQLite.
Microsoft SQL Server 2017 is used as of TIA Portal V17. SQL Management Studio is no longer
part of the Microsoft SQL Server installation package and is therefore not included in the
Totally Integrated Automation Portal installation. You can install SQL Management Studio
separately if needed.
To establish secure SQL Server connections, please observe the notes in the Microsoft
documents:
• Server Network Configuration
• Enable encrypted connections to the Database Engine

1.4 Overview of processes and services of TIA Portal components
Additional processes and services are also installed during the installation of the TIA Portal or
components of the TIA Portal.
The following tables provide an overview of these processes, the corresponding services and
respective functions:

Table 1-2 Automation License Manager
Process Corresponding service Function
almsrv64x.exe alm service License management service / main

process
almsrvbubble64x.exe - Process for tray icon info bubbles
almgui64x.exe - Graphical user interface of the Automa‐

tion License Manager

Table 1-3 TIA administrator
Process Corresponding service Function
almsrv64x.exe alm service License management service
node.exe SiemensTiaAdmin Main process of the TIA Administrator

website
TiaAdminNotifier.exe - User notifications and tray icon of the TIA

Administrator

Installation
1.4 Overview of processes and services of TIA Portal components

System Manual, 11/2022 67

Table 1-4 ProSave
Process Corresponding service Function
PTProSave.exe - ProSave, graphical user interface main

process
S7TraceService64x.exe S7TraceServiceX S7Dos related tracing
s7oiehsx64.exe s7oiehsx64 S7Dos Helper Service
s7epasrv64x.exe - Event and parameter handling
s7oPNDiscoveryx64.exe SIMATIC PnDiscovery Service PN Discovery (accessibility via PN device

name)
TraceConceptX.exe TraceConceptX S7Dos related tracing
ALMPanelPlugin.exe - Plugin for communication with Automa‐

tion License Manager
- S7DOS SCP Remote Is also installed, but is only active with

Cloud Connector
CommunicationSettings.exe - Setting access points

Table 1-5 WinCC Audit Viewer
Process Corresponding service Function
AuditViewer.exe - WinCC Audit Viewer main process

Table 1-6 Migration Tool
Process Corresponding service Function
Siemens.Automation.MigrationApplica‐
tion.exe

- Tool for converting WinCC and Simatic
Manager projects into migration-com‐
patible files

Table 1-7 Port Configuration Tool (PCT)
Process Corresponding service Function
Siemens.Simatic.Pct.ApplicationLoad‐
er.exe

- Main process of the Port Configuration
Tool (PCT)

s7oiehsx64.exe s7oiehsx64 S7Dos Helper Service
s7epasrv64x.exe - Event and parameter handling
S7TraceService64x.exe S7TraceServiceX S7Dos related tracing
s7oPNDiscoveryx64.exe SIMATIC PnDiscovery Service PN Discovery (accessibility via PN device

name)
TraceConceptX.exe TraceConceptX S7Dos related tracing
s7elonls64.exe - Routing between 32- and 64-bit applica‐

tion parts
CommunicationSettings.exe - Setting access points
- S7DOS SCP Remote Is also installed, but is only active with

Cloud Connector

Installation
1.4 Overview of processes and services of TIA Portal components

68 System Manual, 11/2022

Table 1-8 Cloud Connector
Process Corresponding service Function
CloudConfigurator.exe - GUI for configuring the Cloud Connector
s7oiehsx64.exe s7oiehsx64 S7Dos Helper Service
s7epasrv64x.exe - Event and parameter handling
S7TraceService64x.exe S7TraceServiceX S7Dos related tracing
s7oPNDiscoveryx64.exe SIMATIC PnDiscovery Service PN Discovery (accessibility via PN device

name)
TraceConceptX.exe TraceConceptX S7Dos related tracing
CC.TunnelServiceHost.exe S7DOS SCP Remote Host of the tunnel service for the Cloud

Connector
CommunicationSettings.exe - Setting access points

Table 1-9 Project server
Process Corresponding service Function
Siemens.Automation.Portal.Serv‐
er(.exe)

V[Version number]prjsrv TIA Portal project server main process

Siemens.Automation.Por‐
tal.Project.Server(.exe)

- TIA Portal project server main process

Siemens.Automation.Portal.Server.Con‐
figuration(.exe)

- User interface for configuring the project
server

Siemens.Automation.Portal.Server.Ad‐
ministration(.exe)

- User interface for the administration of
the project server

Siemens.Automation.ProjectServer.Ac‐
cessControl(.exe)

- Controls the access authorization of the
administration tool

Table 1-10 WinCC Runtime Advanced
Process Corresponding service Function
ScsServer.exe - Central data communication
StartCenter.exe - Start Center which permits starting of

runtime, for example
HmiRTm.exe - The actual WinCC Advanced Runtime
s7elonls64.exe - Routing between 32- and 64-bit applica‐

tion parts
Miniweb.exe - Web contents of the WinCC Runtime Ad‐

vanced
CodeMeterCC.exe - Runtime service of the code meter
CmWebAdmin.exe CmWebAdmin.exe Web administrator of the code meter
SmartServer.exe cortsmartserver Smart Server host process for remote

connection
CodeMeter.exe CodeMeter.exe Code meter licensing during runtime
S7TraceService64x.exe S7TraceServiceX S7Dos related tracing
s7oiehsx64.exe s7oiehsx64 S7Dos Helper Service

Installation
1.4 Overview of processes and services of TIA Portal components

System Manual, 11/2022 69

Process Corresponding service Function
s7epasrv64x.exe - Event and parameter handling
s7oPNDiscoveryx64.exe SIMATIC PnDiscovery Service PN Discovery (accessibility via PN device

name)
- OpcEnum Service is only installed, but not started.

Table 1-11 TIA Portal with STEP 7 / WinCC Comfort / Advanced
Process Corresponding service Function
CodeMeterCC.exe - Runtime service of the code meter
Siemens.Automation.Portal.exe - The TIA Portal itself
Siemens.Automation.ObjectFrame.File‐
Storage.Server.exe

- Process for data management in TIA Por‐
tal projects

Siemens.Automation.Diagnostics.Crash‐
Detector.exe

- Process for detecting TIA Portal crashes
and displaying the crash box

Siemens.Automation.Tracing.ETW.Even‐
tCollector.ServiceHost.exe

Siemens Diagnostics Data Collector Serv‐
ice

Process for event data collection

s7oiehsx64.exe s7oiehsx64 S7Dos Helper Service
s7epasrv64x.exe - Event and parameter handling
CmWebAdmin.exe CmWebAdmin.exe Web administrator of the code meter
CodeMeter.exe CodeMeter.exe Code meter licensing during runtime
S7TraceService64x.exe S7TraceServiceX S7Dos related tracing
Siemens.Simatic.TelemetryConnec‐
tor.WindowsService.exe

Siemens Telemetry Connector Service Service for collecting and sending tele‐
metry data

s7oPNDiscoveryx64.exe SIMATIC PnDiscovery Service PN Discovery (accessibility via PN device
name)

TraceConceptX.exe TraceConceptX S7Dos related tracing
IPCSecCom.exe umscsvc Communication to an UMC server
um.Ris.exe - Basic executable for UMC
um.sso.exe - Single sign-on for UMC
um.ess.exe - Basic executable for UMC
S7otbxsx64.exe - S7Dos block administration
- OpcEnum Service is only installed, but not started
- UMC Service Only used when UMC / UMAC is used

Table 1-12 STEP 7 / Safety / WinCC Professional ES incl. simulation
Process Corresponding service Function
CodeMeterCC.exe - Runtime service of the code meter
Siemens.Automation.Portal.exe - The TIA Portal itself
Siemens.Automation.ObjectFrame.File‐
Storage.Server.exe

- Process for data management in TIA Por‐
tal projects

Siemens.Automation.Diagnostics.Crash‐
Detector.exe

- Process for detecting TIA Portal crashes
and displaying the crash box

Installation
1.4 Overview of processes and services of TIA Portal components

70 System Manual, 11/2022

Process Corresponding service Function
Siemens.Automation.Tracing.ETW.Even‐
tCollector.ServiceHost.exe

Siemens Diagnostics Data Collector Serv‐
ice

Process for event data collection

s7oiehsx64.exe s7oiehsx64 S7Dos Helper Service
s7epasrv64x.exe - Event and parameter handling
CmWebAdmin.exe CmWebAdmin.exe Web administrator of the code meter
CodeMeter.exe CodeMeter.exe Code meter licensing during runtime
S7TraceService64x.exe S7TraceServiceX S7Dos related tracing
Siemens.Simatic.TelemetryConnec‐
tor.WindowsService.exe

Siemens Telemetry Connector Service Service for collecting and sending tele‐
metry data

s7oPNDiscoveryx64.exe SIMATIC PnDiscovery Service PN Discovery (accessibility via PN device
name)

TraceConceptX.exe TraceConceptX S7Dos related tracing
IPCSecCom.exe umscsvc Communication to an UMC server
um.Ris.exe - Basic executable for UMC
um.sso.exe - Single sign-on for UMC
um.ess.exe - Basic executable for UMC
S7otbxsx64.exe - S7Dos block administration
CCDeltaLoader.exe CCDeltaLoader Responsible for determining whether a

delta download is possible
RedundancyControl.exe RedundancyControl Responsible for the determination and

management of the state of the redun‐
dant WinCC partner

CCTextServer.exe CCTextServer Server for runtime display of texts
CCPerfMon.exe CCPerfMon WinCC STOBS, monitoring of the system

parameters and WinCC processes
SCSFsX.exe SCSFsX WinCC File Service between clients and

servers
CCRtsLoader_x64.exe CCRtsLoader WinCC RT Tag management
CCSystemDiagnosticsHost.exe CCSystemDiagnosticsHost Host for displaying system diagnostics
CcAlgRtServer.exe CCAlgRtServer WinCC Alarm Logging Runtime Server
CCArchiveManager.exe CCArchiveManagerService Management of WinCC archives
CCRedundancyAgent.exe CCRedundancyAgent Service Archiving component for managing and

reconciliation of the RT archive
CCTlgServer.exe CCTlgServer WinCC Tag Logging Server
CCUsrAcv.exe CCUsrAcv Responsible for managing user archives
CCProfileServer.exe CCProfileServer Saving RT persistence data of the WinCC

Controls
sqlservr.exe MSSQL$WINCC SQL server for WinCC
CCAgent.exe CCAgent WinCC RT component for communica‐

tion between WinCC stations
CCEServer_x64.exe CCEServer WinCC RT component for communica‐

tion between WinCC stations
CCProjectMgr.exe CCProjectMgr WinCC Project Manager, handling of

WinCC projects
SDiagRT.exe - System diagnostics data collector
gscrt.exe - WinCC Global Script Runtime

Installation
1.4 Overview of processes and services of TIA Portal components

System Manual, 11/2022 71

Process Corresponding service Function
PassDBRT.exe - Managing login data and passwords
CCUAImport.exe - WinCC RT User Archive component for

importing TIA recipes
script.exe - WinCC RT C Scripting component
PdlRt.exe - Graphic runtime
SCSDistServiceX.exe SCS Distribution Service WinCC RT component for communica‐

tion between WinCC stations
SCSMX.exe SCSMonitor WinCC RT component for communica‐

tion between WinCC stations
sqlbrowser.exe SQLBrowser Microsoft SQL process (WinCC uses SQL

server)
sqlwriter.exe SQLWriter Microsoft SQL process (WinCC uses SQL

server)
CCDBUtils.exe CCDBUtils WinCC component for managing the

WinCC SQL database
CCRemoteService.exe CCRemoteService WinCC component for remote manage‐

ment of the WinCC SQL database
sqlceip.exe SQLTELEMETRY$WINCC Microsoft SQL process (WinCC uses SQL

server)
CCEClient_x64.exe CCEClient WinCC RT component for communica‐

tion between WinCC stations
RedundancyState.exe RedundancyState Client-side monitoring of the WinCC

server states
CCPackageMgr.exe CCPackageMgr WinCC components for managing the

server packages
CCNSInfo2Provider.exe CCNSInfo2Provider WinCC component for browsing WinCC/

STEP 7 tags
Siemens.Simatic.Srm.RdpComp.Da‐
ta.ContextMgrX.exe

- SCADA RT Professional Compiler compo‐
nent

CCDmRuntimePersistence.exe - WinCC RT component for reconciliation
of the internal tags in redundant systems

CCWriteArchiveServer.exe - Responsible for writing archive data in
the SQL database
(3 instances: TLG-fast / TLG-slow / ALG)

CCLicenseService.exe CCLicenseService Responsible for allocation and release of
licenses

CCUCSurrogate.exe - WinCC RT Professional application for
the system tray icon in the Windows
taskbar

Simulation.exe - WinCC RT Professional tag simulation
CCConfigStudio.exe - WinCC Config Studio is an application for

the WinCC RT Professional tag simulation
WinCCChnDiag.exe - WinCC channel diagnostics
- CCTMTimeSyncServer Is used in redundant servers to synchron‐

ize time stamps
- CcUaDAS WinCC OPC UA component
- CCOpcUaImporter WinCC OPC UA component

Installation
1.4 Overview of processes and services of TIA Portal components

72 System Manual, 11/2022

Process Corresponding service Function
- CCAlgIAlarmDataCollector WinCC RT Professional alarm system
- SQLAgent$WINCC Microsoft SQL process (WinCC uses SQL

server)
- OpcEnum OPC Foundation component (WinCC

OPC); Service is only installed, but not
started

- UMC Service Only used when UMC / UMAC is used

Table 1-13 WinCC Advanced Runtime Simulation
Process Corresponding service Function
HmiRTm.exe - The actual WinCC Advanced Runtime
Miniweb.exe - Web contents of the WinCC Runtime Ad‐

vanced
SmartServer.exe cortsmartserver Smart Server host process for remote

connection
HmiRTmSim.exe - WinCC Advanced Tag Simulation

Table 1-14 WinCC Unified Engineering Package
Process Corresponding service Function
opcualds.exe UALDS OPC UA Local Discovery Service
mDNSResponder.exe OPCF Bonjour Service DNS name resolution
GfxWebBrowser.exe - Graphic rendering

Table 1-15 WinCC Unified Simulation
Process Corresponding service Function
WCCILS7pComDrv(.exe) - Process for communication with

S7-1200 and S7-1500 controllers
RTILtraceTool(.exe) TraceLogger_WinCC_Unified_PC Unified Simulation related tracing
RTILtraceTool(.exe) TraceProfiler_WinCC_Unified_PC Unified Simulation related tracing
w3wp(.exe) - IIS Process Worker, host process for web

pages
WCCILscs(.exe) WCCILScsService Siemens Communication Service, re‐

sponsible for the internal data commu‐
nication

WCCILpmon(.exe) - WinCC Process Monitoring
WCCILalg(.exe) - WinCC AlarmLogging, responsible for

logging alarms
WCCILevent(.exe) - WinCC Event handling, responsible for

handling events
GfxLicenseServer(.exe) - Responsible for granting and releasing

licenses

Installation
1.4 Overview of processes and services of TIA Portal components

System Manual, 11/2022 73

Process Corresponding service Function
JobSchedulerHost(.exe) - Responsible for scheduling jobs
GfxRTS(.exe) - Preparation of the graphical runtime
WCCILSDAMgr(.exe) - System Diagnostics Manager, responsi‐

ble for the system diagnostics informa‐
tion

OpennessManagerHost(.exe) - Host for the Openness Manager
WCCILdist(.exe) - WinCC Unified Simulation basic process
WCCILdata(.exe) - WinCC Unified data manager
WCCILals(.exe) - WinCC AlarmServer, responsible for re‐

ceiving and acknowledging alarms
WCCILpaco(.exe) - WinCC Parameter Control
WCCILtlg(.exe) - WinCC TagLogging, responsible for log‐

ging tags
WCCILs7(.exe) - Process for communication with S7-300

and S7-400 controllers
umcd(.exe) UmclService EMS basic process
idp(.exe) UmclIdpService EMS basic process
- EventLogger Event Logging Service
- UmclWebUMService Web service for User Management
- umscsvc User Management Secure Communica‐

tion Service
- w3logsvc IIS Logging Service
- WMSVC IIS Web Management Service

Table 1-16 Add-Ins
Process Corresponding service Function
Siemens.Automation.AddIn.Roll‐
out.Service.exe

Siemens Add-In Rollout Service Mass rollout of Corporate Add-Ins

1.5 Using Security Logging

1.5.1 Security Logging in the TIA Portal
Security Logging in the TIA Portal is a function to acquire, save and analyze security-relevant
event and log data from the Engineering System, as well as from components of the automation
environment.
The event and log data is stored locally in Windows systems. This data can be analyzed, saved
and exported through the Windows Event Viewer.
In a further step, the event and log data can be transferred to SIEM systems (Security
Information and Event Management). Thus, Security Logging makes it possible to centrally
collect and analyze security-relevant events from different systems in the network, and

Installation
1.5 Using Security Logging

74 System Manual, 11/2022

to react to threats. Security Logging is part of a bundle of measures recommended by
international security standards and regulations for increasing security.
Security Logging is disabled by default in the TIA Portal. Administrators can initially activate
Security Logging through a batch file. When Security Logging has been activated, the
function can be deactivated and re-activated either by means of batch files or through the
Windows Registry.

See also
Activating and deactivating Security Logging (Page 75)

1.5.2 Activating and deactivating Security Logging
The event channel for Security Logging is registered when the TIA Portal is installed on the
computer; however, the function is disabled by default. You can activate and deactivate Security
Logging in the Windows Registry by setting the corresponding value in the "AuditLogOn" key.
The value "1" activates Security Logging while other values deactivate it. By default, Security
Logging is deactivated in the TIA Portal.
The "AuditLogOn" key is not created at the time of installation of the TIA Portal. There are two
batch files in the installation directory of the TIA Portal in the "bin" folder:
• The batch file "SecurityAuditLoggingEnable.bat" creates the key "AuditLogOn" and activates

Security Logging.
• The batch file "SecurityAuditLoggingDisable.bat" deactivates Security Logging.
Security Logging is version-specific. The setting does not have any effect on other versions of
the TIA Portal.

Requirements
• You have Windows administrator rights.
• To log user accounts, the project must be protected.

Activating Security Logging with a batch file
1. Navigate to the "bin" folder in the installation directory of the TIA Portal.
2. Run the batch file "SecurityAuditLoggingEnable.bat".

Deactivating Security Logging with a batch file
1. Navigate to the "bin" folder in the installation directory of the TIA Portal.
2. Run the batch file "SecurityAuditLoggingDisable.bat".

Installation
1.5 Using Security Logging

System Manual, 11/2022 75

Activating and deactivating Security Logging in the Windows Registry
1. In Windows, open the Registry Editor.
2. Go to the key

"HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\Automation\SecurityLogging\18.0\Settings\A
uditLogOn".

3. To activate Security Logging, in the "LoggingOn" key, input the value "1".
To deactivate Security Logging, in the "LoggingOn" key, delete or change the value "1".

4. Confirm your input with "OK".

See also
Security Logging in the TIA Portal (Page 74)
Overview of events (Page 76)

1.5.3 Overview of events
The following tables provide an overview of user actions, the relevant log entries, the event
categories and event types:
In addition to the content of the events listed in the following tables, each event contains the
following information:
• Version of the TIA Portal
• Name of the project
• Name of the logged-on user from the user administration (UMAC - User Management and

Access Control)

Note
Name of the logged-on user
The value for the name of the logged-on user from the user administration (UMAC) is set in three
different categories:
• Category 1: The text "No user logged in." appears in the case where user administration

(UMAC) is either not enabled in the project or no user is logged on outside the project on a
device under "Accessible devices".

• Category 2: The text "Background process" appears in the case where UMAC is enabled for the
project but a safety-critical operation is triggered by a background process (e.g. when a
process loads data into a device in Multiuser Commissioning in "asynchronous mode").

• Category 3: The name of the logged-on user from the user administration (UMAC) appears
in the case where UMAC is enabled for the project and the event was written by the TIA Portal
main process.

Installation
1.5 Using Security Logging

76 System Manual, 11/2022

Overview of events

Table 1-17 User administration (UMAC - User Management and Access Control)
User action Log entry Event category Type of event
Creating a new local project
user

Local user "{target user}" add‐
ed

Access control Information

Deleting a local project user Local user "{target user}" de‐
leted

Access control Information

Adding a global user Global user "{target
user}" added

Access control Information

Deleting a global user Global user "{target user}" re‐
moved

Access control Information

Adding a global user group User group "{target user}" add‐
ed

Access control Information

Deleting a global user group User group "{target user}" re‐
moved

Access control Information

Logging on to a protected
project

Local / Global user "{target
user}" with role(s)
"{semicolon seperated list of
roles}" logged in successfully
Local / Global user "{target
user}" login failed
Anonymous user with role(s)
"{semicolon seperated list of
roles}" logged in successfully
Anonymous user login failed
For Auto Log On No DSSO Ses‐
sion : Global user login failed
as no desktop session is avail‐
able

Access control Information, errors

Authorized user logs out of a
protected project

Local / Global user "{target
user}" logged out
Anonymous user logged out

Access control Information

Changing the user name of a
local project user

User "{target user}" renamed
to "{new target user name}"

Configuration Information

Changing the password of a
local project user or one's own
password

Local / Global user "{target
user}" password changed

Configuration Information

Activating a local project user,
a global user or a global group

Local / Global user / group
"{target user}" activated

Configuration Information

Deactivating a local project
user, a global user or a global
group

Local / Global user /
group "{target user}" de-acti‐
vated

Configuration Information

Changing the properties of a
user

User "{target user}" property
'{property name}' changed
to {new property value}

Configuration Information

Creating a user-defined role in
the TIA Portal

Custom role "{role name}" cre‐
ated

Configuration Information

Installation
1.5 Using Security Logging

System Manual, 11/2022 77

User action Log entry Event category Type of event
Deleting a user-defined role in
the TIA Portal

Custom role "{role name}" de‐
leted

Configuration Information

Renaming a user-defined role
in the TIA Portal

Custom role "{old role name}"
renamed to "{new role name}"

Configuration Information

Changing the assignment of a
function right to a user-de‐
fined role in the TIA Portal.

Custom role "{role name}"
function rights assignment
changed to "{semicolon se‐
perated list of function
rights}"

Configuration Information

Changing the runtime time‐
out of a user-defined role in
the TIA Portal

Custom role "{role name}"
property 'Runtime timeout'
changed to {new runtime
timeout}

Configuration Information

Assigning a role to a user or a
user group

Local user / Global user / User
group "{target user
name}" roles assignment
changed to "{semicolon se‐
perated list of roles}"

Configuration Information

Table 1-18 Changes to CPU data (offline)
User action Log entry Event category Type of event
Checking project integrity Data integrity check succee‐

ded / failed.
A {data integrity error type}
Integrity corruption found in
object {object id} in project
{project name}

AuditLog Supervision successful, error

Table 1-19 Loading to CPU
User action Log entry Event category Type of event
Loading a hardware configu‐
ration to a CPU

Download of hardware config‐
uration to {PLC name} with
address {address}

Configuration Supervision successful

Loading a standard user pro‐
gram to a CPU (Start alert)

Software download started to
target PLC: {PLC name} with
address {address}

Operating mode during
download: {RUN|STOP}

Type of download: {Delta|
Complete}

Configuration Information

Installation
1.5 Using Security Logging

78 System Manual, 11/2022

User action Log entry Event category Type of event
Loading a standard user pro‐
gram into a CPU (list of blocks
to be loaded or deleted, if nec‐
essary several times)

Software objects downloa‐
ded (+) / deleted (-):
{+|-} {full qualified name of
object}

{+|-} {full qualified name of
object}

...

Configuration Information

Loading a standard user pro‐
gram into a CPU (completion
message with software signa‐
ture)

Successful:
Software download succee‐
ded
Software signature after
sownload {signature|“null”}
Error:
Software download aborted
with error: {error message}
• PLC was left in an incon‐

sistent state → Download
in STOP

• PLC software contents
was rolled back → Down‐
load in RUN

Configuration Supervision successful, error

Loading a failsafe program to
a CPU

Downloaded safety program
with the collective F-signa‐
ture {collective F-signature}.

Configuration Supervision successful

Table 1-20 Loading the device as a new station
User action Log entry Event category Type of event
Loading a configuration from
a CPU

Upload of {PLC name} with ad‐
dress {address}.

Configuration Supervision successful, error

Installation
1.5 Using Security Logging

System Manual, 11/2022 79

Table 1-21 Changes to CPU data (online)
User action Log entry Event category Type of event
Access to a CPU Successful:

Login to Plc {PLC name} with
address {address} is success‐
ful.
Error:
Login to Plc {PLC name} with
address {address} failed.

Access control Supervision successful, error

Forcing variables via online
access to a CPU

Forcejob installed on target
CPU:
{PLC name} with address {ad‐
dress}
Forced variables (address : val‐
ue):
Adr1 : value1
Adr2 : value2
…
Forcejob on target PLC re‐
placed:
{PLC name} with address {ad‐
dress}
Forced variables (address : val‐
ue):
Adr1 : value1
Adr2 : value2
...
Forcejob on target CPU stop‐
ped:
{PLC name} with address {Ad‐
dress}

Configuration Supervision successful

Changing the IP/network con‐
figuration of a CPU via online
access

Change the network settings
of {device name}({address})
to [IpAddress:{address to set}|
SubnetMask:{subnet mask}|
Router address:{router ad‐
dress}]

Configuration Supervision successful, error

Changing the password for
protecting confidential config‐
uration data via online access

Set password for "Protection
of PLC configuration data" of
{PLC name}({address})
Delete password for "Protec‐
tion of PLC configuration da‐
ta" of {PLC name}({address})

Configuration Supervision successful, error

Changing the operating state
of a CPU via online access

Set {PLC name}({address}) to
Run/Stop

Configuration Supervision successful, error

Changing the system time of
a CPU via online access

Change the system time of
{device name}({address}) to
{date time}

Configuration Supervision successful, error

Installation
1.5 Using Security Logging

80 System Manual, 11/2022

User action Log entry Event category Type of event
Backing up/restoring a CPU
via online access

Backup:
Backup created from {PLC
name} with address {address}.
Restore:
Online backup {backup
name} restored to {PLC Name}
with address {address}.

Configuration Supervision successful

Initiating firmware update of
a CPU via online access

Firmware update of {PLC
name} ({address}) to version
{fw version}

Configuration Supervision successful, error

Reset CPU to factory settings Reset to factory setting of
{PLC name} ({address}).
Settings:
• Delete IP address
• Delete master password
• Format memory card

Configuration Supervision successful, error

MRES via online access Memory reset of {PLC name}
{address}

Configuration Supervision successful, error

Format memory card Formatting the memory card
of {PLC name}{address}

Configuration Supervision successful, error

Table 1-22 Changing the access level
User action Log entry Event category Type of event
Changing the access level Protection access level is

changed from "{previously se‐
lected access level}" to "{cur‐
rent selection access level}"
for {PLC name}

Configuration Supervision successful, error

Configuring the password for
full access

Protection Access password is
configured successfully /
failed to configure for "Full Ac‐
cess" for {PLC name}

Configuration Supervision successful, error

Changing the password for
full access

Protection access password is
changed successfully / failed
to change for "Full Access"
for {PLC name}

Configuration Supervision successful, error

Configuring the password for
full access including failsafe
(no protection)

Protection access password is
configured successfully /
failed to configure for "Full ac‐
cess incl. fail safe (no protec‐
tion)" for {PLC name}

Configuration Supervision successful, error

Changing the password for
full access including failsafe
(no protection)

Protection access password is
changed successfully / failed
to change for "Full Access incl.
fail safe (no protection)"
for {PLC name}

Configuration Supervision successful, error

Installation
1.5 Using Security Logging

System Manual, 11/2022 81

User action Log entry Event category Type of event
Configuring the password for
read access

Protection access password is
configured successfully / fail
to change for "Read Access"
for {PLC name}

Configuration Supervision successful, error

Changing the password for
read access

Protection access password is
changed successfully / fail to
change for "Read Access"
for {PLC-name}

Configuration Supervision successful, error

Configuring the password for
HMI access

Protection access password is
configured successfully /
failed to configure for "HMI
Access" for {PLC name}

Configuration Supervision successful, error

Changing the password for
HMI access

Protection access password is
changed successfully / fail to
change for "HMI Access"
for {PLC name}

Configuration Supervision successful, error

Table 1-23 Protection of PLC Configuration Data
User action Log entry Event category Type of event
Deactivating protection of
confidential CPU configura‐
tion data

"Protection of PLC configura‐
tion data" is disabled / failed to
disable for {PLC name}

Configuration Supervision successful, error

Activating protection of confi‐
dential CPU configuration da‐
ta

"Protection of PLC configura‐
tion data" is enabled / failed to
enable for {PLC name}

Configuration Supervision successful, error

Configuring the password for
protection of confidential CPU
configuration data

Password for "Protection of
PLC configuration data" is con‐
figured successfully / failed to
configure for {PLC name}

Configuration Supervision successful, error

Changing the password for
protection of confidential CPU
configuration data

Password for "Protection of
PLC configuration data" is
changed successfully / failed
to change for {PLC name}

Configuration Supervision successful, error

Resetting the password for
protection of confidential CPU
configuration data

Password for "Protection of
PLC configuration data" is re‐
set successfully / failed to re‐
set for {PLC name}

Configuration Supervision successful, error

See also
Security Logging in the TIA Portal (Page 74)
Displaying and managing events (Page 83)

Installation
1.5 Using Security Logging

82 System Manual, 11/2022

1.5.4 Displaying and managing events
Events can be displayed and managed in Windows in the Event Viewer. In addition to this,
functions are provided via Microsoft Windows to track events automatically.
To centrally collect, analyze and further process events from different systems in the network,
events can be transmitted in a SIEM (Security Information and Event Management) system. Use
the documentation of the provider for information on transferring events to a SIEM system.

Displaying events in the Event Viewer
1. In Windows, open the Event Viewer.
2. In the left-hand column, go to the node "Event Viewer (Local) > Application and Services Logs

> SiemensAG > Automation > TIAPortal".
3. Select the "Operational" log.

The events of the log are displayed in the upper part of the main window.
4. Select an event.

Information on the selected event is displayed in the lower part of the main window, in the
tabs "General" and "Details".

5. To open the information on an event in a new window, double-click the event.

Managing events in the Event Viewer
1. In the Event Viewer, switch to the right-hand column, "Actions".
2. Use the actions to manage your log files.

You can, for example, filter, search, save and delete logs.

Automated event tracking
The following Microsoft Windows functions can be used for automated event tracking:
• The command line program wevtutil can be used to read events from the command line. The

program is provided via Microsoft Windows.
• TIA Portal provides the events via Event Tracing for Windows - ETW. Applications (for

example, a SIEM system) that wish to call the events can access these events via the event
source "SiemensAG-Automation-TIAPortal".

For more information on implementing automated event tracing, use Microsoft's
documentation of features.

See also
Security Logging in the TIA Portal (Page 74)

Installation
1.5 Using Security Logging

System Manual, 11/2022 83

1.6 Installation log

Function of the installation log
The progress during the following installation processes is logged in a file:
• Installing products
• Modifying or updating already installed products
• Repairing an existing installation
• Uninstalling products
If errors occur during the installation process or warnings are issued, these can be evaluated
with the help of the log file. You can do this yourself or contact product support.

Installation logs storage location
The log file is the most recent file with the file extension ".log" and the name of which that starts
with "SIA".
The location of the log file is stored in the environment variable "%autinstlog%". You can
enter this environment variable in the address bar of Windows Explorer to open the folder
with the log files. Alternatively, you can navigate to the corresponding directory by entering
"CD %autinstlog%" in the command line.
The storage location is dependent on the operating system, e.g.
"C:\ProgramData\Siemens\Automation\Logfiles\Setup" in English-language Windows.

Setup_Report (CAB file)
To make it easier to provide Product Support with all necessary files, an archive file that contains
the installation log and all other required files is saved in CAB format. This log can be found at
"%autinstlog%\Reports\Setup_report.cab". Send this CAB file to Product Support if you need
assistance with installation. With this information, Product Support can determine whether the
installation was executed properly. CAB files that were generated during earlier installation
processes are saved with a date ID in the "Reports" directory.

1.7 Starting installation

Introduction
Software packages are installed automatically by the setup program. The setup program starts
once the installation medium has been inserted in the drive.

Installation
1.7 Starting installation

84 System Manual, 11/2022

Requirement
• Hardware and software of the programming device or PC meet the system requirements.
• You have administrator privileges on your computer.
• All running programs are closed.

Procedure
To install the software packages, follow these steps:
1. Insert the installation medium in the relevant drive.

The setup program starts automatically unless you have disabled Autostart on the
programming device or PC.

2. If the setup program does not start up automatically, start it manually by double-clicking the
"Start.exe" file.
The dialog for selecting the setup language opens.

3. Choose the language in which you want the setup program dialogs to be displayed.
4. To read the information on the product and installation, click "Read Notes" or "Installation

Notes".
The help file containing the notes opens.

5. Once you have read the notes, close the help file and click "Next".
The dialog for selecting the product languages opens.

6. Select the languages for the product user interface, and click "Next".
Note
"English" is always installed as the basic product language.
The dialog for selecting the product configuration opens.

7. Select the products you want to install:
– If you wish to install the program in a minimal configuration, click "Minimal".
– If you wish to install the program in a typical configuration, click "Typical".
– If you wish to personally select the products to be installed, click "User-defined". Then

select the check boxes for the products you wish to install.
8. If you want to create a shortcut on the desktop, select the "Create desktop shortcut" check

box.
9. Click "Browse" if you want to change the target directory for the installation.

Note
Please note the following:
• The length of the installation path must not exceed 89 characters.
• You can only change the installation path if no other product from the software package

which you intend to install, has been installed, yet.
• To increase security, select a directory that is protected by administrative rights as the

target directory.

Installation
1.7 Starting installation

System Manual, 11/2022 85

10.Click "Next".
The dialog for the license terms opens.

11.To continue the installation, read and accept all license agreements and click "Next".
If changes to the security and permission settings are required in order to install the TIA
Portal, the security settings dialog opens.

12.To continue the installation, accept the changes to the security and permissions settings, and
click "Next".
The next dialog displays an overview of the installation settings.

13.Check the selected installation settings. If you want to make any changes, click "Back" until
you reach the point in the dialog where you want to make changes. Once you have
completed the desired changes, return to the overview by clicking on "Next".

14.Click "Install".
Installation is started.
Note
If no license key is found during installation, you have the chance to transfer it to your PC. If
you skip the license transfer, you can register it later with the Automation License Manager.
Following installation, you will receive a message indicating whether the installation was
successful.

15.It may be necessary to restart the computer. If this is the case, select the "Yes, restart my
computer now.". Then click "Restart".

16.If the computer does not reboot, click "Exit".

Result
The TIA Portal along with the products and licenses you have ordered and the Automation
License Manager have been installed on your computer.

1.8 Displaying the installed software
You can find out which software is installed at any time. In addition, you can display more
information on the installed software.

Procedure
To display an overview of the software installed, follow these steps:
1. Click "Installed software" in the "Help" menu.

The "Installed software" dialog opens. You will see the installed software products in the
dialog. Expand the entries to see which version is installed in each case.

2. If you would like to display additional information on the installed automation software, click
the link on the "Detailed information about installed software" dialog.
The "Detailed information" dialog opens.

3. Chose the topic you want more information about in the area navigation.

Installation
1.8 Displaying the installed software

86 System Manual, 11/2022

1.9 Modifying or updating installed products
You have the option to modify installed products using the setup program or to update to a new
version.
Blocks with know-how protection from earlier versions of the TIA Portal are not automatically
upgraded with the project. Remove the know-how protection of the blocks before you
update the TIA Portal. Then set up the know-how protection with the current version of
TIA Portal. For more detailed information, refer to the information system.

Requirement
• Hardware and software of the programming device or PC meet the system requirements.
• You have administrator privileges on your computer.
• All running programs are closed.

Procedure
To modify or update installed products, follow these steps:
1. Insert the installation medium in the relevant drive.

The setup program starts automatically unless you have disabled Autostart on the
programming device or PC.

2. If the setup program does not start up automatically, start it manually by double-clicking the
"Start.exe" file.
The dialog for selecting the setup language opens.

3. Choose the language in which you want the setup program dialogs to be displayed.
4. To read the information on the product and installation, click the "Read Notes" or "Installation

Notes" button.
The help file containing the notes opens.

5. Once you have read the notes, close the help file and click the "Next" button.
The dialog for selecting the installation variant opens.

6. Select the "Modify/Upgrade" option button and click the "Next" button.
The dialog for selecting the product languages opens.

7. Select the check boxes of the product languages that you want to install. You can remove
previously installed product languages by clearing the corresponding check boxes.
Note
Note that the product language "English" cannot be removed.

8. Click the "Next" button.
The dialog for selecting the product configuration opens.

9. Select the check boxes of the components that you want to install. You can remove previously
installed components by clearing the corresponding check boxes.

Installation
1.9 Modifying or updating installed products

System Manual, 11/2022 87

10.Click the "Next" button.
Note
Note that you cannot change the target directory because the existing installation is being
modified.
If changes to the security and permission settings are required in order to install the TIA
Portal, the security settings dialog opens.

11.To continue the installation, accept the changes to the security and permissions settings, and
click the "Next" button.
The next dialog displays an overview of the installation settings.

12.Click the "Modify" button.
This starts the installation of the additional components.
Note
Following installation, you will receive a message indicating whether the existing installation
was successfully changed.

13.It may be necessary to restart the computer. If this is the case, select the "Yes, restart my
computer now." option button. Then click "Restart".

14.If the computer does not reboot, click "Exit".

Result
The existing installation has been modified on your computer.

1.10 Repairing installed products
You have the option to repair installed products by completely reinstalling them using the setup
program.

Requirement
• Hardware and software of the programming device or PC meet the system requirements.
• You have administrator privileges on your computer.
• All running programs are closed.

Installation
1.10 Repairing installed products

88 System Manual, 11/2022

Procedure
To repair installed products, follow these steps:
1. Insert the installation medium in the relevant drive.

The setup program starts automatically unless you have disabled Autostart on the
programming device or PC.

2. If the setup program does not start up automatically, start it manually by double-clicking the
"Start.exe" file.
The dialog for selecting the setup language opens.

3. Choose the language in which you want the setup program dialogs to be displayed.
4. To read the information on the product and installation, click the "Read Notes" or "Installation

Notes" button.
The help file containing the notes opens.

5. Once you have read the notes, close the help file and click the "Next" button.
The dialog for selecting the installation variant opens.

6. Select the "Repair" option button, and click the "Next" button.
The next dialog displays an overview of the installation settings.

7. Click the "Repair" button.
This starts the repair of the existing installation.
Note
Following installation, you will receive a message indicating whether the existing installation
was successfully repaired.

8. It may be necessary to restart the computer. If this is the case, select the "Yes, restart my
computer now." option button. Then click "Restart".

9. If the computer does not reboot, click "Exit".

Result
The installed products have been reinstalled.

1.11 Starting to uninstall

Introduction
Software packages are removed automatically by the setup program. Once started, the setup
program guides you step-by-step through the entire removal procedure.
You have two options for removing:
• Removing selected components via the Control Panel
• Removing a product using the installation medium

Installation
1.11 Starting to uninstall

System Manual, 11/2022 89

Note
The Automation License Manager will not be removed automatically when you remove the
software packages, because it is used for the administration of several license keys for products
supplied by Siemens AG.

Removing selected components via the Control Panel
To remove selected software packages, follow these steps:
1. Open the Control Panel.
2. Click "Programs and Features".

A dialog with the list of installed programs opens.
3. Select the software package to be removed and click the "Uninstall" button.

The dialog for selecting the setup language opens.
4. Select the language in which you want the dialogs of the setup program to be displayed and

click "Next".
The dialog for selecting the products you want to remove opens.

5. Select the check boxes for the products that you want to remove and click "Next".
The next dialog displays an overview of the installation settings.

6. Check the list with the products to be removed. If you want to make any changes, click the
"Back" button.

7. Click the "Uninstall" button.
Removal begins.

8. It might be necessary to restart the computer. If this is the case, select the "Yes, restart my
computer now." option button. Then click "Restart".

9. If the computer does not reboot, click "Exit".

Removing a product using the installation medium
To remove all software packages, follow these steps:
1. Insert the installation medium in the relevant drive.

The setup program starts automatically unless you have disabled Autostart on the
programming device or PC.

2. If the setup program does not start up automatically, start it manually by double-clicking the
"Start.exe" file.
The dialog for selecting the setup language opens.

3. Select the language in which you want the setup program dialogs to be displayed.
4. To read the information on the product and installation, click "Read product information" or

"Read installation notes".
The help file containing the notes opens.

5. Once you have read the notes, close the help file and click the "Next" button.
The dialog for selecting the installation variant opens.

Installation
1.11 Starting to uninstall

90 System Manual, 11/2022

6. Select the "Uninstall" option button and click the "Next" button.
The next dialog displays an overview of the installation settings.

7. Click the "Uninstall" button.
Removal begins.

8. It might be necessary to restart the computer. If this is the case, select the "Yes, restart my
computer now." option button. Then click "Restart".

9. If the computer does not reboot, click "Exit".

1.12 Installing updates and support packages

1.12.1 Checking availability of updates and support packages and installing them
By default, the TIA Portal checks automatically if new software updates or support packages are
available, for example, Hardware Support Packages (HSPs). The automatic search for updates
takes place after each computer restart and then cyclically every 24 hours. You can also
deactivate the automatic search at any time or reactivate it. You can also search for updates
manually.
If updates are found, you can download and install them.

Note
Updates and support packages from TIA Portal V13 or higher are supported.

Deactivate or activate automatic search for software updates
To deactivate or reactivate the automatic search for software updates, follow these steps:
1. Select the "Settings" command in the "Options" menu.

The "Settings" window is displayed in the work area.
2. Select the "General > Software Updates" group in the area navigation.
3. Deselect the "Check for updates daily" check box if you want to deactivate the automatic

search for software updates.
4. Select the "Check for updates daily" check box if you want to reactivate the automatic search

for software updates.

Installation
1.12 Installing updates and support packages

System Manual, 11/2022 91

Manually searching for software updates
If you want to search for software updates manually, follow these steps:
1. Click "Installed software" in the "Help" menu.

The "Installed software" dialog opens.
2. Click "Check for updates".

The TIA Administrator opens.
3. Click on the "Manage software" tile.

The available updates are displayed.
Or:
1. Select the "Settings" command in the "Options" menu.

The "Settings" window is displayed in the work area.
2. Select the "General > Software Updates" group in the area navigation.
3. Click "Check for updates now".

The TIA Administrator opens.
4. Click on the "Manage software" tile.

The available updates are displayed.
Or:
1. Open the TIA Administrator via "Start > All Programs > Siemens Automation > TIA

Administrator".
2. Click on the "Manage software" tile and on the "Check for updates" button there.

The available updates are displayed.

Setting the server
You must set the corresponding server depending on whether you want to download updates
and/or support packages from the TIA Automation Update Server or from a corporate server. To
do this, follow these steps:
1. Open the TIA Administrator.
2. Click "Options" and select the "TIA Automation Software Update Server" option in the dialog

that appears in the "Server used to check for updates" area.
The software searches for available updates on the server of the manufacturer.

Or:
1. Open the TIA Administrator.
2. Click "Settings" and select the "Corporate server" option in the "Software management" tab.

Installation
1.12 Installing updates and support packages

92 System Manual, 11/2022

3. Enter the server URL which you received from your administrator. The URL must be entered
either in the format https://[URL of the server]/[path to the file directory] or in the format
https://[server IP address]/[path to the directory]. If you are not sure which format to use,
contact your administrator!
The software looks for available updates on the server of your company.

4. Check the name of the production line and change this if necessary "ProductionLine1" is set
by default.
The purpose of production lines is to provide different users with specific updates/support
packages. If your company does not work with different production lines, retain the specified
entry.
You can find detailed information on creating projects and working with production lines in
the help on the TIA Updater Corporate Configuration Tool.

You can set a different server on which the updates are to be searched for at any time.
However, changing this setting is blocked during a download process. After switching the
server, all downloaded updates and support packages are displayed, even if they are not
available on the currently set server.

Installing updates/support packages
For the exact procedure for installing updates/support packages, refer to the TIA Administrator
help.

Alternative procedures for the installation of support packages
Another procedure is available for the installation of a support package. To do this, follow these
steps:
1. Click "Support packages" in the "Options" menu of the TIA Portal.

The "Detailed information" dialog opens. A table lists all support packages from the directory
that you selected as the storage location for support packages in the settings.

2. If you want to install a support package that is not in the list, you have the following options:
– If the support package is already on your computer, you can add it to the list by selecting

"Add from file system".
– If you add a support package from the "Service & Support" page on the Internet, first you

download it by selecting "Download from the Internet". Then you can add it from the file
system.

3. Select the support package that you want to install.
4. Click "Install".
5. Close and then restart the TIA Portal.

Installation
1.12 Installing updates and support packages

System Manual, 11/2022 93

1.12.2 Working with a company-internal server

1.12.2.1 Properties and advantage of a corporate server

Introduction
Using a corporate server, you can place selected updates / support packages on a local server and
make them available to users, e.g. for different production lines. This has the advantage that
users do not have to access the Internet, but can install updates via the intranet, an external hard
disk, etc. Since users do not need direct access to the Internet, the protection against trojans or
malicious software that contacts the Internet from the internal company network is
significantly increased.

Configuring the server and creating projects
In the first phase, the corporate server is configured by a server administrator and the updates /
support packages are deployed using the TIA Updater Corporate Configuration Tool. In addition,
projects for different production lines can be created through which users can receive the
updates they require. Users need to have access to the server area and have the name of the
production line and be informed about the storage directory.
You can find detailed information on creating projects and working with production lines in
the help on the TIA Updater Corporate Configuration Tool.

Installation
1.12 Installing updates and support packages

94 System Manual, 11/2022

Working with the server
With the TIA Updater, users can download and install the updates and support packages that are
relevant and relevant for them. Multiple download operations can be initiated at the same time.
The installation of the updates / support packages must be done one after the other.

1.12.2.2 Configuring a corporate server for updates

Introduction
To provide available updates, support packages and language packages to users from a central
location, you must configure a corporate server. Use the Microsoft Server Manager to do this.
The following is an example of the steps required to create and configure the server using the
TIA Updater Corporate Configuration Tool (with the Microsoft Server 2016 operating system).
Further settings which may be required for operation in your company are not covered in this
description!

Note
Please note that the structure of the start menu and the storage location of the programs may
vary depending on the different operating systems.
For more detailed information on configuration and operating the Server Manager, refer to the
Microsoft help.

Requirement
You must have administrator rights.

Install Web server role (IIS)
To install the required Web server role, follow these steps:
1. Open the start menu and select "Server Manager".
2. Click "Add roles and features" in the dashboard.
3. Use the "Add roles and features" wizard to add the Web server roles.

Before the wizard starts, it is verified that a complex password has been assigned to the
administrator, that the network settings have been configured accordingly and that the latest
Windows security updates have been installed.

4. Select "Role-based or feature-based installation" as the installation type and click "Next".
5. Select the target server and click "Next".

Installation
1.12 Installing updates and support packages

System Manual, 11/2022 95

6. Note the pre-selected roles that are installed by default, and then select the additional role
"Web Server (IIS)".

7. Click "Add features" followed by "Next". The features for the web server are displayed.

Installation
1.12 Installing updates and support packages

96 System Manual, 11/2022

8. Click "Role Services" and make sure that the following features are selected or select them:

"Web server" area
– Default document
– Directory browsing
– HTTP errors
– Static content
"Health and diagnostics" area
– HTTP logging
– Request monitor
"Performance features" area
– Static content compression

Installation
1.12 Installing updates and support packages

System Manual, 11/2022 97

"Security" area
– Request filtering
"Application Development Features" area
– .NET Extensibility 3.5
– .NET Extensibility 4.6
– ASP.NET 3.5
– ASP.NET 4.6
– ISAPI Extensions
– ISAPI Filters

9. Click "Next".
10.Check your selection in the "Confirm installation selection" dialog box and click "Install".
"IIS" is added in the dashboard and can be further configured.

Installation
1.12 Installing updates and support packages

98 System Manual, 11/2022

Create website
1. In the navigation area, click "IIS" and right-click in the "Servers" area and select "Internet

Information Services (IIS) Manager".
2. In the "Connections" area, click "Sites" and then "Default Web site".

Installation
1.12 Installing updates and support packages

System Manual, 11/2022 99

3. Right-click to select the "Add Virtual Directory..." option.

Installation
1.12 Installing updates and support packages

100 System Manual, 11/2022

4. In the dialog that opens, enter a display name in the "Alias" field, for example,
"TIAPortalUpdates".

5. In the "Physical Path" field, enter the physical path of the folder in which the website is located
or click the button to browse (...), in order to search for the folder in the file system.
Note
The default website must be created in the directory that contains the
'UpdatesSummaryCatalog.xml' file.

6. Click "Test Settings..." to check whether the settings are correct.
7. Click "OK".

Installation
1.12 Installing updates and support packages

System Manual, 11/2022 101

Activating virtual directory
1. In the area "Connections > Sites > Default Web site", select the virtual directory you created.
2. In the "Features" view, double-click the item "Directory browsing".

3. Click "Enable" in the "Actions" area.

Installation
1.12 Installing updates and support packages

102 System Manual, 11/2022

Adding and configuring MIME type
1. In the "Connections" area, select the website you created.
2. Double-click "MIME type" in the "Features" view.

3. Click "Add" in the "Actions" area.
4. Enter .* in the "File name extension" text field in the "Add MIME type" dialog.
5. Enter "all/files" in the "MIME type" text field.
6. Click "OK".

Installation
1.12 Installing updates and support packages

System Manual, 11/2022 103

Installation
1.12 Installing updates and support packages

104 System Manual, 11/2022

Activate BITS-IIS server extension
1. Switch to the virtual directory in the IIS Manager.
2. Click "Add roles and features" to verify that BITS is installed. If necessary, enable and install

the "Background Intelligent Transfer Service" feature.

Installation
1.12 Installing updates and support packages

System Manual, 11/2022 105

3. In the Dashboard, in the "Local Server" area, click "Services".

Installation
1.12 Installing updates and support packages

106 System Manual, 11/2022

4. Select the local server, right-click and select the menu command "Start Services".

Installation
1.12 Installing updates and support packages

System Manual, 11/2022 107

Installation
1.12 Installing updates and support packages

108 System Manual, 11/2022

5. Change to the virtual directory feature view and double-click "BITS Uploads".

6. Select the "Allow clients to upload files" check box and click "Apply".

Installation
1.12 Installing updates and support packages

System Manual, 11/2022 109

Installation
1.12 Installing updates and support packages

110 System Manual, 11/2022

Create a self-signed server certificate
It is strongly recommended that you use a signed certificate created by your company's IT
department; in this way the company's own server receives a qualified (secure) certificate. You
can also purchase such a certificate from trusted third-party companies/certification authorities.
If this is not possible for you, you can create a self-signed certificate. Note that such a certificate
is not secure! To do this, follow these steps:
1. In the "Connections" area, navigate to the level which you want to manage.
2. Double-click "Server Certificates" in the "Features" view.

Installation
1.12 Installing updates and support packages

System Manual, 11/2022 111

3. Click "Create Self-Signed Certificate" in the "Actions" area.

4. In the "Create Self-Signed certificate" dialog, enter a display name for the certificate in the
"Specify a friendly name for the certificate" field and click "OK".

Installation
1.12 Installing updates and support packages

112 System Manual, 11/2022

Create SSL binding
1. Expand the "Sites" entry in the "Connections" area, and then click the site to which you want

to add a binding.
2. Click "Bindings" in the "Actions" area.

3. In the "Site Bindings" dialog, click "Add".
4. In the "Add Site Binding" dialog, select the certificate you created under "Type" "https" and

under "SSL certificate" and then click "OK".

Installation
1.12 Installing updates and support packages

System Manual, 11/2022 113

Verify SSL binding
1. In the "Actions" area, click the previously created binding under "Browse website".

An error page is opened in Internet Explorer, because the self-signed certificate was created
by your computer.

2. Click "Continue to this website (not recommended)".
This message is no longer displayed when you add the certificate to the "Trusted Root
Certification Authorities" certificate memory.

Configure SSL settings
1. Double-click "SSL settings" in the "Features" view.
2. Use one of the following procedures in the "Client certificates" area of the "SSL Settings"

dialog:
– Select "Ignore" if no client certificates are to be accepted even if a client has a certificate.
– Select "Accept" if client certificates are to be accepted.
– Select "Require" if client certificates are to be required. The "Require SSL" option must be

activated to allow the "Require client certificates" option to be used.
3. Click "Apply" in the "Actions" area.

1.12.2.3 Distributing updates to different areas
It may be the case that different departments need different updates or support packages. In this
situation, we recommend creating multiple production lines which offer different updates and
support packages. The procedure for this is described in the help of the TIA Updater Corporate
Configuration Tool.

Note
The main advantage of different production lines is that less storage space is required. When an
already downloaded update, support package, or language pack is added to a new production
line, a copy of it is not created, instead, the various production lines reference that update,
support package, or language pack.

Procedure
You can also operate multiple servers that provide different updates, support packages, and
language packs. To do this, follow these steps:
1. Set up different company-owned servers as described above.
or
1. Set up different company-owned servers as described above.
2. Set up multiple websites.

Make sure that you assign unique names for these websites and the physical paths so that
there will be no confusion.

3. Set the features described previously for the Web server or the websites.

Installation
1.12 Installing updates and support packages

114 System Manual, 11/2022

You can now store the required updates and support packages for the different departments
in the defined directories.

1.12.2.4 Providing updates on a corporate server

Introduction
In the TIA Updater Corporate Configuration Tool, you can set a corporate server on which the
available updates/support packages/language packs are stored and can be made available to the
users.

Requirement
You must have administrator rights.
A corporate server can only be set up on a Microsoft server operating system, because it
requires the operation of the BITS IIS service and a running IIS sever.

Adding updates from the TIA Automation Software Update Server
To add updates from the TIA Automation Software Update Server, follow these steps:
1. Open the TIA Updater Corporate Configuration Tool.

The available updates are displayed.
2. Click the "Add update" button and select the "Add TIA Automation Software Update Server"

check box in the dialog that appears.
3. In the dialog "Add update from TIA Automation Software Update Server", select the required

updates (software and support packages) and click "Add".
If updates are already located on the corporate server, these are grayed out. You cannot load
them again. During the download process, the status and the remaining time is displayed in
the dialog.

Canceling the download process
To cancel the process, follow these steps:
1. Click "Cancel download".
2. Click "Yes" to confirm the dialog that appears.

The download of the update is cancelled and it is deleted from the list.

Deleting updates from the corporate server
To delete updates, follow these steps:

Installation
1.12 Installing updates and support packages

System Manual, 11/2022 115

Select the required updates and click "Remove".
• If an update only belongs to one project/one production line, confirm the dialog with "Yes".

The selected update is removed from the list and deleted from the file system.
• If an update belongs to multiple projects/production lines, the following applies:

– The remove update dialog does not appear.
– The selected update is only removed from the current project list and not deleted from the

file system.
 To delete updates from the file system, all instances of the updates must be deleted. To do
this, follow these steps:
– Open the existing project/global production line from the "Project" menu.
– Select the updates you want and click "Remove".
– Confirm the dialog that appeared when deleting the last instance with "Yes".

Server options
In the dialog "TIA Automation Software Update Server", click "Settings" to determine the
following:
1. Under "Server path", specify the folder in which the downloads are to be saved. You can select

either a local drive or a network drive.
Note
When you work directly on the server, the target directory is the same as the provision
directory on the server. All changes are applied directly. This procedure is not recommended,
as conflicts can occur with active downloads.
We recommend that you work on another computer; the target directory can be any
directory. The content of this directory must then still be copied to the provision directory.
Here, also, make sure that no conflicts occur with active downloads.

2. Select the check box "Always run server in background (icon is shown in the taskbar)", if the
server is to always run in the background.

3. Confirm your entries with "OK".

See also
Properties and advantage of a corporate server (Page 94)
Configuring a corporate server for updates (Page 95)

Installation
1.12 Installing updates and support packages

116 System Manual, 11/2022

1.13 Installing support packages automatically

1.13.1 Installing support packages automatically

Introduction
As of V15.1, you can use the Support Package Installer to install or upgrade all support packages
automatically via the command line; these include HSPs (hardware support packages) that are
compatible with the installed version of the TIA Portal (e.g. isp.15_1).

Requirement
• Hardware and software of the programming device or PC meet the system requirements.
• You have administrator privileges on your computer.
• All running programs have been closed.

Procedure
To start the installation with the desired options directly via the command line, proceed as
follows:
1. Open the Windows command prompt with "Start > Run > cmd".
2. Switch to the directory that contains the

"Siemens.Automation.SupportPackageInstaller.exe" file. This is the installation directory of
your installed TIA Portal.

3. In the command prompt, enter the following command:
%Installation directory% > Siemens.Automation.SupportPackageInstaller.exe <Support
Package(HSP)-storage directory> [-l <Name of log file>] [-warnaserror]

<Support Package-storage_directory>
Mandatory directory containing the support package files (*.isp). This can be either a local
folder or a Remote Share.
-l <Storage location of log file>
This parameter is optional and specifies the path to the log file. If it is not set, the log file is
created in the binary directory. However, you need to have write permissions in the storage
folder.
-warnaserror
This parameter is optional and indicates that every message that would usually have been
reported as a warning will be reported as an error instead. If a HSP does not meet the
necessary conditions, for example, a corresponding return value/abort value is output to the
command line and the affected HSP is skipped.
-?
This parameter is optional and shows the Help.

Installation
1.13 Installing support packages automatically

System Manual, 11/2022 117

Note
• If the storage directory or the name of the log file contains spaces, you need to place the

name in quotation marks.
• Only support packages located directly in the storage directory are considered;

subdirectories are ignored. This means that the *.isp files must be located directly in the
storage directory.

See also
Return values from the installation process (Page 118)
Log file (Page 119)

1.13.2 Return values from the installation process

Return values from the installation process
The following table shows the return values and their descriptions:

Code Description
0 The installation was successful.
1 The installation was successful and a restart is required.
-1 The installation failed.
-2 The installation failed: The TIA Portal is still running.
-3 The installation failed: Another installation is already running.
-4 The installation failed: You do not have sufficient rights. The

installation requires administrator rights.
-6 The installation failed: Insufficient memory space.
-7 The installation failed: A restart is required before the instal‐

lation can start.

See also
Installing support packages automatically (Page 117)
Log file (Page 119)

Installation
1.13 Installing support packages automatically

118 System Manual, 11/2022

1.13.3 Log file

Contents of the log file
The log file contains detailed information about every installation. If the log file already exists,
it is supplemented. Headers and footers are created for each log file between which you can find
the desired information.
An entry is generated for the following events:
• Support packages that are listed in the storage directory and are available during the

installation but could not be installed due to missing products. The entry in the log file
indicates which products and which versions of these products are missing.

• Support packages that could not be installed successfully.
• Support packages that were installed successfully.
The file name of the HSP including the file extension is logged for each entry.

See also
Installing support packages automatically (Page 117)
Return values from the installation process (Page 118)

Installation
1.13 Installing support packages automatically

System Manual, 11/2022 119

Installation
1.13 Installing support packages automatically

120 System Manual, 11/2022

Read me 2
2.1 Security information (Unified)

Security information
Siemens provides products and solutions with industrial security functions that support secure
operation of plants, systems, machines and networks.
In order to protect plants, systems, machines and networks against cyber threats, it is
necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial
security concept. Siemens’ products and solutions only form one element of such a concept.
Customers are responsible for preventing unauthorized access to their plants, systems,
machines and networks. Such systems, machines and components should only be connected
to an enterprise network or the internet if and to the extent such a connection is necessary,
and only when appropriate security measures (e.g. firewalls and/or network segmentation)
are in place.
You can find more information on the protective measures possible in the area of industrial
security at:
https://www.siemens.com/industrialsecurity
Siemens’ products and solutions undergo continuous development to make them more
secure. Siemens strongly recommends applying product updates as soon as they are
available and always using only the latest product versions. Use of product versions that are
no longer supported, and failure to apply latest updates may increase customer’s exposure to
cyber threats.
To stay informed about product updates, subscribe to the Siemens Industrial Security RSS
Feed under
https://www.siemens.com/cert

Network settings
The following table shows the network ports that are used by WinCC Unified for internal and
external communication. These ports must not be used for any other purpose.
The setup configures the firewall to ensure smooth operation.

WinCC Unified
Name Port number Transport protocol
ILScs Manager 20008 TCP
UMC 20009 TCP
ILPmon Manager 4999 TCP
ILEvent Manager 1235 TCP
ILDist Manager 4777 TCP

System Manual, 11/2022 121

WinCC Unified
ILDataManager 1234

5001
TCP

Node Processes 3103
443
8888

TCP

Graphics Runtime 1339
1345

TCP

License server 1366 TCP
Screen debugger 9222 TCP
Job debugger 9224 TCP
WCCIL Proxy Manager 5678 TCP
Network Discovery (IS) 137 TCP
UMC AttachAgent 4002 TCP
OPC UA Discovery 4840 TCP
RFID 5003 TCP
GraphQL 4000 TCP

Note
Block HTTP port
For security reasons, it is recommended that Port 80 be disabled on the IIS server.
1. Start "Internet Information Services (IIS) Manager" on the Unified PC.
2. Right-click "Default Web Site".
3. Select "Remove" or "Manage Website > Stop".

2.2 Breaking changes

PI options in ODK
ODK does not support PI options in V18.

Scrolling behavior for pop-ups
If you move the visible screen section of a process screen in Runtime and a pop-up window is
visible there, for example a faceplate container, Runtime behaves as follows:

WinCC Unified V17 The pop-up window is moved together with the screen section.
As of WinCC Unified V18 The pop-up window is not moved with it.
Simulation of an HMI device with installed device version V17
in a WinCC project V18

The pop-up window is moved together with the screen section.

Read me
2.2 Breaking changes

122 System Manual, 11/2022

Operation of objects behind a screen window
If a screen window has an empty area and the screen or faceplate displayed in the screen window
has the "transparent" setting as the fill pattern for the background, Runtime behaves as follows:

WinCC Unified V17 Objects that are in the background of the screen window in the
empty area of the screen window are visible. The objects can‐
not be operated by clicking.

As of WinCC Unified V18 The objects can be operated by clicking.
Application example: You use a round menu with a button
next to it. To prevent the rectangular border surrounding the
menu from obscuring the button, make the menu available in
a screen window.

Zoom behavior of screen windows on touch devices
Runtime now supports panning and zooming with a two-finger gesture.

WinCC Unified V17 No panning and zooming with two-finger gestures.
As of WinCC Unified V18 Panning and zooming with two-finger gestures is supported.

Default: Activated
If you want, you can disable this feature by clearing "Format >
Allow zoom" property for the screen window.

Exclusion of "Uncertain - initial value" quality code as trigger
WinCC Unified V17 If a tag is used as a trigger for a script and the tag is used in a

screen, e.g. by an I/O field, the script is executed twice in quick
succession when the screen is loaded:
• When reporting the initial value
• When reporting the process value

As of WinCC Unified V18 Default setting:
QualityCode 0x4C (Quality status: Uncertain, Substatus: Initial
value) is ignored as a tag trigger.
If a tag is used as a trigger for a script and the variable is used
in a screen, e.g. by an I/O field, the script is only executed when
the process value is reported as the screen is loaded.
To enable the quality code as a trigger, proceed as described
below.

Read me
2.2 Breaking changes

System Manual, 11/2022 123

To enable quality code 0xC4 as a trigger in V18, do the following:
1. Open a file browser and navigate to the following folder:

C:\Program Files\Siemens\Automation\WinCCUnified\bin_config
2. Open the following configuration file:

– For scripts in screens: IOWA_GfxComponentConfigurationSrv.xml
– For scheduled tasks: IOWA_SchedComponentConfiguration.xml

3. Delete the line for <Attribute key>:
<ComponentConfiguration componentKey="GfxTriggerManager"
name="Trigger Manager">
 <AttributeList>
 <Attribute key="IgnoredTagQualities" value="0x4c"/> <!—
0x4c: “Initial Value” quality >
 </AttributeList>
</ComponentConfiguration>

Simulation of Runtime
To use the simulation, you must install WinCC Unified Runtime. If no license is found for Runtime,
start the simulation in demo mode.

2.3 Notes on use

Contents
Information that could not be included in the online help and important information about
product features.

Previously installed versions of WinCC Unified
The installation of Unified V18 is possible on devices for which the following applies:
• No Unified installed yet, or
• WinCC Unified V17 installed

The V17 installation must not have been upgraded from V16.

Special characters in the installation path
Special characters in the installation path may lead to objects not being visible when inserted
into a screen. To see the object, you have to close the screen and open it again.

Copying between WinCC Unified and other devices
Copying data via the clipboard or via the library, for example is only supported between Unified
devices. Copying data between Unified devices and other devices is not supported.

Read me
2.3 Notes on use

124 System Manual, 11/2022

Secure communication
Secure communication via the TLS protocol can only be established via integrated connections.
If you use Inter-Project Engineering (IPE) in your project, i.e. an HMI device is connected
to a device proxy PLC, and an error message about inconsistent certificates appears during
compiling, you need to correct the certificates of the associated PLC in the original project.
Then you have to compile, export and re-import the PLC.

Changing HMI device names or log paths
If you make the following changes in the engineering system for a project that is already loaded
in Runtime, the existing log data is lost when you load the device again:
• You rename the HMI device in the project navigation
• You rename a log folder or change the log path in the Runtime settings
The data from the old log is not available in the new log after reloading.

Access to subnets via TCP/IP Auto
Use the TCP/IP Auto setting on your engineering device (programming device) when you
connect the device to a local subnet. (Control Panel > Set PG/PC interface)
The engineering device then allows additional IP addresses from the subnet to be added to its
network adapter.

Note
This setting cannot be used if you use a router.

No setting is necessary on the devices belonging to the external network.
For stationary operation, use the TCPI/IP setting.

Fault in the connection between the server and the client
If there is a fault in the connection between the server and client, check the settings of the
PG/PC interface. TCP/IP Auto should not be used for the setting "Interface parameter assignment
used". Use fixed IP addresses instead.

Changes at a PLC user data type
After a change to a PLC user data type, the PLC must be compiled to make this change known to
all Unified devices that use this user data type. If compilation of the PLC does not take place, error
messages can occur during the compilation of the HMI devices.

Inter Project Engineering (IPE) in faceplates
Inter Project Engineering is not supported by faceplates. User data types of a device proxy PLC
cannot be interconnected with a faceplate.

Read me
2.3 Notes on use

System Manual, 11/2022 125

Certificate configuration after upgrading a Runtime Collaboration device
The certificate configuration created in V16 cannot be reused in V17. For both upgraded devices
and devices newly introduced in V17, the certification authority (CA) including certificate
configuration must be created again using the WinCC Unified Certificate Manager V17 tool.
1. Create a new certification authority.
2. Add the devices from V16 to the new certification authority.
3. Add new V17 devices.
4. Create the certificates of the devices.
5. Distribute and install the certificate configuration to the devices.

Starting Runtime
Runtime cannot be started via WinCC Runtime Start if the "Load preview" dialog is displayed in
the engineering system.

Status "Partly running"
If it is not possible to start the simulation or the Unified Runtime, open the Runtime Manager. If
the status of the project is displayed as "partly running", check
• whether the user currently logged on in Runtime has sufficient rights. Is the user entered in

the following Windows user groups:
PLCSimUsers
RTIL Tracing Users
Siemens TIA Engineer
SIMATIC HMI
SIMATIC HMI VIEWER

• whether the computer name is not longer than 15 characters.
• whether "OPC UA" is activated in the Runtime settings and a certificate exists.
• whether "Runtime Collaboration" is enabled in the Runtime settings of a Unified Panel and a

certificate is available.

Simulation with S7-PLCSIM
Always start the simulation in WinCC and then S7-PLCSIM.

WinCC Unified Tag Simulator
The WinCC Unified Tag Simulator is not part of WinCC Unified V18.

Process control
At this time, no archive values can be deleted with the "Delete archive value" button.

Read me
2.3 Notes on use

126 System Manual, 11/2022

Dynamic SVG types
If you manually assign a type version to a dynamic SVG type or rename the type, a delta
download is no longer possible.

Encryption with TLS
Always use the most current version of TLS. Disable the older version.
The use of older versions (TLS 1.0 and 1.1) is at your own risk.

Assigning text lists and graphics lists for reports
It is not possible to read in values from texts lists and graphics lists, neither in the add-in nor
when generating the report.

Page numbering in audit
Because of a problem with the page numbering, the system functions "ReadElectronicRecord"
and "ExportElectronicRecordAsCSV" only deliver the first 1000 electronic data records on the
provided filter.

GraphQL
The GraphQL interface only supports Unified PC in V18.

2.4 Screens and screen objects

Contents
Information that could not be included in the online help and important information about
product features.

Screen objects for Unified Comfort Panel
These following objects are supported in WinCC only for Unified PC.
• Plant overview
• Process control
If you have configured the plant overview or the process control on a Unified Comfort Panel,
you must delete these objects before the compilation.

Read me
2.4 Screens and screen objects

System Manual, 11/2022 127

Adaptations to screens and screen objects
The settings that you define under "Settings > Visualization" in the "Resize screen" area have no
effect on the HMI devices:
• SIMATIC Unified PC
• SIMATIC Unified Comfort Panel

Trend control
In a trend control with several configured trend areas, the buttons "First data record" and "Last
data record" always act only on the last trend area that was configured. In other trend areas, you
can use the "Select time range" button to navigate to the first or last data record.
If you have to navigate to the first or last data record very frequently in all configured trend areas,
it is advisable to configure the trend area in several trend controls.

Process control
At this time, no archive values can be deleted with the "Delete archive value" button.

System diagnostics
The "System diagnostics display" control supports the S7-1500 as of firmware version 2.0. The
prerequisite is that the "Central alarm management in the PLC" setting is activated at the PLC.
If you configure HMI connections to more than 50 PLCs for the control, this can lead to an
overload in Runtime. As a result, HMI connections can no longer be established.

Process diagnostics
• You require the WinCC Unified ProDiag license to use the "Process diagnostics" control.
• The control supports S7 GRAPH instance data blocks as of version 6.0.
• The button for activating/deactivating the criteria analysis is reserved for future versions.
• With the following buttons you navigate to the previous or next sequence of the displayed S7

GRAPH block, not as described in the user help to the previous or next network:

Clock
The "Clock" object does not have a property that sets the design of the clock as a digital display
or as an analog display. When using the light or dark style, the digital display is used if the clock is
configured smaller than 100 x 100 pixels.

Read me
2.4 Screens and screen objects

128 System Manual, 11/2022

SVG graphics
SVG graphics and dynamic SVG graphics support the SVG 1.2 Tiny standard. The use of SVG
graphics that include the elements or commands according to the SVG 2.0 standard can lead to
unexpected behavior.
The file names of SVG graphics must not include German umlauts or Chinese characters.

No embedding of session-local tags in dynamic information
Alarms and screens can contain texts in with dynamic information is embedded. This dynamic
information is read from alarm parameters, text lists or tags.
Examples of texts with dynamic information: Alarm texts, text list entries, the "Text" property of
screen elements such as buttons
Session local variables are not supported as a source of such dynamic information.

Faceplates: Passing interface properties of the "Resource list" data type to pop-ups
When you call pop-up windows outside a faceplate type, you pass the interface properties by
script. For interface properties of the "Resource List" data type, text and graphic lists can be
passed.
To specify graphic lists, use the prefix "GraphicListCollection", for example,
"GraphicListCollection.Graphic_List_1".
To specify text lists, use "@Default" as a prefix, e.g. "@Default.Text_list_1".

Faceplates: Passing interface properties of the "Multilingual text" data type to pop-ups
When you call pop-up windows outside a faceplate type, you pass the interface properties by
script. Interface properties of the "Multilingual text" data type cannot be passed.
In this case, use the interface property of the "configuration string" data type. The
configuration string contains the different values of the text in the respective language
separated by a semicolon. Use the script to read the active Runtime language and then use
the "Case" command to make a case distinction depending on the active Runtime language.

Faceplates: "Cleared" event
The "Cleared" event occurs when the faceplate is closed. The relevant faceplate container is
dissolved.
Therefore, no interface tags or interface properties can be passed on the "Cleared" event.

2.5 Alarms and alarm view

Contents
Information that could not be included in the online help and important information about
product features.

Read me
2.5 Alarms and alarm view

System Manual, 11/2022 129

Alarms and alarm view
Controller alarms
If the connection between HMI device and controller is interrupted, only the last occurring
controller message can be sent and displayed after restarting the runtime software. When
the connection is re-established, all controller messages are transmitted correctly again.

Alarm block "Duration"
Alarm block "Duration" is not supported in V17.

2.6 "Smoothing" property for logging tags

Contents
Information that could not be included in the online help and important information about
product features.

Smoothing (Unified Comfort Panel)
The following applies to logging tags and PLC tags: If the value "No smoothing" is set in the
Logging tag properties under "Smoothing > Mode", the values are nevertheless smoothed.
Example:
A logging tag changes its value as follows: "100" > "101" > "101".
Even if "No smoothing" is set in the properties of the tag, the values [100, 101] are stored in
the log.

2.7 System functions and scripts

Contents
Information that could not be included in the online help and important information about
product features.

JavaScript arguments of specific object events
The following applies to the rectangle, gauge, button and circle objects: If you configure a
JavaScript to an event, only the "Item" argument is passed correctly to the script. You can process
the event in the script, but not the other arguments.

Read me
2.7 System functions and scripts

130 System Manual, 11/2022

"StartProgram" in the Scheduler - Unified Comfort Panel
Calling up a program via the "StartProgram" system function in the Scheduler is not supported by
Unified Comfort Panel. Instead, use a "Tag" trigger in the Scheduler to initiate the system
function.

"Press key" and "Release key" events - Unified Comfort Panel
The events "Press key" and "Release key" are not supported on a Unified Comfort Panel.

Methods of the "ProDiag" object
With the "OpenTIAPortal" methods of the "ProDiag" object, TIA Portal can be opened from the
Runtime. Prerequisite for this is that the "Allow start of external processes via Unified Runtime"
setting is activated on the HMI device in SIMATIC Runtime Manager.
The following system functions are reserved for future versions:
• "ResetToConfiguration"
• "OpenPlcCodeViewByFCCall"
• "OpenProDiagDetailsByCall"
With the parameter "screenltemPath" of the " IsJumpableAlarm" method, you transfer the
path of the screen object which is activated when the alarm that is selected in the alarm
display is a ProDiag alarm – not the path of the code viewer as described in the user help.
Example: Transfer the path of a button for which a jump into the PLC code display was
configured. If the selected alarm is a ProDiag alarm, operators jump to the PLC code display in
Runtime by clicking the button.
The system function "OpenViewerGraphByBlock" expects the name of the data block of the
GRAPH function block as second parameter.

ExportParameterSets
The system function "ExportParameterSets" expects as third parameter the path plus file name
of the file to which the ParameterSets are exported.

Uniform display of custom web controls
To make the display of a Custom Web Control independent of the browser you are using, you
must use a stylesheet when programming the Custom Web Control.

2.8 Parameter sets and parameter set display

Contents
Information that could not be included in the online help and important information about
product features.

Read me
2.8 Parameter sets and parameter set display

System Manual, 11/2022 131

Using parameter set display from V16 project
If you have configured a parameter set control in WinCC V16 without updates, open this project
with WinCC V17 and download it to the HMI device, then the numbers of the parameter sets are
not displayed on the HMI device. Proceed as follows to continue using this parameter set control:
1. Create a new project in a new instance of WinCC V16 with installed update.
2. Insert a Unified Comfort Panel or a SIMATIC Unified PC into the project.
3. Copy the devices from the original project into the new project.

Configuring a storage medium for parameter sets
Select the same storage medium that you have configured for tag persistence or alarm logging
under "Properties > Information" for parameter set types. If you specify different storage media,
the "EjectStorageMedium" system function is not available.

2.9 WinCC Unified PC

2.9.1 Notes on the operation of Unified PC

Contents
Information that could not be included in the online help and important information about
product features.

Generic logon error due to browser language settings
If a language that is not supported by Unified Runtime is set as the browser language, the
"Generic error" occurs during logon.
Follow these steps:
1. Open the browser language settings.
2. Select one of the languages supported by Unified Runtime.
3. Log on in Runtime.

Restoring log segments
The following requirements apply to restoring log segments with SIMATIC Runtime Manager:
• A project that is in the "Running" status is loaded into runtime.
• At least one backup of a tag or alarm log is available for the project.
• If the project was loaded several times, no logs were reset during complete loading in the

"Load preview" dialog.

Read me
2.9 WinCC Unified PC

132 System Manual, 11/2022

TraceViewer
If the user logged on in Runtime belongs to the "RTIL Tracing Users" and "SIMATIC HMI" user
groups, all trace messages are visible in the TraceViewer, otherwise only the trace messages
from SIMATIC Runtime Manager.

2.9.2 Internet browsers for WinCC Unified PC
Ensure you have the latest operating system and browser version if you want to access Runtime
Unified with this device.
WinCC Unified displays the runtime elements in HTML5. The browser used also has to
support this standard. Since the browsers interpret HTML5 differently, it is possible that
objects are displayed differently depending on the browser and the browser version used. For
example, browsers sometimes display fonts differently.
Compatibility tests were performed for the following browsers. The focus of the compatibility
tests was on the browsers marked with *:

Operating system Browser
Microsoft Windows • Google Chrome*

• Microsoft Edge
• Mozilla Firefox, Mozilla Firefox ESR

Android • Google Chrome*
• Firefox
• Edge

iOS, Mac • Safari*
• Google Chrome
• Firefox
• Edge

Browser recommendation
In view of the performance and support of the Runtime standard elements, Google Chrome
has proven to be the preferred browser. Its memory requirements are slightly higher than
those of the other browsers.

Note
Operating system and browser version
For Runtime operation via Android or iOS, always use the latest operating system.
Use the latest browser version.

Note
Performance differences in different versions of individual browsers
The browser versions can differ from each other, which can result in different behavior regarding
the memory requirements and speed.

Read me
2.9 WinCC Unified PC

System Manual, 11/2022 133

Note
Suitability for continuous operation
MS Edge and Mozilla Firefox have proven to be problematic in continuous operation.

Known browser problems
The following restrictions apply to the following browsers:

Internet browser Limitation
MS Edge • High memory capacity utilization in continuous op‐

eration
Mozilla Firefox • High memory capacity utilization in continuous op‐

eration
Mozilla Firefox ESR • Support of touch gestures for touch panels as of Fire‐

fox ESR V59
Google Chrome • High memory capacity utilization in uninterrupted

duty depending on the version.
• On Android: Grid lines with a line width ≤1 are not

displayed correctly. This is due to the browser's own
line thickness representation. As a solution, it is help‐
ful to use a line width ≥1.

• No correct representation of elements that use an
SVG graphic as background graphic scaled in the En‐
gineering System.

Restrictions to the various functions can also occur, such as the availability of the before and
after buttons in the controls.

Current information on browser problems
You can find up-to-date information on display problems in browsers at the Siemens Online
Support under the entry ID 109757952.

2.9.3 Activating and testing ASIA licenses

Overview
The license keys for WinCC Runtime Unified are available on the "License Key USB Hardlock"
license storage medium.
The licensed ASIA version is executable in parallel to the European version by switching to
Unicode.

Read me
2.9 WinCC Unified PC

134 System Manual, 11/2022

The "License Key USB Hardlock" (dongle) checks the following conditions:
• WinCC GUI language
• Runtime language
• Asian characters are used in the WinCC project.
• Operating system settings

Note
It is not allowed to run WinCC in process mode without a valid license.
Delete configuration languages
If you do not have a license for an ASIA version and delete the Asian configuration languages, the
WinCC project continues to run in demo mode.
To disable Demo mode, close the WinCC project. When reopened it is recognized that the WinCC
project no longer requires licenses for an ASIA version.

Testing the validity of the licenses
If you start a correctly licensed WinCC version without the connected dongle, an error message
appears. The same error message appears after a few minutes if you disconnect the dongle from
the computer with a correctly licensed WinCC version.
If this error message does not appear, a non-licensed WinCC version is installed. No right of
usage for WinCC is available in this case. Uninstall this WinCC version and purchase a legally
licensed version of WinCC.
If necessary, contact WinCC Support and provide the serial number of your software version:
• http://www.automation.siemens.com/partner/index.asp
You can find the serial number on the "Certificate of License" (CoL).

Working with the "License Key USB Hardlock"
Please note the following:
• Do not edit data on the "License Key USB Hardlock".

The actions not allowed include:
– Rename data
– Delete data
– Copy data to the "License Key USB Hardlock"

• Do not format the "License Key USB Hardlock".
• Do not remove the "License Key USB Hardlock" from the PC while WinCC is running.

Read me
2.9 WinCC Unified PC

System Manual, 11/2022 135

NOTICE
Do not remove the "License Key USB Hardlock" dongle
If you remove the dongle from the computer, an error message is generated and WinCC
switches to Demo mode.
If you re-connect the dongle to the computer, the error message disappears and Demo mode
is disabled. WinCC works once again in licensed mode.

2.10 Notes on the operation of Unified Comfort Panel

Contents
Information that could not be included in the online help and important information about
product features.

Printing on a Unified Comfort Panel
With the objects "Trend control", "Function trend control", "Value table", Unified Comfort Panel
supports printing via the button in the toolbar. The data to be printed are sent to the specified
standard printer in the Control Panel. The last 10 print orders are saved as a graphic on the panel
in the directory /home/industrial/ControlScreenshot.

Changes to the settings of the SOC1 interface (X1)
The following changes to the settings of the SOC1 interface (X1) require a manual restart of the
Panel:
• Settings related to the mode and speed of the SOC1 ports
• Media redundancy settings
• Deactivating the forwarding of DCP broadcasts
• Deactivating the sending of LLDP

Screen objects for Unified Comfort Panel
The following screen objects are not supported by Unified Comfort Panel:
• Process control

Hotkeys for buttons
The "Hotkeys” functionality is not supported on the Unified Comfort Panel for the "Object" button
and the buttons in other objects.

Read me
2.10 Notes on the operation of Unified Comfort Panel

136 System Manual, 11/2022

Objects with buttons
Some objects such as the trend control or the parameter set control have buttons for which you
can configure access rights. To operate access-protected buttons, a user with the required
authorization must log on via the Control Panel or a configured operating object.

"Press key" and "Release key" events
"Press key" and "Release key" events are not supported on a Unified Comfort Panel.

Alarm control - Displaying logged alarms
Logged alarms are not displayed after starting the Runtime software if the static value
"Logged alarms updated" is configured in the properties of the alarm control under "General >
Alarm source". To make logged alarms visible in the alarm control, click the "Show logged
alarms" or "Show and update logged alarms" button in the alarm control.
The "Update and display logged alarms" list shows a maximum of 100 alarms.

"StopRuntime" system function
The StopRuntime system function only works if encrypted transfer has been configured in the
Runtime settings of the Panel.

System function "StartProgram" in the Scheduler
Calling up a program via the "StartProgram" system function in the Scheduler is not supported by
Unified Comfort Panel. Instead, use a "Tags" trigger in the Scheduler to initiate the system
function.

Access to MS SQL databases and SQLite databases
You can access MS SQL databases and SQLite databases via JavaScript functions from Unified
Comfort Panel. Note that the resource utilization is directly proportional to the number of the
requests to the database and the size of the data to be read or written. This means that the
accesses to databases also affect the performance in Runtime. In order to not impair the
operation as a visualization system the possibility to access databases should be used prudently.
From a Unified Comfort Panel you can only access databases which support the driver
"Microsoft ODBC Driver for SQL Server" in Version 17.9.
These include:
• Azure SQL Database
• Azure Synapse Analytics
• Azure SQL Managed Instance
• SQL Server 2019
• SQL Server 2017
• SQL Server 2016

Read me
2.10 Notes on the operation of Unified Comfort Panel

System Manual, 11/2022 137

• SQL Server 2014
• SQL Server 2012

Date/time values
Column sorting of date/time values in the alarm control
In the engineering system, you can configure different output formats for displaying date/
time values. The following applies to the column sorting of these values in an alarm control
on the Unified Comfort Panel:
The following output formats do not support sorting in columns:
• {D,@EEE, MMM dd, `yy}
• {D,medium}
• {D,long}
• {D}
The following output formats support sorting in columns only in English:
• {D,@dd. MMMM yyyy}
• {D,@dd. MMM}
• {D, @MMM dd, yyyy}
• {D, @MMMM dd}
• {D} {T}
Display of date/time values in the alarm and trend control
After the first download of a project, date/time values in alarm and trend controls are shown
in English time format by default. If your prioritized language is not English, then switch
the language once to English and then back to your prioritized language. After that, the
date/time values are shown in alarm and trend controls in your prioritized language.

Gauge output format
If you specify the value {H} (Hexadecimal) in the Inspector window of a gauge under "Properties
> General > Scale > Output format", negative values in the gauge will not be displayed correctly.
If you want to output negative values via a gauge, use {F}, {N} or {I} as output format.

Runtime Collaboration - function trend control
If a function trend control is configured in a screen to display logged data and you access this
screen with Runtime Collaboration, no existing logged data is displayed in the trend control. The
first value displayed is the value that will be written to the log after the screen is opened.

Read me
2.10 Notes on the operation of Unified Comfort Panel

138 System Manual, 11/2022

User management
In the engineering system you can configure a maximum session duration for a role as well as
for a user. If these values are different, only the smaller of the two values is transferred to the
Panel during loading.

Differences between simulation and Unified Comfort Panel
There are differences in the simulation regarding the following screen objects as compared to
the Unified Comfort Panel Runtime:
• Alarm control:

– Filter options
• Faceplates:

– Scaling in JavaScript method "OpenFaceplateInPopup"
– Arrangement of the faceplate containers for JavaScript method "OpenFaceplateInPopup"

• Screen window:
– Scaling with system function "OpenScreenInPopup"

• I/O field: Default display for Word and DWord data types
• Parameter set display: Default display for Word data type
• Browser:

– The display of pages of the S7 WebServer is not possible in the simulation.

Loading a project
When you have made changes to the Runtime settings in the User management area in
Engineering, you must ensure before loading that the page "Security > UMAC settings" is closed
in the Control Panel of the Unified Panel. Otherwise, the changes may not be applied after
loading.

Simulation in connection with SD-X51
The simulation of tag retentivity and alarm logging in connection with the "SD-X51" storage
medium is not supported.

2.11 Remote access to a Unified device

Contents
Information that could not be included in the online help and important information about
product features.

Read me
2.11 Remote access to a Unified device

System Manual, 11/2022 139

Synchronize client values with server time
By default, the following controls display values with client time:
• Alarm control
• Trend companion
• Trend control
• f(x) trend control
• Process control
To synchronize the time displayed on the client with the server, proceed as follows:
• iOS devices:

To prevent an iOS device from synchronizing with time.apple.com, create a profile file and
upload it to the device.
Profile files enable time synchronization within a secure corporate network.

• Android devices:
Use a third-party app for time synchronization.

Access to a Unified device
Ensure you have the latest operating system and browser version if you want to access Runtime
Unified with this device.
WinCC Unified displays the runtime elements in HTML5. The browser used also has to
support this standard. Since the browsers interpret HTML5 differently, it is possible that
objects are displayed differently depending on the browser and the browser version used.
Compatibility tests were performed for the following browsers. The focus of the compatibility
tests was on the browsers marked with *:

Operating system Browser
Microsoft Windows • Google Chrome*

• Microsoft Edge
• Mozilla Firefox, Mozilla Firefox ESR

Android • Google Chrome*
• Firefox
• Edge

iOS, Mac • Safari*
• Google Chrome
• Firefox
• Edge

Read me
2.11 Remote access to a Unified device

140 System Manual, 11/2022

With respect to the performance and support of the standard Runtime elements, Google
Chrome has proven to be the preferred browser. Its memory requirements are slightly higher
than those of the other browsers.

Note
Performance differences in different versions of individual browsers
The browser versions can differ from each other, which can result in different behavior regarding
the memory requirements and speed.

Note
Suitability for continuous operation
MS Edge and Mozilla Firefox have proven to be problematic in continuous operation.

Unified Collaboration
Unified Collaboration is only permitted between devices with the same device version (starting
from V16).
If Unified Collaboration uses local user management and the Collaboration partners are
configured in different projects, it is possible to create users with the same name but
different function rights. If one of these users logs on to a device in Runtime, the user
has the function rights configured for this device as well as the function rights configured
for the Collaboration partner. If you use several projects, you should configure the local user
management identically in all projects.

2.12 Working with plant objects and plant views

Contents
Information that could not be included in the online help and important information about
product features.

Introduction
You have the possibility to upgrade the project to V17 when opening your V16 project with a
system configuration. The configured Runtime version of the HMI devices must be changed
separately to V17.

Updating blocks
If blocks from a global or from a project library are used in the project, do the following:
1. Open the plant object type that uses a block from a library.
2. Delete the interconnection of the PLC tag.
3. Open the "Library" task card.

Read me
2.12 Working with plant objects and plant views

System Manual, 11/2022 141

4. In the library, open the shortcut menu of the block used.
5. Click on "Project" under "Update types".

The "Update types in the project" dialog opens.
6. Select the option "Force update (types including their dependent types are updated

regardless of their version number)".
All other options are already selected by default.

7. Click "OK".
8. Compile the PLC.
9. Interconnect the PLC tag for the plant object type.
10.Compile and download your project.

Note
Alternatively, delete all plant objects (instances) from the plant hierarchy, perform the update
and create all plant objects (instances) again in the plant hierarchy. If you have linked a screen
to the plant object in the "Visualization" tab, deleting the plant object not only deletes the link,
but also entire screen. Create a copy of the screen and link the screen to the new plant object
after updating the blocks.

2.13 Audit

Contents
Information that could not be included in the online help and important information about
product features.

Restore database segments in Runtime
To analyze the logged and deferred data, as an HMI Administrator of an HMI device, you can
restore backed up audit database segments in Runtime. After the analysis, these segments can
be discarded again to empty the memory space.

Read me
2.13 Audit

142 System Manual, 11/2022

WinCC Unified 3
3.1 Introduction

WinCC Unified helps you meet the challenges of digitization in machine and plant construction.
Based on native web technologies such as HTML5, SVG and JavaScript, you can work
independently of devices and environment.
An integrated system - from Panel to PC
For you, this means being able to efficiently configure a large number of mobile end devices
on one engineering platform, such as Unified Comfort Panels, Unified PCs, Control Centers or
applications in View of Things. In this way, WinCC Unified combines the advantages of strong
products like WinCC Advanced, WinCC Professional and WinCC Comfort in one software and
offers you maximum flexibility, scalability and efficiency.
Overview of advantages of the uniform engineering system in the TIA Portal:
• Reuse of components on all WinCC Unified platforms
• End-to-end usability of UI controls
• Uncomplicated device replacement between all devices that work with WinCC Unified

From the panel on the machine to the complex SCADA solution: WinCC Unified offers various
options for industry-specific requirements and can be extended by user-specific applications
through its open interfaces.

System Manual, 11/2022 143

What makes WinCC Unified so special?
WinCC Unified combines SIMATIC HMI and SCADA in one product. This means WinCC Unified
users can configure runtimes for device types across classes with one engineering system. An
engineering system that is installed on a Unified PC, for example, can be used to configure
runtimes for Unified Comfort Panels and Unified PCs. WinCC Unified therefore offers tremendous
scalability and flexibility in the use of device classes within a system or via remote access for
distributed systems.

3.2 Additional documentation
Siemens Industry Online Support will provide you with the latest documentation, which will
help you with the initial working with and migrating to WinCC Unified.

Getting Started
A guideline to getting started quickly with WinCC Unified is available online: Getting Started
(https://support.industry.siemens.com/cs/us/en/view/109801175).

WinCC Unified
3.2 Additional documentation

144 System Manual, 11/2022

https://support.industry.siemens.com/cs/us/en/view/109801175

Guideline for migrating to WinCC Unified
You can get support for migrating to WinCC Unified here: Guideline for migrating from Comfort
Panel to Unified Comfort Panel and from WinCC Runtime Advanced to WinCC Unified PC Runtime
(https://support.industry.siemens.com/cs/us/en/view/109768002).
Familiarize yourself with the differences between Comfort Panel/Runtime Advanced and
Unified Comfort Panel/Unified PC Runtime. In addition, you will learn how you can migrate
the essential elements (for example, pop-ups, slide-ins) to WinCC Unified.

Data2Unified
Continue to use the project content you have created when you switch to SIMATIC WinCC
Unified and save engineering time with the "Data2Unified" add-in.
Information and download are available from Industry Online Support: Data2Unified (https://
support.industry.siemens.com/cs/us/en/view/109770510)
The "Data2Unified" add-in is being continuously developed further (see the last change), so
that even more TIA Portal project elements will be gradually supported.
The latest version of the add-in is provided for downloading in this contribution.

3.3 Creating a user interface efficiently

Screen editor
With the Unified screen editor, you can create user interfaces for various applications with a
uniform structure. You will receive support particularly in the following areas:
• Operation and display in the screen editor, e.g.:

– Labeling of screen objects for direct editing
– Display of catch lines
– Drawing of lines and polygons

• Drag-and-drop, e.g.:
– An IO field is created during drag-and-drop of tags into the screen editor.
– A parameter set control view is created during drag-and-drop of parameter set types.

• Changing properties of screen objects:
– If multiple screen objects are selected, you can edit the properties at the same time.

Information on configuring screens can be found under "Basics of screens (Page 259)" and
the following sections.
• Configuring screen objects (Page 361)
• Configuring text lists and graphics lists (Page 446)
• Configuring dynamization (Page 462)

WinCC Unified
3.3 Creating a user interface efficiently

System Manual, 11/2022 145

https://support.industry.siemens.com/cs/us/en/view/109768002
https://support.industry.siemens.com/cs/us/en/view/109770510
https://support.industry.siemens.com/cs/us/en/view/109770510

Faceplates
Unified Faceplates are the new generation of HMI picture modules. Faceplates are user-defined
groups of display and operating objects that can be reused as needed and thus reduce the
configuration effort.
Faceplates are saved in a library and are managed there. The advantages of the type-instance
concept are fully used. All functions that you are already familiar with from the library, such
as updating of types, are supported.
You can create different versions of a faceplate type for use in screens or as a pop-up. Flexibly
replace faceplate versions that are already in use with updated versions.
To connect the tags and interface properties defined in the faceplate individually to the
process for each instance, use the different faceplate interfaces. For interface properties, use
the pre-defined data types or the interface properties of the type "Configuration string" to
assign the properties of each data type to a faceplate or the screen object in it using a script.
You can find more information under "Configuring faceplates (Page 524)".

Styles
WinCC Unified provides you with styles during the configuration to enable a user-friendly and
flexible design of your runtime.
You can use these styles to easily customize the appearance of the runtime for each HMI
device. While runtime is running, the style, for example, switches to a dark mode during a
shift change.
You can find more information under "Using styles (Page 261)".

Custom web controls
Custom web controls are independent web pages with an interface to Unified Runtime. Custom
web controls offer you the option of adding your own elements to the visualization elements
provided. Custom web controls thus extend usability and functionality to achieve an optimal
visualization result.
Custom web controls are run on the web client and hosted in Runtime Unified. A custom web
control can be displayed as an independent web page in any web browser and on any mobile
end device.
You can find more information under "Custom web controls (Page 7790)" and in the following
sections.

WinCC Unified
3.3 Creating a user interface efficiently

146 System Manual, 11/2022

Dynamic SVG graphics
You can use dynamic SVG graphics in WinCC Unified. The Siemens Graphic Library offers a large
selection of dynamic SVG graphics in the "Dynamic widgets". You use these graphics to design
screens for your runtime that you can then configure as needed.

You can find more information under "Managing dynamic SVG graphics (Page 358)".

3.4 Controlling with parameter sets
A parameter set represents a recipe. Parameter sets are used for higher-level control.
Parameter sets are based on parameter set types which, in turn, are based on user data
types. In this way you can achieve a high degree of reuse. Use the control "Parameter set
control" to control the parameter set.

WinCC Unified
3.4 Controlling with parameter sets

System Manual, 11/2022 147

Parameter set types support the nesting of complex data types. You can, for example, assign
another user data type to a user-data-type element as the data type.
You can find more information under "Configuring parameter sets (Page 863)".

3.5 Using distributed systems
WinCC Unified offers remote access options.
Unified Collaboration allows the cross-device display and operation of individual screens.
With the web client, runtime access is possible from any device.

WinCC Unified
3.5 Using distributed systems

148 System Manual, 11/2022

Unified Collaboration
With Unified Collaboration you can avoid redundant configuring. You have the option to create
an overview with content from different Unified HMI devices. To this end, you access screens of a
different HMI device across devices. You can display and operate screens of a different HMI
device. Screen windows and alarms are supported here.

An HMI device that participates in collaboration is referred to as a collaboration device.
Unified Collaboration is supported by Unified PC and Unified Comfort Panel and allows cross-
project access.
You can find more information under "Unified Collaboration (Page 7557)".

WinCC Unified
3.5 Using distributed systems

System Manual, 11/2022 149

Web client
You use the web client to access a Unified PC or a Unified Comfort Panel via remote access. Access
is possible from any device. The web client is used as standard remote access for Unified PC. The
clients are independent of one another and independent of the locally displayed runtime. This
means the runtime can be operated by multiple users simultaneously. To prevent overlaps and
undesirable effects, we distinguish between synchronous and asynchronous functions.

You can find more information under "Web Client (Page 7589)".

WinCC Unified
3.5 Using distributed systems

150 System Manual, 11/2022

3.6 Dynamization and automation through scripts
WinCC Unified provides a modern scripting environment that you can use to automate system
components, such as the graphical runtime system. The scripting environment maps individual
elements of the system components, such as the screens of the graphical runtime system, via
the object model. The object model supports you in solving different tasks through runtime
scripting and in controlling processes.

The scripting environment offers:
• Efficiency and the latest technologies

The scripting environment supports Unicode and uses JavaScript (JS) as the scripting
language. The scripting environment is object-oriented and offers asynchronous operations
for high-performance and secure script execution.

• Support of mass data
The scripting environment is optimized for the processing of mass data, for example, writing
1000 tags in one pass. Special script objects are available to this purpose that handle
numerous HMI objects of the same type. These script objects execute operations on all the
HMI objects simultaneously instead of processing each HMI object individually.

• Input support:
– Syntax highlighting
– Snippets (code templates)
– Referencing HMI objects
– Tooltips
– Autocomplete
– Error marking and correction
– System functions (Page 909)

You can find more information under "Introduction to runtime scripting (Page 969)" and in
the following sections.

WinCC Unified
3.6 Dynamization and automation through scripts

System Manual, 11/2022 151

Here you will find Notes on creating scripts (Page 972), a description of the Script editor
(Page 981) and examples of scripts (Page 989).
In the SiePortal, your can find support for creating scripts in JavaScript: Tips and tricks for
creating scripts (https://support.industry.siemens.com/cs/ww/en/view/109758536).

3.7 Central user management
The user management of WinCC Unified allows for the plant-wide, central management of users
including optional connection of Microsoft Active Directories. The user management forms the
basis for the efficient and integrated management of personalized access rights in a plant.
Security risks are significantly reduced. The person-specific assignment of roles and rights
minimizes the maintenance effort. At the same time, a high level of transparency is achieved.

The User Management Component (UMC) option allows for the setup of a project-wide,
central user management.
The user management of WinCC Unified offers:
• Central, cross-project management of user groups and users in a system.
• Import of user groups and users from Microsoft Active Directory.
• Failsafe performance thanks to redundant design of a User Management Control domain

(UMC domain).
• Load distribution thanks to multiple UMC stations in one UMC domain.
You can find more information under "User management in the TIA Portal (Page 6887)" and in
the following sections.

WinCC Unified
3.7 Central user management

152 System Manual, 11/2022

https://support.industry.siemens.com/cs/ww/en/view/109758536

3.8 Connectivity
WinCC Unified offers you the highest level of integration of SIMATIC PLCs. The TIA Portal of WinCC
Unified offers you an easy connection of
• Up to 128 PLCs for Unified PC systems

If more than 10 connections are used, SIMATIC NET PC software must be installed.
• Up to 16 PLCs for Unified Comfort Panel systems
• S7-1500 Software Controller
• S7-1200/1500
• S7-300/400
• Support of native 3rd party products via

– Modbus TCP
– Allen-Bradley EtherNet/IP
– Mitsubishi
– Omron
– Support of additional products via the Channel Support Package

You can find more information under "Basics of communication (Page 6973)" and in the
following sections.

OPC UA
OPC UA is a standardized manufacturer-independent software interface for data exchange in
automation engineering and is the technology succeeding OPC. OPC UA is platform-
independent and supports different protocols as communication medium.

WinCC Unified PC

as OPC UA

- DA Server

- DA Client

- A&C Server

HMI Unified Comfort Panel

as OPC UA

- DA Server

- DA Client

- A&C Server

3rd Party PLC

as OPC UA

- DA Server

- DA Client

3rd Party PLC

as

OPC UA DA Server

SIMATIC S7 PLC

as

OPC UA DA Server

With WinCC Unified you can use OPC UA as connection standard for WinCC Unified PC and
Unified Comfort Panels.

WinCC Unified
3.8 Connectivity

System Manual, 11/2022 153

You can use WinCC Unified PCs and Unified Comfort Panels as needed:
• OPC UA DA server
• OPC UA DA client
• OPC UA A&C server
The WinCC Unified security concept guarantees your data security through secure OT/IT
connections via OPC UA for connections to 3rd party applications.
You can find more information under "WinCC Unified OPC UA server (Page 7025)" and "WinCC
Unified OPC UA client (Page 7044)".

3.9 Logging and traceability
Traceability and therefore the documentation of production data is becoming increasingly
important in many sectors such as the pharmaceutical industry, the food and beverage industry,
and the related mechanical engineering industry.

Logging of production data in electronic form offers many advantages compared to paper
documents, such as simple acquisition and logging of data. WinCC Unified supports the two
database types Microsoft SQL and SQLite.
However, it is also important to ensure that data cannot be falsified and that it can be read at
any time.
Therefore, sector-specific and cross-industry standards have been developed for the
electronic documentation of production data. The most important set of regulations is the
FDA Guideline 21 CFR Part 11 for electronic data records and electronic signatures issued by
the FDA, the US Food and Drug Administration.
In addition, different EU regulations apply, such as EU 178/2002, depending on the
industry. Requirements for production systems in these industries have been developed
based on 21 CFR Part 11 and the corresponding interpretation to comply with GMP (Good
Manufacturing Practice). They are also required for other industries.

WinCC Unified
3.9 Logging and traceability

154 System Manual, 11/2022

With WinCC Unified, you can configure projects in compliance with GMP and thus ensure
traceability and data integrity.
WinCC Unified provides you with the optimal logging solution for each of your applications.
You can start your application with file-based logging and extend it by a database option.
File-based logging is especially suited for small and medium applications.
You can find more information under "Log basics (Page 837)" and in the following sections.
Detailed descriptions can be found at "Logging alarms (Page 769)" and "Logging tags
(Page 653)".

3.10 Configuring plant hierarchies

Plant Model
WinCC Unified offers you object-oriented configuration. With the plant model, you can define
reusable plant object types by arranging the associated plant object instances in hierarchical
plant views.

In this way, you can model the technological hierarchy of your machine or unit/plant, for
example, based on user-defined or standardized technology objects.
You create the plant structure from individual objects, each of which represents a component
or a plant unit. Each object is configured in the context of the operator control and
monitoring solution.
In plant object types, you combine all required configuration elements for visualization,
e.g. faceplates, tags, alarms, scripts. Changes to the plant object type automatically affect
all instances. This translates into significant time savings, especially for plants with a high
degree of standardization.
If necessary, you can start object-oriented plant modeling based on the engineering data and
derive the configuration of the HMI devices and automation systems from this.
Break the machine or unit/plant up into reusable technological units and arrange them
hierarchically in a technological plant view according to the plant structure.

WinCC Unified
3.10 Configuring plant hierarchies

System Manual, 11/2022 155

The following options are available to you in technology-oriented and object-oriented
configuration:
• Creating various hierarchical plant views: technological view, building view, independent of

the HMI device that is used.
• Configuration of plant objects and plant object types with data elements for mapping the

actual plant configuration
• Access to plant objects (data elements, HMI alarms, logs, screens, etc.)
• Generation of the screen hierarchy
• Expansion of configured plant objects and types using Plant Intelligence options
You can find more information under "Visualizing plant objects in runtime (Page 7113)" and in
the following sections.

Plant Intelligence options
The Plant Intelligence options supplement the WinCC Unified visualization system with efficient
functions:
• Calendar: For the visualization of structured planning of the production processes.

You can find more information under "Calendar Basics" and in the following sections.
• Performance Insight: For the calculation of individual Key Performance Indicators (KPIs)

according to ISO standard 22400 and comprehensive selection of WinCC controls for their
display and analysis.

You can find more information under "Basics of Performance Insight" and in the following
sections.

WinCC Unified
3.10 Configuring plant hierarchies

156 System Manual, 11/2022

• Line Coordination: Automation of recipe-controlled and batch-controlled production
processes.
You can find more information under "AUTOHOTSPOT" and in the following sections.

• Sequence: Fast and easy change of production processes and parameters without changing
the PLC program.
You can find more information under "AUTOHOTSPOT" and in the following sections.

3.11 Working with libraries

3.11.1 Re-using libraries
The object-oriented HMI concept of WinCC Unified allows you a high degree of reusability of
elements both within and across projects. The new library concept contains the following
elements that you can configure and reuse in your projects as needed:
• HMI Faceplates
• HMI user data types
• HMI styles
• HMI style sheets
• Graphics and dynamic SVG graphics
• Script modules

WinCC Unified
3.11 Working with libraries

System Manual, 11/2022 157

Types and instances
You can create instances from types that you have created in a library and which you manage
and edit there. Use them in your project. The instances are linked to the respective type.

Master copies and copies
In addition, you can access many master copies for cross-project configurations in the global
libraries. You can also yourself create master copies and manage them in the project library or
in a global library that you have yourself created.
From a master copy, you can create an independent copy in the project, which you can edit
independently of the underlying library object.

3.11.2 Basics on libraries

Introduction
Store all objects you need frequently in the libraries. An object that is stored in the library only
has to be configured once. It can then be used repeatedly as often as required. Library objects
extend the number of available screen objects and increase the effectiveness during
configuration through multiple use.
Your WinCC software package is supplied with comprehensive libraries that contain, for
example, "Motor" or "Valve" objects. You can also define library objects yourself.
Libraries are managed in the "Libraries" task card or in the library management. The
following libraries are available:
• Project library
• Global libraries

WinCC Unified
3.11 Working with libraries

158 System Manual, 11/2022

Project library
There is one library for each project. Objects of the project library are stored alongside with the
project data and are available only for the project in which the library was created. If the project
is moved to another PC, any project library created in it is also moved.
To use the library object of the project library in other objects, move or copy the object into a
global library.

Global libraries
A global library is saved independently of the project data in its own file with the extension
".aIxx", whereby "xx" stands for the current WinCC version number.
A project can access several global libraries. A global library may be used concurrently in
several projects.
When a library object is changed by a project, this library will be changed in all projects in
which these libraries are open.

Library objects
A library can contain various WinCC objects.

WinCC Unified
3.11 Working with libraries

System Manual, 11/2022 159

Examples of types:
• HMI Faceplates

If you want to use configurable object groups several times in screens and change them
centrally, create faceplates for them. If you change the properties of a faceplate in the library,
the changes affect all screens and scripts that use this faceplate.

• HMI user data types
• HMI styles
• HMI style sheets
• Graphics and dynamic SVG graphics
• Script modules
Examples of master copies:
• Complete HMI device
• Screen
• Tag
• Parameter set type
• Script

3.11.3 Types and master copies

Introduction
Both the "Project library" and the "Global library" contain the two folders "Master copies" and
"Types". You can create or use the library objects either as a master copy or a type.

Types
Create instances of objects of the "Types" folder and use these in your project. The instances are
bound to their respective type.
More information is available here (Page 176).

Master copies
Use master copies to create independent copies of a library object.
More information is available here (Page 185).

Administration of the library objects
You can copy and move library objects to other libraries. You copy master copies to the "Master
copies" folder or any subfolder of "Master copies". You can only insert types in the "Types" folder
or any sub-folder of "Types".

WinCC Unified
3.11 Working with libraries

160 System Manual, 11/2022

3.11.4 Creating types and master copies

Creating a new type
You can create a new type in the project library.
You can later copy the type into a global library that you yourself have created.
1. To create a new type, select "Add new type" in the project library.

The "Add new type" dialog is displayed.
2. Select the class of the type.
3. Provide further information on usage.
- or -
1. Drag and drop an object from the project tree to the "Types" folder in the project library.

The object must be suitable for creating a type, for example, a user data type.
More information: Using types and their versions (Page 176)

Create a new master copy
1. To create a master copy, drag and drop an object from the project tree to the "Master copies"

folder of the project library or a self-created global library.
The object must be suitable for creating a type. You can use objects that you yourself have
created in the project tree as a master copy.
The cursor indicates if creating the master copy is possible.

More information: Using master copies (Page 185)

3.11.5 Managing libraries

3.11.5.1 Overview of the library management

Function of the library management
Master copies and types with dependencies on other library elements are subject to functional
restrictions. For example, they cannot be deleted while dependencies still exist. This prevents
other library elements from becoming useless. The library management is used to identify the
dependencies and to create an overview of the work progress.

WinCC Unified
3.11 Working with libraries

System Manual, 11/2022 161

The library management offers the following functions:
• Display of the correlations of types and master copies

If a type is referenced in other types or master copies, the relationships are displayed in the
library management. You will also be able to see which library elements reference a type or
a master copy.

• Display of points of use of types in the project
• Display all types that include a version with the "In test" or "In progress" status

Layout of the library management
The figure shows the library management, which consists of the following components:
• Toolbar of the library management
• "Types" area
• "Use" area

Toolbar of the library management
You can perform the following tasks in the toolbar of the library management:
• Update view

If the project was changed, you can update the view of the library management.
• Clean up library

You can clean up the project library and global libraries. Cleaning up a library deletes all types
and type versions that are not linked to any instance in the project.

• Harmonize project
By harmonizing a project, you adapt the names and the path structures of type uses in the
project to the corresponding names and path structures of the types within a library.

• Collapse all
Shows only the top node

• Expand all
Shows all nodes (types and versions)

"Types" area
The "Types" area displays the contents of the folder or type you selected in the "Libraries" task
card.

WinCC Unified
3.11 Working with libraries

162 System Manual, 11/2022

The selection list following filters:
• Show all types
• Types with pending changes
• Released types
• Types with multiple versions
• Types not used in the project
• Types with inconsistencies in the default version
• Highest version of the type without "default" identifier.
For each type, the types that it references are displayed.

"Uses" area
The "Uses" area gives you an overview of the points of use of the selected types. The "Uses" area
is divided into two tabs:
• "Uses in the project" tab

In the "Uses in the project" tab, display the instances of type versions and the path to the point
of use in the project.
To get to the instance in the project, click the entry under "Path".

• "Uses in the library" tab
The "Uses in the library" tab is used to show all points within the library at which a type is used.

3.11.5.2 Opening library management

Procedure
To open the library management, follow these steps:
1. Open the "Libraries" task card.
2. Select a type or any folder that contains types.
3. Select the "Open library management" button .

- or -
4. In the shortcut menu, select "Library management element".

Result
The library management opens and the types are displayed with their versions.

Working with large or multiple monitors
The library management window can be detached and moved as desired.

WinCC Unified
3.11 Working with libraries

System Manual, 11/2022 163

3.11.5.3 Filtering types in the library management

Introduction
A filter function in the library management enables you to limit the displayed types. The
following filters are available:
• Show all types
• Types with pending changes
• Released types
• Types with multiple versions
• Types not used in the project
• Types with inconsistencies in the default version
• Highest version of the type without "default" identifier.

Requirement
At least one type has been created.

Filtering by types with pending changes
1. Select the "Types" folder in the project library.
2. Open the library management.
3. Select "Types with pending changes" in the drop-down list.

The "Types" area only displays types that have the "in progress" status.

Filter by released types
1. Select the "Types" folder in the project library.
2. Open the library management.
3. Select "Released types" in the drop-down list.

The "Types" area only displays types that have released versions.

Filtering for types with multiple versions
1. Select the "Types" folder in the project library.
2. Open the library management.
3. Select "Types with multiple versions" in the drop-down list.

The "Types" area only displays types that have more than one version.

WinCC Unified
3.11 Working with libraries

164 System Manual, 11/2022

Filtering for types that have no instances in the project
1. Select the "Types" folder in the project library.
2. Open the library management.
3. Select "Types not used in project" in the drop-down list.

The "Types" area only displays types that have no instances in the project.

Filtering by types with inconsistencies in the default version
1. Select the "Types" folder in the project library.
2. Open the library management.
3. Select "Types with inconsistencies in the default version" in the drop-down list.

Only the types whose default version is inconsistent are displayed in the "Types" area.

Filter by types whose highest version is not the default version
1. Select the "Types" folder in the project library.
2. Open the library management.
3. In the drop-down list, select "Highest version of the type without default identifier".

In the "Types" area, only those types are displayed whose highest version is not the default
version.

3.11.5.4 Creating a global library

Introduction
In the libraries you store the configured objects that you want to use several times in your
configuration. To use objects in several projects, create a global library.

Requirement
• A project is open.
• The "Libraries" task card is opened.

WinCC Unified
3.11 Working with libraries

System Manual, 11/2022 165

Procedure
1. Click the icon under "Global library".

The "Create new global library" dialog opens.

2. Enter a name.
3. Select the path where the new library is to be stored.
4. Click "Create".

Result
The new library is shown in the "Global libraries" palette. The global library contains the "Types",
"Master copies" and "Common data" folders. Under "Common data" you can reports for the
global library.
A folder with the name of the global library is created in the file system at the storage
location of the global library. This actual library file is given the file name extension ".alxx",
whereby "xx" stands for the current WinCC version number.

3.11.5.5 Saving a Shared Library

Introduction
A global library is saved as a separate file. This file contains all the objects of the global library,
including the referenced objects. For example, the reference of a tag which was configured on
an I/O field is also saved in the library.
WinCC prompts you to save the global libraries when you close WinCC or your project without
saving. You also can store the global library during configuration, without storing the entire
project.

Requirement
• A project with at least one global library is open.
• The "Libraries" task card is opened.
• A global library has been changed.

WinCC Unified
3.11 Working with libraries

166 System Manual, 11/2022

Procedure
1. Select the global library that you want to save.
2. Click the icon in the "Global library" palette.

You can alternatively select the "Save Library" command in the shortcut menu.
Save as:
1. To save the global library to another folder, select "Save as" from the shortcut menu.
2. Select the path in which you want to store the new library and enter a file name.

Result
The global library is saved under the current file name or the newly assigned file name.

3.11.5.6 Opening a global library

Introduction
In WinCC, the global libraries are stored in separate files. You can use a global library in every
project.

Requirement
• You have saved a global library.
• A project is open.
• The "Libraries" task card is opened.

Procedure
1. Click the icon in the "Global library" palette.

The "Open global library" dialog box is displayed.
2. Select the path in which the library is stored.
3. Click "Open".

Note
To have the access to a global library from multiple projects, open the global library in write-
protected mode. When a global library is read-only, access from other projects is blocked.

Result
The global library is displayed in the "Global libraries" palette.

WinCC Unified
3.11 Working with libraries

System Manual, 11/2022 167

3.11.5.7 Showing logs of global libraries
Logs listing all changes made to the global library are created when global libraries are updated.
The logs are stored together with the global library and are always available once you have
opened the global library.

Procedure
To open the logs of a global library, follow these steps:
1. Open the global library in the "Libraries" task card.
2. Open "Common data > Logs" in the lower-level folder.
3. Double-click on a log.

The log is opened in the editor.

3.11.5.8 Updating a project with the contents of a project library

Introduction
After you have edited several types in the project library, update all instances in the project to the
most recent version of the types from the project library.
Each of the following elements can be selected as source for the update:
• Individual folders within a library
• Individual types

Requirement
The "Libraries" task card or the library management is opened.

Procedure
1. Select a folder within the project library or individual types.
2. Select "Update types > Project..." from the shortcut menu.

A dialog opens.
3. Select either the entire project or individual devices for the update.
4. Select "Update instances in project".
5. To delete all older versions of the updated types from the project library, select the check box

"Delete unused type versions without "default" identifier from the library".
6. Confirm with "OK".

Result
All instances of the types are updated in the project to the most recent version of the selected
types in the project library.

WinCC Unified
3.11 Working with libraries

168 System Manual, 11/2022

You can find a log of the update process in the project tree under "Common data".

3.11.5.9 Updating a library with the contents of another library
The following options are available for updating libraries:
• Updating a global library with types from another global library
• Updating the project library with types from a global library
Each of the following elements can be selected as source for the update:
• Individual folders within a library
• Individual types

Requirement
• The "Libraries" task card or the library management is opened.

Procedure
To update a library with the contents of a different library, follow these steps:
1. Select a folder within the library or individual types.
2. Right-click the source and select the "Update types > Library..." command from the shortcut

menu.
The "Update library" dialog box opens.

3. Select the type of library you want to update:
– Select "Update project library" to update the project library with types from a global

library.
– Select "Update global library" if you want to update a global library.

4. Optional: Select the global library you want to update from the drop-down list.
5. Enable the desired update options:

– Updating instances in the project
– Delete unused type versions without "Default" label from the library
– Force update

Types are updated including their dependent types regardless of their version number.
6. Confirm with "OK".

WinCC Unified
3.11 Working with libraries

System Manual, 11/2022 169

Result
• Types not yet available in the target library are supplemented there with all their versions.

More recent versions are added to the types that already exist in the target library.
If a more recent version of a type already exists in the target library, the latest version is
nevertheless copied from the source library and automatically assigned a newer version
number.

• A log listing all performed changes to the target library is created for the update process.
If you have updated the project library, you can find the log in the project tree under
"Common data > Logs".
If you have updated a global library, you can find the log in the "Common data > Logs" folder
in the level below the global library.

3.11.5.10 Exporting and importing library texts

Introduction
You can export the texts of the library objects to an .xlsx file to edit them in MS Excel, for example,
or export them for compilation.
You export and import texts of the following objects in the library:
• Individual library types and master copies
• Multiple library types and master copies
• All library objects of the project library or a global library
After editing or external compilation, you import the texts into the TIA Portal.
When the texts are imported, all texts from the import file are imported for the entire library,
even if you have only selected one library object. The target languages of the import file
must be activated in the project.
During import to a master copy, the texts of the template are overwritten in the library with
the new texts from the import file. During import of the texts to a library type, the latest
version is overwritten in the library with the new texts from the import file. If a version of
a type has not been released yet in a project library, no texts can be imported for the entire
project library.

Defining the source language and target language
You define the source language and target language for export of the texts in the Export dialog.
The selection of available languages depends on the project languages defined.
With the global library, the selection of available source and target language depends on
the languages defined by the creator of the library. To see the available languages of the
global library, double-click the entry "Library languages" in the project folder "Language and
Resources" of the library in question.

WinCC Unified
3.11 Working with libraries

170 System Manual, 11/2022

Exporting texts
To export the texts of a single or several library objects, follow these steps:
1. Open the project library or a global library.
2. Select the library object in the library.
3. Select the command "Export library texts" in the shortcut menu of the object.

Alternatively, click the "Export library texts" button in the toolbar.
The "Export" dialog box opens.

4. Select the source language and the target language for export in the dialog.
5. Enter the name and path for the export file.

6. Click "Export".
After successful export, the export file is stored under the specified path.

Importing texts

Note
Restrictions for text import
The texts which belong to the following library objects cannot be imported:
• Type instances which are contained in a master copy
• Library types whose versions have not yet been released and which have the status "In

progress" or "In test"
• Write-protected global library
If importing into a project library, all versions must be released in this project library.

WinCC Unified
3.11 Working with libraries

System Manual, 11/2022 171

To import the texts after editing or compilation into the TIA Portal again, follow these steps:
1. Open the project library or the global library.
2. Select the command "Import library texts" in the shortcut menu of the object.

Alternatively, click the "Import library texts" button in the toolbar.
The "Import" dialog box opens.

3. Select the path and the name of the import file from the "Select file for import" field.
Activate the "Import source language" check box if you have made changes to the source
language in the export file and would like to overwrite the entries in the project with the
changes.

4. Click on "Import".

3.11.6 Managing objects in a library

3.11.6.1 Displaying library objects

Introduction
The elements of a library can be displayed in the folder structure under the library or in the
"Elements" palette.

Requirement
• At least one library object has been created in a library.
• The "Libraries" task card is opened.

Displaying parts of the library objects
1. Select the folder of a library whose elements are to be displayed.
2. Click .

The objects contained are displayed in the "Elements" palette.

WinCC Unified
3.11 Working with libraries

172 System Manual, 11/2022

3. To display components of an element, click on an element in the "Elements" palette.
The parts of the element are displayed in the "Elements" palette.

4. Select a view:

Icon View
Details mode

List mode

Overview with icons

Result
The library objects are displayed with the selected view in the "Elements" palette.

WinCC Unified
3.11 Working with libraries

System Manual, 11/2022 173

3.11.6.2 Storing an object as master copy

Introduction
In libraries you can store WinCC objects, e.g. screens, tags, alarms, scripts or parameter set types
as master copies. To do this, drag and drop the object from the project tree, the work area or the
detail view into the library. If you have created subfolders in the library, you can also insert an
object directly there.

Requirement
• The project tree or the work area is open.
• An object has been created.
• The "Libraries" task card is displayed.

WinCC Unified
3.11 Working with libraries

174 System Manual, 11/2022

Procedure
1. Select the object in the project tree or in the work area.

Note
Objects from the project tree as master copy
You can use all objects as master copy, which you can create new in the project tree:
• HMI devices, PLCs, technology objects, ...
• Screens
• Tag tables
• Parameter set types
• Scripts

Note
Objects from a work area as master copy
You can use objects as master copy, which you can create new in a work area:
• Tags
• HMI alarms
• Tasks
• Cycles
• Text and graphic lists

2. Drag and drop the object into the "Master copies" folder in the library.
The mouse pointer is transformed into a crosshair with an appended object icon.

Result
The object is saved to the library for further use in multiple instances of your configuration.

WinCC Unified
3.11 Working with libraries

System Manual, 11/2022 175

3.11.6.3 Inserting a library object

Introduction
The system always assigns the inserted library object a name which consists of the name of the
object type and of a consecutive number.
If the inserted object already exists, you have the option of replacing the object or of saving it
under a new name.
You cannot insert library objects that are not supported by the HMI device.

Note
If you insert a screen with interconnected template from the library, the template will also be
inserted. An existing, suitable template is not used.

Requirement
• The "Libraries" task card is opened.
• The editor in which you want to insert the library object is open.

Procedure
1. Select a library object from the library.
2. Drag-and-drop the library object to the position in the work area where you want to insert the

object.
The library object is inserted.

Result
If the object was contained in the "Copy templates" folder, you have inserted an independent
copy of the library object in the editor.
If the object was contained in the "Types" folder, you have inserted an instance of the library
object in the editor.

3.11.7 Using types and their versions

3.11.7.1 Status of versions of a type

Introduction
Depending on the point of use, the version of a type has different states.

WinCC Unified
3.11 Working with libraries

176 System Manual, 11/2022

Released version
The "Released version" status is available for all types, regardless of the point of use.
If you want to edit a released version, you must first create a new test version or an "in
progress" version.
Released type versions of scripts and screens can be opened and viewed at their instance.

"In progress" version
When you create a new type or a new version of a released type, the type is set to the "In progress"
state.
Types with the "in progress" state can be edited in the library management without the need
for a reference to an instance in the project. Upon release, the compatibility of the type is
tested by a consistency check.

"In test" version
Versions of HMI user data types can be in the "in test" state.
If you create a new PLC data type and add it as HMI user data type to a library, then this
type is set to the "In test" state during editing. Select a device as the test environment before
opening the editor for the type.
A version with "In test" status is linked to an instance in the project. You can set only one
version to "In test" for each type at a given time.
An "In test" version may only be linked to a single instance in the project. Therefore, it is not
possible to copy an instance to the clipboard, to duplicate it or to create an additional type
from the instance as long as it has "In test" status.

3.11.7.2 Adding types to a project library

Requirement
• A project is open.
• An HMI device has been created and opened.
• The project tree is open.
• The "Libraries" task card or the library management is opened.

Procedure
1. In the "Project Library" palette, select a folder that contains types

- or -
Open a folder from the project library that contains types in the library management.

2. Select "Add new type..." from the shortcut menu.
- or -
Click "Add new type" in the "Project library" palette.
The "Add new type" dialog is displayed.

WinCC Unified
3.11 Working with libraries

System Manual, 11/2022 177

3. Select the type.
4. Specify the device for which the type is being created.
5. Click "OK".

Depending on the selected type, the editor for editing the type opens.
6. Close the note at the top of the window and edit the type.
7. Release the version of the type after the editing.

Result
You have added a type to the project library.

3.11.7.3 Create a new version of a type
If you create a new version of a type, the point of use of the type determines the status of the
newly created version.

Requirement
• The "Libraries" task card is opened.
• A type has been created and released.

Procedure
1. Select the released type.
2. Select "Edit type" from the shortcut menu.

Result
• A new version of the type is created.
• The version of a type has the state "In progress".

- or -
The version of an HMI user data type has the state "In test".

• The editor opens.

3.11.7.4 Editing a type

Introduction
To edit a type, open the type in the library management or in the "Project library" task card.
The editor for the type opens. In the note at the top of the editor you can find information
about the status of the type as well as about additional options for editing.

WinCC Unified
3.11 Working with libraries

178 System Manual, 11/2022

Requirement
At least one type is created in the project library.

Procedure
1. Select "Open" in the shortcut menu of the type.

For types of the "User data type" type, the dialog for setting the test environment is displayed.
The editor for the type is displayed.

2. Close the note at the top.
3. Edit the type.
4. To release the version of the type or to discard the changes, reopen the note at the top.

3.11.7.5 Consistency status of types
Types may no longer be consistent after changes. The "Status" column in libraries indicates
whether a type is consistent or inconsistent. The following statuses are displayed:

Icon Meaning
The type is consistent.
The type has more than one inconsistency.
The default version of the type does not use the default version of its dependent type.
The type has duplicate versions.
More than one version of the type is instantiated in the device.
A version other than the default version of the type is instantiated in the device.

3.11.7.6 Generating a faceplate as a type

Introduction
To define a new faceplate type, add a new type in the project library.

Procedure
1. Open the "Libraries" task card.
2. Select the "Add new type" command under "Types" in the shortcut menu of the project

library.
A dialog opens.

3. Select "HMI faceplate".
4. Specify the device for the new type.
5. Assign a descriptive name to the new faceplate type.

WinCC Unified
3.11 Working with libraries

System Manual, 11/2022 179

Result
The new faceplate type is created and displayed under the selected name in the project library.
The faceplate type is assigned the status "In progress" and the version 0.0.1.
The editor for a faceplate opens.

Using a faceplate type
• Open a screen to edit.
• Drag and drop the type from the "Libraries" task card into the screen.

A faceplate container is created.

3.11.7.7 Generating a HMI user data type as type

Introduction
To define a new HMI user data type, add a new type in the project library.

Procedure
1. Open the "Libraries" task card.
2. Select the "Add new type" command under "Types" in the shortcut menu of the project

library.
A dialog opens.

3. Select "HMI user data type".
4. Specify the device for the new type.
5. Assign a descriptive name to the new HMI user data type.

Result

The new HMI user data type is created and displayed under the selected name in the project
library.
The user data type is assigned the status "In progress" and the version 0.0.1.
The editor for the user data type opens.

Using an HMI user data type
The released default version of the type is available in the tag tables for HMI tags as data type for
internal tags.

WinCC Unified
3.11 Working with libraries

180 System Manual, 11/2022

3.11.7.8 Generating HMI user data type from PLC data type

Introduction
To create a new HMI user data type based on a PLC data type, add a PLC data type in the project
library.

Requirement
• A PLC is created in the project.
• A PLC data type with at least one element is configured.

Procedure
1. Navigate in the project tree to the PLC and here to the "PLC data types" node.
2. Drag and drop the PLC data type node to the "Types folder" in the project library.
3. In the "Add type" dialog you specify the properties of the new type.

Result
The new HMI user data type is created and displayed under the selected name in the project
library.
The User data type is assigned the status "Released" and the version 0.0.1.

Editing HMI user data type based on PLC data type
1. Select "Edit type" in the shortcut menu of the type.

This can be occur in the project tree or in the "Libraries" task card.
2. To open the editor for editing, you must set a test environment.

The version is in the "In test" state and can be edited.
3. Release the version after editing.

Using an HMI user data type
• To use the PLC data type stored in the library at another PLC, drag and drop the node from the

library to the "PLC data types" node of a PLC in the project tree.
Note
PLC data types can only be instantiated at PLCs of the same type.
The PLC data type is available as data type in the tag tables for PLC tags.

The new HMI user data type can be stored in a global library.

WinCC Unified
3.11 Working with libraries

System Manual, 11/2022 181

3.11.7.9 Creating a graphic and dynamic SVG as type

Introduction
To define a new graphic type or define a dynamic SVG as a type, add a new type in the project
library.

Procedure
1. Open the "Libraries" task card.
2. Select the "Add new type" command under "Types" in the shortcut menu of the project

library.
A dialog opens.

3. Select "Graphic/Dynamic SVG".

4. Select whether you are adding a graphic or a dynamic SVG as type.

Result
The new type is created and displayed in the project library. The type is assigned the status "In
progress" and the version 0.0.1.
For graphics, the editor for graphics (Page 238) opens.
For dynamic SVG graphics, the editor for dynamic SVG graphics (Page 182) opens and a
dynamic standard SVG is displayed.
Graphics and dynamic SVGs can be instantiated in screens and faceplates.

3.11.7.10 Editing dynamic SVG type
Create dynamic SVGs as type to be able to exchange and update SVGs conveniently.
The type instance concept is implemented for dynamic SVGs. The selection of the dynamic
SVG is defined in the type, and the dynamization of the properties takes place at the instance.
A type contains exactly one dynamic SVG.
Dynamic SVGs are language-neutral.

WinCC Unified
3.11 Working with libraries

182 System Manual, 11/2022

In contrast to using SVGs from the "Graphics" task card, using types in faceplates allows
different SVGs with the same name in one faceplate.

Note
Version compatibility of dynamic SVG types
Dynamic SVG types have been introduced with WinCC Unified V18. They cannot be used with
faceplates < V18. They cannot be used with device versions or project versions < V16.
If you load a project that uses an instance of a dynamic SVG type in a faceplate into a Runtime
V17, this results in an error during loading.

Note
Faceplates and dynamic SVGs
If you create a faceplate type from a group of selected screen objects, dynamic SVGs are not
included. To insert a dynamic SVG into a faceplate, open the faceplate type in the editor and
insert the SVG from the library here.

Note
Manual assignment of a type version
If you manually assign a type version to a dynamic SVG type or rename the type, a DELTA
download is no longer possible.

Introduction
After a new type is created, a dynamic standard SVG is displayed. You replace this SVG with the
SVG you need.
No properties are displayed for the standard SVG.
To replace an SVG that has already been created or edit its properties, open the type in the
editor.

Procedure
1. To replace the dynamic standard SVG or the SVG of the previous version, select "Replace with

other dynamic SVG" in the shortcut menu of the SVG.
Other shortcut menu options are not available in V18.

2. Select a dynamic SVG in the file system.
The existing SVG is replaced by the SVG you selected.
For an instance of the dynamic SVG type, the properties are displayed in the Inspector
window of the image editor or faceplate editor. It is possible to dynamize properties here.

If the selected SVG cannot be fully displayed in the visible area of the screen, scroll bars will
be displayed so that the view can be shifted horizontally and vertically.
If you select a file that does not contain a valid dynamic SVG, an error message is output in
the Inspector window.

WinCC Unified
3.11 Working with libraries

System Manual, 11/2022 183

Release version
1. To release the version of the type, open the note at the top.

2. When releasing the type, enable the "Set dependent types to edit mode" option.
Faceplate types in which the dynamic SVG is used are set to edit mode and thus use the
current version of the dynamic SVG.

Notes on dynamization
• The dynamization of properties, e.g. color, affects the instance, not the type.
• The dynamization of properties is retentive if the new SVG has the same properties as the

previous version when the type is changed.
If the properties of the new SVG differ from the previous version, default values are used. In
this case, no dynamization is specified.

• When a type is instantiated in a screen, the "Contained type - name" property in the Inspector
panel under "Properties > Miscellaneous" shows the name and version of the instantiated
type.

3.11.7.11 Creating a script module as a type

Introduction
To define a new script module type, add a new type in the project library.

Procedure
1. Open the "Libraries" task card.
2. Select the "Add new type" command under "Types" in the shortcut menu of the project library.

The "Add new type" dialog opens.
3. Select "Script module".
4. Define the lowest device version.

Result
The new script module type is created and displayed in the project library.
The script module type is assigned the status "In progress" and the version 0.0.1.
The editor for a script module opens.

WinCC Unified
3.11 Working with libraries

184 System Manual, 11/2022

Working with script modules
In the editor for script modules, you create functions in which you can define parameters. You
select these functions when dynamizing screens, screen images or tasks via events in the
function list. If you change or delete functions or parameters in the script module type, the
referenced functions will be adapted automatically.
To check the syntax, click on "Syntax check" in the editor.
Error messages that allow you to analyze the script are displayed in the Inspector window
under "Info > Compile".
When creating scripts, you are supported by snippets that you access from the shortcut menu
under "Snippets" and which contain logic blocks for the following groups:
• Faceplate
• HMIRuntime
• Logic

See also
"Scripts" editor (Page 981)

3.11.8 Using master copies

3.11.8.1 Basics
You can save objects that you have created in the project tree as a master copy in a library. Based
on the master copy, you can create a new object in the project tree.
Master copies allow you to efficiently create the same or similar objects. By using master
copies in a global library, these objects can be used in other projects.

Basics
You can use all objects as master copy, which you can create new in the project tree:
• HMI devices, PLCs, technology objects, ...

and the objects contained in these objects, e.g. cams
• Screens
• Tag tables
• Parameter set types
• Scripts
You can use objects as master copy, which you can create new in a work area:
• Tags
• HMI alarms
• Tasks

WinCC Unified
3.11 Working with libraries

System Manual, 11/2022 185

• Cycles
• Text and graphic lists
Objects can be added as a master copy in the project library or in an open global library.

Basic procedure
Once you have used this method to create and edit an object that you want to use it as a master
copy, drag and drop it onto the "Master copy" folder in a library.
Then drag and drop the master copy back into the project tree to create a new object that
you can further customize.

3.11.8.2 Using a script as a master copy

Requirement
• A project is open.
• An HMI device has been created and opened.
• The project tree is open.
• The "Libraries" task card is opened.

Procedure
You can store a global module, a global definition area or a function as a master copy.
1. Open the "Scripts" editor in the project tree.
2. Drag and drop a script into the "Master copies" folder of a library.

Result
You have created a master copy from a script in the library.

Using a master copy
1. Drag and drop the master copy from the library into the "Scripts" folder in the project tree.

A new script is created.
2. Edit the script.

3.11.8.3 Using a screen as a master copy

Requirement
• A project is open.
• An HMI device has been created and opened.

WinCC Unified
3.11 Working with libraries

186 System Manual, 11/2022

• The project tree is open.
• The "Libraries" task card is opened.

Procedure
1. Open the "Screens" editor in the project tree.
2. Drag and drop the screen into the "Master copies" folder of a library.

Result
In a library you have created a master copy from a screen.

Using a master copy
1. Drag and drop the master copy from the library into the "Screens" folder in the project tree.

A new screen has been created.
2. Edit the screen.

3.12 Using WinCC version compatibility

3.12.1 Basics on version compatibility

Introduction
The interaction of the following versions is of importance for version compatibility:
• WinCC version
• Project version
• Configured Runtime version
• Installed Runtime version

WinCC Unified
3.12 Using WinCC version compatibility

System Manual, 11/2022 187

WinCC version
The WinCC version is the WinCC version installed on the configuration PC for TIA Portal, for
example, WinCC Unified V18.

The installed version is displayed under "Help > Installed software …".

Project version
The project version is the version of a WinCC project.
• When you create a new WinCC project, the project version is always the same as the WinCC

version.
• A project successfully opened in WinCC Unified always has the version of the software used.

Projects with older versions are automatically upgraded at the time of opening.
• An existing project can have a project version that is older than the WinCC version.

You can make out the version of a project from the file ending of the project file.

WinCC Unified
3.12 Using WinCC version compatibility

188 System Manual, 11/2022

Note
To open a WinCC project that was created with an older version of TIA Portal, you must first
upgrade its project version to the WinCC version of the currently installed TIA Portal.
After the upgrade, the functions of the current WinCC version are available in the project. You
can then open, edit, save, compile, download or simulate the project.
You can find additional information at AUTOHOTSPOT.
If the project version cannot be changed, open the project in a TIA Portal whose WinCC version
is the same as the project version. There, you edit, save, compile, download or simulate the
project.

Configured Runtime version
The configured Runtime version is the version of the runtime configured in a WinCC project for
an HMI device.
A WinCC project can contain HMI devices with differently configured Runtime versions. HMI
devices whose configured Runtime version is older than the current version can be restricted
in their functions when compared to the HMI devices with the current version.
The configured Runtime version must be compatible with the Runtime version installed on
the target device for the project to be downloaded.
When you add a new HMI device to a WinCC project, its pre-selected, configured Runtime
version is always the highest available Runtime version.
To add a new device with an older version, select the desired version in the "Add new device"
dialog.
You can change the configured Runtime version in the "Devices & Networks" editor or the
device properties in the project tree.

You can find additional information at Changing the configured runtime version (Page 206).

WinCC Unified
3.12 Using WinCC version compatibility

System Manual, 11/2022 189

Installed Runtime version
The installed Runtime version is the version of Runtime installed on the HMI device. The version
is displayed on the HMI device. You can find information on this in the documentation of the
hardware.
An installed Runtime version V18 or higher supports backward compatibility up to V17.
You can find more information about the installed Runtime version under:
• Installed Runtime version for Unified Comfort Panel (Page 191)
• Installed Runtime version for Unified PC (Page 192)

Version compatibility
The following diagram shows the interaction of the different versions:

When downloading to a target device, make sure that the configured and the installed
Runtime versions are compatible.
TIA Portal checks the compatibility during the download. The following applies when
incompatible versions are detected:
• Unified Comfort Panel: In the "Load preview" dialog, you are given the option to install an

image with a compatible version on the Panel.
You can find additional information at Basics for downloading projects (Page 7147).

• Unified PC: Download is not possible

WinCC Unified
3.12 Using WinCC version compatibility

190 System Manual, 11/2022

Note
When loading from an external storage medium, compatibility is checked while you load the
project to the device (Unified PC).

Simulation
With an installed Runtime as of version V17, backward compatibility is also supported for
simulations.
You can simulate Runtime projects with a configured Runtime version of V16 onwards.

3.12.1.1 Installed Runtime version for Unified Comfort Panel

Note
Changing the installed Runtime version deletes all data on the Unified Comfort Panel
When an image is installed, the data on the Unified Comfort Panel is deleted.
Back up the following data before you install an image.
• Database for the tag persistence
• Data logs
• Alarm logs
• Parameter sets

For Unified Comfort Panels, the operating system and the runtime are bundled into one
image with a device version that can be transferred to the HMI device if necessary. The
device version determines which version of the operating system and Runtime can be
installed with the image.
The Runtime version installed with the image on the Unified Comfort Panel must be
compatible with the configured Runtime version for the project to be downloaded.

Note
Installing image with compatible version
There are several ways to install an image with a compatible version:
• When TIA Portal detects an incompatible runtime version during online loading, you have the

option in the "Load Preview" dialog to install an image with a compatible, installed Runtime
version on the Unified Comfort Panel before the download.
You can find additional information at Basics for downloading projects (Page 7147).

• Independent of the download, you have the following options for installing an image:
– Updating the operating system of the HMI device (Page 7167)
– Updating the operating system of the HMI device from a data storage medium (Page 7169)

WinCC Unified
3.12 Using WinCC version compatibility

System Manual, 11/2022 191

Backwards compatibility
HMI devices starting from the installed Runtime version V17 are backward compatible. Runtime
projects with a configured Runtime version V16 or higher can run on them.

Note
Conversion of the logging data with backward compatibility
When a project is started for the first time in runtime in the backward compatibility mode, its
logging data is adapted to the new database schema. This process is irreversible.
Example:
A project with configured Runtime V17 is loaded to a device on which Runtime V18 is installed.
During the project start, the logging data is adapted to match the database schema of V18. You
can no longer transfer the log to a device with Runtime V17 and run it there.

See also
Basics on version compatibility (Page 187)
Basics for downloading projects (Page 7147)
Updating the operating system of the HMI device (Page 7167)
Updating the operating system of the HMI device from a data storage medium (Page 7169)

3.12.1.2 Installed Runtime version for Unified PC
For Unified PC, the operating system and Runtime are installed independently of each other. The
installed Runtime version must be compatible with the configured Runtime version.

Backwards compatibility
HMI devices starting from the installed Runtime version V17 are backward compatible. Runtime
projects with a configured Runtime version V16 or higher can run on them.

Note
Conversion of the logging data with backward compatibility
When a project is started for the first time in runtime in the backward compatibility mode, its
logging data is adapted to the new database schema. This process is irreversible.
Example:
A project with configured Runtime V17 is loaded to a device on which Runtime V18 is installed.
During the project start, the logging data is adapted to match the database schema of V18. You
can no longer transfer the log to a device with Runtime V17 and run it there.

See also
Basics on version compatibility (Page 187)

WinCC Unified
3.12 Using WinCC version compatibility

192 System Manual, 11/2022

3.12.1.3 Use cases

Introduction
When commissioning a plant, the following versions are usually identical:
• WinCC version
• Project version
• Configured Runtime version
• Installed Runtime version
If you want to replace an HMI device or expand your system, the versions can differ. In such
cases, WinCC version compatibility helps you to continue operating your plant with as little
modification work as possible.

Example: Replacing the HMI device
Your system contains a Unified Comfort Panel with an installed Runtime version V17.
You want to replace this Unified Comfort Panel with another Unified Comfort Panel with an
already preinstalled Runtime version V18. Nothing should be changed in the configuration.
To be able to download your Runtime project V18 to the HMI device, use the backwards
compatibility.
More information can be found in the section Replacing a Unified Comfort Panel (Page 210).

Example: Expanding an existing system with an HMI device with an installed Runtime version
You want to expand your system with a Unified Comfort Panel with an installed Runtime version
V17.
You are already using WinCC V18 on your configuration PC.
To use the HMI device, follow these steps:
1. Upgrade the project version.
2. Configure a Unified Comfort Panel V17 in the Engineering System.
3. Compile and download the Runtime project to the Unified Comfort Panel with an installed

Runtime version V17.

Example: Expanding an existing system with an HMI device with a later Runtime version
installed

You want to expand your system with a Unified Comfort Panel with an installed Runtime version
V18 and use the functionalities of the current version.
You are using WinCC V17 on your configuration PC.
To use the HMI device, follow these steps:
1. Install WinCC V18 on your configuration PC.
2. Upgrade the project version.

WinCC Unified
3.12 Using WinCC version compatibility

System Manual, 11/2022 193

3. Configure a Unified Comfort Panel V18 in the Engineering System.
4. Compile and download the Runtime project to the Unified Comfort Panel with an installed

Runtime version V18.

Example: Upgrading an HMI device
Your system contains a Unified PC with an installed Runtime version V16 or V17.
You want to use the functionalities of the current version on the Unified PC.
You can find additional information at Upgrading a Unified PC (Page 207).

See also
Replacing a Unified Comfort Panel (Page 210)
Upgrading a Unified PC (Page 207)
Upgrading a Unified Comfort Panel (Page 208)
Replacing a Unified PC (Page 212)

3.12.2 Upgrade project

Introduction
To open a WinCC project that was created with an older version of the Engineering System, you
must first upgrade the project version to the WinCC version of the currently opened Engineering
System.

Requirements
• The project version is a predecessor of your WinCC version.

Note
No version skips
You cannot skip any version when upgrading. A project with version V16 must first be
upgraded in a TIA Portal version V17 before you can upgrade it in a TIA Portal version V18 to
the current version.

• You have write access to your project drive.
• The project drive has sufficient storage capacity for another project of this size.

WinCC Unified
3.12 Using WinCC version compatibility

194 System Manual, 11/2022

Procedure
To upgrade a project from TIA Portal V17 or higher to your WinCC version, follow these steps:
1. Select the "Open" command in the "Project" menu.

The "Open Project" dialog box opens and the list of recently used projects is displayed.
2. Select a project from the list and click "Open".
3. If the project is not included in the list, click the "Browse" button. Navigate to the project

folder and open the project file.
The "Open Project" dialog opens.

WinCC Unified
3.12 Using WinCC version compatibility

System Manual, 11/2022 195

4. Click "Upgrade".

The project is upgraded to the current project version and opened. The procedure can take
time, depending on the number of devices and objects used in the project.
Note
Unsupported devices
If there are devices in the project that are not supported by the current version, an upgrade
is not possible.
Open the project in the version of the TIA Portal in which it was created, and remove the
unsupported devices or replace them with supported devices.
More information: Unsupported devices (Page 198)

Note
Devices not fully supported
If devices are configured in the project that are only partially supported, an upgrade is
possible.
In the upgraded project, replace the devices with fully supported devices.
More information: Devices not fully supported (Page 197)

5. Check whether devices and library objects have to be adapted to the new version.

Result
• The content of the old WinCC project is saved in a new project with the current project

version.
The original project is not overwritten and can still be edited with a compatible older version
of the TIA Portal.

• You can open, edit, save, compile, download or simulate the project.

WinCC Unified
3.12 Using WinCC version compatibility

196 System Manual, 11/2022

• All functions of the current WinCC version are available in the project.
• If necessary, match the Runtime version of the HMI devices.

See also
Upgrading the installed Runtime version of a device (Page 207)

3.12.3 Devices not fully supported

Error during upgrade
If a project contains devices or device versions that are no longer fully supported in the current
version of WinCC, the project can be upgraded to the current version of WinCC.
Unsupported devices may be present in a project in the following locations:
• Devices in the project tree
• Devices in the master copies of the project library
Devices that are no longer fully supported are flagged with a symbol:
If you compile a device that is no longer complete, you get an error message:
• The device is not supported. Compilation is therefore not possible. Please switch to a

supported device.
• The Runtime version is not supported. Compilation is therefore not possible. Switch to a

supported version.

Changing the device type or the device version in the project tree
To change the device type or the device version of a device in the project tree, follow these steps:
1. Select the "Change device/version" command in the shortcut menu of the outdated device.
2. In the "Change device" dialog, select as new device a device or device version that is

supported in the current version of WinCC.

Devices and device versions not fully supported
KTP400 Basic 2nd Generation 15.0.0.0
KTP700 Basic 2nd Generation 15.0.0.0
KTP900 Basic 2nd Generation 15.0.0.0
KTP1200 Basic 2nd Generation 15.0.0.0
KTP400F Mobile 15.0.0.0
KTP700 Mobile 15.0.0.0
KTP700F Mobile 15.0.0.0
KTP900 Mobile 15.0.0.0
KTP900F Mobile 15.0.0.0

WinCC Unified
3.12 Using WinCC version compatibility

System Manual, 11/2022 197

Mobile Panel 177
Mobile Panel 277
KP400 Comfort 15.0.0.0
KP700 Comfort 15.0.0.0
KP900 Comfort 15.0.0.0
KP1200 Comfort 15.0.0.0
KP1500 Comfort 15.0.0.0
KP1500 Comfort V2 15.0.0.0
KTP400 Comfort 15.0.0.0
TP700 Comfort 15.0.0.0
TP700 Comfort INOX PCT
TP700 Comfort Outdoor 15.0.0.0
TP900 Comfort 15.0.0.0
TP900 Comfort INOX PCT 15.0.0.0
TP1200 Comfort 15.0.0.0
TP1200 Comfort INOX PCT 15.0.0.0
TP1200 Comfort PRO 15.0.0.0
TP1500 Comfort 15.0.0.0
TP1500 Comfort Outdoor 15.0.0.0
TP1500 Comfort V2 15.0.0.0
TP1900 Comfort PRO 15.0.0.0
TP2200 Comfort 15.0.0.0
TP2200 Comfort V2 15.0.0.0

You can find detailed compatibility lists of all HMI devices using the compatibility tool (https://
support.industry.siemens.com/cs/ww/en/view/64847781).

3.12.4 Unsupported devices

Error during upgrade
If a project contains devices or device versions that are no longer supported in the current
version of WinCC, upgrading is not possible. To upgrade the project to the current version, you
need to open the project in an older version of WinCC and change the device type or version to
a value supported by the current version of WinCC.
Devices that are no longer supported are flagged with a symbol:
Unsupported devices may be present in a project in the following locations:
• Devices in the project tree
• Devices in the master copies of the project library

WinCC Unified
3.12 Using WinCC version compatibility

198 System Manual, 11/2022

https://support.industry.siemens.com/cs/ww/en/view/64847781
https://support.industry.siemens.com/cs/ww/en/view/64847781

Changing the device type or the device version in the project tree
To change the device type or the device version of a device in the project tree, follow these steps:
1. Select the "Change device/version" command in the shortcut menu of the outdated device.
2. In the "Change device" dialog, select as new device a device or device version that is

supported in the current version.

Changing the device type or device version in the library
To change the device type or the device version of a device in the project library, follow these
steps:
1. Search for the outdated device in the master copies of the project library.
2. Copy the master copy from the project library to the project tree.
3. Make a note of the name of the master copy. Delete the master copy in the project library.
4. Select the "Change device/version" command in the shortcut menu of the outdated device.
5. In the "Change device" dialog, select as new device a device or device version that is

supported in the current version of WinCC.
6. Create a new master copy of the project library from this device.
7. Give the new master copy the same name as the deleted master copy.

Devices and device versions not supported
KTP400 Basic 2nd Generation 13.0.0.0, 14.0.0.0
KTP700 Basic 2nd Generation 13.0.0.0, 14.0.0.0
KTP900 Basic 2nd Generation 13.0.0.0, 14.0.0.0
KTP1200 Basic 2nd Generation 13.0.0.0, 14.0.0.0
KTP400F Mobile 11.0.0.0, 12.0.0.0, 13.0.0.0, 14.0.0.0
KTP700 Mobile 11.0.0.0, 12.0.0.0, 13.0.0.0, 14.0.0.0
KTP700F Mobile 11.0.0.0, 12.0.0.0, 13.0.0.0, 14.0.0.0
KTP900 Mobile 11.0.0.0, 12.0.0.0, 13.0.0.0, 14.0.0.0
KTP900F Mobile 11.0.0.0, 12.0.0.0, 13.0.0.0, 14.0.0.0
Mobile Panel 177 11.0.0.0, 12.0.0.0
Mobile Panel 277 11.0.0.0, 12.0.0.0
KP400 Comfort 11.0.0.0, 12.0.0.0, 13.0.0.0, 14.0.0.0
KP700 Comfort 11.0.0.0, 12.0.0.0, 13.0.0.0, 14.0.0.0
KP900 Comfort 11.0.0.0, 12.0.0.0, 13.0.0.0, 14.0.0.0
KP1200 Comfort 11.0.0.0, 12.0.0.0, 13.0.0.0, 14.0.0.0
KP1500 Comfort 11.0.0.0, 12.0.0.0, 13.0.0.0, 13.0.1.0, 14.0.0.0
KP1500 Comfort V2 11.0.0.0, 12.0.0.0
KTP400 Comfort 11.0.0.0, 12.0.0.0, 13.0.0.0, 14.0.0.0
TP700 Comfort 11.0.0.0, 12.0.0.0, 13.0.0.0, 14.0.0.0
TP700 Comfort INOX PCT 11.0.0.0, 12.0.0.0
TP700 Comfort Outdoor 11.0.0.0, 12.0.0.0, 13.0.0.0, 14.0.0.0

WinCC Unified
3.12 Using WinCC version compatibility

System Manual, 11/2022 199

TP900 Comfort 11.0.0.0, 12.0.0.0, 13.0.0.0, 14.0.0.0
TP900 Comfort INOX PCT 11.0.0.0, 12.0.0.0, 14.0.0.0
TP1200 Comfort 11.0.0.0, 12.0.0.0, 13.0.0.0, 14.0.0.0
TP1200 Comfort INOX PCT 11.0.0.0, 12.0.0.0, 14.0.0.0
TP1200 Comfort PRO 11.0.0.0, 12.0.0.0, 14.0.0.0
TP1500 Comfort 11.0.0.0, 12.0.0.0, 13.0.0.0, 13.0.1.0, 14.0.0.0
TP1500 Comfort Outdoor 11.0.0.0, 12.0.0.0, 14.0.0.0
TP1500 Comfort V2 11.0.0.0, 12.0.0.0
TP1900 Comfort PRO 11.0.0.0, 12.0.0.0
TP2200 Comfort 11.0.0.0, 12.0.0.0, 13.0.0.0, 13.0.1.0, 14.0.0.0
TP2200 Comfort V2 11.0.0.0, 12.0.0.0
WinCC Runtime Advanced 11.0.0.0, 12.0.0.0

You can find detailed compatibility lists of all HMI devices using the compatibility tool (https://
support.industry.siemens.com/cs/ww/en/view/64847781).

3.12.5 Matching objects after upgrading
After the successful upgrading of a project, you must match the versions of individual devices
and objects if required.

WinCC Unified
3.12 Using WinCC version compatibility

200 System Manual, 11/2022

https://support.industry.siemens.com/cs/ww/en/view/64847781
https://support.industry.siemens.com/cs/ww/en/view/64847781

Matching devices after upgrading
1. In the project tree for a device, in the shortcut menu, select "Replace device".
2. Check whether the device is available in a newer version.

More information:
– Replacing the configured HMI device (Page 202)
– Replacing a device (Page 209)

3. Then compile each device in the project.
Note
Sequence of compilation
Compile the PLCs first and then the HMI devices in your project. In this way, you ensure that
the controller data required to compile the HMI devices is available.

WinCC Unified
3.12 Using WinCC version compatibility

System Manual, 11/2022 201

Upgrading global libraries
1. Open a global library that was created with an older version of the TIA Portal.

The "Open Library" dialog is displayed.

2. Click "Upgrade".
The library is upgraded and saved as a new global library with the appendage "_V18".
The library of the predecessor version is retained.

See also
Upgrading a global library (Page 205)

3.12.6 Replacing the configured HMI device

3.12.6.1 Basics for replacing the configured HMI device

Introduction
When you replace the devices, you can use existing configurations for your new HMI devices.
For example, you replace a Unified PC for a Unified Comfort Panel or a 7"
Unified Comfort Panel for a 12" Unified Comfort Panel.

WinCC Unified
3.12 Using WinCC version compatibility

202 System Manual, 11/2022

All data configured by you is retained in the configuration data. This means you do not need
to copy individual objects of one device and paste them to another.

Note
When you replace a Unified Comfort Panel and select a PC station as your new device, for
example, WinCC Unified PC RT is automatically moved below the PC Station in the project tree.

Adjusting the screen size
If the new device supports a different resolution than the previous device when you replace a
device, adjust the screen size.

Customizing a connection
When you have configured a connection to a PLC and are replacing the HMI device with a
different device type, error messages may occur, for example "The object 'IE general' is not
supported in the new configuration and will be removed".
This may happen, for example, when you replace a Unified PC with a Unified Comfort Panel
because the configured communications module is not supported after the exchange.
Therefore, check the configured connections and make adaptations if necessary.

See also
Basics on version compatibility (Page 187)

3.12.6.2 Replacing the configured HMI device

Requirement
• A project has been created and opened.
• A Unified PC or a Unified Comfort Panel is used in the project.
• The screens have been adapted.

Procedure
To replace an HMI device with another HMI device, follow these steps:
1. In the project tree, select the HMI device to be replaced.

Alternatively, select the HMI device to be exchanged in the "Devices & Networks" editor.
2. Depending on the device, select "Change device / version" or "Change device" from the

shortcut menu.
The "Change device" dialog opens.

WinCC Unified
3.12 Using WinCC version compatibility

System Manual, 11/2022 203

3. Select the desired device.
Details of hardware differences can be found in the "Compatibility information".
If necessary, adapt the version.
You can find additional information at Changing the configured runtime version (Page 206).

4. Confirm the dialog.

Result
You have replaced the HMI device used in the project.
If needed, make the following adaptations:
• If you have exchanged a Unified Comfort Panel with a Unified PC or vice versa, for example,

you need to adapt the configured connections.
• If you have selected an HMI device with a different screen resolution, adjust the screens.

Further procedure
To complete the device change, the following further steps are necessary:
• If necessary, replace the HMI device in your plant.
• Transfer the stored data to the new HMI device.

Note
Data transfer
Note that when changing the device type (changing from Unified Comfort Panel to a Unified
PC or vice versa), the transfer of databases is not supported.
Data of the central user administration (UMC) cannot be transferred and must be loaded
together with the Runtime project.

• Compile and load the Runtime project into the new HMI device.

See also
Changing the configured runtime version (Page 206)

3.12.6.3 Adapting the configuration of the connection

Introduction
If an HMI device is changed, error messages may occur, for example "The object 'IE general' is not
supported in the new configuration and will be removed".
These alarms refer to configured connections of the device and are triggered, for example, by
different interfaces when replacing the Unified Comfort Panel with a Unified PC.
These connections are marked red after a device replacement. If you would like to continue
to use these connections, you have to adapt the configuration of the connection.

WinCC Unified
3.12 Using WinCC version compatibility

204 System Manual, 11/2022

Procedure
To connect a PLC to the HMI device again after the device replacement, follow these steps:
1. Open the "Devices and Networks" editor.
2. Click "Network" in the toolbar of the network view.
3. If necessary, add a communications module.
4. Network the interface of the HMI device with the interface of the PLC.
5. In the table area of the network view, click on the "Connections" table.
6. Select the connection marked red.
7. Enter the new interface under "Properties > General > General > Connection path" in the

Inspector window.

3.12.7 Upgrading a global library

Introduction
To process objects of a global library in a project, you must first upgrade the version of the global
library to the project version. You are prompted accordingly when you open the global library.

Requirements
• The version of the global library is a predecessor version of your project version.
• You have write access to your project drive.
• All types in the library have been released.

Procedure
To upgrade a global library from TIA Portal V16 or V17, proceed as follows:
1. Open the global library.

The "Upgrade global library" dialog box opens.
2. Click "OK".

Result
A copy of the global library is created and upgraded. The global library opens.

WinCC Unified
3.12 Using WinCC version compatibility

System Manual, 11/2022 205

3.12.8 Changing the configured runtime version

Introduction
If you want to upgrade or exchange the HMI device, change the configured Runtime version of
an HMI device.
Change, for example, the configured Runtime version of a Unified Comfort Panel from V17 to
V18.

Requirements
• A project has been created and opened.
• The project contains an HMI device.

Procedure
To change the configured Runtime version, follow these steps:
1. Double-click on "Devices & Networks" in the project tree.

The editor opens.
2. Select the desired HMI device in the device view.
3. Select "Change device/version" in the device shortcut menu of the HMI device.

A dialog opens.
4. Select the required HMI device.
5. Depending on the Runtime version installed on the target device, select a compatible

Runtime version under "Version".
Note
Selection of Runtime versions
The project version determines which Runtime versions are offered to you.

6. Confirm your selection with "OK".
Alternatively, you can also change the configured Runtime version in the device properties in
the project tree.

Result
You have changed the configured Runtime version of the HMI device in the WinCC project.
To successfully download the project, a compatible Runtime version must be installed on the
target device.
In the next step, you upgrade the installed Runtime version of the HMI device or exchange
the device.

WinCC Unified
3.12 Using WinCC version compatibility

206 System Manual, 11/2022

See also
Replacing the configured HMI device (Page 203)
Replacing the configured HMI device (Page 202)

3.12.9 Upgrading the installed Runtime version of a device

3.12.9.1 Upgrading a Unified PC

Introduction
To use the new functionalities of the current Runtime version, you must upgrade the Unified PC.

Requirement
• No project is running in Runtime on the Unified PC.

Note
No version skips
You cannot skip any version when upgrading.

Procedure
1. Install the higher Runtime version on the Unified PC.

The existing data is retained, e.g. logs and parameter sets.
Note
Converting logging databases
When a project is started for the first time in Runtime after upgrading, its logging data is
adapted to the new database schema. This process is irreversible.

2. Upgrade the engineering system to the WinCC version that corresponds to the Runtime
version installed on the Unified PC.

3. Upgrade the project version of the project to the WinCC version.
4. Upgrade the configured Runtime version of the HMI device.
5. Compile and download the project into the Unified PC.
6. Start the project on the Unified PC in Runtime.

WinCC Unified
3.12 Using WinCC version compatibility

System Manual, 11/2022 207

See also
Use cases (Page 193)
Changing the configured runtime version (Page 206)

3.12.9.2 Upgrading a Unified Comfort Panel

Introduction
To use the new functionalities of the current Runtime version, you must upgrade the
Unified Comfort Panel.

Note
Protection against loss of data
To simplify data transmission, save the following data to external storage media:
• Database for the tag persistence
• Data logs
• Alarm logs
• Parameter sets
Data from central user administration (UMC) cannot be backed up and must be loaded with the
Runtime project.

Note
No version skips
You cannot skip any version when upgrading.

Requirement
• No project is running in Runtime on the Unified Comfort Panel.

Procedure
To upgrade a Unified Comfort Panel, follow these steps:
1. Store the above-mentioned data of the Runtime project on external storage media.
2. Load an image with the higher Runtime version.

NOTICE
Data loss
All data stored internally on the Unified Comfort Panel will be lost.

3. Make the backed up data available to the Unified Comfort Panel again.
Do not save the tag persistence database and the parameter sets on the same storage
medium as the logs.

WinCC Unified
3.12 Using WinCC version compatibility

208 System Manual, 11/2022

4. Upgrade the engineering system to the WinCC version that corresponds to the Runtime
version installed on the Unified Comfort Panel.

5. Upgrade the project version of the project to the WinCC version.
6. Upgrade the configured Runtime version of the device.
7. Compile and load the project into the Unified Comfort Panel.
8. Start the project on the Unified Comfort Panel in Runtime.

See also
Use cases (Page 193)
Changing the configured runtime version (Page 206)

3.12.10 Replacing a device

3.12.10.1 Basics

Introduction
When replacing the Unified HMI devices, you can use existing configurations for your new
devices and optimize these configurations with very little manual effort. The configuration data
are retained.
If you replace an HMI device, for example, a Unified Comfort Panel, and select a PC station
as the new device, the configured data is automatically moved under the PC station. The
adaptation of the screens to the new screen size takes place in one step after the device
replacement. You can find additional information at "Adjusting screens to the new HMI
device (Page 213)".

Requirement
• A project has been created and opened.
• In the project, Unified Control Panels or WinCC Unified PCs are used for the visualization.

Introduction
1. Double-click "Devices" in the project navigation.

The editor opens.
2. Click the required HMI device.

WinCC Unified
3.12 Using WinCC version compatibility

System Manual, 11/2022 209

3. Select "Change device/version" in the device shortcut menu.
A dialog opens.

4. Select the new HMI device and the FW version. Details of hardware differences can be found
in the "Compatibility information" at the bottom of the table.

5. Click "OK".
Replacement of the device is started.

Result
You have replaced the device used in the project.

3.12.10.2 Replacing a Unified Comfort Panel

Introduction
If you replace a Unified Comfort Panel with Runtime version V17 installed, you can replace the
device with a Unified Comfort Panel with Runtime version V17 or V18 installed.

WinCC Unified
3.12 Using WinCC version compatibility

210 System Manual, 11/2022

HMI devices starting from the installed Runtime version V17 are backward compatible.
Runtime projects with a configured Runtime version V16 or higher can run on them. Compile
and download existing Runtime projects without any additional adaptation.

Note
Data transfer
Save the following data on external storage media:
• Database for the tag persistence
• Data logs
• Alarm logs
• Parameter sets
Data from central user management (UMC) cannot be backed up and must be loaded with the
Runtime project.

Alternatively, replace the Unified Comfort Panel with a Unified PC. To do this, follow the steps
under Replacing a Unified PC (Page 212). Note that when replacing the device type, the
transfer of databases is not supported.

Requirement
• The desired WinCC version is used.
• The project is available in the engineering system.
• The project version and the WinCC version are identical.

Procedure

Note
Conversion of the logging databases with backward compatibility
When a project is started for the first time in Runtime in the backward compatibility mode, its
logging data is adapted to the new database schema. This process is irreversible.

1. Store the above-mentioned data of the Runtime project on external storage media.
2. Make the backed up data available to the new Unified Comfort Panel.

Do not save the tag persistence database and the parameter sets on the same storage
medium as the logs.

3. Load the project in the new Unified Comfort Panel.
4. Start the project on the new Unified Comfort Panel in Runtime.
If you have replaced a Unified Comfort Panel with an installed Runtime version V17 with a
Unified Comfort Panel with an installed Runtime version V18, the projects are automatically
started in the backward compatibility mode at the start.

WinCC Unified
3.12 Using WinCC version compatibility

System Manual, 11/2022 211

Result
You have replaced a Unified Comfort Panel.
The project runs on the new device in runtime.
If needed, make further adaptations, e.g. Upgrading a Unified Comfort Panel (Page 208).

See also
Use cases (Page 193)

3.12.10.3 Replacing a Unified PC

Introduction
If you replace a Unified PC with an installed Runtime version V17, you can replace the device with
a Unified PC with an installed Runtime version V17 or V18.
HMI devices starting from the installed Runtime version V17 are backward compatible.
Runtime projects whose configured Runtime version is ≥ V16 can run on them. Compile
and download existing Runtime projects without any additional adaptation.

Note
Data transfer
Do not save databases directly on a network drive. Power supply can be interrupted at any time.
Reliable operation is therefore not guaranteed.
Save the following data on external storage media:
• Database for the tag persistence
• Data logs
• Alarm logs
• Parameter sets

On Unified PC, parameter sets are saved in the directory of the Runtime project.
Data from central user management (UMC) cannot be backed up and must be loaded with the
Runtime project.

Alternatively, replace the Unified PC with a Unified Comfort Panel. To do this, follow the steps
under Replacing a Unified Comfort Panel (Page 210). Note that when replacing the device
type, the transfer of databases is not supported.

Requirement
• The desired WinCC version is used.
• The project is available in the engineering system.
• The project version and the WinCC version are identical.

WinCC Unified
3.12 Using WinCC version compatibility

212 System Manual, 11/2022

Procedure

Note
Conversion of the logging databases with backward compatibility
When a project is started for the first time in Runtime in the backward compatibility mode, its
logging data is adapted to the new database schema. This process is irreversible.

1. Install the desired Runtime version on the new PC.
2. Store the above-mentioned data of the Runtime project on external storage media.
3. Make the backed up data available to the new Unified PC.

On the new PC, select the log directory configured in the "WinCC Unified Configuration" tool
during Runtime installation as the storage location for the logs.

4. Compile and download the project into the Unified PC.
5. Start the project on the new unified PC in Runtime.
If you have replaced a Unified PC with an installed Runtime version V17 with a Unified PC
with an installed Runtime version V18, the projects are automatically started in backward
compatibility mode at the start.

Result
You have replaced a Unified PC.
The project runs on the new device in runtime.
If needed, make further adaptations, e.g. Upgrading a Unified PC (Page 207).

See also
Upgrading a Unified PC (Page 207)
Use cases (Page 193)

3.12.10.4 Adjusting screens to the new HMI device
If you replace an HMI device with a smaller or larger display, the configured screen sizes do not
fit the new HMI device. The Unified Comfort Panels and Unified PCs offer an easy adaptation of
the screen size, the objects and fonts used, all in one step.

Requirement
• A project has been created and opened.
• Unified Control Panels or WinCC Unified PCs are used in the project for the visualization.
• A screen is configured.
• You have exchanged an HMI device for another Unified Control Panel or a WinCC Unified PC.

WinCC Unified
3.12 Using WinCC version compatibility

System Manual, 11/2022 213

Adjusting the screen size
1. Double-click "Devices" in the project navigation.

The editor opens.
2. Click the HMI device.
3. Select a screen under "Screens" and, on the bottom edge of the window, set the scale "Fit to

screen".
– If the new screen size is smaller than the screen size of the exchanged device, a part of the

screen is framed by a thin black line. In this case, only the part in the frame would be
shown on the display of the new device.

– If the new screen size is larger than the screen size of the exchanged device, the screen
only fills a part of the display area.

4. Select a screen, a screen group or several screens. Right-click the selected screens and select
"Resize to display".

WinCC Unified
3.12 Using WinCC version compatibility

214 System Manual, 11/2022

If you scale a large number of screens, an information window is shown that informs you
about the progress of the change.

Result
The screen size, the objects, and fonts used are scaled in one step in all the selected screens.

Note
After replacing the HMI device with a substantially larger or smaller variant, check the
appearance of the configured screens. Changed display sizes can result, for example, in the fonts
being too small or too large.

WinCC Unified
3.12 Using WinCC version compatibility

System Manual, 11/2022 215

3.13 Using cross-references

3.13.1 General notes about cross-references

Introduction
The cross-references provide an overview of the use of objects and devices within the project
and the project library. The relationships and the dependencies between the objects can be
displayed using the cross-references.

• To open the "Cross-references" editor, select "Cross-references" in the shortcut menu of the
navigation object in the project tree.
- or -
Press <F11>
- or -
In the Inspector window, select "About > Cross-references".

• To open the "Cross-reference information", select "Cross-reference information" in the
shortcut menu of an object, tag, alarm, etc.
- or -
Press <⇑ + F11>.

WinCC Unified
3.13 Using cross-references

216 System Manual, 11/2022

Benefits of cross-references
Cross-references offer the following advantages:
• When creating the project and when there are changes, you maintain an overview of the

devices, objects, tags, faceplate types, alarms, scripts, etc. that you have used.
• From the cross-references, you can jump directly to the respective location of use of objects.
• You can see whether the respective object uses other objects or is itself used.
• During troubleshooting you will learn, for example, the following:

– Which objects are used in which screen and on which devices.
– Which alarms and parameter sets are displayed in which display.
– Which tag is used in which alarm or which object.

See also
Displaying the "Cross-references" editor (Page 219)
Display cross-references in the Inspector window (Page 221)

3.13.2 Textual cross-references

Introduction
Textual cross-references are cross-references that are stored as pure text. With the help of textual
cross-references, you cannot navigate to a different object. These cross-references are shown in
red.

Textual cross-references are created as follows:
• You create a textual cross-reference for a non-existent object manually by entering the object

name under Property and updating the cross-reference list.
• The object used has already been deleted, and the connection to it is shown as textual cross-

reference.

WinCC Unified
3.13 Using cross-references

System Manual, 11/2022 217

Basics
When references and subordinate objects of a source object are deleted, they are converted into
textual cross-references. A textual cross-reference is not stored when the source object itself is
deleted.

Note
Almost all objects, with the exception of tag and alarm logs, support textual cross-references.

Note
Textual cross-references cannot be deleted.

You can also create a textual cross-reference manually to establish a connection to a non-
existent object. This procedure can be helpful if you want to access tags directly using scripts.

Using textual cross-references when working with scripts
When working with scripts, you can reference tags directly with the help of textual cross-
references.
When you enter an object name, the referenced object is searched for.

Sample code
export async function IO_Field_1_OnTapped(item, x, y, modifiers, trigger)
{
 HMIRuntime.Tags.SysFct.IncreaseTag("HMI_Tag_1", 0);
}

If a tag exists under the name "Variable_Test", it is referenced.
If there is no tag with the name "Variable_Test", the system creates a textual cross-reference
for the tag.
The textual cross-reference is assigned to the tag that you create under this name. The
textual cross-reference becomes a linked cross-reference.

3.13.3 Invalid cross-references
A cross-reference can become invalid as a result of certain changes to the configuration. Invalid
cross-references are shown as grayed out.

Invalid cross-references do not have any negative implications for your project.

WinCC Unified
3.13 Using cross-references

218 System Manual, 11/2022

If an object or location of use is invalid, you cannot navigate to that object or location of use.
You cannot change the properties of an invalid location of use. No shortcut menu is available
for invalid locations of use.

3.13.4 Displaying the "Cross-references" editor

Introduction
Depending on the object selected in the project tree, all the cross-references available for the
object are displayed. In the project tree you can show cross-references for HMI devices, folders,
and all editors. The detail view also lets you select individual objects of the editors, for example,
individual screens.
Cross-references are always displayed for the selected object and for all lower-level objects.
The display of the cross-references for an object is specific to the project and device. You can
display multiple cross-reference editors at the same time.

Requirement
• A project has been created.
• Multiple objects with references have been created.

WinCC Unified
3.13 Using cross-references

System Manual, 11/2022 219

Procedure
1. Select the required entry in the project tree or detail view.
2. Select "Cross-references" in the shortcut menu.

Alternatively, select the "Cross-reference" command from the "Tools" menu.
The "Cross-references" editor is opened in the working area.
– The relevant selected object is the "source object" and is at the top in the "Object" column.
– Point of use: Shows the locations at which the objects shown in the cross-reference list are

used.
– Type of use: Indicates whether the object is used.

3. To go to the location of use for a specific object, click on the cross-reference shown in blue in
the "Point of use" column.

4. To go to the specific object, select the required object and select "Open editor" from the
shortcut menu.
The editor in which the object can be processed opens.

5. You can perform the following actions using the icons in the toolbar:
– Updating
– Collapse all
– Expand all
– Define filters for the cross-reference list
– Show overlapping access
– Check overlapping access
– Add new source object
– Save window settings

Note
Restoring cross-references after a project upgrade.
After a project upgrade to a higher TIA Portal version, you have the option of recreating the
associated cross-reference data for the updated project.
This happens automatically at the end of the upgrade process. The updated project is opened
and the cross-references are available again.
If the cross-reference data is inconsistent or incomplete, you will receive information. A banner
text with a link to this information is displayed when the cross-reference list is opened. In this
case, you can reorganize the cross-references yourself.

Delete
If you select a source object and "Delete" in the shortcut menu or press , then the object
and not only the cross-reference is deleted.
A warning is displayed before the deletion.

WinCC Unified
3.13 Using cross-references

220 System Manual, 11/2022

After an object has been deleted, the cross-reference list is updated.
You cannot delete cross-reference lists.

3.13.5 Display cross-references in the Inspector window

Introduction
In the Inspector window, the cross-reference information for a selected object is displayed in the
"Info > Cross-references" tab. In this way, you can see at a glance all the cross-references of the
respective object without changing the cross-reference list.
All included elements and their use in the cross-reference list are displayed for structured
tags, user data types and instances of a PLC data type.

Requirement
• A project has been created.
• Multiple objects with references have been created.

Procedure
1. Select an object.
2. Select "Cross-reference information" in the shortcut menu.

The cross-references are opened in the Inspector window.

Tip for an efficient procedure

If you select another object, the contents of the Inspector window are automatically refreshed. The cross-
references to the selected object are displayed.

Note
"Inspector window" restrictions
The Inspector window provides you with almost the same functions as in the "Cross-references"
editor.
With more than 10,000 objects, the source objects and referenced objects are not sorted
alphabetically in the Inspector window.

Example
When you select an object in the screen and an HMI tag is being used as the process tag at the
object, the object and the linked HMI tag are displayed in the cross-references.
When the HMI tag is interconnected with a PLC tag or a data block tag, the locations of use of
the interconnected PLC tag or data block tag are also displayed.

WinCC Unified
3.13 Using cross-references

System Manual, 11/2022 221

Result
The instances where and the other objects by which the selected object is being used are
displayed.
The table below shows the additional information listed in the "About > Cross-reference" tab:

Column Content/meaning
Object Name of the object that uses the lower-level objects or that is being

used by the lower-level objects.
Point of use Each point of use, for example, an object or event
Type of use Object relationships between the source object and its uses:

• "Used by": The source object uses this object
• "Uses": The source object is used by this object
• "Type instance": The source object is a type or an instance of the

referenced object
• "Belongs to": The source object belongs to the reference object
• "Contains": The source object contains the reference object

As Shows additional information about objects, for example, that a tag is
used by several devices

Access Shows whether access to the object is read (R) and/or write (W)
Address Displays the address of the object
Type Displays information about the type and language used to create the

object
Device Displays the associated device name
Path Displays the path of the object in the project tree with specification of

folders and groups.
Comment Displays user comments on individual objects, if available.

Depending on the installed products and the selected objects, additional columns or different
columns are displayed for the cross-references.

3.13.6 Restoring cross-references after project upgrade

Introduction
After a project upgrade to a higher TIA Portal version, you have the option of recreating the
associated cross-reference data for the updated project.
This happens automatically at the end of the upgrade process. The updated project is then
opened and the cross-references are available again.
If the cross-reference data is inconsistent or incomplete, you will receive information. A
banner text with this information and a further link is displayed when you display the
cross-references.
In this case, you can reorganize the cross-references yourself.

WinCC Unified
3.13 Using cross-references

222 System Manual, 11/2022

Requirement
You have performed a project upgrade and received the message that the cross-reference data
is inconsistent or incomplete.

Recreate cross-reference information
To create new cross-reference information, follow these steps:
1. Click the link to restore the cross-reference information in the displayed message.

As an alternative, you can also navigate to "Cross-references" under "Tools > Settings >
General".

2. Click the displayed "Recreate the cross-reference information" button.
3. Once the restore process is complete, check the message in the Inspector window to see if

the operation was successful.
If the process was not successful, you receive an error message.

4. In the cross-reference list, click the "Update" button to close the displayed banner again.

Result
The cross-references for the selected project have been recreated.

3.14 Configuring cycles

3.14.1 Basics of cycles
Cycles are used to control actions that reoccur regularly in runtime. Classic applications include:
• The acquisition cycle
• The logging cycle
• The screen cycle
You can also define your own cycles in addition to those already provided in WinCC.

WinCC Unified
3.14 Configuring cycles

System Manual, 11/2022 223

Principle
Typical applications for cycles:
• Acquisition of external tags

The acquisition cycle determines when the HMI device will read the process value of an
external tag from the PLC. Set the acquisition cycle to suit the rate of change of the process
values. The temperature of an oven, for example, changes much more slowly than the speed
of an electrical drive.
Do not set the acquisition cycle too low, since this will unnecessarily increase the
communication load of the process.

• Triggering scheduled tasks
In scheduled tasks you have the option to configure a task with a cyclical trigger. Use the cycle
time to determine when the scheduled task is executed.

• Logging process values
The logging cycle determines when a process value is saved in the logging database. The
logging cycle is always an integer multiple of the acquisition cycle.

The smallest value for a cycle in Runtime Unified is 100 ms. You can configure all other values
with an increment of 50 ms. The default value for the setting is 500 ms.

Application example
You can use cycles for the following tasks:
• To record and archive process values
• To trigger tasks
• To regularly log a process
• To draw attention to maintenance intervals

3.14.2 Defining cycles

Introduction
Use cycles to control actions that are run at regular intervals in runtime. You can also define your
own cycles in addition to those already provided in WinCC.

Requirement
The project is open.

WinCC Unified
3.14 Configuring cycles

224 System Manual, 11/2022

Procedure
To define a cycle, follow these steps:
1. Double-click the "Cycles" entry in the project navigation.

The "Cycles" editor opens.
2. In the "Name" column of the "Cycles" editor, double-click "Add".

A new cycle time is created.
3. Enter a unique name in the "Name" field.
4. Select the desired cycle unit.
5. Select the desired value for the cycle time.

The available selection of values varies depending on the cycle unit selected.
6. As an option, you can enter a comment regarding the use of the cycle.
7. Save the project.

Result
The cycle you configured is created and beside the default cycles in WinCC for use during
configuration.

3.15 Configuring in multiple languages

3.15.1 Languages in WinCC

User interface language and project languages
A distinction is drawn between two different language levels in WinCC:
• User interface language

During configuration, the text in the WinCC menus and dialogs is displayed in the user
interface language. The user interface language also affects the labeling of operating
elements, the parameters of the system functions, the online help, etc.

• Project languages
Project languages are all languages in which a project will later be used. Project languages
are used to create a project in multiple languages.

The two language levels are completely independent of one another. For example, you can
create English projects at any time using a German user interface and vice versa.

WinCC Unified
3.15 Configuring in multiple languages

System Manual, 11/2022 225

Project languages
The following languages are differentiated within the project languages:
• Reference language

The reference language is the language that you use to configure the project initially.
During configuration, you select one of the project languages as the reference language. You
use the reference language as a template for translations. All of the texts for the project are
first created in the reference language and then translated. While you are translating the
texts, you can have them displayed simultaneously in the reference language.

• Editing language
You produce translations of the texts in the editing language.
Once you have created your project in the reference language, you can translate the texts
into the remaining project languages. Select a project language respectively as an edit
language and edit the texts for the appropriate language variant. You can change the editing
language at any time.
Note
When switching the project languages, the assignment to the keys on the keyboard also
changes. For some languages (for example, Spanish), the operating system does not allow
you to switch to the corresponding keyboard assignment. In this case, the keyboard
assignment is switched to English.

• Runtime languages
Runtime languages are those project languages that are transferred to the HMI device. You
decide which project languages to transfer to the HMI device depending on your project
requirements.
You must provide appropriate operator controls so that the operator can switch between
languages in Runtime.

WinCC Unified
3.15 Configuring in multiple languages

226 System Manual, 11/2022

3.15.2 Settings for languages in the operating system

Introduction
The configuration PC operating system settings influence WinCC language management in the
following areas:
• Selection of project languages
• Regional format of dates, times, currency, and numbers
• Displaying ASCII characters

Project language selection
A language is not available as a project language unless it is installed in the operating system.

Regional format of dates, times, currency, and numbers
WinCC specifies a fixed date and time format in the Date - Time field for the selected project
language and runtime language.
In order for dates, times, and numbers to be presented correctly in the selected editing
language, this language must be set in the Regional Options in the Control Panel.

Displaying ASCII characters
With text output fields, the display of ASCII characters as of 128 depends on the set language and
the operating system being used.
If the same special characters are to be displayed on different PCs, the PCs must use the same
operating system and regional settings.

3.15.3 Settings for Asian languages in the operating system

Settings on Western operating systems
If you want to enter Asian characters, you must enable support for this language in the operating
system.
The Input Method Editor (IME) is available in Windows for configuring Asian texts. Without
this editor, you can display Asian text but not edit it. For more information on the Input
Method Editor, refer to the documentation for Windows. To enter Asian characters when
configuring, switch to the Asian entry method in the "Input Method Editor".
Switch the operating system to the appropriate language to have language-specific project
texts, such as alarm texts, displayed in the simulator in Asian characters.

WinCC Unified
3.15 Configuring in multiple languages

System Manual, 11/2022 227

Settings on Asian operating systems
If you are configuring on an Asian operating system, you must switch to the English default input
language to enter ASCII characters, for example, for object names. As the English default input
language is included in the basic installation of the operating system, you do not need to install
an additional input locale.

Enabling language support
1. Open "Settings" from the Windows Start menu.
2. Select "Time & Language > Language".
3. Select "Preferred languages > Add a language".
4. Select the language.

The "Install language features" dialog box is displayed.
5. Install the selected language pack and enable additional options, if necessary
6. Under "Related settings > Administrative language settings", you can find settings for

programs that do not support Unicode.

Note
The options may be named or arranged differently depending on the operating system.

3.15.4 Setting project languages

3.15.4.1 Selecting the user interface language

Introduction
The user interface language is used for displaying menu entries, title bars, infotext, dialog texts
and other designations in the WinCC user interface.
You can switch between the installed user interface languages during configuration. The
labeling of the operating elements remains in the language you set when you added the
object even if you change the user interface language.

Procedure
1. Select "Options > Settings" in the menu.

The "Settings" dialog box is opened.
2. Select the user interface language under "General > General".

Result
WinCC will use the selected language as user interface language.

WinCC Unified
3.15 Configuring in multiple languages

228 System Manual, 11/2022

3.15.4.2 Enabling project languages

Introduction
The project languages are set in the "Project languages" editor. You define which project
language is to be the reference language and which the editing language.

Enabling project languages
1. Click on the arrow to the left of "Languages & resources" in the project tree.

The lower-level elements will be displayed.
2. Double-click on "Project languages".

The possible project languages will be displayed in the working area.
3. Enable the relevant project languages.

Note
Copying multilingual objects
The copies of multilingual objects to a different project only include text objects in the project
languages which are activated in the target project. Activate all project languages in the
target project to include the corresponding text objects when transferring the copy.

Disabling project languages
1. Disable the languages which are not relevant for the project.

NOTICE
If you disable a project language, all text and graphic objects you have already created in this
language will be deleted from the current project.

3.15.4.3 Selecting the reference language and editing language

Introduction
The project languages are set in the "Project languages" editor. You define which project
language is to be the reference language and which the editing language. You can change the
editing language at any time.

Requirements
The "Project languages" editor is open.
Several project languages have been activated.

WinCC Unified
3.15 Configuring in multiple languages

System Manual, 11/2022 229

Selecting the reference language and editing language
1. Click the arrow in the drop-down list in the "General > Editing language" section.
2. Click the required language in the drop-down list, for example, German.
3. Click on the arrow in the drop-down list in the "General > Reference language" section.
4. Click the required language in the drop-down list, for example, English.
The language selection is displayed in the list box.

Result
You have now selected the editing and reference languages.
If you change the editing language, all future text input will be stored in the new editing
language.

See also
Configuring multilingual alarm texts (Page 747)

WinCC Unified
3.15 Configuring in multiple languages

230 System Manual, 11/2022

3.15.5 Creating one project in multiple languages

3.15.5.1 Working with multiple languages

Multilingual configuration in WinCC
You can configure your projects in multiple languages using WinCC. There are various reasons
for creating a project in multiple languages:
• You would like to use a project in more than one country.

You would like to create the project in multiple languages. When the HMI device is
commissioned, only the language spoken by the operators at the respective site is transferred
to the HMI device.

• The operators of a system speak different languages.
Example: An HMI device is used in Germany, but the operating personnel understand only
English.

Translating project texts
With WinCC, you can enter project texts directly in multiple languages in various editors, for
example, in the "Project texts" editor. WinCC also allows you to export and import your
configuration for translation purposes. This is advantageous if you configure projects containing
a large amount of text and want to have it translated.

Language management and translation in WinCC
The following editors are used to manage languages and translate texts in WinCC:

Editor Short description
Project languages Selection of project languages, editing language and reference lan‐

guage.
Languages and fonts Selection of Runtime languages and the fonts used on the HMI device.
Project texts Central management of configured texts in all project languages.
Project graphics Project graphics for managing graphics and their language-specific ver‐

sions.

See also
Configuring multilingual alarm texts (Page 747)

WinCC Unified
3.15 Configuring in multiple languages

System Manual, 11/2022 231

3.15.5.2 Basics of project texts

Texts in different languages in the project
Texts that are output on HMI devices during process operation are typically entered in the
language in which the automation solution is programmed. Comments and the names of
objects are also entered in this language.
If operators do not understand this language, they require a translation of all operator-
relevant texts into a language they understand. You can therefore translate all the texts
into any language. In this way, you ensure that anyone who is subsequently confronted with
the texts in the project sees the texts in his/her language of choice.

User texts and system texts
In the interests of clarity, a distinction is drawn between user texts and system texts:
• User texts are texts created by the user.
• System texts are texts created automatically and which are a product of configuration in the

project.
The project texts are managed in the project text editor. This can be found in the project tree
under "Languages & Resources > Project texts".

Examples of multilingual project texts
You can create and manage the following text types in multiple languages:
• Display texts
• Alarm texts
• Comments in tables
• Labels of screen objects
• Texts in text lists

Translating texts
There are two ways of translating texts.
• Translating texts directly

You can enter the translations for the individual project languages directly in the "Project
texts" editor.

• Translating texts using reference texts
You can change the editing language for shorter texts. You can enter the new texts in the
editing language while the texts of the reference language are displayed.

WinCC Unified
3.15 Configuring in multiple languages

232 System Manual, 11/2022

Missing translation for texts of screen elements

Note
If no translation in the current user interface language exists for a text of a screen element, the
text entered for the default language is displayed.

See also
Configuring multilingual alarm texts (Page 747)

3.15.5.3 Translating texts directly

Translating texts
If you use several languages in your project, you can translate individual texts directly. As soon
as you change the language of the software user interface, the translated texts are available in
the selected language.

Requirements
• You are in the project view.
• A project is open.
• You have selected at least two other project languages.

WinCC Unified
3.15 Configuring in multiple languages

System Manual, 11/2022 233

Procedure
Proceed as follows to translate individual texts:
1. Click on the arrow to the left of "Languages & resources" in the project tree.

The elements below this are displayed.
2. Double-click on "Project texts".

A list with the texts in the project is displayed in the work area. There is a separate column for
each project language.

3. To group identical texts and translate them simultaneously, click " " in the toolbar.
4. To hide texts that do not have a translation, click in the toolbar.
5. Click a cell and enter the translation.

Result
You have translated individual texts in the "Project texts" editor. The texts will then be displayed
in the runtime language.

See also
Configuring multilingual alarm texts (Page 747)
Configuring optional parameters for discrete alarms and analog alarms (Page 745)

3.15.5.4 Translating texts using reference texts

Introduction
After changing the editing language, all texts are shown in input boxes in the new editing
language. If there is not yet a translation available for this language, the input boxes are empty or
filled with default values.

WinCC Unified
3.15 Configuring in multiple languages

234 System Manual, 11/2022

If you enter text again in an input field, this is saved in the current editing language.
Following this, the texts exist in two project languages for this input field, in the previous
editing language and in the current editing language. This makes it possible to create texts in
several project languages.
You can display existing translations for an input box in other project languages. These serve
as a comparison for text input in the current editing language and they are known as the
reference language.

Requirement
There is at least one translation into a different project language for an input field.

Procedure
To display the translation of an input cell in a reference language, follow these steps:
1. Select "Tasks > Languages & resources" in the task card.
2. Select a reference language from the "Reference language" drop-down list.

Result
The reference language is preset. If you click in a text field, translations that already exist in other
project languages are shown in the "Tasks > Reference language" task card.

3.15.5.5 Exporting project texts
Project texts are exported for translation. Texts are exported to Office Open XML files ending in
".xlsx". These can be edited in Microsoft Excel, for example.
You can exchange the file with the translators and import it directly back into the project
after translation.

Requirements
• At least two languages have been enabled in the "Project languages" editor, e.g. Italian and

French.

Exporting project texts
To export individual project texts, proceed as follows:
1. Click on the arrow to the left of "Languages & resources" in the project tree.

The child elements are displayed.
2. Double-click on "Project texts". The "Project texts" editor will open.
3. Select the texts you want to export.

WinCC Unified
3.15 Configuring in multiple languages

System Manual, 11/2022 235

4. Click on the button. The "Export" dialog box opens.

5. Select the language you want to translate from in the "Source language" drop-down list.
6. Select the check box(es) for the target language(s) into which you want the texts to be

translated.
7. Under "Select content", select the categories of texts you want to translate.
8. In the "Export file" input field, specify the file name for the export file.
9. Enter a file path for the export file in the "Path" input field.
10.Click "Export".

WinCC Unified
3.15 Configuring in multiple languages

236 System Manual, 11/2022

Result
The texts selected in the "Project texts" editor are written to an xlsx file. The xlsx file will be stored
in the specified folder.

Note
Project texts in library objects cannot be exported.

See also
Configuring optional parameters for discrete alarms and analog alarms (Page 745)

3.15.5.6 Importing project texts
Once translation is complete, import the xlsx file with the translated texts. The target languages
are imported to the corresponding object in the project.

Note
In WinCC, you import previously exported project texts only into the source project. Importing
into a different project is not supported.

Requirements
• At least two languages have been enabled in the "Project languages" editor.

Importing project texts
To import a file with project texts, proceed as follows:
1. Click on the arrow to the left of "Languages & resources" in the project tree.

The lower-level elements will be displayed.
2. Double-click on "Project texts".

The "Project texts" editor will open.
3. Click on the button. The "Import" dialog box opens.
4. Select the path and the file name of the import file from the "Select file for import" field.
5. Activate the "Import source language" check box if you have made changes to the source

language in the export file and would like to overwrite the entries in the project with the
changes.

6. Click on "Import".

Result
You have imported the project texts.

WinCC Unified
3.15 Configuring in multiple languages

System Manual, 11/2022 237

See also
Configuring multilingual alarm texts (Page 747)

3.15.6 Using language-specific graphics

3.15.6.1 "Project graphics" editor

Introduction
You use the "Project graphics" editor to manage the configured graphic objects in different
language versions. Multilingual projects require language-dependent versions of the graphics,
for example, if:
• The graphics contain text
• Cultural aspects play a role

Opening the "Project graphics" editor
• Double-click in the project tree on "Languages and resources > Project graphics".

Work area
The work area displays all configured graphic objects in a table. There is a separate column in the
table for each project language. Each column in the table contains the versions of the graphics
for one particular language.
In addition, you can specify a default graphic for each graphic to be displayed whenever a
language-specific graphic for a project language does not exist.

Preview
The preview shows you how the graphics will look on various HMI devices.

WinCC Unified
3.15 Configuring in multiple languages

238 System Manual, 11/2022

3.15.6.2 Storing an image in the project graphics

Introduction
You use the "Graphics" editor to import graphics for use in screen objects in the "Screens" editor.
Here you import and manage language-dependent graphic versions. A preview shows how the
graphic looks on various HMI devices.

Note
File names for language-dependent graphics
Case is relevant in the file names of language-dependent graphics. Make sure to use the same
spelling for all languages.

Note
File format of language-dependent graphics
In the language-dependent versions of a graphic, use only graphic files with the same format.
Graphic versions with different file formats are not supported.

Requirement
• The language-dependent versions of a graphic are available.
• Multiple languages have been enabled in the "Project languages" editor.
• The "Graphics" editor is open.

Adapting the view of the project graphics
1. To show/hide the columns with language-dependent graphics, click on .
2. To add another project language to the table, click on .

Inserting graphics
1. Click "<Add>" in the "Project graphics" table.

The dialog for selecting a file opens.
2. Select the graphic file and click "Open."

The graphic is inserted into the project as a standard graphic and displayed in all cells of this
row in the "Graphics" editor.
The standard graphic is displayed in Runtime for languages for which there is no language-
specific graphic.

3. Right-click in the cell of a language for which a language-dependent version of this graphic
is to be imported.

WinCC Unified
3.15 Configuring in multiple languages

System Manual, 11/2022 239

4. Select "Replace with graphic" in the shortcut menu.
The dialog for selecting a file opens.

5. Select the graphic file and click "Open."
The language-dependent version of the graphic is inserted in the table.

Alternatively, you can drag&drop a graphic from Windows Explorer to the desired position in
the "Project graphics" table.

Inserting graphics by copying
1. Select "Copy" in the shortcut menu of an existing graphic.
2. Select "Paste" in the shortcut menu of an empty cell.

A new row is inserted. The copied graphic is inserted for all languages.
3. Select "Paste" in the shortcut menu of a filled cell.

The existing graphic is replaced by the copied graphic.

Displaying graphics in the device preview
1. Select an HMI device in the "Select device for preview" drop-down list in the editor.
2. Click on a graphic in the table.

In the Inspector window under "Properties > General > Preview for HMI device", you see the
graphic as it will appear in Runtime on the selected HMI device.

Result
The inserted graphics are available in the project. The graphic assigned to the respective editing
language will be displayed during editing. The standard graphic is displayed in editing languages
for which no screen has been imported.
The screens assigned to the respective Runtime language are displayed in Runtime. The
standard graphic is displayed in Runtime languages for which no screen has been imported.

Note
If you disable a project language, all previously inserted graphics in this language are deleted in
the current project.

3.15.6.3 Storing an external image in the project graphics

Introduction
To use a graphic created in an external graphics program in screens, you add it to the project
graphics.

WinCC Unified
3.15 Configuring in multiple languages

240 System Manual, 11/2022

Requirement
• Multiple languages have been enabled in the "Project languages" editor.
• The "Graphics" editor is open.
• There is a graphic in the "Graphics" editor.

Creating and adding a new graphic as an OLE object
1. Right-click in a cell containing a graphic.
2. Select "Replace with object" in the shortcut menu.

The "Insert object" dialog box opens.
Note
In addition, the "External application running..." dialog opens. The dialog is closed when the
external application has finished.

3. Select "Insert object > Create new" and an object type in the dialog.
4. Click "OK."

The graphics program assigned by the operating system opens.
5. Create the graphic.
6. Close the graphics program.

The graphic is saved in the standard format of the graphics program and inserted into the
project graphics.

Result
The inserted OLE objects are available in the "Graphics" editor.
Versions of the graphics for the current editing language are displayed in the "Screens"
editor. The default graphic is displayed in all editing languages for which no screen has been
imported.
The graphic is displayed in Runtime in the set Runtime language. The default graphic is
displayed in all Runtime languages for which no graphic has been imported.

3.15.6.4 Editing a graphic
Graphics can be edited directly from the project graphics with an external graphics program.

Requirement
• The "Graphics" editor is open.
• There is a graphic in the "Graphics" editor.

WinCC Unified
3.15 Configuring in multiple languages

System Manual, 11/2022 241

Editing a graphic
1. Select "Edit" in the shortcut menu for a graphic.

The assigned program, e.g. "Paint", opens.
Note
In addition, the "External application running..." dialog opens. The dialog is closed when the
external application has finished.

2. Edit the graphic.
3. Close the external program, e.g. with the "Close and return to document" command.

The edited graphic is available in the project graphics.

3.15.7 Languages and fonts in runtime

3.15.7.1 Using multiple runtime languages
In the Runtime settings, you define which project languages are used in Runtime on a particular
HMI device. The number of Runtime languages that are available at one time on the HMI device
depends on the device. To enable the operator to switch between languages in Runtime, you
need to configure a corresponding operator control.
1. In "Languages & Resources", you configure project languages that are available as Runtime

languages for the respective device.
2. In "Runtime settings > Language & Font", you define the order in which the languages are

switched.

At Runtime start, the Runtime project is displayed in the language that is set in the "User
login" dialog. If this language is not configured in the Runtime settings of the HMI device, the
language with the lowest number in the "Order" column is used.
You change the order with . Four predefined fonts are stored for each language. The
fixed font 1 is always provided for the respective HMI device.

WinCC Unified
3.15 Configuring in multiple languages

242 System Manual, 11/2022

3.15.7.2 Own fonts

Downloading your own font

Using fonts that require licenses on HMI devices
When a font that requires a license is installed on your configuration PC, you can load this font
onto your HMI device under certain conditions. Whether or not you can load the font onto your
HMI device depends on the embeddability of the font.
Check the properties of the font in Windows:
1. Open the "C:\Windows\Fonts" folder in Windows Explorer.
2. Select the desired font.

If several fonts are grouped into a font family, click on the entry for the font family. The
individual fonts are now displayed.

3. Right-click the entry for the font.
4. Select "Properties".
5. In the "Details" tab, you find information about the embeddability of the font and the license

terms and conditions.
The embeddability of fonts can have the following statuses:
• "Installable" status: Font can be installed on your HMI device without an additional license.
• "Editable" status: Font can be installed on your HMI device without an additional license.
• "Preview/Print" status: Warning during compilation that the font cannot be installed on your

HMI device.
• "Restricted license embedding" status: Font can be installed on your HMI device with an

additional license.
• "Bitmap embedding only" status: Compilation of the project is aborted with an error; the font

cannot be installed on your HMI device.
• "No subsetting" status: Warning during compilation that the font can only be loaded onto the

HMI device as a complete set. Substitute fonts and options for partial fonts cannot be used
during compilation.

Note
The fonts configured in the Engineering System (TrueType fonts) are converted into web fonts
and both TrueType fonts and web fonts are downloaded to the Runtime machine: WinCC Unified
PC (Windows) or Unified Comfort Panel (Linux). The user is responsible for ensuring that the
license of the fonts used allows this.

WinCC Unified
3.15 Configuring in multiple languages

System Manual, 11/2022 243

Additional information is available under Font redistribution (https://docs.microsoft.com/
en-us/typography/fonts/font-faq#document-embedding) and OpenType_fsType (https://
docs.microsoft.com/en-us/typography/opentype/spec/os2#fstype).

Loading fonts onto the HMI device

Introduction
When a font that requires a license is installed in Windows on your configuration PC, you can also
use this font on your HMI device under certain conditions. You are responsible for ensuring that
your devices have valid licenses.

Downloading a customer-specific font
The TIA Portal project does not include any configured TrueType or Web fonts. The Runtime font
conversion uses an RDF filed that was written in the RDF language (Resource Description
Framework) and is used for displaying information on the resources. The RDF file contains
metadata in a structured format; the metadata comprise the font file (ttf) as CSD resource.
The result of the GetNearestFont mechanism is transferred to the Runtime. The
GetNearestFont function first searches for the font of the same name. If such a font does
not exist, other fonts are checked one after the other.

Note
The fonts configured in the Engineering System (TrueType fonts) are converted into web fonts
and both TrueType fonts and web fonts are downloaded to the Runtime machine: WinCC Unified
PC (Windows) or Unified Comfort Panel (Linux). The user is responsible for ensuring that the
license of the fonts used allows this.

Additional information is available under Font redistribution (https://docs.microsoft.com/
en-us/typography/fonts/font-faq#document-embedding) and OpenType_fsType (https://
docs.microsoft.com/en-us/typography/opentype/spec/os2#fstype).

3.15.7.3 Methods for language switching

Introduction
To enable switching between configured Runtime languages on the HMI device, you provide a
language switching means. This is necessary to enable the operator to switch between the
various Runtime languages.

WinCC Unified
3.15 Configuring in multiple languages

244 System Manual, 11/2022

https://docs.microsoft.com/en-us/typography/fonts/font-faq#document-embedding
https://docs.microsoft.com/en-us/typography/fonts/font-faq#document-embedding
https://docs.microsoft.com/en-us/typography/opentype/spec/os2#fstype
https://docs.microsoft.com/en-us/typography/opentype/spec/os2#fstype
https://docs.microsoft.com/en-us/typography/fonts/font-faq#document-embedding
https://docs.microsoft.com/en-us/typography/fonts/font-faq#document-embedding
https://docs.microsoft.com/en-us/typography/opentype/spec/os2#fstype
https://docs.microsoft.com/en-us/typography/opentype/spec/os2#fstype

Methods for language switching
You can configure the following methods for language switching:
• Direct language selection

Each language is set by means of a separate button. You create a button for each Runtime
language.

• Language switching
The operator switches the languages using a button. Each click of the button changes the
Runtime language to the next Runtime language.

Regardless of the method used, the button names must be translated into each of the
languages used. You can also configure an output field that displays the current language
setting.

3.15.7.4 Starting a project in a different language

Introduction
If the language "German" is configured in Unified Comfort Panel, the Runtime project is always
started in German, regardless of the defined language sequence.
To start the project in another language, use the "HMIRuntime.Language" system function.

Procedure
Proceed as follows to start a project once automatically in English:
1. Create a "Bool" type tag, for example, "doOnlyAtStartup".
2. For the project start screen, link the "Loaded" event with the following script:

export function Screen_1_OnLoaded(item)
{
if(!Tags('doOnlyAtStartup').Read())
{
HMIRuntime.Language = 1033;
Tags('doOnlyAtStartup').Write(true);
}
}

To start the project in another language, enter the decimal Windows Locale Code
(LCID=Locale ID) for the desired language instead of "1033". You can find the LCIDs on the
Internet, for example.

WinCC Unified
3.15 Configuring in multiple languages

System Manual, 11/2022 245

3.15.7.5 Enabling the runtime language

Introduction
The "Language & Font" editor shows all project languages available in the project. You select
which project languages are to be available as Runtime languages on the HMI device.

Requirements
Multiple languages have been selected in the "Project languages" editor.

Procedure
1. Double-click on "Runtime settings" in the project tree.
2. Click on "Language & Font".
3. Select the following languages:

– English
– French
– Italian

Result
You have now set three Runtime languages. A number is automatically assigned to each
language in the "Order" column. The enabled Runtime languages are loaded onto the HMI device
with the compiled project.
If the number of languages selected exceeds the number that can be transferred to the HMI
device, the table background changes color.

WinCC Unified
3.15 Configuring in multiple languages

246 System Manual, 11/2022

3.15.7.6 Standardizing font for all languages

Introduction
You can standardize the font for all project languages during configuration with the "Use same
font for all languages" option.

Requirement
• Multiple languages have been selected in the "Project languages" editor.
• Multiple languages have been selected in the "Language & font" editor.
• The same font is defined for the selected runtime languages under "Configured font".

Procedure
1. In the "Options > Settings > Visualization > General" menu, select the "Use same font for all

languages" option.

Result
You have enabled the option "Use same font for all languages". If you change the font of an
object in one language during configuration, this font will be applied to all active languages.

3.15.7.7 Specific features of Asian and Eastern languages in runtime

Introduction
Note the following special considerations for the operation in Runtime of projects for Asian
languages.

Note
During configuration, only use the Asian fonts that your configuration computer supports.

WinCC Unified
3.15 Configuring in multiple languages

System Manual, 11/2022 247

Memory requirement for Asian character sets
The memory requirement is greater when using Asian languages. Therefore look out for
corresponding error messages when compiling the project.

Font size for Asian character sets
Use at least a font size of 10 points to display the text of projects created for Asian languages in
Runtime. Asian characters will become illegible if smaller font sizes are used. This also applies to
the default font in the Runtime settings under "Language & font".

3.16 Performance features

3.16.1 General technical data

3.16.1.1 SIMATIC Unified Comfort Panel

Unified Comfort Panel
The following tables of performance features help you to assess whether your project conforms
to the system limits of a given HMI device.
The specified maximum values are not additive. It cannot be guaranteed that configurations
running on the devices at the full system limits will be functional.
Furthermore, the complexity of configuring the screens, such as the number of objects per
screen, the number of tag connections, cycle times and scripts, has a significant influence on
the open screen times and the performance in runtime.
In addition to the specified limits, allowances must be made for restrictions imposed by
configuration memory resources.

Tags
 Unified Comfort 7-12" Unified Comfort 15-22"
Number of tags in the project 8000
Number of elements per array 1600

Alarms
 Unified Comfort 7-12" Unified Comfort 15-22"
Number of alarm classes 32
Number of discrete alarms 9000
Number of analog alarms 300

WinCC Unified
3.16 Performance features

248 System Manual, 11/2022

 Unified Comfort 7-12" Unified Comfort 15-22"
Size of the alarm buffer 1) 2000
Length of an alarm in characters 512
Number of alarm texts per alarm 10
Number of process values per alarm 10
Number of queued alarm events 750
Number of controller alarms 160000
Number of OPC UA A&C alarms 20000

1) Corresponds to the number of all states of the messages of all configured alarm classes
and includes the alarms of alarm classes which are not shown in an alarm view due to
the configuration.

Number of alarms that can be displayed in an alarm view
The maximum number of alarms that can be displayed in runtime depends on the selected view.

 Unified Comfort 7-12" Unified Comfort 15-22"
Show active alarms No restriction
Show defined alarms No restriction
Alarm statistics - view No restriction
Show logged alarms 1000
Show and update logged alarms 100

Screens
 Unified Comfort 7-12" Unified Comfort 15-22"
Maximum size in the engineering system 20,000 * 20,000 pixels
Maximum size in runtime 20,000 * 20,000 pixels
Number of screens 1200
Number of lower-level screen windows 10
Number of objects per screen 800 1200
Number of objects from the "Controls" area per
screen

40 80

Number of tags per screen 600 800

Parameter sets
 Unified Comfort 7-12" Unified Comfort 15-22"
Number of parameter set types 750
Number of parameter set type elements 1000

WinCC Unified
3.16 Performance features

System Manual, 11/2022 249

 Unified Comfort 7-12" Unified Comfort 15-22"
Number of parameter sets 2000
Reserved memory for data records in the internal
Flash

12 MB

Libraries
 Unified Comfort 7-12" Unified Comfort 15-22"
Number of versions of dynamic SVGs 1000 with an average size of 10 KB

Logs
 Unified Comfort 7-12" Unified Comfort 15-22"
Number of logs 50
Maximum size of a log 4 TB
Maximum size of a segment 4 TB
Number of logging tags: SQLite: 5000
Memory requirements of the data log
Size of entry of logging tag The size of the entry of a logging tag is largely determined by the data type.

Depending on the data type, the following memory requirements apply:
• 32-bit value, e.g. Bool, Int, LReal, ... : ~ 80 byte / entry
• 64-bit value, e.g. LInt, DateTime, LTime, … ~ 106 byte / entry
• Text value (any length), e.g. WString, WChar: ~ 586 bytes/entry

Additional memory requirement of a segment: SQLite: Approx. 0.5 MB
Memory requirements of the alarm log
Basic entry in the alarm log without alarm text: SQLite: Approx. 300 bytes
Memory requirement of the alarm text per char‐
acter and language:

SQLite: at least 1 byte

Additional memory requirement per language
(one-off):

SQLite: Approx. 100 bytes

Trends
 Unified Comfort 7-12" Unified Comfort 15-22"
Number of trends 600
Number of trends per trend control 20
Number of trend areas per trend control 2 5

WinCC Unified
3.16 Performance features

250 System Manual, 11/2022

Text lists and graphics lists
 Unified Comfort 7-12" Unified Comfort 15-22"
Number of graphics lists 750
Number of text lists 750
Number of entries per text or graphics list 750
Number of graphic objects 6000
Number of text elements 60000

Scripts
 Unified Comfort 7-12" Unified Comfort 15-22"
Number of scripts 600
Number of functions per function list 25

Scheduler
 Unified Comfort 7-12" Unified Comfort 15-22"
Number of tasks, time- or event-triggered 70

Communication
 Unified Comfort 7-12" Unified Comfort 15-22"
Number of S7 connections 16

Reporting
 Unified Comfort 7-12" Unified Comfort 15-22"
Number of templates --
Number of report tasks --
Number of report tasks started at the same time --
Number of reports executed at the same time --

OPC UA
 Unified Comfort 7-12" Unified Comfort 15-22"
Number of connected OPC UA clients 3

WinCC Unified
3.16 Performance features

System Manual, 11/2022 251

Languages
 Unified Comfort 7-12" Unified Comfort 15-22"
Number of runtime languages 32

User management
 Unified Comfort 7-12" Unified Comfort 15-22"
Number of roles 50
Number of predefined function rights 20
Number of users 200

Project
 Unified Comfort 7-12" Unified Comfort 15-22"
Size of the project files on the device < 100 MB

3.16.1.2 SIMATIC Unified PC

Unified PC based
The following tables of performance features help you to assess whether your project conforms
to the system limits of a given HMI device.
The specified maximum values are not additive. It cannot be guaranteed that configurations
running on the devices at the full system limits will be functional.
Furthermore, the complexity of configuring the screens, such as the number of objects per
screen, the number of tag connections, cycle times and scripts, has a significant influence on
the open screen times and the performance in runtime.
In addition to the specified limits, allowances must be made for restrictions imposed by
configuration memory resources.

Tags
 SIMATIC Unified PC
Number of PowerTags 600000 (depends on the license)
Number of internal tags 200000
Number of elements per array 2000

WinCC Unified
3.16 Performance features

252 System Manual, 11/2022

Alarms
 SIMATIC Unified PC
Number of alarm classes 32
Number of discrete alarms 200000
Number of analog alarms 10000
Length of an alarm in characters 512
Number of alarm texts per alarm 10
Number of process values per alarm 10
Number of alarms for every second (continuous
load)

20

Number of queued alarm events unlimited
Number of alarms for every 10 seconds (alarm
burst)

8000

Number of controller alarms 160000
Number of OPC UA A&C alarms 20000

Number of alarms that can be displayed in an alarm view
The maximum number of alarms that can be displayed in runtime depends on the selected view.

 SIMATIC Unified PC
Show active alarms No restriction
Show defined alarms No restriction
Alarm statistics - view No restriction
Show logged alarms 1000
Show and update logged alarms 100

Screens
 SIMATIC Unified PC
Maximum size in the engineering system 20,000 * 20,000 pixels
Maximum size in runtime 20,000 * 20,000 pixels
Number of screens 2000
Number of lower-level screen windows unlimited
Number of objects per screen 1500
Number of tags per screen 1000

WinCC Unified
3.16 Performance features

System Manual, 11/2022 253

Parameter sets
 SIMATIC Unified PC
Number of parameter set types 1000
Number of parameter set type elements 1000
Number of parameter sets 5000

Libraries
 SIMATIC Unified PC
Number of versions of dynamic SVGs 1000 with an average size of 10 KB

Logs
 SIMATIC Unified PC
Number of logs 100
Maximum size of a log 4 TB
Maximum size of a segment 4 TB
Number of logging tags: SQLite: 5000

Microsoft SQL: maximum number of PowerTags
Number of entries in the data log per second with
Microsoft SQL

Microsoft SQL: 30000

Memory requirements of the data log
Size of entry of logging tag The size of the entry of a logging tag is largely determined by the data type.

Depending on the data type, the following memory requirements apply:
• 32-bit value, e.g. Bool, Int, LReal, ... : ~ 80 byte / entry
• 64-bit value, e.g. LInt, DateTime, LTime, … ~ 106 byte / entry
• Text value (any length), e.g. WString, WChar: ~ 586 bytes/entry

Additional memory requirement of a segment: SQLite: Approx. 0.5 MB
Microsoft SQL: Approx. 5 MB

Memory requirements of the alarm log
Basic entry in the alarm log without alarm text: SQLite: Approx. 300 bytes

Microsoft SQL: Approx. 2000 bytes
Memory requirement of the alarm text per char‐
acter and language:

SQLite: at least 1 byte
Microsoft SQL: at least 2 bytes

Additional memory requirement per language
(one-off):

SQLite: Approx. 100 bytes
Microsoft SQL: Approx. 200 bytes

Additional memory requirement of a segment: Microsoft SQL: Approx. 3.5 MB

WinCC Unified
3.16 Performance features

254 System Manual, 11/2022

Trends
 SIMATIC Unified PC
Number of trends 1000
Number of trends per trend control 60
Number of trend areas per trend control 5

Text lists and graphics lists
 SIMATIC Unified PC
Number of graphics lists 1000
Number of text lists 2000
Number of entries per text or graphics list 3500
Number of graphic objects unlimited
Number of text elements unlimited

Scripts
 SIMATIC Unified PC
Number of scripts unlimited
Number of functions per function list 50

Scheduler
 SIMATIC Unified PC
Number of tasks, time- or event-triggered 200

Communication
 SIMATIC Unified PC
Number of S7 connections 1) 128

1) SIMATIC NET is required to use more than 8 connections.

Reporting
 SIMATIC Unified PC
Number of templates 500
Number of report tasks 500
Number of report tasks started at the same time 20
Number of reports executed at the same time 5

WinCC Unified
3.16 Performance features

System Manual, 11/2022 255

OPC UA
 SIMATIC Unified PC
Number of connected OPC UA clients 10

Languages
 SIMATIC Unified PC
Number of runtime languages 32

User management
 SIMATIC Unified PC
Number of roles 50
Number of predefined function rights 20
Number of users 200

Plant objects
 SIMATIC Unified PC
Number of plant object types 400
Number of plant object instances 65000
Number of hierarchy levels unlimited

3.16.2 Permitted special characters

Introduction
The following table shows the restrictions that must be observed when allocating names.

WinCC Unified
3.16 Performance features

256 System Manual, 11/2022

Permitted characters
Name Restriction
Device name The following constraints apply to the assignment of the device name:

• Do not use the following characters:
– , ; : ! ? " ' ^ ´ ` ~ _+ = / \ ¦ @ * # $ % & § ° () [] { } < >
– Spaces

• Use upper case only.
• The first character must be a letter.
• The first 12 characters of the device name must be unique.

Object names The use of the following special characters is not supported:
• Pipe |
• Forward slash /
• Inverted slash \
• Dot .
• Comma ,
• Semicolon ;
• Colon :
• Quotes "
• Apostrophe '
• Angle brackets < >
• Tilde ~
• Hash #
• Dollar $
• Star *
• Question mark ?
The use of the following control characters is not supported:
• \x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F

\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F
When creating scripts, also consider the restrictions relating to special characters of the programming
language.

User name The use of the following special characters is not supported:
• Forward slash /
• Comma ,
• Parenthesis { }

WinCC Unified
3.16 Performance features

System Manual, 11/2022 257

WinCC Unified
3.16 Performance features

258 System Manual, 11/2022

Configuring screens 4
4.1 Basics

4.1.1 Basics of screens

Introduction
In WinCC you create screens that a user can use to control and monitor machines and plants.
When you create screens, the pre-defined object templates support you in visualizing your plant,
displaying processes and specifying process values.

10

20

30

0 1 2 3 4 5 6 7

10

20

30

0 1 2 3 4 5 6 7

10

20

30

40

50

60

A

45%

B

45%

C

45%

D

45%

Structure of screens
Insert the objects you need to represent the process into your screen. Configure the objects to
match the requirements of your process.

System Manual, 11/2022 259

A screen can consist of static and dynamic elements:
• ① Static elements such as text or graphic objects in the screen above do not change in

runtime.
• ② Dynamic elements change their status based on the process. You visualize current process

values from the memory of the PLC or the HMI device. Dynamic objects include, for example,
alphanumeric displays, trends and bars, as well as input fields on the HMI device, such as IO
fields, switches and sliders. Process values and operator inputs are exchanged between the
PLC and the HMI device by means of tags.

Start screen
The start screen is the initial screen displayed when the project is started in runtime. From the
start screen, the operator can navigate to the other screens.
To compile and download a project, a screen must be defined as the start screen in the project.

Screen window
You display other project screens in the screen window. The screen window enhances
navigation between screens and allows "screen in a screen" display.
You can use screen windows for purposes such as:
• Frequent switching between plant units
• Showing and hiding screens, for example without exiting central process visualization
• Displaying multiple plant units in one screen

4.1.2 Changing the screen resolution

Introduction
The default screen size is adjusted to the resolution of the device.
You change the screen resolution in the runtime settings of the device.

Configuring a fixed screen resolution
To change the screen resolution, follow these steps:
1. Open the runtime settings of the device.
2. Select the screen resolution under "General > Screen > Screen resolution".

Configuring screens
4.1 Basics

260 System Manual, 11/2022

The screen resolution is adapted.

Scrolling in the screen
If not all objects are visible in the screen, a scroll bar appears on the right edge of the screen.
To view all objects, move the scroll bar up and down with the mouse.

Tip for working effectively

• Place the mouse cursor in the screen. Move forward or backward with the mouse wheel to
scroll up and down in the screen.

4.1.3 Using styles

4.1.3.1 Basics on working with styles
You can assign a predefined style to the objects of the WinCC Unified device.
You can choose from the bright, dark or extended style.

Configuring screens
4.1 Basics

System Manual, 11/2022 261

Bright style

Dark style

Configuring screens
4.1 Basics

262 System Manual, 11/2022

Expanded style

4.1.3.2 Defining the style

Introduction
You can specify predefined styles for Unified devices. Predefined styles are write-protected and
cannot be changed.

Defining the style
To specify a style, follow these steps:
1. Open the "Runtime settings" folder in the project tree.
2. Select the desired style under "General > Screen":

– Bright style
– Dark style
– Expanded style

Configuring screens
4.1 Basics

System Manual, 11/2022 263

Result
You have specified a new style that is applied to objects or projects.

4.1.3.3 Switching styles by means of user-defined functions
In runtime, you can change the style with user-defined functions.

//Switch to bright style
HMIRuntime.UI.Style = "FlatStyle_Bright";
//Switch to dark style
HMIRuntime.UI.Style = "FlatStyle_Dark";
//Switch to extended style
HMIRuntime.UI.Style = "ExtendedStyle";

Configuring screens
4.1 Basics

264 System Manual, 11/2022

Determining the currently defined style in runtime
In runtime, you can determine the style with user-defined functions.

let MyStyle;
MyStyle = HMIRuntime.UI.Style;
HMIRuntime.Trace("My current style is: " + MyStyle);

4.1.4 Task cards

Introduction
The following task cards are available in the "Screens" editor:
• Toolbox: Display and operating objects
• Layout: Aid for customizing the display
• Tasks: "Find and replace" function and language selection
• Libraries: Administration of the project library and of the global libraries

Toolbox
The "Toolbox" task card contains objects in different palettes:
• Basic objects
• Elements
• Controls
• My controls
• Graphics
• Dynamic widgets
You paste objects from the palettes into the screens by drag&drop or a double click. The
objects available for selection are determined by the features of the HMI device you are
configuring.
You can toggle between the following views in the "Toolbox" task card:
• Thumbnails view
• List view
In the symbol view you can switch the labeling of the objects on or off in the shortcut menu.

Configuring screens
4.1 Basics

System Manual, 11/2022 265

Layout
The "Layout" task card contains the following palettes for displaying objects and elements:
• Layers: Serves to manage screen object layers The layers are displayed in a tree view and

contain information about the active layer and the visibility of all layers.
• Objects out of range: Objects that lie outside the visible area are displayed with name,

position and type.

Tasks
The "Tasks" task card contains the following palettes:
• Find and replace: Used to search within an open editor. It includes all options that you need

for an efficient search. You have the option of replacing hits individually or automatically
replacing all the found texts.

• Languages and resources: Used to select the editing and reference language.

Libraries
The "Libraries" task card show the following libraries in separate palettes:
• Project library: In the "Project library" palette, you can store the library elements that you

want to use more than once in the project. The project library is stored together with the
project.

• Global library: In the "Global libraries" palette, you manage the global libraries whose library
elements you want to reuse over several projects. The global library is stored in a separate
file in the specified path on your configuration PC.

• Info (project library): The following is displayed in the "Info" palette:
– The contents of the library elements
– The individual versions of types
– The last date of change of the version

4.1.5 Defining the start screen:

Introduction
The start screen is the initial screen displayed when the project is started in runtime. Define a
start screen for each target system. From the start screen, the operator navigates to the other
screens.
To compile and download a project, a screen must be defined as the start screen in the
project.

Configuring screens
4.1 Basics

266 System Manual, 11/2022

Requirement
• A WinCC Unified PC or a Unified Comfort Panel is installed.
• At least one HMI screen is open.

Defining the start screen
To define the start screen, follow these steps:
1. In the project tree, right-click on the screen that you want to define as the start screen.
2. Select "Define as start screen" in the shortcut menu.
Alternatively, right-click in the open screen editor. Select "Define as start screen" in the
shortcut menu.
The selected screen is displayed as the start screen when the project is started in runtime.

4.1.6 Screen zooming

Introduction
You can zoom the screen from the zero point. The zero point is located in the upper left corner
of the screen.

Requirement
• A screen is open.

Configuring screens
4.1 Basics

System Manual, 11/2022 267

Zooming the screen from the zero point
To zoom a screen from the zero point, select one of the following options:
• Click the selection list in the lower-right corner of the screen editor.

– Select a percentage value.
The screen is enlarged or reduced by the selected percentage value.

– Select "Fit to screen", "Fit to width" or "Fit to height".
The screen is adapted to the window size, the width or the height of the screen.

• Click the scroll bar to zoom in or out of the screen.

The screen is enlarged or reduced by 25% with each click.
• Press <Ctrl>. Move the mouse wheel forward or backward at the same time to

enlarge or reduce the screen.

Objects in the zoomed screen
The size of the objects in the screen is adapted proportionally to the zoom factor.
For objects in a screen with a small zoom factor, the bounding box and the handles are
adjusted proportionally to the zoom factor.

Configuring screens
4.1 Basics

268 System Manual, 11/2022

4.2 Overview of screen objects

4.2.1 Show object type and name in the tooltip

Introduction
You can display the type and name of the object in the screen.

Displaying the object type and object name in the tooltip
To show the type and name of the object in the tooltip, follow these steps:
1. Move the cursor over the object in the screen.
2. Hover with the cursor over the object.
The type and name of the object are displayed in a tooltip.

4.2.2 Basic objects

4.2.2.1 Text box

Use
The "Text box" is a closed object which you can fill with a color. You create a text in the text box.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 269

Layout
In the Inspector window, you customize the position, geometry, style, color, and font types of
the object. You can adjust the following properties in particular:
• "Text": Specifies the text for the text box.
• "Text trimming": Specifies whether ellipsis is to be displayed after a line break for a long text.
• "Text break": Specifies whether the next word is to be automatically moved to the next row

for a long text.

Text
To define a text for the text box, follow these steps:
1. In the Inspector window, click "Properties > Properties > General > Font".
2. Select a font.
3. In the Inspector window, click "Properties > Properties > General > Text" .
4. Enter a text.

Efficiency tip

• Separate the words in the input window "Text" with <Shift+Return>. The words are displayed in individual rows in the text
box.

Direct text input
To change the labeling in the text box directly via the keyboard, follow these steps:
1. Select the text box.
2. Double-click in the text box and enter a text.
Note the following special information:
• Diacritics, such as ä ê ñ, can only be entered if the keyboard layout provides a key for this

character. Key sequences such as <`a> for à are not recognized.
• It is not possible to enter Unicode characters using Alt codes.
• Asian language characters cannot be entered using an Input Method Editor (IME).
If you need such characters in the label, you have the following options:
• Use a keyboard layout on which this character is present as a key.
• Copy the character or full label from any source and paste it into the selected object.
• Edit the label in the Inspector window under "Properties > Properties > General > Text".

Configuring screens
4.2 Overview of screen objects

270 System Manual, 11/2022

Trimming text
You can specify ellipsis characters for a text that cannot be displayed in full in the text box.
1. In the Inspector window, click "Properties > Properties > Format > Text trimming".
2. In the "Static value" column, select the option "With character ellipsis".
The text displayed is truncated with ellipsis.

Enabling line breaks
You can enable line breaks for a text that cannot be displayed in full in the text box. If you find
that the text box is large enough for display with line breaks:
1. In the Inspector window, click "Properties > Properties > Format > Text break".
2. Select the option "Word wrap" in the "Static value" column.
The text is displayed in full with line breaks.

Dynamizing a text box with text list
To dynamize the text box with text list, follow these steps:
1. Create a text box.
2. Select a resource list in the "Dynamization" column in the Inspector window under

"Properties > Properties > General > Text".
3. Select an existing tag or create a new tag using the "Add" button under "Resource list >

Settings > Tag".
4. Select an existing text list or add a new text list using the "Add" button under "Resource list

> Settings > Resource list".

Efficiency tip

• You can create a text box by dragging-and-dropping a text list from the detail view of the text and graphics lists into the
screen. The text box is linked to the text list. Configure the tags whose values determine the display in the text box.

Dynamizing a text box
Drag-and-drop a tag from the detail view of the tag table directly into the text box. The text box
is linked to the tag and the tag name appears in the text box.

See also
Entering multiline text (Page 407)
Enter text directly into the object (Page 406)

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 271

4.2.2.2 Graphic view

Use
The "Graphic view" object is used to display graphics.

Use the following graphic formats in the "Graphic view" object: *.bmp, *.ico, *.gif, *.tiff,
*.png, *.svg, *.jpeg, *.jpg. The graphic format *.gif is displayed animated. You can also use
graphics as OLE objects in the Graphic view.
High-resolution graphic objects require a lot of memory in the project and cause long
loading times. In addition, the performance in runtime decreases. Use graphic objects with a
resolution that is sufficient for a high-quality display in the runtime project. Note the display
resolution of the target device and the size in which the graphic object is displayed on the
display of the target device. Adapt the resolution of large graphic objects accordingly before
using them in your project.

Layout
In the Inspector window, you customize the settings for the position, shape, style, and color of
the object. You can adapt the following properties in particular:
• "Graphic": Specifies the graphic file that is displayed in the object.
• "Background graphic - scale": Specifies how the graphic is scaled.

Inserting graphics
1. In the Inspector window, click "Properties > Properties > General > Graphic".
2. In the "Static value" column, click the arrow in the text box. Graphics from the graphics

collection are displayed in the preview. You have the following options for inserting a graphic:
– Select a graphic from the graphics collection.
– Insert a graphic from a file using the button.
– Create a new graphic from an OLE object using the button.

3. Click "Apply" to insert the graphic in the Graphic view.

Configuring screens
4.2 Overview of screen objects

272 System Manual, 11/2022

Tips for an efficient procedure

• Drag-and-drop a graphic from the detail view into the screen. A graphic view is created and linked to the graphic.

Scaling a background graphic
The following modes for scaling graphics are available:
• None

The graphic is inserted centered into the graphic view. If the graphic is larger than the graphic
view, the graphic is displayed incompletely.

• Fill
The graphic fills the graphic view. This mode can lead to a distortion of the graphic.

• Uniform
The graphic is fully displayed and without distortion in the graphic view.

• Stretch to fit
The graphic is adjusted to the size of the graphic view without distortion. As a result, the
graphic may not be displayed completely.

• Tiled
The graphic is displayed in original size, multi-tiled until the graphic view is filled.

To select a mode for scaling the graphic, proceed as follows:
1. Click "Format > Scale background graphic" in the Inspector window.
2. Select the desired mode in the "Static value" column.

Dynamizing a graphic view with graphic list
To dynamize a graphic view with graphic list, follow these steps:
1. Create a graphic view.
2. Select a resource list in the "Dynamization" column in the Inspector window under

"Properties > Properties > General > Graphic".
3. Select an existing tag or create a new tag using the "Add" button under "Resource list >

Settings > Tag".
4. Select an existing graphic list or add a new graphic list using the "Add" button under

"Resource list > Settings > Resource list".

Tips for an efficient procedure

• You create a graphic view by dragging and dropping a graphic list from the detailed view of the text and graphic lists into
the screen. The graphic view is linked to the graphics list. Configure the tags whose values determine the display in the
graphic view.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 273

4.2.2.3 Line

Application
The "Line" object is an open object.

Layout
In the Inspector window, you customize the settings for the object position, shape, style, and
color. You can adapt the following properties in particular:
• "Line - Type"
• "Line - Start" and "Line - End"

Dash type
The layout of the line is specified under "Properties > Properties > Appearance > Line - Type" in
the Inspector window. The line is shown without interruption if you select "Solid", for example.

Note
The available line types depend on the selected HMI device.

Line start and end
The start and end points of the line are specified under "Properties > Properties > Appearance >
Line - start / Line - end" in the Inspector window.
Use arrow points, for example, as the start and end points of the line. The available start and
end points depend on the device.

See also
Changing the object size (Page 381)

Configuring screens
4.2 Overview of screen objects

274 System Manual, 11/2022

4.2.2.4 Rectangle

Application
The "Rectangle" is a closed object which you can fill with a color.

Layout
In the Inspector window you can customize the settings for the position, geometry and color of
the object. You can adapt the following properties in particular:
• "Corner > Radius": Specifies the horizontal and vertical distance between the corner of the

rectangle and the start point of a rounded corner.

Specifying the corners
The corners of the "Rectangle" object can be rounded to suit your requirements. If the "Radius"
property for all four corners is set to 0, a standard rectangle without rounded corners is displayed.
To define the layout of the corners, follow these steps:
1. In the Inspector window, click "Properties > Properties > Appearance > Corners".
2. Enter the radius for each corner.

4.2.2.5 Circle

Application
The "Circle" object is a closed object which can be filled with a color or pattern.

Layout
In the Inspector window you can customize the settings for the object position, geometry, style,
frame and color. You can adapt the following properties in particular:
• "Radius": Specifies the size of the circle.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 275

Radius
The radius of the "Circle" object is specified in the Inspector window. The value is entered in
pixels.
To specify the radius, follow these steps:
1. In the Inspector window, click "Properties > Size and position > Radius".
2. Enter a value of between 0 and 2500.

4.2.2.6 Ellipse

Application
The "Ellipse" is an enclosed object that can be filled with a color or pattern.

Layout
In the Inspector window you can customize the settings for the object position, geometry, style,
frame and color. You can adapt the following properties in particular:
• "Radius X": Specifies the vertical radius of the elliptical object.
• "Radius Y": Specifies the horizontal radius of the elliptical object.

Radius X
The horizontal radius of the "Ellipse" object is specified in the Inspector window. The value is
entered in pixels.
1. Click "Properties > Size and position" in the Inspector window.
2. For "Radius X", enter a value between 0 and 2500.

Radius Y
The vertical radius of the "Ellipse" object is specified in the Inspector window. The value is
entered in pixels.
1. Click "Properties > Size and position" in the Inspector window.
2. Enter a value between 0 and 2500 for "Radius Y".

Configuring screens
4.2 Overview of screen objects

276 System Manual, 11/2022

4.2.2.7 Polyline

Use
The "Polyline" is an open object. Use the "Polygon" object if you want to fill the object with color.

Layout
In the Inspector window, you customize the settings for the position, shape, style, and color of
the object. You can adapt the following properties in particular:
• "Line start" and "Line end": Specifies the type of line start and line end.
• "Points": Modifies, deletes or adds corners.

Line start and end
Define the start and end of the line in the "Properties" Inspector window. Use arrow point, for
example, as start and end point. The available start and end points depend on the device.

Points
The corner points are numbered in the order of their creation. You can change, delete, or add
more corner points:
1. In the Inspector window, click "Properties > Size and position > Points".
2. Select the required corner point. Enter a value for "X coordinate" and "Y coordinate".
3. Click on the selection button in the "Static value" column to add or delete a corner point.

A dialog opens.
4. Use the "Add" command to create a new point. You can delete corner points by selecting the

corresponding row in the dialog and selecting "Delete" from the shortcut menu for the row.

Automatic creation of points
To create the points automatically, follow these steps:
1. Select a cell in the "X coordinate" or "Y coordinate" column.
2. Drag the blue border up or down. The value is applied to the target cells.
If you select multiple cells and there is a logical relationship between the values, the values
of the destination cells are adapted according to the logical relationship.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 277

Configuring rotation in runtime
You configure the "Polyline" object so that it rotates about a reference point in runtime.
Enter the values for rotation in degrees:
1. In the Inspector window, click "Properties > Size and position".
2. Enter the required values for the following attributes:

– Pivot point
– Rotation
– X pivot point
– Y pivot point

See also
Changing the object size (Page 381)
Automatically filling in of property values for an object collection (Page 379)

4.2.2.8 Polygon

Use
The "Polygon" is a closed object which you can fill with a background color.

Layout
In the Inspector window, you customize the settings for the position, shape, style, and colors of
the object. In particular, you can customize the following property:
• "Points": Modifies, deletes or adds corners.

Points
The corner points are numbered in the order of their creation. You can change, delete, or add
more corner points:
1. In the Inspector window, click "Properties > Size and position > Points".
2. Select the required corner point. Enter a value for "X coordinate" and "Y coordinate".

Configuring screens
4.2 Overview of screen objects

278 System Manual, 11/2022

3. Click on the selection button in the "Static value" column to add or delete a corner point.
A dialog opens.

4. Use the "Add" command to create a new point.
You can delete corner points by selecting the corresponding row in the dialog and selecting
"Delete" from the shortcut menu for the row.

Automatic creation of points
To automatically create the points for polygons and polylines, follow these steps:
1. Select a cell in the "X coordinate" or "Y coordinate" column.
2. Drag the blue border up or down. The value is applied to the target cells.
If you select multiple cells and there is a logical relationship between the values, the values
of the destination cells are adapted according to the logical relationship.

Configuring rotation in runtime
You configure the "Polygon" object so that it rotates about a reference point in runtime.
Enter the values for rotation in degrees.
1. In the Inspection window, click "Properties > Size and position".
2. Enter values for the following attributes in the "Rotation" area.

– Pivot point
– Rotation
– X pivot point
– Y pivot point

See also
Changing the object size (Page 381)
Automatically filling in of property values for an object collection (Page 379)

4.2.2.9 Circular arc

Use
The "Circular arc" is an open object. Use the "Circle segment" object if you want to fill the object
with color. By default, a circular arc is a quarter circle. It can be customized as required.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 279

Layout
In the Inspector window, you customize the settings for the object position, shape, style, and
color. You can adapt the following properties in particular:
• "Radius": Define the size of the circular arc.
• "Angle - start" and "Angle - range": Specify where the start and end angle lie on a virtual circle

of 360°.

Defining the radius
You define the radius of the "Circular arc" object in the Inspector window. Enter the value in
pixels.
1. Click "Properties > Size and position" in the Inspector window.
2. Enter a value for "Radius".

Defining the start angle and angle range
You set the length of the circular arc using the "Angle - start" and "Angle - range" attributes. Enter
the values using Degrees as the unit.
1. Click "Properties > Size and position" in the Inspector window.
2. Enter one value each for "Angle - start" and "Angle - range".

4.2.2.10 Elliptical arc

Use
The "Elliptical arc" is an open object. Use the "Ellipse segment" object if you want to fill the object
with color. By default, an elliptical arc is a quarter ellipse. It can be customized as required.

Layout
In the Inspector window you can customize the settings for the object position, geometry, style,
frame and color. You can adapt the following properties in particular:
• "Radius": Specifies the size of the elliptical arc.
• "Radius X" and "Radius Y": Specifies the horizontal and vertical radius of the elliptical object.
• "Angle - start" and "Angle - range": Specify where the start and end point lie on a virtual circle

of 360°.

Configuring screens
4.2 Overview of screen objects

280 System Manual, 11/2022

Defining the radius
Define the horizontal and vertical radius of the "Elliptical arc" object in the Inspector window.
Enter the values using Pixels as the unit.
1. Click "Properties > Size and position" in the Inspector window.
2. Enter one value each for "Radius X" and "Radius Y".

Defining the start angle and angle range
Set the length of the elliptical arc using the "Angle - start" and "Angle - range" attributes. Enter
the values using Degrees as the unit.
1. Click "Properties" in the Inspector window.
2. Enter one value each for "Angle - start" and "Angle - range".

4.2.2.11 Circle segment

Use
The "Circle segment" is a closed object that you can fill with a color or pattern. By default, a circle
segment is a quarter circle. It can be customized as required.

Layout
In the Inspector window, you customize the settings for the object position, shape, style, and
color. You can adapt the following properties in particular:
• "Radius": Define the size of the circle segment.
• "Angle - start" and "Angle - range": Specify where the start and end angle lie on a virtual circle

of 360°.

Radius
You define the radius of the "Circle segment" object in the Inspector window. Enter the value
using Pixels as the unit.
1. Click "Properties > Size and position" in the Inspector window.
2. Enter a value for "Radius".

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 281

Defining the start angle and angle range
Set the size of the circle segment using the "Angle - start" and "Angle - range" attributes. Enter
the values using Degrees as the unit.
1. Click "Properties > Size and position" in the Inspector window.
2. Enter one value each for "Angle - start" and "Angle - range".

4.2.2.12 Ellipse segment

Use
The "Ellipse segment" is a closed object that you can fill with a color or pattern. By default, an
ellipse segment is a quarter ellipse. It can be customized as required.

Layout
In the Inspector window, you customize the settings for the object position, shape, style, and
color. You can adapt the following properties in particular:
• "Radius X" and "Radius Y": Specifies the horizontal and vertical radius of the elliptical object.
• "Angle - start" and "Angle - range": Specify where the start and end point lie on a virtual circle

of 360°.

Defining the radius
Define the horizontal and vertical radius of the "Ellipse segment" object in the Inspector window.
Enter the values using Pixels as the unit:
1. Click "Properties > Size and position" in the Inspector window.
2. Enter one value each for "Radius X" and "Radius Y".

Defining the start angle and angle range
Set the size of the ellipse segment using the "Angle - start" and "Angle - range" attributes. Enter
the values using Degrees as the unit.
1. Click "Properties > Size and position" in the Inspector window.
2. Enter one value each for "Angle - start" and "Angle - range".

Configuring screens
4.2 Overview of screen objects

282 System Manual, 11/2022

4.2.2.13 Example: Configuring a rectangle

Task
In this example, you learn how to configure the rectangle.
You configure:
• Color = red
• Black border 2 pixels wide
• Position = (20, 20)
• Size = (100,100)

Changing the color of the rectangle
Follow these steps to change the color of the rectangle:
1. Select the rectangle.
2. Define the background color under "Properties > Appearance > Background - color" in the

Inspector window.
3. Select the "Solid" option under "Background - fill pattern".
4. Define the border color under "Properties > Appearance > Border - color".
5. Enter the value "2" for "Border width".
The rectangle is red and has a black border with a width of two pixels.

Repositioning and resizing the rectangle
Follow these steps to change the position and size of the rectangle:
1. Select the rectangle.
2. Enter the value "20" in each case under "Properties > Size and position > Position - left /

Position - top".
3. Enter the value "100" in each case under "Properties > Size and position > Size - width / Size

- height".

Result
The rectangle is positioned at the coordinates (20, 20), and has a width and height of 100 pixels.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 283

4.2.3 Elements

4.2.3.1 IO field

Use
The "IO field" object is used to enter and display process values.

Tips for working effectively

• You can create an IO field by moving a configured tag from the detail view onto the screen using drag-and-drop. An IO field
is created and linked to the tag.

• If you select multiple tags and move them from the detail view onto the screen using drag-and-drop, an IO field is created
for each tag which is linked to the respective tag.

Layout
In the Inspector window, you customize the settings for the position, shape, style, color and font
types of the object. You can adapt the following properties in particular:
• "Mode": Specifies whether the values are entered and displayed in Runtime or if the values are

only displayed.
• "Reaction to input": Specifies the behavior of the object in Runtime.
• "Hidden input": Specifies whether the input value is displayed normally or encrypted during

input.

Mode
You can define the behavior of the IO field in the Inspector window under "Properties > General
> Mode".

Mode Description
"Input/output" Values can be input and output in the IO field in runtime.
"Output" The IO field is used for the output of values only.

Note
Reports
In reports, IO fields only output data. "Output" mode is preset. Properties for configuring input
are not available, for example "Hidden input".

Configuring screens
4.2 Overview of screen objects

284 System Manual, 11/2022

Connection to Char data type
If you connect the IO field to a controller tag of data type "Char", the following restrictions apply:
• The input accepts digits only: 0 … 9.

The entered string of digits is converted to the corresponding character according to the
ASCII table.
Example: Input 6 + 5 becomes "A".

• Only enter digit sequences between 0 and 129.
To input alphanumeric characters directly, use the alternative data type "WChar", for example.

Hidden input
In runtime, the input can be displayed normally or encrypted, for example for hidden input of a
password. A "*" is displayed for each character in hidden input. The data format of the value
entered cannot be recognized.
1. In the Inspector window, select "Properties > Miscellaneous > Reaction to input".
2. Select "Hidden input".

Value range for the LTIME data type
LTime values are saved as 64-bit Int with sign. For HMI tags with LTime data type:

Value range -9223372036854775808 to
9223372036854775807

Unit 100 ns

Note
Setting an LTime PLC tag via HMI
S7-1500 tags with data type LTime have the unit nanoseconds (ns). HMI user inputs in IO fields
that are linked with such tags are converted to ns when the value is sent to the controller.

Note
MAX_SAFE_INTEGER
Depending on the Javascript engine of the web client, the actual value may lose accuracy during
communication between the HMI device and the controller due to rounding if it is outside the
value range of MAX_SAFE_INTEGER.
Additional information on MAX_SAFE_INTEGER can be found here (https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/
MAX_SAFE_INTEGER).

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 285

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER

4.2.3.2 Symbolic IO field

Use
You can use the "Symbolic IO field" object to configure a selection list for input and output of texts
or graphics in runtime.

Note
Selecting the default entry is not possible in runtime.

Layout
In the Inspector window, you customize the settings for the position, shape, style, color and font
types of the object. You can adapt the following properties in particular:
• "Mode": Specifies the response of the object in runtime.
• "Resource list": Specifies the text or graphic list that will be linked with the object.

Mode
The response of the symbolic IO field is specified in the Inspector window in "Properties >
Properties > Miscellaneous > Mode".

Mode Description
"Output" The symbolic IO field is used for the output of values.
"Input/output" The symbolic IO field is used for the input and output of values.

Linking symbolic IO field with text list
To link a text list with the symbolic IO field, follow these steps:
1. In the Inspector window, select "Properties > Properties > General > Resource list".
2. Open the selection list for "Text list" in the "Static value" column.
3. Select a text list.
4. Open the "Text and graphic lists" editor in the project tree.
5. Select the "Text lists" tab. Click on the selected text list.
6. Select an entry in the "Text list entries" table as the default entry. The text from the default

entry is displayed in the object.
If you have not specified a default entry, the first entry in the "Text" column is displayed in the
object.

Configuring screens
4.2 Overview of screen objects

286 System Manual, 11/2022

Tips for working effectively

• Drag a text list from the detail view of the text and graphic lists to the symbolic IO field. The symbolic IO field is linked to the
text list.

Linking symbolic IO field with graphic list
To link a graphic list with the symbolic IO field, follow these steps:
1. In the Inspector window, select "Properties > Properties > General > Resource list".
2. Open the selection list for "Graphic list" in "Resource list".
3. Select a graphic list.
4. Open the "Text and graphic lists" editor in the project tree.
5. Select the "Graphic lists" tab. Click on the selected graphic list.
6. Select an entry in the "Graphic list entries" table as the default entry. The graphic from the

standard entry is displayed in the object.
If you have not specified a default entry, the first entry in the "Graphic" column is displayed
in the object.

Tips for working effectively

• Use drag-and-drop to move a graphic list from the detail view of the text and graphic lists to the symbolic IO field. The
symbolic IO field is linked to the graphic list.

Dynamizing a symbolic IO field
To dynamize the symbolic IO field using a tag, follow these steps:
1. In the Inspector window, select "Properties > Properties > General > Process value".
2. Select "Tag" in the "Dynamization" column. The "Tag" page will open.
3. Select:

– Select an existing tag under "Tag > Process > Tag", or
– Create a new tag using the "Add" button.

Tips for working effectively

• Use drag-and-drop to move a tag from the detail view of the tag table to the symbolic IO field. The symbolic IO field is linked
to the tag.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 287

4.2.3.3 List box

Use
You use the "List box" object to present and select multiple list entries. You activate list entries
by default so that the operator only changes the preset entry if necessary. If the list box is larger
than the bounding box, WinCC automatically adds a scroll bar to the right margin.
To incorporate list boxes into the process, dynamize the corresponding properties.

Layout
In the Inspector window, you customize the position, style, colors and font type settings of the
object. You can adjust the following properties in particular:
• "Selection items": Defines the list entries.
• "Select item": Defines which entry is displayed as activated by default.

Defining the number of entries
You specify the number of entries in the Inspector window:
1. In the Inspector window, select "Properties > General > Selection items".
2. Click on the selection button in the "Static value" column.

A dialog opens.
3. Specify the desired number of entries with "Add".

To delete entries, click in the corresponding line and press the key or click .
4. To change the order of the entries, click in the corresponding line and move the entry using

the icons .

Specifying the default value of the list entry
Use the "Select item" property of a selection item to specify which list item is to be shown as
enabled.
You can activate multiple options.
To do so, select the check box in the "Static value" column of the "Select item" property of the
respective selection item.

Configuring screens
4.2 Overview of screen objects

288 System Manual, 11/2022

Dynamizing a list box
Drag-and-drop a tag from the detail view of the tag table into the list box. The list box is linked
to the tag.

Dynamization of graphic properties with tags or scripts
You can dynamize the following property containing a graphic with a tag or with a script:
• Graphic

See also
Automatically filling in of property values for an object collection (Page 379)
Entering multiline text (Page 407)

4.2.3.4 Button

Use
The "Button" object allows you to configure an object that the operator can use in runtime to
execute a configurable function.

Layout
In the Inspector window, you customize the position, geometry, style, color, and font types of
the object. You can adjust the following properties in particular:
• "Type": Define the graphic display of the object.
• "Background graphic - scale": Specify how the graphic is scaled.

Defining the content
You can specify how the button is displayed under "Properties > General > Content > Type" in the
Inspector window.

Type Description
"Text" The button is displayed with text. This text explains the function of the button.
"Graphic" The button is displayed with a graphic. This graphics represents the function of

the button.
"Graphics or text" The button is displayed with text or graphics.

If the graphics cannot be displayed, the corresponding text is displayed.
"Graphics and text" The button is displayed with text and graphics.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 289

Different options are available depending on the device.

Scaling a background graphic
Tips for working effectively

• You add a graphic to the button by dragging-and-dropping the graphic from the detail view of the project graphics to the
button.

The following modes for scaling graphics in buttons are available:
• None

The graphic is inserted centered inserted into the button. If the graphic is larger than the
button, the graphic will be displayed incompletely.

• Fill
The graphic fills the button. This mode can lead to a distortion of the graphic.

• Uniform
The graphic is fully displayed and without distortion in the button.

• Stretch to fit
The graphic is adjusted to the size of the button without distortion. This may cause the
graphic to be displayed incompletely.

To select a mode for scaling the graphic, follow these steps:
1. In the Inspector window, select "Properties > General > Content > Background graphic - scale".
2. Select the desired mode in the "Static value" column.

Text / Graphic
Depending on the "Content" property, define whether the display is static or dynamic. The
display is defined under "Properties > General > Text" or "Graphic" in the Inspector window.
Your options for the type "Text" or "Graphic" include the following.

Type Description
"Text" Use "Text with pressed button" to specify the text displayed in the button for the "ON"

state.
"Graphic" Use "Graphic with pressed button" to specify a graphic displayed in the button in the

"ON" state.

Direct text input
To change the labeling in the button directly via the keyboard, follow these steps:
1. Selecting the button.
2. Double-click in the button and enter a text.

Configuring screens
4.2 Overview of screen objects

290 System Manual, 11/2022

Note the following special information:
• Diacritics, such as ä ê ñ, can only be entered if the keyboard layout provides a key for this

character. Key sequences such as <`a> for à are not recognized.
• It is not possible to enter Unicode characters using Alt codes.
• Asian language characters cannot be entered using an Input Method Editor (IME).
If you need such characters in the label, you have the following options:
• Use a keyboard layout on which this character is present as a key.
• Copy the character or full label from any source and paste it into the selected object.
• Edit the label in the Inspector window under "Properties > Properties > General > Text".

Configuring a screen change
1. Drag a button from the "Toolbox" task card to a screen.
2. Configure the "ChangeScreen" system function to an event of the button.
3. Add another screen in the "Value" column.

Tips for working effectively

• You can configure a screen change by dragging-and-dropping a configured screen from the project tree into the open
screen. A button is automatically created and linked to the screen.

Dynamizing a button with text list
Drag-and-drop a text list from the detail view of the text and graphic lists to the button. The
button is linked to the text list.

Dynamizing a button with graphic list
Drag-and-drop a graphic list from the detail view of the text and graphic lists directly to the
button. The button is linked to the graphic list.

Dynamization of graphic properties with tags or scripts
You can dynamize the following properties containing a graphic with a tag or with a script:
• Graphic
• Graphic - pressed button

See also
Enter text directly into the object (Page 406)
Entering multiline text (Page 407)

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 291

4.2.3.5 Switch

Use
The "Switch" object is used to configure a switch that is used to switch between two predefined
states in runtime. The current state of the "Switch" object can be visualized with either a label or
a graphic.
The following figure shows a "Switch" type switch.

Layout
In the Inspector window, you customize the position, geometry, style, color, and font types of
the object. In particular, you can customize the following property:
• "Type": Specifies the graphic representation of the object.

Type of representation
You can specify how the switch is displayed under "Properties > General > Content > Type" in the
Inspector window.

Type Description
"Graphic" The current state of the switch is shown with a graphic. In runtime click on the

button to actuate the switch.
"Text" The current state of the switch is shown with a label. In runtime click on the

button to actuate the switch.
"Graphics or text" The switch displays graphics or a text. If the graphics are not available, the text

is displayed.
"Graphics and text" The switch displays graphics and a text.

Dynamizing a switch with text list
Drag-and-drop a text list from the detail view of the text and graphics lists directly to the switch.
The switch is linked to the text list.

Dynamizing a switch with graphics list
Drag-and-drop a graphics list from the detail view of the text and graphics lists to the switch. The
switch is linked to the graphics list.

Configuring screens
4.2 Overview of screen objects

292 System Manual, 11/2022

Dynamization of graphic properties with tags or scripts
You can dynamize the following properties containing a graphic with a tag or with a script:
• Graphic
• Graphic - pressed button

See also
Entering multiline text (Page 407)

4.2.3.6 Bar

Use
The tags are displayed graphically using the "Bar" object. The bar graph can be labeled with a
scale of values.

Layout
In the Inspector window, you customize the settings for the position, shape, style, color, and font
types of the object. You can adapt the following properties in particular:
• "Trend indicator - show": Shows whether the current value is higher or lower than the

previous value.
• "Process value indicator - mode": Specifies how the process value is displayed in the bar chart.
• "Scale": Specifies the properties for the bar scale.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 293

When the object in the light or dark style does not meet the following dimensions in
Runtime, it is automatically displayed in compact mode:
• Vertical alignment: 100 pixels high or 30 pixels wide
• Horizontal alignment: 30 pixels high or 100 pixels wide

Displaying the process value indicator
You can use the "Process value indicator - mode" property to select the process value of the
selected tags in the bar in runtime:
1. In the Inspector window, click "Properties > Miscellaneous > Process value indicator - mode".
2. Select another "Indicator" mode in the "Static value" column.
3. Go to "Process value indicator - foreground color" and select the display color for the process

value.

Define bar segments
You can define the settings for the bar scale under "Properties > General > Scale":
• "Scaling type": Specifies how the bar scale is calculated, for example "Linear".
• "Alignment": Specifies whether the bar is displayed horizontally or vertically.
• "Scale mode": Specifies whether the scale is subdivided with tick marks, numbers, or not at

all.
• "Scale value - maximum" and "Scale value - minimum": Specifies the start and end value

displayed on the scale.

Defining scale gradation
Use the "Division count" property to define the subdivision count for the bar scale divisions.
The "Subdivision count" property defines the number of ticks between the division marks.
1. In the Inspector window, click "Properties > General > Scale".
2. Enter the required values for the "Division count" and "Subdivision count".

Note
The division count can only be changed if "Automatic scaling" is disabled.

Dynamizing bars
Drag a tag from the detail view of the tag table into the bar. The bar is linked to the tag.

See also
Entering multiline text (Page 407)

Configuring screens
4.2 Overview of screen objects

294 System Manual, 11/2022

4.2.3.7 Slider

Use
Process values are monitored and adapted within a defined range with the "Slider" object. The
monitored range is visualized in the form of a slider. By adjusting the slider, you intervene in the
process and correct the displayed process value.

Layout
In the Inspector window, you customize the position, geometry, style, color and font types of the
object. You can, in particular, adapt the following properties as required:
• "Scale value - maximum" and "Scale value - minimum": Specifies the top and bottom values

of the scale.
• "Process value indicator - mode": Specifies how the current process value is displayed in the

slider.
• "Trend indicator - show": Specifies how the current value has changed compared to the

previous values.
When the object in the light or dark style does not meet the following dimensions in
Runtime, it is automatically displayed in compact mode:
• Vertical alignment: 100 pixels high or 30 pixels wide
• Horizontal alignment: 30 pixels high or 100 pixels wide

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 295

Maximum and minimum scale value
The top and bottom end values of the scale are specified in the Inspector window.
1. In the Inspector window, click "Properties > Properties > General > Scale".
2. Enter a number each at "Scale value - maximum" and "Scale value - minimum". If you select

a tag as the end value of the scale, the number will be no longer available.

Show value
Specify that the value of the current position is displayed below the slider in the Inspector
window.
1. Click "Properties > Miscellaneous" in the Inspector window.
2. Select "Value - show".

Process value indicator - mode
Specify a mode for process value display:
1. In the Inspector window, click "Properties > Miscellaneous > Process value indicator - mode".
2. Select a mode in the "Static value" column.

Mode Description
Bar Displays the bar with the process value indicator.
Indicator Shows the process value indicator as a position on the bar.
Detailed indicator Shows the process indicator in the bar.
Bar with detailed indicator Shows the current process value and its position in the slider bar.

Note
If you have configured a tag for the "Process value indicator mode" property of a slider, changing
the tag in runtime has no effect on the slider.

Dynamizing a slider
Drag a tag from the detail view of the tag table into the slider. The slider is linked to the tag.

See also
Entering multiline text (Page 407)

Configuring screens
4.2 Overview of screen objects

296 System Manual, 11/2022

4.2.3.8 Gauge

Use
The "Gauge" object shows numeric values in the form of an analog gauge. For example, a glance
in runtime is enough to note that the boiler pressure is in the normal range. The gauge is for
display only and cannot be controlled by the operator.

Layout
In the Inspector window, you customize the position, geometry, style, color and font types of the
object. You can adapt the following properties in particular:
• "Peak indicator": Specifies whether the measurement range is indicated with a peak indicator.
• "Scale value - maximum" and "Scale value - minimum": Specifies the top and bottom values

of the scale.
• "Normal range - color": Specifies the color in which the normal range is displayed.
• "Scale": Specifies various settings for the scale view.
When the object in the light or dark style is less than 180 pixels tall or wide in Runtime, it is
automatically displayed in compact mode.

Display peak value
The "Peak indicator" property can be used to enable a marker function for the maximum or
minimum pointer movement in runtime.
1. Click "Properties > Miscellaneous > Peak indicator" in the Inspector window.
2. Select the option "High" or "Low" in the "Static value" column.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 297

Scale value - maximum and scale value - minimum
You can set the top and bottom end values of the scale in the Inspector window.
1. In the Inspector window, click "Properties > General > Scale".
2. Enter a number each at "Scale value - maximum" and "Scale value - minimum".

If you select a tag as the end value of the scale, the number will be no longer available.

Configuring a scale
1. In the Inspector window, click "Properties > General > Scale".
2. Under "Angle - start", specify the angle at which the scale is to start. The angle is specified in

degrees, starting at the zero position.
The scale runs clockwise. A starting value of 0 corresponds to a display of 3 o'clock.

3. Under "Angle - range", specify the range in degrees to be covered by the scale.
4. Under "Scale mode", specify whether the divisions are displayed as ticks or numbers.

Dynamizing a gauge
Drag a tag from the detail view of the tag table into the gauge. The pointer instrument is linked
to the tag.

4.2.3.9 Clock

Use
The "Clock" object displays the time.

Configuring screens
4.2 Overview of screen objects

298 System Manual, 11/2022

Layout
In the Inspector window, you customize the position, geometry, style, color and font types of the
object. You can adapt the following properties in particular:
• "Clock face - mode": Specifies whether the hour marks of the analog clock are displayed as

ticks or numbers.
• "Hand - show hours", "Hand - show minutes" and "Hand - show seconds": Specifies whether

the hour hand, minute hand and second hand are displayed on the clock.
When the object in the light or dark style is less than 100 pixels tall or wide in Runtime, it is
automatically displayed in compact mode.

Configuring the clock face
In the Inspector window, you can specify how the hour marks are displayed.
1. In the Inspector window, click "Properties > General > Clock face - mode".
2. Select "Ticks" to display hours as ticks.

Alternatively, select "Numbers" for a numerical display of the hours in the view.

Dynamizing the clock
Drag-and-drop one tag from the detail view of tag table into the clock. The clock is linked to the
tag.

4.2.3.10 Check box

Use
You use the "Check box" object to display and select multiple entries. You activate a selection
item by default so that the operator only changes the preset value if necessary. The operator can
select multiple options in runtime. You can specify a text or a graphic for each option.
To integrate the check box into the process, dynamize the corresponding properties.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 299

Layout
In the Inspector window, you customize the position, geometry, style, color, and font types of
the object. You can adjust the following properties in particular:
• "Selection items": Defines the number of options.
• "Select item": Defines which entries are displayed as activated by default.

Note
The item height option of the radio button is set to "0" during the creation of a new object. This
value does not represent the actual value 0, but a default setting.

Defining the number of entries
You specify the number of entries in the Inspector window:
1. In the Inspector window, select "Properties > General > Selection items".
2. Click on the selection button in the "Static value" column.

A dialog opens.
3. Specify the desired number of entries with "Add".

To delete entries, click in the corresponding line and press the key or click .
4. To change the order of the entries, click in the corresponding line and move the entry using

the icons .

Using graphics and texts in the selection items
You can mark the selection items with texts or graphics. The following modes are available:
• "Graphic and text": The selection item shows text and graphic.
• "Graphic or text" The selection item is visualized either by a graphic or a text. If the graphic

is not available, the text is displayed.
• "Graphic": The selection item is visualized with a graphic.
• "Text": The selection item is visualized with an inscription.
 To configure the CheckBox contents, follow these steps:
1. Under "Properties > Format > Content > Type" select the type for display of the selection

items, e.g. "Graphic and text".
2. Under "General > Selection items > [x] Selection item > Text" enter the text that is to be shown

in the check box as the selection item.
3. Under "Selection items > [x] Selection item > Graphic", open the selection list.
4. Select the appropriate graphic.

Configuring screens
4.2 Overview of screen objects

300 System Manual, 11/2022

Specify default of the check box
Use the "Select item" property of a selection item to define whether it is to be shown as enabled
in a check box list.
You can activate multiple options.
To do so, select the check box in the "Static value" column of the "Select item" property of the
respective selection item.

Dynamizing a check box
Drag-and-drop a tag from the detail view of the tag table directly to the check box. The check box
is linked to the tag.

Dynamization of graphic properties with tags or scripts
You can dynamize the following property containing a graphic with a tag or with a script:
• Graphic

See also
Automatically filling in of property values for an object collection (Page 379)
Entering multiline text (Page 407)

4.2.3.11 Radio button

Use
You can use the "Radio button" object to display and select various options. Only one of these
options can be selected by the operator. Enable one of the options by default so that the operator
only changes the default value if necessary. To incorporate a radio button into the process,
dynamize the corresponding attributes.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 301

Layout
In the Inspector window, you can customize the settings for the position, geometry, style, and
color of the object. You can adjust the following properties in particular:
• "Selection items": Defines the number of options.
• "Select item": Defines which entry is displayed as activated by default.

Note
The item height option of the radio button is set to "0" during the creation of a new object. This
value does not represent the actual value 0, but a default setting.

Defining the number of entries
You specify the number of entries in the Inspector window:
1. In the Inspector window, select "Properties > General > Selection items".
2. Click on the selection button in the "Static value" column.

A dialog opens.
3. Specify the desired number of entries with "Add".

To delete entries, click in the corresponding line and press the key or click .
4. To change the order of the entries, click in the corresponding line and move the entry using

the icons .

Using graphics and texts in the selection items
You can mark the selection items with texts or graphics. The following modes are available:
• "Graphic and text": The selection item shows text and graphic.
• "Graphic or text" The selection item is visualized either by a graphic or a text. If the graphic

is not available, the text is displayed.
• "Graphic": The selection item is visualized with a graphic.
• "Text": The selection item is visualized with an inscription.
 To configure the contents in the radio button, follow these steps:
1. Under "Properties > Content > Type", select the type for display of the selection items, e.g.

"Graphic and text".
2. Under "Selection items > [x] Selection item > Text" enter the text that is to be shown in the

check box as the selection item.
3. Under "Selection items > [x] Selection item > Graphic", open the selection list.
4. Select the appropriate graphic.

Configuring screens
4.2 Overview of screen objects

302 System Manual, 11/2022

Specifying the default value of the radio button
Use the "Select item" property of a selection item to specify which radio button item is to be
shown as enabled.
You can only enable one item.
Under "Properties > Selection items", activate the "Select item" property of the item to be
activated by default.

Dynamizing a radio button
Drag-and-drop a tag from the detail view of the tag table into the radio button. The radio button
is linked to the tag.

Dynamization of graphic properties with tags or scripts
You can dynamize the following property containing a graphic with a tag or with a script:
• Graphic

See also
Automatically filling in of property values for an object collection (Page 379)
Entering multiline text (Page 407)

4.2.3.12 Touch area

Use
The "Touch area" object allows you to configure an object that the operator can use in runtime
to execute any configurable function. A gesture on the user interface starts the execution of the
function. The gesture is recognized in the area where it begins.

Layout
In the Inspector window, you customize the settings for the position, shape and color of the
object. The "Touch area" object is shown as a dotted area in the engineering system.

Define gestures
The "Touch Area" object distinguishes between the following gestures:
• Right
• Left
• Up
• Down

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 303

To distinguish between the gestures, program a J-Script that evaluates the gesture.
1. Click in the Inspector window under "Properties > Events > Gesture detected".
2. Copy the code example into the programming window.

Code example
export function Touch_area_1_OnGestureDetected(item, gesture) {
// value of tag ‚MyTag1‘ will be set depending on the detected gesture
if(gesture == UI.Enums.HmiGesture.SwipeRight)
{
UI.RootWindow.Screen = 'ScreenRight';
let tag1 = Tags('tag1');
tag1.Write(1); //write value '1234' to tag 'MyTag1'
}
if(gesture == UI.Enums.HmiGesture.SwipeLeft)
{
UI.RootWindow.Screen = 'ScreenLeft';
let tag1 = Tags('tag1');
tag1.Write(2); //write value '1234' to tag 'MyTag1'
}
if(gesture == UI.Enums.HmiGesture.SwipeUp)
{
UI.RootWindow.Screen = 'ScreenUp';
let tag1 = Tags('tag1');
tag1.Write(3); //write value '1234' to tag 'MyTag1'
}
if(gesture == UI.Enums.HmiGesture.SwipeDown)
{
UI.RootWindow.Screen = 'ScreenDown';
let tag1 = Tags('tag1');
tag1.Write(4); //write value '1234' to tag 'MyTag1'
}
if(gesture == UI.Enums.HmiGesture.Unknown)
{
let tag1 = Tags('tag1');
tag1.Write(0); //write value '1234' to tag 'MyTag1'
}
}

4.2.3.13 Examples

Example: Configuring an IO field

Task
In this example, you learn how to configure an IO field and connect it to a tag.
You configure:
• Color = blue
• Border color = gray

Configuring screens
4.2 Overview of screen objects

304 System Manual, 11/2022

• Mode = Input/output
• HMI tag = MyTag

Requirement
• A project is open.
• A screen is configured.

Configuring an IO field
 To configure an IO field, follow these steps:
1. Open the "Elements" palette in the "Toolbox" task card.
2. Drag the "IO field" object onto the screen.
3. In the Inspector window, navigate to "Properties > Appearance > Background - color".
4. In the "Static value" column, select the blue color.
5. Navigate to "Properties > Appearance > Border - color".
6. In the "Static value" column, select the gray color.
7. Select the "Input/output" mode under "Properties > General > Mode".

Connecting the IO field to a tag
To connect the IO field to a tag, follow these steps:
1. In the Inspector window, click "Properties > General > Process value" in the "Dynamization"

column.
2. Select the entry "Tag" from the list.

The "Tag" dialog opens.
3. Click on the selection button under "Tag > Process > Tag". A dialog opens.
4. Click the "Add" button to add "MyTag" tag. Click "OK".
5. Go to "Properties > Miscellaneous > Reaction to input" and set how the values are to be

handled in runtime, for example "Accept value after exit".

Result
The IO field has been configured as specified and connected to the tag. In runtime, you can see
the current value of the tag in the IO field and can also input the value for the tag. The value is
applied to the tag.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 305

Example: Set values

Task
In this example, you learn how to show the process values in runtime, enter the values, or
change the values. You also learn how to visualize the display of the actual speed of a motor and
how to regulate it.
You configure:
• Two IO fields for the input and output of the process values.
• Two text boxes for describing the IO fields.
• A slider to display and adjust the values.

Requirement
• A project is open.
• A screen is configured.
• The tags "SetValue" and "ActualValue" have been created as process values for the motor

speed.

Configuring IO fields
With two IO fields, you can display the current value of the tags in the screen. You can enter the
values for the process or change the values.
To configure the IO fields, follow these steps:
1. Insert the "IO field" object from the "Toolbox" task card into the screen.
2. Specify the height, width, and position for the object under "Properties > Size and position".
3. Under "Properties > General > Mode" specify the "Input/output" mode in the "Static value"

column.
4. Click under "Properties > General > Process value". In the drop-down list of the

"Dynamization" column, select the entry "Tag".
The "Tag" dialog opens.

5. Under "Tag" specify the "SetValue" tag whose values you want to display and change in
runtime.

6. Define an additional IO field for the "ActualValue" tag in "Output" mode.
7. Configure two text boxes, "Actual value" and "Set value", as the IO fields description.

Efficiency tip

• You can also create a new IO field by moving a configured tag from the detail view onto an HMI screen using drag-and-drop.
An IO field is created automatically and connected to the desired tag.

Configuring screens
4.2 Overview of screen objects

306 System Manual, 11/2022

Configuring a slider
You can use a slider to intervene in the process and change the displayed process value.
Follow these steps to configure the slider:
1. Add the "Slider" object to the screen from the "Toolbox" task card.
2. Specify the desired height, width and position for the object under "Properties > Size and

position".
3. Under "Properties > Miscellaneous > Process value indicator - mode", specify the "Detailed

indicator" mode in the "Static value" column.
4. Click under "Properties > General > Process value".
5. In the drop-down list of the "Dynamization" column, select the entry "Tag".

The "Tag" dialog opens on the right in the Inspector window.
6. Under "Tag" specify the "SetValue" tag whose values you want to display and change in

runtime.

Result
In runtime, the actual motor speed is displayed in the IO field. You can transfer the speed in the IO
field "Set value" to the motor. Using the slider, you can read the actual speed and control the
speed yourself by moving the slider.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 307

4.2.4 Controls

4.2.4.1 Configuring the toolbar and information bar

Introduction
You can operate the controls in runtime using the buttons in the toolbar. The information bar
displays the status messages of the control. During configuration, you define the contents of the
toolbar and information bar.

① Toolbar
② Information bar

Requirement
• You have opened the screen which contains at least one object, for example, the trend

companion.
• The Inspector window is open.

Configuring screens
4.2 Overview of screen objects

308 System Manual, 11/2022

Configuring the toolbar
To configure the toolbar, follow these steps:
1. In the Inspector window under "Properties > Miscellaneous > Toolbar", configure the general

properties of the toolbar, such as background color or visibility.
2. In the Inspector window, under "Properties > Properties > Miscellaneous > Toolbar >

Elements > Button > Visibility", enable the buttons that you need in Runtime.
Note
Only elements whose visibility is activated in the TIA Portal are transferred to the runtime.
Items whose visibility is disabled in the TIA Portal are deleted from the array of elements. You
cannot address them in runtime, e.g. via a script.
If you hide an element, the numbering of the following elements in the runtime changes.
Example:
The parameter set control has 10 elements. Array numbers 0 to 9 are assigned to the
elements in the TIA Portal. If you deactivate the visibility of the element with the array
number 8, the element with the array number 9 must be addressed in runtime with the
number 8.
If you want to hide an element and still access it, use dynamization, e.g. via a script.

3. Configure the button display, for example, background color, border and size.
4. Under "Properties > Properties > Miscellaneous > Toolbar > Elements > Button >

Authorization", select the authorization that is required in Runtime to operate the button.
5. When a button is not operated in Runtime, disable "Allow operator control". You can

reactivate a disabled a button by using a script in runtime, for example.

Configuring the information bar
To configure the information bar, follow these steps:
1. In the Inspector window under "Properties > Properties > Miscellaneous > Information bar",

configure the general properties of the information bar, such as background color or visibility.
2. In the Inspector window under "Properties > Properties > Miscellaneous > Information bar >

Elements > State display > Visibility", enable the elements that you need in Runtime.
3. Configure the display of the respective element.
4. Select the authorization that is required in Runtime to operate the element.
5. When an element is not operated in Runtime, disable "Allow operator control". You can

enable a disabled element again, for example, with a script in Runtime.

4.2.4.2 Alarm control

Use
The "Alarm control" object displays alarms that occur during the process in a plant. You can also
use the alarm control to display the alarms in lists.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 309

WinCC offers various views, such as "Show active alarms" or "Show logged alarms".

Layout
You can change the settings for the position, geometry, style, color, and font of the object in the
Inspector window. You can adapt the following properties in particular:
• "Alarm control": Defines various properties for the display of alarms, e.g. background color

and row height.
• "Sorting - allow": Defines whether the alarms are sorted in runtime.
• "Information bar": Defines the elements of the information bar.
• "Toolbar": Defines the buttons of the alarm control.
• "Focus - show visual": Specifies whether the selected properties are visible.

Defining the properties of the alarm control
To define the properties of the alarm control, follow these steps:
1. In the Inspector window, click "Properties > Properties > Miscellaneous > Alarm control".
2. Define settings for the rows and cells, e.g.:

– "Row height": Defines the height of the rows in the alarm control.
3. Define the settings for the headers under "Header - settings", e.g.:

– "Row header": Defines whether each row has a header.
– "Column header": Specifies the representation of the column header.

4. Define the width and color of the grid lines.
5. Define the use of scroll bars.

Configuring screens
4.2 Overview of screen objects

310 System Manual, 11/2022

Configuring output of alarms
Define the following properties to configure the outputs of the alarm control:
• "General > Alarm source": Defines which alarms are displayed in this alarm control.
• "Miscellaneous > Alarms - show current":

If you activate this property, the following applies in runtime:
– The most recent alarms are always displayed first in the alarm control.
– Alarms that have been filtered out of the alarm control are not displayed.
– The visible area of the alarm control is shifted automatically, as needed.
– Users cannot select alarms individually or sort them by column.
If you configure the "Alarms - show current" button as visible and operable, users can pause
and start this behavior in runtime as required. The alarm control always starts with the
behavior configured via "Miscellaneous > Alarms - show current".

• "Miscellaneous > Alarm statistics settings": Setting options that contribute to the evaluation
of the alarm statistics, e.g. start time, maximum number of alarms.

Setting up column sorting
To set up the column sorting, follow these steps:
1. In the Inspector window, click on "Properties > Miscellaneous > Alarm control > Columns >

[1] Alarm statistics column".
2. Select the sorting direction and sorting order for the individual columns.
Define the sorting direction of the alarms in the alarm control, e.g. "Ascending", under
"Properties > Properties > Format > Starting sorting direction".

Configuring reordering of the columns
Configure whether operators can reorder the table columns in runtime using drag-and-drop.
More information is available in the section Configuring reordering of the columns (Page 392).

Access protection in runtime
To configure access protection in runtime, follow these steps:
• Activate the "Operator control - allow" property under "Properties > Properties >

Miscellaneous > Toolbar > Elements > [1] Button > Operator control - allow".
• Define the type of authorization in the "Static value" column under "Properties > Properties

> Miscellaneous > Toolbar > Elements > [1] Button > Authorization".
A user with the required authorization can acknowledge and edit alarms using the buttons in
the alarm control.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 311

Dynamization of graphic properties with tags or scripts
You can dynamize the following properties containing a graphic with a tag or with a script:
• Graphic
• Icon

Configuring the information bar
The information bar of the alarm control shows you the current time and the connection status,
for example.
To configure the information bar, follow these steps:
1. Configure the general properties of the information bar, such as the font and background

color, under "Properties > Properties > Miscellaneous > Information bar".
2. Configure the display of the information bar elements under "Properties > Properties >

Miscellaneous > Information bar > Elements".

Toolbar
You can define the buttons of the alarm control in runtime and their operator authorizations in
the Inspector window under "Properties > Properties > Miscellaneous > Toolbar > Elements".
Some buttons are enabled by default. To display additional buttons in the object, activate the
"Visibility" property in the settings of the corresponding button.
The following buttons are available for the alarm control:

Button Function
Show active alarms Shows the currently active alarms.

Show logged alarms Shows the logged alarms.

Show and update logged alarms Updates the logged alarms and shows them.

Show defined alarms Shows the alarms configured in the system.

Alarm statistics - view Visualizes statistical information, such as frequency and display duration of
logged alarms.

Alarm annunciator Not supported in WinCC Unified.

First line Selects the first of the active alarms. The visible area of the alarm control is
moved.
This button is only enabled if the "Show recent" function is disabled.

Configuring screens
4.2 Overview of screen objects

312 System Manual, 11/2022

Button Function
Previous line Selects the previous alarm in relation to the currently selected alarm. The

visible area of the alarm control is moved.
This button is only enabled if the "Show recent" function is disabled.

Next line Selects the next alarm in relation to the currently selected alarm. The visible
area of the alarm control is moved.
This button is only enabled if the "Show recent" function is disabled.

Last line Selects the last of the active alarms. The visible area of the alarm control is
moved.
This button is only enabled if the "Autoscroll" function is disabled.

Move to next acknowledgeable
alarm

Selects the next alarm in relation to the currently selected alarm. The visible
area of the alarm control is moved.
This button is only enabled if the "Autoscroll" function is disabled.

Previous page Navigates to the next page

Next page Moves to the previous page

Single acknowledgment Acknowledges an individual alarm.
A counter shows how many alarms are unacknowledged. The counter in‐
cludes all connected servers, but no filters.

Group acknowledgment Acknowledges all active visible alarms in the alarm control that require ac‐
knowledgment, unless they are subject to single acknowledgment.

Single confirm Resets the alarm. Relevant for alarms with the state machine "Alarm with
acknowledgment and confirmation" that have already been acknowledged
and are outgoing.

Alarms - show current Defines whether the current alarm is always selected in the alarm control.
Button not pressed: The "Show recent" function is active.
• The current alarms in the alarm control are always displayed first.
• The visible area of the alarm control is shifted automatically, as needed.
• You cannot select the alarms individually or sort them by column.
Button pressed: The "Show recent" function is paused.

Infotext - configuration Opens a dialog to display an infotext.

Comment - configuration Opens a dialog for adding a comment.

Alarm statistics - configuration Opens the dialog to change the time range for the alarm statistics.

Disable alarm Disables an alarm in the current alarm list and in the alarm log lists. The
alarm is added to the display "Disabled alarms."

Enable alarm

Shows an alarm once again.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 313

Button Function
Shelve alarm Shelves an alarm, for example, to prevent an alarm message from impairing

the effectiveness of your system. The alarm appears in the "Shelved alarms"
display.

Unshelve alarm Unshelves the respective alarm.

Copy lines Copies the selected alarms.

Time base - configuration Opens a dialog for setting the time zone for the time information shown in
alarms.

Selection display Opens a dialog for filtering alarms. You can define the filter criteria or filter
the alarms by criteria defined in the Engineering System.

Sorting setup Opens a dialog for setting user-defined sort criteria for the displayed alarms.

Display options - configuration Opens a dialog for configuring the display options of the alarm control. You
can define which alarms are displayed, for example, only shelved alarms or
all alarms.

Locked alarms - configuration Opens a dialog for configuring the display options of the locked alarms.

Export Starts exporting the alarms to a CSV file.

Select context Opens the configuration dialog of the context.

See also
Configuring an alarm control (Page 753)
Automatically filling in of property values for an object collection (Page 379)

Configuring screens
4.2 Overview of screen objects

314 System Manual, 11/2022

4.2.4.3 Trend control

Use
You can use the "Trend control" object to display tag values from the current process or from the
log in the form of trends as an autorepeat.

Note
Trend display in future time range
The trend area located in the future continues the last drawn value.

Layout
In the Inspector window, you can customize the position, geometry, style, colors, and font types
of the object. You can adapt the following properties in particular:
• "Trend areas": Specifies the representation of the trends.
• "Trends": Defines the configuration of the trends.
• "Toolbar": Defines the buttons for the trend control.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 315

Configure trend area
To configure the trend display, follow these steps:
1. Create the following under "Properties > Properties > General > Trend areas":

– Common or individual trend areas
– Common or separate axes
– Writing direction of all trends
By default, the first trend area [0] is already created in the object. You can create more trend
areas using the selection button in the "Static value" column.

2. Configure the value axes and the time axes.
3. Open the settings of the time axis under "Properties > General > Time axes bottom > Time axis

[0]".
Configure the "Time range" of the trend display:
– "Time interval": You define the time range using a starting time and a following time

interval.
– "Start time and end time": You define the time range using a starting time and an end time.
– "Measuring points": You define the time range using a starting time and a number of

measuring points.
4. Open the settings of the value axis under "Properties > General > Trend areas > Trends > Left

value axis > Value axis Y [0]":
– If required, configure the value range, the output format, and the scaling of the value axis.
– If required, configure the value range, the output format, and the scaling of the value axis.

5. Go to "Properties > General > Trend areas > Trends" and configure the trends for the trend
area.

Configuring trends
To configure the trends for each trend area, follow these steps:
1. Select the data supply for the respective trend under "Properties > General > Trend areas >

Trends > [0] Trend > Data source Y > Source":
– "Logging tag": The trend control is supplied with values from a tag log.
– "HMI tag": The trend control is supplied with values of a tag.

2. Select the data supply for the tag under "Properties > General > Trend areas > Trends > Trend
[0] > Data source Y > Tag".
– In the case of an HMI tag, specify the tag name in the "Static value" column.
– In the case of a logging tag, enter the name of the HMI tag in the "Static value" column

first.
Enter the name of the associated logging tags separated by a colon, for example,
"HMITag_1:LoggingTag_1".

3. Configure the display mode for trends under "Trend mode".

Configuring screens
4.2 Overview of screen objects

316 System Manual, 11/2022

Note
In a trend control with multiple trends, a trend can also be selected using the legend in runtime.

Dynamization of graphic properties with tags or scripts
You can dynamize the following properties containing a graphic with a tag or with a script:
• Graphic
• Graphic - pressed button
• Icon

Toolbar
You can define the buttons of the trend control in runtime and their operator authorizations in
the Inspector window under "Properties > Properties > Miscellaneous > Toolbar > Elements".
Some buttons are enabled by default. To display additional buttons in the object, activate the
"Visibility" property in the settings of the corresponding button.
The following buttons are available for the trend control:

Button Name Function
First record Shows the trend direction starting with the first logged value.

Previous record Shows the trend direction of the previous time interval.

Start/Stop Stops and starts the trend update.
Started: The trend is continuously updated. It always shows the latest
values.
Stopped: New values are buffered and updated as soon as you start
the trend update again.

Next record Shows the trend direction of the next time interval.

Last record Shows the trend direction up to the last logged value.

Previous trend Displays the previous trend in the foreground.

Next trend Displays the next trend in the foreground.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 317

Button Name Function
Ruler Determines the coordinates of a point of the trend.

Zoom time axis +/- Enlarges or reduces the time axis display.

Zoom value axis +/- Enlarges or reduces the value axis display.

Zoom area Increases the size of any section of the trend window.

Zoom +/- Enlarges or reduces the view in the trend window.

Move trend area Moves the display in the trend area.
Values from the future trend area apply the last displayed value.

Move axes area Moves the display in the axes area.

Original view Switches from the magnified trend control back to the normal view.

Select time range Opens the dialog for setting the time range displayed in the trend
window.

Select trends Opens the dialog for setting the visibility of trends.

Select data connection Opens the dialog for selecting the logs and tags to serve as the data
source for the trend control.

Statistics area Enables you to define a time range for which statistical values are
determined. Vertical lines which you use to set the time range are
displayed in the trend window.
To display the values, connect the trend control to the trend compan‐
ion.

Calculate statistics Opens a statistics window to display the minimum, maximum,
means, and standard deviation for the selected time range and the
selected trend.
To display the values, connect the trend control to the trend compan‐
ion.

Print Starts printing the trends shown in the trend window.

Configuring screens
4.2 Overview of screen objects

318 System Manual, 11/2022

Button Name Function
Export Opens the dialog for saving the trend data in CSV format.

Select context Opens the configuration dialog of the context.

See also
Configuring a trend control (Page 680)
Configuring the toolbar and information bar (Page 691)
Defining the data source (Page 692)
Automatically filling in of property values for an object collection (Page 379)

4.2.4.4 Function trend control

Use
You can use the "Function trend control" object to represent the values of a tag as a function of
another tag. This means that you can present temperature trends as a function of the pressure,
for example. You can also compare the trend to a setpoint trend.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 319

Note
Trend display in future time range
The trend area located in the future continues the last drawn value.

Layout
In the Inspector window, you can customize the position, geometry, style, colors, and font types
of the object. You can adapt the following properties in particular:
• "Function trends": Defines the configuration of the function trends.
• "Toolbar": Defines the buttons of the function trend control.

Configuring function trends
To configure the function trends for each function trend area, follow these steps:
1. Select the data supply for the function trend under "Properties > General > Function trend -

area > Function trends > [0] Function trend > Data source X > Source".
– "Logging tag": The trend control is supplied with values from a tag log.
– "HMI tag": The trend control is supplied with values of a tag.

2. Enter the tag name under "Properties > General > Function trend - areas > [0] Function trend
- area > Function trends > [0] Function trend > Data source X > Tag":
– In the case of an HMI tag, specify the tag name in the "Static value" column.
– In the case of a logging tag, enter the name of the HMI tag in the "Static value" column

first. Enter the name of the associated logging tags separated by a colon, for example,
"HMITag_1:LoggingTag_1".

3. Configure the data supply for "Data source Y".

Configuring screens
4.2 Overview of screen objects

320 System Manual, 11/2022

4. Open the settings of the time axis under "Properties > General > Function trend - area >
Function trends > [0] Function trend > Time range".
Configure the trend display for the "Time range".
– "Time interval": You define the time range using a starting time and a following time

interval.
– "Start time and end time": You define the time range using a starting time and an end time.
– "Measuring points": You define the time range using a starting time and a number of

measuring points.
5. Configure the value range of the trend display under:

– "Properties > General > Function trend - areas > [0] Function trend - area > Value axes - left
> [0] Value axis Y".

– "Properties > General > Function trend - areas > [0] Function trend - area > Value axes -
bottom > [0] Value axis X".

Select one of the options:
– "Automatically adapt value range". The displayed value range is automatically adapted to

the current values.
– "Scale value - maximum" and "Scale value - minimum". Define the minimum value and

maximum value for the value range.

Dynamization of graphic properties with tags or scripts
You can dynamize the following properties containing a graphic with a tag or with a script:
• Graphic
• Graphic - pressed button
• Icon
• Marker graphic

Toolbar
You can define the buttons of the function trend control in runtime and their operator
authorizations in the Inspector window under "Properties > Properties > Miscellaneous > Toolbar
> Elements". Some buttons are enabled by default. To display additional buttons in the object,
activate the "Visibility" property in the settings of the corresponding button.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 321

The following buttons are available for the function trend control:

Button Name Function
Start/Stop Stops and starts the trend update.

Started: The trend is continuously updated. It always shows the latest
values.
Stopped: New values are buffered and updated as soon as you start
the trend update again.

Zoom X axis +/- Zooms in to or out of the X axis in the trend window.

Zoom area Increases the size of any section of the trend window.

Zoom +/- Enlarges and/or shrinks the trends in the trend window.

Zoom Y axis +/- Enlarges and/or reduces the Y axis in the trend window.

Original view Switches from the magnified trend control back to the normal view.

Previous trend Displays the previous trend in the foreground.

Next trend Displays the next trend in the foreground.

Ruler Determines the coordinates of a point of the trend.

Move trend area Moves the trends along the X axis and Y axis in the trend window.
Values from the future trend area apply the last displayed value.

Move axes area Moves the trends along the value axis in the trend window.

Select time range Opens the dialog for setting the time range displayed in the trend
window.

Select trends Opens a dialog for setting the visibility of trends.

Select data connection Opens a dialog for selecting logs and tags.

Configuring screens
4.2 Overview of screen objects

322 System Manual, 11/2022

Button Name Function
Print Starts printing the trends shown in the trend window. The print job

used during printing is defined in the configuration dialog in the
"General" tab.

Export Starts the export of all or the selected runtime data to a "csv" file.

See also
Configuring the function trend control (Page 682)
Configuring the toolbar and information bar (Page 691)
Defining the data source (Page 692)
Automatically filling in of property values for an object collection (Page 379)

4.2.4.5 Trend companion

Use
You use the "Trend companion" object to show evaluated data and statistics from a trend control
or function trend control in a table.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 323

Layout
In the Inspector window, you can customize the position, geometry, style, colors, and font types
of the object. You can adapt the following properties in particular:
• "Data source": Specifies the source for representing the values.
• "Trend companion - mode": Defines the mode of the values display in the trend companion.
• "Toolbar": Specifies the buttons in the trend companion.

Defining the data source for displaying the values
To define the display of values in the trend companion, follow these steps:
1. Configure a trend control or a function trend control.
2. Select the trend companion. Click "Properties > General > Data source".
3. Select the trend control or function trend control as the data source.
To adapt the display to the connected object, select the "Data source - use background color"
and "Data source - use font color" options under "Properties > Format".
By default, the format of the connected object is adopted during the configuration for the
display format. The size, value range and zoom factor of the object are taken into account to
display the optimum number of decimal places.
You can configure the display formats for individual values in the Inspector window of the
trend companion, for example, to display an exact number of decimal places.

Defining the mode of the trend companion
To define the mode of the trend companion, follow these steps:
1. Select the mode under "Properties > Properties > General > Trend companion - mode".
2. Select one of 3 different mode types depending on the data source:

– The "Ruler" mode shows the coordinate values of the trends on the ruler or the values of
a selected row in the table.

– The "Statistics area" mode shows the values of the low limit and high limit of the trends
between two rulers or the selected area in the table.
The "Statistics area" mode is not available for the function trend control object.

– The "Statistic result" mode shows the statistical evaluation of the trends between two
rulers or the selected values in the table.
The "Statistics result" mode is not available for the "function trend control" object.

Configuring reordering of the columns
Configure whether operators can reorder the table columns in runtime using drag-and-drop.
More information is available in the section Configuring reordering of the columns (Page 392).

Configuring screens
4.2 Overview of screen objects

324 System Manual, 11/2022

Dynamization of graphic properties with tags or scripts
You can dynamize the following properties containing a graphic with a tag or with a script:
• Graphic
• Icon

Toolbar
You can define the buttons of the trend companion in runtime and their operator authorizations
in the Inspector window under "Properties > Properties > Miscellaneous > Toolbar > Elements".
Some buttons are enabled by default. To display additional buttons in the object, activate the
"Visibility" property in the settings of the corresponding button.
The following buttons are available for the trend companion:

Button Brief description Description
Calculate statistics

Shows the statistical values in the statistics window. The displayed values refer
to a selected trend with the configured calculation time period.
The button is only enabled if a statistics window is connected with a trend
control.

Statistics area Enables you to define a time range for which statistical values are determined.

Ruler window Queries the coordinate points of a trend. The trend data are displayed in the
ruler window.

Print Reserved for future versions.

Export

Starts the export of all or the selected runtime data to a "csv" file.

See also
Configuring the trend companion (Page 689)
Automatically filling in of property values for an object collection (Page 379)

4.2.4.6 Screen window

Use
You can use the "Screen window" object to represent other screens from the project in the
current screen. To constantly update the content of a screen window, for example, you
dynamize the object.
You can also use independent screen windows independently of the screen in question. With
appropriate hardware equipment and support by the operating system you can also control
multiple monitors and map processes in a more comprehensive and differentiated manner.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 325

Layout
In the Inspector window, you can customize the settings for the position, geometry, style, and
color of the object. You can adapt the following properties in particular:
• "Zoom - factor": Defines the size of the embedded screen.
• "Size - fit": Specifies whether:

– The embedded screen is scaled to the size of the screen window.
– The screen window is scaled to the size of the embedded screen.

Matching the size of the embedded screen and screen window
To match the size of the embedded screen to the size of the screen window, choose one of the
following options:
• To reduce the size of the embedded screen:

Set the desired zoom factor in the Inspector window under "Properties > Format > Zoom -
factor".

• To scroll to a section of the embedded screen:
Enable the visibility of the horizontal and vertical scroll bars in the Inspector window under
"Properties > Format". Set the position of the scroll bars.
The user can move to details of the embedded screen in runtime.

• To adapt the embedded screen to the size of the screen window or vice versa:
Select either "Fit window to screen" or "Fit screen to window" in the Inspector window under
"Properties > Format > Size - fit".

Resizing in runtime
To allow users to resize a screen window in runtime, follow these steps:
1. Activate the options "Show border" and "Can be sized" in the Inspector window "Properties >

Appearance > Window settings".
The width of the border is not evaluated.

Configuring screens
4.2 Overview of screen objects

326 System Manual, 11/2022

If the embedded screen is larger than the screen window, you can configure the scroll bars
for the screen window under "Properties > Format".

Moving screen window in runtime
To allow users to move a screen window in runtime, follow these steps:
1. Activate the options "Show heading" and "Can be moved" in the Inspector window "Properties

> Appearance > Window settings".

Scaling and moving screen windows in runtime with two-finger gesture
To allow users to scale the screen window on touch devices with a two-finger gesture in runtime,
or to move the displayed section with a two-finger gesture, follow these steps:
1. In the "Properties > Format" Inspector window, activate the "Zoom - allow" property.

Default setting: Activated

Clicking on an object behind the screen window in runtime
Screen windows can overlay other objects placed on the screen that users must operate in
runtime.
To allow users to click an object placed below the screen window in runtime, follow these
steps:
1. Under "Properties > General > Screen", select the screen you want to load into the screen

window, for example, "Screen_2".
2. Set the "Transparent" entry in the "Static value" column under "Appearance > Background -

fill pattern" in the properties of the screen selected in step 1.
Application example: You use a round menu with a button next to it. To prevent the
rectangular border surrounding the menu from obscuring the button, make the menu
available in a screen window. Proceeding as described above has the result that the button
remains operable for users.

Dynamization of graphic properties with tags or scripts
You can dynamize the following property containing a graphic with a tag or with a script:
• Icon

4.2.4.7 Faceplate container

Use
The faceplate container is used to display faceplates in runtime. If a faceplate type has been
instantiated in the container, the desired faceplate type is specified in the "Contained type"
property.
You can find detailed information on configuring faceplates in the section "Configuring
faceplates (Page 524)".

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 327

Layout
You can change the settings for the position, geometry, style, color, and font of the object in the
Inspector window. You can adjust the following properties in particular:
• "Window settings": Specifies the representation of the faceplate container in runtime.
• "Faceplate type": Defines the faceplate type that is instantiated in the faceplate container.

Defining window settings
To resize a faceplate instance in runtime, activate the options "Show border" and "Can be sized"
in the Inspector window "Properties > Appearance > Window settings".
The width of the border is not evaluated.
To move a faceplate instance in runtime, select the options "Show heading" and "Can be
moved" in the Inspector window under "Properties > Appearance > Window settings".

Defining the faceplate type
To define the faceplate type, select the faceplate type that is instantiated in the faceplate
container under "Properties > Miscellaneous > Faceplate type".

Dynamization of graphic properties with tags or scripts
You can dynamize the following property containing a graphic with a tag or with a script:
• Icon

See also
Basics of faceplates (Page 524)

Configuring screens
4.2 Overview of screen objects

328 System Manual, 11/2022

4.2.4.8 Parameter set control

Use
You can use the "Parameter set control" object to display and manage parameter sets in runtime
and to exchange them with the controller.

Layout
You can change the settings for the position, geometry, style, color, and font of the object in the
Inspector window. Under "Miscellaneous", you can adapt the following properties in particular:
• "Parameter - view": Specifies the representation of the parameter table in the object.
• "Editing mode": Defines the activation status of the toolbar buttons.
• "Information bar": Specifies the representation of the information bar.
• "Toolbar": Defines the buttons of the parameter set control.

Using a parameter set type
If you only want to use a particular parameter set type with its parameter sets in runtime, select
the desired parameter set type under "Properties > General > Fixed parameter set type".

Configuring the time zone
To configure the time zone, follow these steps:
Under "Properties > Miscellaneous > Time zone", set the desired time zone by entering a
numerical value.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 329

The numerical value stands for a time zone, for example:
• "-1" stands for UTC-1h (Central European Time, standard time)
• "1" stands for UTC-12h (International Date Line West)
• "2" stands for UTC-11h (Hawaii)

Defining the editing mode
To specify the editing mode and to enable or disable the buttons, follow these steps:
Under "Properties > Miscellaneous > Editing mode", configure the activation status of the
toolbar buttons "Create", "Save", "Save as", "Rename" and "Delete". These toolbar buttons are
used to edit parameter sets.
You can select between the following settings:
• "None": Deactivates all buttons.
• "Update": Activates the "Save" and "Rename" buttons.
• "Create": Activates the "Create" and "Save as" buttons.
• "Delete": Activates the "Delete" button.

Configuring reordering of the columns
Configure whether operators can reorder the table columns in runtime using drag-and-drop.
More information is available in the section Configuring reordering of the columns (Page 392).

Dynamization of graphic properties with tags or scripts
You can dynamize the following properties containing a graphic with a tag or with a script:
• Graphic
• Icon

Configuring the information bar
To configure the information bar, follow these steps:
1. Configure the general properties of the information bar, such as the font and background

color, under "Properties > Miscellaneous > Information bar".
2. To adjust the height of the "Status text" element, specify the height under "Properties >

Miscellaneous > Information bar > Elements > [0] Element".
The "Status Text" element is the only status line element of the parameter set control. Status
messages are displayed in this element in runtime.

Configuring screens
4.2 Overview of screen objects

330 System Manual, 11/2022

Toolbar
You can define the buttons of the parameter set control in runtime and their operator
authorizations in the Inspector window under "Properties > Miscellaneous > Toolbar >
Elements". By default, all buttons are displayed in the toolbar. To hide specific buttons,
deactivate the "Visibility" property in the settings of the corresponding button.
The following buttons are available for the parameter set control:

 Button Function
Create Creates a new parameter set.

Save Saves a parameter set.

Save as Saves an existing parameter set under a new name and new ID.

Rename Renames the selected parameter set.

Write to PLC Writes the values of the selected parameter set to the PLC.

Read from PLC Writes the values of the selected parameter set from the PLC.

Import Imports parameter sets from a "*.tsv" file.

Export Exports parameter sets to a "*.tsv" file.

Cancel Cancels the process.

Delete Deletes the selected parameter set.

Note
A "*.tsv" file is a text file that uses the tabulator as a list separator.

See also
Configuring the parameter set view (Page 880)
Automatically filling in of property values for an object collection (Page 379)

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 331

4.2.4.9 System diagnostics display

Use
You can use the "System diagnostics control" object to display the diagnostic status of several
PLCs using traffic light SVGs. The diagnostic status contains the overall status of all relevant PLCs.
The merged state is always the worst state of all PLCs.

Layout
You can change the settings for the position, geometry, style, color, and font of the object in the
Inspector window. You can adjust the following properties in particular:
• "Diagnostic view": Defines various properties for the display of system diagnostics, such as

the background color and row height.
• "Information bar": Specifies the representation of the information bar.
• "Toolbar": Specifies the buttons of the system diagnostics control.

Access protection in runtime
You can configure access protection with the properties "Operator control - allow" and
"Authorization" under "Properties" in the Inspector window. A logged-in user having the required
authorization can acknowledge and edit the system diagnostics control using the buttons in the
system diagnostics control.

Configuring screens
4.2 Overview of screen objects

332 System Manual, 11/2022

Defining the properties of the system diagnostics control
To define the properties of the system diagnostics view, follow these steps:
1. Click "Properties > General > Diagnostic view" in the Inspector window.
2. Define the settings for the rows and cells.

– "Row height": Defines the height of the rows in the alarm control.
– "Cells - internal spacing": Defines the internal spacing in the cells.

3. Define the settings for the headers under "Properties > General > Diagnostic view > Header
- settings":
– "Row header": Defines whether each row has a header.
– "Column header": Specifies the representation of the column header.

4. Define the width and color of the grid lines.
5. Define the use of scroll bars.

Setting up column sorting
To set up the column sorting, follow these steps:
1. In the Inspector window, click "Properties > General > Diagnostic view > Columns > [0]

Column".
2. Select the sorting direction and sorting order for the individual columns.

Configuring reordering of the columns
Configure whether operators can reorder the table columns in runtime using drag-and-drop.
More information is available in the section Configuring reordering of the columns (Page 392).

Dynamization of graphic properties with tags or scripts
You can dynamize the following properties containing a graphic with a tag or with a script:
• Graphic
• Icon

Configuring the information bar
The information bar of the system diagnostics control shows the connection status and path.
To configure the information bar, follow these steps:
1. Configure the general properties of the information bar, such as the font and background

color, under "Properties > Miscellaneous > Information bar".
2. Configure the display of the information bar elements under "Properties > Miscellaneous >

Information bar > Elements".

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 333

Toolbar
You can define the buttons of the system diagnostics control in runtime and their operator
authorizations in the Inspector window under "Properties > Properties > Miscellaneous > Toolbar
> Elements". Some buttons are enabled by default. To display additional buttons in the object,
activate the "Visibility" property in the settings of the corresponding button.
The following buttons are available for the system diagnostics control:

Button Function
Home Shows the home page.

Reload Updates the view of the diagnostic event.

First line Selects the first of the pending diagnostic events. The visible area of the view
is moved.

Previous line Selects the previous diagnostic event, starting from the currently selected
diagnostic event. The visible area of the view is moved.

Next line Selects the next diagnostic event, starting from the currently selected diag‐
nostic event. The visible area of the view is moved.

Last line Selects the last of the pending diagnostic events. The visible area of the view
is moved.

Share view Enables/disables the detail view.

Previous Navigates to the previous PLC.

Show diagnostic buffer Changes from the matrix view to the diagnostic view. The diagnostic view
shows the diagnostics buffer of the PLC.
This button is only enabled if a PLC or one of its lower-level modules is shown
in the matrix view.

See also
Automatically filling in of property values for an object collection (Page 379)

Configuring screens
4.2 Overview of screen objects

334 System Manual, 11/2022

4.2.4.10 Process control

Use
You use the "Process control" object to display the tag values in a table. You can display current,
or logged values in the table. You can configure up to nine value columns. The first column is
reserved for the time column.

Layout
In the Inspector window, you can customize the position, geometry, style, colors, and font types
of the object. You can adapt the following properties in particular:
• "Column": Defines the setting of the value column.
• "Data source": Specifies the source for representing the values.
• "Toolbar": Specifies the buttons for the process control.

Configuring columns
To configure the columns, follow these steps:
1. Open the settings of the time column under "Properties > Miscellaneous > Process control >

Columns > Time range column [0]".
2. Under "Properties > Miscellaneous > Process control > Columns > [0] Time range column >

Time range", select the time range of the table:
– "Time interval": You define the time range using a starting time and a following time

interval.
– "Start time and end time": You define the time range using a starting time and an end time.
– "Measuring points": You define the time range using a starting time and a number of

measuring points.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 335

3. Open the settings of the respective value column under "Properties > Miscellaneous >
Process control > Columns > [1] Column".

4. Under "Sort order", define the order in which the columns of the process control are shown.
5. Set the direction in which the values are sorted under "Sorting direction - default".
6. Define whether operators can re-arrange the table columns in runtime using drag-and-drop.

More information is available in the section Configuring reordering of the columns
(Page 392).

Defining the data source for displaying the values
To define the display of the values in the process control, follow these steps:
Under "Properties > Miscellaneous > Process control > Columns > [1] Column > Data source >
Source", select:
1. Type of data source:

– HMI tag
– Logging tag

2. Tag that supplies the column with values.

Dynamization of graphic properties with tags or scripts
You can dynamize the following properties containing a graphic with a tag or with a script:
• Graphic
• Icon

Toolbar
You can define the buttons of the process control in runtime and their operator authorizations
in the Inspector window under "Properties > Properties > Miscellaneous > Toolbar > Elements".
Some buttons are enabled by default. To add more buttons in the display object, activate the
"Visibility" property under the settings of the corresponding button.
The following buttons are available for the process control:

Button Name Function
First record Shows the tag values starting with the first logged value.

Previous record Shows the tag values in the previous time interval.

Start/Stop Stops and starts the column update. The values are buffered and up‐
dated as soon as you start column update again.

Configuring screens
4.2 Overview of screen objects

336 System Manual, 11/2022

Button Name Function
Next record Shows the values of the tag in the next time interval.

Last record Shows the tag values up to the last logged value.

Edit Allows the editing of data in any table field that is opened when the
user double-clicks it.

Previous column Displays the previous column in the foreground

Next column Displays the next column in the foreground

Select time range Opens the dialog for setting the time range displayed in the process
control.

Select data connection Opens the dialog for selecting the archives and tags that serve as data
the source for this process control.

Create archive value Creates an archived value.

Delete log value Deletes a logged value.

Export

Starts the export of all or the selected runtime data to a "csv" file.

See also
Configuring the process control (Page 688)
Automatically filling in of property values for an object collection (Page 379)

4.2.4.11 Web control

Use
You use the "Web control" object to display basic HTML pages and documents in PDF format.
You have access to the data of the local user management in runtime via a "Browser".

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 337

Layout
Customize the object position and size in the Inspector window. In particular, you can customize
the following property:
• "URL": Specifies which Internet address is opened in the HTML Browser.
• "Toolbar": Specifies the buttons of the browser.

Defining the URL
The "browser" object supports the following protocols:
• On a Unified Comfort Panel, HTTP protocol and HTTPS protocol.
• On a Unified PC, only the HTTPS protocol.
To define the URL, follow these steps:
Define the Internet address in the Inspector window under "Properties > Properties > URL".

Displaying HTML pages
Please note the following when using the object:
• The "Web control" object only displays content that is supported by the web browser in which

runtime is open.
• The object is implemented as an iFrame. Pages with X-frame option settings that prevent the

display in an iFrame are not displayed in the object.

Configuring screens
4.2 Overview of screen objects

338 System Manual, 11/2022

Limitations
The "Web control" object has a limited range of functions compared to a standard browser:
• Navigation from the "Web control" object is not supported (top-level navigation).
• Calls of queries and dialogs (popups and modal dialogs) are only supported if they were

activated in the file <Path for the WinCC Unified installation
directory>WinCCUnified\WebRH\public\content\custom\CustomSettings.json:
{"CustomSettings": {"HmiWebControl" : {"AllowPopups" :
true,"AllowModals" : true}}}
Note
Popups and modal dialogs stop the update.

Displaying PDF files in the "Browser" on a Unified PC
The "Browser" object displays PDF files that are available:
• Locally on the HMI device
• On the Internet
You can view a PDF file in the following ways:
• Copy the PDF files to the directory "C:\Program

Files\Siemens\Automation\WinCCUnified\WebRH\public".
Under "Properties > URL", enter the address "https://localhost/WebRH/<pdfname.pdf>".
Note
You cannot display any PDF files that are saved locally in a different directory on your PC.
You can also use the IP address or the PC name instead of "localhost".
If you operate runtime on a different PC than the TIA Portal, also save the PDF files on the
runtime PC.

• Enter a valid Internet address under "Properties > Properties > URL".

Influencing how the document is displayed on a Unified PC
The "Browser" object supports a large number of default parameters with which you can
influence how a PDF file is displayed.
Examples of parameters when opening the PDF file:
• Jump to specific page: https://winccunified/WebRH/UCPManual.pdf#page=18
• Jump to table of contents: https://winccunified/WebRH/UCPManual.pdf#lnhaltsverzeichnis
• Zoom in on page: https://winccunified/WebRH/UCPManual.pdf#zoom=200

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 339

Displaying PDF files in the "Browser" on a Unified Comfort Panel
The "Browser" object displays PDF files that are available:
• Locally on the HMI device
• On an external storage medium
You can view a PDF file in the following ways:
• Enter path and file name in the URL input field of the "Browser" operating object.
• In the configuration of the "Browser" operating object under "Properties", link the URL with

a tag of the type WString which contains path and file name.
Syntax: file:///<path>/<filename>.pdf
Pay attention to uppercase/lowercase spelling.
Examples:
• Open file from the data memory card: file:///media/simatic/X51/UCPManual.pdf
• Open locally saved file: file:///home/industrial/UCPManual.pdf

Influencing how the document is displayed on a Unified Comfort Panel
The "Browser" object supports a large number of default parameters with which you can
influence how a PDF file is displayed.
Examples of parameters when opening the PDF file:
• Open file on page 20: file:///media/simatic/X51/UCPManual.pdf?20#page=20
• Open file with zoom factor 150%: file:///media/simatic/X51/UCPManual.pdf?150#zoom=150
• Open file on page 20 with zoom factor 150%: file:///media/simatic/X51/UCPManual.pdf?

(20,150)#page=20&zoom=150

Dynamization of graphic properties with tags or scripts
You can dynamize the following properties containing a graphic with a tag or with a script:
• Graphic
• Icon

Toolbar
You can define the buttons of the browser in runtime and their operator authorizations in the
Inspector window under "Properties > Properties > Miscellaneous > Toolbar > Elements". Some
buttons are enabled by default. To add more buttons in the display object, activate the "Visibility"
property under the settings of the corresponding button.

See also
Automatically filling in of property values for an object collection (Page 379)

Configuring screens
4.2 Overview of screen objects

340 System Manual, 11/2022

4.2.4.12 Media Player

Use
You use the "Media Player" object to play multimedia files in Runtime.

Layout
You can set the following properties in the Inspector window:
• "URL": Defines the file that is played back in the Media Player.
• "Toolbar": Specifies the buttons of the Media Player.

Supported file formats
The Media Player supports all file formats that are supported by the utilized browser.
The playback of multimedia files in the object depends not only on the file format, but also on
the video and audio codecs installed on the computer.

Note
If you copy the project to another PC, keep the following in mind: Files specified in the WinCC
Media Player are not copied with the project if the files are dynamically linked and no UNC path is
specified. You have to load the files into the project again.

Accessing a file in the Media Player
To access files in the Media Player, you must have stored them in the Public directory of the
WinCC Unified installation.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 341

To access a file in the Media Player, follow these steps:
1. Store the file in the Public directory of the WinCC Unified installation, e.g. "C:\Program

Files\Siemens\Automation\WinCCUnified\WebRH\public". You can also create a subdirectory,
e.g. "MediaFiles".

2. Click "Properties > All properties > URL". Enter the URL.
You can structure a valid URL according to the following scheme: "https://
<ComputerName>.<DomainName>/WebRH/<FileName>".
Example: "https://mycomputer.siemens.net/WebRH/Twistlock.mp4".
If you have created a subdirectory, e.g. "MediaFiles", enter the URL in the following format:
"https://mycomputer.siemens.net/WebRH/MediaFiles/Twistlock.mp4".

Alternatively, you can change the address via a script, e.g.:
Screen.FindItem('MediaControl').Url = https://
<ComputerName>.<DomainName>/WebRH/<FileName>

Dynamization of graphic properties with tags or scripts
You can dynamize the following properties containing a graphic with a tag or with a script:
• Graphic
• Graphic - pressed button
• Icon

Toolbar
You can define the buttons of the Media Player in Runtime and their operator authorizations in
the Inspector window under "Properties > Properties > Miscellaneous > Toolbar > Elements".
Some buttons are enabled by default. To add more buttons in the display object, activate the
"Visibility" property under the settings of the corresponding button.
The following buttons are available for the Media Player:

Button Name Function
Play Plays the video or audio file.

Pause Pauses the video or audio file.

Stop Stops the video or audio file.

Search forward Searches for the next video or audio file.

Configuring screens
4.2 Overview of screen objects

342 System Manual, 11/2022

Button Name Function
Search backward Searches for the last video or audio file.

Mute Mutes the video or audio file.

See also
Automatically filling in of property values for an object collection (Page 379)
http://support.automation.siemens.com (http://support.automation.siemens.com/WW/
view/en/62101921)

4.2.4.13 GRAPH overview

Use
The "GRAPH Overview" object is used to display the current program status for executed steps of
the GRAPH sequencer. Errors during execution of a program are displayed directly at the
corresponding step.

The following information is displayed in the "GRAPH Overview" object:
• Name and status of the function block
• Status of initial and simultaneous steps
• Number and name of the first step currently executed step
• Operating mode for running the GRAPH sequencer

WinCC supports the display of step names for the GRAPH blocks in multiple languages
starting from Version 6.0. The step names will then be displayed in the selected Runtime
language following a language changeover in Runtime. If the selected language is not
available in the GRAPH block, the names are displayed in the default language (English).

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 343

http://support.automation.siemens.com/WW/view/en/62101921
http://support.automation.siemens.com/WW/view/en/62101921

Note
Device dependency of the "GRAPH Overview" object
The "GRAPH overview" object is available for Unified PC.

Note
Requirement for display in GRAPH overview
For the display of the program status of an S7 GRAPH instance data block in the "GRAPH
overview" object to be possible, the instance-specific properties of the block must be set as
"Visible in HMI" and "Accessible from HMI".

Layout
In the Inspector window, you customize the position, style, colors and font types of the object.
You can adapt the following properties in particular:
• Assigned GRAPH DB tag
• Buttons of the toolbar

Operating mode
Four operating modes are available for running the GRAPH sequence:
• AUTO (default setting) - Automatically switches to the next step when the transition is

fulfilled.
• TAP - Automatically switches to the next step when the transition is fulfilled and there is an

edge change from "0" to "1" at the T_PUSH parameter.
• TOP - Automatically switches to the next step when the transition is fulfilled or there is an

edge change from "0" to "1" at the T_PUSH parameter.
• MAN - The next step is not automatically enabled when the transition is fulfilled. The steps

can be selected and deselected manually.

Note
You set the operating mode by modifying the interface parameters of the GRAPH block in your
control program.

In WinCC Unified Runtime, you have the option to customize the name for the operating
mode that is displayed in the GRAPH overview.

Configuring a compact view
You can also configure a slim GRAPH overview without toolbar buttons and operating mode
display.

Configuring screens
4.2 Overview of screen objects

344 System Manual, 11/2022

To display a slim GRAPH overview in single-line compatibility mode, drag the control to the
desired size.

Symbols
The symbols displayed in the GRAPH overview are pre-defined:

Symbol Name Function
Error Indicates that an error has occurred during the execution of a step.

Initial step Indicates that the currently executing step is the first step in the GRAPH
block.

Simultaneous step Shows that there are other simultaneous steps in the GRAPH block in addi‐
tion to the current one.

Buttons
You specify the buttons that are displayed in the GRAPH overview under "Properties >
Miscellaneous > Toolbar > Elements".

Button Name Function
Next Step Jumps to the next step in parallel step. When you get to the last step, you can

jump back to the first step.

Jump to Alarm Control Opens the configured alarm view with the error alarm in WinCC Unified.
The button is intended to be populated with appropriate system functions/
scripts.

Jump To PLC Code Viewer Opens the configured PLC code view.
The button is intended to be populated with appropriate system functions/
scripts.
Ideally, use the "OpenViewerGraphFromOverview" system function.

Jump to TIA Portal Several system functions are available for opening the TIA Portal.

See also
Configuring a GRAPH overview (Page 6880)

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 345

4.2.4.14 PLC code view

Use
The "PLC code viewer" object is used to display the current program status of user programs that
have been programmed in the GRAPH programming language.
In the PLC code view, you display various items of information about the user program:
• Information area
• Toolbar
• Detail view
• Transition/Interlock view

Configuring screens
4.2 Overview of screen objects

346 System Manual, 11/2022

Information area
The information area shows the GRAPH sequence in the left area and the details, e.g. for the step
or for the transition, in the right area.

Toolbar
The toolbar shows information about the first or the selected icon.

Buttons of the toolbar
The table below shows the buttons on the toolbar and their meaning.

Operating el‐
ement

Description Function

"Previous network" Navigates to the previous network.

"Next network" Navigates to the next network.

"Zoom in" Enlarges the information area.

"Zoom out" Reduces the information area.

"Step mode" Switches between manual and automatic step selection for
the active step.

"Transition or Interlock" Switches between the transition and interlock networks.

See also
Configuring the PLC code view (Page 6884)

4.2.5 My Controls

4.2.5.1 Using custom web controls

Introduction
You can use custom web controls in WinCC.
For custom web controls to be displayed in the TIA Portal, store the custom web controls in
the folder <project_folder>/UserFiles/CustomControls.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 347

Requirement
• A project has been created.
• A Unified device has been created.
• A screen is open.

Using custom web controls
Custom web controls are stored in the TIA Portal in "Tools > My Controls".
If you want to use a custom web control, follow these steps:
1. Insert the custom web control into the open screen by dragging-and-dropping the control

from the "My Controls" palette to the screen.
2. Specify the properties of the custom web control in the Inspector window.
3. Configure the events for the custom web control.

Using custom web controls as a master copy
When you add the custom web control as a master copy to the project library, the control is
changed.
You update the copied custom web control by clicking on the "Update" icon.

Managing properties and events
You can change the properties and create or delete events without having to open the project
again or restart TIA Portal.
You have the following two options for managing the properties and events:
• Extract the manifest file from the .zip file, make the changes, and save the manifest file back

to the .zip file.
• Create a separate .zip file with the changed manifest file and overwrite the .zip file in the

CustomControls folder.

4.2.5.2 Updating Custom Web Controls

Introduction
After changing the properties for custom web controls or configuring new events, you can
update custom web controls.

Configuring screens
4.2 Overview of screen objects

348 System Manual, 11/2022

Updating custom web controls
If you have changed the properties for custom web controls or configured new events, you can
update the custom web controls as follows:
1. Click the Update icon in the "My Controls" palette.
2. Custom web controls are updated.
3. A message appears in the Inspector window:

– "The object '{0}' was updated successfully".
– "The object '{0}' was updated successfully, but some properties have been lost due to

incompatible changes to the interface."
– "All objects are up to date". You have not changed any properties or alarms.

Note
The placeholder '{0}' stands for a unique and complete path on which the custom web control
is stored.

Restrictions for the update
If you have opened a project as read-only, the update is not possible.
The following changes to the custom web control prevent the automatic update:
• Renaming properties or events
• Deleting properties or events
• Changing the data type

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 349

4.2.5.3 My Controls - Overview

Audit Viewer

Use
You use the "Audit Viewer" object to evaluate in table form all data of the audit trail in Runtime.

Layout
In the Inspector window, you can customize the settings for the position, geometry, style, and
color of the object. You can adjust the following properties in particular:
• "Text": Specifies the text for the label.
• "Window settings": Defines the settings for display in Runtime.

Text
To set a text for the Audit Viewer, follow these steps:
1. Click "Properties > Miscellaneous > Label > Font" in the Inspector window.
2. Select a font.
3. Click "Properties > Miscellaneous > Label > Text" in the Inspector window.
4. Enter a text.

Configuring screens
4.2 Overview of screen objects

350 System Manual, 11/2022

Resizing in Runtime
To resize the Audit Viewer in Runtime, follow these steps:
1. Activate the options "Show border" and "Can be sized" in the Inspector window "Properties >

Appearance > Window settings".
The width of the border is not evaluated.

Dynamization of graphic properties with tags or scripts
You can dynamize the following property containing a graphic with a tag or with a script:
• Icon

Plant overview

Use
You use the "Plant overview" object to display the configured plant view in runtime.
You use it to navigate to the plant objects within the plant structure and get an overview of
your plant at one glance.
If you have configured screens or alarms for the lower-level plant objects and have linked
them to the "Plant overview" object, navigate to these screens and alarms and display them.

Layout
You change the settings for the position, geometry, style, and color of the object in the Inspector
window.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 351

To enable navigation between the screens of the plant objects, configure the companion
controls under "Properties > Miscellaneous > Interface > Companion controls".

Buttons
The following buttons are available for the "Plant overview" object in runtime:

Button Name Function
Expand Expands the plant view with the lower-level plant objects.

Collapse Collapses the plant view with the lower-level plant ob‐
jects.

Filter Defines which plant objects are displayed.

Reports

Use
You use the "Reports" object to create and manage report tasks in runtime. You have access to
the reports generated by the report jobs.

You can find detailed information on configuring the object in the engineering system in the
section Configuring production reports in the engineering system (Page 7655).
You can find detailed information on configuring report tasks in runtime in the section
Working with production reports in Runtime (Page 7719).

Configuring screens
4.2 Overview of screen objects

352 System Manual, 11/2022

Layout
In the Inspector window, you change general settings of the object such as the position, height,
width, label and window settings.

See also
Basics of Reporting (Page 7647)
The user interface of the "Reports" control (Page 7722)

4.2.6 Graphics

4.2.6.1 External graphics

Introduction
You can use graphics created with an external graphic program in WinCC. To use these graphics
you store them in the project graphics of the WinCC project.
You can save graphics in the project graphics:
• When you drag-and-drop graphics objects from the "Graphics" pane into the work area, these

are stored automatically in the project graphics. The graphic names are numbered in the
order of their creation, for example, "Graphic_1." Use the <F2> function key to rename the
graphic.

• As a graphic file with the following formats:
*.bmp, *.ico, *.emf, *.wmf, *.gif, *.tif, *.png, *.svg, *.jpeg or *.jpg

• As an OLE object that is embedded in WinCC and is linked to an external graphic editor. In the
case of an OLE link, you open the external graphic editor from WinCC. The linked object is
edited using the graphic editor. An OLE link only works if the external graphic editor is
installed on your PC, and supports OLE.

Note
High-resolution graphic objects require a lot of memory in the project and cause long loading
times. They also reduce performance in Runtime.
Use graphic objects with a resolution that is sufficient for a high-quality display in the Runtime
project. Note the display resolution of the target device and the size in which the graphic object
is displayed on the display of the target device. Adapt the resolution of large graphic objects
accordingly before using them in your project.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 353

Use of graphics from the project graphics
Graphics from the project graphics are used in your screens:
• In a graphic view
• In a graphic list
• As labeling for a button
To use a graphic in the screen or in the screen object, drag-and-drop the desired graphic to
the screen or the screen object. Alternatively, select the graphic from the selection list in the
"Graphic" property in the Inspector window.

Transparent graphics
In WinCC, you also use graphics with a transparent background. When a graphic with a
transparent background is inserted into a graphic object of WinCC, the transparency is replaced
by the background color specified for the graphic object. The selected background color is linked
firmly to the graphic. If you use the graphic in another graphic object of WinCC, this object is
displayed with the same background color as the graphic object that was configured first. If you
want to use the graphic with different background colors, include this graphic in the project
graphics again under a different name. The additional background color is configured when the
graphic is used at the corresponding graphic object of WinCC.

Managing graphics
An extensive collection of graphics, icons and symbols is installed with WinCC. In the Toolbox
window of the "Graphic" pane the graphic objects are structured by topic in the "WinCC graphics
folder." The link to the WinCC graphics folder cannot be removed, edited or renamed.
The "Graphics" pane is also used to manage the external graphics. The following possibilities
are available:
• Creating links to graphics folders

The external graphic objects in this folder, and in the subfolders, are displayed in the toolbox
and are thus integrated in the project.

• Editing folder links
• You open the program required for editing of the external graphic in WinCC.

4.2.6.2 Managing external graphics

Introduction
External graphics that you want to use in WinCC are managed in the "Screens" editor by using the
"Tools" task card in the "Graphics" pane.

Requirement
• The "Screens" editor is open.
• The "Toolbox" task card is open.

Configuring screens
4.2 Overview of screen objects

354 System Manual, 11/2022

• The graphics are available.
• The graphics have the following formats:

*.bmp, *.ico, *.emf, *.wmf, *.gif, *.tif, *.svg, *.jpeg, *.jpg

Creating a folder link
1. Click "My graphics folder."
2. Select "Link" in the shortcut menu.

The "Create link to folder" dialog is opened. The dialog suggests a name for the folder link.
3. Edit the name as required. Select the path containing the graphic objects.
4. Click "OK" to confirm your input.

The new folder link is added to the "Graphics" object group. The external graphics that are
located in the target folder and in sub-folders are displayed in the toolbox.

Editing folder links
1. Select the folder link to edit.
2. Select the "Edit link..." command from the shortcut menu.

The "Create link to folder" dialog is opened.
3. Edit the name and path of the folder link as required.
4. Click "OK" to confirm your input.

Renaming the folder link
1. Select the folder link to rename.
2. Select "Rename" from the shortcut menu.
3. Assign a name to the new folder link.

Removing a folder link
1. Select the folder link you want to delete.
2. Select "Remove" in the shortcut menu.

Edit external graphics
1. Select the graphic you want to edit.
2. Select the "Edit graphic" command from the shortcut menu.

This opens the screen editor associated with the graphic object file.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 355

Editing graphics folders from WinCC
1. Select the graphic you want to edit.
2. Select "Open folder" from the shortcut menu.

The Windows Explorer opens.

4.2.6.3 Managing SVG graphics

Introduction
You can import SVG graphics into the TIA Portal for visualization. You can adapt the source file
for the SVG graphics so that the SVG graphics are displayed correctly in the TIA Portal.

Requirement
• The HMI screen is open.

Importing SVG graphics
To import an SVG graphic into the TIA Portal, follow these steps:
1. In the project tree, under "Languages & Resources", click on "Project graphics".
2. Use drag-and-drop to add an SVG graphic from your storage location into the project

graphics.
3. In the "Default graphic" column, click the added graphic.
4. Information about the SVG graphic is displayed in the Inspector window under "General >

Properties".

Displaying SVG conversion information
In the Inspector window, under "Properties > General" in the "Graphics" area, you can find the
"Show SVG conversion information" button.
To display the SVG conversion information, follow these steps:
1. Click on the button.
2. An "SVG conversion information" dialog with 2 scrollable read-only text boxes opens:

– "SVG content": The content of the SVG image file is imported into the TIA Portal as a result
of the conversion.

– "SVG conversion protocol": Messages about the changes during conversion.
During the import of SVG files into the TIA Portal, the contents that are not supported by
WinCC Unified and HMI systems are removed.

You can select and copy the text in the dialog.

Configuring screens
4.2 Overview of screen objects

356 System Manual, 11/2022

"SVG conversion information" dialog
The "SVG conversion information" dialog contains:
• Messages created during the import of the SVG file.
• Information on the content that was removed during conversion.
Depending on the exact content of the original SVG file, checking and conversion may be
carried out in multiple test cycles. The protocol segments of the test cycles are separated by
a hyphenated separator line ("-----"). The row number of the original SVG file is only specified
for the first conversion test cycle.
The conversion protocol is created and provided in English, regardless of the current user
interface language or runtime language settings in the project.

Editing SVG graphics
To edit an SVG graphic, follow these steps:
1. Right-click the graphic in the "Default graphic" column.

The shortcut menu opens.
2. Click "Edit".

An external editor for editing the graphics opens.
You can now edit the SVG graphic.

4.2.6.4 Restrictions on SVG graphics

Introduction
The SVG graphics support the SVG 1.2 Tiny standard. Note the following restrictions when using
SVG graphics:

Restrictions on SVG graphics
• The CSS definitions are converted to inline attributes.
• Embedded scripts and non-local URLs are not supported in the SVG graphics and are removed

from the original graphics during conversion when imported into the TIA Portal.
• The use of SVG graphics with embedded animations is not supported.
• The use of large SVG graphics affects performance due to the load associated with the

increased characters.
• Migration of SVG graphics from WinCC V7 to TIA Portal is not supported.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 357

• The following SVG characteristics are not supported:
– Scripting
– Interactivity
– Styling
– Expandability - no ForeignObjects
– Animations

• Screen objects using an SVG graphic that was scaled in the Engineering System as a
background graphic are not displayed correctly in Runtime in Chrome.

• SVG graphics for which the "Scale background graphic" property in engineering in faceplates
is set to "Stretch to fit" are not displayed correctly in Runtime in Chrome.
Convert such a graphic into a bitmap to use it in engineering. Or, for Runtime, select a web
browser other than the web client, such as Firefox.

• If the "Scale background graphic" property is configured with the value "None" for screen
objects, set the following SVG attributes to display SVG graphics:
– Width: Pixel or percent
– Height: Pixel or percent
Specifications for width and height are recommended in pixels. If the width and height are
not set, the pixel values entered in the SVG attribute "viewbox" are used. This does not apply
to Firefox.

4.2.7 Dynamic widgets

4.2.7.1 Managing dynamic SVG graphics

Introduction
You can use dynamic SVG graphics in WinCC. For SVG graphics to be displayed in the TIA Portal,
store the graphics in the folder <project_folder>/UserFiles/SVGControls.

Requirement
• A project has been created.
• A Unified device has been created.
• A screen is open.

Managing dynamic SVG graphics
The dynamic SVG graphics are stored in the TIA Portal in "Tools > Dynamic widgets > Project
graphics".

Configuring screens
4.2 Overview of screen objects

358 System Manual, 11/2022

If you want to manage an SVG graphic, follow these steps:
1. Insert the SVG graphic into the open screen by dragging the graphic from the "Project

graphics" folder to the screen.
2. Specify the properties of the SVG graphic in the Inspector window.
3. Configure the events for the SVG graphic.
You can change the properties and create or delete events without having to open the
project again or restart TIA Portal.
The SVG graphic is also displayed in the project graphics in "Project tree > Languages and
resources".

Updating dynamic SVG graphics
If you have changed the properties of the SVG graphic or configured new events, you can update
the SVG graphic as follows:
1. Click the Update icon in the "Dynamic widgets" palette.
2. The dynamic SVG graphics are updated.
3. A message appears in the Inspector window:

– "The object '{0}' was updated successfully".
– "The object '{0}' was updated successfully, but some properties have been lost due to

incompatible changes to the interface."
– "All objects are up to date". You have not changed any properties or alarms.

Note
The placeholder '{0}' stands for a unique and complete path on which the SVG graphic is
stored.

Restrictions for the update
If you have opened a project as read-only, the update is not possible.
The following changes to the SVG graphic prevent the automatic update:
• Renaming properties or events.
• Deleting properties or events.
• Changing the data type.

Using dynamic SVG graphic as a master copy
When you add the SVG graphic as a master copy to the project library, the SVG graphic is
changed.
You update the copied SVG graphic by clicking on the "Update" icon.

Configuring screens
4.2 Overview of screen objects

System Manual, 11/2022 359

Restrictions on SVG graphics
The SVG graphics support the SVG 1.2 Tiny standard. Note the following restrictions when using
SVG graphics:
• The CSS definitions are converted to inline attributes.
• Embedded scripts and non-local URLs are not supported in the SVG graphics and are removed

from the original graphics during conversion when imported into the TIA Portal.
• The use of SVG graphics with embedded animations is not supported.
• The use of large SVG graphics affects performance due to the load associated with the

increased characters.
• Migration of SVG graphics from WinCC V7 to TIA Portal is not supported.
• The following SVG characteristics are not supported:

– Scripting
– Interactivity
– Styling
– Expandability - no ForeignObjects
– Animations

If screen items have the value "None" for the "Scale background graphic" property, set the
following SVG attributes to display SVG graphics:
• Width: Pixel or percent
• Height: Pixel or percent

Note
Specifications for width and height
Specification in pixels is recommended. If the width and height are not set, the pixel values
entered in the SVG attribute "viewbox" are used. This does not apply to Firefox.

Note
Scaled SVG graphics in Chrome
Elements using an SVG graphic that was scaled in the engineering system as background graphic
are not displayed correctly in Chrome in Runtime.

Editing dynamic SVG graphics
It is not possible to open SVG graphics in an external editor using the "Edit" command.

Configuring screens
4.2 Overview of screen objects

360 System Manual, 11/2022

4.3 Configuring screen objects

4.3.1 Select multiple objects

Introduction
To align the object with one another or rotate them, select all affected objects. This procedure
is called "multiple selection."
The Inspector window shows all the properties of the selected objects.
You have the following options to select multiple objects:
• Draw a selection border around the objects.
• Hold down the <Shift> key, and click the required objects.

Selection border of a multiple selection
The selection border surrounds all objects of a multiple selection. The selection border is
comparable with the bounding box that surrounds an object.
The selection border is only visible as long as it is pulled up with the mouse button pressed.
When you have made your multiple selection, the following border is displayed:
• The reference object is indicated by the bounding box.
• The other selected objects are indicated by a border. The color of the border depends on the

background color of the screen.
The color of the selection border is adapted to the background color of the screen in such a
way that the selection border is correctly displayed and visible with multiple selection.

Specifying a reference object
The reference object is the object upon which the other objects are oriented. The reference
object is framed by a bounding box with handles. The following figure shows a reference object
with three additional selected objects:

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 361

You have the following options to specify the reference object:
• Select the objects via multiple selection. The object selected first is then the reference object.
• Draw a selection border around the objects. As a reference object, the object is automatically

defined as on top in the foreground. If you wish to specify a different object within the
selection as the reference object, click on the desired object. This action does not cancel your
multiple selection.

Requirement
• The HMI screen is open with at least two objects.

Selecting multiple objects with a selection border
To select multiple objects using a selection border, follow these steps:
1. Position the mouse pointer in the work area close to one of the objects to be selected.
2. Hold down the mouse button, and draw a selection border around the objects to be selected.

Selecting multiple objects using the <Shift> key
To move multiple objects with the <Shift> key, follow these steps:
1. Hold down the <Shift> key.
2. Click the relevant objects, working in succession.

All the selected objects are identified by borders.
The object selected first is identified as reference object.
Note
To remove an object from the multiple selection, press <Shift>, hold it down and then click
the relevant object once again.

Result
Multiple objects are selected. An object is identified as the reference object. You can perform the
following steps:
• Move or rotate all objects together.
• To resize all objects by the same ratio, drag the selection border to increase or reduce the size.
• Align the objects to the reference object.
• Change object properties.

Configuring screens
4.3 Configuring screen objects

362 System Manual, 11/2022

4.3.2 Copying objects

Introduction
You can copy objects individually or with a multiple selection.

Requirement
• The HMI screen is open with at least one object.

Copying objects
To copy an object, follow these steps:
1. Select the object.
2. Copy the object with <Ctrl + C> or select "Copy" in the shortcut menu.
3. Paste the object with <Ctrl + V> or select "Paste" in the shortcut menu.
4. Drag and drop the copied object to the required position.
If you want to copy multiple objects using multiple selection, draw a selection frame around
the desired objects and proceed as described above.

Using copied objects with the same spacing
If you want to use the copied object multiple times, proceed as described above. Press <Ctrl + V>
or select "Paste" repeatedly to automatically paste the objects in the HMI screen with equal
spacing.
The same principle also applies to multiple selection of the objects.

4.3.3 Creating objects automatically

Introduction
You can automatically create the objects by dragging a screen, a graphic, a graphic list, a text list
or a tag into an HMI screen.

Requirement
• The HMI screen is open.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 363

Creating objects automatically
You can create the following objects automatically:
• Button: Drag an HMI screen from the project tree to another screen.
• Graphic view:

– Drag a graphic from the detail view of the project graphics into the screen.
– Drag a graphic list from the detail view of the text and graphic lists into the screen.

• Text box: Drag a text list from the detail view of the text and graphic lists into the screen.
• IO field: Drag a tag from the detail view of the tag table into the screen.

4.3.4 Defining the output format

Introduction
In many objects you can adjust the output format for the displayed values or define it yourself.
You can process and output the process value that is displayed in the object in different notations.
You can select frequently used output formats directly in the user interface. You can adjust the
formatting codes or define them yourself.
You can define the output of a screen object in "Properties > General > Output format" for the
following data:
• Floating-point numbers
• Binary
• Hexadecimal
• Decimal
• Text
• Duration, date, time
• Percent, currency, unit
• Numerical values
The definition of the output format is based on UNICODE CLDR. You can find additional
information on the CLDR project and on the definitions on the Internet at http://
cldr.unicode.org/ (http://cldr.unicode.org/)

Requirement
• The HMI screen is open with at least one object.

Configuring screens
4.3 Configuring screen objects

364 System Manual, 11/2022

http://cldr.unicode.org/

Defining the output format
You can define the output format by stringing together formatting codes. The formatting codes
act as placeholders for a specific group of characters. If, for example, a formatting code that only
allows the display of the digits 0-9 is specified for a position in the display of the IO field, you
cannot input letters at this position.
The definitions for the output format are independent of the language. The output format
can be language-specific and thus take linguistic differences into account, for example, for
output of the date.
You can define and combine different format patterns yourself.

Efficiency tip

• Select the output format from the drop-down list or edit it manually in the input window. You can also customize the
combined output formats, for example, change the output format "{D} {T}" manually to "{D,long} {T}".

The tables below show examples for the definition of output formats that are frequently used.

"Binary" data format
You use the "Binary" data format to display binary values. The "Binary" data format has the
following inputs:
• Sign "B"
• Number of digits (optional)
• Information on forming blocks (optional)

Output format exam‐
ple

Mindigits Block size Tag value Result

{B} Default - 16 1 0000
{B8} 8 - 16 0001 0000
{B8} 8 - 80 0101 0000
{B8,4} 8 4 80 0101 0000
{B,2} Default 2 80 1 01 00 00
{B} Default - -1 1111 1111

Mindigits Number of digits (op‐
tional)

Minimum: 1 Maximum: 64 Default value: 1

Block size Number of digits in
front of the separator
(optional)

Minimum: 0
(none)

Maximum: 8 Default value: 4

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 365

Note
The "Binary" data format does not support any negative values in Unified Runtime.
If you wish to output negative values, use the "Integer" or "Float" data formats with the {F} or {N}
sign.

"Hexadecimal" data format
You use the "Hexadecimal" data format to display hexadecimal values. The "Hexadecimal" data
format has the following inputs:
• Sign "H"
• Number of digits (optional)
• Information on forming blocks (optional)

Output format exam‐
ple

Mindigits Block size Tag value Result

{H} Default - 1 1
{H} Default - 15 F
{H} Default - 45054 AFFE
{H4,2} 4 2 45054 AF FE
{H,2} Default 2 45054 AF FE

Mindigits Number of digits (op‐
tional)

Minimum: 1 Maximum: 16 Default value: 1

Block size Number of digits in
front of the separator
(optional)

Minimum: 0
(none)

Maximum: 8 Default value: 4

Note
The "hexadecimal" data format does not support any negative values in Unified Runtime.
If you wish to output negative values, use the "Integer" or "Float" data formats with the {F} or {N}
sign.

"Integer" data format
You use the "Integer" data format to display decimal values. The "Integer" data format has the
following inputs:
• Sign "I"
• Number of digits (optional)
• Plus or minus sign in front of the sign (optional)

Configuring screens
4.3 Configuring screen objects

366 System Manual, 11/2022

Output format exam‐
ple

Mindigits Tag value Result

{I} Default 9 9
{I4} 4 9 0009
{0000} Default 9 0009
{I2} 2 123 123
{I} Default 1.6 1
{+I} Default 1 +1
{I1} 1 123456789 123456789
{#,##0} Default 1,234 1,234
{E} Default 1.12E+3 1.12E+3
{E3} 3 1.123E+3 1.123E+3

+/- Sign (optional) Default value:
None

Mindigits Number of digits (op‐
tional)

Minimum: 1 Maximum: 16 Default value: 1

"Float" data format
You use the "Float" data format to display values with floating-point numbers. The "Float" data
format has the following inputs:
• Sign "F", "N", "E"
• Number of decimal places (optional)
• Plus or minus sign in front of the sign (optional)

Output format exam‐
ple

Mindigits Tag value Result

{F} default 123.456 123.45
{+F} default 123.1 +123.10
{F3} 3 123.123 123.123
{N} default 123 123.00
{+N} default 123 +123.00
{N1} 1 123 123.0
{#,##0.###} default 1234.567 1,234.567
{#,##0.##} default 1234.123 1234.12
{#,###.#} default 1234.123 1,234.1
{E} default 1123 1.12E+3
{E1} 1 1123 1.1E+3
{E3} 3 1123 1.123E+3
{+E} default 1123 +1.12E+3
{E0} 0 1123 1E+3

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 367

+/- Sign (optional) Default value:
None

Mindigits Number of decimal pla‐
ces (optional)

Minimum: 1 Maximum: 16 Default value: 2

"String" data format
You use the "String" format to display texts. The "String" data format has the following inputs:
• Sign "S"
• Number of characters (optional)
• Formatting parameters (optional)

Output format ex‐
ample

Maxchars String format Tag value Result

{S} Default - Motor Motor
{S4} 4 - Motor Moto
{S,trim} Default trim Motor Motor
{S,upper} Default upper Motor MOTOR
{S,lower} Default lower Motor motor
{S,trim,upper} Default trim, upper Motor MOTOR
{S3,trim,upper} 3 trim, upper Motor MOT

Maxchars Number of characters
(optional)

Minimum: 1 Maximum: 99 Default value:
Complete input

String format Parameters for format‐
ting of the input (op‐
tional)

trim: Outputs the input string without spaces.
upper: Outputs the input string in uppercase letters.
lower: Outputs the input string in lowercase letters.

"Duration" data format
The accuracy of the duration inputs is limited to 1 ms. All inputs of less than 1 ms are shown as
0 in runtime.
To display fractions of a second, use .S, .SS or .SSS according to the pattern for the duration.
The "Period" data format has the following inputs:
• Sign "P"
• Number of time units (optional)

Output format example Tag value (ns) Result
{P} 1:20 1:20
{P,s} 10000000 1
{P,s} -10000000 -1

Configuring screens
4.3 Configuring screen objects

368 System Manual, 11/2022

Output format example Tag value (ns) Result
{P,s} 10000000 01
{P,m:ss} 35990000000 59:59
{P,h:mm:ss} 36000000000 1:00:00
{P,hh:mm:ss} 36000000000 01:00:00
{P,D hh:mm:ss} 864000000000 1D 00:00:00
{P,DD hh:mm:ss} 864000000000 01D 00:00:00
{P,s.S} 10000 0.0
{P,s.SS} 10000 0.00
{P,s.SSS} 10000 0.001
{P,s.SSS} 9999 0.000

Durationunit Duration
The output format {P} enables automatic mode. In the mode the result with the smallest
necessary unit of time is written. The table below shows some examples for tag values and
their output in automatic mode.

Tag value (ns) Result Meaning
9999 0 0.9999 ms
10000 0.001 1ms
9990000 0.999 999ms
10000000 1 1s
10010000 1.001 1s 1ms
600000000 1:00 1m
700000000 1:10 1m 10s
35999990000 59:59.999 59m 59s 999ms
36000010000 1:00:00.001 1h 1ms
863999990000 23:59:59.999 23h 59m 59s 999ms
937845670000 1D 02:03:04.567 1D 2h 3m 4s 567ms
86400000000000 100D 100D

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 369

Localized output: "Date" and "time" data format
"Date" and "time" data formats can be localized. The output format depends on the system
language. The table below shows the examples for "German".

Data format Permitted values and default
values

Output format exam‐
ple

Tag value Result

Date: {D,Length} Length:
short
medium
long
or code according to CLDR for‐
mat with the sign @
Default value: short

{D} 2019-03-21T21:08:3
3

21.03.19

{D,medium} 2019-03-21T21:08:3
3

21.03.2019

{D,long} 2019-03-21T21:08:3
3

March 21, 2019

{D,@y} 2019-03-21T21:08:3
3

2019

{D,@dd.MM.yyyy} 2019-03-21T21:08:3
3

21.03.2019

{D,@dd. MMMM yyyy} 2019-03-21T21:08:3
3

March 21, 2019

{D,@dd.MM} 2019-03-21T21:08:3
3

21.03

{D,@dd. MMM} 2019-03-21T21:08:3
3

March 21

{D,@MM-dd-yyyy} 2019-03-21T21:08:3
3

03-21-2019

{D,@MMM dd, yyyy} 2019-03-21T21:08:3
3

March 21, 2019

{D,@M.d} 2019-03-21T21:08:3
3

3.21

{D,@MMMM dd} 2019-03-21T21:08:3
3

March 21

{D,@yyyy/mm/dd} 2019-03-21T21:08:3
3

2019/03/21

{D,@EEE, MMM
dd, ’yy}

2019-03-21T21:08:3
3

Thu., June 15, '19

{D,@EEEE, MMMM d,
yy}

2019-03-21 Thursday, March 21,
19

Time: {T,Time for‐
mat}

Time format:
short
medium
medium.S
medium.SS
medium.SSS
or code according to CLDR for‐
mat with the sign @
Default value: medium

{T} 2019-03-21T21:08:3
3

21:08:33

{T,short} 2019-03-21T21:08:3
3

21:08

{T,@h:mm a} 21:08:33 9:08 p.m.
{T,@HH:mm} 21:08:33 21:08
{T,@hh:mm a} 21:08:33 9:08 p.m.
{T,@HH:mm:ss} 21:08:33 21:08:33
{T,@HH:mm:ss.SSS} 21:08:33.1230 21:08:33.123
{T,medium.SSS} 21:08:33.1239 21:08:33.123

Configuring screens
4.3 Configuring screen objects

370 System Manual, 11/2022

Combined output
You can combine the output formats:

Description Output format example Tag value Result
Date and time {D} – {T} 2019-03-21T21:08:33 21.03.2019 – 21:08:33

{D} {T} 2019-03-21T21:08:33 21.03.19 21:08:33
{D,@EEEE, dd. MMMM yyyy,
h:mm:ss a}

2019-03-21T21:08:33 Donnerstag, 21. März 2019,
9:08:33 nachm.

{D,@dd.MM.yyyy HH:mm} 2019-03-21T21:08:33 21.03.2019 21:08
Date and time with line break {D}\n{T} 2019-03-21T21:08:33 21.03.2019

21:08:33
Two numerical values hex {H} – dec {I} 45054 hex AFFE – dec 45054
Text with prefix myMotor {S} motor34 myMotor motor34
Number with prefix MyMotor#{00} 12 MyMotor#12
Percent {I}% 20 20%
Currency {#,##0} EUR 20 20 EUR
Currency ${#,##0.##} 20 $20
Unit {F2} m/s 10.00 10.00 m/s

See also
Configuring an alarm control (Page 753)
http://cldr.unicode.org/ (http://cldr.unicode.org/)

4.3.5 Disable remote control

Introduction
You can disable the "Allow operator control" property for operable objects. You cannot then
operate the objects in runtime. The object or the buttons on the object are dimmed.

Requirement
• The HMI screen is open with at least one object.

Disable the "Allow operator control" property
You can disable the option for operator control in runtime using the "Allow operator control"
property.
The disabled property "Allow operator control" has the following effect:
• The objects in the "Elements" group are grayed out.
• For objects in the "Controls" group, the operable areas, e.g. buttons on the toolbar, are grayed

out.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 371

http://cldr.unicode.org/

The objects are displayed in the same way in the engineering system and in runtime.
The following figure shows the grayed out buttons in the alarm control:

4.3.6 Hotkeys

Introduction
You can use the hotkeys in Runtime to perform various actions. You can specify the hotkeys as
a key or key combination in the Engineering System.
Examples of hotkey functions:
• Change language
• Change screen
• Acknowledge alarm
The use of hotkeys is supported for WinCC Unified PCs.

Configuring screens
4.3 Configuring screen objects

372 System Manual, 11/2022

The use of hotkeys is not supported for Unified Comfort Panels.

Note
Hotkeys are also supported for the View Of Things application.
Hotkeys are not supported for faceplates.

Note
It is recommended to use the US English layout keyboard.

Requirement
• The HMI screen is open with at least one button or a Control.

Supported objects
You can configure hotkeys in the "Properties" tab of the Inspector window for the following
objects:
• Button
• Controls with one toolbar
The default value for a hotkey in the "Static value" column is "None".

Configuring hotkeys
You can find the "Hotkey" property in the Inspector window in the "Properties" tab:
• Button: "Properties > Miscellaneous > Hotkey".
• Controls with one toolbar: "Properties > Miscellaneous > Toolbar > Elements > [0] Button >

Hotkey".
To configure a hotkey for a button, for example, follow these steps:
1. Select the button.
2. Select "Properties > Miscellaneous > Hotkey".

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 373

3. In the input field, click in the "Static value" column.
A dialog opens.

4. Select a keyboard shortcut.

Note
You may use a keyboard shortcut only once in a screen. In case of duplicate use, an error
message will appear.

5. Using the options in the selection dialog, you can do the following:
– Delete settings and close the dialog .
– Discard changes and close the dialog .
– Apply settings and close the dialog .

Result
You have configured a key or key combination for a hotkey.

Configuring screens
4.3 Configuring screen objects

374 System Manual, 11/2022

4.3.7 Configuring object properties

4.3.7.1 Managing object properties

Introduction
The properties of an object are displayed in the property list in the Inspector window. Here you
can edit the properties, e.g. change the size and position of an object, or dynamize objects.
You manage the properties via the icons.

Display of the property list in the Inspector window
The properties are displayed in the property list either in alphabetical order or in categories.
You can sort the property list as follows:
• Display of properties in alphabetical order
• Display of the properties grouped in categories
With both views, all details of the individual properties can be shown or hidden:
• All details are shown
• All details are hidden

Tip for working effectively

• Drag-and-drop a tag or resource list from the details view in the project tree to a property in the Inspector window.
The details of the lower-level of the property are displayed.

"Filter" function
You can locate the individual properties by using the "Filter" function .

"Favorites" function
You define the favorite object properties via the function "Favorites" .

Dynamized properties
Dynamized properties are shown in dark blue font and in bold in the Inspector window in the
"Name" column.
Groups containing a dynamized property are shown in dark blue font.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 375

See also
Displaying dynamization of the properties (Page 463)
"Filter" function (Page 376)
Adding an object property to favorites (Page 377)

4.3.7.2 "Filter" function

Introduction
You can locate the individual properties of an object by using the "Filter" function in the Inspector
window.

Requirement
• The HMI screen is open with at least one object.

Filter properties
To filter the properties of a screen object, follow these steps:
1. Click on the "Filter" icon in "Properties > Properties" in the Inspector window.
2. In the "Search" input field, type in the term you are looking for, e.g. "Color" in the "Name"

column.
3. Confirm the input with the <Return> key.

All hits of the properties which contain the term "color" are displayed.

Using search terms with other objects or screens
If you choose another screen object or another screen, the current search term remains in the
input field.
The search terms that you have entered in the currently open project are retained until the
opened project is closed.

Configuring screens
4.3 Configuring screen objects

376 System Manual, 11/2022

4.3.7.3 Adding an object property to favorites

Introduction
You can define your own favorite properties for each screen object.
Some properties are defined as favorites by the system.
You can find an overview of system-defined favorites under "Settings > Visualization >
Favorites screens (WinCC Unified)" in the "Favorites properties" table:

The user-defined favorites are shown in the "User-defined favorites" column in the table.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 377

You can also locate the individual properties of an object by using the "Filter" function in the
Inspector window .

Add property to favorites
You can add your favorite properties of a screen object to the favorites.
To add a property to the favorites, follow these steps:
1. Right-click on a property that is not defined as a favorite by the system.

The shortcut menu opens.

2. Select "Add to favorites". The number of favorite properties is not limited.
3. To display all favorites, click the icon .

Remove property from favorites
To remove a property from the favorites, follow these steps:
1. To display all favorites, click the icon .
2. Right-click on the favorite property.

The shortcut menu opens.

3. Select "Remove from favorites".
You can find all favorites added or deleted by you in the "Favorite properties" table under
"Settings > Visualization > Favorites screens (WinCC Unified)".

Configuring screens
4.3 Configuring screen objects

378 System Manual, 11/2022

See also
Managing object properties (Page 375)

4.3.7.4 Changing a property for multiple objects

Introduction
You can change the static value of a property for multiple objects at the same time.

Requirement
• The HMI screen with at least two objects is open.

Changing properties for multiple objects
To change the static value of a property for multiple objects at the same time, follow these steps:
1. Select several objects in the screen via multiple selection.
2. Select a property, e.g. the background color, in the Inspector window.
3. Change the static value of the property.
The property is changed on all selected objects that have this property.

See also
Select multiple objects (Page 361)

4.3.7.5 Automatically filling in of property values for an object collection

Introduction
You can automatically fill in the values of properties of an object collection.
Examples of object collections are:
• Points for:

– Polygon
– Polyline

• Entries for:
– Check box
– Radio button
– List box

• Columns of an alarm control

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 379

• Trend areas of a trend control
• Symbols of a toolbar of a screen object

Requirement
• The HMI screen is open with at least one object.

Automatically fill in property values for objects
To automatically fill in the values of properties for objects, follow these steps:
1. Select the collection according to the object:

– For polygons and polylines, click "Properties > Properties > Size and position > Points".
– For the elements, e.g. check box, click "Properties > Properties > General > Selection

items".
– With the controls, e.g. alarm control, click "Properties > Properties

> Miscellaneous > Alarm control > Columns".
– For the controls with a toolbar, click "Properties > Miscellaneous> Information bar >

Elements".
2. Select one or more contiguous cells in the collection in the right part of the Inspector window.
3. Drag the blue border around this cell up or down.

The values are transferred to the destination cells.

Moving and deleting cells
To move or delete the cells, follow these steps:
1. In the right part of the Inspector window, drag the blue border around the cells.
2. Move or delete the selected cells using the and buttons.
The cells are moved or deleted.

Configuring screens
4.3 Configuring screen objects

380 System Manual, 11/2022

See also
Polyline (Page 277)
Polygon (Page 278)
Dynamizing an object property with a tag (Page 467)

4.3.8 Designing objects

4.3.8.1 Changing the object size

Introduction
When you select an object, it is framed by a bounding box with blue handles. You have the
following options for resizing an object:
• Use the mouse to drag the blue handles on the bounding box.
• Configure the properties in the Inspector window.

Note
You can change the form of the objects "Line", "Polyline" and "Polygon" as follows:
• Use the mouse to drag the orange handles on the object.
• Configure the properties in the Inspector window.

Requirement
• The HMI screen is open with at least one object.

Changing object size with the mouse
To change the object size with the mouse, follow these steps:
1. Select the object you want to resize.

The bounding box is displayed. The following figure shows a selected object:

2. Drag a handle of the box to a new position.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 381

The object size is changed.

Tips for working effectively

If you press the <Ctrl + Shift> keys while dragging, the object size is changed according to the aspect ratio.

Changing the size of multiple objects with the mouse
To change the size of multiple objects with the mouse, follow these steps:
1. Select the objects by multiple selection.

The bounding box is displayed.
2. Drag a handle of the box to a new position.
The size of the selected objects is changed.

Tips for working effectively

If you press the <Ctrl + Shift> keys while dragging, the selected objects are resized according to the aspect ratio.

Configuring the object size through properties
To change the object size through properties, follow these steps:
1. Select "Properties" > "Properties" > "Size and position".
2. In the "Static value" column, enter the "Size - width" and "Size - height" coordinates.
The object size is changed.

Changing object size using keys
To change the object size using keys, follow these steps:
1. Select the object you want to resize.
2. On the keyboard, press the keys:

– <Ctrl + Arrow key>
– <Ctrl + Shift + Arrow key>

The object size is changed depending on the arrow key selected.

Configuring screens
4.3 Configuring screen objects

382 System Manual, 11/2022

4.3.8.2 Changing the position of an object

Introduction
When you select an object, it is framed by a bounding box with blue handles. You have the
following options for repositioning an object:
• Position the object with the mouse.
• Configure the object properties in the Inspector window.

Requirement
• The HMI screen is open with at least one object.

Changing the object position with the mouse
To change the object position with the mouse, follow these steps:
1. Select the object whose position you want to change.

The bounding box is displayed.
2. Left-click the object and keep the left mouse button pressed.
3. Move the object with the mouse pointer to the new position.
The object is moved to the new position.

Configuring the object position through properties
To change the object position using properties, follow these steps:
1. Select "Properties" > "Properties" > "Size and position".
2. In the "Static value" column, enter the "Position - left" and "Position - top" coordinates.
The position of the object in reference to the screen origin is changed. The zero position is
located at the top left-hand corner of the screen.

Changing the object position using keys
To change the object position using keys, follow these steps:
1. Select the object you want to resize.
2. On the keyboard, press the <Shift + Arrow> keys
The object position is changed depending on the arrow key selected.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 383

4.3.8.3 Transfer format

Introduction
You can transfer the format of an object to another object. You can find the "Transfer format" icon
in the function bar of the screen editor.

Transferring the format
You use the "Transfer format" function to transfer the properties of the source object to the target
object.
You can transfer edit the properties:
• From a source object to the same target object, for example, from line to line.
• From a source object to a different target object, for example, from line to a circle.
• From a source object to multiple target objects, for example, from line to line, circle and

button.

Requirement
• The HMI screen is open with at least one object.

Transferring the format
To transfer the properties of an object to a single target object, follow these steps:
1. Select an object.
2. Click on the "Transfer format" icon. The mouse pointer icon changes.
3. Click on another object.
The properties are transferred to the target object.
To transfer the properties of an object to multiple target objects, follow these steps:
1. Select an object.
2. Click on the "Transfer format" icon. The mouse pointer icon changes.
3. Click on one object after another.
 The properties are transferred to multiple target objects.

Table of objects and categories of the properties
The table below contains the objects and categories of the properties that you can transfer to
another object.

Configuring screens
4.3 Configuring screen objects

384 System Manual, 11/2022

These properties can be found in the Inspector window under:
• "Properties > General"
• "Properties > Format"
• "Properties > Appearance"
The properties that you cannot transfer to another object are listed in the "With the exception
of" column.

Object All properties of the category With the exception of
Line, polyline, polygon, ellipse,
ellipse segment, circle segment,
elliptical arc, circular arc, circle,
rectangle

Appearance

Text box General Text
Format
Appearance

Graphic view Format
Appearance

IO field General Output format
Mode
Process value

Format
Appearance

Symbolic IO field General Process value
Resource list

Format Content > Type
Appearance

Button, switch General Content > Type
Format
Appearance

Bar General Label > Text
Scale > Scale value - maximum,
Scale value - minimum
Process value
Title > Text

Appearance
Slider General Label > Text

Title > Text
Appearance

Gauge General

Label > Text
Title > Text
Process value
Scale > Output format
Scale > Scale value - maximum,
Scale value - minimum

Appearance

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 385

Object All properties of the category With the exception of
Check box, radio button, list box Format Content > Type

Appearance
Clock General

Appearance
Miscellaneous Name

Time - source
Tab index
Title > Text
Tooltip
Connection quality - show
Connection status

Touch area Appearance
Alarm control Format

Appearance
Miscellaneous Alarms - show current

Alarms - current
Alarms - displayed
Label > Text
Alarm control > Header - settings,
Color mode, Filter - allow, Selec‐
tion - select entire rows, Selec‐
tion - mode, Sorting - allow, Col‐
umns, Row height
Alarm statistics - view > Header -
settings, Color mode, Filter - al‐
low, Selection - select entire
rows, Selection - mode, Sorting -
allow, Columns, Row height
Alarm statistics - settings
Name
Information bar > Operator con‐
trol - allow, Elements, Tooltips -
show
Icon
Function bar > Operator control -
allow, Elements, Tooltips - show
Tab index
Connection status
Time zone

Configuring screens
4.3 Configuring screen objects

386 System Manual, 11/2022

Object All properties of the category With the exception of
Media Player Appearance

Miscellaneous Autoplay
Label > Text
Name
Information bar > Operator con‐
trol - allow, Elements, Tooltips -
show
Icon
Function bar > Operator control -
allow, Elements, Tooltips - show
Tab index
Connection status
Video output

Screen window Format
Appearance
Miscellaneous Label > Text

Screen name
Screen number
Tab order - Continue in screen
window
Name
Icon
System
Tab index
Connection status

Trend control Appearance
Miscellaneous Label > Text

Name
Information bar > Operator con‐
trol - allow, Elements, Tooltips -
show
Icon
Function bar > Operator control -
allow, Elements, Tooltips - show
Tab index
Connection status
Time zone

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 387

Object All properties of the category With the exception of
Trend companion Format

Appearance
Miscellaneous Label > Text

Appearance - trend ruler > Head‐
er - settings, Color mode, Filter -
allow, Selection - select entire
rows, Selection - mode, Sorting -
allow, Columns, Row height
Name
Information bar > Operator con‐
trol - allow, Elements, Tooltips -
show
Icon
Function bar > Operator control -
allow, Elements, Tooltips - show
Tab index
Connection status
Time zone

Process control Appearance
Miscellaneous Editing mode

Label > Text
Name
Online
Process control > Header - set‐
tings, Color mode, Selection - se‐
lect entire rows, Selection -
mode, Sorting - allow, Columns,
Row height
Information bar > Operator con‐
trol - allow, Elements, Tooltips -
show
Icon
Function bar > Operator control -
allow, Elements, Tooltips - show
Tab index
Connection status
Time factor - average
Time zone

Configuring screens
4.3 Configuring screen objects

388 System Manual, 11/2022

Object All properties of the category With the exception of
Function trend control Appearance

Miscellaneous Axes - swap
Label > Text
Name
Online
Information bar > Operator con‐
trol - allow, Elements, Tooltips -
show
Icon
Function bar > Operator control -
allow, Elements, Tooltips - show
Tab index
Connection status

Web control Appearance
Miscellaneous Label > Text

Name
Online
Information bar > Operator con‐
trol - allow, Elements, Tooltips -
show
Icon
Function bar > Operator control -
allow, Elements, Tooltips - show
Tab index
Connection status

Parameter set control Appearance
Miscellaneous Editing mode

Label > Text
Details - hide
Name
Parameter view > Header - set‐
tings, Color mode, Filter - allow,
Selection - select entire rows, Se‐
lection - mode, Sorting - allow,
Columns, Row height
Information bar > Operator con‐
trol - allow, Elements, Tooltips -
show
Icon
Function bar > Operator control -
allow, Elements, Tooltips - show
Tab index
Connection status
Time zone

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 389

Object All properties of the category With the exception of
Faceplate container Appearance

Miscellaneous Label > Text
Faceplate type
Name
Interface
Icon
Tab index
Connection status

System diagnostics control Appearance
Miscellaneous Label > Text

Name
Information bar > Operator con‐
trol - allow, Elements, Tooltips -
show
Icon
Function bar > Operator control -
allow, Elements, Tooltips - show
Tab index
Connection status
Time zone

4.3.8.4 Designing the fill pattern

Introduction
You can design the fill pattern of an object. The design options change in the Inspector window
depending on the object for which you are making the filling pattern.
For certain objects, you can define a color background, a transparent background or a
background with a color gradient.

Requirement
• The HMI screen is open with at least one object.

Designing the fill pattern of an object
To design the fill pattern of an object, e.g. a circle, follow these steps:
1. In the Inspector window, click "Properties > Properties > Appearance > Background - Fill

pattern".
2. To define a transparent background for the object, for example, select "Transparent".

Configuring screens
4.3 Configuring screen objects

390 System Manual, 11/2022

Efficiency tip

Using multiple selection, you can set the fill pattern in multiple objects at the same time.

Result
The object is shown as transparent.

Additional design options
Additional design options are available in the Inspector window under "Properties > Properties
> Appearance". The procedure for using these options is the same as the one described in the
examples above.

Restriction for objects with events
Events for operator actions are only triggered if the operator action takes place in the marked,
visible area of the object.
If the fill pattern of an object is transparent, click exactly on the object border in runtime in
order to trigger the events configured for the object. Select the border width so that you can
hit the border.

Note
Objects for which the "Opacity" property has the value "0" are also not visible in runtime and do
not trigger events.

4.3.8.5 Designing the border of an object

Introduction
Elements and some basic objects have a border. You can configure the width and color of the
border.

Requirement
• The HMI screen is open.
• An element or one of the following basic objects is placed:

– Text box
– Rectangle
– Circle and circle segment
– Ellipse and ellipse segment
– Polyline

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 391

Change frame width
1. Select the object.
2. In the Inspector window, click "Properties > Properties > Appearance > Border - width".
3. Enter the desired width.
For elements and text boxes, the border is drawn on the inner edge of the object; for the
other basic objects, the border is drawn on the inner and outer edges. The values of the "Size
- width" and "Size - height" properties remain the same.

Change frame color
1. Select the object.
2. Click "Properties > Properties > Border - color" in the Inspector window.
3. Enter the RGB values of the color or select a color from the drop-down list.

Select "More colors" in the drop-down list to add custom colors to the selection, specify HSL,
and more.

Note
Alternatively, you can change the color in the central color management of the object.

See also
Central color management (Page 401)

4.3.8.6 Configuring reordering of the columns

Introduction
You have the option of configuring the following table-based controls in such a way that
operators can rearrange the table columns in runtime:
• Alarm control
• Trend companion
• Parameter set control
• System diagnostics control
• Process control

Requirement
• The screen editor is open.
• One of the above-named controls has been placed on the screen.

Configuring screens
4.3 Configuring screen objects

392 System Manual, 11/2022

Procedure
1. Select, for example, an alarm control in the work area.
2. In the Inspector window, click "Properties > Properties > Miscellaneous > Alarm control >

Header - settings".
3. To allow the columns to be rearranged in runtime, enable the property "Columns - Change

sequence".
To prevent reordering, deselect the property.

Result
Once the project has been downloaded to the device, operators can use drag-and-drop to
reorder the columns displayed in the control in runtime.

4.3.8.7 Rearranging columns in runtime

Introduction
You can reorder the table columns in the following table-based controls:
• Alarm control
• Trend companion
• Process control
• Parameter set control
• System diagnostics control

Requirement
Reordering of columns is allowed by the configuration of the control in the engineering.

Procedure
Using drag-and-drop, move the header of the column to be moved onto the header of another
column.

Note
The time column cannot be moved.

Result
The moved column is inserted at the position that the mouse pointer had when the drag-and-
drop movement ended.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 393

The new column order applies only to the current client. If you switch to another page or
refresh the browser window, the column order is lost.

Note
If you move a column next to a hidden column and then show this column afterwards, it is
always displayed to the right of the moved column.

Example 1: Inserting columns to the right or the left
The procedure is illustrated using the example of an alarm control. In the initial situation, the
alarm control table has the following column arrangement:

To insert the "Origin" column to the right of the "Alarm text" column, follow these steps:
1. Drag-and-drop the column header from "Origin" to the right column header half of the "Alarm

text" column:

2. The "Origin" column is inserted to the right of the "Alarm text" column.

Configuring screens
4.3 Configuring screen objects

394 System Manual, 11/2022

To insert the "Origin" column to the left of the "Alarm text" column, follow these steps:
1. Drag-and-drop the column header from "Origin" to the left column header half of the "Alarm

text" column:

2. The "Origin" column is inserted to the left of the "Alarm text" column.

Example 2: Reordering of columns in combination with hidden columns
This example illustrates the reordering of columns in combination with hidden columns.
• The alarm control has the same column order as in Example 1.
• The alarm control has been configured in the engineering system in such a way that the

display of the "Origin" column is controlled dynamically in runtime by setting a tag.
To reorder the columns in combination with hidden columns, follow these steps:
1. Hide the "Origin" column by setting the tag.
2. Insert the "Status text" column to the left of the "Area" column.
3. Show the "Origin" column by setting the tag.
The order of the columns is as follows: "Alarm class", "Status text", "Origin", "Area", "Alarm
text".

4.3.9 Moving objects

4.3.9.1 Aligning objects

Introduction
You can align the screen objects in the screen with reference to a reference object.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 395

Requirement
• The HMI screen is open with at least two objects.

Aligning objects flush
The selected objects will be aligned flush to the reference object. The reference object is the
object that you selected first.

Icon Description
Aligns the selected objects to the left edge of the reference object.

Aligns the selected objects to the vertical center axis of the reference object.

Aligns the selected objects to the right edge of the reference object.

Aligns the selected objects to the upper edge of the reference object.

Aligns the selected objects to the horizontal center axis of the reference object.

Aligns the selected objects to the lower edge of the reference object.

Centers the selected objects to the center points of the reference object.

Centers the selected objects vertically in the screen.

Centers the selected objects horizontally in the screen.

Distributes at least 3 selected objects evenly horizontally.

Distributes at least 3 selected objects evenly vertically.

Specifies the same height for all selected objects.

Specifies the same width for all selected objects.

Specifies the same height and width for all selected objects.

Aligning selected objects
To align the selected objects in relation to a reference object, follow these steps:
1. Select the desired objects using multiple selection.
2. Specify an object as the reference object.
3. Select the desired command for alignment in the toolbar or the shortcut menu.
The selected objects are now aligned in relation to a reference object.

Configuring screens
4.3 Configuring screen objects

396 System Manual, 11/2022

Aligning individual objects
To align an object in the screen in relation to other objects using minor lines, follow these steps:
1. Select an object.
2. Drag the object to a position until the blue minor lines become visible.
3. Position the object using the auxiliary lines.
The object is now aligned in relation to other objects.

4.3.9.2 Move objects

Introduction
There are various ways in which you can move objects individually or with a multiple selection.

Requirement
• The HMI screen is open with at least one object.

Move objects
To move the objects, follow these steps:
1. Select the object that you want to move.
2. The following options are available for moving:

– Moving by selecting and dragging with the mouse.
– Moving using the arrow keys on your keyboard with pixel accuracy.
– Coarser move using <Shift> and the arrow keys on your keyboard. The increment depends

on the settings that you have configured for the grid under "Options > Settings >
Visualization > Screens > Grid".

The same principle also applies to multiple selection of the objects.

Automatic scrolling
If you drag-and-drop the object to one of the corners of the screen, automatic scrolling is
triggered. You can place the object in other areas of the screen.

4.3.9.3 Rotating object

Introduction
You can rotate an object clockwise or counterclockwise around its center axis in steps of 90°.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 397

You can also rotate multiple objects using the multiple selection function. Each object has
its own reference point for rotation and is rotated around its own reference point during
multiple selection.
Certain WinCC objects, e.g. controls, cannot be rotated.
The alignment of elements in an object will change in a rotated object. The following figure
shows how a rectangle and an ellipse behave under the different commands for rotating an
object:

Requirement
• The HMI screen is open with at least one object.

Rotating an object
To rotate an object, follow these steps:
1. Select the object that you want to rotate.
2. Click one of the following symbols on the toolbar:

The object is rotated clockwise around its center. The angle of rotation is 90°.

The object is rotated counter-clockwise around its center. The angle of rotation is 90°.

The object is rotated clockwise by 180°.

The object is now displayed rotated.
Alternatively, select from the shortcut menu the desired command to rotate the objects.

Configuring screens
4.3 Configuring screen objects

398 System Manual, 11/2022

4.3.9.4 Rotating an object around a pivot point

Introduction
You define the rotation of an object around a pivot point. In the Inspector window of an object,
specify the coordinates of the "Pivot point X" and "Pivot point Y". Specify the angle of rotation for
the object under "Properties > Rotation - angle".
The pivot point can be outside the object.

Requirement
• The HMI screen containing at least one object group is open.

Rotation
Defines the rotation of an object around the pivot point. Rotation is specified in degrees. The
configured start point corresponds to a value of 0°. The position of an object deviates from its
configured initial position by the rotation value. The negative and positive values are allowed.
You can also place an object outside the visible plant complex. You can view objects outside
the visible area by using the "Layout > Objects out of range" task card. You change the
position of an object in the Inspector window under "Properties".

Pivot point
Define the pivot point under "Properties > Rotation - Pivot point":
• Absolute to the center point: Sets the rotation to around the absolute center of the object.
• Absolute to screen: Sets the rotation to around the absolute zero point of the screen. The zero

point is in the top left corner of the screen.

Rotation position
The attributes "X pivot point" and "Y pivot point" define the horizontal and vertical distance of the
pivot point from the point of origin.
• Center point of the object
• Zero point of the screen
The values are specified as a device-independent pixel (DIP).
The pivot point can also be located outside the bounding box. The negative and positive
values are allowed.

Example: Configuring rotation for a rectangle
To configure the rotation of a rectangle, follow these steps:
1. Open the "Basic objects" palette in the "Toolbox" task card.
2. Drag the "Rectangle" object into the screen.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 399

3. Click "Properties > Pivot point" in the Inspector window.
4. In the "Static value" column, select "Absolute to center point".
5. Enter a value of 45 for "Rotation".
The object is rotated clockwise by 45°.

4.3.10 Designing colors

4.3.10.1 Designing the background color

Introduction
You can design the background color of an object. For certain objects, you can define a
background with a color gradient.

Requirement
• The HMI screen is open with at least one object.

Designing the background color of an object
To design the background color of an object, follow these steps:
1. In the Inspector window, click "Properties > Properties > Appearance > Background - color".
2. Select a color for the background of the object, for example, yellow.

Efficiency tip

Using multiple selection, you can define the background color simultaneously in multiple objects.

Result
The object is filled with the selected color.

4.3.10.2 Defining color gradients

Introduction
You can define different color gradients for the objects. Change the category in the Inspector
window, depending on which surface you fill with a color gradient.

Configuring screens
4.3 Configuring screen objects

400 System Manual, 11/2022

Requirement
• The HMI screen is open with at least one object.

Configure horizontal color gradient with two colors
To configure a horizontal color gradient for an object, follow these steps:
1. Select an object, e.g. rectangle.
2. In the Inspector window, select "Horizontal gradient" under "Properties > Background - fill

pattern".
3. Go to "Properties > Fill direction" and select the direction in which the color is to run, for

example "Left to right".
4. Select a background color for the horizontal color gradient, e.g. orange, under "Properties >

Background - color".
5. Select the other color for the gradient, e.g. yellow, under "Properties > Background -

alternative color".

Result
The background of the rectangle is displayed with a color gradient of orange to yellow.

4.3.10.3 Central color management

Basic principles for central color management

Introduction
In WinCC Unified, you can change the colors that are used in a project in a centralized manner.

Requirement
• You have created a project.
• You have created a screen.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 401

Opening the "Change object color" dialog box
You open the "Change object color" dialog box:
• In the shortcut menu of a device or object
• In the menu bar under "Tools > Change object color"

Using the "Change object color" dialog box
The "Change object color" dialog box contains a hierarchical overview of all color-relevant object
properties.
In the display, you can navigate within the display and operating objects. You will receive an
overview of all colors in use. You specify a color selection and replace it with other colors.

Configuring screens
4.3 Configuring screen objects

402 System Manual, 11/2022

Unsupported objects
You have access to all colors used and configured in the project with the "Change object color"
dialog.
Excluded from this are colors that are used:
• In types and instances from a library
• In scripts
• In designs
• In screens with write protection

See also
Changing the object color (Page 404)

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 403

Changing the object color

Introduction
The scope of the objects displayed in the "Change object color" dialog depends on the location
at which the dialog is called:
• If you select a device and call the dialog, all color references used on the device are displayed.
• If you select an object within a screen and call the dialog, only those color references that are

included in the object are displayed.

Requirement
• You have created a project.
• You have created a screen.
• At least one object has been created in the screen.

Opening the "Change object color" dialog box
To change the object color, follow these steps:
1. Select the object that contains the required color references.
2. Select "Change object color" in the shortcut menu of the object.

The "Change object color" dialog box opens.

Configuring screens
4.3 Configuring screen objects

404 System Manual, 11/2022

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 405

Select the color you want to change
The following table shows you the options for choosing the color you want to change:

Select the object property whose color you want to
change.

• Select a property directly in the overview.
• Enter a property in the "Property filter" dialog.

The selected property is now visible in the overview table.
In the "Color" text box, select the color that you
want to change.

1. Click on the arrow in the "Color" text box. The project color selection
opens.

2. Select a standard color.
To select a user-defined color, click "More colors".

Select the color directly from the selected object. 1. Drag a color box from the "Current color" column to the "Color" text
box.

Change color
To change a color, proceed as follows:
1. Select the color you want to change as described above.
2. To display the current selection, enable one or both of the options "Matching" and "Non-

matching".
3. To select similar colors as well, set the tolerance. Enable the "HSL tolerance method" option.

In the "Colors found" text box, you will see the number of similar colors.
4. In the "Replace with" text box, select a color.
5. Select one of the buttons:

– "Replace the color of the selected object"
– "Replace the color of the matching objects"
The selected color is displayed in the "Replace with" column.

6. Click "OK".
The dialog closes. The colors in the object are changed.

Result
You have configured new color references in the selected object.

4.3.11 Formatting text in the object

4.3.11.1 Enter text directly into the object

Introduction
You can change the label of the "Text box" and "Button" objects directly via the keyboard.

Configuring screens
4.3 Configuring screen objects

406 System Manual, 11/2022

Requirement
• The HMI screen with a text box or a button is open.

Entering text directly into the object
To enter text directly in a text box or a button, follow these steps:
1. Select the object that you want to label.
2. Double-click in the object and type the text.
The text has been entered into an object.

Special features of direct text input
The following special features apply to direct input:
• Diacritics, such as ä ê ñ, can only be entered if the keyboard layout provides a key for this

character. Key sequences such as <`a> for à, are not recognized.
• It is not possible to enter Unicode characters using Alt codes.
• Asian language characters cannot be entered using an Input Method Editor (IME).
If you need such characters in labeling the object, you have the following options:
• Use a keyboard layout on which this character is present as a key.
• Copy the character or full label from any source. Paste the text into the selected object.
• Edit the label in the Inspector window under "Properties > Properties > General > Text".
Direct text entry also supports multiline text. Enter the line break with the keyboard shortcut
<Shift + Enter>.

See also
Text box (Page 269)
Button (Page 289)

4.3.11.2 Entering multiline text

Introduction
For objects with the "Text" property, you can enter the text on multiple lines.

Requirement
• The HMI screen with at least one object with the "Text" property is open.

Enable line break
Enter the line break using the <Shift + Enter> key combination.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 407

Multiple line text for objects
Enter the multiple line text for the following objects in the Inspector window under "Properties
> Properties > General > Text":
• Text box
• Button
• Switch

Enter the multiple line text for the following objects under "Properties > Properties > General
> Title > Text".
The text may only contain 2 lines at a time.
• Bar
• Slider
For the following objects, enter the multiple line text under "General > Selection items > [x]
Selection item> Text".
The text may contain more than 2 lines if the property "Format > Item height" is adjusted
accordingly.
• Check box
• Radio button
• List box
You can use multiple line texts with a maximum of two lines in the text list for symbolic IO
fields.

Configuring screens
4.3 Configuring screen objects

408 System Manual, 11/2022

Alternatively, enter the multiple line text
Alternatively, enter the multiple line text:
• In the Inspector window, under "Properties > Text".

Enter the line break using the <Shift + Enter> key combination. A line break is displayed as a
blank.

• By entering text directly into the object for:
– Text box
– Button

4.3.11.3 Show default entry of text and graphic list in the object

Introduction
For objects with the dynamization type "Resource list", you can have a text or a graphic from the
resource list displayed as the default entry in the object.

Requirement
• The HMI screen with an object, e.g. a button, is open.
• At least one object property supports the "Resource list" dynamization type, for example,

"text" or "graphic".

Displaying a text as the default entry in the object
To display a text as the default entry in the object, follow these steps:
1. In the Inspector window, select "Properties > Properties > General > Text".
2. Select "Resource list" in the "Dynamization" column.
3. In the "Resource list" dialog, select a text list under "Settings > Resource list".

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 409

4. Click on the button in the "Resource list" line .
The selected text list opens.

5. Select an entry in the "Text list entries" table as the default entry. The text from the default
entry is displayed in the object.
If you have not specified a default entry, the first entry in the "Text" column is displayed in the
object.

Displaying a graphic as the default entry in the object
To display a graphic as the default entry in the object, follow these steps:
1. In the Inspector window, select "Properties > Properties > General > Graphic".
2. Select "Resource list" in the "Dynamization" column.
3. In the "Resource list" dialog, select a graphic list under "Settings > Resource list".
4. Click on the button in the "Resource list" line .

The selected graphic list opens.
5. Select an entry in the "Graphic list entries" table as the default entry. The graphic from the

standard entry is displayed in the object.
If you have not specified a default entry, the first entry in the "Graphic" column is displayed
in the object.

See also
Configuring object with a text list (Page 453)

4.3.11.4 Displaying tag value in the object dynamically

Introduction
In some objects, dynamic information can be displayed in the properties that contain a text.
If you insert the reference to a tag in the "Text" or "Tooltip" property, for example, the current
value of the inserted tag is displayed in the object in Runtime.
Supported objects:
• Text box
• Button
• Symbolic IO field
• Switch

Note
In the message texts, e.g. for the alarm control, the dynamic information may already be
inserted.

Configuring screens
4.3 Configuring screen objects

410 System Manual, 11/2022

Requirement
• The HMI screen with an object, e.g. a text box or a button, is open.

Configuring a tag value in the object
To configure a tag value in an object, e.g. in a text box, follow these steps:
1. Configure a tag, e.g. "IntTag".
2. In the Inspector window, select "Properties > Properties > General > Text".
3. Enter a text in the "Static value" column in the input field, e.g. "IntTag_Value".
4. Right-click in the input field. The shortcut menu opens.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 411

5. Select "Insert parameter field" in the shortcut menu. A dialog opens.

6. Select the "IntTag" tag under "Tag" in the dialog.
7. Configure the format of the display:

– Display type
– Length
– Decimal places
– Alignment:
– Leading zeros

8. Confirm the selection. The field with the tag name becomes visible in the input field.

9. Compile and load the device.

Configuring screens
4.3 Configuring screen objects

412 System Manual, 11/2022

Note
If you have inserted the parameter field with a tag in an object, you cannot edit the text in the
object directly. After deleting the parameter field, you can edit the text in the object directly
again.
More information on direct text input is available in Enter text directly into the object (Page 406).

Result
The object displays the current tag value in Runtime.

4.3.11.5 Dynamically displaying a text list in the object

Introduction
In some objects, dynamic information can be displayed in the properties that contain a text.
If you insert a reference to a text list in the "Text" or "Tooltip" property, for example, the
current value of the inserted text list is displayed in the object in Runtime.
Supported objects:
• Text box
• Button
• Symbolic IO field
• Switch

Note
In the message texts, e.g. for the alarm control, the dynamic information may already be
inserted.

Requirement
• The HMI screen with an object, e.g. a text box or a button, is open.

Configuring a text list in the object
To display a text list in an object, e.g. in a text box, follow these steps:
1. Configure a tag, e.g. "IntTag".
2. Configure a text list, e.g. "Textliste_1".
3. In the Inspector window, select "Properties > Properties > General > Text".
4. Enter a text in the "Static value" column in the input field, e.g. "Text list".

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 413

5. Right-click in the input field. The shortcut menu opens.

6. Select "Insert parameter field" in the shortcut menu. A dialog opens.

7. Select the "IntTag" tag under "Tag" in the dialog.
8. Under "Display type", select "Text list".
9. Under "Text list", select the text list "Textlist_1".

Configuring screens
4.3 Configuring screen objects

414 System Manual, 11/2022

10.Confirm the selection. The field with the tag name becomes visible in the input field.

The default entry of the text list is displayed in the text box.
11.Compile and load the device.
Alternatively, you can configure the text list entry directly in the text list.

Note
Circular references are not supported.

Result
The object displays the current text list entry in Runtime.

4.3.12 Linking objects

4.3.12.1 Linking an object to a text list

Introduction
You can link the objects to a text list.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 415

Requirement
• The HMI screen with an object is open.

Linking objects to a text list
You can link a text list to the following objects:
• Text box
• Button
• Switch
• Symbolic IO field
To link a text list to an object, follow these steps:
1. In the Inspector window, select "Properties > Properties > General > Text".
2. Select the "Resource list" option in the "Dynamization" column. The "Resource list" page

opens.
3. Select the text list from which the text is displayed.
The text list has been linked to an object.

Tips for an efficient procedure

• Use drag-and-drop to move a text list from the detail view of the text and graphic lists directly onto an object in a screen.
The object is linked to the text list.

4.3.12.2 Linking an object to a graphic list

Introduction
You can link the objects to a graphic list.

Requirement
• The HMI screen with an object is open.

Linking objects to a graphic list
You can link a graphic list to the following objects:
• Graphic view
• Button
• Switch
• Symbolic IO field

Configuring screens
4.3 Configuring screen objects

416 System Manual, 11/2022

To link a graphic list to an object, follow these steps:
1. In the Inspector window, select "Properties > Properties > General > Graphic".
2. Select the "Resource list" option in the "Dynamization" column. The "Resource list" page

opens.
3. Select the graphic list from which the graphic is displayed.
The graphic list has been linked to an object.

Tips for an efficient procedure

• Use drag-and-drop to move a graphic list from the detail view of the text and graphic lists directly onto an object in a screen.
The object is linked to the graphic list.

4.3.12.3 Linking an object to tags

Introduction
You can link the objects to a tag.

Requirement
• The HMI screen with an object is open.

Link objects to a tag
You can link a tag to the following objects:
• Text box
• IO field
• Symbolic IO field
• List box
• Bar
• Slider
• Gauge
• Clock
• Check box
• Radio button
• Trend control
• Process control

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 417

To link a tag with an object, proceed as follows:
1. In the Inspector window, select "Properties > Properties > General > Process value".
2. Select "Tag" in the "Dynamization" column. The "Tag" page will open.
3. Select an existing tag under "Tag > Process > Tag".

Alternatively, create a new tag using the "Add" button.
The tag has been linked to an object.

Tips for an efficient procedure

• Drag a tag from the detail view of the tag table directly to an object in a screen. The object is linked to the tag.

4.3.13 Using layers

4.3.13.1 Basic information on using layers

Layers
Use layers in order to achieve differentiated editing of the objects in a screen. Using layers,
multiple objects can be combined and edited together, for example. Layers are also used to
improve clarity during configuring, because multiple objects can be hidden and displayed again
when required.
A screen has 32 layers. The name of the individual layers is determined by the user interface
language and changes when the user interface language is changed. If you assign objects to
the layers, you thereby define the screen depth. Objects of layer 0 are located in the screen
background, while objects of layer 31 are located in the foreground.

Configuring screens
4.3 Configuring screen objects

418 System Manual, 11/2022

The objects of a single layer are also arranged hierarchically. If you create a new object, it is
arranged in the foreground. You can shift objects forwards and backwards within a layer.

Principle of the layer technique
Always one layer of the 32 layers is active. New objects you add to the screen are always assigned
to the active layer. The active layer is indicated in the "Layout > Layers" task card.
When you open a screen, all 32 layers of the screen are displayed. You can hide all layers
except for the active layer in the "Layout > Layers" task card. You then explicitly edit objects of
the active layer.
In the "Layout > Layers" task card, you can also manage layers and objects with drag-and-
drop and the shortcut menu.

Application examples
Use layers, for example, in the following cases:
• To hide the labeling of objects when editing,
• To hide individual objects, while you configure other objects

4.3.13.2 Renaming a layer

Introduction
When you create a screen, the 32 layers are numbered consecutively by default. To improve
clarity, you can rename the layers to suit your requirements.

Requirement
• A screen with an object is open.

Renaming a layer
To rename the name of a layer, follow these steps:
1. Click on Runtime settings in the project tree.
2. In the "Name" column, click in the row of the layer.
3. Enter a name.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 419

Result
The selected layer has been renamed.

4.3.13.3 Moving objects between layers

Introduction
By default, newly inserted objects are in the foreground of the active layer. You can assign an
object to a different layer and change the order of objects within a layer at a later time.

Requirement
• A screen with an object is open.

Moving objects between layers
To move the objects, follow these steps:
1. Select the object in the "Layout > Layers" task card.
2. Drag-and-drop the object to the required layer.

Changing the order of objects within a layer
To change the sequence of objects, follow these steps:
1. Select the object in the screen.
2. Select the desired command under "Arrange" in the shortcut menu. Depending on the

current position of the object, you can move it completely into the foreground, to the front,
to the back or completely into the background.

Configuring screens
4.3 Configuring screen objects

420 System Manual, 11/2022

Result
The object is arranged according to the selection. In the "Layout > Layers" task card, the order of
the objects is displayed as follows: Objects of layer 0 are located in the screen background, while
objects of layer 31 are located in the foreground. Within a layer, the objects displayed at the top
of the list are in the background of the layer.

4.3.13.4 Specifying the active layer

Introduction
The screen objects are always assigned to one of the 32 layers. There is always an active layer in
the screen. New objects you add to the screen are always assigned to the active layer.
The active layer is indicated by a icon in the "Layout > Layers" task card.
You can activate a different layer during configuration, if necessary.

Requirement
• You have opened a screen which contains at least one object.

Procedure
To set a layer as active, follow these steps:
1. Select "Layout > Layers" in the "Layout" task card.
2. Select the "Set to active" command from the shortcut menu of a layer.

Result
The selected layer becomes the active layer.

4.3.13.5 Hiding and showing layers

Introduction
You can show or hide the layers of a screen as required.

Requirement
• The screen is open.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 421

Hiding or showing layers
To hide or show layers, follow these steps:
1. Select the layer that you want to hide or show in the "Layout > Layers" task card.
2. Click one of the icons next to the corresponding layer:
• A shown layer is hidden.
• A hidden layer is shown.
You cannot hide the active layer.
Alternatively, select the "Hide layer" or "Show layer" command from the shortcut menu of a
layer.

Result
Only the displayed layers are shown in the Engineering System.
Setting the visibility of the levels in the Engineering System has no influence on the visibility
of the levels in Runtime.

4.3.13.6 Toggle the visibility of layers in runtime in the ES

Introduction
You can toggle the visibility of layers in runtime in the Engineering System.

Requirement
• The screen is open.

Toggling the visibility of layers in the Engineering System
To switch the visibility of layers in runtime in the Engineering System, follow these steps:
1. In the Inspector window, select "Properties > Properties, Miscellaneous > Layers".
2. Select the layer whose runtime visibility you want to toggle.

Configuring screens
4.3 Configuring screen objects

422 System Manual, 11/2022

3. Under "Miscellaneous > Levels > [x] Level", select the "Runtime visible" option in the "Static
value" column.

4. If you now click on the field "Layers" under "Miscellaneous", the overview of all layers
becomes visible in the right part of the Inspector window.
You can toggle the visibility directly in the overview.

Result
You can now toggle the visibility of the layers in Runtime.
Only the displayed layers are shown in the Engineering System.
Setting the visibility of the levels in runtime has no influence on the visibility of the levels in
the Engineering System.

4.3.13.7 Toggling the visibility of layers in runtime using the JScript function

Introduction
You can toggle the visibility of layers in runtime using the JScript function.

Requirement
• The screen is open.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 423

Toggling the visibility of layers via the JScript function
To toggle the visibility of the layers in runtime using a JScript function, follow these steps:
1. In the Engineering System, place the objects of a screen in the "Layout" task card on different

layers.
2. Program a JScript function to change the visibility of, for example, "Layer_1" in the current

screen.
Screen.Layers ("Layer_0").Visible = false;

3. Configure this function, e.g. on an event of a button.
If the event occurs in runtime, all objects placed on this layer become invisible.
To make a layer visible in the current screen, use:
Screen.Layers("Layer_0").Visible = true;

Result
You can change the visibility of the layers in Runtime.

4.3.14 Using groups

4.3.14.1 Basics of groups

Introduction
You can put two or more objects together to form a group with the "Group" function.
You can manage a group of objects in the Engineering System and in Runtime just like you
manage an individual object, e.g. you can change the color or visibility of all grouped objects
in one step.
Grouping is available on a Unified PC and Unified Control Panel as of version V18. The
grouping of objects is not supported in the VoT application.

Editing objects together
You can edit multiple objects together by means of:
• Multiple selection (Page 361): With multiple selection, the bounding boxes of all objects are

displayed.
• Grouping objects (Page 426): With a group, one bounding box is displayed for the whole

group.

Configuring screens
4.3 Configuring screen objects

424 System Manual, 11/2022

Groupable objects
You can add the following objects to a group:
• Basic objects
• Elements
• Faceplate containers
• Graphics
• Dynamic widgets
Nesting of groups – group in group – is not supported.

Non-groupable objects
You cannot add the following objects to a group:
• Controls (except faceplate containers)
• Custom controls

Layers
All objects of a group are located in the same layer. The groups are arranged hierarchically in a
layer.
You can also add objects to a group or remove them from a group in the "Layout > Layers"
task card using drag-and-drop.

Properties of a group
• The group has its own coordinate system. The coordinates of all objects contained in the

group are referenced to the upper left corner of the group.
• Each group has its own properties. You can define the properties of a group for the runtime:

– Via a dynamic property.
– Via a script.

• If you set a property for a group, all objects of the group inherit this property.
• If you configure the same property differently on an object in the group, the property value

on the object is valid in runtime, not the value in the group.
• When you resize an object, the group is also resized.
• The grouping of objects is also possible within faceplate types.
• Groups have no events for which you can configure event scripts or function lists. The events

of the objects in the group work in the same way as for objects that are not grouped.
• Nesting of groups – group in group – is not supported.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 425

4.3.14.2 Grouping objects

Introduction
The "Group" menu command combines multiple objects to form a group.

Requirement
• A screen containing at least two objects is open.

Configuring screens
4.3 Configuring screen objects

426 System Manual, 11/2022

Grouping objects
Follow these steps to group objects:
1. Select all the objects you want to group using multiple selection.

2. Select the "Group > Group" command from the shortcut menu.

3. The group objects are displayed with a bounding box.

Result
The selected objects are combined in a group. The multiple selection bounding box becomes the
group bounding box. The resizing handles are shown only for the group.
The group is in the active layer.
The group is given a unique default name, e.g. "Group_1".

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 427

The coordinates of the upper left corner of the group are defined in such a way that the
position of the objects contained in the group remains unchanged in the screen. The height
and width of the group is defined to accommodate the full extent of the objects contained in
the group.

4.3.14.3 Managing groups

Introduction
You can select, copy, paste and ungroup a group.

Requirement
• A screen containing at least one group of objects is open.

Selecting a group
When you click on an object in the group, the whole group is selected.
If the whole group is visible in the screen editor, you can also select the group by drawing a
lasso around it.

Copying and pasting a group
To copy a group, follow these steps:
• Right-click the group in the "Layers" task card. Select "Copy" and "Paste" in the shortcut menu.
• Select the group. Copy the group with <Ctrl + C> and paste it with <Ctrl + V>.
You can paste the copied group:
• In the same screen
• In a different screen
• On another Unified device

Note
References in function lists or scripts to other objects in the group are kept as the original
reference.
Example:
Group_1 contains Button_1 and Circle_1.
Button_1 has a script that references Circle_1.
After copying and pasting, the copied Group_2 contains Button_2 and Circle_2.
The script on Button_2 continues to reference Circle_1.

Configuring screens
4.3 Configuring screen objects

428 System Manual, 11/2022

Ungrouping a group
To ungroup a group, follow these steps:
1. Select the group.
2. Right-click to open the shortcut menu.
3. In the shortcut menu, select the "Group > Ungroup" command.
The group is ungrouped. The objects from the group remain in the screen.

4.3.14.4 Changing the size of the group

Introduction
You can change the size of an object group in the Engineering System.
When you select the group, it is framed by a bounding box with blue handles. You have the
following options for changing the size and position of a group:
• Drag with the mouse
• Configure group properties
After the size of the group has been changed, the objects contained in the group are scaled
proportionally to their original size and the target size.

Requirement
• The HMI screen containing at least one object group is open.

Changing the size of the group with the mouse
To change the size of the group with the mouse, follow these steps:
1. Select the group whose size you want to change.

The bounding box is displayed.
2. Drag a handle of the box to a new position.
The size of the group is changed.

Tips for working effectively

If you press the <Shift> key while dragging, the group is resized according to the aspect ratio.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 429

Note
• Circular objects, such as circles, circular arcs, circle segments, gauges, and clocks, are only

resized if both dimensions are changed at the same time by dragging one of the corner
handles. If the size of the group is not adapted proportionally, the circular objects cannot be
displayed correctly.

• If a group was first significantly reduced in size and then enlarged again, the objects in it may
shift or reshape due to precision losses.

Configuring the size of the group through properties
To change the size of the group through properties, follow these steps:
1. Select the group whose size you want to change.
2. Select "Properties" > "Properties" > "Size and position".
3. In the "Static value" column, enter the "Size - width" and "Size - height" coordinates.
The object size is changed.

4.3.14.5 Moving a group

Introduction
You can move an object group in various ways.

Requirement
• The HMI screen containing at least one object group is open.

Moving an object group
To move the object group, follow these steps:
1. Select the object group you want to move.
2. The following options are available for moving:

– Moving by selecting and dragging with the mouse.
– Moving with pixel accuracy using the arrow keys on your keyboard.
– Moving in larger pixel increments using <Shift> and the arrow keys on your keyboard. The

increment depends on the settings you configured for the grid under "Options > Settings
> Visualization > Screens > Grid".

Configuring screens
4.3 Configuring screen objects

430 System Manual, 11/2022

4.3.14.6 Moving groups between layers

Introduction
You can move groups between layers in the "Layout > Layers" task card and change the order of
groups within a layer.
The objects in the groups are moved to the same layer as the parent group and keep their
order.

Requirement
• The HMI screen containing at least one object group is open.

Moving groups between the layers
You have the following options for moving one or more groups between the layers:
• Moving one group to another layer using drag-and-drop
• Selecting the "Arrange" command in the shortcut menu of the group, and then selecting:

– "Bring to front"
– "Bring forward"
– "Send backward"
– "Send to back"

• Moving multiple groups using multiple selection and drag-and-drop.

Note
Moving of groups is only possible if no objects contained in the group have been selected.

4.3.14.7 Groups in editing mode

Introduction
You can configure the individual objects in the group in editing mode.
When you select an object within the group, the group goes into editing mode. When the
group is in editing mode, it is framed by a red rectangle.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 431

Requirement
• The HMI screen containing at least two objects is open.
• The objects have been put together to form a group.

Activating editing mode
To activate editing mode for a group, choose one of the following options:
• Click an object in the group with the left mouse button. Select "Group > Edit group" in the

shortcut menu.
• Double-click an object in the group.
• Select an object within a group by clicking on the object in the "Layout > Layers" task card.
• An object in the group can be selected through an error message, cross-reference or search

result.

Options in editing mode
• When the group is in editing mode, you can select an object contained in the group by

clicking it. The group remains in editing mode.
• If you select an object outside the group, the editing mode is deactivated.
• You can also select the following using multiple selection:

– Multiple objects in a group.
– Multiple groups in the screen.

• Direct text input: If you double-click an object in which a direct text input is possible, you can
enter the text. If the group is not in editing mode, editing mode is activated.

• A rotated group is displayed as not rotated in editing mode. After editing mode is deactivated,
the group is displayed rotated again. The configured value of the "Rotation - angle" property
remains unchanged.

Configuring objects in editing mode
You can configure the objects in the group in editing mode in the following ways:
• Changing properties of the selected objects.
• Aligning or distributing objects or setting them to the same size.

Configuring screens
4.3 Configuring screen objects

432 System Manual, 11/2022

• Adding or removing points of point-based objects, e.g. for polyline and polygon.
• Copying objects. When pasted, the objects are placed outside the group.
• Linking objects, e.g. with a tag, using drag-and-drop.
The group is updated after size or position changes of the objects it contains.

See also
Aligning objects in the group (Page 436)

4.3.14.8 Adding an object to the group

Introduction
You can add one or more objects to a group.

Requirement
• The HMI screen containing at least one object group is open.
• At least one object has been configured outside the group.

Adding an object to a group
To add an object to a group, follow these steps:
1. Select a group and one or more objects using multiple selection.
2. Right-click to open the shortcut menu.
3. In the shortcut menu, select the "Group > Add to group" command.

Note
The command is hidden if you have selected unsupported objects, e.g. a control or another
group.

Result
The object(s) are added to the group. The size of the bounding box of the group is adjusted to
accommodate the added objects.
The added objects are displayed in the "Layout > Layers" task card at the bottom position of
the group.

Adding an object to a group using drag-and-drop
You can also add objects to a group or remove them from a group in the "Layout > Layers" task
card using drag-and-drop.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 433

4.3.14.9 Managing objects in groups

Introduction
You can move or delete one or more objects in the group or remove one or more objects from
the group.

Requirement
• A screen containing at least one group of objects is open.

Moving an object in the group
You can move the objects within a group in the "Layout > Layers" task card using drag-and-drop.
If you move an object directly to the group using drag-and-drop, the object is positioned last
within the group.

Note
You can also add objects to a group or remove them from a group in the "Layout > Layers" task
card using drag-and-drop.

Deleting an object in the group
It is not possible to delete an object that is contained in a group.
To delete an object, follow these steps:
1. Move the object directly to a layer using drag-and-drop.
2. Delete the object.

Removing an object from the group
To remove an object from a group, select one of the following options:
• Drag-and-drop the object from the group to the "Layers" task card.

If you move an object directly to a layer using drag-and-drop, the object is positioned last
within the level.

•
You cannot remove the last object from the group because an empty group is not permitted.

4.3.14.10 Rotating a group and objects in the group

Introduction
You can rotate the group and the objects in the group.

Configuring screens
4.3 Configuring screen objects

434 System Manual, 11/2022

You can define the rotation of an object around a pivot point. You can specify the "Pivot point
X" and "Pivot point Y" coordinates of the pivot point in the Inspector window of the group.
You can specify the rotation angle for the rotation of the group under "Properties > Rotation -
angle".
The pivot point can also be located outside the group.

Requirement
• The HMI screen containing at least one object group is open.

Rotating an object group
The rotation defines the rotation of the group around the pivot point. The value of the rotation is
specified in degrees. The configured initial position corresponds to a value of 0°. The position of
the group differs from its configured initial position by the rotation value. Negative and positive
values are permissible.

Pivot point
Define the pivot point under "Properties > Rotation - pivot point":
• Absolute to center: Specifies that the rotation is an absolute rotation around the center point

of the group.
• Absolute to screen: Specifies that the rotation is an absolute rotation around the zero point

of the screen. In this case, the zero point is located at the top left corner of the screen.

Pivot point positioning
The attributes "Pivot point X" and "Pivot point Y" define the horizontal and vertical distance of the
pivot point from the origin point.
• Center point of the group
• Zero point of the screen
The values are specified in device-independent pixels (DIP).
The pivot point can also be located outside the bounding box. Negative and positive values
are permissible.

Result
The group is rotated. All objects in the group are rotated according the rotation of the group.

Rotated objects in the group
You have the following options:
• You can create a group of the rotated objects.
• You can rotate the objects in the group.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 435

Pivot points X and Y are viewed relative to the group, if pivot point mode "Absolute to screen"
is selected.

Limitations
• The rotation of objects contained in the group is not taken into account when calculating the

group boundaries or when changing the size of a group.
• When you edit the objects in a rotated group, the group is displayed non-rotated while it is

in editing mode. After editing mode is exited, the group is displayed rotated. The configured
value of the "Rotation - angle" property remains unchanged.

• The rotation of a group is not taken into account when adding and removing objects to and
from the group.

• Based on these limitations, the following is recommended:
– Configuring a group and its objects without rotation.
– Use a dynamic rotation in runtime when needed.

4.3.14.11 Aligning objects in the group

Introduction
You can align the selected objects in relation to a reference object in a group.

Requirement
• The HMI screen containing at least two objects is open.
• The objects have been put together to form a group.

Aligning selected objects in a group
The reference object is the object that you selected first.

Configuring screens
4.3 Configuring screen objects

436 System Manual, 11/2022

To align selected objects in a group in relation to a reference object, follow these steps:
1. Select the desired objects in the "Layout > Layers" task card.
2. Click on the bar above the toolbar.

The icons in the toolbar are displayed.

3. Select the desired command for alignment in the toolbar.

The selected objects in the group are aligned in relation to the reference object.

See also
Aligning objects (Page 395)
Groups in editing mode (Page 431)

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 437

4.3.14.12 Properties of the group

Introduction
Properties of the group are properties that you edit at the group level.
You can configure the group properties in the Engineering System and interpret them in
runtime.

Properties of the group
The following properties affect the entire group.
• Name
• Coordinates "Position - left" and "Position - top". The coordinates of all objects contained in

the group are referenced to the upper left corner of the group.
• "Size - height" and "Size - width" form the outer boundary of the objects contained in the

group.
These values are automatically updated when:
– Objects are added to the group.
– Objects are removed from the group.
– The position of the objects contained in the group is changed.

• Rotation-related properties:
– "Rotation - pivot point"
– "Rotation - angle"
– "Rotation - pivot point X"
– "Rotation - pivot point Y"
If the group is rotated, all objects contained in the group are displayed rotated.

• Visibility: The visibility is only toggled in runtime. All objects are always visible during
engineering.
The visibility functions in a cascaded manner:
– If the visibility of the group has been set to "false", all objects are invisible.
– If the visibility of the group has been set to "true", the objects for which visibility is set to

"true" are visible.
• When "Operator control - allow" is activated, operator control of the objects in the group is

permitted.
Activation of the operator control functions in a cascaded manner:
– If the "Operator control - allow" property is deactivated, operator control is not possible for

any objects.
– If the "Operator control - allow" property is activated, operator control of objects for which

"Operator control - allow" is activated is possible.
Deactivated objects are displayed grayed out.

Configuring screens
4.3 Configuring screen objects

438 System Manual, 11/2022

See also
Rotating a group and objects in the group (Page 434)
Adding an object property to favorites (Page 377)

4.3.14.13 Adding a property of the group to favorites

Introduction
You can define your own favorite properties in the "Group" screen object.
The following properties are defined as favorites by the system:
• "Name"
• "Top"
• "Left"
• "Height"
• "Width"
• "Visibility"

Adding property to favorites
To add a property to favorites, follow these steps:
1. Right-click on a property that is not defined as a favorite by the system.
2. Select "Add to favorites" in the shortcut menu.
3. To display all favorites, click the icon .
The number of favorite properties is not limited.

Note
You cannot add the aggregated properties of the objects contained in the group to favorites.

Removing property from favorites
To remove a property from favorites, follow these steps:
1. To display all favorites, click the icon .
2. Right-click the favorite property.
3. Select "Remove from favorites" in the shortcut menu.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 439

4.3.14.14 Aggregated properties of the objects in groups

Introduction
The object properties in the group are displayed as aggregated properties in the Inspector
window under "Properties > Miscellaneous > Interface". You can either configure these
properties with a static value or dynamize them.

Note
Only the properties of the topmost level are available on the interface for aggregated properties.
Properties within the sub-hierarchy are not available.

Requirement
The HMI screen containing at least one object group is open.

Aggregated properties with a static value
The following applies for the aggregated properties with a static value:
• When you configure a property with a static value under "Properties > Miscellaneous >

Interface", this value is passed to every object in the group that has this property. A similar
behavior takes place when a multiple selection is made.
This static value is not retained at the group level.

• If the static value of a configured property is the same for all objects, the current value is
displayed at the group level.

• If the static value of a configured property is different for the objects, "Ambiguous value" is
displayed in the input field in the "Static value" column. In this case, too, you can configure
any property value in the input field.

• For the aggregated properties at the group level, no validation information is displayed, even
if the configured static value of the property is invalid for at least one object.
Validation only takes place at the level of the individual objects.

Non-aggregatable properties
The following object properties are not displayed under the aggregated properties. You cannot
configure or dynamize these object properties at the group level:
• Your own properties of the group, e.g. coordinates or visibility. You can only configure these

properties individually.
• Appearance - style item
• Resource list
• Selection item
• Connection status
• Focus - show visual

Configuring screens
4.3 Configuring screen objects

440 System Manual, 11/2022

Static values of the following properties are displayed empty. You cannot configure the
properties with a static value.
• Process value
• Text

Dynamization of the aggregated properties
You can configure dynamization of an aggregated property at the group level under "Properties
> Miscellaneous > Interface".
As soon as the configured dynamization is triggered in runtime, the dynamization affects all
objects in the group that retain this property.

Note
The dynamization type "Flashing" is not available for dynamization of the aggregated properties
of a group.

4.3.14.15 Group as part of a multiple selection

Introduction
A group, together with other groups and/or other objects, can be part of a multiple selection. The
custom and aggregated properties are displayed under the aggregated properties.

Group as part of a multiple selection
The aggregated group properties are:
• Displayed uncategorized under the "Properties" part.
• Not aggregated with the properties of the objects that are not grouped.
If static property values are defined for multiple selection, the values are passed to all parts of
the multiple selection, including custom and aggregated group properties.
If the property is dynamically configured for multiple selection, the dynamic configuration
is propagated to all parts of the multiple selection, including custom and aggregated group
properties.

Example
If a multiple selection includes the objects of the topmost level as well as groups, you can change
the background color of all objects.
1. Specify "Appearance > Background color" for the objects of the topmost level.
2. Specify "Miscellaneous > Interface > Background color" for the grouped objects.

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 441

4.3.15 Two-hand operation of operator controls

4.3.15.1 Two-hand operation of operator controls

Introduction
WinCC supports two-hand operation of operator controls for Unified PC. It ensures safe
operation of operator controls which are used to change critical system settings, for example,
control tags with machine limits.

Locked and unlocked operator controls
You define specific operator controls as "locked operator controls" for two-hand operation of
operator controls. Locked operator controls usually cannot be operated in runtime. Operators
can only operate the locked operator controls when they press a release button at the same
time.
In runtime, locked operator controls can only be accessed with the tab sequence when a
release button is pressed at the same time.

Locked operator controls and release buttons
You can configure all operator controls as locked.
You must configure at least one button in the screens as release button. This can be any
unlocked button. The unlocking of locked operator controls by pressing the release button
has an effect on all open screens.

Display in runtime
The locked operator controls are displayed as dimmed in runtime. The locked operator controls
are completely visible when they are unlocked by means of the release button.

Simulation of projects with multi-touch functions
WinCC supports the simulation of configured multi-touch functions. Requirement is that your
monitor supports multi-touch operation.

4.3.15.2 Locking and unlocking operator controls
You can lock and unlock operator controls in projects for multi-touch devices. Locked operator
controls can only be operated in runtime when the operator presses a release button at the same
time.
You can lock and unlock individual operator controls or several operator controls
simultaneously.

Configuring screens
4.3 Configuring screen objects

442 System Manual, 11/2022

Procedure
1. Configure operator controls of the type I/O field, button or slider.
2. Select the required operator control(s).
3. To lock the operator controls, enable the "Require explicit unlock" option under "Properties >

Properties > Security".

4. To unlock the operator controls, disable the "Require explicit unlock" option under "Properties
> Properties > Security".

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 443

In runtime, locked operator controls can only be operated when a release button is pressed at
the same time.

Note
Locking of operator controls is an add-on to the existing security settings of the operator control.
This means that in case of locked operator controls - in addition to pressing the release button
- the general operability ("Allow operator control" option) and the required operator control
("Authorization" property) must be present so that the operator control can be operated in
runtime.

Defining the release button
To use the locked operator controls, you must configure at least one release button in one of the
displayed screens.

4.3.15.3 Configuring the release button in the screen
So that you can operate locked operator controls on multi-touch devices, configure a release
button.

Configuring screens
4.3 Configuring screen objects

444 System Manual, 11/2022

Procedure
1. Select the screen.
2. Select the desired button of the screen under "Properties > Security" under "Enable explicit

unlock".

3. To turn a release button back into a normal button, select a different button or "None" under
"Properties > Security" under "Enable explicit unlock".

Configuring screens
4.3 Configuring screen objects

System Manual, 11/2022 445

4.4 Configuring text lists and graphics lists

4.4.1 Configuring text lists

4.4.1.1 Basics of text lists

Introduction
Texts are assigned to the values of a tag in a text list. During configuration, you assign the text
list to a text field, for example. This supplies the text to be displayed to the object.
You create and edit the text list in the "Text and graphic list" editor. You configure the
interface between the text list and a tag at the object that uses the text list.
The availability of the text list is determined by the HMI device used.

Application
You can configure the text list for the following applications:
• Output of texts depending on tag value.
• Display of a selection list in a list box. The associated texts are displayed in the list box

depending on the value of the configured tags.

Note
Display of tag values without text
The display of tag values to which no text has been assigned depends on the runtime:
• The display and operating element remains empty.
• Three asterisks *** are displayed.

Configuring screens
4.4 Configuring text lists and graphics lists

446 System Manual, 11/2022

Ranges for the text list
Three types are available for the text lists:
• Value/Range

This setting assigns text entries from the text list to integer values or value ranges of a tag.
You can select the number of text entries as needed. The maximum number of entries
depends on the HMI device you are using.
You specify a default value which is shown if the value of the tag lies outside the defined
range.

• Bit (0, 1)
This setting assigns text entries from the text list to two states of a binary tag. You can create
a text entry for each state of the binary tag.

• Bit number (0-31):
This setting assigns a text entry from the text list to each bit of a tag. The maximum number
of text entries is 32. You use this form of text list, for example, in a sequential control chart
when processing a sequencer in which only one bit of the used tag may be set. You
influence the behavior of the bit number (0 - 31) with the set bit of the least significance and
a default value.

Multilingual texts
You can configure multiple languages for the texts in a text list. The texts will then be displayed
in the set language in runtime. To this purpose you set the languages in the Project window
under "Languages & Resources > Project languages."

Configuration steps
The following steps are necessary to display texts in a screen object:
1. Creating the text list
2. Assignment of the texts to values or value ranges of a text list
3. Assigning a text list in the display object
4. Assigning a tag

4.4.1.2 Creating a text list

Introduction
The text list allows you to assign specific texts to values and output these in runtime, for example
in an I/O field. Specify the I/O field type, for example, as a pure input field.

Configuring screens
4.4 Configuring text lists and graphics lists

System Manual, 11/2022 447

Procedure
Follow these steps to create a text list:
1. Double-click "Text and graphic lists" in the project tree.
2. Open the "Text lists" tab.

3. Click "Add" in the "Text lists" table. The Inspector window of the text list is open.
4. Assign a name to the text list that indicates its function.
5. Select the text list type under "Selection":

– Value/Range: Text from the text list is displayed when the tag has a value that lies within
the specified range.

– Bit (0,1): A text from the text list is displayed if the tag has adopted the value 0. Another
text from the text list is displayed if the tag has adopted the value 1.

– Bit number (0-31): Text from the text list is displayed when the tag has the value of the
assigned bit number.

6. Enter a comment for the text list.

Result
A text list is created.

4.4.1.3 Assigning texts and values to an area text list

Introduction
For each area text list you specify which texts are displayed at which value range. The entered
text is only displayed when the value is within the permitted range.
The following options are available:
• "Range": You enter the minimum value and maximum value for the range.
• "To": You enter the maximum value for the permitted range.

Configuring screens
4.4 Configuring text lists and graphics lists

448 System Manual, 11/2022

• "Single value": When the specified bit is set, the text is displayed in runtime.
• "From": You enter the minimum value for the permitted range.

Requirement
• The "Text and graphic list" editor is open.
• The "Text lists" tab is open.
• An area text list has been created and selected.

Procedure
To assign texts and values to a range text list, follow these steps:
1. Click "Add" in the "Text list entries" table.

The Inspector window for this list entry opens.

2. Select one of the options in the Inspector window "Properties > General > Value" and enter
values.

3. Enter the text that is displayed in runtime when the tag has the specified value or lies within
the specified range of values under "Text." The text may contain a maximum of 128
characters.

4. Activate the "Default entry" for all unassigned values. The entered text is always displayed
when the tag has an undefined value. Only one default entry is possible per list.
Note
Selecting the default entry is not possible in runtime.

5. Add additional entries to the text list for additional value ranges.

Configuring screens
4.4 Configuring text lists and graphics lists

System Manual, 11/2022 449

Result
An area text list is created. Texts that appear in runtime are assigned to the possible values.

4.4.1.4 Assigning texts and values to a bit text list

Introduction
For each bit text list, you specify which text is displayed at which bit value.

Requirement
• The "Text and graphic list" editor is open.
• The "Text lists" tab is open.
• A bit text list has been created and selected.

Procedure
To assign texts and values to a bit text list, follow these steps:
1. Click "Add" in the "Text list entries" table.

The Inspector window for this list entry opens.

2. Select the setting "Single value" in the Inspector window "Properties > General > Value" and
enter "0" as "value".

3. Under "Text", type in the text that is displayed in runtime when the tag has the value "0". The
text may contain a maximum of 128 characters.

4. Click "Add" in the "Text list entries" table. A second list entry is created.

Configuring screens
4.4 Configuring text lists and graphics lists

450 System Manual, 11/2022

5. Select the setting "Single value" in the Inspector window "Properties > General > Value" and
enter "1" as "value".

6. Under "Text", type in the text that is displayed in runtime when the tag has the value "1".

Result
A bit text list is created. Texts that appear in runtime are assigned to the possible values "0" and
"1".

4.4.1.5 Assigning texts and values to a bit number text list

Introduction
For each bit number text list you specify which texts are displayed at which bit number.

Requirement
• The "Text and graphic list" editor is open.
• The "Text lists" tab is open.
• A bit number text list has been created and selected.

Configuring screens
4.4 Configuring text lists and graphics lists

System Manual, 11/2022 451

Assign texts and values to the bit number text list
To assign texts and values to a bit number text list, follow these steps:
1. Click "Add" in the "Text list entries" table.

The Inspector window for this list entry opens.

2. In the Inspector window, select the "Single value" setting under "Properties > General >
Value". Enter "5", for example, for "Value".

3. For all unassigned values, enable the "Default" option for the default entry. The text appears
when the tag assumes an undefined value. Only one default entry is possible per list.
Note
Selecting the default entry is not possible in runtime.

4. Enter the text under "Text". When the tag has taken the value "5", the text is displayed in
runtime.
The text may contain a maximum of 128 characters.

5. You can add additional entries to the text list for more bit numbers.

Result
A bit number text list is created. Texts that appear in runtime are assigned to the specified bit
numbers.

Multiline text list entries
For objects with the "Text" property, you can enter the text on multiple lines.

Configuring screens
4.4 Configuring text lists and graphics lists

452 System Manual, 11/2022

Use the <Shift + Return> key combination to enter a line break in the text entry. Line breaks
are represented in the text box by the "¶" paragraph mark.

See also
Entering multiline text (Page 407)

4.4.1.6 Configuring object with a text list

Introduction
The output value and value application for text lists are specified in the display and operating
object that displays the texts of the text list in runtime. The properties of these objects are
configured as required.

Requirement
• A text list is created. The values have been defined. The texts are assigned to the values.
• You have created a tag.
• The "Screens" editor is open.
• A screen with an object, such as a text box, is open. The text box is selected.

Procedure
1. In the Inspector window under "Properties > Properties > General > Text" in the

"Dynamization" column, select the "Resource list" entry.
2. Select the tag whose values determine the display in the text box under "Resource list >

Settings > Tag".
3. Select the text list which you want to display in runtime under "Resource list > Settings >

Resource list".
4. Click on the button in the "Resource list" line .

The selected text list opens.
5. Select an entry in the "Text list entries" table as the default entry. The text from the default

entry is displayed in the object.
If you have not specified a default entry, the first entry in the "Text" column is displayed in the
object.

Tips for an efficient procedure
• Drag-and-drop a text list from the detail view into the screen. A text box is created and linked to the text list. Configure the tags whose values

determine the display in the graphic view.

Result
The defined texts of the text list are displayed in the text field in runtime when the tag has the
specified value.

Configuring screens
4.4 Configuring text lists and graphics lists

System Manual, 11/2022 453

See also
Show default entry of text and graphic list in the object (Page 409)

4.4.2 Configuring graphics lists

4.4.2.1 Basics of graphic lists

Introduction
The possible values of a tag are assigned to specific graphics in a graphic list. During
configuration, assign the graphic list to a button or a graphic view. This supplies the graphics to
be displayed to the object.
The graphic lists are created with the "Text and graphic list" editor. You configure the
interface between the graphic list and a tag at the object that uses the graphic list.
The availability of the graphic list is determined by the HMI device used.

Application
You can configure the graphic list for the following situations:
• Selection list with a graphic view.
• State-specific graphic for a button.

Graphic sources
Graphics can be added to the graphic list from the following sources:
• By selecting from the project graphics.
• By selecting an existing file. You can use the following file types:

*.bmp, *.ico, *.emf, *.wmf, *.gif, *.tiff, *.png, *.svg, *.jpeg, *.jpg.
• Creating a new file.

Configuring screens
4.4 Configuring text lists and graphics lists

454 System Manual, 11/2022

Ranges for the graphic list
Three types are available for the graphic lists:
• Value/Range

This setting assigns graphic entries from the graphic list to integer values or value ranges of
a tag. You can select the number of graphic entries as needed. The maximum number of
entries depends on the HMI device you are using.
You specify a default value which is shown if the value of the tag lies outside the defined
range.

• Bit (0, 1)
This setting assigns graphic entries from the graphic list to two states of a binary tag. You can
create a graphic entry for each state of the binary tag.

• Bit number (0-31):
This setting assigns a graphic entry from the graphic list to each bit of a tag. The maximum
number of graphic entries is 32. You use this form of graphic list, for example, in a sequential
control system when processing a sequencer in which only one bit of the used tags can be
set. You influence the behavior of the bit number (0 - 31) with the set bit of the least
significance and a default value.

Multilingual graphics
The graphics in a graphic list can be configured as multilingual. The graphics are then be
displayed in the set runtime language. To this purpose you set the languages in the Project
window under "Languages & Resources > Project languages".

Configuration steps
The following steps are required to display graphics in a graphic view:
1. Creating the graphic list
2. Assignment of the graphics to values or value ranges of a graphic list
3. Assigning a graphic list in the display object.
4. Assigning a tag

4.4.2.2 Creating a graphic list

Introduction
The graphic list allows you to assign specific graphics to variable values and output these in a
graphic I/O field in runtime. Specify the type of the graphic I/O field, for example, as a pure output
field.

Configuring screens
4.4 Configuring text lists and graphics lists

System Manual, 11/2022 455

Procedure
1. Double-click "Text and graphic lists" in the project tree.
2. Open the "Graphic lists" tab.

3. Click "Add" in the "Graphic lists" table. The Inspector window of the graphic list will open up.
4. Assign a name to the graphic list that indicates its function.
5. Select the graphic list type under "Selection":

– Value/Range: Graphic from the graphic list is displayed when the tag has a value that lies
within the specified range.

– Bit (0,1): A graphic from the graphic list is displayed when the tag has the value 0. A
different graphic from the graphic list is displayed when the tag has the value 1.

– Bit number (0-31): Graphic from the graphic list is displayed when the tag has the value
of the assigned bit number.

6. Enter a comment for the graphic list.

Result
A graphic list is created.

4.4.2.3 Assigning graphics and values to an area graphic list

Introduction
For each area graphic list you specify which graphics are displayed at which value range. The
selected graphic is only displayed when the value is within the permitted range.
The following options are available:
• "Range": You enter the minimum value and maximum value for the range.
• "To": You enter the maximum value for the permitted range.

Configuring screens
4.4 Configuring text lists and graphics lists

456 System Manual, 11/2022

• "Single value": When the specified bit is set, the selected graphic is displayed in runtime.
• "From": You enter the minimum value for the permitted range.

Requirement
• The "Text and graphic list" editor is open.
• The "Graphic list" tab is open.
• An area graphic list has been created and selected.

Procedure
1. Click "Add" in the "Graphic list entries" table.

The Inspector window for this list entry opens.

2. Select an option in the Inspector window "Properties > General > Value". Enter values.
3. In the "Graphic" column, select a graphic to be displayed in runtime if the tag has the

specified value or is within the specified value range.
4. For all unassigned values, enable the "Default" option for the default entry. The graphic is

displayed when the tag has an undefined value. Only one default entry is possible per list.
Note
Selecting the default entry is not possible in runtime.

5. Add additional entries to the graphic list for additional value ranges.

Configuring screens
4.4 Configuring text lists and graphics lists

System Manual, 11/2022 457

Tips for an efficient procedure

Inserting a graphic using drag-and-drop operation:
1. Select a graphic in the library or in your file system.
2. Drag-and-drop the graphic into the "Graphic list entries > Graphic" table.

Result
An area graphic list is created. Graphics that appear in runtime are assigned to the possible
values.

4.4.2.4 Assigning graphics and values to a bit graphic list

Introduction
For each bit graphic list you specify which graphic is displayed at which bit value.

Requirement
• The "Text and graphic list" editor is open.
• The "Graphic list" tab is opened.
• A bit graphic list has been created and selected.

Configuring screens
4.4 Configuring text lists and graphics lists

458 System Manual, 11/2022

Procedure
1. Click "Add" in the "Graphic list entries" table.

The Inspector window for this list entry opens.

2. Select the setting "Single value" in the Inspector window under "Properties > General > Value"
and enter "0" as "value".

3. Click "Add" in the "Graphic list entries" table. A second list entry is created.
4. Select the setting "Single value" in the Inspector window under "Properties > General > Value"

and enter "1" as "value".
5. Select a graphic that is displayed in runtime when the tag has the value "1".

Tips for an efficient procedure

Inserting a graphic using drag-and-drop operation:
1. Select a graphic in the library or in your file system.
2. Drag-and-drop the graphic into the "Graphic list entries > Graphic" table.

Result
A bit graphic list is created. Graphics that appear in runtime are assigned to the values "0" and
"1".

4.4.2.5 Assigning graphics and values to a bit number graphic list

Introduction
For each bit number graphic list you specify which graphics are displayed at which bit number.

Configuring screens
4.4 Configuring text lists and graphics lists

System Manual, 11/2022 459

Requirement
• The "Text and graphic list" editor is open.
• The "Graphic list" tab is open.
• A bit number graphic list has been created and selected.

Assigning graphics and values to the bit number graphic list
To assign the graphics and values to a bit number graphic list, follow these steps:
1. Click "Add" in the "Graphic list entries" table.

The Inspector window for this list entry opens.

2. Select the "Single value" settings in the Inspector window "Properties > General > Value".
Enter "5", for example, for "Value".

3. For all unassigned values, enable the "Default" option for the default entry. The graphic is
displayed when the tag has an undefined value. Only one default entry is possible per list.
Note
Selecting the default entry is not possible in runtime.

4. Enter the graphic under "Properties > General > Graphic". When the tag has taken the value
"5", the graph is displayed in runtime.

5. You can add additional entries to the graphic list for more bit numbers.

Configuring screens
4.4 Configuring text lists and graphics lists

460 System Manual, 11/2022

Tips for an efficient procedure

Inserting a graphic using drag-and-drop operation:
1. Select a graphic in the library or in your file system.
2. Drag-and-drop the graphic into the "Graphic list entries > Graphic" table.

Result
A bit number graphic list is created. Graphics that appear in runtime are assigned to the
specified bit numbers.

4.4.2.6 Configuring objects with a graphic list

Introduction
The output value and value application for graphic list are specified in the display and operating
object that displays the graphics of the graphic list in runtime. The properties of these objects are
configured as required.

Requirement
• A graphic list is created. The values have been defined. Graphics have been assigned to the

values.
• You have created a tag.
• The "Screens" editor is open.
• A screen with an object, such as a graphic view, is open. The graphic display is selected.

Procedure
1. In the Inspector window under "Properties > Properties > General > Graphics", in the

"Dynamization" column, select the "Resource list" entry.
2. Under "Resource list > Settings > Tag", select the tag whose values determine the display in

the graphic view.
3. Select the graphic list which you want to have displayed in runtime under "Resource list >

Settings > Resource list".
4. Click on the button in the "Resource list" line .

The selected graphic list opens.
5. Select an entry in the "Graphic list entries" table as the default entry. The graphic from the

standard entry is displayed in the object.
If you have not specified a default entry, the first entry in the "Graphic" column is displayed
in the object.

Configuring screens
4.4 Configuring text lists and graphics lists

System Manual, 11/2022 461

Tips for an efficient procedure
• Drag a graphics list from the detail view of the text and graphics lists to the screen. A graphic view is created and linked to the graphics list.

Configure the tags whose values determine the display in the graphic view.

Result
If the tag adopts the specified value, the defined graphics are displayed in the graphic view in
runtime.

4.5 Configuring dynamization

4.5.1 Basics of dynamizing screens

Dynamizing objects
Dynamics are used to change the properties of screen objects and screens in runtime depending
on another value. The source for this value changes is referred to as "Dynamization type".

Dynamization types
The following table shows the dynamization types available in WinCC:

Dynamization type Description Supported property classes Examples
Tag Defines the property value de‐

pending on the tag value.
All "Process value" or "Left" prop‐

erties
Script Defines the property value de‐

pending on the return value.
All "Process value" or "Left" prop‐

erties
Resource list Defines the property value de‐

pending on an entry from a
text list or graphic list.

Text / Graphic Properties "Text", "Tooltip" or
"Graphic".

Flashing Defines that the property
flashes in configurable colors.

Colors Properties "Foreground color"
or "Border color".

Expression Specifies the property value
depending on several tag val‐
ues. The tag values are linked
by logical operators.

Depends on the screen object "Size" or "Background color"
properties

Configuring screens
4.5 Configuring dynamization

462 System Manual, 11/2022

Examples of dynamizations
The table below shows typical application examples for each type of dynamization:

Dynamization type Application example
Tag Visualize the level. The "Process value" property of a bar graph is dynamized with a tag that

contains the level from the PLC.
Script Simulate the filling process. To simulate a movement of bottles on a conveyor belt, the prop‐

erties "Left", "Top" and "Visible" are dynamized with scripts.
Resource list Display the plant status. The meaning of a quality code is saved in a text list. Depending on the

transferred numerical quality code, its meaning is displayed on the HMI device.
Flashing Visualize limit violations. When the level of a tank drops below a limit, the visualized tank is to

flash in two signal colors.
Expression Visualization of machine states. Machine states of different plant objects are stored in tags of

the type "Bool". Complex visualizations are derived from the combination of tag values.

See also
Automatically filling in of property values for an object collection (Page 379)

4.5.2 Displaying dynamization of the properties

Introduction
You can see in the Inspector window of an object which object properties have been dynamized.

Displaying dynamization of the property
Dynamized properties are shown in dark blue font and in bold in the Inspector window in the
"Name" column.
Groups containing a dynamized property are shown in dark blue font.

Configuring screens
4.5 Configuring dynamization

System Manual, 11/2022 463

Filter dynamized properties
If you use the "Filter" function and select "All dynamized" in the "Dynamization" column, the
following is displayed:
• All dynamized properties in dark blue font and bold.
• The groups in which a property is dynamized in dark blue font.

Configuring screens
4.5 Configuring dynamization

464 System Manual, 11/2022

4.5.3 Find type of dynamization

Introduction
You can search for the individual type of dynamization using the "Filter" icon .

Configuring screens
4.5 Configuring dynamization

System Manual, 11/2022 465

Find type of dynamization by input
To search for a type of dynamization by entering the type of dynamization, follow these steps:
1. Click on the "Filter" icon.
2. Enter a type of dynamization.
3. Confirm your selection with the <Enter> key.

All properties with the selected type of dynamization are displayed.

Find type of dynamization by selection
To search for a type of dynamization by selecting the type of dynamization, follow these steps:
1. Click on the "Filter" icon.
2. Click the arrow in the first cell of the "Dynamization" column.
3. Select the desired type of dynamization from the drop-down list.

All properties with the selected type of dynamization are displayed.

Configuring screens
4.5 Configuring dynamization

466 System Manual, 11/2022

4.5.4 Changing a dynamization for multiple objects

Introduction
You can change the dynamization of a property for several objects at the same time.

Changing a dynamization for multiple objects
To change the dynamization of a property for several objects at the same time, follow these
steps:
1. Select several objects in the screen via multiple selection.
2. Select a property.
3. Dynamize the property, for example, by using a script.
The dynamization of the property is applied to all selected objects that have the property.

See also
Select multiple objects (Page 361)

4.5.5 Dynamizing object properties

4.5.5.1 Dynamizing an object property with a tag

Dynamizing an object property with a tag

Introduction
When you dynamize an object property with a tag, the object property is changed in runtime
depending on the tag value.

Requirement
• A screen is open.
• An object is configured.
• You have configured a tag.
• The object property supports the dynamization type "Tag".

Configuring screens
4.5 Configuring dynamization

System Manual, 11/2022 467

Procedure
To dynamize an object property using a tag, follow these steps:
1. Select the object.
2. Under "Properties > Properties > Dynamization" select the object property in the Inspector

window.
3. Select the "Tag" option.
4. Select the tag. Only the relevant tags are displayed in the selection dialog. If you want to see

all tags, enable "Show all" in the selection dialog.
5. If required, enable the options "Indirect addressing" or "Read only" in the "Settings" area.
6. Define the type of tag:

– None
– Range
– Multiple bits
– Single bit

7. Define the properties for the respective type of tag.
The object property tag is dynamized with a tag. The tag value specifies the property value in
runtime.

Transferring property conditions
With "Copy" and "Paste" you can transfer the conditions of an object property to the same or
similar properties of another object:
1. Select one or more conditions in the "Tag > Type" table.
2. Select "Copy" in the shortcut menu.

3. Select a different object or a different object property in the screen editor.
4. Paste the copied conditions into the "Tag > Type" table.
Note the following:
• Any existing conditions are overwritten on pasting.
• The data types must be the same or similar, e.g. "Background - color" and "Background -

alternative color".

Configuring screens
4.5 Configuring dynamization

468 System Manual, 11/2022

• Inserting data is possible even if no tag is assigned to the property.
• When pasting data, if the number of copied conditions is greater than the possible number

of conditions at the target object, only the maximum possible number of conditions will be
pasted.

See also
Automatically filling in of property values for an object collection (Page 379)

Dynamizing an object property with a tag of the "Range" type

Introduction
When you dynamize an object property with a tag, the object property is changed in runtime
depending on the tag value.
The following example shows the dynamization of a button. The button changes its
alternative background color depending on the tag of the "Range" type.

Requirement
• A screen is open.
• An object, for example a button, is configured.
• You have configured a tag.
• The object property supports the dynamization type "Tag".

Selecting a tag of the "Range" type
To dynamize an object property with a tag of the "Range" type, follow these steps:
1. Select the object, for example, a button.
2. In the Inspector window under "Properties > Properties > General > Text > Background -

Alternative color", dynamize an object property, such as "Background - Alternative color".
3. Select "Tag" in the "Dynamization" column.
4. Select a tag in the "Tag > Process" dialog.
5. Select "Range" as type".

Configuring screens
4.5 Configuring dynamization

System Manual, 11/2022 469

6. Enter the ranges in the "Condition" column.
7. Define the alternative background color for each area in the "Background - Alternative Color"

column.

Result
The color of the button is changed accordingly depending on the position of the tag in the value
range in runtime.

Overlapping ranges
If there is overlapping of values in the individual ranges, note that:
• Cells where range overlaps occur are highlighted in color.

• The overlaps are reported as a warning when compiling the project. Downloading to the
device is possible.

• The first highlighted value is always used in runtime.

See also
Automatically fill in property values for tags (Page 472)

Configuring screens
4.5 Configuring dynamization

470 System Manual, 11/2022

Dynamizing an object property with a tag of the "Multiple bits" type

Introduction
When you dynamize an object property with a tag, the object property is changed in runtime
depending on the tag value.
The following example shows the dynamization of a button. The button changes its
alternative background color depending on the tag of the "Multiple bits" type.

Requirement
• A screen is open.
• An object, for example a button, is configured.
• You have configured a tag.
• The object property supports the dynamization type "Tag".

Selecting a tag of the "Multiple bits" type
To dynamize an object property with a tag of the "Multiple bits" type, follow these steps:
1. Select the object, for example, a button.
2. In the Inspector window under "Properties > Properties > General > Text > Background -

Alternative color", dynamize an object property, such as "Background - Alternative color".
3. Select "Tag" in the "Dynamization" column.
4. Select a tag in the "Tag > Process" dialog.
5. Select "Multiple bits" as the type.
6. Enter the bit number.
7. Define the alternative background color for each bit number in the "Background - Alternative

color" column.

Result
When the tag has accepted the assigned bit number in runtime, the color of the button is
changed accordingly.

See also
Automatically fill in property values for tags (Page 472)

Configuring screens
4.5 Configuring dynamization

System Manual, 11/2022 471

Dynamizing an object property with a tag of the "Single bit" type

Introduction
When you dynamize an object property with a tag, the object property is changed in Runtime
depending on the tag value.
The following example shows the dynamization of a button. The button changes its
alternative background color depending on the tag of the "Single bit" type.

Requirement
• A screen is open.
• An object, for example a button, is configured.
• You have configured a tag.
• The object property supports the dynamization type "Tag".

Selecting a tag of the "Single bit" type
To make an object property dynamic with a tag of the "Single bit" type, follow these steps:
1. Select the object, for example, a button.
2. In the Inspector window under "Properties > Properties > General > Text > Background -

Alternative color", dynamize an object property, such as "Background - Alternative color".
3. Select "Tag" in the "Dynamization" column.
4. Select a tag in the "Tag > Process" dialog.
5. Select "Single bit" as the type.
6. Select the bit position, for example, "3".
7. Define the properties for the "0" and "1" value of the condition.

Result
When the tag at "3" position has taken the value "1" in runtime, the color of the button is
changed.

Automatically fill in property values for tags

Introduction
You can automatically fill in the properties of tags of the "Range" and "Multiple bits" types.

Configuring screens
4.5 Configuring dynamization

472 System Manual, 11/2022

Automatically fill in property values for tags
To fill in the properties automatically, do the following:
1. Select a cell in the "Tag" dialog in the right part of the Inspector window.
2. Drag the blue border up or down. The value is applied to the target cells.
If you select multiple cells in the "Condition" column and there is a logical relationship
between the values, the values of the destination cells are adapted according to the
relationship.

See also
Dynamizing an object property with a tag of the "Range" type (Page 469)
Dynamizing an object property with a tag of the "Multiple bits" type (Page 471)

4.5.5.2 Dynamizing an object property with a script

Introduction
Object properties can be dynamized by scripts. The execution of the script is started by a trigger.
A cycle or a tag is set as the trigger.

Requirement
• A screen is open.
• An object is configured.
• An object property supports the dynamization type "Script".

Configuring screens
4.5 Configuring dynamization

System Manual, 11/2022 473

Procedure
To dynamize an object property using a "Script", follow these steps:
1. Select the object.
2. Dynamize the object property, e.g. "Background - color", under "Properties > Properties >

Dynamization" in the Inspector window:
– Select a dynamized property.
– Select the option "Script".

The editor for scripts is displayed.
– If necessary, create a "Global definition".

Click "Global definition".
Write the code for the global definition.

– Write the code for the script.
– Insert a tag into the script.

Referenced tags are automatically offered as triggers.
3. Select the trigger that triggers the dynamization in Runtime.

The dialog for selecting a trigger is displayed.

Select
– a tag that is referenced in the script automatically (default)

- or -
– a tag that is not referenced in the script

- or -
– a cycle.

Configuring screens
4.5 Configuring dynamization

474 System Manual, 11/2022

Result
The object property is dynamized with a script. The return value of the script specifies the
property value in Runtime.

Note
The dynamization of an event is only monitored regarding an operator authorization if the
triggering event, e.g. "Press button", is triggered by a user.

4.5.5.3 Dynamizing an object property with a resource list

Requirement
• A screen is open.
• An object is configured.
• You have configured a tag.
• A text list or graphic list is configured.
• The object property supports the "Resource list" dynamization type.

Procedure
To dynamize an object property using a "Resource list", follow these steps:
1. Select the object.
2. In the Inspector window, select "Properties > Properties > General > Text".
3. Select "Resource list" in the "Dynamization" column.
4. Under "Settings > Resource list" in the "Resource list" dialog, select a text list, for example.
5. Click on the button in the "Resource list" line .

The selected text list is opened directly for editing.

6. Select an entry in the "Text list entries" table as the default entry. The text from the default
entry is displayed in the object.
If you have not specified a default entry, the first entry in the "Text" column is displayed in the
object.
The same applies for a graphic list.

Configuring screens
4.5 Configuring dynamization

System Manual, 11/2022 475

Result
The object property tag is dynamized with a resource list. The tag value specifies the entry from
the configured text list or graphic list that is displayed in runtime.

See also
Show default entry of text and graphic list in the object (Page 409)

4.5.5.4 Dynamizing an object property with flashing

Introduction
You can display objects as flashing in runtime. You can configure the flashing characteristics for
each color setting of an object that supports flashing in the Inspector window
and select the colors, the condition, and the flash rate.

Note
Flashing in runtime does not change the color value of the property.

Requirement
• A screen is open.
• An object is configured.
• The object property supports the dynamization type "Flashing".

Dynamizing an object property with flashing
To dynamize an object property with flashing, follow these steps:
1. Select the object.
2. In the Inspector window under "Properties", select the property for which you want to define

the flashing characteristics, for example, "Background - color".
3. Select "Flashing" in the "Dynamization" column. The "Flashing" page appears.
4. Select the flash colors. Flashing is only visible in runtime when there is a difference between

the two colors.
5. Select the condition for the object flashing in runtime.
6. Select the flash rate.
The object property is dynamized with flashing using the dynamization type "Flashing".
When the configured condition occurs in runtime, the object property flashes in the
configured colors and at the set rate.

Configuring screens
4.5 Configuring dynamization

476 System Manual, 11/2022

Condition and rate
The following options are available for the condition:
• "Never": You disable the flashing.
• "Always": You enable the flashing.
• "Range violation": The property flashes when the configured permissible range is violated.

Note
Flashing for a range violation only works if you have linked the object to a PLC tag. When the
value of the PLC tag lies outside the defined range, the object will start flashing automatically.

The following options are available for the rate:
• "Slow"
• "Medium"
• "Fast"

Result
The object property is dynamized. When the configured condition occurs in runtime, the object
property flashes in the configured colors and at the set rate.

4.5.5.5 Dynamization by expressions

Introduction
Properties can be dynamized depending on several tags. In an expression, tags are linked by
logical operators. The result of the expression determines the dynamization. It is possible, for
example, to link two tags of the type "Bool" with the operator AND. If both tags return the value
TRUE, then the result of the expression is also TRUE and the property value is set accordingly.
The following applies to the input values for logical operations:
• Value 0 = FALSE
• Value not equal to zero = TRUE

Requirement
• A screen is open.
• An object is configured.

Dynamizing an object property with an expression
To dynamize an object property with an expression, follow these steps:
1. Select the object.
2. In the Inspector window, under "Properties", select the "Expressions" tab.

Configuring screens
4.5 Configuring dynamization

System Manual, 11/2022 477

3. Select "Add property".
This selects a property of the screen object to be dynamized with an expression.
The property is displayed with the default values.

4. To specify dynamization with an expression for the property, click on "<Add new>" in the
"Condition" column.

5. Click .
The editor for expressions is displayed.

– To insert a tag, click the tag icon.
The selection dialog for tags is displayed.

– To insert an operator at the cursor position, click AND, OR, NOT or XOR.
– To insert a bracket at the cursor position, click on the symbols for brackets.

6. To save the expression, click .
7. Determine the properties to apply to the screen object when the expression returns the TRUE

value.

Configuring screens
4.5 Configuring dynamization

478 System Manual, 11/2022

8. If necessary, add further conditions for the currently selected property.

9. To dynamize another property of the selected object with an expression, click "Add property".
Properties for which a dynamization has already been configured cannot be added a second
time.

Result
The expression is evaluated when one of the tag values changes.
Properties change as soon as the result of the expression changes.
If none of the conditions returns TRUE, the default value is assumed.
If multiple conditions are defined, the first condition in the list that returns TRUE is applied.
Expressions that cannot be evaluated are skipped, e.g. because of a syntax error or a tag that
cannot be accessed.

4.5.5.6 Examples

Dynamizing a graphic property with a tag
You can dynamize a property containing a graphic with a tag.
The following object properties can contain a graphic:
• Graphic (e.g. a list box)
• Graphic - pressed button (e.g. a button)
• Background graphic (one screen only)
• Marker graphic (e.g. an alarm control)
• Icon (e.g. a trend control)

Configuring screens
4.5 Configuring dynamization

System Manual, 11/2022 479

Task
In this example, you can learn how to dynamize the "Graphic" property at the "Button" object
with a tag of the type "Area".
You configure:
• Button
• HMI tag "MyTag"
• Graphic in the project graphics

Requirement
• A project is open.
• A screen is configured.
• A button is configured in the screen.

Adding a graphic and configuring an HMI tag
Follow these steps to configure the HMI tag for dynamization of the graphic property:
1. In the project tree under "Languages and resources > Project graphics", add a graphic, e.g.

"Icon_filter", from your storage location.
2. Configure a "MyTag" tag of the data type "WString" in the project tree under "HMI tags".
3. In the Inspector window of the "MyTag" tag under "Properties > Properties > Values", enter the

name of the added "Icon_filter" graphic in the "Start value" input field.

Configuring screens
4.5 Configuring dynamization

480 System Manual, 11/2022

Dynamizing the "Graphic" property with the HMI tag
Follow these steps to dynamize the "Graphic" property at the "Button" object with the "MyTag"
tag of the type "Area":
1. Click "Properties > Properties > General > Graphic" in the Inspector window of the screen

editor. In the drop-down list of the "Dynamization" column, select the entry "Tag".

The "Tag" dialog opens.
2. Click on the selection button under "Tag > Process > Tag".

A dialog opens.
3. Add the "MyTag" tag.
4. Select the "Area" type under "Tag > Type". Define the conditions.
5. Select the graphic in the "Graphic" column.

Configuring screens
4.5 Configuring dynamization

System Manual, 11/2022 481

6. Click on the selection button under "Tag > Type" in the "Graphic" column.
A dialog opens.

Select the graphic that you have stored in the project graphics.
7. Load the project into the device.

Result
All graphics in the project graphics are loaded into the runtime. You can use the name of the
selected graphic in the tag. The graphic is displayed on the button in runtime.
If the "IntTag" tag is in the range "0 - 1" in runtime, the selected graphic is visible in the
button.

Dynamizing a graphic property with a script

Introduction
You can dynamize a property containing a graphic with a script.

Task
In this example, you learn how to dynamize the "Graphic" property of the "Trend control" object
with a script.

Requirement
• A project is open.
• A screen is configured.
• A trend control is configured in the screen.
• An HMI tag "MyTag" of the data type "Int" is configured with the start value "10".

Configuring screens
4.5 Configuring dynamization

482 System Manual, 11/2022

Procedure
To dynamize the "Graphic" property of a trend control button with a script, follow these steps:
1. Select the trend control in the screen editor.
2. In the Inspector window, click on "Properties > Properties > Miscellaneous > Toolbar >

Elements > [2] Button > Graphic". In the drop-down list of the "Dynamization" column, select
the entry "Script".

The "Scripts" editor opens.
3. Click .

A dialog opens.

Configuring screens
4.5 Configuring dynamization

System Manual, 11/2022 483

4. Add the "MyTag" tag as a trigger of the script which initiates dynamization in runtime.

5. Add the following code in the "Scripts" editor:

Copy code
var value;
let tag = Tags("MyTag");
let tagValue = tag.Read();
HMIRuntime.Trace("Value of MyTag: " + tagValue);

switch (tagValue) {
case 10:
 value =
HMIRuntime.Resources.Graphics("GraphicCollection.Up_Arrow").Name;
 break;
case 20:
 value =
HMIRuntime.Resources.Graphics("GraphicCollection.Down_Arrow").Name;
 break;
}

return value;

Result
The graphic property is dynamized with a script. The return value of the script specifies the
graphic of the trend diagram button in runtime.

Configuring screens
4.5 Configuring dynamization

484 System Manual, 11/2022

If the "MyTag" HMI tag assumes the value "10" or "20" in runtime, the respective graphic is
displayed in the button.

Dynamizing an object property with flashing using a script

Introduction
You can display objects as flashing in runtime. You can configure the flashing characteristics for
each color setting of an object that supports flashing in the Inspector window
and select the colors, the condition, and the flash rate.

Note
Flashing in runtime does not change the color value of the property.

Requirement
• A screen is open.
• An object is configured.
• An object property supports the dynamization type "Script".

Dynamizing an object property with flashing using a script
To dynamize an object property with flashing using a script, follow these steps:
1. Select the object.
2. In the Inspector window under "Properties", select the property for which you want to define

the flashing characteristics, for example, "Background color".
3. In the "Dynamization" column, select the "Script" option. The right part of the Inspector

window is displayed.
4. Enter a matching script.

– To deactivate flashing, enter the following script:
Screen.Items("Circle").PropertyFlashing("BackColor", false);

– To activate flashing, enter the following script:
Screen.Items("Circle").PropertyFlashing("BackColor", true);

– To activate flashing and to define the properties, enter the following script:
Screen.Items("Circle").PropertyFlashing("BackColor", true,
HMIRuntime.Math.RGB(255, 0, 0), HMIRuntime.Math.RGB(0, 255, 0),
UI.Enums.HmiFlashingRate.Fast);

Note
For dynamization of a faceplate, replace the term "Screen" with "Faceplate" in the script.

Configuring screens
4.5 Configuring dynamization

System Manual, 11/2022 485

Efficiency tip

You can find snippets for flashing in the shortcut menu of the "Scripts" editor under "Snippets > HMI
Runtime > Screen"

Result
The object property is dynamized with flashing with the dynamization type "Script". When the
configured condition occurs in runtime, the object property flashes in the configured colors and
at the set rate.

Dynamizing an object property with flashing with user-defined function

Introduction
You can display objects as flashing in runtime. You can configure the flashing characteristics for
each color setting of an object that supports flashing in the Inspector window
and select the colors, the condition, and the flash rate.

Note
Flashing in runtime does not change the color value of the property.

Requirement
• A screen is open.
• An object is configured.
• The object property supports the dynamization type "Flashing".

Dynamizing an object property with flashing with user-defined function
If you want to enable flashing via a user-defined function at an event, select the condition
"Never" for the "Flashing" option at the relevant property under "Properties > Properties >
Dynamization".
To dynamize an object property with flashing using a user-defined function, proceed as
follows, for example:
1. Select the object that is to trigger flashing, e.g. a button.
2. In the Inspector window, under "Events", select the event to trigger flashing, e.g. "Press".
3. Select the "Convert function list to script" button.

Configuring screens
4.5 Configuring dynamization

486 System Manual, 11/2022

4. To enable flashing, enter the following script, for example:
Screen.Items("flashObject").PropertyFlashing("BackColor", true);
– flashObject is an object that flashes when the user-defined function is triggered.
– BackColor exemplifies the property that flashes.
To activate flashing and to define the properties, enter the following script:
– Screen.Items("flashObject").PropertyFlashing("BackColor", true,

HMIRuntime.Math.RGB(255, 0, 0), HMIRuntime.Math.RGB(0, 255, 0),
UI.Enums.HmiFlashingRate.Fast);

"Flashing" can be applied to any property whose value is a color.

Efficiency tip

You can find snippets for flashing in the shortcut menu of the "Scripts" editor under "Snippets > HMI
Runtime > Screen"

5. Select the object that you want to flash.
6. Select the property that is to flash, e.g. the background color.
7. Make the following setting for the property:

– Condition: "Never"
– If not already defined by the script, set different values for color and alternative color.

Define the frequency.
The object property is dynamized with flashing by a user-defined function.
When the configured condition occurs in runtime, the object property flashes in the
configured colors and at the set rate.

Note
For dynamization of a faceplate, replace the term "Screen" with "Faceplate" in the script.

Result
The object property is dynamized with flashing with a user-defined function. When the
configured condition occurs in runtime, the object property flashes in the configured colors and
at the set rate.

Dynamizing a screen property with a tag
You can dynamize the "Screen" property of a screen window with a tag. The tag can use the
name or number of a screen.

Task
In this example, dynamize the "Screen" property of the "Screen window" object with a tag that
uses a screen number.

Configuring screens
4.5 Configuring dynamization

System Manual, 11/2022 487

You configure:
• Screen
• Screen window
• HMI tag "ScreenNumber"

Requirement
• A project is open.
• A screen is configured and set as the start screen.
• A screen window is configured in the start screen.

Configuring the HMI tag
Follow these steps to configure the HMI tag for dynamization of the property:
1. Configure a "ScreenNumber" tag of the data type "Int" in the project tree under "HMI tags".

Note
The data type defines the type of screen referencing:
• "Int": Dynamization uses the screen number of a screen.
• "WString": Dynamization uses the name of a screen.

2. In the Inspector window of the "ScreenNumber" tag under "Properties > Properties > Values",
enter the screen number "1" in the "Start value" input field.

Configuring screens
4.5 Configuring dynamization

488 System Manual, 11/2022

Configuring a new screen
To configure a screen for display in the screen window, follow these steps:
1. Configure a new screen in the project navigation under "Screens".
2. In the Inspector window of the screen editor, enter the screen number "1" in "Properties >

Properties > Miscellaneous > Screen number".

Note
The value of the screen number under all configured screens must be unique and greater than
"0".

Configuring screens
4.5 Configuring dynamization

System Manual, 11/2022 489

Dynamizing the "Screen" property with the HMI tag
Proceed as follows to dynamize the "Screen" property at the "Screen window" object with the tag
"ScreenNumber":
1. In the screen editor of the start screen, select the object "Screen window".
2. In the Inspector window, click "Properties > Properties > General > Screen". In the drop-down

list of the "Dynamization" column, select the entry "Tag".

The "Tag" dialog opens.
3. Click on the selection button under "Tag > Process > Tag".

A dialog opens.
4. Add the "ScreenNumber" tag.
5. Download the project to the device.

Result
The screen with screen number "1" is displayed in runtime in the screen window.
If the integer value of the HMI tag "ScreenNumber" changes in runtime, the screen with the
corresponding screen number is displayed in the screen window.

4.6 Trigger events

4.6.1 Basics on the events

Introduction
In runtime, an event triggers an action that you have configured on an object.

Configuring screens
4.6 Trigger events

490 System Manual, 11/2022

Basics on the events
You can configure one or multiple events on an object. You program a script on an event. The
script defines an action that is executed in runtime when the operator triggers a specific event by
operating the object.
The available events depend on the object being used.

Events
The following table shows the available events:

Event Description
Activated Mouse operation: Occurs when the operator presses the left or right mouse button.

Touch operation: Occurs when the operator touches the screen with the finger.
Keyboard operation: Occurs when the operator selects an object using the configured tab sequence.
The "Activated" event is only used to detect whether an object was selected. The event does not
trigger a password prompt. For this reason, do not use the "Activated" event if you want to configure
access protection on the function call of the object.

Deactivated Occurs when the operator takes the focus off an object by activating a different object.
System functions or user-defined functions on the "Deactivated" event of an object are not executed
with a screen change.
The "Deactivated" event is only used to detect whether an object was deselected. The event does not
trigger a password prompt. For this reason, do not use the "Deactivated" event if you want to con‐
figure access protection on the function call of the object.

Press

Mouse operation: Occurs after the "Activated" event when the operator presses the left or right
mouse button.
Touch operation: Occurs when the operator touches the screen with the finger.
Keyboard operation: Occurs when an object has the focus, and the operator presses either the
<Return> or <Space> key.

Release Mouse operation: Occurs when the operator releases the left or right mouse button.
Touch operation: Occurs when the operator takes the finger off the screen. When a motion is detec‐
ted, the "Release" event is triggered at the limit of a different screen object.
Keyboard operation: Occurs when the operator releases one of the buttons <Return> or <Space>.

Press key Keyboard operation: Occurs when the operator presses a key on the keyboard. The event is not
triggered if one of the buttons <Return> or <Space> is pressed.

Release key Keyboard operation: Occurs when the operator releases a key on the keyboard.
Trigger hotkey Occurs when the operator presses a hotkey on the keyboard.
Click left mouse button Mouse operation: Occurs when the system detects a click with the left mouse button, i.e. shortly

after the "Release" event.
Touch operation: Occurs after the "Release" event has occurred and if less than a second has elapsed
since the "Press" event.

Click right mouse but‐
ton

Mouse operation: Occurs when the system detects a click with the right mouse button, i.e. imme‐
diately after the "Release" event.
Touch operation: Occurs after the "Release" event has occurred and if more than a second has elapsed
since the "Press" event.

Loaded Occurs when a screen is fully loaded in runtime after a screen change.
Cleared Occurs when the active screen is not loaded in runtime.
Connected Occurs when the object has been successfully initialized and the data connection to the controller

has been established.

Configuring screens
4.6 Trigger events

System Manual, 11/2022 491

Event Description
Status changed Occurs when the state of the switch changes, for example, from "On" to "Off".
Command fired Occurs when the operator has actuated a button in the toolbar or information bar.
Gesture detected Occurs when the operator performs a touch gesture.
Play Occurs when the video or audio file is being replayed.
Pause Occurs when playing of the video or audio file is paused.
Playback finished Occurs when the video or audio file has been played.
Selection changed Occurs when the selection is changed.
Expand Occurs when all plant objects under a node are displayed.
Expand all Occurs when all plant objects are displayed.
Minimize Occurs when all plants objects under a node are hidden.
Minimize all Occurs when all plant objects are hidden.

Example
The figure below shows the event "Click left mouse button" as an example:
When you want to trigger an event by clicking with the left mouse button, follow these steps:
1. Click on the object with the left mouse button.

The system detects the operation and triggers the "Activated" and "Pressed" events.
2. Release the left mouse button.

The system detects the operation and triggers the events "Release" and "Click left mouse
button".

Configuring screens
4.6 Trigger events

492 System Manual, 11/2022

4.6.2 Triggering "Activated" and "Deactivated" events

Introduction
You can trigger the event "Activated" and "Deactivated" through movement with the left or right
mouse button, on the touchscreen or through keyboard operation.
When an object has the focus, the "Activated" event is automatically triggered before the
"Pressed" event.

Configuring screens
4.6 Trigger events

System Manual, 11/2022 493

"Activated" event
You have the following options to trigger the "Activated" event:
• Mouse operation: Press the left or right mouse button.
• Touch operation: Touch the screen using your finger.
• Keyboard operation: Select an object using the configured tab sequence.

"Deactivated" event
You trigger the "Deactivated" event when you take the focus off an object by activating a
different object.
In case of a screen change, the "Deactivated" event of an object is triggered but the system
functions or user-defined functions on the "Deactivated" event are not executed.
The "Deactivated" event is only used to detect whether an object was deselected. The event
does not trigger a password prompt. For this reason, do not use the "Deactivated" event if
you want to configure access protection on the function call of the object.

4.6.3 Triggering a "Press" event

Introduction
You can trigger the "Press" event through movement with the left or right mouse button, on the
touchscreen or through keyboard operation.
When an object has the focus, the "Activated" event is automatically triggered before the
"Press" event.

"Press" event
You have the following options to trigger the "Press" event:
• Mouse operation: Occurs when you press the left or right mouse button.
• Touch operation: Occurs when you touch the screen with your finger.
• Keyboard operation: Occurs when an object has the focus, and you press either the <Return>

or <Space> key.
The figure below shows the "Activated" and "Press" events:

Configuring screens
4.6 Trigger events

494 System Manual, 11/2022

4.6.4 Triggering a "Release" event

Introduction
You can trigger the event "Release" through movement with the left mouse button or on the
touchscreen.

Configuring screens
4.6 Trigger events

System Manual, 11/2022 495

"Release" event by moving in the object with the mouse
When you want to trigger the event "Release" through the mouse operation, follow these steps:
1. Click on the object with the left mouse button.

Clicking triggers the events "Activated" and "Press".
2. Move with the mouse in the object in x and/or y direction.
3. Release the left mouse button.

Releasing triggers the "Release" event.
The "Click left mouse button" event is not triggered.

"Release" event by movement in the object using touch control
When you want to trigger the event "Release" through the touch operation, follow these steps:
1. Touch the object using your finger.

Touching triggers the "Activated" and "Press" events.
2. Move with your finger in the object in x and/or y direction.
3. Release the finger.

The releasing triggers the "Release" event.

Configuring screens
4.6 Trigger events

496 System Manual, 11/2022

"Release" event by moving over the object boundary with the mouse
When you want to trigger the event "Release" through the mouse operation, follow these steps:
1. Click on the object with the left mouse button.

Clicking triggers the events "Activated" and "Press".
2. Move with the mouse in x and/or y direction beyond the object limit.
3. Release the left mouse button.

Releasing triggers the "Release" event.
The "Click left mouse button" event is not triggered.

If you continue moving with the finger in the object instead of releasing it, no additional
event is triggered.
After you release the finger or the mouse button outside of the object, no additional event is
triggered.

Configuring screens
4.6 Trigger events

System Manual, 11/2022 497

"Release" event by movement over the object boundary using touch operation
When you want to trigger the event "Release" through the touch operation, follow these steps:
1. Touch the object using your finger.

Touching triggers the "Activated" and "Press" events.
2. Move with your finger in the object in x and/or y direction beyond the object limit.
3. Release the finger.

The releasing triggers the "Release" event.

Configuring screens
4.6 Trigger events

498 System Manual, 11/2022

"Release" event by movement into another object
Releasing the left mouse button or finger after reaching the object boundary triggers the
"Release" event.
If you move with the left mouse button or finger in another object, no further event will be
triggered.

Configuring screens
4.6 Trigger events

System Manual, 11/2022 499

Objects with a slide bar
When you click on objects with a slide bar, for example, slider or bar, with the left mouse button
or touch them on the touchscreen, the movement of the slide bar is started. The "Release" event
is not triggered at the object limit but only after the release.
The "Click left mouse button" event is not triggered.

4.6.5 "Press key" and "Release key" events:

Introduction
You can trigger the "Press key" and "Release key" events by keyboard action.
The behavior of the <Return> and <Space> keys differs from the behavior of the other keys
on the keyboard.

Using key on the keyboard
If you want to trigger the "Release key" event by keyboard action, follow these steps:
1. Press a key on the keyboard.

The "Press key" event is triggered.
2. Release the key.

The "Release key" event is triggered.

Configuring screens
4.6 Trigger events

500 System Manual, 11/2022

Using the <Return> or <Space> key
The keys <Return> and <Space> can trigger direct actions, for example, for button or rectangle.
When you want to trigger the events through the keys <Return> or <Space>, follow these
steps:
1. Select an object on which you have configured an event.
2. Press the <Return> or <Space> key.

The "Press" and "Press key" events are triggered.
3. Release the key.

The "Release key", "Release" and "Click left mouse button" events are triggered.

Configuring screens
4.6 Trigger events

System Manual, 11/2022 501

Objects with selection elements
In the objects with selection elements, e.g. check box, the <Return> key behaves like any key.
You can use the <Space> key, for example to change the selection from "On" to "Off" or to
trigger an event.

4.6.6 Trigger "Click left mouse button" event

Introduction
You can trigger the event "Click left mouse button" by clicking with the left mouse button.

Configuring screens
4.6 Trigger events

502 System Manual, 11/2022

"Click left mouse button" event
When you want to trigger the "Click left mouse button" event through mouse action, follow
these steps:
1. Click on the object with the left mouse button.

Clicking triggers the events "Activated" and "Press".
2. Release the left mouse button.

Releasing triggers the "Release" and "Click left mouse button" events.

4.6.7 Trigger "Click right mouse button" event

Introduction
You can trigger the event "Click right mouse button" by clicking with the right mouse button.

Configuring screens
4.6 Trigger events

System Manual, 11/2022 503

"Click right mouse button" event
When you want to trigger the event "Click right mouse button" through mouse operation, follow
these steps:
1. Click on the object with the right mouse button.

Clicking triggers the events "Activated" and "Press".
2. Release the right mouse button.

Releasing triggers the "Release" and "Click right mouse button" events.

4.6.8 "Loaded" event
The "Loaded" event occurs when a screen is fully loaded after a screen change or runtime start.

Configuring screens
4.6 Trigger events

504 System Manual, 11/2022

4.6.9 "Cleared" event
The "Cleared" event occurs when the active screen is not loaded in runtime.

4.6.10 "Connected" event
The "Connected" event occurs when the data connection between an object, for example a trend
control, and the controller has been established.

4.6.11 Triggering the "Status changed" event

Introduction
You can trigger the "Status changed" event by operating the "Switch" object.

Trigger "Status changed" event by mouse operation
When you want to trigger the "Status changed" event through mouse operation, follow these
steps:
1. Click with the left mouse button on the "Switch" object.

Clicking triggers the events "Activated" and "Press".
2. Release the left mouse button.

Releasing triggers the "Release", "Click left mouse button" and "Status changed" events.

Trigger "Status changed" event by touch operation
When you want to trigger the "Status changed" event using touch operation, follow these steps:
1. Touch the object using your finger.

Touching triggers the "Activated" and "Press" events.
2. Release the finger.

Releasing triggers the "Release", "Click left mouse button" and "Status changed" events.

Configuring screens
4.6 Trigger events

System Manual, 11/2022 505

4.6.12 Trigger "Command fired" event

Introduction
You can trigger the "Command fired" event by operating a button in the object, e.g. "Alarm
control".

Configuring screens
4.6 Trigger events

506 System Manual, 11/2022

Trigger "Command fired" event by mouse operation
When you want to trigger the event "Command fired" through mouse operation, follow these
steps:
1. Click on a button in the "Alarm control" object with the left mouse button.

Clicking triggers the events "Activated" and "Press".
2. Release the left mouse button.

Releasing triggers the "Release", "Click left mouse button" and "Command fired" events.

Triggering a "Command fired" event by touch operation
When you want to trigger the "Command fired" event through touch operation, follow these
steps:
1. Touch a button in the "Alarm control" object with your finger.

Touching triggers the "Activated" and "Press" events.
2. Release the finger.

Releasing triggers the "Release", "Click left mouse button" and "Command fired" events.

Configuring screens
4.6 Trigger events

System Manual, 11/2022 507

4.6.13 Trigger "Gesture detected" event

Introduction
The "Gesture detected" event occurs when the operator has performed a touch gesture.

Distinguish gestures
The "Touch Area" object distinguishes between the following gestures:
• Right
• Left

Configuring screens
4.6 Trigger events

508 System Manual, 11/2022

• Up
• Down

Programming a J-script
To distinguish between the gestures, program a J-Script that evaluates the gesture.
1. Click in the Inspector window under "Properties > Events > Gesture detected".
2. Copy the code example into the programming window.

Code example
export function Touch_area_1_OnGestureDetected(item, gesture) {
// value of tag ‚MyTag1‘ will be set depending on the detected gesture
if(gesture == UI.Enums.HmiGesture.SwipeRight)
{
UI.RootWindow.Screen = 'ScreenRight';
let tag1 = Tags('tag1');
tag1.Write(1); //write value '1234' to tag 'MyTag1'
}
if(gesture == UI.Enums.HmiGesture.SwipeLeft)
{
UI.RootWindow.Screen = 'ScreenLeft';
let tag1 = Tags('tag1');
tag1.Write(2); //write value '1234' to tag 'MyTag1'
}
if(gesture == UI.Enums.HmiGesture.SwipeUp)
{
UI.RootWindow.Screen = 'ScreenUp';
let tag1 = Tags('tag1');
tag1.Write(3); //write value '1234' to tag 'MyTag1'
}
if(gesture == UI.Enums.HmiGesture.SwipeDown)
{
UI.RootWindow.Screen = 'ScreenDown';
let tag1 = Tags('tag1');
tag1.Write(4); //write value '1234' to tag 'MyTag1'
}
if(gesture == UI.Enums.HmiGesture.Unknown)
{
let tag1 = Tags('tag1');
tag1.Write(0); //write value '1234' to tag 'MyTag1'
}
}

Configuring screens
4.6 Trigger events

System Manual, 11/2022 509

4.6.14 Triggering events through touch operation

Introduction
You can trigger events by touching the object on the touchscreen.

Note
Touch gestures and "Press" and "Release" events are not supported for client access of a PC with
a touchscreen to a SmartServer.

Limit value
The time between touching and releasing the finger on the touchscreen decides which of the
events is triggered.
If the time between touching and releasing (t3 – t2) the object is less than the specified limit
value, releasing the pressed finger from the touchscreen triggers the event "Click left mouse
button".
If the time between touching and releasing (t3 – t2) the object is greater than the specified
limit value, releasing the pressed finger from the touchscreen triggers the event "Click right
mouse button".

Note
If not specified by the operating system or the Web browser, the limit value is 1 000 ms.

Simulating clicking with the left mouse button
If you want to trigger the "Click left mouse button" event through touch operation, follow these
steps:
1. Touch the object using your finger.

Touching triggers the "Activated" and "Press" events.
2. Release the finger within the limit value.

Releasing triggers the "Release" and "Click left mouse button" events.

Configuring screens
4.6 Trigger events

510 System Manual, 11/2022

Simulating clicking with the right mouse button
If you want to trigger the "Click right mouse button" event through touch operation, follow these
steps:
1. Touch the object using your finger.

Touching triggers the "Activated" and "Press" events.
2. Release the finger after the limit value has expired.

Releasing triggers the "Release" and "Click right mouse button" events.

Configuring screens
4.6 Trigger events

System Manual, 11/2022 511

4.6.15 Example: Configure the system function "Screen change"

Task
In this example you configure the system function "Screen change".

Requirement
• A project is open.
• A screen is configured.

Configuring screens
4.6 Trigger events

512 System Manual, 11/2022

Configure the system function "Screen change"
To configure a "Screen change" system function, follow these steps:
1. Create a screen "Screen1" and drag, for example, a button into the screen.
2. Create a screen "Screen2" and drag, for example, a circle into the screen.

Configuring "Screen1"
To add the "Click left mouse button" event to the button in "Screen1", follow these steps:
1. Select the button and click "Click left mouse button" under "Events".
2. Click "Add script". A "Script" window is opened.
3. Click on the first curly bracket in the script. The bracket turns green.
4. Under "Code templates > HMIRuntime > Screen", select the function "Change base screen".
5. Drag the function to the bracket. Enter "Screen2" in the script.
6. Click "OK".

Configuring "Screen2"
To add the "Click left mouse button" to the circle in "Screen2", follow these steps:
1. Select the circle and click "Click left mouse button" under "Events".
2. Click "Add script". A "Script" window is opened.
3. Click on the first curly bracket in the script. The bracket turns green.
4. Under "Code templates > HMIRuntime > Screen", select the function "Change base screen".
5. Drag and drop the function to the bracket, and write "Screen1" in the script.
6. Click "OK".

Loading the project and starting runtime
To load the project and start runtime, follow these steps:
1. Load the project under "Project > Device".
2. Start runtime.
3. Click on the button with the left mouse button. You switch to "Screen2".

Result
When you click on the circle with the left mouse button, you switch to "Screen1". When you click
on the button with the left mouse button, you switch to "Screen2".
The system function "Screen change" has been configured.

Configuring screens
4.6 Trigger events

System Manual, 11/2022 513

4.6.16 Events on the "Media Player" object

4.6.16.1 Trigger "Pause" event

Introduction
You can trigger the "Pause" event by operating the "Pause button" in the "Media Player" object.

Triggering a "Pause" event by mouse operation
If you want to trigger the "Pause" event through mouse operation, follow these steps:
1. Click on the "Pause" button in the "Media Player" object with the left mouse button.

Clicking triggers the events "Activated" and "Press".
2. Release the left mouse button.

Releasing triggers the "Release", "Click left mouse button" and "Pause" events.

Triggering a "Pause" event by touch operation
If you want to trigger the "Pause" event through the touch operation, follow these steps:
1. In the "Media Player" object, touch the "Pause" button with your finger.

Touching triggers the "Activated" and "Press" events.
2. Release the finger.

Releasing triggers the "Release", "Click left mouse button" and "Pause" events.

Configuring screens
4.6 Trigger events

514 System Manual, 11/2022

4.6.16.2 Triggering a "Play" event

Introduction
You can trigger the "Play" event by operating the "Play" button in the "Media Player" object.

Trigger "Play" event by mouse operation
If you want to trigger the "Play" event by mouse operation, follow these steps:
1. Click on the "Play" button in the "Media Player" object with the left mouse button.

Clicking triggers the events "Activated" and "Press".
2. Release the left mouse button.

Releasing triggers the "Release", "Click left mouse button" and "Play" events.

Configuring screens
4.6 Trigger events

System Manual, 11/2022 515

Triggering a "Play" event by touch operation
If you want to trigger the "Play" event through the touch operation, follow these steps:
1. In the "Media Player" object, touch the "Play" button with your finger.

Touching triggers the "Activated" and "Press" events.
2. Release the finger.

Releasing triggers the "Release", "Click left mouse button" and "Play" events.

4.6.16.3 Triggering a "Playback finished" event

Introduction
You can trigger the "Playback finished" event by operating the "Stop" button in the "Media Player"
object.

Configuring screens
4.6 Trigger events

516 System Manual, 11/2022

Triggering a "Playback finished" event by mouse operation
If you want to trigger the "Playback finished" event by mouse operation, follow these steps:
1. Click on the "Stop" button in the "Media Player" object with the left mouse button.

Clicking triggers the events "Activated" and "Press".
2. Release the left mouse button.

Releasing triggers the "Release", "Click left mouse button" and "Playback finished" events.

Triggering a "Playback finished" event by touch operation
If you want to trigger the event "Playback finished" by the touch operation, follow these steps:
1. In the "Media Player" object, touch the "Stop" button with your finger.

Touching triggers the "Activated" and "Press" events.
2. Release the finger.

Releasing triggers the "Release", "Click left mouse button" and "Playback finished" events.

Configuring screens
4.6 Trigger events

System Manual, 11/2022 517

4.6.17 Events at the "Plant overview" object

4.6.17.1 Triggering a "Selection changed" event

Introduction
You can trigger the "Selection changed" event in the "Plant overview" object by clicking the left
mouse button.

Configuring screens
4.6 Trigger events

518 System Manual, 11/2022

Triggering a "Selection changed" event
If you want to trigger the "Selection changed" event through mouse operation, follow these
steps:
1. Click on a node with the left mouse button.

Clicking triggers the events "Activated" and "Press".
2. Release the left mouse button.

Releasing triggers the "Release", "Click left mouse button" and finally "Selection changed"
events.

4.6.17.2 Triggering an "Expand" event

Introduction
You can trigger the "Expand" event in the "Plant overview" object by clicking the left mouse
button.

Configuring screens
4.6 Trigger events

System Manual, 11/2022 519

Triggering an "Expand" event
If you want to trigger the "Expand" event by mouse operation, follow these steps:
1. Left-click on the symbol for "Expand".

Clicking triggers the events "Activated" and "Press".
2. Release the left mouse button.

Releasing triggers the "Release", "Click left mouse button" and finally "Expand" events.

4.6.17.3 Triggering an "Expand all" event

Introduction
You can trigger the "Expand all" event in the "Plant overview" object by clicking the left mouse
button.

Configuring screens
4.6 Trigger events

520 System Manual, 11/2022

Triggering an "Expand all" event
If you want to trigger the "Expand all" event by mouse operation, follow these steps:
1. Left-click on the symbol for "Expand all".

Clicking triggers the events "Activated" and "Press".
2. Release the left mouse button.

Releasing triggers the "Release", "Click left mouse button" and finally "Expand all".

4.6.17.4 Triggering a "Minimize" event

Introduction
You can trigger the "Minimize" event in the "Plant overview" object by clicking the left mouse
button.

Configuring screens
4.6 Trigger events

System Manual, 11/2022 521

Triggering a "Minimize" event
If you want to trigger the "Minimize" event by mouse operation, follow these steps:
1. Left-click on the symbol for "Minimize".

Clicking triggers the events "Activated" and "Press".
2. Release the left mouse button.

Releasing triggers the "Release", "Click left mouse button" and finally "Minimize" events.

4.6.17.5 Triggering a "Minimize all" event

Introduction
You can trigger the "Minimize all" event in the "Plant overview" object by clicking the left mouse
button.

Configuring screens
4.6 Trigger events

522 System Manual, 11/2022

Triggering a "Minimize all" event
If you want to trigger the "Release" event by mouse operation, follow these steps:
1. Left-click on the symbol for "Minimize all".

Clicking triggers the events "Activated" and "Press".
2. Release the left mouse button.

Releasing triggers the "Release", "Click left mouse button" and finally "Minimize all" events.

Configuring screens
4.6 Trigger events

System Manual, 11/2022 523

4.7 Configuring faceplates

4.7.1 Basics

4.7.1.1 Basics of faceplates

Introduction
Faceplates are user-defined groups of display and operating objects that are stored, managed
and edited in the project library in a versioned manner. Faceplates are sometimes also referred
to as "HMI blocks".
Faceplates support scripting and can therefore also open other faceplates in a pop-up
window.
Depending on design and configuration, faceplates can be used universally and easily
integrated into existing projects and employed several times.

Use
You use faceplates in order to create and re-use individually configured display and operating
objects. You can edit faceplates centrally in the faceplate type. This reduces the configuration
effort.
Depending on the application, a faceplate is a user-defined simple screen item or a detailed
representation of a complex plant component.
Ideally, you should use faceplates for plant objects or parts that you use several times and
that have identical data structures.

Note
Option to compile and load changes is lost
Please note the following instructions for compiling and loading changes:
• A dialog is often displayed when the option to compile only changes is about to be lost. The

change can be confirmed or rejected.
– If you confirm the change, the complete project must be compiled or loaded.
– When you reject the change, the option to compile and load changes is retained.

• If you use the "Undo" button to undo a change that requires compiling or loading the entire
project, the entire project must still be compiled or loaded.

• For the relevant changes and actions, an alarm is displayed in the Inspector window when the
option to load changes is already lost. The entire project must be compiled and loaded.

Type/instance concept
Faceplates are based on a type/instance concept.

Configuring screens
4.7 Configuring faceplates

524 System Manual, 11/2022

The faceplate type and its versions are managed centrally in the project library.
An instance of a version of a faceplate type is used in a screen as a faceplate container.

Faceplate type
• You create a faceplate type in the project library.
• More than one version of a faceplate type can be created.

Faceplate container
The faceplate container is an independent object in which a version of the faceplate type is
instantiated.
• Each instance is connected to the faceplate version that has been used.

This means that if you change a property or the data structure of a faceplate version, this
property change immediately affects all faceplate instances that are based on the faceplate
version.

• A faceplate container is used just like other display and operating objects in screens.
• If a version of a faceplate type has been instantiated in the container, the corresponding

faceplate type is specified in the "Faceplate type of the instance" property.
• The tags and interface properties configured in the version of a faceplate type are linked in

the faceplate container.

Example
If you use multiple valves within the project, you typically always use the same data structure to
control and query the status of these valves. Therefore, it makes sense to use the same display
and operating objects for the visualization of these valves.
1. In a faceplate type, you configure how the valve is displayed and which input and output tags

the valve has in the form of tags.
2. If required, configure another faceplate type that contains the same data structure and

functions as a pop-up window.
This pop-up window can be called by the first faceplate type using a script.

3. For each valve in the system with the same data structure, instantiate the desired faceplate
type and link its tags and PLC user data types with the corresponding valves in the system.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 525

Improved performance when using a large number of faceplates
To improve performance during the engineering process when using numerous faceplates,
activate the "Simplified display of Faceplate Containers" option under "Settings > Visualization >
Unified Faceplate".

The faceplates are displayed in a simplified way when this option is activated in the
engineering system. This change has no effect on the display in Runtime. In Runtime,
faceplates are displayed in unrestricted quality.

4.7.1.2 Device dependency of faceplates
The functionality of the faceplate depends on the lowest device version of a faceplate type.

Devices
The following devices support faceplates:
• SIMATIC WinCC Unified PC
• SIMATIC Unified Comfort Panel

See also
Lowest device version of a faceplate type (Page 529)

4.7.1.3 "Faceplate types" editor

Project library
You can create and edit faceplate types in the project library.

Configuring screens
4.7 Configuring faceplates

526 System Manual, 11/2022

Layout

To view the tab of the editor, close the note .

Visualization
You can design the faceplate type in the "Visualization" tab.
You insert the following objects from the "Tools" task card:
• "Basic objects"
• "Elements"
• "Controls"

The following controls are available:
– Alarm control
– Trend control
– Faceplate container

Empty container that you can later connect to a faceplate type.
You can find more information in the section Overview of screen objects (Page 269).
You can define the properties of the faceplate type and the objects in the Inspector window
under "Properties > Properties". Here, you define display name, appearance and size, for
example.

Assigning names to tags and properties

Note
Use unique names
The name of a tag or a property may be assigned across all tabs only once in a faceplate type.

Tags interface
On the "Tag interface" tab, you can configure the interface tags of the faceplate type and link the
interface tags to HMI tags.
PLC user data types are supported on the interface.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 527

Property interface
On the "Property interface" tab, you can configure the interface properties of the faceplate type.
The properties configured here are available for the instance of the faceplate type under
"Miscellaneous > Interface".
You can create interface properties of the following data types:
• 64-bit integer
• Authorization
• Boolean
• Color
• Floating-point number
• Graphic
• Configuration string
• Multilingual text
• Resource list
• Unsigned 64-bit integer

Local tags
On the "Local Tags" tab, you can configure tags that are used exclusively within the faceplate
type.
For example, you can use local tags in scripts within the faceplate type.

Event interface
In the "Event interface" tab, you configure events and associated parameters. You interconnect
the events in the "Visualization" tab with the faceplate type or objects in the faceplate type.
On the faceplate container, the events are available under "Properties > Events". You can
configure functions of the function list or scripts.

Interfaces of faceplate types can be copied
The entries of an interface in a faceplate type can be selected individually or copied in blocks as
an entire interface and pasted again in another faceplate type.
This applies to:
• Tags interface
• Property interface
• Local tags
• Event interface
Pasting is also possible at the same place in the faceplate type.
To copy and paste, use the shortcut menu or the shortcut keys <Ctrl> + <C> and <Ctrl> + <V>.

Configuring screens
4.7 Configuring faceplates

528 System Manual, 11/2022

To copy and paste all entries, select the entries by keeping the "Shift" key pressed or by using
the keyboard shortcut <Ctrl> + <A> and copy via the shortcut menu or via the keyboard
shortcut <Ctrl> + <C>. Insert the entries via the shortcut menu or the keyboard shortcut
<Ctrl> + <V>.

4.7.1.4 Lowest device version of a faceplate type

Introduction
When you create the faceplate type, define the lowest device version for the faceplate type.
If you select the highest available device version, all functions are available. If you select a
lower device version, some features are not available.

Note
Configured device version and lowest device version of the faceplate type
The configured device version of the HMI device in which an instance of the faceplate type is to
be used must be equal to or higher than the lowest device version of the faceplate type.
The following changes in the project may cause error messages due to a device version that is
too low:
• Changing the configured device version of the HMI device to a lower version
• Deleting a faceplate type
• Copying and pasting screens or faceplate containers between different HMI devices
• Copy screen with a faceplate container from the library to a screen

Note
TIA Portal version and device version of the faceplate type
A warning appears when you open a project that contains a faceplate type with a higher device
version than the installed TIA Portal version in the project library or as an instance. It is possible
to open the project, but the following restrictions apply:
• You cannot open or release the affected faceplate type.
• You cannot compile the project.
• If you open a screen that contains an instantiated faceplate type with a higher device version,

the faceplate container is shown as empty.

Available functions depending on the device version
Function Available as of version
Interface property of the "Resource list" data type 16.0.0.0
Interface property of the "Color" data type 16.0.0.0
Interface property of the "Configuration string" da‐
ta type

17.0.0.0

Interface property of the "Authorization" data type 17.0.0.1 (Update 1)

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 529

Function Available as of version
Interface property of the "Multilingual text" data
type

18.0.0.0

Interface property of the "Graphic" data type 18.0.0.0
Alarm control 18.0.0.0
Trend control 18.0.0.0
Arrays from user data types 18.0.0.0
Arrays from values of simple data types 18.0.0.0
Link tags of the data type "DateTime" or "LTime"
with the PLC tags.

18.0.0.0

Tags of the "PLCUDT" and "HMIUDT" data type 18.0.0.0
Using a faceplate type in another faceplate type 18.0.0.0
Interface events 18.0.0.0
Local tags 18.0.0.0
Using dynamic SVG graphics from the library in
faceplates

18.0.0.0

4.7.1.5 Faceplates and TIA version upgrade

Version upgrade from V16 to V17 or higher
Note the following points when upgrading from version V16 to V17 or higher:
• As of V17, faceplates are located in the project library and are managed and used in types and

versions.
• To prevent inconsistencies when linking data types, you must copy the user data types used

in the PLC to the library before upgrading the version from V16 to V17 or higher.
To do this, use drag-and-drop to move the PLC user data type to the library under "Project
library > Types".

• When upgrading TIA Portal from V16 to V17 or higher, the names of existing faceplate types
are automatically converted. In the higher version, the name of the faceplate type is given
the version number "_0.0.1" as an extension. If, as a result, the permissible maximum total
length of 128 characters is exceeded, an error message is displayed on the HMI device when
the project is compiled.
In this case, shorten the name of the faceplate type.

• The function rights "Function_right_01" to "Function_right_20" assigned to a faceplate in the
V16 project are removed during the version upgrade.

• All master copies of faceplate types are removed during the version upgrade.
Master copies of faceplate types are no longer supported as of V17.

Configuring screens
4.7 Configuring faceplates

530 System Manual, 11/2022

4.7.2 Creating and managing faceplates

4.7.2.1 Creating a faceplate type in the project library

Introduction
Faceplate types are display and operating objects that are made up of several screen objects,
such as I/O fields and controller blocks.
A faceplate type consists of one or more versions.

Requirement
The "Libraries" task card is open.

Procedure
1. Expand the "Types" folder in the project library.
2. Select the "Add new type" command.

The "Add new type" dialog opens.
3. Select "HMI faceplate" and select "Unified Comfort Panel / WinCC Unified PC".
4. Enter a descriptive name in the "Name" field.

Note
The name must satisfy the following conditions:
• Maximum character length: 128 characters
• Unique name
• No special characters:

$ +% . / : [] ' ~ " `
• No JavaScript elements

5. Adapt the lowest device version.
A new faceplate type with a preliminary faceplate version is created and shown in the project
library.

Result
You have created a new faceplate type with a version. The preliminary faceplate version 0.0.1
is open in the editor and has the status "In progress".

See also
Basics of screens (Page 259)

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 531

4.7.2.2 Creating a faceplate type from a screen
As an alternative to creating a faceplate type in the project library, you can create a faceplate type
directly from a screen of an HMI device. This can be useful, for example, if after configuring
screen objects, you find that you want to reuse the screen objects and adapt tags and properties
to the new application.

Note
• References to graphics in the "Graphic view" screen object are not transferred and must be

inserted again.
• When tags are used for the dynamization, the reference is resolved as soon as a tag with the

same name is created in the tag interface of the faceplate type.
• Configured function lists at events of screen objects are not transferred and have to be

created again.

Note
Dynamic SVGs
If you create a faceplate type from a group of selected screen objects, dynamic SVG graphics are
not included. To insert a dynamic SVG graphic into a faceplate, open the faceplate type in the
editor and insert the SVG graphic from the library here.

Requirement
• A screen is configured and open.

Procedure
1. Select all the screen objects you want to use in the faceplate type by multiple selection in the

screen.
2. Right-click to open the shortcut menu of the selected objects and select "Create faceplate".

A new faceplate type is created in the project library that contains the copied screen objects
and their configured properties.

Result
You have created a new faceplate type from a screen. The faceplate type contains the copied
screen objects and their properties. The preliminary faceplate version is 0.0.1 and has the status
"In progress".

Configuring screens
4.7 Configuring faceplates

532 System Manual, 11/2022

4.7.2.3 Working with faceplate types and versions

Using the toolbar in the editor

Introduction
When you open the version of a faceplate type, the toolbar is displayed in the editor.

Toolbar

The toolbar provides information about the status of the opened version.
The toolbar allows access to the following functions, depending on the status of the opened
version:
• Edit type
• Release version
• Discard changes and delete version
• Check if dependent types need to be adjusted.

Minimizing / showing the toolbar
To minimize the toolbar, click on or on "x".
To display the toolbar, click .

Editing a faceplate type

Introduction
When you open a released faceplate type for editing, a new version of the faceplate type is
created based on the most recent version, "[Default]". When you edit an older version, the new
version is based on the selected version.

Requirement
A faceplate type has been created.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 533

Editing a faceplate type or version
You edit a released faceplate type or a type version as follows:
1. Select the faceplate type or the specific version you want to change.
2. Select "Edit type" from the shortcut menu.

A new version of the faceplate type is created.
The new version is opened in the "In progress" status.
The new version is displayed in the editor.

3. Edit the newly created version.

Updating a faceplate type

Introduction
When a faceplate type is updated, all instances of the faceplate type are updated.

Requirement
• A faceplate type has been created and released.
• The "Libraries" task card is open.

Procedure
1. Select the faceplate type that you want to update.
2. Select "Update types" in the shortcut menu.
3. Select whether you want to update the types in a project or in the library.

A dialog opens.
– If "Project" is selected: Select the devices in which you want to perform the update.
– If "Library" is selected: Select the library in which you want to perform the update.

4. Specify whether the unused type version is going to be deleted from the library.
5. Confirm your selection.

Note
Updating faceplate types in plant objects
Note that when faceplate types used in plant objects are updated, the interface assignment and
dynamization within the plant object type is deleted if the interface tag or interface property was
changed.

Result
You have updated all instances of the selected faceplate type in a library or in the project.

Configuring screens
4.7 Configuring faceplates

534 System Manual, 11/2022

Renaming a faceplate type

Introduction
You can rename a faceplate type after it has been created. If you have referenced a version of a
faceplate type in a script and you then rename the faceplate type, all references are
automatically renamed.

Procedure
To enter a new name, select the faceplate type in the library.
1. Press <F2>.

- or -
In the shortcut menu, select "Rename".

2. Enter a new name.
The name is automatically checked for length, uniqueness and permitted characters. The
name is reset to the previous name if the new name does not meet the requirements.

Opening a faceplate type or version write-protected

Introduction
You can open a faceplate type or an enabled type version write-protected. In write-protected
mode, you can see all configurations within the type version but you cannot make any changes.

Requirement
At least one released type version is available in a library.

Procedure
To open a faceplate type in write-protected mode, select the faceplate type or a released version
in the library.
When you open a faceplate type as read-only, the default version is always opened.
• Select "Open" from the shortcut menu.

The toolbar is displayed and indicates that the faceplate type version is write-protected.

See also
Using the toolbar in the editor (Page 533)

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 535

Replacing a faceplate type

Introduction
The "Replace type" function replaces the used versions of a faceplate type in a project with a
version of another faceplate type.
The source for replacing faceplate types is always a version. The target is always the enabled
version of a faceplate type.

Requirement
• The "Libraries" task card is open.
• At least two faceplate types have been created and released.
• The faceplate type is used in the project.

Procedure
To replace all instances of the source type with the selected version of the target type, follow
these steps:
1. Open the shortcut menu of the faceplate type or the version that you want to replace.

If a faceplate type is selected for replacement, then the version defined as "Default" is used
as the source version to be replaced.

2. Select "Replace type".
The "Replace type" dialog is displayed.
All compatible HMI devices and target types are displayed.

3. Select an HMI device.
4. Select a faceplate type.
5. Select a version of the target type.
6. Select "OK".

A status message is displayed in the Inspector window in the "Info > General" tab.

Result
You have replaced the instantiated faceplate type with a different type.

Defining a version as the "default" version
When you add a faceplate type to a library, use types from a library, and release or update
versions, the highest released version is used as the "default" version. You can specify another
released version as the default version.

Configuring screens
4.7 Configuring faceplates

536 System Manual, 11/2022

Requirements
• You have opened the project library or a global library.
• The desired version has been released.

Procedure
1. Select a version.
2. Open the shortcut menu.
3. Select "Set as "Default"".

Result
The newly set "Default" version is used instead of the highest released version when
instantiating, creating, releasing and updating the type.

See also
Consistency status of types (Page 179)

Deleting a faceplate type or a version
Note the following when deleting faceplate types or versions:
• A faceplate type or a version can only be deleted if there are no dependencies on other types.
• When you delete a faceplate type, all versions of the type are deleted.
• When you delete all versions of a faceplate type, the type is also deleted.
• When you delete a version that has instances in the project, the instances are also deleted

from the project.
• When you delete a type version with the "default" identifier and no additional versions of this

type exist, the type is deleted.
• When you want to delete a type version with the "default" identifier and other versions of this

type exist, the "default" identifier must first be assigned to a different version. Versions with
the "default" identifier cannot be deleted if other versions of the type exist.

• If you delete a faceplate type or a version which exists in the "Types" folder in a global library,
it remains in the global library.

Requirement
• The version that is to be deleted is released.
• The faceplate type that is to be deleted contains only released versions.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 537

Procedure
1. To delete a faceplate version, select it and press .

- or -
Select "Delete" in the shortcut menu of the version.
The "Confirm delete" dialog opens.

2. Confirm the delete operation.
If the faceplate version is used in projects, the "Delete instances of the version" dialog
appears, informing you that all instances of the version to be deleted will be removed.

3. Confirm the delete operation.

Note
If a deleted version is referenced in a script, an empty reference remains in the script after
deletion. Remove it manually or insert a new reference.

Duplicating a faceplate type
Faceplate types in the project library can be duplicated. When you duplicate a faceplate type, the
following applies to the duplicate:
• The duplicate is created in the same folder.
• The duplicate is created from the version of the type with the "default" identifier.
• The duplicate does not have an instance in the project.

Requirement
The faceplate type contains at least one released version.

Procedure
To duplicate a type in the project library, follow these steps:
1. Select the faceplate type or type version to duplicate.
2. Select "Duplicate type" from the shortcut menu.

The "Duplicate type" dialog opens.

Configuring screens
4.7 Configuring faceplates

538 System Manual, 11/2022

3. Enter the properties of the new type:
– Enter a name for the new type in the "Name of type" field.
– In the "Lowest device version" field, select the device version with which the type should

be used.
Note
Only device versions that are the same as or higher than the original version can be
selected.

– Enter a version number for the new type in the "Version" field.
– Enter the name of the editor who is responsible in the "Author" field.
– Enter a comment on the type in the "Comment" field.

4. Confirm with "OK".
The new faceplate type is generated with a released version.

Assigning a faceplate version number
A library is more clearly structured if types related by content have the same version number. The
identical version number reflects the work progress. When you have completed the work on
multiple associated faceplate types, you can assign the same version number to these types.
A log of the changes is created automatically. If you have versioned the faceplate types in the
project library, you will find the log in the project tree under "Common data > Logs". If you
have versioned the faceplate types in a global library, you will find the log in the "Common
data > Logs" folder in the level below the global library.

Requirement
• The "Libraries" task card is open.
• Faceplate types with "In progress" status have not been selected.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 539

Procedure
To assign the same version to several faceplate types, follow these steps:
1. Select the faceplate types to which you want to assign a common version.

Press and hold the <Ctrl> key and click on the faceplate types.
If you have organized types in the library into folders, you can select one or more folders.

2. Select "Assign version" from the shortcut menu.
The "Assign version" dialog opens.

3. If necessary, change the properties of the version:
– In the "Version" field, determine the new version number. The version number must be

higher than the highest version number of all selected types.
– In the "Author" field, enter the person responsible for the version to be released.
– In the "Comment" field, enter a comment on the version to be released.

4. Confirm with "OK".

Result
The selected versions of the faceplate types are changed as follows:
• A new version of all selected faceplate types is created with the specified version number.
• The properties are applied to all selected faceplate types. Lower versions used in the project

remain unaffected by the changes. When you make no changes to the properties, the
properties of the last released version or the version specified by the user as "default" of each
faceplate type are applied.

Configuring screens
4.7 Configuring faceplates

540 System Manual, 11/2022

• When a version is set as "default" by the user, the new version of the selected type is created
from the default version with the specified version number. This newly created version will
then have the "default" identifier.

• The version number of dependent types is incremented to the next free version number as
long as the dependent types were not included in your selection. If you had selected a
dependent type as well, the version number you specified will be assigned.

Note
Assigning a version number based on inconsistency
Updating the project library with versions of a global library or another TIA Portal instance can
result in the project library having two faceplate versions with the same version number created
by different authors. This leads to inconsistency and the project cannot be compiled. If this
happens, change the version number of one of the duplicate versions.

See also
Consistency status of types (Page 179)

4.7.2.4 Editing the visualization of a faceplate type
You can edit the visualization on the "Visualization" tab of the editor.
The procedure corresponds to that for editing screens in the "Screens" editor.

Requirement
A faceplate type has been created.

Editing the visualization
1. Open a version of the faceplate type for editing.

The visualization of the version is displayed on the "Visualization" tab in the editor.
2. Move objects from the "Toolbox" or "Libraries" task card to the "Visualization" tab of the

faceplate version using drag-and-drop.
Objects from the palettes "Controls" and "My Controls" are not available or only available to
a limited extent.
For dynamic SVG graphics, drag-and-drop pasting is only available as of version V18. If the
device version is changed to a version < V18, you will get an error during the compile.

All the editing functions that you already know from configuring screens are available.
You can copy screen objects from one faceplate type to one or more other faceplate types
without losing their attributes. If a copied property or tag does not exist in the target

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 541

faceplate type, the corresponding property or tag is highlighted in red and must be added in
the target faceplate type.

Note
Screen objects can only be copied within a TIA Portal project. Copy operations between
different TIA Portal instances are not supported.

Editing properties
Both the properties of the faceplate type and the properties of the objects used are edited in the
Inspector window under "Properties > Properties".
1. Select the object.

– If you want to adapt the properties of the faceplate type, click in a free area of the editor.
– If you want to adapt the properties of a used object, click on it.

The displayed handles indicate the selected object.
2. Open the shortcut menu and select "Properties".

The Inspector window displays the properties of the object or faceplate type.
3. Edit the properties.

See also
Overview of screen objects (Page 269)

4.7.2.5 Configuring multilingualism for objects of a faceplate type

Introduction
The project languages are set in the "Project languages" editor. You specify which project
language is to be the editing language and which the reference language.

Requirement
• A faceplate type has been created and opened for editing.
• At least one object is configured.

Procedure
1. Open the "Languages & Resources" menu command in the project tree.

The lower-level elements are displayed.
2. Double-click on "Project languages".

The possible project languages are displayed in the work area.

Configuring screens
4.7 Configuring faceplates

542 System Manual, 11/2022

3. Enable the relevant project languages or disable the languages that you do not need.
Note
Copying multilingual objects
The copies of multilingual objects to a different project only include text objects in the project
languages which are activated in the target project. Activate all project languages in the
target project to include the corresponding text objects when transferring the copy.

Note
If you disable a project language, all text and graphic objects you have already created in this
language are disabled from the current project. When the language is re-enabled, these are
also re-enabled.

4. Go to the project library and open the faceplate type for whose objects you want to create
multilingual texts.

5. Select the object for which you want to store a multilingual text.
6. Open the Inspector window under "Properties > Texts" and create the corresponding texts in

the set languages.

Displaying multilingual texts in runtime
To activate the set languages in runtime, follow these steps:
1. Double-click on "Runtime settings" in the project tree.
2. Click on "Language & Font".
3. Enable the required languages.

See also
Exporting and importing library texts (Page 170)

4.7.2.6 Configuring tags in the faceplate type

Overview

Introduction
You configure interface tags or local tags in faceplate types. For each tag you define a data type.
In addition to simple data types like Bool or Int, you can define arrays.

Tags of the data type "DateTime" or "LTime"
You can create tags of the data types "DateTime" or "LTime".
You can link interface tags of the "DateTime" or "LTime" data types, for example, with HMI
tags of the data types "DateTime" or "LTime" on the faceplate container.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 543

You can also link interface tags of the "DateTime" or "LTime" data types with the following
data types of the S7-1500 PLC:

Data type of the interface tag Data types of the PLC S7-1500
DateTime Date
DateTime Date_And_Time
DateTime LDT
DateTime DTL
LTime Time
LTime LTime
LTime Time_Of_Day
LTime LTime_Of_Day

Tags of the "Array" data type
You can define tags of the "Array" data type. The array index begins with 0.

Note
"WChar", "WString" and "HMIUDT"
Arrays of "WChar", "WString" and "HMIUDT" data types are not possible.

Configuring interface tags in the faceplate type

Introduction
In the faceplate type you can configure interface tags for dynamizing the properties of the
objects contained in the faceplate type or embedding in scripts.
The interface tags of a faceplate type are linked exclusively via the faceplate container to the
project tags.

Note
User data types
User data types, including with nested structures, are supported.

Note
Subsequent changes to interface tag names
Note that the values of interfaces that are already connected at the faceplate container are reset
to their default values when you subsequently change names in the faceplate type.

Configuring screens
4.7 Configuring faceplates

544 System Manual, 11/2022

Requirements
• The faceplate type has been created.
• The version is open for editing.
• The "Tag interface" tab is open in the editor.

Defining tags

Note
Only tags of the faceplate type are displayed within the editor.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 545

1. Click on the button "Add Tag" or double-click the "Add" field.
2. Click on the tag name and assign a name. The name can be changed later.

Note
The tag name must satisfy the following conditions:
• Maximum character length: 128 characters
• Unique name
• Beginning with a letter or underscore
• No special characters:

, ; . : ! ? " ' ^ ´ ` ~ - + = / \ ¦ @ * # $ % & § ° () [] { } < >
• No spaces
• No JavaScript elements

3. Select the data type:
– To select a simple data type, enter the name of the data type or select a data type from the

selection list.
– To select an array, click the arrow and select the data type.

To determine the size of the array, enter a numerical value for the array upper limit.
Example: 3 for an array with 4 elements [0 … 3].
To convert an array into a simple data type, delete the value for "Array limits".

The WChar, Wstring and HMIUDT data types cannot be created as arrays.
– To link a data structure, select "PLCUDT" for a PLC user data type or "HMIUDT" for an

HMI user data type as the data type.
Under "User data type structure", select a previously created user data type.
Note
User data types
PLCUDT: You create PLC user data types on a PLC in project tree.
HMIUDT: You create HMI user data types in the "Libraries" task card.

Changing tags
You can adapt the data type or the array limit of a tag retroactively.
To convert a simple data type into an array, select the arrow in the "Data type" column and
specify the top array limit.
To convert an array into a simple data type, select the arrow in the "Data type" column and
delete the top array limit.

Configuring screens
4.7 Configuring faceplates

546 System Manual, 11/2022

Deleting an interface tag
To delete an interface tag, select the entry you wish to delete and click . Alternatively, delete
the tag interface by pressing the key.

Changing the order of the interface tags in the editor
To change the order, select the respective entry and move it gradually up or down by clicking
the buttons.

Result
You have configured the interface tags needed for the faceplate type.
The interface tags defined in the faceplate type are accessible in the corresponding faceplate
instances and can be used for dynamization and for creating scripts within the faceplate type.

Configuring local tags in the faceplate type

Introduction
You can use local tags in a faceplate type to pass on information within the faceplate type.
Elements of a faceplate can be dynamized, for example, as a function of the current properties
of another element.
The local tags are not visible at an instance of the faceplate type and thus cannot be
manipulated.

Requirements
• The faceplate type has been created.
• The version is open for editing.
• The "Local tags" tab is open in the editor.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 547

Defining local tags
1. Double-click on the "<Add>" cell in the "Name" column.
2. If required, change the suggested name of the tag.

Note
The tag name must satisfy the following conditions:
• Maximum character length: 128 characters
• Unique name within the faceplate type
• No special characters:

: . # / % [] $ " ' * ? ~

3. Select the data type:
– Simple data types: Enter the name of the data type or select a data type from the list.
– Array: Select the "Array" data type. Click the arrow and define the data type and array limit.

Using a local tag
• To display a local tag and manipulate it in Runtime, connect the local tag, e.g. to an I/O field.
• To change the properties, e.g. color, of a screen object in Runtime as a function of the

properties of another screen object, dynamize the properties using a local tag.
• If you use local tags in scripts, the events are assigned to the utilized screen objects.

Result
You have configured local tags for the faceplate type.
The local tags defined in the faceplate type are not accessible in the instances of the
faceplate type.

4.7.2.7 Interface properties in faceplates

Overview

Introduction
You can define interface properties that you can use later in the faceplate type for the
dynamization of properties. The following data types are available:
• 64-bit integer
• Authorization
• Boolean
• Color
• Floating-point number

Configuring screens
4.7 Configuring faceplates

548 System Manual, 11/2022

• Graphic
• Configuration string
• Multilingual text
• Resource list
• Unsigned 64-bit integer
These data types can be instantiated in a faceplate container.

Note
Changing the names of interface properties
Note that the values of interfaces that are already connected at the faceplate container are reset
to their default values when you subsequently change names in the faceplate type.

Description of the interface properties
Interface property Description
64-bit integer You can link properties that correspond to an integer with data type "64-bit integer". You can

then assign corresponding elements with this numerical value within a screen in the face‐
plate instance. In this way you can assign different numerical values to objects in different
faceplate instances.

Authorization You can link properties of the "Authorization" type with authorizations. You can assign
corresponding function rights in the faceplate instance. In this way, you can restrict the
operator control of objects in different faceplate instances in different ways.
If you specify the value "None" for the interface property on a faceplate instance, operator
control is not restricted.

Boolean You can link properties that correspond to a logical truth value (true and false) with data
type "Boolean". You can assign corresponding elements with this value in the faceplate
instance. In this way you can assign different values to objects in different faceplate instan‐
ces.

Color You can link properties of the type "Color" with the data type "Color". You can assign color
values in the faceplate instance. In this way the objects can be displayed in different colors in
different faceplate instances.

Floating-point number You can link properties corresponding to a floating point number with the "Floating point
number" data type. You can assign corresponding numerical values in the faceplate in‐
stance. In this way you can assign different numerical values to objects in different faceplate
instances.

Graphic You can associate properties that correspond to a graphic with the "Graphic" data type. You
link graphics in the "Visualization" tab, for example, with the "Graphic view" and "Switch"
screen objects. In the faceplate instance, you can assign graphics from the project's graphics
collection or released type versions of the "Graphic" type from the project library. In this way
you can assign different graphics to objects in different faceplate instances.

Configuration string The data type "Configuration string" allows for the flexible assignment of values. A config‐
uration string can include names or numbers, for example, that are addressed in scripts and
can be transferred.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 549

Interface property Description
Multilingual text You can link properties of the "Multilingual text" type with texts. In the faceplate instance,

you can assign static texts, resource lists, tags or scripts. When entering static texts, use the
key combination <Shift + Enter> to insert a line break. In the Inspector window you create
texts for the projected languages under "Properties > Texts".
In this way, you can configure different texts in different faceplate instances.

Resource list You can link properties of the type "Resource list" with the "Resource list" data type. In the
faceplate instance you can then assign elements from the graphic and text lists. In this way
you can assign different text and graphic elements to objects in different faceplate instan‐
ces.

Unsigned 64-bit integer You can link properties that correspond to an unsigned 64-bit integer with the data type
"Unsigned 64-bit integer". You can then assign corresponding numerical values in the face‐
plate instance. In this way you can assign different numerical values to objects in different
faceplate instances.

Deleting interface properties
To delete an interface property, select the property you wish to delete and click .
Alternatively, press <Delete>.

See also
Creating a faceplate instance (Page 564)

Configure interface property

Requirement
• The faceplate type has been created.
• The version is open for editing.
• The "Property interface" tab is open.
• A screen is created in the HMI device.

Configuring screens
4.7 Configuring faceplates

550 System Manual, 11/2022

Procedure
1. Click the "Add" field or click the button.

A new interface property is created.
2. Change the values for the name, if required, and select the data type.

Note
The name must satisfy the following conditions:
• Maximum character length: 128 characters
• Unique name
• Beginning with a letter or underscore
• No special characters:

, ; . : ! ? " ' ^ ´ ` ~ - + = / \ ¦ @ * # $ % & § ° () [] { } < >
• No spaces
• No JavaScript elements

3. Switch to the "Visualization" tab.
4. Select the screen object that is to be linked to the interface property.
5. Open the "Properties > Properties" Inspector window.
6. Select the "Property interface" method in the "Dynamization" column.
7. Select the previously created interface property.
8. Release the version of the faceplate type and change to the project tree to interconnect the

interfaces in the screen.
9. Open the screen and configure a faceplate container by dragging the faceplate type to the

screen.
10.Open the Inspector window of the faceplate container and go to "Properties > Properties >

Miscellaneous > Interface".
11.Select the created interface property. In the "Static value" column, assign a fixed value to the

property. If you make several entries, separate the individual values with a semicolon.
You can also assign values of the following categories to the property in the "Dynamization"
column:
– Tag
– Script
– Flashing (for colors)
– Resource list (for text and graphic list elements)

Note
"Flashing" is not supported in Runtime.

Tip for an efficient procedure

In the "Static value" column, you can copy and paste values via the shortcut menu of the text box.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 551

See also
Creating a faceplate instance (Page 564)

Example: Defining "Configuration string" and using it in a script
You can assign data values to interface properties with the "Configuration string" data type at the
faceplate instance or using a script.

Requirement
• A faceplate type "Faceplate_1" has been created and opened for editing.
• A screen is created in the HMI device.

Note
Reference faceplate versions with full version numbers, such as: Faceplate_1_V_0_0_3.

Example of value assignment at the faceplate instance
1. Open the "Property interface" tab.
2. Create the following interface properties:

– Label_Names
– Label_Rotation

3. Assign the data type "Configuration string" to the interface properties.
4. Switch to the "Visualization" tab.
5. Configure three text boxes: "Text box_1", "Text box_2" and "Text box_3"
6. Configure a button with the text "Rotation" and one with the text "Read".
7. In the Inspector window of the "Rotation" button, open the "Events" tab.
8. Create the following script for the "Press" event:

export function Button1_OnDown(item, x, y, modifiers, trigger) {
 let myProperty = Faceplate.Properties.Label_Rotation;
 let angles = myProperty.split(";");
 Faceplate.Items("Text box_1").RotationAngle = angles[0];
 Faceplate.Items("Text box_2").RotationAngle = angles[1];
 Faceplate.Items("Text box_3").RotationAngle = angles[2];
}

9. In the Inspector window of the "Read" button, open the "Events" tab.

Configuring screens
4.7 Configuring faceplates

552 System Manual, 11/2022

10.Create the following script for the "Press" event:
export function Button2_OnDown(item, x, y, modifiers, trigger) {
 let myProperty = Faceplate.Properties.Label_Names;
 let words = myProperty.split(";");
 Faceplate.Items("Text box_1").Text = words[0];
 Faceplate.Items("Text box_2").Text = words[1];
 Faceplate.Items("Text box_3").Text = words[2];
}

11.Release the faceplate type.
12.Change to the project tree.
13.Open a screen.
14.Create a faceplate instance by dragging the faceplate type from the project library to the

screen.
15.Open the Inspector window of the faceplate instance and navigate to "Properties > Properties

> Miscellaneous > Interface".
16.Navigate to the created interface properties and assign them meaningful values, such as:

– Label_Names: "Label1;Label2;Label3"
– Label_Rotation: "5;15;45"

17.Compile and load the project.

Result
When pressing the "Rotation" button, the text boxes of the faceplate are rotated by the values
that were assigned to the interface property.
When pressing the "Read" button, the values assigned to the interface properties are read
and the text boxes show the respective text.

Example of faceplate pop-up with value assignment via script
1. Open the "Property interface" tab.
2. Create the interface property "Title" and assign the "Configuration string" data type to it.
3. Switch to the "Visualization" tab.
4. Create a text box "Text box_1".
5. Open the Inspector window of the faceplate and switch to the "Events" tab.
6. Create the following script for the "Loaded" event:

To do so, click on "Convert function to script".
export function Faceplate_Typ_OnLoaded(item) {
 let myProperty = Faceplate.Properties.Title;
 Faceplate.Items("Text box_1").Text = myProperty;
}

7. Enable the faceplate.
8. Change to the project tree.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 553

9. Open a screen.
10.Add a button "Button_1" on the screen.
11.Create a faceplate instance by dragging the faceplate to the screen.
12.Open the Inspector window of the button and switch to the "Events" tab.
13.Create the following script for the "Press left mouse button" event:

To do so, click on "Convert function to script".
export function Button_1_OnTapped(item, x, y, modifiers, trigger) {
 let data = {Title:"Text in Popup"};
 let po = UI.OpenFaceplateInPopup("Faceplate_1_V_0_0_1",
"Popup", data, UI.ActiveScreen, false);
 po.Left = 100;
 po.Top = 150;
}
Note
Referencing the faceplate type
The type is referenced by the name of the type, as shown in the properties, e.g.
"Faceplate_1_V_0_0_1".
Include the complete version number. The version number specified in the script is
automatically updated when a new version of the type is released.

14.Compile and load the project.

Result
When you press the button in runtime, the faceplate opens as a popup. The title "Text in pop-up"
is read from the script and displayed in the text box.

See also
Creating a faceplate instance (Page 564)

4.7.2.8 Interface events in faceplates

Configuring an interface event in the faceplate type

Introduction
You use interface events to define events and associated parameters in the faceplate type. At the
instance, you configure functions of the function list and scripts to the created event. This gives
you the option of configuring various effects on the instances for an event defined in the
faceplate type.
Various data types are available for the parameters associated with an interface event.

Configuring screens
4.7 Configuring faceplates

554 System Manual, 11/2022

Requirement
• A screen is created in the HMI device.
• The faceplate type has been created.
• The version is open for editing.
• The "Event interface" tab is open.

Data types of parameters
The following data types are available for the parameters of interface events:

Data types Description
Bool Logical values (True/False)
Byte Unsigned 8-bit value
Char ASCII character
Color Color
DateTime Date/time information
DInt Signed 32-bit value
DWord Unsigned 32-bit value
HmiEventTrigger The enumeration "HmiEventTrigger" can have the following values:

• Unknown (0): Unknown
• Touch (1): Triggered by touch HMI device
• Left (16): Triggered by left mouse button.
• Middle (17): Triggered by middle mouse button.
• Right (18): Triggered by right mouse button.
• Enter (256): Triggered by <Enter>.
• Space (257): Triggered by <Space>.
• Escape (258): Triggered by <Esc>.

HmiGesture The enumeration "HmiGesture" can have the following values:
• Unknown (0): unknown
• SwipeLeft (1): Swipe left
• SwipeRight (2): Swipe right
• SwipeUp (3): Swipe up
• SwipeDown (4): Swipe down

HmiKeyboardModifier The enumeration "HmiKeyboardModifier" can have the following values:
• None (0): None
• Control (1): <Ctrl>
• Shift (2): <Shift>
• Alt (4): <Alt>

Int Integer
LInt Signed 32-bit value
LReal 64-bit floating-point number IEEE 754
LString 64-bit character sequence

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 555

Data types Description
LWord Unsigned 64-bit value
Real 32-bit floating-point number IEEE 754
SInt Signed 8-bit value
String 32-bit character sequence
Time Time information
UDInt Unsigned 32-bit value
UInt Unsigned integer
ULInt Unsigned 64-bit value
USInt Unsigned 8-bit value
Word Unsigned 16-bit value

Configuring an interface event
1. On the "<Add>" or select the button .

A new interface event is created.
2. If required, change the values for the name.

Note
The name must satisfy the following conditions:
• Maximum character length: 128 characters
• Unique name
• Beginning with a letter or underscore
• No special characters:

, ; . : ! ? " ' ^ ´ ` ~ - + = / \ ¦ @ * # $ % & § ° () [] { } < >
• No spaces
• No JavaScript elements

3. Select "<Add>" below the interface event.
A new parameter is created.

4. Change the value for the name.
5. Add more parameters if needed.
6. Switch to the "Visualization" tab.
7. Select the faceplate instance or a screen object with which the interface event is to be linked.
8. Open the "Properties > Events" Inspector window.
9. Select an event.
10.Click on "Convert function to script".

A script is created.
11.In the script, open the shortcut menu and select "Snippets > Faceplate > Raise a custom

faceplate event".
The following code is inserted:
let parameters = {Parameter_1:1, ColorParameter:0xff00ff00};
Faceplate.RaiseEvent("MyCustomEventName", parameters);

Configuring screens
4.7 Configuring faceplates

556 System Manual, 11/2022

12.Adapt the names of the parameters in the script.
13.For the name of the interface event in the script, select the name that is created in "Event

interface".
14.Release the type version of the faceplate.
15.Open the screen of the HMI device.
16.Create a faceplate instance of the released type version in the screen.
17.Select the faceplate instance.
18.Open the Inspector window under "Properties > Events".
19.Select the interface event in the event list.
20.Configure a function of the function list or a script to the event.

Editing an interface event

Note
Effects on the faceplate instance when the interface event is changed in the faceplate type
If you change the interface event, consider the following effects on the faceplate instance:
• If you have configured a script to the interface event and change the names of the

parameters, you must manually update the parameters of the interface event used in it.
• If you have renamed the interface event, the name in the event list is updated automatically.
• If you have renamed the interface event or associated parameters and configured a script to

the interface event, they are automatically updated in the script header.

1. Select the released type version.
2. Open the shortcut menu and select "Edit type".

A new type version is created and opened for editing.
3. Select the "Event interface" tab.
4. Change the name of the interface event.
5. Change the name of the parameters.
6. Switch to the "Visualization" tab.
7. Select the faceplate instance or screen object linked with the interface event.
8. In the Inspector window, adapt the script under "Properties > Events":

– Change the names of the parameters to match the changes in the "Event interface" tab.
– Change the interface event names to match the changes in the "Event interface" tab.

9. Release the type version of the faceplate.
Enable the "Update instances in project" option.

10.Confirm with "OK".
The faceplate instance in the screen of the HMI device is updated.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 557

11.If required, configure functions of the function list to the event again.
12.If required, adapt the names of the interface event parameters in the script.

Example: Configuring and using an interface event
With interface events, you define events in the faceplate type which you interconnect to
instances with different functions of the function list or scripts.

Requirement
• A screen is created in the HMI device.
• A faceplate type "Faceplate_1" has been created and opened for editing.

Procedure
1. Switch to the "Event interface" tab of the faceplate type.
2. Click the "<Add>" field or select the button.

A new interface event is created.
3. Change the name of the interface event to "My_Interface_Event".
4. Select "<Add>" below the interface event.

A new parameter is created.
The data type of the parameter is "Int".

5. Change the name of the parameter to "Parameter_Int".
6. Select "<Add>" below the interface event.

A new parameter is created.
7. Change the name of the parameter to "Parameter_Bool".
8. Change the data type of the parameter to "Bool".
9. Switch to the "Visualization" tab of the faceplate type.
10.Add a button.
11.Change the name of the button to "Button_1".
12.Select the "Button" screen object.
13.Open the Inspector window under "Properties > Events".
14.Create the following script for the "Click left mouse button" event:

export function Button_1_OnTapped(item, x, y, modifiers, trigger) {
 let parameters = {Parameter_Int:90,Parameter_Bool:true };
 Faceplate.RaiseEvent("My_Interface_Event", parameters);
}

15.Release the type version of the faceplate.
16.Create the HMI tags "HMI_Tag_Int" of "Int" data type in the HMI device.
17.Create the HMI tags "HMI_Tag_Bool" of "Bool" data type in the HMI device.
18.Open the screen of the HMI device.

Configuring screens
4.7 Configuring faceplates

558 System Manual, 11/2022

19.Create a faceplate instance of the released type version in the screen.
20.Select the faceplate instance.
21.Open the Inspector window under "Properties > Events" and select the event

"My_Interface_Event".
22.Click on "Convert function to script".
23.Create the following script:

export function Faceplate_container_1_OnMy_Interface_Event(item,
Parameter_Int, Parameter_Bool) {
 let tag1 = Tags("HMI_Tag_Int");
 let tag2 = Tags("HMI_Tag_Bool");
 tag1.Write(Parameter_Int);
 tag2.Write(Parameter_Bool)
}

24.Configure 2 I/O fields in the screen:
– "IO field_Int": Link the "Process value" property of the I/O field with the tag "HMI_Tag_Int".
– "IO field_Bool": Link the "Process value" property of the I/O field with the tag

"HMI_Tag_Bool".
25.Compile and load the project.

Result
The values of the IO fields change as follows when the "Button_1" button is pressed in Runtime:
• "IO field_Int": 90
• "IO field_Bool": 1

4.7.2.9 Checking the version consistency and fixing inconsistencies

Introduction
To ensure the consistency of a version of a faceplate type, you have two options:
• You can run a consistency check yourself before releasing a faceplate version.
• An automatic consistency check is performed when the version is released.
In both variants, the created version is checked for missing or faulty references to screens or
tags, for example. A message is displayed in case of an error.

Requirement
• A faceplate version has been created but has not been released yet.
• Objects have been configured.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 559

Checking the consistency yourself
1. Select the version whose consistency you want to check.
2. Select "Check consistency" from the shortcut menu.

The result of the consistency check is displayed in the Inspector window in the "Info >
General" tab.

Remedying the inconsistency
To remedy any inconsistency, follow these steps:
1. Open the Inspector window under "Information > General".

An error and an error description are displayed in the Inspector window.
2. Click the green arrow in the "Go to" column.

You are navigated automatically to the error location.
3. Eliminate the error.
4. If necessary, perform another consistency check to check whether all errors have been

resolved.
You have fixed all consistency errors. The consistency check of the version of the faceplate
type shows no errors.

See also
Consistency status of types (Page 179)

4.7.2.10 Checking the consistency at the faceplate type and fixing inconsistencies

Introduction
When editing versions of the faceplate types, incorrect referencing may unintentionally occur
with the faceplate type and outdated instances if the default version of the dependent type is
not used in the default version or a version other than the default version is instantiated in the
device.

As soon as you release a version, a consistency check is automatically performed.
The "Status" column shows whether an inconsistency exists when referencing the faceplate
type.

Configuring screens
4.7 Configuring faceplates

560 System Manual, 11/2022

Resolving inconsistency through referencing of the non-default version of another
faceplate type
Requirement
• A faceplate type has been created and released.
• The "Libraries" task card is open.
• The "Status" column in the project library displays the symbol .

Procedure
To correct an inconsistency which occurs through the referencing of a non-default version,
follow these steps:
1. Open the shortcut menu of the inconsistent type.
2. Select the "Fix inconsistencies" menu item.
3. Select one of the following options:

– "Adapt inconsistent type"
A new version of the faceplate type is created and has the status "In progress".
In the new version, the default version of the referenced faceplate type is automatically
used.

– "Set the currently referenced version as "default""
The currently referenced version of the faceplate type is automatically set as the
"default".

Remove inconsistency in the device through instantiating the non-default version
Requirement
• A faceplate type has been created and released.
• The "Libraries" task card is open.
• The "Status" column in the project library displays the symbol .

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 561

Procedure
To eliminate an inconsistency which occurs through the instantiation of a non-default
version in the device, update the faceplate type (see section Updating a faceplate type
(Page 534))

4.7.2.11 Releasing a faceplate version of a type
When you are finished editing a type version, release the version for productive use. Assign a
version number for the release. You can also use multiple selection to release several versions
at the same time.
If you have made structural changes to the type version to be released, such as changes at
the interfaces, only the types that reference the changed type version and are affected by
the change are set to the "In progress" status. To set all referencing types to the "In progress"
status by default when they are released, select the check box "Set all dependent types to the
'In test' status" in the settings under "General > Library settings" in the "Release type" area.

Introduction
Only released versions of a faceplate type can be instantiated in a screen.

Requirement
• The "Libraries" task card is open or you are in the library view.
• The faceplate version that you want to release has the "In progress" status.
• The faceplate version is consistent.

Procedure
To release type versions, follow these steps:
1. Select the faceplate version you want to release.
2. Select the "Release version" command from the shortcut menu.

The "Release type version" dialog box opens.
3. If necessary, change the properties of the version:

– Enter a name for the faceplate type in the "Type name" field. If you have selected several
versions for release, the "Name" field cannot be changed.

– In the "Version" field, define a main and an intermediate version number for the version
to be released. If you have selected several versions for release, the "Version" field cannot
be changed and the last version number is used for the release.

– In the "Author" field, enter the editor of the version to be released.
– In the "Comment" field, enter a comment on the version to be released.

Configuring screens
4.7 Configuring faceplates

562 System Manual, 11/2022

4. If necessary, change additional options of the faceplate version:
– "Update instances in the project" option: Select the check box to update all instances in

the project to the most recent version.
– Option "Delete unused type versions without "Default" label from the library": Select the

check box to delete all faceplate versions from the library that are not connected to any
instance in the project. Versions with dependencies on other types are not deleted.

– "Set dependent types to edit mode" option: If you have made incompatible changes to the
type version to be released, such as changes at the interfaces, this check box is selected
by default. Faceplate types that reference the changed type version are set to the "In
progress" status by default. Clear the check box if you do not want to set the referencing
types to the "In progress" status.
If you have only made compatible changes to the type version to be released, this check
box is cleared by default.

5. Confirm with "OK".

Result
• The selected faceplate version has been released.
• The properties are applied for the faceplate type itself, the version to be released, and for all

future versions. Versions already released remain unaffected by the changes.
• The released faceplate version is given the "Default" identifier.
• If needed, all instances with the same original version are updated to the most recent version

and the unused versions of the type are deleted.
• Depending on the changes you have made, releasing the type version has effects on types

that reference this version:
– If you have made incompatible changes to the type version to be released, such as

changes at the interfaces, the types that directly reference the changed type version are
set to the "In progress" state. The calling types still reference the last released version.

– If you have only made compatible changes to the type version to be released, the types
that directly reference the changed type version are not changed. The calling types
reference the newly released version in this case.

• The icon in the "Status" column shows whether the references of the type are consistent with
other types.

See also
Consistency status of types (Page 179)
Checking the version consistency and fixing inconsistencies (Page 559)

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 563

4.7.2.12 Creating a faceplate instance

Introduction
The faceplate type is stored in the project library. When you use the faceplate type in a screen,
you create an instance of the faceplate type.

Note
Note that a faceplate is always configured for a particular class of HMI devices. For example, you
cannot use a faceplate type that is configured for Runtime Advanced in a screen of a Unified HMI
device.

Note
The number of faceplate instances in a screen is not limited. Note that the performance when
opening or updating a screen is affected by the number of faceplate instances or the use of
scripts in the faceplate instances.

Requirement
• A screen is open.
• The "Libraries" task card is open and the project library has been expanded.
• A faceplate type has been configured.
• The faceplate version you want to instantiate has been released.

Procedure using the project library
1. Drag the faceplate type or the desired version from the project library to the screen.

The faceplate container with the faceplate instance is added to the screen.
The version marked with "Default" is always used when you drag the faceplate type to the
screen.

2. Open the Inspector window under "Properties > Properties > Miscellaneous > Interface".
3. Connect the faceplate tags to project tags.
4. Specify the values of the interface properties.
5. Open the Inspector window under "Properties > Events".
6. Specify functions of the function list or scripts of the interface events.
7. Open the Inspector window under "Properties > Properties > Format > Fit to size".
8. To adjust the size of the faceplate or the container window, choose between "Fit window to

screen" and "Fit screen to window".
Note
If you do not select resize, screen objects or navigation elements may not be displayed or may
not be displayed completely.

Configuring screens
4.7 Configuring faceplates

564 System Manual, 11/2022

Procedure using the "Faceplate container" control
1. Open the "Toolbox > Controls" task card.
2. Drag the "Faceplate container" control to the screen.

An instance of the "Faceplate container" control is configured. No faceplate type is linked.
3. Open the Inspector window of the faceplate container under "Properties > Properties >

Miscellaneous".
4. Select the desired faceplate type under "Faceplate type" in the "Static value" column.
5. Open the Inspector window under "Properties > Properties > Miscellaneous > Interface".
6. Connect the faceplate tags to project tags.
7. Specify the values of the interface properties.
8. Open the Inspector window under "Properties > Events".
9. Specify functions of the function list or scripts of the interface events.
10.Open the Inspector window under "Properties > Properties > Format > Fit to size".
11.To adjust the size of the faceplate or the container window, choose between "Fit window to

screen" and "Fit screen to window".
Note
If you do not select resize, screen objects or navigation elements may not be displayed or may
not be displayed completely.

Tip for an efficient procedure

In the "Static value" column, you can copy and paste values via the shortcut menu of the text box.

Change the faceplate version in the container
You change the link to a faceplate version in the properties of the faceplate container under
"Miscellaneous > Faceplate type". The selection window lists the released faceplate versions of
all faceplates.

Tip for an efficient procedure

• Under "Cross-references", you get a quick overview of all used objects within a faceplate container
and the use of faceplate versions in screens.

• You open the cross-references either in the Inspector window of the container under "Info > Cross-
references" or via the shortcut menu of the respective object.

• In the shortcut menu of the faceplate container, you can use the "Go to library version" function to
jump directly to the referenced faceplate type in the project library.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 565

Result
• The faceplate type is instantiated in a faceplate container.
• The objects configured in the faceplate type are visible in the faceplate container.
• Interface tags and interface properties have been defined for the faceplate container.
• Functions of the function list and scripts are defined for the interface events of the faceplate

container.
• If required, the properties of the faceplate container can be configured and dynamized in the

inspector window.

4.7.2.13 Using a PLC user data type

Introduction
You can configure data blocks based on a PLC user data type (UDT). You can use tags that are
based on this PLC user data type in faceplate instances.
The following advantages arise from reusing the PLC user data type:
• You minimize the configuration effort.
• You reduce the consumption of resources.
• They ensure unique and consistent naming of tags in data blocks and faceplate types and

hereby significantly reduce the probability of configuration errors.

Note
Do not use more than one version of a PLC user data type in a faceplate type.

The following complex PLC data types are supported:
• User data types that are based on other user data types.
• User data types that use arrays comprising simple elements or user data types.

Note
Arrays whose limits are defined permanently with integer values or variably with user
constants are supported.

Configuring screens
4.7 Configuring faceplates

566 System Manual, 11/2022

• User data types that are based on a different user data type that, in turn, use arrays
comprising simple elements or user data types.

• User data types that consist of further structured data types, e.g. CREF, PLCUDT, HMIUDT,
NREF, IEC-specific parameters, and arrays comprising structured data types.
Note
Nesting is limited to 8 levels for structured user data types.
Depending on the size and nesting of the PLC user data types, the performance when
assigning the PLC user data type and when opening the affected faceplate type may be
impaired.

Requirement
• A SIMATIC S7-1200 or SIMATIC S7-1500 controller is configured.
• An HMI device has been configured.
• At least one PLC user data type has been configured.
• At least one PLC tag based on the PLC user data type has been configured.
• A faceplate type has been configured and opened for editing.
• A screen has been created.

Importing a device proxy into a project
If you import a device proxy into a project, the PLC user data types are not imported.
1. Create a user data type based on the PLC user data type in the project library of the source

project.
2. Copy the user data type into the global library.
3. Apply the user data type to the project library of the project in which the HMI device is

located.
4. Link the user data types with faceplate types as usual.

Procedure
1. Create a user data type that is based on the PLC user data type:

– Drag-and-drop the PLC user data type from the device overview to the "Types" folder of the
project library.

2. Create a PLC tag that is based on the PLC user data type:
– Create a tag in the "PLC tags" editor.
– Select a PLC user data type as the data type.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 567

3. Connect an HMI tag to a PLC tag:
– Create a tag in the "HMI tags" editor.
– Under "Connection", select the external connection to the PLC.
– Link the PLC tag that is based on a PLC user data type.

4. Create an interface tag in the faceplate type:
– Go to the faceplate editor and open the "Tag interface" tab.
– Create an interface tag.
– Define the "PLCUDT" data type.
– Under "User data type structure", select the PLC user data type.
Alternatively, you drag-and-drop a version of the PLC user data type from the project library
onto the "<Add>" field in the "Tag interface" tab.
An interface tag with the data type "PLCUDT" is generated and linked with the version of the
PLC user data type.

5. Release the faceplate type.
6. Create a faceplate instance:

– Open the previously created screen and create an instance of the faceplate type.
– Open the Inspector window of the faceplate instance.
– Under "Properties > Properties > Miscellaneous > Interfaces", assign the HMI tags based

on the PLC tags to the specific properties in the "Static value" column.

Note
Note that the version is not updated automatically in the faceplate type when you change the
version of the referenced PLC user data type. Therefore, inconsistencies may occur if the linked
version is not the default version. To clean up the inconsistency, you have the following options:
• In the shortcut menu of the inconsistent type, select the "Clean up inconsistencies" menu

item. The type does not have to be released for this purpose.
• Open the faceplate version for editing and update the version of the linked PLC user data type

manually in the task card "Tags interfaces" and enable the faceplate type.

When a PLC user data type is set to the "In test" state, the faceplate type referencing this PLC
user data type is set to the "In progress" state. After release of the PLC user data type in the
library, you may experience consistency problems in the faceplate type. In this case, update
the PLC user data type reference in the tag interface to the current version.

Result
You are using tags that are based on a PLC user data type in a faceplate instance.

Configuring screens
4.7 Configuring faceplates

568 System Manual, 11/2022

4.7.2.14 Using an HMI user data type

Introduction
You have the possibility to use HMI user data types in faceplates.
The use of HMI user data types provides the following advantages:
• You minimize the configuration effort.
• You reduce the consumption of resources.
• You ensure the unique and consistent naming of tags and thus significantly reduce the

probability of configuring errors.

Requirement
• A SIMATIC S7-1200 or SIMATIC S7-1500 controller is configured.
• An HMI device has been configured.
• At least one HMI user data type has been configured.
• A faceplate type has been configured and opened for editing.
• A screen has been created.

Procedure
1. Create an interface tag in the faceplate type:

– Go to the faceplate editor and open the "Tag interface" tab.
– Create an interface tag.
– Define the "HMIUDT" data type.
– Under "User data type structure", select the HMI user data type.
Alternatively, you drag-and-drop a version of an HMI user data type from the project library
onto the "<Add>" field in the "Tag interface" tag. An interface tag with the data type "HMIUDT"
is generated and linked with the version of the HMI user data type.

2. Create an object:
– Drag an object, e.g. an I/O field, from the "Toolbox" task card to the "Visualization" tab.
– Under "Properties > Properties > General > Process value", select "Tag" in the

Dynamization field and assign an element to the interface tag.
– Release the faceplate type.

3. Create a faceplate instance:
– Open the previously created screen and create an instance of the faceplate type.
– Open the Inspector window of the faceplate instance.
– Assign the appropriate HMI tag under "Properties > Properties > Miscellaneous >

Interfaces".

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 569

Result
You are using tags that are based on an HMI user data type in a faceplate instance.

4.7.2.15 Using a faceplate type in another faceplate type

Introduction
You can use a faceplate type in another faceplate type. In this way you assemble multiple
faceplate types and increase the reusability of the faceplates.
The faceplate type used in another faceplate type is called an inner faceplate type. The
faceplate type in which another faceplate type is used is called the outer faceplate type.
You can link the interface tags and interface properties configured in the inner faceplate type
with interface tags and interface properties of the outer faceplate type. Local tags of the
inner faceplate type cannot be linked to tags of the outer faceplate type.

Requirement
• A screen is created in the HMI device.

Procedure

Note
Reference to the same faceplate type is not supported
No other version of the same faceplate type can be used in a faceplate type.

1. Create a faceplate type in the library, e.g. "Faceplate_1".
Note
Smallest required device version
The smallest required device version of the outer faceplate type must be equal to or larger
than that of the inner faceplate type.

2. Configure interface tags and interface properties in the faceplate type, e.g.
"Interface_Tag_Faceplate_1" and "Interface_Property_Faceplate_1".

3. Configure screen objects in the "Visualization" tab.
4. Link the screen objects with interface tags and interface properties.
5. Release the faceplate type.
6. Create another faceplate type, for example, "Faceplate_2".
7. Configure interface tags and interface properties in the faceplate type, e.g.

"Interface_Tag_Faceplate_2" and "Interface_Property_Faceplate_2".
8. Switch to the "Visualization" tab of the outer faceplate type, e.g. "Faceplate_2".

Configuring screens
4.7 Configuring faceplates

570 System Manual, 11/2022

9. Drag and drop the inner faceplate type, e.g. "Faceplate_1", from the library into the
"Visualization" tab.
Alternatively, you can configure the "Faceplate container" control and link the "Faceplate
type" property to the inner faceplate type.

10.Select the inner faceplate type.
11.Open the Inspector window under "Properties > Properties > Miscellaneous > Interface".
12.Link the interface tags and interface properties of the inner faceplate type or the faceplate

container to the interface tags and interface properties of the outer faceplate type.
If you use interface tags of the "PLCUDT" or "HMIUDT" data type, only compatible interface
tags are displayed in the selection window.

13.Release the outer faceplate type.
14.Open the screen of the HMI device.
15.Drag and drop the outer faceplate into the screen.
16.Connect the faceplate tags to project tags.
17.Specify the values of the interface properties.
18.Open the Inspector window under "Properties > Events".
19.Specify system functions of the function list or scripts of the interface events.

4.7.2.16 Copying faceplate types and faceplate instances to other projects

Introduction
Faceplate types can be transferred to other projects.

Requirements
• The target project contains the devices on which faceplates can be used.
• Faceplate types: If PLC user data types are used in the faceplate type, the same PLC user data

types must be available in the target project.
• Faceplate instances: It must also be possible to integrate the tags of the used faceplate types

into the target project.
• Both projects (source and target) are open in different instances of TIA Portal.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 571

Note
Dependencies
Hierarchical dependencies exist between user data types, faceplate type and faceplate
instances:
1. Faceplate instances use faceplate types.
2. Faceplate types use user data types where necessary.
Therefore, note the order:
1. Configure PLC user data types.
2. Copy the faceplate type.
3. Copy the faceplate instances.

Configuring PLC user data types
1. Switch to the project from which you want to copy the faceplate type.
2. Check the faceplate type to be copied for any used PLC user data types.
3. Go to the target project.
4. In the target project, configure the PLC user data types required in the faceplate type that is

to be copied.

Copying a faceplate type
1. Switch to the project from which you want to copy the faceplate type.
2. Select the desired faceplate type.
3. Copy the desired faceplate type.
4. Go to the target project.
5. Select the "Types" folder in the project library.
6. Insert the faceplate type into the target project.
7. Integrate the required PLC user data types into the new faceplate type.

Copying via "Global libraries"
Alternatively, you can make the faceplate type available for other projects by copying it to a
global library.
To copy a faceplate type to another project via a global library, follow these steps:
1. Switch to the project from which you want to copy the faceplate type.
2. Copy the faceplate type.
3. Open the "Global libraries" pane and paste the copied faceplate type there.
4. Go to the target project.

Configuring screens
4.7 Configuring faceplates

572 System Manual, 11/2022

5. Open the "Global libraries" pane.
6. Copy the previously pasted faceplate type from the global library to the project library.

Note
Name redundancy
In case of a name redundancy, the name of the copied faceplate type is given a version
number in the form "-[number]", e.g. "Faceplate_1".

7. Integrate the required PLC user data types into the new faceplate type.

Copying a faceplate instance
1. Switch to the project from which you want to copy the faceplate instance.
2. Select the desired faceplate instance.
3. Copy the desired faceplate instance.
4. Go to the target project.
5. Open the screen in which the faceplate instance is to be inserted.
6. Paste the faceplate container.

The faceplate type is created in the project.
7. Link the required tags in the faceplate container with those in the project.

See also
Basics of faceplates (Page 524)

4.7.3 Connecting faceplate types to OPC UA
OPC UA is a standardized manufacturer-independent software interface for data exchange in
automation engineering.
You can use data values from an OPC UA connection in faceplate types.

Requirement
• A OPC UA connection is configured.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 573

Procedure
To use data values from an OPC UA connection, you must assign the data types to the
corresponding Unified data types. You can find the assignment of OPC UA and Unified data types
in the table below:

OPC UA data type Unified Faceplates data type
Int32 DInt
Boolean Bool
Byte USInt
DateTime DateTime
Double LReal
Float Real
Int16 Int
SByte SInt
String WString*
UInt16 UInt
UInt32 UDInt32

*Only possible as a local tag, data type for interface tags not available.
Data types that are not listed in the table are not supported by Unified Faceplates.
For more information on OPC UA, refer to the Runtime - Open Platform Communications
(OPC) documentation.

4.7.4 Dynamizing faceplates

4.7.4.1 Basics for the dynamization of faceplates

General
Both the properties of the faceplate type and the properties of the objects used in the
"Visualization" tab are dynamized in the Inspector window under "Properties > Properties".
You link functions of the function list and scripts to the faceplate type or objects of the
faceplate type in the "Visualization" tab in the Inspector window under "Properties > Events".

Use
You can dynamize events and properties of faceplates at two levels.
1. Dynamizing a faceplate type
2. Dynamizing a faceplate instance

Configuring screens
4.7 Configuring faceplates

574 System Manual, 11/2022

Dynamizing a faceplate type

Note
Using tags
Only use tags that are defined within the faceplate type.

You can dynamize properties of objects or events in the faceplate type on the "Visualization"
tab of the "Faceplate types" editor. You configure the individual objects as in the "Screens"
editor.
• To dynamize properties, the following methods are available in the editor:

– Tag
– Script
– Flashing (for colors)

Note
"Flashing" is not supported in Runtime.

– Property interface
With this method, you use the interface properties configured in the "Property interface"
tab.

Depending on the property, only certain methods are available.
• You dynamize events by using functions of the function list or scripts.

Faceplates support various methods. For more information on supported methods, see the
AUTOHOTSPOT section.

• You do not have access to the tags and scripts of the project within the faceplate type.
You must therefore configure interface tags in the faceplate type that you link with the tags
of the project in the faceplate instance.

• Each faceplate instance created with the faceplate version has the same objects with
identical dynamization.
You can edit this dynamization exclusively in the "Faceplate types" editor.

Dynamizing a faceplate instance
You configure the events or dynamic properties individually on the faceplate container. This
dynamization refers exclusively to the faceplate container.
Properties of the objects used in the faceplate type cannot be dynamized directly. For this
purpose, interface tags, interface properties or interface events must be defined in the
faceplate type, via which a dynamization is triggered.

See also
Basics of dynamizing screens (Page 462)

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 575

4.7.4.2 Dynamizing a faceplate type

Introduction
You dynamize screen objects in the faceplate type in the Inspector window editor.
To trigger the reaction to events in the faceplate instance, you can, for example, use the
interface tags that were created beforehand in the faceplate type.
You can connect the dynamic properties of the faceplate container with a tag or a script that
provides the property with values in Runtime.
Creating scripts in the faceplate type works the same way as creating scripts on objects in
screens.

Support of system functions
The use of system functions within faceplates is not fully supported. The following system
functions are available in the function list and in scripts:

Function list Script
Alarm system
 CreateOperatorInputInformation HMIRuntime.Alarming.SysFct.CreateOperator‐

InputInformation
CreateSystemInformation HMIRuntime.Alarming.SysFct.CreateSystemIn‐

formation
CreateSystemAlarm HMIRuntime.Alarming.SysFct.CreateSystemA‐

larm
Resource
 LookUpText HMIRuntime.Resources.SysFct.LookUpText
Tag
 UpdateTag HMIRuntime.Tags.SysFct.UpdateTag

IncreaseTag HMIRuntime.Tags.SysFct.IncreaseTag
InvertBitInTag HMIRuntime.Tags.SysFct.InvertBitInTag
ResetBitInTag HMIRuntime.Tags.SysFct.ResetBitInTag
ShiftAndMask HMIRuntime.Tags.SysFct.ShiftAndMask
SetBitInTag HMIRuntime.Tags.SysFct.SetBitInTag
SetTagValue HMIRuntime.Tags.SysFct.SetTagValue
DecreaseTag HMIRuntime.Tags.SysFct.DecreaseTag

The available system functions can be displayed grouped by areas or sorted alphabetically.
You can find more information at AUTOHOTSPOT.

Requirement
A faceplate type has been created.

Configuring screens
4.7 Configuring faceplates

576 System Manual, 11/2022

Dynamizing events

Note
Using tags
Use tags that have been defined within the faceplate type under "Tag interface" or "Local tags".
You link the tags defined in the faceplate type with the project tags in the faceplate instance.

1. Select the faceplate type or an object in the faceplate type.
2. Open the Inspector window under "Properties > Events".
3. Select an event.

Note
"Cleared" event
The "Cleared" event is triggered when the faceplate is already resolved. Therefore, access to
interface tags and local tags of the faceplate type is not possible.

4. Select a function from the function list or create a script.

Note
Global definition in the faceplate type
All definitions in the "Global definition" area of the "Scripts" editor in the faceplate type are used
in all instances of the faceplate type. When you define a tag in the "Global definition" area, for
example, any value changes of this tag can be seen in all instances of the faceplate type.

Tip for an efficient procedure
You are supported by snippets when creating scripts; you access these snippets from the shortcut menu
under "Snippets > Faceplates".

Dynamizing object properties
1. Select the relevant object.
2. Open the Inspector window of the object and select "Properties".

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 577

3. In the "Dynamization" column of the Inspector window, select the menu of the property that
you want to dynamize.

4. Select the method:
– Tag
– Script
– Property interface
– Flashing (for colors)

Note
The availability of methods is dependent on the selected property.
"Flashing" is not supported in Runtime.

See also
Introduction to runtime scripting (Page 969)
System functions (Page 909)

4.7.4.3 Dynamizing a faceplate instance

Introduction
You dynamize properties of the faceplate instance in exactly the same way as you dynamize
properties of another object in the "Screens" editor.
In the "Screens" editor, you can connect the dynamic properties of the faceplate container
with a tag or a script that provides the property with values in Runtime.
You have previously created the tags and scripts in the project.
In the Inspector window under "Properties > Events" you will find the interface events defined
in the faceplate type.

Requirement
A faceplate container with a faceplate instance is inserted in the screen.

Note
Requirement for triggering the "Enabled" event in Runtime
To trigger the "Enabled" event at the faceplate container, you must enable the options "Display
frame" and "Show heading" in the properties of the control under "Window settings".

Configuring screens
4.7 Configuring faceplates

578 System Manual, 11/2022

Dynamizing events
1. Select the faceplate container.
2. Open the Inspector window under "Properties > Events".
3. Select an event.
4. Select a function from the function list or create a script.

Tip for an efficient procedure

You are supported by snippets when creating scripts; you access these snippets from the shortcut menu
under "Snippets > Faceplates".

Dynamizing object properties
1. Select the faceplate instance.
2. Open "Properties" > "Properties" in the Inspector window of the faceplate instance.
3. In the "Dynamization" column, select the menu of the property you want to dynamize.
4. Select the required method:

– Tag
– Script
– Resource list (for strings)
– Flashing (for colors)

Note
"Flashing" is not supported in Runtime.

Depending on the property, only certain methods are available.

See also
Basics for the dynamization of faceplates (Page 574)
Basics of dynamizing screens (Page 462)

4.7.4.4 Accessing properties of the faceplate container with a script

Procedure
To read or write faceplate container properties from a faceplate type, use the Parent property
of the Faceplate object in a script.
You can access the following properties of the faceplate container, for example:
• Position
• Height and width

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 579

• Visibility
• Interface tags
• Interface properties

Example: Reading the position of the faceplate container
HMIRuntime.Trace(Faceplate.Parent.Top);
HMIRuntime.Trace(Faceplate.Parent.Left);

Read out the alarm with the RTIL Trace Viewer.

Example: Changing the position of the faceplate container via a button
export function Button_1_OnTapped(item, x, y, modifiers, trigger) {
// Read Faceplate container coordinates
 let containerTop = Faceplate.Parent.Top;
 let containerLeft = Faceplate.Parent.Left;

// Write Faceplate container coordinates. Increment with 100 pixels
 Faceplate.Parent.Top = containerTop + 100;
 Faceplate.Parent.Left = containerLeft + 100;
}

Example: Read connected tags
let TagNameSystem;
TagNameSystem = Faceplate.Parent.Properties.TagProperty_1.Tag;
HMIRuntime.Trace("System Tag Name: " + TagNameSystem);

Read out the alarm with the RTIL Trace Viewer.

See also
Tracing with the RTIL Trace Viewer (Page 1023)

Configuring screens
4.7 Configuring faceplates

580 System Manual, 11/2022

4.7.4.5 Configure faceplate as pop-up

Introduction
A faceplate can be opened in Runtime as pop-up window by means of a script.

Note
Only faceplate versions used in the HMI device are available in Runtime.
• Use the faceplate version in the HMI device as faceplate container or in a script as reference.

The reference is not resolved if you dynamically generate the name of the faceplate version
to be opened as a popup with a script.

• If there is no faceplate version with the name, an empty container is opened.

You have the option of calling a pop-up window either inside or outside a faceplate type:
• Outside a faceplate type: You transfer all interface tags and interface properties in the script.
• Inside a faceplate type: The interface tags and interface properties of the pop-up are applied

from the faceplate type in which the pop-up window is triggered.

Tip for an efficient procedure

The "OpenFaceplateInPopup" and "Close" methods are available as a snippet. The available snippets are
displayed in the shortcut menu of the "Scripts" editor.

Requirement
• A screen is open.

Open and close pop-up windows outside a faceplate type
To configure a faceplate as a pop-up window, for example, to an event of a screen object, follow
these steps:
1. Create a faceplate type.
2. Create faceplate tags, for example, "Interface_Tag_1".
3. Create interface properties, for example, "Color_Property_1" (color data type) and

"ResourceList_Property_1" (resource list data type).
Note
Interface property of the "Multilingual text" data type
Interface properties of the "Multilingual text" data type cannot be passed to a faceplate that
is called as a popup window outside of a faceplate type.

4. Configure the visualization of the faceplate.
5. Interconnect the tags and properties.
6. Release the version of the faceplate type.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 581

7. Open the screen of the HMI device.
8. Configure the screen object that is to trigger the event, for example, a button.
9. Open the Inspector window under "Properties > Events".
10.Select an event.
11.Click on "Convert function to script".

A function is generated.
12.Assign tags and interface properties to the faceplate interface. In the example, the "data"

parameter is used.
To specify text lists, use the prefix "@Default", for example, "@Default.Text_list_1".
Note
Graphic lists are not supported.

13.Create a global definition for the faceplate pop-up.
Example:
//JEx: "Faceplate in Popup"
var po;

14.Use the "OpenFaceplateInPopup" method.
– Define the type of the pop-up window, for example, "Faceplate_1".

Note
The version of the faceplate type preset as "Default" is automatically displayed in Runtime.

Note
Note that you must replace spaces and dots in the faceplate name with underscores when
referencing faceplate versions.
Reference faceplate versions with full version numbers, such as: Faceplate_1_V_0_0_3.

– Define the title of the pop-up window, for example, "Popup".
– Specify the parameter of the interface, for example, "data".
– Optional: The pop-up window is closed automatically when the specified screen is exited.

Default: 0. The pop-up window remains open until it is closed manually or Runtime is
terminated.
In the example, the pop-up window is closed as soon as the active screen is exited.

– Optional: Specify whether the pop-up window is hidden.
Default: false. The pop-up window is visible.

15.If required, specify where the pop-up window is opened.
16.Configure a "Close pop-up" button.
17.Open the Inspector window of the button under "Properties > Events".
18.Select an event.
19.Click on "Convert function to script".

A function is generated.
20.Use the "Close" method.

Configuring screens
4.7 Configuring faceplates

582 System Manual, 11/2022

Example code for calling the faceplate pop-up outside a faceplate type
//JEx: "Faceplate in Popup"
//TagsRequired: "HMI_Tag_1"
//FPlateRequired: "Faceplate_1", "Interface_Tag_1", "Color_Property_1",
"ResourceList_Property_1"
export function Button_1_OnTapped(item, x, y, modifiers, trigger) {
let data = {Interface_Tag_1:
{Tag:"HMI_Tag_1"},Color_Property_1:0xff00ff00,ResourceList_Property_1:"@De
fault.Text_list_1"};
po = UI.OpenFaceplateInPopup("Faceplate01_V_0_0_3", "Popup", data,
UI.ActiveScreen, false);
po.Left = 100;
po.Top = 150;
}

Example code for closing the faceplate pop-up outside a faceplate type
//JEx: "Close Faceplate in Popup"
//FPlateRequired: "Faceplate01_V_0_0_3", "po"
export function Button_2_OnTapped(item, x, y, modifiers, trigger) {
if (po)
{
po.Close();
po = undefined;
}
}

Calling a pop-up window within a faceplate type
To configure a faceplate as a pop-up window, for example, to an event of a screen object within a
different faceplate type, follow these steps:
1. Create a faceplate type, for example, "Faceplate_1".

The event that opens the pop-up window is configured in this faceplate type.
2. Create another faceplate type, for example, "Popup_1".

This faceplate type is opened as a pop-up window.
3. Create the same interface tags in both faceplate types, for example, "Interface_Tag_1".
4. Create the same interface properties in both faceplate types, for example,

"Color_Property_1" and "ResourceList_Property_1" (resource list data type).
Note
The name and data type of the interface tags and interface properties must match. The order
may be changed. Missing interface tags or interface properties are not transferred.

5. Configure a screen object that is to open the pop-up window, e.g. a button, in the
"Visualization" tab of "Faceplate_1".

6. Configure additional objects to visualize the two faceplate types.
7. Interconnect the tags and properties of both faceplate types.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 583

8. Select the screen object which is to open the pop-up window.
9. Open the Inspector window under "Properties > Events".
10.Select an event.
11.Click on "Convert function to script".

A function is generated.
12.Use the "OpenFaceplateInPopup" method.

– Define the type of the popup window with the desired version, for example,
"Popup_1_V_0_0_1".
The correctly detected reference to the faceplate type is highlighted in green.

– Define the title of the pop-up window, for example, "Popup".
– Optional: The pop-up window is closed automatically when the specified screen is exited.

Default: independentWindow = false.
The pop-up window is closed when the faceplate or the screen is exited.
In the example, the pop-up window remains open until the pop-up window is closed
manually or Runtime is exited.

– Optional: Specify whether the pop-up window is hidden.
Default: invisible = false.
The pop-up window is visible.

13.If required, specify where the pop-up window is opened.
po.Left = 100;
po.Top = 150;

14.Switch to the faceplate type "Popup_1".
15.Configure a "Close pop-up" button.
16.Open the Inspector window of the button under "Properties > Events".
17.Select an event.
18.Select the "Convert function to script" button.

A function is generated.
19.Use the "Close" method.
20.Release both type versions.

Example code for calling the faceplate pop-up within a faceplate type

//JEx: "Faceplate in Popup within another Faceplate"
//FPlateRequired: "Popup_1"
export function Button_1_OnTapped(item, x, y, modifiers, trigger) {
po = Faceplate.OpenFaceplateInPopup("Popup_1_V_0_0_1", "Popup", true,
false);
po.Left = 100;
po.Top = 150;
}

Configuring screens
4.7 Configuring faceplates

584 System Manual, 11/2022

Example code for closing the faceplate pop-up within a faceplate type

//JEx: " Close Faceplate in Popup within another Faceplate"
//FPlateRequired: "Popup_1_V_0_0_1"
export function Button_2_OnTapped(item, x, y, modifiers, trigger) {
Faceplate.Close();
}

Result
When the configured event is triggered in Runtime, the pop-up window opens or closes.

4.7.5 Example: Creating and using faceplates

4.7.5.1 Example: Configuring faceplates

Procedures overview
The example is divided into the following steps:
1. Create HMI tags.
2. Configure faceplate types:

– A faceplate type that is instantiated in the screen.
– A faceplate type that is opened as a pop-up from within the faceplate.
– A faceplate type that is instantiated in the faceplate.

3. Configure interface tags in the faceplate types.
4. Configure local tags in faceplate types.

Instead of tags: Use PLC user data types and thus minimize configuration work.
5. Instantiate inner faceplate type in outer faceplate type,
6. Configure interface properties in faceplate types.
7. Create an interface event.
8. Create a script to modify tags.
9. Creating the local scripts,
10.Configure the screen and instantiate the faceplate type.
11.Display project in Runtime.

See also
Example: Creating faceplate types (Page 588)
Example: Configuring interface tags in faceplate types (Page 591)

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 585

Instead of tags: Using PLC user data type in the faceplate type (Page 594)
Example: Creating a local script for opening the pop-up (Page 600)

4.7.5.2 Example: Introduction
The example works with two motors and their data.
You configure a screen that displays data of the motor "Engine 01" in a faceplate instance.
A second faceplate is instantiated in this faceplate, which has two buttons and a text box.
Press "Start Engine" and "Stop Engine" to change the speed of the motor to 2 or 0 rpm.
After pressing, the output field indicates whether the motor is in the status "On" or "Off".
Use the slider to adapt the speed.
If the speed exceeds a specified value, the output field under speed control changes its color
from white to red.

By pressing another button within the faceplate type, you open a new faceplate type as a
pop-up that displays the speed of the motor "Engine 02".

Configuring screens
4.7 Configuring faceplates

586 System Manual, 11/2022

4.7.5.3 Example: Create HMI tags

Task
You create the HMI tags required for the project.

Requirement
• A project has been created.
• An HMI device has been configured.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 587

Procedure
1. Open the "Standard tag table" editor under "HMI Tags" in the project tree.
2. Create the following tags in the "HMI tags" tab:

Tag name Data type
Engine01_CurrentRPM Int
Engine01_SpeedMax Int
Engine01_SpeedMin Int
Engine02_CurrentRPM Int

3. Assign valid values to the tags in the Inspector window under "Properties > Properties >
Values".

Result
You have configured the HMI tags required for the example.

4.7.5.4 Example: Creating faceplate types

Task
1. To create a faceplate type that is instantiated in the start screen. This faceplate type displays

the "Engine 01" data in Runtime. Clicking a button opens another faceplate type as a popup.
2. You create a faceplate type that is opened as a pop-up from the faceplate type created in the

first step when a button is clicked. This faceplate type displays the current speed of "Engine
02" in Runtime.

3. To create a faceplate type that is embedded in the faceplate from the first step and starts and
stops the motor "Engine 01".

Requirement
• A project has been created.
• An HMI device has been configured.

Procedure
1. To create the first faceplate for "Engine 01"", create a new faceplate type in the project library

and name it accordingly, for example, "FP_Engine01".
A version 0.0.1 of the faceplate type is being created and has the status "In progress".
The version is opened in the "Visualization" tab.

2. Drag the required objects from the "Toolbox" task card to the faceplate type. The objects
required for the example are listed and described in the table below.

Configuring screens
4.7 Configuring faceplates

588 System Manual, 11/2022

3. Arrange the objects according to your needs. This may look like this, for example:

4. To create the second faceplate type for "Engine 02", repeat steps 1 and 2. Name the faceplate
type, for example, "FP_Engine02".

5. Arrange the objects according to your needs. This may look like this, for example:

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 589

6. To create the third faceplate type for "Engine StartStop", repeat steps 1 and 2. Name the
faceplate type, for example, "FP_StartStop".

7. Arrange the objects according to your needs. This may look like this, for example:

Objects in the faceplate types
Faceplate type Object Object name Meaning/Properties
FP_Engine01 Rectangle Rectangle_1 Limitation and background of the display

area
Gauge Gauge_1 Instrument display of the current motor

speed
Text box Text box_1 Text "Engine_01"
Text box Text box_2 Text "Speed Max"
Text box Text box_3 Text "Speed Min"
Text box Text box_4 Text "rpm"
Text box Text box_5 Text "rpm"
Text box Text box_6 Text "rpm"
IO field IO field_1 Display of the HMI tag "Engine01_Speed‐

Min"
IO field IO field_2 Display of the HMI tag "Engine01_Speed‐

Max"
IO field IO field_3 Display of the current motor speed.
Button Button_1 Pressing the button opens a pop-up that

shows the speed for Engine 02.
FP_Engine02 Rectangle Rectangle_1 Limitation and background of the display

area
Gauge Gauge_1 Instrument display of the current motor

speed
Text box Text box_1 Text "rpm"
IO field IO field_1 Display of the current motor speed.
Button Button_1 Pressing the button closes the pop-up.

FP_StartStop Rectangle Rectangle_1 Limitation and background of the display
area

Button Button_1 When the button is pressed, the speed of
Engine 01 is set to the value 2.

Button Button_2 When the button is pressed, the speed of
Engine 01 is set to the value 0.

IO field IO field_1 Display of the current motor status "On"
or "Off".

Configuring screens
4.7 Configuring faceplates

590 System Manual, 11/2022

Result
The required faceplate types have been created and are in the status "In progress". The objects
required in the faceplate types are configured.

See also
Creating a faceplate type in the project library (Page 531)
Working with faceplate types and versions (Page 533)

4.7.5.5 Example: Configuring interface tags in faceplate types

Task
To configure tags in the faceplate type with which you can dynamically control properties and
which are required for data exchange in the project.

Requirement
The faceplate types required for the example are created and are in the "In progress" state.

Configuring interface tags

Note
Interface tags are required for the exchange of values between the faceplate and the project.
When used in screens, access to individual object properties in faceplates is possible exclusively
via faceplate tags.
When you follow the example with PLC user data types, use the PLC user data type accordingly.
Note that the PLC user data type must exist in the project library in this case.

1. Open the faceplate type "FP_Engine01".
2. In the editor, switch to the "Tags Interface" tab.
3. Configure the required tags. To do this, click the button or on "Add".

The tags required for the various faceplate types are listed in the table below.
4. Repeat steps 1 to 3 for the faceplate types "FP_Engine02" and "FP_StartStop".

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 591

Interface tags of the faceplate types
Faceplate type Tag Data type Source Target
FP_Engine01 Engine01_Cur‐

rentRPM
Int Current speed Engine 01

(Actual value)
IO field
(Faceplate)

Engine01_SpeedMax Int Specification of the maximum
speed

IO field
(Faceplate)

Engine01_SpeedMin Int Specification of the minimum
speed

IO field
(Faceplate)

Engine02_Cur‐
rentRPM

Int Current speed Engine 02
(Actual value)

IO field
(Faceplate)

FP_Engine02 Engine02_Cur‐
rentRPM

Int Current speed Engine 02
(Actual value)

IO field
(Faceplate)

FP_StartStop Engine01_Cur‐
rentRPM

Int Current speed Engine 01
(Actual value)

IO field
(FP_Engine01)

Assigning interface tags in the faceplate types
To assign tags to the created objects in the faceplate types, follow these steps:
1. Open the Faceplate type in the "Visualization" tab.
2. Select the object to which you want to assign a tag.
3. Open the Inspector window under "Properties > Properties > General".
4. Under "Process value" in the "Dynamization" column, set the value "Tag".

A screen for selecting the tag is shown on the right-hand side of the Inspector window.
5. Assign the corresponding tag to the "Process value" property. You will find the tag assignment

in the table.
If the tag is linked in the project, the object displays the corresponding values in Runtime.
Note
When you follow the example with PLC user data types, use the PLC user data type
accordingly.

Tag assignment
Faceplate type Object Object name Tag assignment
FP_Engine01 Gauge Gauge_1 Engine01_CurrentRPM

IO field IO field_1 Engine01_SpeedMax
IO field IO field_2 Engine01_SpeedMin
IO field IO field_3 Engine02_CurrentRPM

FP_Engine02 Gauge Gauge_1 Engine02_CurrentRPM
IO field IO field_1 Engine02_CurrentRPM

FP_StartStop IO field IO field_1 Engine01_CurrentRPM

Configuring screens
4.7 Configuring faceplates

592 System Manual, 11/2022

See also
Instead of tags: Using PLC user data type in the faceplate type (Page 594)
Using a PLC user data type (Page 566)

4.7.5.6 Example: Configure local tags in faceplate types.

Task
You configure a local tag in the faceplate type "FP_StartStop". Clicking the "Button_1" or
"Button_2" buttons changes the local tag to "On" or "Off". The I/O field "IO field_1" displays the
value of the local tag.

Requirement
• The faceplate type "FP_StartStop" has been created.
• The faceplate type is in the "in progress" status.

Configuring the local tags

Note
Local tags are used to exchange values within the faceplate. When used in screens, access to
individual object properties in faceplates is not possible via local tags.

1. Open the faceplate type "FP_StartStop".
2. In the editor, go to the "Local tags" tab.
3. Configure the tag "OnOff" as a WString. To do this, click the button or on "Add".

Assigning local tags in the faceplate types
1. Open the "Visualization" tab.
2. Select the I/O field "IO field_1".
3. Open the Inspector window under "Properties > Properties > General".
4. Under "Process value" in the "Dynamization" column, set the value "Tag". A screen for

selecting the tag is shown on the right-hand side of the Inspector window.
5. Assign the local tag "OnOff" to the "Process value" property. If the tag is linked in the project,

the object displays the corresponding values in Runtime.
Note
When you follow the example with PLC user data types, use the PLC user data type
accordingly.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 593

Assigning values to local tag
To assign values to the configured local tag when the buttons are clicked, follow these steps:
1. Select the button "Button_1".
2. Open the Inspector window under "Properties > Events".
3. Select the event "Click left mouse button" and click the button.

A new script is created.
4. Define the following script:

export function Button_Start_OnTapped(item, x, y, modifiers,
trigger){
 let tag1 = Tags("Engine01_CurrentRPM").Read();
 if(tag1 == 0){
 HMIRuntime.Tags.SysFct.SetTagValue("OnOff", "On");
 }
}

5. Repeat steps 2 and 3 for the "Button_2" button.
6. Select the event "Click left mouse button" and click the button.

A new script is created.
7. Define the following script:

export function Button_Start_OnTapped(item, x, y, modifiers,
trigger){
 HMIRuntime.Tags.SysFct.SetTagValue("OnOff", "Off");
}

Note
The scripts are extended in the course of this example to meet the still missing requirements.

Result
You have configured a local tag and assigned it to an I/O field. When the buttons are clicked, a
value is assigned to the local tag.

4.7.5.7 Instead of tags: Using PLC user data type in the faceplate type

Introduction
You have configured multiple motors of the same type. To do so, use data blocks based on a PLC
user data type.

Task
You use the existing PLC user data type in the faceplate type.
You link the tags of the data blocks defined in the PLC user data type with those in the
faceplate instance.

Configuring screens
4.7 Configuring faceplates

594 System Manual, 11/2022

Requirement
• A SIMATIC S7-1200 or SIMATIC S7-1500 controller is configured.
• A PLC user data type suitable for the motor type is configured.
• At least one PLC tag based on the PLC user data type has been configured.
• The "Unified Faceplate Types" is opened with the created faceplate type.

Procedure
1. Drag the desired PLC user data type that you want to use in the project from the project tree

into the project library under "Types".
2. Adapt the faceplate type so that the PLC user data type for the motors is also used in this

faceplate type.
– Switch to the "Tags interface" tab.
– Select "PLCUDT" as the data type.
– Under "User data type structure", select the defined PLC user data type.

The PLC user data type supplies the faceplate type with the corresponding tags.
– Switch back to the "Visualization" tab.
– Keep in mind that tags are accessed in the faceplate type via the PLC user data type.

This affects, for example, the use of faceplate tags in dynamized object properties and in
local scripts.

3. Release the faceplate type.
4. From the faceplate type, create the same number of faceplate instances as the number of

motors you have configured.
5. Link the tags from the data blocks and faceplate instances with each other.

– The tag names in data blocks and faceplate instance are hierarchically structured.
– This means that the tags from the individual faceplate instances can always be assigned

uniquely to the tags of the respective data block.
– When the PLC user data type contains tags that you do not require in the visualization,

ignore these tags.

See also
Using a PLC user data type (Page 566)

4.7.5.8 Example: Instantiate the inner faceplate type in the outer faceplate type

Task
Insert the faceplate type "FP_StartStop" in the faceplate type "FP_Engine01".

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 595

Requirement
• The faceplate types "FP_StartStop" and "FP_Engine01" are created.
• The faceplate types are in the "In progress" status.

Procedure
1. Release the faceplate type "FP_StartStop".
2. Open the faceplate type "FP_Engine01" in the "Visualization" tab.
3. Drag-and-drop the "FP_Start_Stop" faceplate type into the "FP_Engine01" faceplate type at

the desired location. This may look like this, for example:

Assigning interface tags to the inner faceplate type
To assign tags to the inner faceplate type "FP_StartStop" from the outer faceplate type
"FP_Engine01", follow these steps:
1. Open the faceplate type "FP_Engine01" in the "Visualization" tab.
2. Select the faceplate instance from "FP_StartStop".
3. Open the Inspector window under "Properties > Properties > Miscellaneous > Interface".
4. Assign the tag "Engine01_CurrentRPM" to the "Engine01_CurrentRPM" interface.

Result
An inner faceplate type is created in an outer faceplate type and the interface tags are assigned.

Configuring screens
4.7 Configuring faceplates

596 System Manual, 11/2022

See also
Using a faceplate type in another faceplate type (Page 570)
Using a PLC user data type (Page 566)
Instead of tags: Using PLC user data type in the faceplate type (Page 594)

4.7.5.9 Example: Configuring interface properties in faceplate types

Task
Design the background color of the I/O field "IO field_3" (display box for the speed (actual value))
with interface properties. If a specified speed is exceeded, the background color of the I/O field
should change from white to red.

Requirement
• The faceplate type "FP_Engine01" is configured.
• The faceplate type "FP_Engine01" is open for editing.

Configure interface property
1. Change to the "Property interface" tab in the editor.
2. Click the button or on "Add".
3. Assign the name "BackgroundColor".
4. Select the "Color" data type:
5. Go to the "Visualization" tab.

Assign interface property
1. Select the I/O field "IO field_3".
2. Open the Inspector window under "Properties > Properties > Appearance".
3. Under "Background - color", in the "Dynamization" column, set the value to "Property

interface".
A screen for selecting the interface property is shown on the right side of the Inspector
window.

4. Assign the interface property "BackgroundColor" to the "Background - color" property.

Result
You have configured an interface property that allows you to customize the background color in
the faceplate instance.
The value of the interface property "BackgroundColor" adapts the background of the I/O field
"IO field_3" in Runtime.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 597

See also
Interface properties in faceplates (Page 548)

4.7.5.10 Example: Create an interface event

Task
You configure an interface event in the faceplate type "FP_StartStop". To set the speed to 0, use
the interface event in the faceplate instance that is used in the faceplate type "FP_Engine01".

Requirement
• The faceplate type "FP_StartStop" is configured.
• The faceplate type "FP_StartStop" is open for editing.

Configuring an interface event
1. In the editor, go to the "Event interface" tab.
2. Click on the button or on the entry "Add".

A new interface event is created.
3. Assign the name "Engine_Stop".
4. Click on the entry "Add" below the interface event.

A new parameter is created. The data type of the parameter is "Int".
5. Assign the name "Stop".

Assigning an interface event
1. Select the "Button_2" button.
2. Open the Inspector window under "Properties > Events".
3. Select the event "Click left mouse button" and click on the button .
4. Define the following script:

export function Button_Stop_OnTapped(item, x, y, modifiers,
trigger) {
 let parameters = {Stop:0};
 Faceplate.RaiseEvent("Stop_Engine", parameters);
 HMIRuntime.Tags.SysFct.SetTagValue("OnOff", "Off");
}

5. Release the faceplate type "FP_StartStop".

Calling an interface event in instance
1. Open the faceplate type "FP_Engine01".
2. Select the faceplate instance of the "FP_StartStop" faceplate type.

Configuring screens
4.7 Configuring faceplates

598 System Manual, 11/2022

3. Open the Inspector window under "Properties > Events".
4. Select the "Stop_Engine" event and click the button .
5. Define the following script:

export function Faceplate_container_1_OnStop_Engine(item, Stop) {
 HMIRuntime.Tags.SysFct.SetTagValue("Engine01_CurrentRPM",
Stop);
}

Result
You have configured an interface event with which you can set the speed to the value 0.

4.7.5.11 Example: Using e script to change tags

Task
To increase the speed via the interface tag "Engine01_CurrentRPM", expand the script that runs
when the "Button_1" button is clicked.

Requirement
• The faceplate type "FP_StartStop" is configured.
• The interface tag "Engine01_CurrentRPM" has been configured.
• The faceplate type "FP_StartStop" is open for editing.

Configuring a script
1. In the editor, switch to the "Visualization" tab.
2. Select the button "Button_1".
3. Open the Inspector window under "Properties > Events".
4. Select the event "Click left mouse button" and click on .
5. Define the following script:

export function Button_Start_OnTapped(item, x, y, modifiers,
trigger) {
 let tag1 = Tags("Engine01_CurrentRPM").Read();
 if (tag1 == 0) {
 HMIRuntime.Tags.SysFct.SetTagValue("Engine01_CurrentRPM", 2);
 HMIRuntime.Tags.SysFct.SetTagValue("OnOff", "On");
 }
}

Result
You have configured a script with which the speed is set to a value of 2 when you click the
"Button_1" button.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 599

4.7.5.12 Example: Creating a local script for opening the pop-up

Task
You create a script that runs when a button is clicked and transfers values to tags. Clicking the
button in the faceplate type opens an additional faceplate type as a pop-up.

Requirement
• The faceplate types "FP_Engine01" and "FP_Engine02" are created.
• The "FP_Engine02" faceplate type is released in the version 0.0.1.

Note
If necessary, adapt the script below according to your released version.
Replace spaces and periods with underscores.

• The faceplate type "FP_Engine01" is open for editing.

Procedure for creating the script: Opening the faceplate pop-up in the faceplate type
1. In the editor, switch to the "Visualization" tab.
2. Select the "Button_1" button.
3. Open the Inspector window under "Properties > Events".
4. Select the entry "Click left mouse button" and click on the button .
5. Define the following script:

export function Button_1_OnTapped(item, x, y, modifiers, trigger) {
 let po = Faceplate.OpenFaceplateInPopup("FP_Engine02_V_0_0_1",
"Engine02", true, false);
 po.Left = 100;
 po.Top = 150;
 po.Visible = true;
}
Note
When you follow the example with PLC user data types, note the deviating tag names.

Result
You have configured a script at the button in the faceplate type that opens an additional
faceplate as a pop-up.

See also
Dynamizing a faceplate type (Page 576)
Configure faceplate as pop-up (Page 581)

Configuring screens
4.7 Configuring faceplates

600 System Manual, 11/2022

4.7.5.13 Example: Create local script to close the pop-up

Task
You create a script that runs when a button is clicked and closes the faceplate pop-up in which
the button is located.

Requirement
• The faceplate types "FP_Engine01" and "FP_Engine02" are created.
• The faceplate type "FP_Engine02" is open for editing.

Procedure for creating the script: Closing the faceplate pop-up
1. In the editor, switch to the "Visualization" tab.
2. Select the button.
3. Open the Inspector window under "Properties > Events".
4. Select the entry "Click left mouse button" and click on the button .
5. Define the following script:

export function Button_1_OnTapped(item, x, y, modifieres, trigger)
{
 Faceplate.Close();
}

Result
To close the faceplate pop-up, you have configured a script on the button in the faceplate type.

4.7.5.14 Example: Configure the screen and instantiate the faceplate type.

Task
You insert an instance of the faceplate type "FaceplateEngine01" in a screen and link the tags of
the faceplate instance with tags in the project.

Requirement
• A screen has been created.
• The "Screens" editor is open.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 601

Creating a faceplate instance
1. Release all created faceplate types.

Note
To avoid error messages about inconsistency, start with the inner faceplate when releasing
the faceplates. In the example, this is "FP_StartStop". Then release the faceplate that will be
instantiated in the script. In the example, this is "FP_Engine02". To finish, release
"FP_Engine01".

2. Drag and drop the "FP_Engine01" faceplate type into the "Screens" editor.
Alternatively, drag the "Faceplate container" object into the editor and link the container with
the faceplate type.

3. Define the properties of the faceplate container.
4. Under "Interface", assign the appropriate tag to all existing interface tags.

Assign a value for the "BackgroundColor" interface property.

Assigning tags
1. Select the faceplate instance or the faceplate container.
2. Open the Inspector window under "Properties > Properties > Miscellaneous > Interface".
3. Assign the appropriate HMI tag to all existing interface tags.

Assigning interface properties
1. Select the faceplate instance or the faceplate container.
2. Open the Inspector window under "Properties > Properties > Miscellaneous > Interface".
3. Under "BackgroundColor", in the "Dynamization" column, set the value to "Script".
4. Create the following script:

export function
Faceplate_Container_1_Properties_BackgroundColor_Trigger (item) {
 var value;
 let ProcessValue = Tags("Engine01_CurrentRPM").Read();
 if (ProcessValue > 40) {
 value = HMIRuntime.Math.RGB(255,0,0)
 }
 else {
 value = HMIRuntime.Math.RGB(255,255,255)
 }
 return value;
}

The background color of the I/O field "IO field_3" in faceplate type "FP_Engine01" is white up
to a speed of 40. When this speed is exceeded, the background color changes to red.

Configuring screens
4.7 Configuring faceplates

602 System Manual, 11/2022

Inserting a slider
1. Drag and drop a slider from the "Toolbox" task card into the screen.
2. Select the slider and open the Inspector window under "Properties > Properties > General".
3. Assign the "Engine01_CurrentRPM" tag to the "Process value" property.

Result
The faceplate type is instantiated on a screen in a faceplate container.
You have linked the interface tags with project tags.
You have assigned a dynamic value to the "BackgroundColor" property of the I/O field "IO
field_3".
You have configured a slider that can be used to adapt the speed "Engine01_CurrentRPM" in
Runtime.
This completes the integration of the faceplate type into the project.

See also
Creating a faceplate instance (Page 564)

4.7.5.15 Example: Displaying a project in runtime.

Procedure
1. Compile and upload the project to the HMI device.
2. Open the Runtime on the HMI device.

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 603

Result
When you have implemented the project as shown in the example, you will see the following
elements in Runtime that display the values you have specified:
1. Start screen:

2. After pressing the button to start the motor:

3. After pressing the button to open the pop-up:

Configuring screens
4.7 Configuring faceplates

604 System Manual, 11/2022

Configuring screens
4.7 Configuring faceplates

System Manual, 11/2022 605

Configuring screens
4.7 Configuring faceplates

606 System Manual, 11/2022

Configuring tags 5
5.1 Basics

5.1.1 Basics of tags

Introduction
Process values are forwarded in runtime using tags. Process values are data which is stored in the
memory of one of the connected automation systems. They represent the status of a plant in the
form of temperatures, fill levels or switching states, for example. Define external tags for
processing the process values in WinCC.
WinCC works with two types of tag:
• External tags
• Internal tags
The external tags form the link between WinCC and the automation systems. The values of
external tags correspond to the process values from the memory of an automation system.
The value of an external tag is determined by reading the process value from the memory
of the automation system. It is also possible to rewrite a process value in the memory of the
automation system.
Internal tags do not have a process link and only convey values within the WinCC. The tag
values are only available as long as runtime is running.
In WinCC, you can visualize and change process values, which are transferred using tags, on
your HMI device.

System Manual, 11/2022 607

Tags in WinCC
For external tags, the properties of the tag are used to define the connection that the WinCC uses
to communicate with the automation system and form of data exchange.
Tags that are not supplied with values by the process - the internal tags - are not connected
to the automation system. In the tag's "Connection" property, this is identified by the "Internal
tag" entry.
You can create tags in different tag tables for greater clarity. You then directly access the
individual tag tables in the "HMI tags" node in the project tree. The tags from all tag tables
can be displayed with the help of the table "Show all tags".
With structures you bundle a number of different tags that form one logical unit. Structures
are project-associated data and are available for all HMI devices of the project. You use the
"Types" editor in the project library to create and edit a structure.

Configuring tags
5.1 Basics

608 System Manual, 11/2022

See also
Overview of HMI tag tables (Page 609)
External tags (Page 610)
Internal tags (Page 615)

5.1.2 Overview of HMI tag tables

Introduction
HMI tag tables contain the definitions of the HMI tags that apply across all devices. A tag table
is created automatically for each HMI device created in the project.
In the project tree there is an "HMI tags" folder for each HMI device. The following tables can
be contained in this folder:
• Default tag table
• User-defined tag tables
• Table of all tags
In the project tree you can create additional tag tables in the "HMI tags" folder and use these
to sort and group tags and constants. You can move tags to a different tag table using a
drag-and-drop operation or with the help of the "Tag table" field. Activate the "Tags table"
field using the shortcut menu of the column headings.
In WinCC you can display the locations of use for all tags. Use the "Cross-references"
command in the shortcut menu or the F11 key to call the "Cross-references" editor for a
selected tag table. In the editor you can see all objects that the respective tag uses and you
can jump directly to the location of use of the tag.

Default tag table
There is one default tag table for each HMI device of the project. It cannot be deleted or moved.
The default tag table contains HMI tags and, depending on the HMI device, also system tags. You
can declare all HMI tags in the standard tag table or, as necessary, in additional user-defined tag
tables.

User-defined tag tables
You can create multiple user-defined tag tables for each HMI device in order to group tags
according to your requirements. You can rename, gather into groups, or delete user-defined tag
tables. To group tag tables, create additional subfolders in the HMI tags folder.

Configuring tags
5.1 Basics

System Manual, 11/2022 609

Show all tags
The "HMI tags" tab in the "All tags" table shows an overview of all HMI tags and system tags of
the HMI device in question. This table cannot be deleted, renamed or moved. The "Tags table"
column shows you in which tag table a tag is included. Using the "Tags table" field, the
assignment of a tag to a tags table can be changed.
The "All tags" table contains an additional tab "System tags". The system tags are created by
the system and used for internal management of the project. The names of the system tags
begin with the "@" character. System tags cannot be deleted or renamed. You can evaluate
the value of a system tag, but cannot modify it.

Discrete alarms, analog alarms and logging tags
The following tables are also available in an HMI tag table:
• Discrete alarms

In the "Discrete alarms" table, you configure discrete alarms to the HMI tag selected in the HMI
tag table. When you configure a discrete alarm, multiple selection in the HMI tag table is not
possible. You configure the discrete alarms for each HMI tag separately.

• Analog alarms
In the "Analog alarms" table, you configure analog alarms to the HMI tag selected in the HMI
tag table. When you configure an analog alarm, multiple selection in the HMI tag table is not
possible. You configure the analog alarms for each HMI tag separately.

• Logging tags
In the "Logging tags" table, you configure logging tags to the HMI tag selected in the HMI tag
table. When you configure a logging tag, multiple selection in the HMI tag table is not
possible. You configure the logging tags for each HMI tag separately.

With the help of these tables you configure alarms and logging tags for the currently selected
HMI tag.

5.1.3 External tags

Introduction
External tags allow the data exchange between the components of an automation system, for
example, between an HMI device and a PLC.
An external tag is the image of a defined memory location in the PLC. You have read and
write access to this storage location from both the HMI device and from the PLC.
As external tags map a storage location in the PLC, the applicable data types depend on the
PLC that is connected to the HMI device.
If you write a PLC control program in STEP 7, the PLC tags created in the control program will
be added to the PLC tag table. If you want to connect an external tag to a PLC tag, access the
PLC tags directly via the PLC tag table and connect them to the external tag.

Configuring tags
5.1 Basics

610 System Manual, 11/2022

Data types
All simple data types available on the connected PLC are available at an external tag in WinCC.
If the data type of the PLC tag is not available in WinCC, a compatible data type is automatically
used at the HMI tag. Interconnected PLC data types and arrays are not supported.
If you use PLC data types, the data type is adopted by WinCC. You can change the data type
at the HMI tag, if necessary.

Central tag management in STEP 7
You can connect also connect DB instances of user-defined PLC data types (UDT) to the HMI tags.
The PLC data type and the corresponding DB instances are created and updated centrally in
STEP 7. In WinCC, you can use the following sources as the PLC tag (DB instances):
• Data block elements that use a UDT as data type
• Data block instances of a UDT
The data type is taken from STEP 7 and is not converted to an HMI data type. The access type
is always "Symbolic access". Depending on the release for WinCC in STEP 7, elements and
structured elements of the PLC data type are applied to WinCC.

Note
Accessing PLC data types
Access to PLC data types is only available in conjunction with SIMATIC S7-1500.

Synchronization with PLC tags
A variety of options for synchronizing external tags with the PLC tags are available in the runtime
settings under "Settings for tags".
When you perform synchronization, you have the option of automatically applying the tag
names of the PLC to external tags and reconnecting the existing tags.
The generated tag name is derived from the position of the data value in the hierarchical
structure of the data block.

Update of tag values
For external tags, the current tag values are transmitted in runtime via the communication
connection between WinCC and the connected automation systems and then saved in the
runtime memory. Next, the tag value will be updated to the set cycle time. For use in the runtime
project, WinCC accesses tag values in the runtime memory that were read from the PLC at the
previous cycle time. As a result, the value in the PLC can already change while the value from the
runtime memory is being processed.

See also
Creating external tags (Page 626)

Configuring tags
5.1 Basics

System Manual, 11/2022 611

5.1.4 Addressing external tags

Introduction
The options for addressing external tags depend on the type of connection between WinCC and
the PLC in question. A distinction must be made between the following connection types:
• Integrated connection

Connections of devices which are within a project and were created with the "Devices &
Networks" editor are referred to as integrated connections.

• Non-integrated connection
Connections of devices which were created with the "Connections" editor are referred to as
non-integrated connections. It is not necessary that all of the devices be within a single
project.

The connection type can also be recognized by its icon.

Integrated connection
Non-integrated connection

Addressing with integrated connections
An integrated connection offers the advantage that you can address a tag both symbolically and
absolutely.
For symbolic addressing, you select the PLC tag via its name and connect it to the HMI tag.
The valid data type for the HMI tag is automatically selected by the system.
During the symbolic addressing of a data block with optimized access and standard access,
the address of an element in the data block is dynamically assigned and is automatically
adopted in the HMI tag in the event of a change. You do not need to compile the connected
data block or the WinCC project for this step.
For data blocks with optimized access, only symbolic addressing is available.
For symbolic addressing of elements in a data block, you only need to recompile and reload
the WinCC project in case of the following changes:
• If the name or the data type of the linked data block element or global PLC tag has changed.
• If the name or the data type of the higher level structure node of a linked element in the data

block element or global PLC tag has changed.
• If the name of the connected data block has changed.
Symbolic addressing is currently available with the following PLCs:
• SIMATIC S7-1500
• SIMATIC ET 200 CPU
• SIMATIC S7-1500 software controller
Symbolic addressing is also available if you have an integrated link.
You can also use absolute addressing with an integrated connection. You have to use
absolute addressing for PLC tags from a SIMATIC S7-300/400 PLC. If you have connected an
HMI tag with a PLC tag and the address of the PLC tag changes, you only have to recompile

Configuring tags
5.1 Basics

612 System Manual, 11/2022

the control program to update the new address in WinCC. Then you recompile the WinCC
project and load it onto the HMI device.
In WinCC, symbolic addressing is the default method. To change the default setting, select
the menu command "Options > Settings > Visualization > HMI tags".
The availability of an integrated connection depends on the PLC used. The following table
shows the availability:

Controller Integrated connection Comments
S7-300/400 Yes The linking of tags is not checked in runtime. If

the tag address changes in the PLC and the HMI
device is not compiled again and loaded, the
change is not registered in runtime.

S7-1500 Yes A validity check of the tag connection is per‐
formed in runtime during symbolic addressing. If
an address is changed in the PLC, the change is
registered and an error message is issued. In the
case of absolute addressing, the behavior descri‐
bed for the S7-300/400 applies.

SIMATIC ET 200
CPU

Yes A validity check of the tag connection is per‐
formed in runtime during symbolic addressing. If
an address is changed in the PLC, the change is
registered and an error message is issued. In the
case of absolute addressing, the behavior descri‐
bed for the S7-300/400 applies.

SIMATIC S7-1500
software control‐
ler

Yes A validity check of the tag connection is per‐
formed in runtime during symbolic addressing. If
an address is changed in the PLC, the change is
registered and an error message is issued. In the
case of absolute addressing, the behavior descri‐
bed for the S7-300/400 applies.

Create an integrated connection in the "Devices & Networks" editor. If the PLC is contained in
the project and integrated connections are supported, you can then also have the connection
created automatically. To do this, when configuring the HMI tag, simply select an existing
PLC tag to which you want to connect the HMI tag. The integrated connection is then
automatically created by the system.

Addressing with non-integrated connections
In the case of a project with a non-integrated connection, you always configure a tag connection
with absolute addressing. Select the valid data type yourself. If the address of a PLC tag changes
in a project with a non-integrated connection during the course of the project, you also have to
make the change in WinCC. The tag connection cannot be checked for validity in runtime, an
error message is not issued.
A non-integrated connection is available for all supported PLCs.
Symbolic addressing is not available in a non-integrated connection.
With a non-integrated connection, the control program does not need to be part of the
WinCC project. You can perform the configuration of the PLC and the WinCC project
independently of each other. For configuration in WinCC, only the addresses used in the
PLC and their function have to be known.

Configuring tags
5.1 Basics

System Manual, 11/2022 613

5.1.5 Indirect addressing

Absolute address multiplexing
For Unified Runtime PCs and Panels, absolute address multiplexing was enabled for HMI tags
with S7 1200/1500 and S7 300/400 connections. You can configure the tags as placeholders for
the address in the S7 1200/1500 and S7 300/400 PLCs. With a single tag you access a large
number of memory locations in the address range of the PLC.

Product requirements

• You determine an absolute multiplex address via:
– Address dialog
– Text input
– Copy/paste string
– Openness
– Excel Export/Import

• Address multiplexing is provided for integrated and non-integrated connections.
• You can use any internal or external tag with a numeric data type from the same device as the

index tag.
• Address multiplexing is possible for all elementary data types.
• There is no support for the arrays on S7 1200/1500 and S7 300/400.
• Address multiplexing must not be provided for any structured data type.
• When using the global search, you can find the corresponding multiplex address and jump to

it.
• You get a replacement text in the PLC tag property if the tag is used as multiplexing.
• You can work with multiplexed tags in the runtime.

Design requirements
• Implement tag multiplexing based on the classic HMI tag for the Unified devices.
• Consider and support existing NFR aspects of the HMI tag, specifically performance, delta

compile, quantity structures, user friendliness, and testability.

Configuring tags
5.1 Basics

614 System Manual, 11/2022

5.1.6 Internal tags

Introduction
Internal tags do not have any connection to the PLC.

Principle
Internal tags are stored in the memory of the HMI device. Therefore, only this HMI device has
read and write access to the internal tags. You can create internal tags to perform local
calculations, for example.
You can use the HMI data types for internal tags. Availability depends on the HMI device
being used.
The following HMI data types are available:

HMI data type Data format
Bool Binary tag
Byte Unsigned 8-bit value
DateTime Date/time format
DInt Signed 32-bit value
DWord Unsigned 32-bit value
Int Signed 16-bit value
LInt Signed 32-bit value
LReal Floating-point number 64-bit IEEE 754
LTime Signed duration
LWord Unsigned 64-bit value
Real Floating-point number 32-bit IEEE 754
SInt Signed 8-bit value
UDInt Unsigned 32-bit value
UInt Unsigned 16-bit value
ULInt Unsigned 64-bit value
USInt Unsigned 8-bit value
WChar Text tag, 16-bit character set
Word Unsigned 16-bit value
WString Text tag, 16-bit character set
Array Data structure

See also
System tags (Page 616)

Configuring tags
5.1 Basics

System Manual, 11/2022 615

5.1.7 System tags

Introduction
System tags are internal tags that are required for internal management of the project.

Principle
The system tag names always start with the "@" character. You may not delete or rename these
tags. You cannot change the value of a tag.

Note
You must not create any tags whose name starts with a @.

By default, the following system tags are available for the WinCC Unified devices:

System tag Data type Meaning
@CurrentLanguage UDInt Contains the current runtime language.
@DeltaActivationState UDInt Contains the current phase when loading changes.
@DiagnosticsIndicatorTag UDInt Specifies the diagnostic status. The diagnostic status

contains the collective status of all relevant PLCs. The
worst status of all PLCs is always used in this case.
"@DiagnosticsIndicatorTag" can have the following val‐
ues:
• Uncertain (0)
• Good (1)
• Maintenance (2)
• Error (3)

@LocalMachineName WString Contains the name of the local computer.
"@LocalMachineName" is a local system tag of the cur‐
rent session. This means the system tag cannot be used
as the trigger of a Scheduled task, for example.

@ServerMachineName WString Contains the name of the PC on which Runtime is run‐
ning.

@SystemActivationState UDInt Signals whether Runtime is active and can have the fol‐
lowing values:
• System startup in progress (1)
• System started (activated) (2)
• System stopped (3)
• System shutdown in progress (4)
• System restart in progress (5)

Configuring tags
5.1 Basics

616 System Manual, 11/2022

System tag Data type Meaning
@SystemHealthIndex UDInt Shows the current status of the Runtime system.

When the "@SystemHealthIndex" value is 0, the Runtime
system is in optimal health. Runtime is in the state ex‐
pected by the Engineering System. There are no mes‐
sages that may have a negative impact on the "@Sys‐
temHealthIndex".
The greater the "@SystemHealthIndex" value, the less
healthy the state of the Runtime system.

@UserName WString Contains the currently logged-on user.
"@UserName" is a local system tag of the current session.
This means the system tag cannot be used as the trigger
of a Scheduled task, for example.

See also
Internal tags (Page 615)
Shutdown behavior (Page 7827)

5.1.8 Updating the tag value in runtime

Introduction
Tags contain process values which change while runtime is running. Value changes are handled
differently at internal and external tags.

Principle
When runtime starts, the value of a tag is equal to its start value. Tag values change in runtime.
In runtime, you have the following options for changing the value of a tag:
• A value change in an external tag in the PLC.
• By input, for example, in an I/O field.
• A value assignment in a script.

Configuring tags
5.1 Basics

System Manual, 11/2022 617

Updating the value of external tags
The value of an external tag is updated as follows:
• Cyclic in operation

If you select the "Cyclic in operation" acquisition mode, the tag is updated in runtime while
it is displayed in a screen or is logged. The acquisition cycle determines the update cycle for
tag value updates on the HMI device. You can either choose a default acquisition cycle or
define a user-specific cycle.

• On demand
If you select the "On demand" acquisition mode, the tag is not updated cyclically. It will only
be updated on demand using the "UpdateTag" system function, for example, or by a script.

See also
Defining the acquisition cycle for a tag (Page 635)

5.1.9 Limits and start values of a tag

Introduction
You can configure start values and restrict the value ranges with limits for numerical tags.
Use the limits to warn the operator when the value of a tag enters a critical range, for
example.
Use the start values to assign a default value to an I/O field that is specified as start value in
the linked tag.

Tags limits
You can specify a value range defined by a high limit and a low limit for numerical tags.
You configure four limit values that limit the value range. Using the limits Upper 2 and Lower
2 , you specify the maximum and minimum value for the value range. The limits Upper 1 and
Lower 1 specify the threshold values at which the normal range is exceeded or undershot.

Limit Application
Upper 2 Specifies the maximum value.
Lower 2 Specifies the minimum value.

If the operator enters a value for the tag that is outside the configured value range, the input
is rejected. When the tag value leaves the value range, the function list is processed.

Note
If you want to output an analog alarm when a limit is violated, configure the respective tag in the
"Analog alarms" tab. You can also configure the analog alarm in the "HMI alarms" editor. The
values for output of an analog alarm depend on the configured tag limits.

Configuring tags
5.1 Basics

618 System Manual, 11/2022

Note
Limitation
Tags with the following data types do not support limits:
• Array and array elements
• Byte
• Char
• DWord, LWord and Word

Start value of a tag
You can configure a start value for numeric tags and tags for date/time values. The tag will be
preset to this value when runtime starts. In this way, you can ensure that the tag has a defined
status when runtime starts.
The start value cannot have the data type Raw or TextRef.
For external tags, the start value will be displayed on the HMI device until it is overwritten by
the PLC or by input.
If no start value was configured, the tag contains the value "0" when starting runtime.
Use the "Persistence" setting to specify whether the value of the tag is to be retained when
runtime is closed. The value saved will be used as the start value when you restart runtime.

See also
Defining limits for a tag (Page 637)

5.1.10 Data logging

Introduction
Data logging is used to collect, process and log process data from an industrial system. When you
analyze the logged process data, you can extract important business and technical information
regarding the operational state of the system.
The process values to be logged are compiled, processed and saved in the log database in
runtime. Current or previously logged process values can be output in runtime as a table or
trend. In addition, it is possible to print out logged process values as a report.

Use
You can use data logging for the following tasks:
• Early detection of danger / fault states
• Increase of productivity
• Enhancement of product quality

Configuring tags
5.1 Basics

System Manual, 11/2022 619

• Optimization of maintenance cycles
• Documentation of process value trends

Configuration
You configure the logging of process values in the "Logs" editor. You create a data log and an
alarm log. The data log stores process values in logging tags. When you configure the data log,
select the storage location, the logging period and the size of the log. You also specify the
settings for the logging segments.
You configure trend views and process controls for displaying process data in runtime in the
"Screens" editor. These views allow you to output the process data in the form of trends and
tables.

Logging tags
You can log the values of internal and external tags. Use the logging tags for logging tag values.
In logging tags, you specify how the values of the corresponding tags are written to the log.
You can create a logging tag for each HMI tag in the tag tables. You define the logging tags in
the "HMI Tags" editor under "Logging tags". You specify for each logging tag to which log the
tag is written.
With the default logging type "On change", the process value is compared to the saved value
and the new value is only written to the log if the process value has changed.
To preserve memory, you can activate "smoothing" for the logging tags. By doing so,
insignificantly small changes are filtered out prior to writing and the number of logged values
is reduced.
Another way to save storage space is to use "Compression" for the logging tags. You select
one of the 8 compression modes that calculate the values to be stored.
You create logging tags for internal and external tags. When logging the PLC tag values, the
time stamp contains the time at which the value occurred in the PLC.

Note
Supported data type for logging external tags
When logging external PLC tags, all data types are supported except "Raw", "TextRef", "Struct"
and "Array". The data type "TextRef" must not be used within the "Faceplate container" object.

5.1.11 Basics of tag management

Basics of tag management
You can always rename, copy or delete tags.

Configuring tags
5.1 Basics

620 System Manual, 11/2022

When a tag is renamed, the new name must be unique for the whole device.

Note
The connection to the tags can be interrupted in runtime under the following conditions during
renaming:
• HMI tag is used in a type, for example, to dynamize an object property via a script.
• One or more instances of the type are used in the project.
• Project is in runtime.
• After the renaming, execute the command "Compile > Software (only changes)".
Solution: Exit runtime and rename the tag. Execute the "Compile > Software (rebuild all)"
command.

If you use the "Copy" command to copy a tag to the clipboard, the references are copied
along with the tag.
If you use the "Insert" command to add a tag to another device, the tag will be added
without the connected references. Only the object name of the reference will be inserted. If
a reference of the same name and valid properties exists in the target system, the existing
reference will then be connected to the copied tag.
If you copy a tag, some of the objects linked to the tag are copied as well. The following
objects are copied:
• Logging tags
• Cycles
• Alarms
If you add the copied tag to another device, the tag is added together with the linked objects.
Before you delete a tag, check in the "Cross-references" editor where the tag is used and what
impact the deletion of the tag will have on your project.

5.1.12 Basics of user data types

Introduction
With user data types you bundle a number of different tags that form one logical unit. You create
a user data type as a type and use instances of this type in the project. User data types are project-
associated data and are available for all HMI devices of the project.
WinCC also supports the connection of PLC data types (UDTs) as user data types.
User data types also differ in their applicability with a specific communication driver. User
data types are available for the following communication drivers:
• SIMATIC S7-300/400
• SIMATIC S7-1500
Create user data types and user data type elements in the project library.

Configuring tags
5.1 Basics

System Manual, 11/2022 621

Principle
For example, the different conditions of a motor can be described using 6 unique Boolean tags.

If the overall condition should be described with a single tag, this tag can be created based
on a user data type. For each of the individual Boolean tags you create a user data type
element in the user data type.
This user data type can then be assigned complete to a faceplate for the motor. The created
and released version of user data type is displayed at the tag in the "Data type" selection field.
The configured properties of a user data type are used in the instances of the user data
type. If required, you change individual properties directly at the point of use, e.g. at a tag.
Changing a property at the tag does not affect the user data type created.

5.1.13 Export and import of tags

Introduction
With Export and Import, you have the option to export tags from one project and import them
into another project. There is also the option to create larger numbers of tags outside of WinCC,
edit them and subsequently import into any WinCC project.
You export and import tags with the "Import" and "Export" buttons in the "HMI Tags" editor.
When importing the tag data to WinCC, pay attention to the structure required in the import
file.

Tag data structure
The tag data file must be in "*.xlsx" data format for the tag import and must be structured
according to specific rules.
The import file in Microsoft Excel consists of a number of worksheets:
• HMI Tags (tags)
• SubstituteValueUsage (substitute value)
Each tag is on a separate row in the import file. The import file with the tag data must have
the following format:

Configuring tags
5.1 Basics

622 System Manual, 11/2022

Example of the worksheet "HMI Tags"

Table 5-1 Meaning of the entries
List entry Meaning
Name Indicates the configured name of an HMI tag.
Path Specifies which folders in the project tree contain the tag. The folder structure is

represented by ",": "FolderName1,FolderName2,TagName".
PLC Tag Specifies which PLC tag is linked to the HMI tag.
Connection Indicates the name of the connection.
Date type Specifies the data type of the PLC tag. The data types allowed depend on the com‐

munication driver being used. See the "Communication" section of the documen‐
tation for additional information on the data types permitted for the various com‐
munication drivers.

HMI Data type Specifies the data type of the HMI tag. The data types allowed depend on the com‐
munication driver being used. See the "Communication" section of the documen‐
tation for additional information on the data types permitted for the various com‐
munication drivers.

Length Specifies the length of the tag in bytes. This entry is only useful for data types with
a dynamic length, for example, strings. This entry remains empty for other data
types.

Access Method Specifies the type of access.
Address Specifies the tag address in the PLC. The tag address must exactly match the one

used in WinCC, for example, "%DB1.DBW0". The tag address is empty for internal
tags.

Start Value Specifies the start value of a tag.
Quality code Provides information on the quality of the connection.
Persistency Indicates whether the value is to be retained after the end of runtime.
Substitute Value Indicates the substitute value. The substitute value is used when a process value

with errors is read.
ID tag The update ID updates the value of a tag with the aid of a function or a PLC job.

The update ID must be unique within an HMI device.
Update Mode Indicates whether the tag is to be updated locally or for the entire project.
Acquisition mode Indicates the acquisition mode.
Acquisition cycle Indicates the acquisition cycle used.
Limit Upper 2 type Indicates whether the limit value "Upper 2" is monitored by a constant or not at all.
Limit Upper 2 Displays the limit value "Upper 2".
Limit Lower 2 type Indicates whether the limit value "Lower 2" is monitored by a constant or not at all.
Limit Lower 2 Displays the limit value "Lower 2".
End value PLC Specifies the end value of the PLC tag.
Start value PLC Specifies the start value of the PLC tag.
End value HMI Specifies the end value of the HMI tag.
Start value HMI Specifies the start value of the HMI tag.

Configuring tags
5.1 Basics

System Manual, 11/2022 623

Example of the worksheet "SubstituteValueUsage"

Table 5-2 Meaning of the entries
List entry Meaning
HMI Tag name Specifies the tag for which a substitute value has been defined. The tag must be

available in the "HMI-Tags" worksheet.
Substitute Value Usage Indicates the substitute value. The substitute value can be used in the following

situations:
• As start value
• After communication error
• Upper 2 limit value
• Lower 2 limit value

Note
"No value" in the table
Entries in the table which have the value "No value" delete the corresponding values in an
existing tag of the same name.

See also
Importing and exporting tags (Page 641)

5.2 Configuring tags

5.2.1 Working with tag tables
Tags are displayed in tag tables.
Here you create tags, edit their properties and export them.

Configuring tags
5.2 Configuring tags

624 System Manual, 11/2022

Adapting the view of the table
The shortcut menu of a column header allows you to
• adjust the width of individual or all columns
• show or hide individual columns

To arrange columns, drag a column header to a different position.
To have your individually designed view displayed again the next time you call up the tag
table, click "Save window settings".
To insert a tag above a selected line, click "Lines above ...".
To sort the Table, click on a column header.

Configuring tags
5.2 Configuring tags

System Manual, 11/2022 625

See also
Creating external tags (Page 626)
Creating internal tags (Page 629)
Creating OPC tags (Page 628)

5.2.2 Creating external tags

Introduction
You can access an address in the PLC via a PLC tag using an external tag. The following options
are available for addressing:
• Symbolic addressing
• Absolute addressing
If possible, use symbolic addressing when configuring a tag. Symbolic addressing enables
high-performance data access and is therefore less prone to errors. The system monitors the
assignment of the storage address and the locations of use are automatically updated when
changes occur.
You create tags either in the standard tag table or in a tag table you defined yourself.

Requirement
• The project is open.
• A connection to the PLC is configured.
• The Inspector window is open.

Procedure
To create an external tag, proceed as follows:
1. Open the "HMI tags" folder in the project tree and double-click the standard tag table. The tag

table opens.
Alternatively, create and then open a new tag table.

2. In the "Name" column, double-click "Add" in the tag table.
A new tag is created.

3. Select the "Properties > Properties >General" category in the Inspector window and, if
required, enter a unique tag name in the "Name" field.
The tag name must be unique throughout the device.

Configuring tags
5.2 Configuring tags

626 System Manual, 11/2022

4. Select the connection to the required PLC in the "Connection" box.
If the connection you require is not displayed, you must first create the connection to the PLC.
You create the connection to a SIMATIC S7 PLC in the "Devices & Networks" editor. You create
the connection to external PLCs in the "Connections" editor.
If the project contains the PLC and supports integrated connections, you can also have the
connection created automatically. To do this, when configuring the HMI tag, simply select an
existing PLC tag to which you want to connect the HMI tag. The integrated connection is then
automatically created by the system.

5. If you are working with an integrated connection, click the button in the "PLC tag" field
and select an already created PLC tag in the object list. Click to confirm the selection.

Alternatively, use the autocomplete to select a PLC tag for an integrated connection.
If you select a PLC tag from the autocomplete list, it is entered in the input path. The elements
of the PLC tags are displayed in the autocomplete list. If you have selected a PLC tag that can
be connected to the HMI tags, the PLC tag is connected to the HMI tags.

6. If you are working with a non-integrated connection, enter the address from the PLC in the
"Address" field. To enter the address, make sure that the access mode "Absolute access" is
configured.
The "PLC tag" field remains empty.

7. Configure the other properties of the tag in the inspector window.
You can also configure all tag properties directly in the tag table. To view hidden columns,
activate the column titles using the shortcut menu.

Tips for an efficient procedure

• You also create new tags directly at the location of use, for example, on an I/O field. To do this, click "Add new" in the object
list.
You then configure the new tag in the Inspector window.

• You can also create external HMI tags by dragging and dropping data block elements or global PLC tags into an HMI tag table.

Result
An external tag has been created and linked to a PLC tag or an address in the PLC.

Configuring tags
5.2 Configuring tags

System Manual, 11/2022 627

See also
Basics of tags (Page 607)
External tags (Page 610)
Addressing external tags (Page 612)

5.2.3 Creating OPC tags

Requirement
• A connection to an OPC UA server has been set up.
• When the connection to the OPC UA server is secured via a certificate, the application

instance certificate of the WinCC Unified clients must be in the "Trusted" folder of the OPC UA
server.

Procedure
To create an external tag, proceed as follows:
1. Open the "HMI tags" folder in the project tree and double-click the tag table. The tag table

opens.
Alternatively, create and then open a new tag table.

2. In the "Name" column, double-click "Add" in the tag table.
A new tag is created.

3. Select the "Properties > Properties >General" category in the Inspector window and, if
required, enter a unique tag name in the "Name" field.
The tag name must be unique throughout the device.

4. If required, select the "Display name" field to enter a name to be displayed in runtime.
5. Select the connection to the desired OPC UA server in the "Connection" field.

If the connection you require is not displayed, you must first create the connection to the OPC
UA server. You establish the connection to an OPC UA server in the "Connections" editor.

6. Click in the "Address" field and follow these steps:
– In the left area, browse through the address space of the OPC UA server to the node below

which the required tag is located.
– Select the tag in the right area.
– Confirm your selection.

Result
The new HMI tag is connected to the tag of the OPC UA server. It is available for configuring HMI
screens.

Configuring tags
5.2 Configuring tags

628 System Manual, 11/2022

After loading the project into a Runtime:
• Runtime has read and write access to the connected OPC UA tag.
• Changes to the tag value on the OPC UA server are automatically passed on to the runtime.

See also
Defining connection settings to the OPC UA server (Page 7045)

5.2.4 Creating internal tags

Introduction
You must at least set the name and data type for internal tags. Select the "Internal tag" item,
rather than a connection to a PLC.
For documentation purposes, it is a good idea to enter a comment for every tag.

Procedure
1. Open the "HMI tags" folder in the project tree and double-click the entry "Standard tag table".

The tag table opens.
Alternatively, create and then open a new tag table.

2. In the "Name" column, double-click "Add" in the tag table. A new tag is created.
3. If the Inspector window is not open, select the "Inspector window" option in the "View" menu.
4. Select the "Properties > Properties >General" category in the Inspector window and, if

required, enter a unique tag name in the "Name" field.
Note
This tag name must be unique throughout the project. The tag name must not contain the
special characters line feed, carriage return or quotation marks.

Configuring tags
5.2 Configuring tags

System Manual, 11/2022 629

5. If required, select the "Display name" field to enter a name to be displayed in runtime.
The name to be displayed is language-specific and can be translated for the required runtime
languages. The display name is available for Basic Panels, Panels and Runtime Advanced.

6. Select "Internal tag" as the connection in the "Connection" field.
7. Select the required data type in the "Data type" field.
8. In the "Length" field, you can specify the maximum number of characters to be stored in the

tag in accordance with the selected data type.
The length is automatically defined by the data type for numerical tags.

9. As an option, you can enter a comment regarding the use of the tag. To do so, click "Properties
> Properties > Comment" in the Inspector window and enter a text.

Configuring tags
5.2 Configuring tags

630 System Manual, 11/2022

Tips for effective configuring

• You also configure the tag properties directly in the tag table. To view hidden columns, activate the column titles using the
shortcut menu.

• You also create new tags directly at the location of use, for example, on an I/O field. To do this, click "Add new" in the object
list. You then configure the new tag in the Inspector window.

Result
An internal tag is created. You can now use this in your project.
In additional steps you can configure the tag, for example, by setting the start value and
limits.

See also
Basics of tags (Page 607)
Internal tags (Page 615)
Configuring discrete alarms (Page 734)
Configuring analog alarms (Page 738)

5.2.5 Configuring multiple tags

Introduction
In a tag table, you create a large number of identical tags by automatically filling the rows of the
table below a tag. The tag names are incremented automatically when filling in automatically.
You can also use the auto fill function to fill table cells below a tag with a single tag property
and thus modify the corresponding tags.
If you apply the automatic filling in to already filled cells of a tab table, you will be asked
whether you want to overwrite the cells or insert new tags.
If you do not want to overwrite already configured tags, activate insert mode. Activate insert
mode by keeping the <Ctrl> key pressed during insertion. Already existing entries in the tag
table are moved down if insert mode is activated.

Tips for effective configuring

You can configure multiple tags simultaneously and use them in the screen. If you use drag and drop to drag multiple tags from
the detail view to the screen, an I/O field is created for each tag that is connected to the respective tag.

Configuring tags
5.2 Configuring tags

System Manual, 11/2022 631

Requirement
• The project is open.
• A tag table is open.
• The tag which is to serve as a template for other tags is configured.

Procedure
1. If you want to create new tags, mark in the "Name" column the tag that should be used as a

template for the new tags.
If you want to copy a property of a tag to the tags below it, select the cell which contains this
property.
The selected cell will be highlighted in color and a small blue square will appear in its bottom
right corner. When you move the mouse over this square, the cursor will change to a black
cross.

2. Hold down the mouse button and drag this square over the cells below that you wish to fill
automatically.
The marking will be extended to cover this area.

Configuring tags
5.2 Configuring tags

632 System Manual, 11/2022

3. Now release the mouse button. All of the marked cells are filled automatically.
New tags will be created in all empty rows in the marked area.

4. In the tag table, select all the tags that you want to configure at the same time.
If the selected property is identical for all the tags, the setting for this property will appear in
the Inspector window.
The associated field will remain blank otherwise.

5. You can define the shared properties in the Inspector window or directly in the tag table.

Result
Depending on which cells were selected, the function may automatically fill individual
properties or create and configure new tags.

5.2.6 Adapting the data type of a tag

Introduction
When you create a tag, you assign one of the possible data types to the tag. This data type
depends on the type of data for which you would like to use the tag.
The data types available depend on the connected communication partner, such as a PLC.

Note
If you modify the data type of an existing, external tag, the previously defined tag address is
identified as invalid. This reason for this is that the PLC address changes when the data type is
modified.

Format adjustment
WinCC sets the data type of an external tag according to the data type of the connected PLC tag.
If the data type of the PLC tag is not available in WinCC, a compatible data type is automatically
used at the HMI tag. As required, you can specify that WinCC uses a different data type and
converts the format of the data type of the PLC tag and the data type of the HMI tag.

Configuring tags
5.2 Configuring tags

System Manual, 11/2022 633

In WinCC, you have access to the following data types:

HMI data type Description Value range
Bool Binary tag 0 to 1
SInt Signed 8-bit value -128 ... +127
USInt Unsigned 8-bit value 0 ... 255
Int Signed 16-bit value -32768 ... +32767
UInt Unsigned 16-bit value 0 ... 65535
DInt Signed 32-bit value -2147483648 ... +2147483647
UDInt Unsigned 32-bit value 0 ... 4294967295
LInt Signed 64-bit value -9223372036854775808 to

+9223372036854775807
ULInt Unsigned 64-bit value 0 to 18446744073709551615
Real 32-bit floating-point number IEEE 754 +-3.402823e+38
LReal 64-bit floating-point number IEEE 754 +-1.79769313486231e+308
Byte Bit array of 8 bits 8-bit
Word Bit array of 16 bits 16-bit
DWord Bit array of 32 bits 32-bit
LWord Bit array of 64 bits 64-bit
String Text tag, 8-bit character set -
WString Text tag, 16-bit character set -
WChar Text tag -
DateTime Date/time format 01.01.1601 00:00 … 31.12.9999

23:59:59
LTime Signed 64-bit integer value -9223372036854775808 …

+9223372036854775807 100ns

For format adaptation, select the desired PLC data type at the respective external tag. The
suitable standard data type is then selected automatically in the "HMI data type" field for use
in WinCC. Change the format adaptation as required.

Data types without format adaptation
The data types are shown 1:1 without format adaptation.
SIMATIC S7-300/400 data types without format adjustment

PLC data type Description
Bool No format adaptation
String No format adaptation

Configuring tags
5.2 Configuring tags

634 System Manual, 11/2022

5.2.7 Defining the acquisition cycle for a tag

Introduction
The value of an external tag can be changed in runtime by the PLC to which the tag is linked. To
ensure that the HMI device is informed of any changes in tag values by the PLC, the values must
be updated on the HMI. The value is updated at regular intervals while the tag is displayed in the
process screen or is logged. The interval for regular updates is set with the acquisition cycle.

Requirement
• You have created the tag for which you want to define an acquisition cycle.
• The Inspector window with the tag properties is open.

Procedure
To configure an acquisition cycle for a tag, follow these steps:
1. In the Inspector window, select "Properties > Properties > Settings".
2. Select the acquisition mode for the tag:

– "Cyclic in operation": The tag is updated at regular intervals as long as it is displayed or
archived in the screen.

– "On demand": Updating is performed only on demand, for example, with the "UpdateTag"
system function or a script.

3. If you have selected the "Cyclic in operation" acquisition mode, specify the desired cycle time
in the "Acquisition cycle" field.
You have the option of selecting a user-defined cycle.

Note
For structured HMI tags, the acquisition mode can be selected for the respective structured HMI
tag as well as their individual subordinate elements.
When the acquisition mode of structured HMI tags is changed, it is applied to all subordinate
elements. This means changing the acquisition mode may overwrite subordinate elements.

Tips for an efficient procedure

Configure the acquisition cycle directly in the work area of the tag table. To view hidden columns, activate the column titles
using the shortcut menu.

Result
The configured tag is updated in runtime with the selected acquisition cycle.

Configuring tags
5.2 Configuring tags

System Manual, 11/2022 635

See also
Updating the tag value in runtime (Page 617)
Defining cycles (Page 224)

5.2.8 Specify tag persistency

Introduction
In Runtime Unified you have the option to define tag persistency for internal tags. The last values
of these persistent tags are used after Runtime has been started.
A separate database, in which the last values of the persistency tags are stored, is used for
tag persistency. These values are available again after restarting runtime or restarting or
switching off the HMI device.
You activate tag persistency in the runtime settings of the respective HMI device by
specifying the database storage location.

Note
Complete loading of a runtime project
Tag persistency can only be used when you enable the option "Keep current values of tags and
pending alarms in runtime" in the "Load preview" dialog.
When you disable the option "Keep current values of tags and pending alarms in runtime" in the
"Load preview" dialog, the database for the tag persistency is emptied. The persistency tags
apply the defined start value. If no initial value is defined, the valid default value is used for the
data type.

Requirement
• The tag for which you want to set the persistency is created.
• The Inspector window with the properties for this tag is open.

Procedure
1. In the Inspector window, select "Properties > Properties > Settings".
2. Activate the option "Persistency for internal tags" under "Persistency".
3. Download the full project.

Result
The last value of the configured tag is stored in the tag persistency database.

Configuring tags
5.2 Configuring tags

636 System Manual, 11/2022

See also
Creating internal tags (Page 629)
Initial download of a project (Page 7185)
Storage system (Page 7173)
Storage system (Page 7138)

5.2.9 Defining limits for a tag

Note
Limitation
Tags with the following data types do not support limits:
• Array and array elements
• Byte
• Char
• DWord, LWord and Word

Introduction
For numerical tags, you can specify a value range by defining a low and high limit as well as the
threshold values.

Requirement
• The tag for which you want to set the limits is created.
• The Inspector window with the properties for this tag is open.

Procedure
To define limits for a tag, proceed as follows:
1. In the Inspector window, select "Properties > Properties > Range". If you want to define one

of the limits as a constant value, select "Constant" using the button. Enter a number in
the relevant field.
If you want to define one of the limits as a tag value, select "HMI tag" using the button.
Use the object list to define the tag for the limit.

2. To set additional limits for the tag, repeat step 1 with the appropriate settings.

Tips for an efficient procedure

You also configure the limits directly in the tag table. To view hidden columns, activate the column titles using the shortcut
menu.

Configuring tags
5.2 Configuring tags

System Manual, 11/2022 637

Result
You have set a value range defined by the limits for the selected tag.

See also
Limits and start values of a tag (Page 618)

5.2.10 Specify "Local session" scope

Introduction
Internal tags apply "system-wide" by default.
The scope of an internal tag can be changed to "Local session". In a multi-user environment,
session-related data is processed independently in each local session.
The use of local session tags in Unified Collaboration and in the web client is supported.

Example scenarios for local session tags
• Individual navigation in screen windows or in different menu structures
• Session-related blocking/unblocking of the user
• Session-related position, alignment and rotation of objects in a screen.

Restrictions

Note
A configuration of tags that contradicts the restrictions, leads either to an error in the
engineering system or to an error in runtime.

The "Local session" scope
• is only available for internal tags.
• is only available for tags with elementary data type. Arrays or structure tags cannot be limited

to a local session.
Local session tags
• are only accessible within the respective user session
• can only be used in local scripts. Using it in a global script will result in an error.
• cannot be used as a trigger of a task
• cannot be used as a trigger of alarm or for dynamization of an alarm list
• cannot be used to dynamize objects through a resource list
• cannot be used to specify a limit value, substitute value or start value of another tag

Configuring tags
5.2 Configuring tags

638 System Manual, 11/2022

• cannot be used as logging tag
• cannot be logged
• do not support the properties

– GMP (Good Manufacturing Practice)
– Persistence

• cannot be used in Openness applications
End of a session
• The values of the local session tags are not saved and are lost.

Procedure
1. Open a HMI tag table.
2. Display the "Scope" column.
3. Create an internal tag or select an already created internal tag.
4. In the "Scope" column, select the "Local session" entry.

You can also make this setting in the Inspector window under "Properties > Properties >
Settings".

Result
You have created a tag that can take on different values in different sessions.
This tag can, for example, be addressed by the same script in different sessions. The
dynamization of an object can be controlled by the same tag, which takes different values in
different sessions.

Changing the version of a device
• Delete the local session tags before changing the device/device version
• Create the tags again after the change.

Note
Local session tags only as of V18
If the version of the device is smaller than V18, the tag automatically becomes "system-wide"
because the limited scope is not supported.

Configuring tags
5.2 Configuring tags

System Manual, 11/2022 639

5.2.11 Synchronizing tags

Introduction
To synchronize the PLC and HMI tags, WinCC offers the following options:
• Synchronizing tags with or without name matching between PLC and WinCC

The following options are available for this:
• Link tags with addresses in the PLC

This procedure is suitable, for example, if changes were made to the connection between the
HMI device and the PLC and the tag connections were lost in the process. The function can
also be used if you have configured the control program and HMI project separately.

Requirement
• External HMI tags have been created.
• PLC tags have been created.
• An HMI connection to a PLC in the project has been established.

Procedure
To synchronize HMI tags with PLC tags, follow these steps:
1. In the project tree, select the directory that contains the tags in question.
2. Select "Synchronize with the PLC tag" from the shortcut menu.

A dialog opens.

3. Select the option you want to use.
If you want to synchronize the tags without name matching, disable "Replace WinCC tag
name with PLC tag name".
If you want to reconnect HMI tags with absolute access, select "Data type and absolute
address match".

4. Confirm with "Synchronize".
The system searches for a suitable PLC tag according to the selected option.

Configuring tags
5.2 Configuring tags

640 System Manual, 11/2022

Result
The external HMI tags are synchronized with the PLC tags.
If you have selected the option "Data type and absolute address match", the tag connection is
established as soon as a suitable PLC tag is found.
If you have selected a different option, the WinCC tags are updated accordingly and the PLC
tag names are applied in WinCC.

See also
Settings for tags (Page 7140)
Settings for tags (Page 7175)

5.2.12 Importing and exporting tags

Introduction
WinCC gives you the option of exporting tags to an .xlsx file and reimporting them into the
project once you are done editing them. You export and import tags in the "HMI Tags" editor
For importing the tags, the xlsx import file must be structured according to the requirements.
You will find more detailed information on the import file under "Export and import of tags
(Page 622)".

Exporting tags
1. Click the button in the "HMI Tags" tab.

The "Export" dialog box opens.

2. Click "..." and specify in which file the data are saved.
3. Click "Export".

The export will start.

Configuring tags
5.2 Configuring tags

System Manual, 11/2022 641

Note
It is not possible to export HMI tags of the data type "UDT" which contain structured elements via
Excel for subsequent editing.
After export, only the higher-level HMI tag appears in Excel. Its lower-level elements cannot be
edited.

Importing tags
1. Click "HMI tags" in the project tree.
2. Double-click "Show all tags". The "HMI tags" editor opens.
3. Click in the "HMI Tags" tab.
4. The "Import" dialog box opens.

5. Click "..." and select the file that you want to import.
6. Click "Import".

The import starts

Result
The relevant tags have been created in WinCC. Alarms relating to the import operation are
displayed in the output window. A log file is saved in the source directory of the import files. The
log file has the same name as the respective import file but with the "*.xml" extension.
Check when importing the data whether there are any links to objects, for example, dynamic
parameters such as tags.
• If an object with the same name already exists, the existing object is used.
• If no object of the same name yet exists, create an object with the relevant name or create

a new link.

Note
The syntax of the import file is checked during xlsx file import. The meaning of the properties or
dependencies between the properties is not checked.

Configuring tags
5.2 Configuring tags

642 System Manual, 11/2022

5.2.13 Defining a substitute value

Introduction
You can define a specific value as a substitute value for a tag.
In the "Use substitute value" area you define when WinCC should use this substitute value.
The current process value is then not accepted from the automation system.
You can define a substitute value for the following cases:

• The configured ranges have been violated
If you have set limit values for the tag, WinCC sets the substitute value as soon as the process
value violates a limit.

• In the event of a communications error
WinCC sets the substitute value when the connection to the automation system is disturbed
and there is no valid process value.

Requirement
• The tag table is open.
• The Inspector window with the tag properties is open.
• The HMI tag is linked to a PLC tag

Configuring tags
5.2 Configuring tags

System Manual, 11/2022 643

Procedure
To configure a substitute value, follow these steps:
1. Select the desired tag in the tag table, and select "Properties > Properties > Values" in the

Inspector window.
2. In the "Use substitute value" segment, select when you want WinCC to use this substitute

value in the tag.
3. Enter the required substitute value in the "Substitute value" field.

Result
The configured tag is populated with the substitute value in runtime once the selected condition
is fulfilled.

Note
If you have set a high or low limit in an I/O field, you cannot enter any value outside these limits.
WinCC ignores incorrect entries and therefore does not set a substitute value. The substitute
value is only set by WinCC when an incorrect process value is read.

5.2.14 Connecting a tag to another PLC

Introduction
In WinCC, you can change the PLC connection of a tag at any time. This is needed when you
change the configuration of your plant, for example.
Depending on the PLC selected, you may need to modify the configuration of the tag. The
tag properties which must be changed will be highlighted in color.

Requirement
• The external tag, whose connection you wish to change, must already exist.
• The connection to the PLC must already exist.
• The Properties window for this tag is open.

Procedure
To change the PLC connection of a tag, proceed as follows:
1. In the Inspector window select "Properties > Properties > General."
2. Select the new connection in the "Connection" field.

The tag properties that you must change will be highlighted in color in the tag table and in
the Inspector window.

3. Change all highlighted properties of the tag to suit the requirements of the new PLC.

Configuring tags
5.2 Configuring tags

644 System Manual, 11/2022

Result
The external tag is connected to the new PLC.

5.3 Configuring user data types

5.3.1 Creating an HMI user data type

Introduction
You create an HMI user data type in the project library.

Requirement
• A project is open.
• The "Libraries" task card is displayed or the library view is open.

Procedure
To create an HMI user data type, follow these steps:
1. Click the "Libraries" task card.
2. Click the "Project library" entry.

The folder structure of the project library is open.

Configuring tags
5.3 Configuring user data types

System Manual, 11/2022 645

3. Click "Add new type" in the "Types" folder.
A dialog opens.

4. Click the "HMI user data type" button in the dialog box.
5. In the "Specify device for the new type" area, select the HMI device on which the HMI user

data type is used.
6. Enter a descriptive name in the "Name" field.
7. Click "OK" to apply your settings. The HMI user data type is created. The library view opens.

Configuring tags
5.3 Configuring user data types

646 System Manual, 11/2022

Result
An HMI user data type with the configured properties is created. Version 0.0.1 of the HMI user
data type is created and receives the status "in work".
Create the required user data type elements in the next step.
Before you use the version of an HMI user data type, for example at a tag, the version must
be released.

5.3.2 Creating HMI user data type elements

Introduction
You add or delete user data type elements in the "HMI user data types" table.

Requirement
• The library view is open.
• An HMI user data type is created and opened in the editor.

Procedure
1. Select a communication driver for the HMI user data type.

– If you select the <Internal communication> entry, you can only assign the HMI user data
type to the internal tags as the data type.

– If a connection to a PLC is selected as the communications driver, you can only assign the
HMI user data type to tags with a connection to this PLC as the data type.

– The configured communication driver applies to all user data type elements of an HMI
user data type. In an HMI user data type, you can define for each user data type element
whether the configured driver is used for the PLC or internal communication.

2. Double-click "Add" in the "Name" column of the table. A new user data type element is added
to the HMI user data type.

3. Assign a name.
4. Select the required data type in the "Data type" field.
5. Create as many user data type elements as you need.
6. You configure the user data type elements in the "Properties" group of the Inspector window.

Configuring tags
5.3 Configuring user data types

System Manual, 11/2022 647

Tips for an efficient procedure

You can also configure the properties of the user data type elements directly in the table. To view hidden columns, activate the
column titles using the shortcut menu.
If you want to transfer a property of a user data type element to other user data type elements, follow these steps:
1. Select the cell that contains the property.

The selected cell will be highlighted in color and a small blue square will appear in its bottom right corner.
2. When you move the mouse over this square, the cursor will change to a black cross.
3. Hold down the mouse button and drag the cursor up or down over the cells that you want to fill out automatically.

 The marking will be extended to cover this area.
4. Now release the mouse button.

The "Autocompletion" dialog opens.
5. Select the "Overwrite attributes of the user data type element" option.

Result
You have added elements to version 0.0.1 of the HMI user data type. The version 0.0.1 has the
status "in work".
To use the version in the project, release the version.

5.3.3 Adding a PLC user data type to the project library

Introduction
You can use PLC data types in the HMI device.

Requirement
• A project is open.
• A PLC data type is configured in the PLC.
• The project view is open.
• The project library is open.

Procedure
1. Drag the PLC data type to the "Types" directory of the project library with a drag-and-drop

operation.
The "Add type" dialog opens.

2. Specify a type name and a version and click "OK" to confirm.
In version 0.0.1, the PLC user data type appears in the project library.

Configuring tags
5.3 Configuring user data types

648 System Manual, 11/2022

Result
You have added the PLC user data type of the project library.
Version 0.0.1 of the PLC user data type was created and receives the status "default".

5.3.4 Managing versions of user data types

Introduction
All HMI user data types have at least one version. When an HMI user data type is created, a
version is created at the same time; this version has the status "in work". You can edit the user
data type in this status as required. When the editing is complete, you release the version of the
HMI user data type. The latest released version is always used at the default.

Requirement
• An HMI user data type is created.
• The HMI user data type has the version 0.0.1. and the status "in work".
• The "Libraries" task card or the library view is open.

Releasing a version
1. Select the version 0.0.1 of the HMI user data type in the project library.
2. Select "Release version" in the shortcut menu.

A dialog opens.
3. If necessary, change the properties of the version:

– Enter a name for the type in the "Type name" field.
– In the "Version" field, define a main and an intermediate version number for the version

to be released.
– To clean up version management of the type, enable "Delete unused type versions from

the library".
You have released version 0.0.1 of the HMI user data type.

Editing a version
1. Select, for example, the released version 0.0.1 of an HMI user data type in the project library.
2. Select "Edit type" from the shortcut menu.
The library view opens. The new version 0.0.2 of the HMI user data type was created.
The version has the status "in work".

Configuring tags
5.3 Configuring user data types

System Manual, 11/2022 649

Restoring the last version of the HMI user data type
The last released version of the HMI user data type is version 0.0.2.
You edit the HMI user data type. A new version of the HMI user data type, 0.0.3, is generated
and receives the status "in work".
1. Select the version of the HMI user data type in the project library.
2. Select "Discard changes and delete version" in the shortcut menu.
Alternatively
1. If you have opened a version for editing, click "Discard changes and delete version" in the

toolbar.
The version is deleted.

All changes to the HMI user data type since the last release operation are discarded. The HMI
user data type is released again and has version 0.0.2.

Deleting user data type
If you delete a user data type, all instances and master copies of this user data type are deleted
as well. The same is true for HMI tags that use an HMI user data type and for PLC user data types.
To delete a user data type, follow these steps:
1. In the project library, under "Types", select the user data type you want to delete.
2. Select "Delete" from the shortcut menu.

See also
Setting a user data type version as default (Page 650)

5.3.5 Setting a user data type version as default
When you add a user data type to a library, use data types from a library, and release or update
versions, the highest released version is used as the default. This version has the "default"
identifier. Alternatively, you can specify a different released version as default.

Requirements
• You have opened the project library or a global library.
• The desired type version is released.

Configuring tags
5.3 Configuring user data types

650 System Manual, 11/2022

Procedure
1. Select a version.
2. Right-click to call up the shortcut menu.
3. Select the shortcut menu command "Set as 'default'".

Result
When instantiating, creating, releasing and updating, the default user data type version is used
instead of the highest released version. The default user data type version is also used when you
create newer user data type versions.
The icon in the "Status" column shows whether the references of the type are consistent with
other types:
• Green: The references of the user data type are consistent. The version of the user data type

labeled "Default" references the "Default" user data type version of the dependent type.
• Yellow: The references of the user data type are inconsistent. The version of the user data

type labeled "Default" does not reference the "Default" user data type version of the
dependent type.

5.3.6 Creating tags with a HMI user data type

Introduction
When a tag is created, you assign the version of an HMI user data type as a data type. In the "Tag"
editor you can create internal tags or tags with a link to a PLC. A tag provides all HMI user data
type versions that use the same communication driver as the tag itself.
You can only use an HMI user data type in combination with a PLC when you have selected
absolute addressing.

Requirement
• An HMI user data type with a user data type element is created.
• The HMI user data type is released.
• The tag table is open.
• The Inspector window with the tag properties is open.

Procedure
To create a tag of the "User data type" data type, follow these steps:
1. In the "Name" column, double-click "Add" in the tag table. A new tag is created.
2. Enter a unique tag name in the "Name" field.
3. Select the connection to the required PLC in the "Connection" box.

Configuring tags
5.3 Configuring user data types

System Manual, 11/2022 651

4. Select the desired version of the HMI user data type in the "Data type" field.
The selected connection determines which HMI user data types are displayed.
For internal tags, only HMI user data type versions of the <Internal user data type> type are
available.

Note
For tags with a connection to a PLC, only those HMI user data types that have a link to a PLC
are available.

5. In the "Address" field, enter the address of the PLC that you want to access with the external
tag. The specified address must always point to the start data bit, for example,
<DB1.DBX0.0>.

Result
You have created a tag of the "User data type" data type. In additional steps you can configure
the tag, for example, by setting the start value and limits.
If you wish to change the properties of an HMI user data type tag, you must change the
properties of the HMI user data type elements.
Properties, such as "Start value" and "Linear scaling", can also be changed in the HMI user
data type instances used.

Configuring tags
5.3 Configuring user data types

652 System Manual, 11/2022

5.4 Logging tags

5.4.1 Basics

5.4.1.1 Basics of data logging

Introduction
Data logging is used to collect and log process data from an industrial system. This allows you
to analyze error statuses and document your process.
From the archived process data, you extract important business and technical information
about the operating status of a plant in an evaluation.

Logging concept
WinCC Unified is optimized for event-driven logging. The process values are saved by configured
events and selected processing mechanisms in the data log. Event-driven logging does not
depend on the logging mode.
In the past, we have used query-driven logging. This method saved the values at fixed cycles
without additional processing in the log. You can map query-driven logging by using the
"Cyclic" logging mode and by not configuring any smoothing or compression. The procedure
is not recommended.
Event-driven logging offers the following advantages compared to query-driven logging:
• High accuracy

Note that logging can only be as precise as the data acquisition at the PLC.
• High performance because fewer values must be logged
If you need a query-driven representation of the values for data evaluation, we recommend
that you use event-driven logging and then interpolate the missing values.

Configuration
You configure the logging tags in the "Logging tags" tab in the "HMI tags" editor.
You use logging tags in the following controls in Runtime:
• Trend control
• f(x) trend control
• Process control

Configuring tags
5.4 Logging tags

System Manual, 11/2022 653

Use
You can use data logging for the following tasks:
• Early detection of danger and fault conditions
• Increase of productivity
• Increase of product quality
• Optimization of maintenance cycles
• Documentation of process value trends

See also
Log basics (Page 837)
How it works (Page 839)
Storage locations of logs (Page 843)
Creating a data log and an alarm log (Page 848)
Editing log contents with scripts and system functions (Page 850)
Size of a log entry in the data log (Page 654)

5.4.1.2 Size of a log entry in the data log
The size of a log entry depends on the database type used.
The following values result for the data log:

 SQLite Microsoft SQL
Additional memory requirement
per segment

Approx. 0.5 MB Approx. 5 MB

Size of a log entry Approx. 50 bytes Approx. 50 bytes

See also
Basics of data logging (Page 653)
How it works (Page 839)

5.4.1.3 Logging modes and logging process
Logging begins when Runtime starts. The process values to be logged are acquired, processed,
and saved in the data log. Current or previously logged process values can be output in runtime.
Three logging modes are available for logging tags:
• On change: When the process value changes, it is logged.
• On demand: When the tag trigger is triggered, the process value is logged.
• Cyclic: Logging is carried out according to a defined cycle.

Configuring tags
5.4 Logging tags

654 System Manual, 11/2022

The amount of logged data can be reduced due the following processing mechanisms:
• Limits
• Smoothing
• Compression

When you select an existing logging tag as source, the values are compressed with the
selected compression mode.

Data logging ends when runtime is terminated.

Logging process

Configuring tags
5.4 Logging tags

System Manual, 11/2022 655

"On change" logging mode
When the process value changes, the process value is saved in the data log in the "On change"
logging mode while runtime is running. You can also define a tag trigger.
• The acquisition cycle of the external tags controls when the process value is read from the

memory of the connected PLC.
The external tags in WinCC correspond to a process value in the memory of a connected PLC.

• When the process value changes, the runtime component of the logging system processes
the process value.

• If you have configured smoothing, the value is calculated accordingly.
• The processed process value is written to the data log.
For defined tag triggers, the tag is also logged when the trigger occurs.

"On demand" logging mode
• The process value is read from the PLC when the request by the tag trigger occurs.

The external tags in WinCC correspond to a process value in the memory of a connected PLC.
• If you have configured smoothing, the value is calculated accordingly.
• The processed process value is written to the data log.
• With each new request by the tag trigger, the process value is read, processed and logged

again from the memory of the connected PLC.

"Cyclic" logging mode
The process values are recorded in constant cycles and stored in the data log. You have the
option of using a predefined cycle or a user-defined cycle.
The process value is only logged if it differs from the previous value. If every value is to be
logged, no smoothing and no compression must be configured for the logging tag.

Note
Depending on the configuration, the database can grow very quickly. This can occur, for
example, when you select a short cycle without smoothing and without compression.

• The acquisition cycle of the external tag controls when the process value is read from the
memory of the connected PLC.
The external tags in WinCC correspond to a process value in the memory of a connected PLC.

• If you have configured smoothing or compression, the value is calculated accordingly.
• The logging cycle determines when the processed process value is written to the log

database.

Note
The logging cycle is independent of the acquisition cycle of the external tag. It does not make
sense to set the logging cycle shorter than the acquisition cycle.

Configuring tags
5.4 Logging tags

656 System Manual, 11/2022

5.4.2 Configuring logging tags

Introduction
You manage the logging tags at various locations:
• You have the following options in the "HMI tags" editor:

– Create logging tags
– Edit logging tags
– Delete logging tags

• You have the following options in the "Logs" editor:
– Edit logging tags
– Delete logging tags

Note
Logging tags are deleted
Logging tags are deleted with the following actions and must be recreated:
• The logging tag is assigned to an array element. The data type of the array is changed.
• The logging tag is assigned to a user data type element. The data type of the user data type

element is changed, and a new version is released without updating the associated
instances. The new version of the user data type is assigned to the tag manually in the "HMI
tags" editor.

Note
Local session tags
Local session tags cannot
• be used as a trigger
• be used as an logging tag
• be logged.

Requirement
• The "HMI tags" editor is open.
• The logging tag tab is expanded.
• You have created a tag.

Configuring tags
5.4 Logging tags

System Manual, 11/2022 657

Procedure
1. Select an existing tag in the tag table.
2. In the table of the "Logging tag" editor table, double-click "<Add>" in the "Name" column.

A new logging tag is created.
The logging tag is linked to the selected tag. The data type of the logging tag corresponds to
the data type of the higher-level tag.

3. Assign a data log to the new logging tag. Every logging tag can be assigned to another log.
4. Specify the logging mode.
5. When the "Cyclic" logging mode is set, define the logging cycle and the factor under

"Properties > Properties > Cycle".
The product of logging cycle and factor determines the time interval between two logs. For
example, if you define "1 second" as the time basis and "5" as the time factor, the process
values are logged every 5 seconds.
The factor is a multiplier for the duration of the configured logging cycle.
The factor is used to reduce the number of cycle times. Cycle times that you configure are
used for the acquisition cycle and the logging cycles to acquire and then log the measured
values. As the different measured values are acquired and logged with different cycle times,
different times must also be defined. The factor reduces the number of defined times. This
means that times with factor are used several times. A logging cycle of 120 s with factor = 1
corresponds to a logging cycle of 60 s with factor = 2. Both measured values are logged every
120 s.

6. Define the tag trigger depending on the logging mode.
7. Define the limit values.
8. Define the smoothing.
9. If you have selected the "Cyclic" logging mode, define the compression.

Tips for an efficient procedure

You can also configure the properties of the logging tags directly in the logging tags table. To view hidden columns, activate
the column titles using the shortcut menu.

Copying logging tags
You can copy logging tags within an HMI device. To do this, use the shortcut menu or the
shortcuts <Ctrl + C> and <Ctrl + V>.

Configuring tags
5.4 Logging tags

658 System Manual, 11/2022

You copy logging tags, for example, from:
• "HMI tags" editor
• "Logs" editor
• Data source of a control in which logging tags are used
You insert logging tags, for example, at the following locations:
• "HMI tags" editor
• Data source of a control in which logging tags are used

Note
If you hare using cascading logging tags by having defined a source under "Compression", the
reference becomes invalid due to the copy process. Redefine the source for the inserted logging
tag.

See also
Creating a data log and an alarm log (Page 848)
Configuring tag triggers (Page 660)
Configuring limit values (Page 661)
Configuring smoothing (Page 663)
Configuring compression (Page 667)

5.4.3 Configuring multiple logging tags

Introduction
You can create multiple logging tags at the same time in the "HMI tags" editor. Then you adapt
the properties of multiple logging tags by automatic filling. This will shorten the configuration
time.
You edit and delete the logging tags in the "HMI tags" editor or in the "Logs" editor.

Requirement
• Multiple tags are configured.
• A tag table is open.

Configuring tags
5.4 Logging tags

System Manual, 11/2022 659

Procedure
1. Select multiple tags of the tag table.

If you have already configured logging tags, all logging tags that are assigned to the selected
tags are displayed.

2. Select the button "Add new logging tag to each selected loggable tag".
A tag is added to each selected tag that can be archived.

3. When you want to transfer a property of a logging tag to other logging tags, select the cell
that contains this property.
The selected cell will be highlighted in color and a small blue square will appear in its bottom
right corner.

4. When you move the mouse over this square, the cursor will change to a black cross.
5. Hold down the mouse button and drag the cursor up or down over the cells that you want to

fill out automatically.
 The marking will be extended to cover this area.

6. Now release the mouse button.
All of the marked cells are filled automatically.

Tips for an efficient procedure

For a better overview, you can sort the columns of the logging tag table in ascending or descending order. To do this, click on
the column title. To view hidden columns, activate the column titles using the shortcut menu.

Result
• You have created multiple logging tags.
• You have defined the properties of the logging tags through automatic filling.

If properties for individual logging tags cannot be applied, the previous values are retained.

5.4.4 Configuring tag triggers

Introduction
When you use the "On demand" and "On change" logging modes, you have the option of
defining a tag trigger. In the "On demand" logging mode, you log the tags regardless of the value
change, and you can trigger logging, for example, at the end of a process or a shift. When the
defined bit of the trigger tag changes according to the defined mode, the tag is logged.

Configuring tags
5.4 Logging tags

660 System Manual, 11/2022

Requirement
• You have created a logging tag.
• The logging mode "On demand" or "On change" is defined for the logging tag.

Procedure
1. Select an existing logging tag in the "Logging tags" tab.
2. In the Inspector window under "Properties > Properties", select the "Tag trigger" area.

Note
Local session tags cannot be used as triggers.

3. Specify a trigger mode:
– None: The tag trigger is not used.
– Rising edge: When the bit changes from 0 to 1, the trigger is triggered.
– Falling edge: When the bit changes from 1 to 0, the trigger is triggered.
– Rising and falling edge: When the bit changes from 0 to 1 or from 1 to 0, the trigger is

triggered.
4. Define the trigger tag.
5. Specify the bit that is to be considered.

Tips for an efficient procedure

You can also configure the tag trigger directly in the logging tags table. To view hidden columns, activate the column titles using
the shortcut menu.

Result
You have defined a tag trigger that triggers logging.

See also
Configuring logging tags (Page 657)

5.4.5 Configuring limit values

Introduction
You have the option of archiving tag values outside or within a defined limit scope. To do this,
define a valid range and the corresponding limit values. In runtime, the process values are
evaluated after the configured limit scope and only the process values within the defined range
are logged.

Configuring tags
5.4 Logging tags

System Manual, 11/2022 661

Limit scope
The following limit scopes are available:

Limit scope Description Example
No limits No limit values are defined for logging. Limit values are not taken into consider‐

ation.
Greater The process values that are greater than the low‐

er limit value are logged.
Low limit =3;
Logged values = 4, 5, 6

Less Only the process values that are less than the
high limit are logged.

High limit =6;
Logged values = 3, 4, 5

Greater or equal Only process values that are equal to or greater
than the lower limit are logged.

Low limit =3;
Logged values = 3, 4, 5, 6

Less or equal Only the process values that are equal to or less
than the high limit are logged.

High limit =6;
Logged values = 3, 4, 5, 6

Within limits Only the process values that are within the two
configured limits are logged.

Low limit = 3, high limit = 6;
Logged values = 4, 5

Within or equal Only the process values that are within the two
limits or equal to one of the limit values are log‐
ged.

Low limit = 3, high limit = 6;
Logged values = 3, 4, 5, 6

Outside limits Only the process values that are outside of the
two configured limits are logged.

Low limit = 3, high limit = 6;
Logged values = 1, 2, 7, 8

Outside or equal Only the process values that are outside the two
limits or that correspond to one of the limit val‐
ues are logged.

Low limit = 3, high limit = 6;
Logged values = 1, 2, 3, 6, 7, 8

Requirement
• You have created a logging tag.

Procedure
1. Select an existing logging tag in the "Logging tags" tab.
2. In the Inspector window under "Properties > Properties", select the "Limit values" area.
3. Specify the limit values. You have the following options:

– Use constants.
Select "Constant" using the selection button.
Enter a number in the relevant field.

– Use HMI tags.
Select "HMI tag" using the selection button.
Open the selection dialog. Only tags that correspond to the data type of the logging tag
are displayed. Local session tags are not permitted.
Select a tag.

– Apply the limit values of the associated HMI tag.
Activate "Use tag limits".
The limit values of the HMI tag are used and grayed out in the corresponding fields.

Configuring tags
5.4 Logging tags

662 System Manual, 11/2022

Tips for an efficient procedure

You can also configure the limits directly in the logging tags table. To view hidden columns, activate the column titles using the
shortcut menu.

Result
You have specified a value range for the selected logging tag that is defined by the limit values.

See also
Configuring logging tags (Page 657)

5.4.6 Configuring smoothing

Introduction
You can compress the data volume of the logged data using smoothing to reduce the memory
space required. Smoothing reduces the noise in the collected data.
The process values are only logged in accordance with certain predefined criteria.

Note
Smoothing
If the value "No smoothing" is set in the properties of the logging tag under "Smoothing > Mode",
the values are nevertheless smoothed.
Example:
A logging tag changes its value as follows: "100" > "101" > "101".
Even if "No smoothing" is set in the properties of the tag, the values [100, 101] are logged.

Requirement
• You have created a logging tag.

Procedure
Select one of the following modes:
• No smoothing

The values are logged without smoothing.
• Comparing values

Values are logged when the value changes and/or the quality code is changed. No logging is
triggered when only the time stamp changes.

Configuring tags
5.4 Logging tags

System Manual, 11/2022 663

• Value
You specify a limit value that defines the maximum permitted distance between the values.
All value changes occurring within the defined interval from the last logged value are not
logged.

Configuring tags
5.4 Logging tags

664 System Manual, 11/2022

• Relative value
You specify a percentage deviation that defines the maximum interval between the values.
All value changes occurring within the defined interval relative to the last logged value are
not logged.
Example:
– You define a deviation of 10%, the last logged value is 100.
– The value 105 is not logged because the value change is less than 10%. On the other

hand, the value 130 is logged because the value change is more than 10% and is therefore
relevant for logging.

• Swinging door
The Swinging Door algorithm is a combination of value-based and time-based smoothing.
The swinging door algorithm evaluates values on the basis of the defined rate of change and
only logs them if the following value is outside the calculated range. The compression rate
depends on the maximum tolerated deviation. The deviation is set as an absolute value.

t Time interval between received values
d Configured deviation
v0 Previously logged value
v1 Current value

The starting point for calculating the next logging time is the last value logged.
Using the set deviation, you can influence the precision with which the values are saved. The
greater the deviation, the fewer values are logged. Values for which "Deviation is within the
tolerated deviation" is true are not taken into account.
With the maximum time, you specify the time after which a new value will definitely be
logged. This specifies additional reference values for the logged data even if no significant
changes occur during this time. With the minimum time, you specify the time interval after
which the next value for logging is calculated. All measured values within the minimum time
are not logged.

Configuring tags
5.4 Logging tags

System Manual, 11/2022 665

Tips for an efficient procedure

You can also configure smoothing directly in the logging tags table. To view hidden columns, activate the column titles using
the shortcut menu.

Example – Smoothing with the value
You specify a constant value for the deviation. All values that are within the defined deviation
and have not changed significantly are not logged.
Only the values outside the deviation are written to the log.

Example – Swinging door with deviation and maximum time
You define the deviation and the maximum time after which the next value is written to the log.
Once the first value has been saved, the following values are evaluated in the pre-defined
rate of change. If the value is within the rate of change, it is not logged. If the value is
outside the deviation, it is logged. In addition, the values that do not have a significant
change compared to the previous logging value are logged at regular defined intervals.

Configuring tags
5.4 Logging tags

666 System Manual, 11/2022

Example – Swinging door with deviation and minimum time
You define the deviation and the minimum time after which the next value is to be evaluated in
runtime.
Once the first value has been saved, the next value for logging in runtime is calculated after
the preset time. If the value is within the rate of change, it is not logged. If the value is
outside the deviation, it is logged.

See also
Configuring logging tags (Page 657)

5.4.7 Configuring compression

Introduction
In the "Cyclic" logging mode, you can compress the data volume of the logged data using
compression to reduce the memory space required.
If you have selected "Cyclic" as logging mode, runtime logs the tag values according to the
logging cycle, the defined smoothing and the defined compression.
Various compression modes are available.

Configuring tags
5.4 Logging tags

System Manual, 11/2022 667

Supported data types
The following table shows which compression mode supports which data types. You can see
from the table in which data type the source data is converted by compaction. A "==" means that
the source data type remains unchanged.

 Compression mode
Data type No com‐

pression
Minimum Maximum Minimum

with time
stamp

Maxi‐
mum

with time
stamp

Total Average Time
average
sloped
step by

step

End

Bool == Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

LReal LReal ==

SInt == == == == == LInt LReal LReal ==
USInt == == == == == ULInt LReal LReal ==
Int == == == == == LInt LReal LReal ==
UInt == == == == == ULint LReal LReal ==
DInt == == == == == LInt LReal LReal ==
UDInt == == == == == ULInt LReal LReal ==
LInt == == == == == Not sup‐

ported
Not sup‐
ported

Not sup‐
ported

==

ULInt == == == == == Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

==

Real == == == == == LReal LReal LReal ==
LReal == == == == == LReal LReal LReal ==
String == Not sup‐

ported
Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

==

Time == Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

==

DateTime == Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

==

Char == Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

==

Byte == Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

==

Word == Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

==

DWord == Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

==

LWord == Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

Not sup‐
ported

==

Configuring tags
5.4 Logging tags

668 System Manual, 11/2022

Note
Note the following when configuring the cycle and the compression:
• You can overload the processor if you use short cycles and compression. Make sure that the

computing power of the processor is sufficient to calculate the values to be logged for each
cycle.

• Depending on the configuration, the database can grow very quickly. This can occur, for
example, when you select a short cycle in combination with the smoothing mode "No
smoothing" and the compression mode "No compression".

Requirement
• You have created a logging tag.
• The "Cyclic" logging mode is defined for the logging tag.

Configuring tags
5.4 Logging tags

System Manual, 11/2022 669

Procedure
1. Select one of the following modes:

Compression mode Description
No compression Every value is logged. Logging receives a time stamp of the interval

end.
Examples:
• If you have not defined any smoothing, every value is logged.
• If you have defined the "Compare values" smoothing mode, the

value is only logged when the value changes and/or the quality
code is changed.

Minimum The minimum of the values determined within the logging interval,
including the start value, is logged. The logging receives a time stamp
of the interval start.

Maximum The maximum of the values determined within the logging interval,
including the start value, is logged. The logging receives a time stamp
of the interval start.

Minimum with time stamp The minimum of the values determined within the logging interval,
including the start value, is logged. Unlike in the "Minimum" mode, in
this mode the logged minimum value receives the time stamp of its
occurrence.

Maximum with time stamp The maximum of the values determined within the logging interval,
including the start value, is logged. Unlike in the "Maximum" mode, in
this mode the logged maximum value receives the time stamp of its
occurrence.

Total The total of all values determined within the specified logging interval
is logged without the start and end values.

Average The average value of all values determined within the specified log‐
ging interval is logged without the start and end values.

Time average sloped step by
step

The time-weighted average value of all values determined within the
specified logging interval without start and end value is logged.

End The last value determined within the specified logging interval is log‐
ged. The logging receives a time stamp of the interval start.
Examples:
• If you have not defined any smoothing, the zero value and the

quality code "NoData" will be logged when there are no value
changes.

• If you have defined the "Compare values" smoothing mode, the
value is only logged when the value changes and/or the quality
code is changed.

Configuring tags
5.4 Logging tags

670 System Manual, 11/2022

Note
Each value is logged when you select "No smoothing" for the smoothing mode in
combination with the compression mode "No compression". This will quickly increase the log
size.

2. You have the option of defining a delay. The delay value defines the latest possible time up
to which the compression value is logged after the end of a logging cycle. If the time stamp
of a value is after the delay value, the value is not logged.

3. Under "Source", you can select an existing logging tag whose values are to be compressed
with the selected compression mode.

Tips for an efficient procedure

You can also configure compression directly in the logging tags table. To view hidden columns, activate the column titles using
the shortcut menu.

Result
You have configured compression for a logging tag.

See also
Configuring logging tags (Page 657)

5.5 Displaying tags

5.5.1 Basics

5.5.1.1 Outputting the tag values

Overview
With WinCC you can output tag values in the HMI screen with different screen objects and
change them.
• The I/O field is used for the input and output of process values.
• Bars are used for graphic display of the process values in form of a scale.
• Sliders are used for the input and output of process values within a defined range.
• The gauge is used to display the process values in form of an analog gauge.

Configuring tags
5.5 Displaying tags

System Manual, 11/2022 671

In runtime you can also output tag values as table or as trend. You can use either process
values or logged values as source for the tag values.
• Use a trend for the graphic display of tag values. Trends allows you to display the change in

motor temperature, for example.
• Use a table to compare tag values. In the table you can, for example, compare fill levels of

supply tanks.

Controls for displaying tag values
To display tag values as a trend, use the trend control. The versions of trend views are available:
• "Trend control": You display a tag value over time, for example, the change in temperature.

You can compare the current values and logged values or monitor the change in current
values on the HMI device.

• "Function trend control": You display a tag value against a second tag value, for example, the
engine speed against the heat produced.

You can use the "Trend companion" to create statistics, for example, from the displayed
values. Furthermore, you can use the trend companion as reading assistance for the trend
control.
To display tag values in a table, use the process control.

Configuring tags
5.5 Displaying tags

672 System Manual, 11/2022

Displayed values
When configuring the trend control, specify which tag values are to be displayed.
• "Online": The trend is continued with current individual values from the PLC.
• "Log": In runtime, the trend control displays the values of a tag from a data log. The trend

shows the logged values in a particular window in time. The operator can move the time
window in runtime to view the desired information from the log.

Data types
Tags of the data type "Word" or "Int" and array tags of the data type "Word" or "Int" are permitted
for display in a curve.

5.5.1.2 Outputting tag values as trends

Introduction
You have the option of displaying the values of tags graphically in runtime with the help of the
following controls:
• You can visualize the trend control to display currently pending process values or logged

values in runtime as trends over time.
• You use the function trend control to visualize currently pending process values or logged

values in runtime as trends in relation to other tags.
The axis designations are different for the two trend views:
• The trend control has a "Time axis" and a "Value axis"
• The function trend control has an "X axis" and a "Y axis"
You can display up to nine trends in both the function trend control and the trend control.

Structure of a trend control
Configure the trend control appearance in the Inspector window: You define the number of
trend areas and configure the trends it contains.
You can configure multiple trends, value axes and time axes for each trend area. You can alter
the appearance, labeling and assignment in the Inspector window for each individual trend,
value axis and time axis created.

Configure trend areas
You can divide the display area into multiple trend areas, if necessary. Each area functions like
a standalone trend control. This allows you to show temperature changes or values from
different days, for example, as trends and compare them. The "Range proportion" specifies how
much space is provided for a given area in the trend control.
Each range proportion is calculated on the basis of the total number of range components. If
you have configured a total of three trend areas, for example, a range proportion of "1" will

Configuring tags
5.5 Displaying tags

System Manual, 11/2022 673

result in three trend areas of equal size. To increase the range proportions in relation to each
other, increase the range proportion of one or more trend areas.

Configuring axes
You configure the axes of the trend control for each trend area in the properties of the trend
areas.
The following properties are set by default with a value axis:
• The value range is based on the current values of the assigned trend
• The value axis scale is linear and based on the value range

Alternatively, you can configure a logarithmic scale:
– In logarithmic scaling, only positive values are displayed.
– In negative logarithmic scaling, only negative values are displayed.

If you configure a value axis for the trend control, you can also set up axis segments. You
assign a value range and a display name to each axis segment.
In the function trend control, the value axis corresponds to both the "X axis" and the "Y axis".

Configuring trends
You configure the axes for each trend area:
• The time and value axes in the trend control
• The different value axes in the function trend control
By default, the data area is based on the current values of the associated trend.
You can also configure the visualization of limits and values with "Uncertain status" for a
trend. If a trend exceeds or falls below a configured limit, the trend is colored.

Configuring the time axis and time range (trend control)
The time range for trend display is configured with time axes. In a trend control, you can create
multiple time axes that you can assign to one or more trend areas.
If you configure several time axes to a trend control, the sequence of the time axes in the
Inspector window corresponds to the sequence in the trend control. If multiple time axes run
along the same side of a trend control, the first time axis in the list is at the bottom left. The
last time axis is at the top right.

5.5.1.3 Representing multiple trends

Introduction
If you display several trends simultaneously in the trend control, assign each trend its own value
and time axis. Alternatively, you can assign a shared time and/or value axis to several trends.
You configure the axes of a trend control for each individual trend in the Inspector window
under "Properties > Trend areas".

Configuring tags
5.5 Displaying tags

674 System Manual, 11/2022

The axes are assigned to the configured trends in the Inspector window under "Properties >
Trend areas > Trends".

Representation using different axes
If the values to be displayed in a trend control differ greatly, a common value axis makes no
sense. If you assign each trend its own value axis, they should also display different scales.
Individual axes can be hidden if required.
The figure below shows two trends with different value axes using a trend control as an
example:

Representation using common axes
If the comparability of the trend directions is important, common axes in a trend control is
sensible. Connected trend views can have a common time axis.
If you configure trends with a shared time axis, use tags with the same update cycle for the
data supply.
In the case of different updating cycles, the length of the time axis is not identical for all
tags. Since the trends are updated at different times due to the different updating cycles, a
minimal different in the end time for the time axis occurs on each change. As a result, the
trends displayed skip slightly to and fro on each change.

Configuring tags
5.5 Displaying tags

System Manual, 11/2022 675

5.5.1.4 Basics of time range

Time range
The time range is the range from which the values at the HMI device are shown. The time range
is determined by the start time and the end time. The time range is always in the past. If the end
time is later than the current system time, the current system time is used as a temporary end
time.
A distinction is made between the following time ranges:
• Static time range
• Dynamic time range

Static time range
The static time range is determined by fixed start and end times. The values are displayed within
this time range.

Dynamic time range
The dynamic time range is determined by a period of time beginning with a fixed start time. The
end time thus corresponds to the conclusion of the time period.
You set the time period as follows:
• Duration, e.g. 30 minutes
• The number of measurement points multiplied by the update cycle also produces a duration.

Configuring time range
Configure the time range for all controls. Configure the time range in the time column or in the
time axis for the process control and the trend control. For the function trend control, configure
the time range directly at the trend.

Configuring tags
5.5 Displaying tags

676 System Manual, 11/2022

You select one of three options for the time range:
• "Time span": You define the time range using a starting time and a following time span. You

set the time interval with the settings "Time range base" and "Time range factor", for
example, 30 minutes.

• "Start time and end time": You define the time range using a starting time and an end time.
• "Measuring points": You define the time range using a starting time and a number of

measuring points.

5.5.1.5 Representing trend directions

Introduction
In a trend control, you display a trend direction with one of the following modes:
• Dots
• Interpolated
• Stepped
• Values
Select "Properties > Trend areas > Trends > Trend mode" to configure the trend display in the
Inspector window.

Dots
Values are shown as dots. The display of the points can be configured as you wish.
The following image shows the trend direction with the format pattern "Dots":

Interpolated
The trend curve is interpolated on a linear basis from the values. The display of the lines and
points can be configured as you wish.
The following image shows the trend direction with the format pattern "Interpolated":

Configuring tags
5.5 Displaying tags

System Manual, 11/2022 677

Stepped
The trend curve is interpolated as a stepped curve from the values. The display of the lines and
points can be configured as you wish.
The following image shows the trend direction with the format pattern "Stepped":

Values
The values are displayed as text at each time stamp or each main grid line of the time axis. A unit
can be displayed additionally for the values.
The figure below shows the trend direction with the format pattern "Values":

5.5.1.6 Outputting tag values in tabular format

Introduction
To display tag values in tables in runtime, add a process control to a screen. A time stamp is
displayed for each value. The values are displayed in value columns, and the time stamps in time
columns. Assign the time column to one or several value columns. You have the option of
configuring a time column and nine value columns in the process control.
If you assign multiple value and/or time columns to a process control, the sequence of
columns in the Inspector window corresponds to the sequence in the process control. If you
assign the same time column to multiple value columns, the value columns in the list are
automatically grouped according to the assigned time column.
• The time range for the table display is configured using the time column. A table has a

common time column for multiple value columns. The first column [0] in the process view of
the process control is the time column.

• You configure the values of the process control using value columns. You can display several
value columns in a table, for example to compare the fill levels of several containers. Each
value column is connected to the time column.

Configuring tags
5.5 Displaying tags

678 System Manual, 11/2022

Configuration options in the process control
You can configure the following properties in the process control in line with your requirements:
• Configure the appearance of the process control:

– Colors
– Time base
– Window settings of the control

• Configure the columns of the process control in the Inspector window.
– Configure the time range using the time columns. A table can have a common time

column for multiple value columns as well as separate time columns.
– Configure the display of the tag values using the value columns. Each value column is

connected to a time column. The value columns can have a common time column.
• Configure the appearance of the table
• Configure the toolbar and information bar of the process control.
• If required, configure data export from the process control.

5.5.1.7 Configuring tag evaluation

Introduction
Also configure a trend companion if you want to evaluate data from the trend control in runtime.
You can also configure the trend companion as "Ruler".
You connect the trend companion to one of the following controls:
• Trend control
• Function trend control
Set a "Display mode" in the trend companion. The display mode determines which data is
shown in the trend companion.
The contents of the trend companion are shown in columns. The available columns depend
on the connected control. A block is assigned to each column. You define the alignment and
appearance of the column headers using the blocks. By default, the format of the connected
control, for example the time display, is used for the display format.

Configuration options in the trend companion
You can configure the following properties in the trend companion in line with your
requirements:
• Configure the view of the trend companion in the Inspector window:
• Select the "Mode" of the trend companion under "Properties > General".
• Configure the display, labeling and sequence of the columns.

Configuring tags
5.5 Displaying tags

System Manual, 11/2022 679

Display modes
Three different display modes are available in the trend companion:
• Ruler mode

The ruler window shows the coordinate values of the trends on the ruler or values of a
selected row in the table.

• Statistics area mode
The statistics area window shows the values of the lower limit and upper limit of the trends
between two rulers or the selected area in the table. You can only connect the statistics area
window to the trend control or the process control.

• Statistics mode
The statistics window displays the statistical evaluation of the trends. The statistics include:
– Minimum
– Maximum
– Average
– Standard deviation
– Integral

All windows can also display additional information on the connected trends or columns,
such as time stamps.

5.5.2 Configuring a trend control

Introduction
For the graphic display of tag values in runtime, add a trend control to a screen. The trend control
allows you to display current and logged values for a specific time window, for example. For the
display of data logs in runtime, you can move the time window to view the logged values.
The list of elements in a group always starts with 0, for example trend [0] is the first trend
that has already been created in the object. For a clearer display of multiple trends, you can
configure different names, line types and colors.

Requirement
• Data log with backup has been configured.
• The HMI tag for temperature measurement has been configured, for example

"MotorTemperature".
• The HMI tag for velocity measurement has been configured, for example "MotorSpeed".
• A screen has been configured.

Configuring tags
5.5 Displaying tags

680 System Manual, 11/2022

Configuring the trend area and axes
1. Add the "trend control" object to the screen from the "Toolbox" task card.
2. Go to "Properties" and set the required height, width and position of the object.
3. Open the "Trend areas" group under "Properties".

The index numbers of the trend areas created for the object are displayed.
4. Expand the index number of the first trend area.

The properties of the first trend area are displayed.
Note
To add another trend area, go to "Properties > Trend areas > [0] trend areas > Trends" and click
the selection button in the "Static value" column. In the dialog, click "Add".

5. Define the colors for displaying the trend area and the reference lines.
6. Configure the time axis and value axis settings under "Bottom time axis" and "Left value axis".

Configuring trends
1. Go to "Trend areas > [0] trend areas > Trends" and click on the selection button in the "Static

value" column.
A dialog opens.

2. Click "Add" in the "Index" column.
This adds another trend. Close the dialog.

3. Expand the index number of the first trend [0]. The trend settings are displayed.
4. Specify the name of the first trend under "Display name", for example "Speed".
5. Select the entry "Online" under "Data source Y > Source".
6. Under "Tag" enter the tag "MotorSpeed".
7. Configure the line color for the trend, for example, blue.
8. Expand the index number of the second trend [1]. The trend settings are displayed.
9. Specify the name of the second trend under "Display name", for example "Temperature".
10.Specify "Online" as the source type under "Data source" and enter the name of the tag

"MotorTemperature".
11.Configure the line color for the trend, for example, red.

Result
The trend control is now configured. In runtime, you monitor value changes over time on the
basis of two trends. One trend shows the temperatures measured and the other trend the
velocity.
Configure an additional value display if you want to evaluate the data of the trend control in
runtime. You can also configure the value display as a "Ruler".

Configuring tags
5.5 Displaying tags

System Manual, 11/2022 681

See also
Trend control (Page 315)
Configuring trend control for plant objects (Page 7085)

5.5.3 Configuring the function trend control

Introduction
You use the function trend control to represent the values of a tag as a function of another tag.
This means that you can present temperature trends as a function of the velocity, for example.
You can also compare the trend to a setpoint trend.

Requirement
• Data log with backup has been configured.
• The HMI tag for temperature measurement has been configured, for example

"MotorTemperature".
• The HMI tag for velocity measurement has been configured, for example "MotorSpeed".
• A screen has been configured.

Configuring function trend areas and axes
1. Add the "trend control" object to the screen from the "Toolbox" task card.
2. Go to "Properties" and set the required height, width and position of the object.
3. Open the "Function trend area" group under "Properties".

The index numbers of the function trend areas created for the object are displayed.
4. Expand the index number of the first function trend area.

The properties of the first function trend area are displayed.
Note
To add another function trend area, go to "Properties > Function trend area > [0] function
trend area > Function trends" and click on the selection button in the "Static value" column.
In the dialog, click "Add".

5. Enter a meaningful name for the function trend area, for example, "SpeedToTemperature".
6. Open the temperature value axis settings under "Left value axis".
7. Define the value range for temperature, for example, by entering a maximum scale value of

350 degrees and a minimum scale value of 0 degrees.
8. Open the velocity value axis settings under "Bottom value axis".
9. Define the value range for speed, for example, by entering a maximum scale value of

1400 rpm and a minimum scale value of 0 rpm.

Configuring tags
5.5 Displaying tags

682 System Manual, 11/2022

Note
Available scaling types
The f(x) trend view supports the "Linear" scaling type.

Configuring trends
1. Go to "Function trend area > [0] function trend area > Function trends > [0] function trend".
2. Specify "Online" as the source type under "Data source X", and enter the name of the process

tag "MotorTemperature" under "Tag".
3. Specify "Online" as the source type under "Data source Y", and enter the name of the process

tag "MotorSpeed" under "Tag".
4. Specify the time range of 1 second under "Properties > Function trend area > Function

trends".

Result
The function trend control is now configured. In runtime, you monitor value changes on the
basis of two trends. One trend shows the temperatures and the other trend the speed. In the
function trend control, you can, for example, monitor how the temperature of the motor
increases as the velocity increases.
Configure an additional value display if you want to evaluate the data of the trend control in
runtime. You can also configure the value display as a "Ruler".

See also
Function trend control (Page 319)

5.5.4 Configuring bit-triggered trends
By setting a trigger bit in the "Trend transfer" tag, the HMI device either reads in a trend value or
an entire trend buffer. This is defined in the configuration. Bit-triggered trends are usually used
to represent fast changing values.
To trigger bit-triggered trends, appropriate external tags must be created in the "Tags"
editor and connected to trend areas during configuration. The HMI device and PLC then
communicate with each other via these trend areas.

Explanation of terms
Trend buffer
External array tag, the values of which are displayed as a trend. The number of array
elements must be the same as the number of the measuring values of the trend. The tag is
only available if the archive has not been selected as the "Source settings".

Configuring tags
5.5 Displaying tags

System Manual, 11/2022 683

Trend request
When you open a screen with one or more trends on the HMI device, the HMI device sets the
associated bits in the trend request area. After deselecting the screen, the HMI device resets
the corresponding bits in the trend request area.
The trend request area can be used in the PLC to evaluate which trend is currently displayed
on the HMI device. Trends can also be triggered without evaluation of the trend request area.
Trend transfer 1
This area is used to trigger trends. In your control program, set the bit assigned to the trend
in the trend transfer area and the trend group bit. The trend group bit is the last bit in the
trend transfer area. The HMI device detects the triggering and reads either a value or the
entire buffer from the PLC. It then resets the trend bit and the trend group bit.

15 8 7 0

high-order byte

1st word

nth word

low-order byte

Trend group bit

Bit number

The trend transfer area must not be changed by the control program until the trend group bit
has been reset.
Switch buffer
An external array tag with trend values as a second buffer that can be set when configuring a
trend. While the HMI device reads the values from buffer 1, the PLC writes to buffer 2. If the
HMI device reads buffer 2, the control writes to buffer 1. This prevents the trend values from
being overwritten by the PLC while the HMI device is reading the trend.
Trend transfer 2 (required only with switch buffers)
Trend transfer 2 is required for trends that are configured with switch buffers. It is structured
in the same way as trend transfer 1.
Trigger bit
Each trend is assigned a specific bit for communication between the HMI device and the PLC.
If you assign trigger bit "4" to a trend, for example, the trend is identified by bit 4 in the trend
request and in the trend transfers.
Do not use the group bit as trigger bit. The HMI device uses the group bit to detect the trigger
signal. The position of the group bit in the trend transfer depends on the selected PLC.

Requirement
The following data blocks of the PLC were configured in STEP 7:
• Trend buffer (trend tag of the Array type)
• Trend request
• Trend transfer 1

Configuring tags
5.5 Displaying tags

684 System Manual, 11/2022

A screen is configured.

Configuring the bit-triggered trend without a switch buffer
1. Add the "Trend control" object to the screen from the "Toolbox" task card.

2. Set the desired height, width and position for the object under "Properties > Layout" in the
Inspector window.

3. Expand the "Time axis" group under "Properties" and select the "Points" axis mode under
"Settings". Under "Range", specify how many values are to be displayed on the X axis. Under
"Label", select the scale labeling of the intermediate values, the step size and the number of
graduation lines.

4. Under "Properties", expand the "Trend" group.
5. In the "Name" column, click the "Add new" entry and specify the name for the trend. If

needed, change the style of the trend (color, line, mode).
6. In the "Trend values" column, specify the number of values. This number depends on how

many array tags you have assigned for the "Trend buffers".

Configuring tags
5.5 Displaying tags

System Manual, 11/2022 685

7. In the "Trend type" column, select the "Bit-triggered real time" variant.
8. Set in the column "Source settings > Data source" the tags for:

– Process values
– Trend request
– Trend transfer
Then enter the bit position in "Trend request" and "Trend transfer".

Configuring tags
5.5 Displaying tags

686 System Manual, 11/2022

Configuring the bit-triggered trend with switch buffer
The procedure is first the same as before for the configuration of a bit-triggered trend without
switch buffer (steps 1-6).
1. Select the variant "Bit-triggered buffer" in the "Trend type" column.
2. Select in the column "Source settings > Data source" the tags for:

– Process values
– Trend request
– Trend transfer 1
Then enter the bit position in "Trend request" and "Trend transfer".

3. Check the "Activate buffer" check box and select the tags for:
– Buffer tag
– Trend transfer 2

Configuring tags
5.5 Displaying tags

System Manual, 11/2022 687

5.5.5 Configuring the process control

Introduction
To display tag values in tables in runtime, add a process control to a screen. The time column
shows the time at which the value was reached. The value columns show the values at a given
time stamp.
You can use the process control to display the incoming temperature values of a motor in a
table in runtime, for example.

Requirement
• HMI tag for temperature measurement has been configured, for example

"MotorTemperature"
• Cycle for regular display updates has been configured
• The screen is open
• The Inspector window is open

Configuring the process control
1. Add the required process control to the screen from the "Tools" task card.
2. Enter the label for the process control, for example "MotorTemperatureView", under

"Properties" in the Inspector window.
3. Go to "Properties > Process view > Columns > [0]" and configure the time column with the

time ranges for the table.
4. Under "Sort order", define the order in which the columns of the process control are shown.
5. Configure the "Time range" and "Format" of the time display in the time column, for example

"Time span".
6. Set the start time, the basis and the factor for the time range, for example 10 minutes.
7. If the values in the time column are to be updated automatically, enable "Update".
8. Go to "Properties > Process view > Columns > [1]" and configure the properties for the value

column.
9. Enter the name of the column, for example "Temperature".
10.Configure the type "Online" for current values under "Data source" and enter the tag

"MotorTemperature" under "Tag".
11.Configure the display of content and the headers for the given value column.
12.Configure the toolbar and information bar of the process control.
13.If required, configure the security settings of the process control.

Configuring tags
5.5 Displaying tags

688 System Manual, 11/2022

Result
The process control is now configured and displays the temperature of the motor at the
measured time in runtime.

See also
Process control (Page 335)
Configuring reordering of the columns (Page 392)

5.5.6 Configuring the trend companion

Introduction
The trend companion allows you to display statistical data, for example mean values for the
trend control with temperature trends. The calculation of statistical data gives the user access
to trends and value changes over time. As well as calculating statistical data, you can use the
trend companion as a viewing aid for trend values at a ruler position.

Requirement
• Trend control or function trend control has been configured in the screen
• Cycle for regular display updates has been configured
• The screen is open
• The Inspector window is open

Procedure
1. Add the required trend companion to the screen from the "Toolbox" task card.
2. Select the relevant control under "Properties > Data source" in the Inspector window to

connect the trend companion to the selected control.
3. To display the trend companion below the selected control, select the option "Dock to data

source".
4. Select the "Trend companion mode" of the trend companion under "Properties", for example

"Statistic result".
5. Configure the appearance of the selected mode under "Properties > Statistic mode

appearance":
– Change the colors, row height and fonts in the trend companion if required.
– Configure the headers under "Properties > Statistic mode appearance > Header settings"

if required.

Configuring tags
5.5 Displaying tags

System Manual, 11/2022 689

6. Configure the trend companion columns under "Properties > Statistic mode appearance >
Columns":
– Change the display, labels or order of columns if required.

7. Configure the view of the trend companion in the Inspector window:
– Change the display, labeling and colors of the trend companion if required, or use the

colors of the control to which the trend companion is docked.
– Configure the information bar and the toolbar of the trend companion.

Note
The "Print" button [3] is reserved for future versions

Configuring selection
If, for example, a user wants to export values from a row, they must select the row. You specify
the selection range and colors for selection during configuration. You define the settings for
selection for each display mode.
1. In the Inspector window, go to "Properties > Trend ruler appearance" and select the "Selection

mode" for the selection range, for example "Multiple elements".
2. Select the color mode for selection, for example rows.
3. If required, select the "Border color" and "Border width" to be displayed around the selection

area.
4. Choose the colors for selection as required.

Result
The trend companion is configured. The statistical values calculated are displayed in the trend
companion in runtime.

See also
Trend companion (Page 323)
Configuring reordering of the columns (Page 392)

Configuring tags
5.5 Displaying tags

690 System Manual, 11/2022

5.5.7 Configuring the toolbar and information bar

Introduction
You can operate the controls in runtime using the buttons in the toolbar. The information bar
displays the status messages of the control. During configuration, you define the contents of the
toolbar and information bar.

① Toolbar
② Information bar

Requirement
• You have opened the screen which contains at least one object, for example, the trend

companion.
• The Inspector window is open.

Configuring the toolbar
To configure the toolbar, follow these steps:
1. In the Inspector window under "Properties > Miscellaneous > Toolbar", configure the general

properties of the toolbar, such as background color or visibility.
2. In the Inspector window, under "Properties > Properties > Miscellaneous > Toolbar >

Elements > Button > Visibility", enable the buttons that you need in Runtime.
3. Configure the button display, for example, background color, border and size.
4. Under "Properties > Properties > Miscellaneous > Toolbar > Elements > Button >

Authorization", select the authorization that is required in Runtime to operate the button.
5. When a button is not operated in Runtime, disable "Allow operator control". You can

reactivate a disabled a button by using a script in runtime, for example.

Configuring tags
5.5 Displaying tags

System Manual, 11/2022 691

Configuring the information bar
To configure the information bar, follow these steps:
1. In the Inspector window under "Properties > Properties > Miscellaneous > Information bar",

configure the general properties of the information bar, such as background color or visibility.
2. In the Inspector window under "Properties > Properties > Miscellaneous > Information bar >

Elements > State display > Visibility", enable the elements that you need in Runtime.
3. Configure the display of the respective element.
4. Select the authorization that is required in Runtime to operate the element.
5. When an element is not operated in Runtime, disable "Allow operator control". You can

enable a disabled element again, for example, with a script in Runtime.

5.5.8 Defining the data source

Introduction
Using the data source, you define the sources from which the values are displayed on the HMI
device in runtime. The following sources are available:
• Current process values from tags
• Archived values from logging tags
To set up data supply for the controls over a tag, enter the name of the tag in the "Static
value" column under "Data source > Tag".

Requirement
• An online tag or logging tag is configured
• Value column or trend has been created
• The Inspector window is open

Configuring tags
5.5 Displaying tags

692 System Manual, 11/2022

Displaying current process values
Proceed as follows to display current process values:
1. Click "Properties > Process view > Columns" in the Inspector window to define the data source

for a process control.
The first column is always reserved for the time column. You enter the data source for value
columns [1] to [N].

2. Click "Properties > Trend areas > Trends" in the Inspector window to define the data source for
a trend control.
For the function trend control, click on "Properties > Function trend area > Function trends".

3. Configure the "data source":
– Select the entry "Online" as "Source type".
– When you configure the trend of an function trend control, enter one tag each for "Data

source X" and "Data source Y".
– When you configure the trend of a trend control or a value column, enter the

corresponding tag under "Tag".
– Select the update cycle.

Note
Using UDTs
In the "Static value" column under "Tag" first enter the name of the data type and then the name
of the element separated by a period, for example, "PLCDatatypeName.ElementName".

Displaying values from a log
Proceed as follows to display values from a log:
1. Click "Properties > Process view > Columns" in the Inspector window to define the data source

for a process control.
The first column is always reserved for the time column. You enter the data source for value
columns [1] to [N].

2. Click "Properties > Trend areas > Trends" in the Inspector window to define the data source for
a trend control.
For the function trend control, click on "Properties > Function trend area > Function trends".

3. Configure the "data source":
– Select the entry "Logs" as "Source".
– When you configure the trend of an function trend control, enter one tag each for "Data

source X" and "Data source Y".
– When you configure the trend of a trend control or a value column, enter the

corresponding tag under "Tag".

Configuring tags
5.5 Displaying tags

System Manual, 11/2022 693

Note
Using logging tags
In the "Static value" column under "Tag" first enter the name of the HMI tag and then the name
of the associated logging tag separated by a period, for example, "HMITag_1:LoggingTag_1".

5.6 Reference

5.6.1 Quality codes of HMI tags

Introduction
The "Quality Code" is required to evaluate the status and quality of a tag. The quality of the entire
value transfer and value processing of the respective HMI tag is summarized in the indicated
Quality Code. For example, it is possible to determine from the Quality Code whether the current
value is a start value or substitute value.
The quality codes are prioritized. If several codes occur at the same time, the Quality Code
reflecting the lowest quality is displayed.

Evaluation of Quality Codes
You can evaluate the Quality Code in a number of different ways:
• Evaluation with JScript functions
• Evaluation using the "Quality Code changed" event of an I/O field.

Structure
The Quality Code has the following binary structure:

High byte: Specific information for WinCC Unified Low byte: Quality code according to PROFIBUS PA
or OPC DA

Flags Enhanced substatus Quality Substatus Limits
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit 9 Bit 8 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

Configuring tags
5.6 Reference

694 System Manual, 11/2022

Quality (bit 7 and bit 8)
Quality represents the basic values of the quality levels. Making use of the substatus and limits
gives rise to intermediate values over and above the quality stage concerned.

Bit 8 Bit 7
0 0 Bad - The value is not useful. The reasons are indicated by the sub-status.
0 1 Uncertain - The quality of the value is less than normal, but the value may still be

useful. The reasons are indicated by the sub-status.
1 0 Good (Non-Cascade) - The quality of the value is good. Possible alarm conditions

may be indicated by the sub-status.
1 1 Good (Cascade) - The quality of the value is good and may be used in control.

Flags (bit 12 to bit 15)
Flags contain information on the interpretation of the Quality Code.

Bit 12 Source

quality
0: The data quality has been determined and assigned by external data source.

Bit 13 Source
time

1: The data timestamp has been produced and assigned by external data source.

Bit 14 Time cor‐
rected

1: The data timestamp applied by external data source has been corrected by the
system. Thus, Bit 13 "Source time" is not set. Time correction happens if the
external timestamp is older than the timestamp of the last known value.

Bit 15 reserved

Sub-status and extended sub-status
The quality alone is not enough. Substatuses divide the individual qualities. The Quality Code is
binary-coded. The value must be converted to hexadecimal format for the analysis of the Quality
Code.

Externally generated quality code of tags
If bit 12 is not set, the Quality Code was generated from an external source in accordance with
PROFIBUS PA. The table begins with the worst Quality Code and ends with the best Quality Code.
The best Quality Code has the lowest priority, while the worst Quality Code has the highest
priority. If several statuses occur for one tag in the process, the poorest code is passed on.

Code
(hex)

Quality Q Q S S S S L L

0x23 Bad Device passivated - Diagnostic alerts inhibited 0 0 1 0 0 0 1 1
0x3C Bad Function check - Local override 0 0 1 1 1 1 1 1
0x04 Bad Configuration Error - Set if the value is not useful because there

is some inconsistency regarding the parameterization or con‐
figuration, depending on what a specific manufacturer can de‐
tect.

0 0 0 0 0 1 - -

Configuring tags
5.6 Reference

System Manual, 11/2022 695

Code
(hex)

Quality Q Q S S S S L L

0x1C Bad Out of Service - The value is not reliable because the block is not
being evaluated, and may be under construction by a config‐
urer. Set if the block mode is O/S.

0 0 0 1 1 1 - -

0x73 Uncertain Simulated value - Start 0 1 1 1 0 0 1 1
0x74 Uncertain Simulated value - End 0 1 1 1 0 1 - -
0x84 Good

(Non-Cas‐
cade)

Active Update event - Set if the value is good and the block has
an active Update event.

1 0 0 0 0 1 - -

0x24 Bad Maintenance alarm - More diagnostics available. 0 0 1 0 0 1 - -
0x18 Bad No Communication, with no usable value - Set if there has

never been any communication with this value since it was last
"Out of Service".

0 0 0 1 1 0 - -

0x14 Bad No Communication, with last usable value - Set if this value had
been set by communication, which has now failed.

0 0 0 1 0 1 - -

0x0C Bad Device Failure - Set if the source of the value is affected by a
device failure.

0 0 0 0 1 1 - -

0x10 Bad Sensor failure 0 0 0 1 0 0 - -
0x08 Bad Not Connected - Set if this input is required to be connected and

is not connected.
0 0 0 0 1 0 - -

0x00 Bad non-specific - There is no specific reason why the value is bad.
Used for propagation.

0 0 0 0 0 0 - -

0x28 Bad Process related - Substitute value 0 0 1 0 1 0 - -
0x2B Bad Process related - No maintenance 0 0 1 0 1 0 1 1
0x68 Uncertain Maintenance demanded 0 1 1 0 1 0 - -
0x60 Uncertain Simulated value - Set when the process value is written by the

operator while the block is in manual mode.
0 1 1 0 0 0 - -

0x64 Uncertain Sensor calibration 0 1 1 0 0 1 - -
0x5C Uncertain Configuration error 0 1 0 1 1 1 - -
0x58 Uncertain Sub-normal 0 1 0 1 1 0 - -
0x54 Uncertain Engineering Unit Range Violation - Set if the value lies outside

of the set of values defined for this parameter. The Limits de‐
fine which direction has been exceeded.

0 1 0 1 0 1 - -

0x50 Uncertain Sensor conversion not accurate 0 1 0 1 0 0 - -
0x4B Uncertain Substitute (constant) 0 1 0 0 1 0 1 1
0x78 Uncertain Process related - No maintenance 0 1 1 1 1 0 - -
0x4C Uncertain Initial Value - Value of volatile parameters during and after

reset of the device or of a parameter.
0 1 0 0 1 1 - -

0x48 Uncertain Substitute value - Predefined value is used instead of the cal‐
culated one. This is used for fail safe handling.

0 1 0 0 1 0 - -

0x44 Uncertain Last Usable Value - Whatever was writing this value has stop‐
ped doing so. This is used for fail safe handling.

0 1 0 0 0 1 - -

0x40 Uncertain Non-specific - There is no specific reason why the value is un‐
certain. Used for propagation.

0 1 0 0 0 0 - -

0xE0 Good(Cas‐
cade)

Initiate Fail Safe (IFS) - The value is from a block that wants its
downstream output block (e.g. AO) to go to Fail Safe.

1 1 0 1 1 0 - -

Configuring tags
5.6 Reference

696 System Manual, 11/2022

Code
(hex)

Quality Q Q S S S S L L

0xD8 Good
(Cascade)

Local Override (LO) - The value is from a block that has been
locked out by a local key switch or is a Complex AO/DO with
interlock logic active. The failure of normal control must be
propagated to a function running in a host system for alarm
and display purposes. This also implies "Not Invited".

1 1 0 1 1 0 - -

0xD4 Good
(Cascade)

Do Not Select (DNS) - The value is from a block which should
not be selected, due to conditions in or above the block.

1 1 0 1 0 1 - -

0xCC Good
(Cascade)

Not Invited (NI) - The value is from a block which does not have
a target mode that would use this input.

1 1 0 0 1 1 - -

0xC8 Good
(Cascade)

Initialization Request (IR) - The value is an initialization value
for a source (back calculation input parameter), because the
lower loop is broken or the mode is wrong.

1 1 0 0 1 0 - -

0xC4 Good
(Cascade)

Initialization Acknowledge (IA) - The value is an initialized val‐
ue from a source (cascade input, remote-cascade in, and re‐
mote-output in parameters).

1 1 0 0 0 1 - -

0xA0 Good
(Non-Cas‐
cade)

Initiate fail safe 1 0 1 0 0 0 - -

0x98 Good
(Non-Cas‐
cade)

Unacknowledged Critical Alarm - Set if the value is good and
the block has an unacknowledged Alarm with a priority greater
than or equal to 8.

1 0 0 1 1 0 - -

0x94 Good
(Non-Cas‐
cade)

Unacknowledged Advisory Alarm - Set if the value is good and
the block has an unacknowledged Alarm with a priority less
than 8.

1 0 0 1 0 1 - -

0x90 Good
(Non-Cas‐
cade)

Unacknowledged Update event - Set if the value is good and
the block has an unacknowledged Update event.

1 0 0 1 0 0 - -

0x8C Good
(Non-Cas‐
cade)

Active Critical Alarm - Set if the value is good and the block has
an active Alarm with a priority greater than or equal to 8.

1 0 0 0 1 1 - -

0x88 Good
(Non-Cas‐
cade)

Active Advisory Alarm - Set if the value is good and the block
has an active Alarm with a priority less than 8.

1 0 0 0 1 0 - -

0xA8 Good
(Non-Cas‐
cade)

Maintenance demanded 1 0 1 0 1 0 - -

0xA4 Good
(Non-Cas‐
cade)

Maintenance required 1 0 1 0 0 1 - -

0xBC Good
(Non-Cas‐
cade)

Function check - Local override 1 0 1 1 1 1 - -

0xC0 Good(Cas‐
cade)

OK - No error or special condition is associated with this value. 1 1 0 0 0 0 - -

0x80 Good
(Non-Cas‐
cade)

OK - No error or special condition is associated with this value. 1 0 0 0 0 0 - -

Configuring tags
5.6 Reference

System Manual, 11/2022 697

Internally generated quality code of tags
If bit 12 is set, the Quality Code was generated from the HMI system. The table begins with the
worst Quality Code and ends with the best Quality Code. The best Quality Code has the lowest
priority, while the worst Quality Code has the highest priority. If several statuses occur for one
tag in the process, the poorest code is passed on.

Code
(Hex)

Quality Q Q S S S S L L

0x70n Bad Disabled 0 0 0 0 - - - -
0x300 Bad Unusable value - A logged value has been identified to be in‐

correct, but a respective correction value is not available. The
corresponding sub-status is set to ‘non-specific’.

0 0 0 0 0 0 0 0

0x23 Bad Device passivated - Diagnostic alerts inhibited 0 0 1 0 0 0 1 1
0x3F Bad Function check - Local override 0 0 1 1 1 1 1 1
0x04 Bad Configuration Error - Set if the value is not useful because there

is some inconsistency regarding the parameterization or con‐
figuration, depending on what a specific manufacturer can de‐
tect.

0 0 0 0 0 1 - -

0x1C Bad Out of Service - The value is not reliable because the block is not
being evaluated, and may be under construction by a config‐
urer. Set if the block mode is O/S.

0 0 0 1 1 1 - -

0x73 Uncertain Simulated value - Start 0 1 1 1 0 0 1 1
0x74 Uncertain Simulated value - End 0 1 1 1 0 1 - -
0x84 Good

(Non-Cas‐
cade)

Active Update event - Set if the value is good and the block has
an active Update event.

1 0 0 0 0 1 - -

0x24 Bad Maintenance alarm - More diagnostics available. 0 0 1 0 0 1 - -
0x18 Bad No Communication, with no usable value - Set if there has

never been any communication with this value since it was last
"Out of Service".

0 0 0 1 1 0 - -

0x14 Bad No Communication, with last usable value - Set if this value had
been set by communication, which has now failed.

0 0 0 1 0 1 - -

0x0C Bad Device Failure - Set if the source of the value is affected by a
device failure.

0 0 0 0 1 1 - -

0x10 Bad Sensor failure 0 0 0 1 0 0 - -
0x08 Bad Not Connected - Set if this input is required to be connected and

is not connected.
0 0 0 0 1 0 - -

0x100 Bad Aggregated value - The value has been calculated out of mul‐
tiple values with less than the re-quired number of good sour‐
ces. This includes data aggregation by means of data compres‐
sion algorithms. The corresponding sub-status is set to ‘non-
specific’.

0 0 0 0 0 0 0 0

0x00 Bad non-specific - There is no specific reason why the value is bad.
Used for propagation.

0 0 0 0 0 0 - -

0x28 Bad Process related - Substitute value 0 0 1 0 1 0 - -
0x74n Uncertain Disabled - The provider of the value, e.g. logging tag for logged

value, has been disabled and the previous value was GOOD or
UNCERTAIN. In case of GOOD the corresponding sub- status is
set to ‘last usable value’. In case of UNCERTAIN the correspond‐
ing sub-status is taken from the last sub-status.

0 1 0 0 - - - -

Configuring tags
5.6 Reference

698 System Manual, 11/2022

Code
(Hex)

Quality Q Q S S S S L L

0x158 Uncertain Aggregated value - The value has been calculated out of mul‐
tiple values with less than the required number of good sources
to be GOOD as well as less than required number of bad sources
to be BAD. This includes data aggregation by means of data
compression algorithms. The corresponding sub-status is set to
‘sub-normal’.

0 1 0 1 1 0 0 0

0x2B Bad Process related - No maintenance 0 0 1 0 1 0 1 1
0x68 Uncertain Maintenance demanded 0 1 1 0 1 0 - -
0x60 Uncertain Simulated value - Set when the process value is written by the

operator while the block is in manual mode.
0 1 1 0 0 0 - -

0x64 Uncertain Sensor calibration 0 1 1 0 0 1 - -
0x5C Uncertain Configuration error 0 1 0 1 1 1 - -
0x58 Uncertain Sub-normal 0 1 0 1 1 0 - -
0x54 Uncertain Engineering Unit Range Violation - Set if the value lies outside

of the set of values defined for this parameter. The Limits de‐
fine which direction has been exceeded.

0 1 0 1 0 1 - -

0x50 Uncertain Sensor conversion not accurate 0 1 0 1 0 0 - -
0x4B Uncertain Substitute (constant) 0 1 0 0 1 0 1 1
0x78 Uncertain Process related - No maintenance 0 1 1 1 1 0 - -
0x4C Uncertain Initial Value - Value of volatile parameters during and after

reset of the device or of a parameter.
0 1 0 0 1 1 - -

0x48 Uncertain Substitute value - Predefined value is used instead of the cal‐
culated one. This is used for fail safe handling.

0 1 0 0 1 0 - -

0x44 Uncertain Last Usable Value - Whatever was writing this value has stop‐
ped doing so. This is used for fail safe handling.

0 1 0 0 0 1 - -

0x40 Uncertain Non-specific - There is no specific reason why the value is un‐
certain. Used for propagation.

0 1 0 0 0 0 - -

0x3C0 Good(Cas‐
cade)

Corrected value - A logged value has been corrected. The cor‐
responding sub-status is set to ‘non-specific’.

1 1 0 0 0 0 0 0

0x2C0 Good(Cas‐
cade)

Manual input - A logged value has been created manually. The
corresponding sub-status is set to ‘non-specific’.

1 1 0 0 0 0 0 0

0x1C0 Good(Cas‐
cade)

Aggregated value -The value has been calculated out of multi‐
ple (GOOD) values. This includes data aggregation by means of
data compression algorithms. The corresponding sub-status is
set to ‘non-specific’.

1 1 0 0 0 0 0 0

0xE0 Good
(Cascade)

Initiate Fail Safe (IFS) - The value is from a block that wants its
downstream output block (e.g. AO) to go to Fail Safe.

1 1 1 0 0 0 - -

0xD8 Good
(Cascade)

Local Override (LO) - The value is from a block that has been
locked out by a local key switch or is a Complex AO/DO with
interlock logic active. The failure of normal control must be
propagated to a function running in a host system for alarm
and display purposes. This also implies "Not Invited".

1 1 0 1 1 0 - -

0xD4 Good
(Cascade)

Do Not Select (DNS) - The value is from a block which should
not be selected, due to conditions in or above the block.

1 1 0 1 0 1 - -

0xCC Good
(Cascade)

Not Invited (NI) - The value is from a block which does not have
a target mode that would use this input.

1 1 0 0 1 1 - -

Configuring tags
5.6 Reference

System Manual, 11/2022 699

Code
(Hex)

Quality Q Q S S S S L L

0xC8 Good
(Cascade)

Initialization Request (IR) - The value is an initialization value
for a source (back calculation input parameter), because the
lower loop is broken or the mode is wrong.

1 1 0 0 1 0 - -

0xC4 Good
(Cascade)

Initialization Acknowledge (IA) - The value is an initialized val‐
ue from a source (cascade input, remote-cascade in, and re‐
mote-output in parameters).

1 1 0 0 0 1 - -

0x6C0 Good(Cas‐
cade)

Initial value - The local data source has been initialized with the
configured initial value. The corresponding sub-status is set to
‘non-specific’.

1 1 0 0 0 0 0 0

0c4C0 Good(Cas‐
cade)

Last usable value - The local data source has been initialized
with the last usable value, if pre-sent inside a local persistency.
The corresponding sub-status is set to ‘non-specific’.

1 1 0 0 0 0 0 0

0xA0 Good
(Non-Cas‐
cade)

Initiate fail safe 1 0 1 0 0 0 - -

0x98 Good
(Non-Cas‐
cade)

Unacknowledged Critical Alarm - Set if the value is good and
the block has an unacknowledged Alarm with a priority greater
than or equal to 8.

1 0 0 1 1 0 - -

0x94 Good
(Non-Cas‐
cade)

Unacknowledged Advisory Alarm - Set if the value is good and
the block has an unacknowledged Alarm with a priority less
than 8.

1 0 0 1 0 1 - -

0x90 Good
(Non-Cas‐
cade)

Unacknowledged Update event - Set if the value is good and
the block has an unacknowledged Update event.

1 0 0 1 0 0 - -

0x8C Good
(Non-Cas‐
cade)

Active Critical Alarm - Set if the value is good and the block has
an active Alarm with a priority greater than or equal to 8.

1 0 0 0 1 1 - -

0x88 Good
(Non-Cas‐
cade)

Active Advisory Alarm - Set if the value is good and the block
has an active Alarm with a priority less than 8.

1 0 0 0 1 0 - -

0xA8 Good
(Non-Cas‐
cade)

Maintenance demanded 1 0 1 0 1 0 - -

0xA4 Good
(Non-Cas‐
cade)

Maintenance required 1 0 1 0 0 1 - -

0xBC Good
(Non-Cas‐
cade)

Function check - Local override 1 0 1 1 1 1 - -

0xC0 Good(Cas‐
cade)

OK - No error or special condition is associated with this value. 1 1 0 0 0 0 - -

0x80 Good
(Non-Cas‐
cade)

OK - No error or special condition is associated with this value. 1 0 0 0 0 0 - -

Configuring tags
5.6 Reference

700 System Manual, 11/2022

Limit
The Quality Codes can be further subdivided by limits. Limits are optional.

 Q Q S S S S L L
O.K. - The value is free to move. - - - - - - 0 0
Low limited - The value has acceded its low limits. - - - - - - 0 1
High limited - The value has acceded its high limits. - - - - - - 1 0
Constant (high and low limited) - The value cannot move, no matter what the
process does.

- - - - - - 1 1

Quality Codes in Communication with OPC
When connecting to a OPC UA server, the OPC UA status code is shown in a quality code.

Quality Code in WinCC Status code according to OPC
0x48 0x40
0x4C 0x40
0x5C 0x40
0x60 0x40
0x80...0xD4 0xC0
0xD8 0xC0

5.6.2 Data types

5.6.2.1 Data types for SIMATIC S7-300/400

Overview
The following table shows the data types for SIMATIC S7-300/400 with the corresponding HMI
data types and value ranges in WinCC.

Data type Value range
Array of Char • Array of Char is mapped in HMI to a tag of the String data type

• The maximum array of Char is 254 characters.
• With SIMATIC S7-300

– Read access: 222 characters
– Write access: 212 characters

• 0 ... 224 (ASCII)
• Characters from the Windows 1252 code page

Bool 0 (FALSE), 1 (TRUE)
Byte 0 ... 255
Char 0 ... 255 (ASCII)

Configuring tags
5.6 Reference

System Manual, 11/2022 701

Data type Value range
Counter 0 ... 999
Date 1990-01-01 ... 2168-12-31
DInt −2147483648 … +2147483647
DWord 0 .. 4294967295
Int −32768 … 32767
Real ±1.17549E-38 to ±3.40282E+38 and 0.0
S5Time 0 … 2h46m30s0ms
String • The maximum length of a string is 254 characters.

• With SIMATIC S7-300
– Read access: 220 characters
– Write access: 210 characters

• ASCII
• Characters from the Windows 1252 code page

Time 1 -24d20h31m23s648ms ... +24d20h31m23s647ms

Time_Of_Day 00:00:00 ... 23:59:59.999
Timer -0ms ... 2h46m30s0ms
Word 0 ... 65535

1: If the value is set via the HMI, then the granularity is in 100 nanosecond intervals. In
contrast, the granularity of WinCC Advanced, WinCC Comfort and WinCC Professional is
milliseconds.

5.6.2.2 Data types for SIMATIC S7-1200

Overview
The following table shows the data types for SIMATIC S7-1200 with the corresponding HMI data
types and value ranges in WinCC.

Data type Value range
Array of Char • Array of Char is mapped in HMI to a tag of the String data type

• The maximum array of Char is 254 characters.
• 0 ... 255 (ASCII)
• Characters from the Windows 1252 code page

Array of WChar • Array of WChar is mapped in HMI to a tag of the String data type
• The maximum array of WChar is 255 characters.
• Characters from the Unicode code page

Bool 0 (FALSE), 1 (TRUE)
Byte 0 ... 255
Char 0 … 255 (ASCII)
Date 1990-01-01 ... 2168-12-31
DInt −2147483648 … +2147483647
DTL 1970-01-01-00:00:00.0 ... 2262-04-11-23:47:16.854775807

Configuring tags
5.6 Reference

702 System Manual, 11/2022

Data type Value range
DWord 0 ... 4294967295
Int -32768 ... +32767
LReal ±1.79769313486231E+308 ... ±2.22507385850720E-308 and 0.0
Real ±1.17549E-38 ... ±-3.40282E+38 and 0.0
SInt -128 ... +127
String • The maximum length of a string is 254 characters.

• ASCII
• Characters from the Windows 1252 code page

Time 1 -24d20h31m23s648ms ... +24d20h31m23s647ms
Time_Of_Day, TOD 00:00:00 ... 23:59:59.999
UDInt 0 ... 4294967295
UInt 0 … 65535
USInt 0 ... 255
WChar UNICODE
Word 0 … 65535
WString UNICODE
PLCUDT -

1: If the value is set via the HMI, then the granularity is in 100 nanosecond intervals. In
contrast, the granularity of WinCC Advanced, WinCC Comfort and WinCC Professional is
milliseconds.

5.6.2.3 Data types for SIMATIC S7-1500

Overview
The following table shows the data types for SIMATIC S7-1500 with the corresponding HMI data
types and value ranges in WinCC.

Data type Value range
Array of Char • Array of Char is mapped in HMI to a tag of the String data type

• The maximum array of Char is 254 characters.
• 0 ... 255 (ASCII)
• Characters from the Windows 1252 code page

Array of WChar • Array of WChar is mapped in HMI to a tag of the String data type
• The maximum array of WChar is 255 characters.
• Characters from the Unicode code page

Bool 0 (FALSE), 1 (TRUE)
Byte 0 ... 255
Char 0 … 255 (ASCII)
Counter 0 … 65535
Date 1990-01-01 ... 2168-12-31
Date_And_Time, DT 1990‑1‑1-0:0:0.0 ... 2089‑12‑31-23:59:59.999

Configuring tags
5.6 Reference

System Manual, 11/2022 703

Data type Value range
DInt −2147483648 … +2147483647
DTL 1970-01-01-00:00:00.0 ... 2262-04-11-23:47:16.854775807
DWord 0 ... 4294967295
Int -32768 ... +32767
LDT 1970-01-01-00:00:00.000000000 ...

2263-04-11-23:47:16.854775808
LInt -9223372036854775808 ... +9223372036854775807
LReal ±1.79769313486231E+308 ... ±2.22507385850720E-308 and 0.0
LTime 1 • Value range: -9223372036854775808 to

9223372036854775807
• Unit: ns
• Resulting time interval:

-106751d23h47m16s854ms775us808ns ...
+106751d23h47m16s854ms775us807ns

For more information on setting an LTime value via the HMI, refer to
section IO field (Page 284).

LTime_Of_Day, LTOD 00:00:00.000000000 ... 23:59:59.999999999
LWord 0 ... 18446744073709551615
Real ±1.17549E-38 ... ±-3.40282E+38 and 0.0
S5Time 0ms ... 2h46m30s0ms
SInt -128 ... +127
String • The maximum length of a string is 254 characters.

• ASCII
• Characters from the Windows 1252 code page

Time 1 -24d20h31m23s648ms ... +24d20h31m23s647ms
Time_Of_Day, TOD 00:00:00 ... 23:59:59.999
Timer -24d20h31m23s648ms ... +24d20h31m23s647ms
UDInt 0 ... 4294967295
UInt 0 … 65535
ULInt 0 ... 18446744073709551615
USInt 0 ... 255
WChar UNICODE
Word 0 … 65535
WString UNICODE
PLCUDT -

1: If the value is set via the HMI, then the granularity is in 100 nanosecond intervals. In
contrast, the granularity of WinCC Advanced, WinCC Comfort and WinCC Professional is
milliseconds.

Configuring tags
5.6 Reference

704 System Manual, 11/2022

5.6.2.4 User-defined PLC data types (UDT)

Overview
You can connect with the HMI tags and DB instances of user-defined PLC data types (UDT).
The PLC data type and the corresponding DB instances are created and updated centrally in
STEP 7. In WinCC, you can use the following sources as PLC tag (DB instances):
• Data block elements that use a UDT as data type
• Instance data blocks of a UDT
The data type is taken from STEP 7 and is not converted into an HMI data type. The access
type is always "Symbolic access".

Elements of a PLC data type
You have access to the following elements in WinCC with a structured PLC data type:
• Elements that have been released for WinCC in STEP 7.
• Elements whose data types are supported in WinCC.

Note
Invalid elements of a PLC data type in WinCC
Invalid elements generate an error in WinCC.
If you disable the "Accessible from HMI" option for the corresponding elements of the associated
PLC data type in STEP 7, these elements are excluded in WinCC.

Naming conventions
The following characters are invalid in the name of the PLC data type and generate an error in
WinCC:
• Period: "."
• Square brackets: "[" and "]"

Properties
The properties of the PLC data type and its elements are adopted in WinCC. Depending on the
data type used, the properties are read-only or can be written to in WinCC.
If you change the connection of the PLC data type in WinCC, all elements of the PLC data type
are deleted and the properties of the newly connected PLC tag are used.
In WinCC, you have access to STEP 7 comments on elements of the PLC data type.
You have limited access to properties in WinCC for the following elements of PLC data types:
• Elements of the data type "Struct"
• PLC data type

Configuring tags
5.6 Reference

System Manual, 11/2022 705

• Multidimensional arrays
• Array of complex data types except "DTL"

Mapping of the data type "DTL"
If a PLC data type contains elements of the data type "DTL", these elements are mapped in WinCC
without lower-level elements. The data type "DTL" turns into "DateTime" in WinCC.

Tags with elements of the "DTL" data type
Tags that use the "DTL" data type element by element can only be used as read-only with
symbolic addressing, e.g. with SIMATIC S7 1500. With absolute addressing, write access is also
possible.

Configuring tags
5.6 Reference

706 System Manual, 11/2022

Configuring alarms 6
6.1 Basics

6.1.1 Alarm system

Introduction
Alarms display events, operating states or faults that occur or predominate in your plant. You can
use alarms for diagnostic purposes for fault rectification, for example, and they help you rapidly
to identify the cause of a fault. You can adjust your processes through targeted intervention so
that compliant products continue to be produced despite the fault, or the process is stabilized
and the fault only causes a minimal loss of production.
WinCC has a whole range of technical tools for implementing an alarm system. You use
these tools to set up an alarm system that meets all requirements under currently applicable
national and international standards and guidelines.
By means of the alarm system, events from the monitoring function in WinCC are displayed
in form of alarms, acknowledged by the operator and logged, if necessary. To do this, alarms
must be configured that are separated into alarm classes.

Alarm system
The alarm system distinguishes between the following alarms:
• User-defined alarms:

– Analog alarms: Show limit violations (value changes), are used for monitoring the plant.
– Discrete alarms: Show status changes, are used for monitoring the plant.
– User-defined controller alarms: are configured in STEP 7, show status values of the

controller, are used to monitor the plant.
• System-defined alarms:

– System alarms: belong to the HMI device and are used to monitor it.
– System-defined controller alarms: consist of system diagnostic alarms and system errors

and are used to monitor the controller.

System Manual, 11/2022 707

The detected alarm events are displayed on the HMI device.

Note
Note the following restrictions for controller alarms.
• WinCC only supports controller alarms of a SIMATIC S7-1500 controller.
• WinCC only supports controller alarms that are automatically updated by the central alarm

management in the controller.

Tips for an efficient procedure

• When you configure an alarm system, you need to take account of the abilities of future users.
• Alarm systems must be designed to use and allow for characteristic aspects of human perception.
• Important alarms must be highlighted so that they are noticed rapidly. The display of important information should be

redundant to make it easier to see.
• Supplementary information about individual alarms ensures that faults are localized and cleared quickly.
• Information should if possible be directed at more than one sense (for example, visible and sound signals). Only alarm

systems that meet these criteria will help the user to monitor and control the plant.

Configuring alarms
6.1 Basics

708 System Manual, 11/2022

See also
Alarms (Page 709)
Alarm states (Page 714)
Alarm classes (Page 717)
Acknowledging alarms (Page 721)
Acknowledgment model (Page 715)
Alarm components and properties (Page 722)
Configuring analog alarms (Page 738)

6.1.2 Alarms

6.1.2.1 User-defined alarms

Analog Alarms

Description
Analog alarms indicate limit violations. You have defined in advance a limit value for the trigger
tag and the trigger mode. An analog alarm is triggered depending on which mode you have
defined, for example, when the value is higher than, lower than or the same as the defined value.

Example
The speed of a motor must not be too high or too low. You can configure analog alarms to
monitor the speed of the motor. If the high or low limit for the speed of the motor is violated, an
alarm is output on the HMI device containing the following alarm text, for example: "Motor
speed is too low".

See also
Configuring analog alarms (Page 738)
Configuring optional parameters for discrete alarms and analog alarms (Page 745)
Discrete alarms (Page 710)
User-defined controller alarms (Page 710)
System events (Page 712)
System-defined controller alarms (Page 712)
Alarm system (Page 707)

Configuring alarms
6.1 Basics

System Manual, 11/2022 709

Discrete alarms

Description
Discrete alarms indicate status changes in a plant. A discrete alarm is triggered when the value
of a specific bit of an internal or external tag changes.

Example
Imagine that the state of a valve is to be monitored during operation. The two possible valve
states are "opened" and "closed". In this case, a discrete alarm is configured for each valve state.
A discrete alarm containing the following alarm text is output, for example, when the state of
this valve changes: "Valve closed".

See also
Configuring discrete alarms (Page 734)
Configuring optional parameters for discrete alarms and analog alarms (Page 745)
Analog Alarms (Page 709)
User-defined controller alarms (Page 710)
System events (Page 712)
System-defined controller alarms (Page 712)
Alarm system (Page 707)

User-defined controller alarms

Example of an alarm
"The temperature in Tank 2 is too high."

Configuring alarms
6.1 Basics

710 System Manual, 11/2022

Description
A user-defined controller alarm, e.g. a program alarm, created by the control project engineer in
STEP 7. The PLC status values, such as time stamp and process values, are mapped in the
controller alarm. If controller alarms are configured in STEP 7, accept them into the integrated
WinCC operation as soon as a connection is established to the PLC. In STEP 7, the controller alarm
is assigned to an alarm class. You import this alarm class with the controller alarm as a common
alarm class.

Note
Automatic update of new or modified controller alarms on the HMI device
If controller alarms are configured in STEP 7 and an HMI connection to a SIMATIC S7-1500
controller (firmware version 2.0 or higher) is established, controller alarms are sent to the HMI
device. After changes of the controller alarms, the HMI device configuration must no longer be
transferred. The prerequisite is that the option "Central alarm management in the PLC" is
enabled in the properties of the controller. In addition, the option "Automatic update" must be
enabled in the runtime settings of the HMI device under "Alarms > Controller alarms".

Note
WinCC only supports controller alarms of a SIMATIC S7-1500 controller. In addition, WinCC only
supports controller alarms that are automatically updated by the central alarm management in
the controller.

Controller alarms for HMI devices
If a controller is connected with one or more HMI devices, the configuration engineer assigns
display classes to the controller alarms in STEP 7. The display classes determine the allocation to
the HMI device. You activate the display classes that are to be available for each HMI device. In
this case, only the controller alarms from this display class will be displayed on the HMI device.
Up to 17 display classes are possible.

See also
Filtering controller alarms via display classes (Page 748)
Sending and automatically updating complete alarm from the controller to the HMI device
(Page 796)
Configuring automatic update of controller alarms on the HMI device (Page 797)
Analog Alarms (Page 709)
Discrete alarms (Page 710)
System events (Page 712)
System-defined controller alarms (Page 712)
Alarm system (Page 707)

Configuring alarms
6.1 Basics

System Manual, 11/2022 711

6.1.2.2 System-defined alarms

System events

Example of an alarm
"Memory is full!"

Description
A system event indicates the system status and communication errors between the HMI device
and system. System events are output in runtime in the configured alarm control. System events
are output in the language currently set on your HMI device.
The time format (AM/PM or 24-hour format) is based on the selected language. If no
translation of the alarm texts exists in this language, English is used as replacement and
the corresponding time format is displayed.

See also
Editing system events (Page 748)
Analog Alarms (Page 709)
Discrete alarms (Page 710)
User-defined controller alarms (Page 710)
System-defined controller alarms (Page 712)
Alarm system (Page 707)

System-defined controller alarms

Example of an alarm
"CPU maintenance required"

Description
System-defined controller alarms are installed with STEP 7 and are only available if WinCC is
operated in the STEP 7 environment.

Configuring alarms
6.1 Basics

712 System Manual, 11/2022

System-defined controller alarms are used to monitor states and events of a controller.
System-defined controller alarms consist of system diagnostic alarms and system errors (RSE)

Note
Automatic update of system diagnostic alarms on the HMI device
If an HMI connection to a SIMATIC S7-1500 controller (firmware version 2.0 or higher) is
established, system diagnostic alarms are sent to the HMI device and automatically updated.
The prerequisite is that the option "Central alarm management in the PLC" is enabled in the
properties of the controller. In addition, the options "Automatic update" and "System
diagnostics" must be enabled in the runtime settings of the HMI device under "Alarms >
Controller alarms".

Note
Note the following restrictions:
• WinCC only supports system diagnostic alarms of a SIMATIC S7-1500 controller.
• WinCC only supports system diagnostic alarms that are automatically updated by the central

alarm management in the controller.

See also
Configuring the display of system diagnostic alarms (Page 767)
Sending and automatically updating complete alarm from the controller to the HMI device
(Page 796)
Configuring automatic update of controller alarms on the HMI device (Page 797)
Analog Alarms (Page 709)
Discrete alarms (Page 710)
User-defined controller alarms (Page 710)
System events (Page 712)
Alarm system (Page 707)

Configuring alarms
6.1 Basics

System Manual, 11/2022 713

6.1.3 Alarm states

Description
Every alarm has an alarm state. The alarm states are made up of the following events:
• Incoming

The condition for triggering an alarm is fulfilled. The alarm is displayed, such as "Boiler
pressure too high".

• Outgoing
The condition for triggering an alarm is no longer fulfilled. The alarm is no longer displayed
as the boiler was vented.

• Acknowledged
The operator has acknowledged the alarm.

Alarms without acknowledgment
The following table shows the alarm states for alarms that do not have to be acknowledged:

Icon Status Status text Description
Active Incoming The condition for an alarm is fulfilled.

The alarm does not have to be acknowledged.
Inactive Normal The condition for an alarm is no longer fulfilled.

The alarm is no longer pending.

Alarms with acknowledgment
The following table shows the alarm states for alarms that have to be acknowledged:

Icon Status Status text Description
Active Incoming The condition for an alarm is fulfilled.

Inactive,
Not ac‐
knowledged

Incoming/Outgoing The condition for an alarm is no longer ful‐
filled.
The operator has not acknowledged the
alarm.

Inactive,
Then ac‐
knowledged

Incoming/Acknowledged The condition for an alarm is no longer ful‐
filled.
The operator has acknowledged the alarm
after this time.

Active,
acknowl‐
edged

Incoming/Outgoing /Acknowl‐
edge

The condition for an alarm is fulfilled.
The operator has acknowledged the alarm.

Inactive,
Previously
acknowl‐
edged

Incoming/Acknowledge/Outgo‐
ing

The condition for an alarm is no longer ful‐
filled.
The operator acknowledged the alarm
while the condition was still fulfilled.

Configuring alarms
6.1 Basics

714 System Manual, 11/2022

Note
The display text for the states of an alarm is language-specific and configuration-specific.

Locked alarms
You lock an alarm, for example, to prevent an error alarm from impairing the effectivity of your
system.
• Locked: The alarm was locked. The alarm assumes its final state without additional state

transitions.
• Not locked: The alarm is unlocked. The alarm is visible again in its last state.

Suppressed alarms
You suppress the display of specific alarms, for example, to avoid an excessive burden of
information for the plant operator.
• Suppressed manually: The alarm was suppressed manually.
• Suppressed by design: The alarm was suppressed automatically.

See also
Alarm system (Page 707)
Alarm classes (Page 717)
Acknowledging alarms (Page 721)
Acknowledgment model (Page 715)
Alarm components and properties (Page 722)

6.1.4 Acknowledgment model

Overview
The acknowledgment model and the state machine for predefined alarm classes have already
been set. You can only set the acknowledgment model and the state machine for user-defined
alarm classes. All alarms included in this alarm class are then acknowledged according to this
acknowledgment model and the state machine.

Configuring alarms
6.1 Basics

System Manual, 11/2022 715

The following state machines are available for HMI alarm classes:
• Alarm with single-mode acknowledgment

This alarm must be acknowledged as soon as the event that triggers the alarm occurs. The
alarm remains pending until it is acknowledged.
The following predefined alarm classes use this state machine: "SystemAlarm",
"SystemWarning", "Critical", "Warning", "OperatorInputRequest", "Alarm",
"Acknowledgement"

• Alarm with optional single-mode acknowledgment
This alarm does not require acknowledgement once the event that triggers the alarm has
occurred. The alarm is pending until the condition that triggered the alarm is no longer
fulfilled.

• Alarm with acknowledgment and confirmation
The alarm must be acknowledged as soon as the event that triggers the alarm has occurred
or the alarm is reset. The alarm also requires a confirmation when the event that triggered the
alarm is no longer present. The alarm remains pending until it is acknowledged and
confirmed.
The following predefined alarm classes use this state machine: "AlarmWithReset",
"CriticalWithReset", "WarningWithReset".

• Alarm without acknowledgment
This alarm comes and goes without having to be acknowledged.
The following predefined alarm classes use this state machine: "SystemNotification",
"Notification", "No Acknowledgement".

• Alarm without outgoing status with acknowledgment
This alarm must be acknowledged as soon as the event that triggers the alarm occurs. The
alarm remains pending until it is acknowledged.
The following predefined alarm classes use this state machine:
"SystemAlarmWithoutClearEvent", "SystemWarningWithoutClearEvent".

• Alarm without outgoing status without acknowledgment
This alarm is displayed until the event that triggered the alarm is no longer pending. The
alarm is then no longer displayed in the alarm control.
The following predefined alarm classes use this state machine: "Information",
"Systeminformation", "OperatorInputInformation".

• Alarm without state
This alarm only has the temporary status "Incoming" and can be seen in the log.

The following state machines are available for HMI alarm classes that are linked to common
alarm classes:
• Alarm with single-mode acknowledgment
• Alarm without acknowledgment

Configuring alarms
6.1 Basics

716 System Manual, 11/2022

Acknowledging and confirming alarms
• Group acknowledgment of alarms in the alarm control

The alarm control has a "Group acknowledgment" button. This button triggers the
acknowledgment of all visible alarms that require acknowledgment and are pending in the
alarm control.

• Single acknowledgment of alarms in the alarm control
The alarm control has a "Single acknowledgment" button. This button triggers the
acknowledgment of individual alarms selected in the alarm control.

• Single confirmation of alarms with acknowledgment and confirmation in the alarm control.
The alarm control has a "Single confirm" button. The alarm with the state machine "Alarm
with acknowledgment and confirmation" is individually confirmed with this button after it
has been acknowledged with group acknowledgment or single acknowledgment
beforehand and is outgoing.

Note
If the "Show recent" button is pressed, the most recent alarm is always shown first. Group
acknowledgment is only executed for the visible alarms.

See also
Alarm system (Page 707)
Configuring alarm acknowledgment (Page 749)
Alarm components and properties (Page 722)
Acknowledging alarms (Page 721)
Alarm states (Page 714)
Alarm classes (Page 717)
Alarm control (Page 309)

6.1.5 Alarm classes

Introduction
Many alarms occur in a plant. These are all of different importance. You can assign the alarms of
your project to alarm classes to clearly show the operator which of the alarms are most
important.

Description
Every alarm must be assigned to an alarm class when you create new alarms. The alarm class
hereby defines the appearance and the acknowledgment model of the alarm (single-mode
acknowledgment, acknowledgment and confirmation, no acknowledgment).

Configuring alarms
6.1 Basics

System Manual, 11/2022 717

A new alarm class with mandatory acknowledgment is generated in WinCC. Predefined alarm
classes are available for each device.

Examples of how to use alarm classes
• The alarm class of the alarm "Fan 1 speed in upper tolerance range" is "Warning". The alarm

is displayed with a yellow background. The alarm requires acknowledgment.
• The alarm "Speed of fan 2 has exceeded upper warning range" is assigned to the "Alarm"

alarm class. The alarm is displayed with a red background and flashes at high frequency in
runtime. The alarm is displayed until the alarm is gone and the operator has acknowledged
it.

Using alarm classes
Use the following alarm classes to define the state machines and appearance of alarms for your
project:
• Predefined alarm classes

You cannot delete predefined alarm classes and edit them only to a limited extent.
Predefined alarm classes are available under "HMI alarms > Alarm classes".

• Custom alarm classes
You can create new alarm classes under "HMI alarms > Alarm classes", configure how you
want the alarms to be displayed, and define an acknowledgment model for alarms of this
alarm class. The possible number of custom alarm classes depends on which runtime is used
in your project.

• Common alarm classes
Common alarm classes are displayed under "Common data > Alarm classes" in the project
tree and can be used for the alarms of an HMI device. Common alarm classes are used in STEP
7 for controller alarms. If required, create additional common alarm classes in WinCC.
Common alarm classes are divided into predefined and user-defined common alarm classes.
The predefined common alarm classes are "Acknowledgement" (for alarms with
acknowledgment) and "No Acknowledgement" (for alarms without acknowledgment).

For each alarm class (including predefined alarm classes), you can configure the font
color, background color and flashing for the alarm states "Incoming", "Incoming/outgoing",
"Incoming/acknowledged", "Incoming/outgoing/acknowledged":

Configuring alarms
6.1 Basics

718 System Manual, 11/2022

Predefined alarm classes
The following predefined alarm classes are available under "Alarm classes" in the "HMI alarms"
editor.
System events:
• "SystemInformation"

Alarms of this alarm class have no "Outgoing" state and do not require acknowledgment. This
alarm class is only used for logging.

• "SystemNotification"
Alarms in this alarm class do not require acknowledgment.

• "SystemWarning"
Alarms in this alarm class must be acknowledged.

• "SystemWarningWithoutClearEvent"
Alarms of this alarm class have no "Outgoing" state and must be acknowledged.

• "SystemAlarm"
Alarms in this class must be acknowledged.

• "SystemAlarmWithoutClearEvent"
Alarms of this alarm class have no "Outgoing" state and must be acknowledged.

Standard alarms:
• "Acknowledgement"

Alarms in this class must be acknowledged. The alarm class "Acknowledgement" is linked to
the predefined common alarm class "Acknowledgement".

• "No Acknowledgement"
Alarms in this alarm class do not require acknowledgment. The alarm class "No
Acknowledgement" is linked to the predefined common alarm class "No Acknowledgement".

Configuring alarms
6.1 Basics

System Manual, 11/2022 719

• "Information"
Alarms of this alarm class have no "Outgoing" state and do not require acknowledgment. This
alarm class is only used for logging.

• "OperatorInputInformation"
Alarms of this alarm class have no "Outgoing" state and do not require acknowledgment. The
alarm class "OperatorInputInformation" is designed to show the reports that are relevant for
an audit. This alarm class is only used for logging.

• "Notification"
Alarms in this alarm class do not require acknowledgment. The alarm class "Notification"
alarm class is designed to show irregular states and routines in the process.

• "OperatorInputRequest"
Alarms in this alarm class must be acknowledged.

• "Warning"
Alarms in this alarm class must be acknowledged.

• "WarningWithReset"
Alarms in this alarm class must be acknowledged. This alarm class must also be reset. The
locked alarm is unlocked during the reset.

• "Alarm"
Alarms in this class must be acknowledged. The alarm class "Alarm" is designed to show
critical or dangerous states or limit violations in the process.

• "AlarmWithReset"
Alarms in this alarm class must be acknowledged. This alarm class must also be reset. The
locked alarm is unlocked during the reset.

• "Critical"
Alarms in this alarm class must be acknowledged. The alarm class "Critical" is designed to
show critical faults in the plant, for example, "Motor temperature too high". This alarm and
its alarm states are included in the log.

• "CriticalWithReset"
Alarms in this alarm class must be acknowledged. This alarm class must also be reset. The
locked alarm is unlocked during the reset. The alarm class "CriticalWithReset" is designed to
show critical faults in the plant, for example, "Motor temperature too high".

Note
The alarm classes whose names contain "System" are designed to show the states of the device
and the controllers, for example, to provide information on operating errors or faults in
communication.

Note
The predefined alarm classes are write-protected and cannot be deleted. You can, however,
change the preset background and foreground colors and font colors if necessary. If required,
you can also change the name of the predefined alarm classes "Acknowledgement" and "No
Acknowledgement". The name of the linked predefined common alarm classes
"Acknowledgement" and "No Acknowledgement" is not changed. You cannot change the name
of the linked predefined common alarm classes, not even under "Common data > Alarm classes".
Common alarm classes are automatically added for the non-intergrated mode.

Configuring alarms
6.1 Basics

720 System Manual, 11/2022

Custom alarm classes
The properties of this alarm class are defined in the configuration. You assign a name, a state
machine, a priority and, if necessary, a log to the alarm class. You also define the display of the
user-defined alarm using text and background colors.

See also
Creating alarm classes (Page 726)
Using common alarm classes (Page 729)
Alarm system (Page 707)
Acknowledging alarms (Page 721)
Alarm states (Page 714)
Acknowledgment model (Page 715)
Alarm components and properties (Page 722)

6.1.6 Acknowledging alarms

Introduction
To make sure that an alarm was noticed by the plant operator, configure this alarm so that it is
displayed until acknowledged by the operator. Alarms that indicate critical or hazardous states
in the process have to be acknowledged.
The acknowledgment of an alarm is an event that is logged and reported. Acknowledging an
alarm in the "Incoming" state changes the alarm state from "Incoming" to "Acknowledged".
When the operator acknowledges an alarm, they confirm that they have processed the state
that triggered the alarm.

Acknowledging an alarm
The operator acknowledges in runtime an alarm via the alarm control buttons.

See also
Alarm system (Page 707)
Configuring alarm acknowledgment (Page 749)
Acknowledgment model (Page 715)
Alarm classes (Page 717)
Alarm states (Page 714)
Alarm components and properties (Page 722)

Configuring alarms
6.1 Basics

System Manual, 11/2022 721

6.1.7 Alarm components and properties

Overview
The following table shows the basic components of alarms that you can configure in WinCC:

Alarm
class

Alarm
number

Time Date State ma‐
chine

Alarm text Info text Trigger tag Limit val‐
ue

Warn‐
ing

1 11:09:
14

06.08.
2017

Alarm with
single-
mode ac‐
knowledg‐
ment

Maximum speed
reached

This alarm is ... speed_1 27

Alarm class
The alarm class of an alarm determines whether the alarm has to be acknowledged.
The alarm class defines the following for an alarm:
• State machine/acknowledgment model
• Appearance in runtime (e.g. color)
• Log in which an alarm is logged
• Priority

Alarm number
An alarm is identified by an alarm number (ID). The alarm number is assigned by the system for
internally managing an alarm. You can change the alarm number to a sequential alarm number,
if necessary, to identify alarms associated in your project.
An alarm number must only be used once on a device.

Note
Discrete alarms and analog alarms can receive an identical alarm number from the system. The
alarm number can be customized on request.

Note
When adapting alarm numbers, observe the inter-project uniqueness of the alarm number.

The system event number overrides a custom alarm number. If using the system event
number for a custom alarm, change the custom alarm number accordingly.

Time and date
Every alarm has a time stamp that shows the time and date at which the alarm was triggered.

Configuring alarms
6.1 Basics

722 System Manual, 11/2022

State machine
An alarm has the state machine or the acknowledgment model of the alarm class.
The state machine is how an alarm is displayed in various states and processed from by the
system.

Alarm states
An alarm always has a specific alarm state in runtime. The operator analyzes the process
execution based on the alarm states.

Alarm text
The alarm text describes the cause of the alarm.
The alarm text can contain output fields for current values. The values you can insert depend
on the runtime in use. The value is retained at the time at which the alarm status changes.

Info text
You can configure a separate info text for each alarm; the operator can display this info text in
runtime.

Trigger tag
A tag is assigned to each alarm as trigger. The alarm is raised when this trigger tag meets the
defined condition, e.g. when its state changes or it exceeds a limit.

Limit value
Analog alarms indicate limit violations. Depending on the configuration, WinCC outputs the
analog alarm as soon as the trigger tag exceeds or undershoots the limit value.

Computer
Operator input alarms have the "Computer" column in the alarm lists. The computer name is
displayed for local alarms and the IP address for alarms from the web client.

Users
The user acknowledges the alarm. If an empty user name is transferred to an alarm, the alarm
displays no user name.

Duration
The time interval between the triggering of the alarm and its last state change in nanoseconds.

Configuring alarms
6.1 Basics

System Manual, 11/2022 723

See also
Alarm system (Page 707)
Acknowledgment model (Page 715)
Alarm states (Page 714)
Alarm classes (Page 717)
Acknowledging alarms (Page 721)

6.2 Configuring alarms

6.2.1 Workflow for configuring alarms

Steps to configure alarms
You configure alarms in the following stages:
1. Configuring alarm classes

In the "HMI alarms" editor, adapt the predefined alarm classes or configure your own alarm
classes. You use the alarm class to define the state machine of an alarm and how the alarm
is displayed in runtime.

2. Creating trigger tags
Create trigger tags in the "HMI tags" editor and configure the trigger bit for discrete alarms or
the range limits for analog alarms.

3. Creating alarms
Create user-defined alarms in the "HMI alarms" editor and assign the alarm classes and the
tags to be monitored.
Under "Runtime settings > Alarms", adapt the status texts or activate the use of controller
alarms.

4. Configuring the display of alarms
Configure an alarm control in the "Screens" editor.

5. Logging alarms
In the "Logs" editor, create an alarm log and assign the log to an alarm class in the "HMI
alarms" editor.

Configuring alarms
6.2 Configuring alarms

724 System Manual, 11/2022

Additional configuration tasks
Additional tasks could be necessary for configuring alarms, depending on the requirements of
your project:
• Adapting status texts

You specify the status texts under "Runtime settings > Alarms".
• Editing system events

You edit system events in the "HMI alarms" editor or under "Languages & Resources > Project
texts". In the "Category" column you can recognize a system event by the name "HMI system
event".

• Activating controller alarms
For integrated operation of a project in STEP 7, specify the controller alarms to be displayed
on your HMI device in the alarm settings.
Note
WinCC only supports controller alarms of a SIMATIC S7-1500 controller. In addition, WinCC
only supports controller alarms that are automatically updated by the central alarm
management in the controller.

See also
Creating alarm classes (Page 726)
Using common alarm classes (Page 729)
Configuring discrete alarms (Page 734)
Configuring analog alarms (Page 738)
Configuring optional parameters for discrete alarms and analog alarms (Page 745)
Configuring multilingual alarm texts (Page 747)
Editing system events (Page 748)
Configuring alarm acknowledgment (Page 749)
Filtering controller alarms via display classes (Page 748)

Configuring alarms
6.2 Configuring alarms

System Manual, 11/2022 725

Sending and automatically updating complete alarm from the controller to the HMI device
(Page 796)
Configuring automatic update of controller alarms on the HMI device (Page 797)
Configuring the display of system diagnostic alarms (Page 767)

6.2.2 Creating alarm classes

Introduction
Create alarm classes to define the type of acknowledgment, the display of the alarm in runtime
for an alarm. You assign the individual alarms to the alarm classes.
Create alarm classes in the "Alarm classes" tab of the "HMI alarms" editor. Some default alarm
classes are already created for every project. You can create additional custom alarm classes.
The alarm class also specifies if and how the operator has to acknowledge alarms of this
alarm class.
System alarm classes are write-protected and cannot be deleted. You can, however, change
the preset background and foreground colors and font colors if necessary. All system alarm
classes have the word "System" in their name and are to be used for system-defined alarms.

Note
Alarm colors are editable depending on the state machine. Some colors are not editable for
certain state machines.

Requirement
• The "HMI alarms" editor is open.
• The Inspector window is open.

Configuring alarms
6.2 Configuring alarms

726 System Manual, 11/2022

Procedure
To create an alarm class, proceed as follows:
1. Click the "Alarm classes" tab.

A table of the pre-defined alarm classes is shown below:

2. Double-click "<Add>" in the table.
A new alarm class is created. Each new alarm class is automatically assigned a static ID.
The properties of the new alarm class are shown in the Inspector window.

3. Configure the alarm class under "Properties > General" in the Inspector window:
– Enter a name for the alarm class.
– Set the priority of the alarm class.

4. In the Inspector window, set the state machine of the alarm class.
See Configuring alarm acknowledgment (Page 749).

5. You can also change the default background color as well as the text color and the settings for
flashing under "Properties > Colors" in the Inspector window.
These settings define how alarms from this alarm class are displayed in runtime.
Note
For alarm colors to be displayed in runtime, the "Use alarm colors" option must be enabled
in the properties of the alarm control in the Inspector window. This option is enabled by
default.

Configuring alarms
6.2 Configuring alarms

System Manual, 11/2022 727

"Acknowledgment" alarm class
A alarm of the "Acknowledgment" alarm class passes through the following alarm states:
• Incoming

When the alarm occurs.
• Incoming/Outgoing

When the alarm is outgoing.
• Normal

After resetting the value on the PLC and through acknowledgment of the operator.

"No Acknowledgement" alarm class
An alarm of the "No acknowledgment" alarm class passes through the following alarm states:
• Incoming

When the alarm occurs.
• Normal

When the alarm is outgoing.

"AlarmWithReset" alarm class
An alarm of the "No acknowledgment" alarm class passes through the following alarm states:
• Incoming

When the alarm occurs.
• Incoming/outgoing or incoming/acknowledged

When the alarm is outgoing.
• Incoming/acknowledged/outgoing or incoming/outgoing/acknowledged

After resetting of the alarm by the operator.
• Normal

After performing all actions.

See also
Alarm classes (Page 717)
Using common alarm classes (Page 729)
Workflow for configuring alarms (Page 724)
Configuring discrete alarms (Page 734)
Configuring analog alarms (Page 738)

Configuring alarms
6.2 Configuring alarms

728 System Manual, 11/2022

6.2.3 Using common alarm classes

Introduction
Common alarm classes are displayed under "Common data > Alarm classes" in the project tree
and can be used for the alarms of an HMI device. Common alarm classes are used in STEP 7 for
controller alarms. If required, create additional common alarm classes in WinCC. Common alarm
classes are divided into predefined and user-defined common alarm classes. The predefined
common alarm classes are "Acknowledgement" (for alarms with acknowledgment) and "No
Acknowledgement" (for alarms without acknowledgment).
When you create an HMI device, the system creates an alarm class for each existing common
alarm class under "HMI alarms > Alarm classes" which is linked to the common alarm class.
If you have created an HMI device and create a common alarm class, the system creates an
alarm class for the created common alarm class under "HMI alarms > Alarm classes" which is
linked to the common alarm class. If you change all properties for a created common alarm
class, the system changes the properties "State machine" and "Priority" of the linked alarm
class according to your changes to the "Acknowledgment" and "Priority" properties of the
common alarm class. However, your changes to the "Name" and "Display name" properties of
the common alarm class have no effect on the properties of the linked alarm class. When you
delete a common alarm class, the linked alarm class is also deleted.

Note
By the "Common alarm class" property of an alarm class, you can see whether the alarm class is
linked with a common alarm class and, if so, with which common alarm class. To see the
property in the "HMI alarms" editor in the "Alarm classes" tab, enable there the "Common alarm
class" column using the shortcut menu of the column titles. To see the property in the Inspector
window, select an alarm class under "HMI alarms > Alarm classes" and click "General" in the
Inspector window.

State machine
Common alarm classes have one of the following state machines:
• Alarm with single-mode acknowledgment
• Alarm without acknowledgment
You configure the state machine directly in the "Alarm classes" editor. Configuration at the
linked HMI alarm class in the "HMI alarms" editor is not possible.

Note
For the state machine "Alarm without acknowledgement", the background color configured for
the state is ignored in the "Arrived/Gone" state.

Requirements
• You have created a project.

Configuring alarms
6.2 Configuring alarms

System Manual, 11/2022 729

Creating common alarm class
To create a common alarm class, proceed as follows:
1. Double-click "Common data > Alarm classes" in the project tree.

The "Alarm classes" editor opens in the working area.
2. To create a common alarm class, double-click in the first empty line of the table editor.
3. Specify the name, display name and priority of the common alarm class and enable the

mandatory acknowledgment, if required.
A common alarm class is created. The system also creates an alarm class under "HMI alarms
> Alarm classes", which is linked to the common alarm class. The linked alarm class gets from
the system the same name and priority as the common alarm class. If you have enabled the
mandatory acknowledgment for the common alarm class, the linked alarm class gets the
state machine "Alarm with single-mode acknowledgment" from the system, otherwise the
state machine "Alarm without acknowledgment". The defined display name of the common
alarm class has no effect on the properties of the linked alarm class.

4. If required, change the name of the alarm class that is linked to the common alarm class
under "HMI alarms > Alarm classes".
If you change the name of the linked alarm class, the common alarm class name is not
changed by the system.

Assign alarms to a common alarm class
Proceed as follows to assign an analog or discrete alarm to a common alarm class:
1. In the "HMI alarms" editor, select the alarm that you want to assign to the common alarm

class.
2. Click "General" in the Inspector window.
3. Click "Common data > Alarm classes" in the project tree. Alternatively, click "HMI Alarms" in

the project tree.
In the first case, the common alarm class is selected in the detail view. In the second case, the
detail view shows the alarm class, which is linked to the common alarm class.

Configuring alarms
6.2 Configuring alarms

730 System Manual, 11/2022

4. Select the common alarm class or alternatively the linked alarm class in the detail view.
5. Drag the common alarm class or alternatively the linked alarm class to the "Alarm class" field

or "Alarm class" column in the working area of the Inspector window of the alarm.
In both cases, the alarm is assigned to the alarm class which is linked to the common alarm
class.

Changing a common alarm class
To change a common alarm class, proceed as follows:
1. Double-click "Common data > Alarm classes" in the project tree.

The "Alarm classes" editor opens in the working area.
2. If necessary, change the name of the created common alarm class.

The changed name of the common alarm class has no effect on the name of the alarm class
which is linked to the common alarm class.

3. If necessary, change the display name of the common alarm class.
The changed display name of the common alarm class has no effect on the properties of the
linked alarm class.

Configuring alarms
6.2 Configuring alarms

System Manual, 11/2022 731

4. If required, enable or disable the mandatory acknowledgment of the common alarm class.
If you enable the mandatory acknowledgment, the system changes the state machine of the
linked alarm class to "Alarm with single-mode acknowledgment". If you disable the
mandatory acknowledgment, the system changes the state machine of the linked alarm class
to "Alarm without acknowledgment".

5. If necessary, change the priority of the common alarm class.
The system changes the priority of the linked alarm class according to your change to the
priority of the common alarm class.

Note
You can only change the display names for a predefined common alarm class. The changed
display name of a predefined common alarm class has no effect on the properties of the alarm
class which is linked to the predefined common alarm class.

Deleting a common alarm class
To delete a common alarm class, proceed as follows:
1. Double-click "Common data > Alarm classes" in the project tree.

The "Alarm classes" editor opens in the working area.
2. Select the created common alarm class that you want to delete.
3. Select the "Delete" entry from the shortcut menu.

The system deletes the common alarm class and the alarm class linked with the common
alarm class.

4. If an analog or discrete alarm has been assigned to the deleted linked alarm class, assign
another alarm class to the alarm. Otherwise a compile error will be generated.

Note
You cannot delete predefined common alarm classes and the alarm classes that are linked with
them.

See also
Alarm classes (Page 717)
Creating alarm classes (Page 726)
Workflow for configuring alarms (Page 724)
Configuring discrete alarms (Page 734)
Configuring analog alarms (Page 738)

Configuring alarms
6.2 Configuring alarms

732 System Manual, 11/2022

6.2.4 Configuring state texts of alarms

Introduction
The texts for the states of alarms in runtime are displayed in the alarm view in the "Status Text"
column. You specify the state texts of alarms in the runtime settings.

Note
If no alarm state texts are defined, an error is generated during compiling.

Requirement
• The alarm view has been configured.

Procedure
To configure the state texts of alarms, follow these steps:
1. Open the "Runtime settings" of the HMI device.
2. Specify the state texts of alarms in runtime under "Alarms > State texts":

Field Description
Incoming Text for incoming alarms when changing to the operating

state to be reported
The condition for an alarm is fulfilled.

Incoming/outgoing Text for an outgoing alarm
The condition for an alarm is no longer fulfilled.

Incoming/acknowledged Text for an acknowledged and outgoing alarm
The condition for an alarm is no longer fulfilled.

Incoming/acknowledged/outgoing The condition for an alarm is no longer fulfilled.
Text for an incoming, acknowledged and outgoing alarm.

Incoming/outgoing/acknowledged The condition for an alarm is no longer fulfilled.
Text for an incoming, outgoing and acknowledged alarm

Removed Text for alarms in "Removed" state. Only controller alarms can
have this state. The state text is only displayed in the alarm
log. If the HMI connection between HMI device and controller
is disconnected and then re-established, the status text is
displayed.

Normal The condition for an alarm is no longer fulfilled.
The alarm is no longer pending.
The alarm is acknowledged if required by the alarm class.
The alarm is reset by single confirm if required by the alarm
class.

3. Change the status texts as required. Keep in mind that these texts are not language specific.
In Runtime, always the text configured in engineering is always displayed, independent of
the current Runtime language.

Configuring alarms
6.2 Configuring alarms

System Manual, 11/2022 733

4. Select the alarm view in the "Screens" editor.
5. To display the column "Status text" in the Alarm view, select the property "Visibility" in the

Inspector window under "Properties > Alarm view > Columns > [...] Status text alarm column".

See also
Configuring an alarm control (Page 753)

6.2.5 Configuring discrete alarms

6.2.5.1 Configuring discrete alarms

Introduction
Discrete alarms triggered by the PLC indicate status changes in a plant. A discrete alarm is
triggered by a specific value (bit) of a tag.
Imagine, for example, that the state of a valve is to be monitored during operation. The two
possible valve states are "opened" and "closed". In this case, a discrete alarm is configured for
each valve state. A discrete alarm containing the following alarm text, for example, is output
when the state of this valve changes: "Valve closed".

Note
By default, each new discrete alarm is assigned the alarm class "Alarm". You can then alter the
alarm class as required.

Requirement
• The "HMI alarms" editor is open.
• The Inspector window is open.

Procedure
To configure a discrete alarm, proceed as follows:
1. Click the "Discrete alarms" tab.
2. To create a new discrete alarm, double-click on "<Add>" in the table.

A new discrete alarm is created.

Configuring alarms
6.2 Configuring alarms

734 System Manual, 11/2022

3. Assign a name for the discrete alarm.
Note
The name of a discrete alarm can contain up to 128 characters.

4. To configure the alarm, select "Properties > General" in the Inspector window:
– Edit the name of the alarm as required.
– Select the alarm class.
– Configure the priority of the alarm (a value of between "0" and "16").

Note
You can use the priority to sort or filter the alarms in the alarm control. With sorting by
priority, you can ensure that the most important alarm (high priority) is shown in the display
area in a single-line alarm control.
If you filter the alarm control by priority "16", only the alarms with priority "16" will appear.
For alarms with priority "0", the priority of the alarm class applies.
The priority of the alarm when displayed in runtime takes precedence over the priority of the
alarm class.

Tips for an efficient procedure
• Large machines and plants have a large number of alarm sources that can trigger various types of alarms. It makes sense to structure the

alarm system so that the user can keep track of this wide range. One suitable method available here is alarm prioritization. The criteria for
assigning the priority value and/or the alarm class are importance and urgency. The priority of the alarm can also be based on the potential
impact (system downtime, loss of production, production delay, etc.). If multiple alarms are output, the system can suggest the order in
which they should be handled on the basis of priorities.

• You create discrete alarms together with the trigger tags and edit them in the "HMI tags" editor. You create tags in the usual way. Then click
<Add> in the table on the "Discrete alarms" tab at the bottom of the work area. A new discrete alarm is created for the tag. If you have
selected the wrong data type, the tag will be highlighted in the discrete alarm. If you delete, move or copy objects in the "HMI tags" editor,
these changes also take effect in the "HMI alarms" editor. The configured discrete alarms are created in the "HMI tags" editor and displayed
in the "HMI alarms" and "HMI tags" editors.
If you are using an array as a data type for managing alarms, you can assign a discrete alarm to the individual array elements. The alarms
assigned to the array elements are displayed under "Discrete alarms" or when you select the array. The alarms have the position within the
array as an extension, e.g. "HMI_Tag_1[2]".

• Supplementary information about individual alarms ensures that faults are localized and cleared quickly.

See also
Discrete alarms (Page 710)
Configuring optional parameters for discrete alarms and analog alarms (Page 745)
Workflow for configuring alarms (Page 724)
Configuring alarm acknowledgment (Page 749)
Creating alarm classes (Page 726)
Using common alarm classes (Page 729)
Configuring multilingual alarm texts (Page 747)
Editing system events (Page 748)

Configuring alarms
6.2 Configuring alarms

System Manual, 11/2022 735

Configuring analog alarms (Page 738)
Creating internal tags (Page 629)

6.2.5.2 Configure trigger
You can define trigger properties for discrete alarms. You can specify a trigger tag, a trigger bit
and a trigger mode for an alarm.

Requirement
• The "HMI alarms" editor is open.
• A discrete alarm has been created.

Configuring alarms
6.2 Configuring alarms

736 System Manual, 11/2022

Procedure
To define trigger properties, follow these steps:
1. Select the discrete alarm.
2. Click on "Trigger" under "Properties" in the Inspector window.

The "Trigger" window opens.
3. Select the tag and the bit that are to trigger the alarm. You can also specify whether to trigger

the alarm at a rising or falling edge.

Note
Restrictions for trigger bits
Each use of a trigger tag requires a different trigger bit. The availability of trigger bits depends
on the data type of the trigger tag.

Result
Trigger tag, trigger bit and trigger mode have been specified for the selected discrete alarm.

Configuring alarms
6.2 Configuring alarms

System Manual, 11/2022 737

6.2.5.3 Sending alarm acknowledgments to the PLC

Requirement
• The "HMI alarms" editor is open.
• The required alarm has been created and assigned to an alarm class requiring

acknowledgment.

Core statement
To configure that acknowledgment of an alarm is sent to the PLC, follow these steps:
1. In the "HMI alarms" editor, click the "Discrete alarm" tab and select the discrete alarm.
2. In the Inspector window, select "Properties > Properties > Acknowledgment".
3. Under "Status tag", select the tag and the bit set by the alarm acknowledgment function.
4. Under "Control tag", select the tag and the bit set by the alarm acknowledgment function.

Note
The HMI device and PLC only have read access to the acknowledgment tag memory area.

Result
If the operator acknowledges the alarm in Runtime, the operating step is forwarded to the PLC.

6.2.6 Configuring analog alarms

6.2.6.1 Configuring analog alarms

Introduction
You configure analog alarms to display limit violations. You have defined in advance a limit value
for the trigger tag and the trigger mode. An analog alarm is triggered depending on which mode
you have defined, for example, when the value is higher than, lower than or the same as the
defined value.
If the speed of a motor drops below a certain value, for example, an analog alarm is
triggered. This alarm could contain the following text: "Motor speed is too low".

Note
By default, each new analog alarm is assigned the alarm class "Alarm". You can then alter the
alarm class as required.

Configuring alarms
6.2 Configuring alarms

738 System Manual, 11/2022

Requirement
• The "HMI alarms" editor is open.
• The Inspector window is open.

Procedure
To configure an analog alarm, proceed as follows:
1. Click the "Analog Alarms" tab.
2. To create a new analog alarm, double-click in the table on "<Add>".

A new analog alarm is created.
3. To configure the alarm, select "Properties > General" in the Inspector window:

– Edit the name of the alarm as required.
– Select the alarm class.
– Configure the priority of the alarm (a value of between "0" and "16").

Note
You can use the priority to sort or filter the alarms in the alarm control. With sorting by
priority, you can ensure that the most important alarm (high priority) is shown in the display
area in a single-line alarm control.
If you filter the alarm control by priority "16", only the alarms with priority "16" will appear.
For alarms with priority "0", the priority of the alarm class applies.
The priority of the alarm when displayed in runtime takes precedence over the priority of the
alarm class.

Tips for an efficient procedure
• Large machines and plants have a large number of alarm sources that can trigger various types of alarms. It makes sense to structure the

alarm system so that the operator can keep track of this wide range. One suitable method available here is alarm prioritization. The criteria
for assigning the priority value and/or the alarm class are importance and urgency. The priority of the alarm can also be based on the
potential impact (system downtime, loss of production, production delay, etc.). If multiple alarms are output, the system can suggest the
order in which they should be handled on the basis of priorities.

• You create analog alarms together with the trigger tags and edit them in the "HMI tags" editor. You create tags in the usual way and
configure the range values of the tags. Then click <Add> in the table on the "Analog alarms" tab at the bottom of the work area. A new
analog alarm is created for the tag. If you have selected the wrong data type, the tag will be highlighted in the analog alarm. If you delete,
move or copy objects in the "HMI tags" editor, these changes also take effect in the "HMI alarms" editor. The configured analog alarms are
created in the "HMI tags" editor and displayed in the "HMI alarms" and "HMI tags" editors.

• Supplementary information about individual alarms ensures that faults are localized and cleared quickly.

See also
Analog Alarms (Page 709)
Configuring optional parameters for discrete alarms and analog alarms (Page 745)
Workflow for configuring alarms (Page 724)
Configuring alarm acknowledgment (Page 749)

Configuring alarms
6.2 Configuring alarms

System Manual, 11/2022 739

Creating alarm classes (Page 726)
Using common alarm classes (Page 729)
Configuring discrete alarms (Page 734)
Configuring multilingual alarm texts (Page 747)
Creating internal tags (Page 629)

6.2.6.2 Configure trigger
Trigger properties can be defined for analog alarms. You can specify a trigger tag, a trigger bit
and a trigger mode for an alarm.

Requirement
• The "HMI alarms" editor is open.
• A discrete alarm has been created.

Requirement
To define trigger properties, follow these steps:
1. Select the discrete alarm.
2. Click on "Trigger" under "Properties" in the Inspector window.

The "Trigger" window opens.
3. Specify the trigger tags and limits. Use one of the following data types: "Int", "Real", "LReal",

"SInt", "USInt", "UInt", "UDInt" and "ULInt".

Configuring alarms
6.2 Configuring alarms

740 System Manual, 11/2022

4. Select the trigger mode in the "Mode" field:
– "Less": The alarm is triggered if the limit is undershot.
– "Greater": The alarm is triggered if the limit is exceeded.
– "Equal": The alarm is triggered when the limit is reached.
– "Not equal": The alarm is triggered if the limit is not reached.
– "Less or equal": The alarm is triggered if the limit is undershot or reached.
– "Greater or equal": The alarm is triggered if the limit is exceeded or reached.

5. You can create additional limits for the alarm, if necessary. Note the following information:
– A tag is monitored using only one alarm type. You should therefore create either analog

alarms or discrete alarms for a tag.
– If the object included in the selection does not yet exist, create it in the object list and

change its properties later.

Note
Do not use trigger tags for anything else.

Result
Trigger tags and limits have been defined for the selected analog alarm.

Configuring alarms
6.2 Configuring alarms

System Manual, 11/2022 741

6.2.7 Integrating OPC UA server alarm instances
You have the option of integrating alarm instances from an OPC UA server into your Runtime
project. Proceed as described in the section Integrating OPC UA server alarm instances into a
Unified client (Page 7046).

6.2.8 Configuring alarm texts

Introduction
For an alarm, you can configure up to ten alarm texts: one alarm text and up to nine additional
texts. If required, you can insert output fields for displaying alarm parameters in each alarm text.
Each alarm text contains up to 512 characters.

Requirement
• An alarm has been created.
• The alarm control has been configured.

Procedure
To configure alarm texts, follow these steps:
1. Select the discrete or analog alarm in the "HMI alarms" editor.
2. Enter an alarm text under "Properties > Properties > Alarm texts > Settings > Alarm text" in the

Inspector window.
3. If necessary, insert parameter output fields in the alarm text via the "Insert parameter field"

shortcut menu command.
4. Enter additional alarm texts in the fields for additional texts under "Properties > Properties >

Alarm texts" in the Inspector window.
5. If necessary, insert parameter output fields in the other alarm texts using the "Insert

parameter field" shortcut menu command.

Configuring alarms
6.2 Configuring alarms

742 System Manual, 11/2022

6. Select the alarm control in the "Screens" editor.
7. To display the alarm texts in runtime, enable the required columns of the columns numbered

10 to 19 in the Inspector window under "Properties > Properties > Alarm control > Columns".

Note
If necessary, you can insert a parameter field with a right-click on the text box. You can assign
a process and a file format to the parameter.

Note
Formatting of the text
If you use the clipboard to copy a text into an alarm or additional text, formatting may
become invalid. You can delete the formatting with the command "Delete formatting". You
can execute the command via the shortcut menu by right-clicking on the corresponding text.

Result
Alarm texts have been defined for the selected alarm.

Configuring alarms
6.2 Configuring alarms

System Manual, 11/2022 743

6.2.9 Configuring info texts
You can write info texts for analog alarms and discrete alarms that can be displayed in runtime
by using the "Info text setup" button of the alarm control.

Requirement
• The "HMI alarms" editor is open.
• A discrete alarm has been created.

Procedure
To define alarm texts, follow these steps:
1. Select the analog or discrete alarm.
2. Click on "Info text" under "Properties" in the Inspector window.

The "Info text" window opens.
3. Enter the info text.

Configuring alarms
6.2 Configuring alarms

744 System Manual, 11/2022

Result
An info text has been defined for the selected alarm.

6.2.10 Parameter output in a discrete or analog alarm

Introduction
To display alarm parameters, insert an appropriate output field in a discrete or analog alarm. You
can select the parameters configured in "Properties > Properties > Alarm parameters" for use as
alarm parameters.

Requirement
• The "HMI alarms" editor is open.
• The discrete alarm or analog alarm is selected.

Procedure
To output a parameter in the alarm text, follow these steps:
1. Place the cursor at the required position in the alarm text.
2. To output an alarm parameter, select "Insert parameter field" from the shortcut menu.

A dialog box opens.
3. Select the desired parameter.
4. Moreover, you can specify the following data for alarm parameters:

– The tag that provides the parameter values.
The tag configured for the parameter under "Properties > Properties > Alarm parameters"
is entered by default. If you select a different tag, WinCC updates the parameter
configuration in "Properties > Properties > Alarm parameters" accordingly.

– Display type, text list, length, number of decimal places and alignment of the output field
– To display leading zeros in the output field, enable "Leading zeros".

5. Confirm the dialog to save your entries.

6.2.11 Configuring optional parameters for discrete alarms and analog alarms

Setting the alarm context
In a large plant system, it makes sense to save information about the alarm origin such as the
physical, geographical or logical grouping of plant units that is defined by the site. This helps
users in identifying the causes of the alarm and the source of the fault.

Configuring alarms
6.2 Configuring alarms

System Manual, 11/2022 745

You configure the information on alarm sources in the "Origin" field of the "Alarm context"
area.
The "Area" field is a static field and contains information about the device.

Creating info texts for alarms
To configure an info text for the alarm and thus support users, follow these steps:
1. Select a discrete alarm or an analog alarm.
2. Select "Properties > Info text" in the Inspector window and enter the required text.
3. To insert a line break in the info text, press "Shift+Enter" at the corresponding text location.
4. To create multi-lingual info texts, enter the respective texts in the predefined project

languages in the Inspector window and, if necessary, in the reference language.

Enabling parameters for a discrete or analog alarm
To output process values in an output field in the alarm text, assign tags to the parameter blocks.
Proceed as follows:
1. Select the alarm.
2. In the Inspector window, click "Properties > Alarm parameters".
3. Select a tag for the alarm parameter.
4. You can enter multiple alarm parameters if required.

Insert the activated process values as a selection box in an alarm text.
Note
You can configure up to 10 tags as alarm parameters for discrete alarms and analog alarms.
All available data types are supported.

See also
Configuring analog alarms (Page 738)
Configuring discrete alarms (Page 734)
Workflow for configuring alarms (Page 724)
Configuring multilingual alarm texts (Page 747)
Editing system events (Page 748)
Configuring alarm acknowledgment (Page 749)
Translating texts directly (Page 233)
Exporting project texts (Page 235)

Configuring alarms
6.2 Configuring alarms

746 System Manual, 11/2022

Analog Alarms (Page 709)
Discrete alarms (Page 710)

6.2.12 Configuring multilingual alarm texts

Requirements
• The "HMI alarms" editor is open.
• An alarm has been created.

Procedure
1. Select one or more alarms for which you want to configure multilingual alarm texts.
2. You can view the alarm texts already configured in the set project languages under

"Properties > Texts".
3. If available, enter the alarm texts in the required project languages.

The alarm texts will then be displayed in the set runtime language in runtime.

Note
All alarm texts are managed together with other project texts under "Languages & Resources >
Project texts".
If you cannot configure the project texts in multiple languages yourself, export them to an Excel
file and have them translated. You can then import the texts to your project.

See also
Basics of project texts (Page 232)
Workflow for configuring alarms (Page 724)
Configuring discrete alarms (Page 734)
Configuring analog alarms (Page 738)
Configuring optional parameters for discrete alarms and analog alarms (Page 745)
Working with multiple languages (Page 231)
Importing project texts (Page 237)
Translating texts directly (Page 233)
Selecting the reference language and editing language (Page 229)

Configuring alarms
6.2 Configuring alarms

System Manual, 11/2022 747

6.2.13 Editing system events

Basics
A system event indicates the system status and communication errors between the HMI device
and system. System events are output in runtime in the configured alarm control. System events
are output in the language currently set on your HMI device.
The time format (AM/PM or 24-hour format) is based on the selected language. If no
translation of the alarm texts exists in this language, English is used as replacement and
the corresponding time format is displayed.
Example of an alarm:
"Memory is full!"

Editing system events
You edit system events in the "HMI alarms" editor or under "Languages & Resources > Project
texts". In the "Category" column you can recognize a system event by the name "HMI system
event". You can export the system events together with the other texts under "Project texts" and
have them translated.

System event parameters
System events can contain encrypted parameters. The parameters are of relevance when
troubleshooting because they provide a reference to the source code of the runtime software.
These parameters are output after the "Error code: text"

See also
Workflow for configuring alarms (Page 724)
Configuring discrete alarms (Page 734)
Configuring analog alarms (Page 738)
Configuring optional parameters for discrete alarms and analog alarms (Page 745)
System events (Page 712)

6.2.14 Filtering controller alarms via display classes

Introduction
Controller alarms are configured in STEP 7. Controller alarms are available in WinCC running in
a STEP 7 environment.
If a PLC is connected to multiple HMI devices, the project engineer assigns display classes
to the controller alarms in STEP7. The display classes determine the allocation to the HMI
device. You can activate the display classes for your HMI device that are to be displayed on

Configuring alarms
6.2 Configuring alarms

748 System Manual, 11/2022

it. In this case, only the controller alarms from this display class will be displayed on the HMI
device. Up to 17 display classes are possible.

Note
WinCC only supports controller alarms of a SIMATIC S7-1500 controller. In addition, WinCC only
supports controller alarms that are automatically updated by the central alarm management in
the controller.

Requirement
• The connection was established to the PLC.
• Alarms were configured in STEP 7.

Filtering controller alarms via display classes
To filter controller alarms by display classes, proceed as follows:
1. Click "Runtime settings > Alarms" in the project tree under your HMI device.

One or several connections to a PLC are shown in "Contoller alarms".
2. Select the display classes whose controller alarms you want to display for the connection.

See also
Sending and automatically updating complete alarm from the controller to the HMI device
(Page 796)
Configuring automatic update of controller alarms on the HMI device (Page 797)
Workflow for configuring alarms (Page 724)
User-defined controller alarms (Page 710)
Alarm system (Page 707)

6.2.15 Configuring alarm acknowledgment

Introduction
The alarm classes define how the alarms from an alarm class are to be acknowledged. When you
assign an alarm to an alarm class, you define the state machine and the acknowledgment model
for that alarm.

Configuring alarms
6.2 Configuring alarms

System Manual, 11/2022 749

Requirements
• The "HMI alarms" editor is open.
• The required alarm class has been created.
• The required alarm has been created.

Procedure
To configure the acknowledgement of an alarm, follow these steps:
1. In the "HMI alarms" editor, click the "Alarm class" tab and select the alarm class.
2. You select the desired state machine under "Properties > General > Acknowledgment" in the

Inspector window.

Note
The buttons relevant for acknowledgment, "Group acknowledgment", "Single
acknowledgment" and "Single confirm", are enabled in the alarm view by default and can be
operated in runtime.

Configuring the state machine of common alarm classes
The "Alarm class" tab also shows alarm classes that are linked to common alarm classes. The
"General > Common alarm class" property is set for these alarm classes.
Alarm classes with such a link have one of the following state machines:
• Alarm with single-mode acknowledgment
• Alarm without acknowledgment
It is not possible to change the state machine in the "HMI alarms" editor. If necessary, change
the state machine in the editor for common alarm classes.

See also
Acknowledgment model (Page 715)
Acknowledging alarms (Page 721)

Configuring alarms
6.2 Configuring alarms

750 System Manual, 11/2022

Acknowledging alarms (Page 784)
Workflow for configuring alarms (Page 724)
Creating alarm classes (Page 726)
Configuring discrete alarms (Page 734)
Configuring analog alarms (Page 738)
Configuring optional parameters for discrete alarms and analog alarms (Page 745)
Using common alarm classes (Page 729)

6.3 Exporting and importing alarms

6.3.1 Exporting alarms

Introduction
WinCC makes an export function available for alarms.

Requirements
• The WinCC project for export is open.
• Alarms have been created in the project.
• The "HMI alarms" editor is open.

Exporting alarms
To export alarms from a WinCC project, follow the steps below:
1. Click the button in the "Discrete alarms" or "Analog alarms" tab.

The "Export HMI alarms" dialog box opens.
2. Click "..." and specify the file in which data is saved.
3. Specify whether you want to export "Discrete alarms" and/or "Analog alarms".
4. Click "Export".

The export starts. When the export is complete, a message on completion of the export is
displayed.

5. Confirm the message on completion of the export with "OK".

Result
The exported data has been written to an xlsx file. The xlsx file has been stored in the specified
folder.

Configuring alarms
6.3 Exporting and importing alarms

System Manual, 11/2022 751

If you have only exported discrete alarms, the xlsx file has the worksheet "DiscreteAlarms".
If you have only exported analog alarms, the xlsx file has the worksheets "AnalogAlarms"
and "Limits". If you have exported discrete alarms and analog alarms, the xlsx file has the
worksheets 'DiscreteAlarms", "AnalogAlarms" and "Limits".
Each alarm is in a separate row in the xlsx file.

Note
The list entries with the "FieldInfo" designation specify whether the alarm text contains dynamic
parameters. The settings are separated by a semicolon ";".

6.3.2 Importing alarms

Introduction
WinCC makes an import function available for alarms. Alarms are identified by their alarm ID. An
existing alarm is overwritten by the data from the import file if the alarm ID already exists in the
project on import. A new alarm is created in the project if the alarm does not yet exist in the
project on import.

Requirements
• An xlsx file with alarms has been created.
• The xlsx file has the same structure as an xlsx file that is created when alarms are exported.
• The IDs and names that were assigned for messages in the xlsx file are unique throughout the

project.
• The WinCC project for import is open.
• The "HMI alarms" editor is open.

Importing alarms
To import alarms into a WinCC project, follow the steps below:
1. Click the button in the "Discrete alarms" or "Analog alarms" tab.

The "Import HMI alarms" dialog box opens.
2. Click "..." and select the file that you want to import.

Configuring alarms
6.3 Exporting and importing alarms

752 System Manual, 11/2022

3. Click "Import".
The import starts. An xml log file is created on import. When the import is complete, a
message on completion of the import is displayed.
Note
To open the created xml log file, click the link "Click here to view the log file". It is advisable
to open the xml log file, especially if the import was completed with warnings.

4. Confirm the message on completion of the import with "OK".

6.4 Configuring an alarm control

6.4.1 Configuring an alarm control

Introduction
The alarm control is configured for a screen. Current or logged alarms are displayed in the alarm
control in runtime. More than one alarm can be displayed simultaneously, depending on the
configured size. Configure the criteria for alarm filtering.
You can also configure multiple alarm controls with different contents and in different
screens.

Note
Text alignment in cells of the alarm control
The "Spacing" and "Text trimming" properties only have an effect in the "Graphic and Texts",
"Graphic or Text" and "Graphic" modes.

Requirement
• A screen is open.
• The "Toolbox" task card is open.

Configuring alarms
6.4 Configuring an alarm control

System Manual, 11/2022 753

Procedure
1. Insert an "Alarm control" object from the "Tools" task card into the screen.

2. Go to "Properties" and set the required height, width and position of the alarm control.
3. Under "Properties > Miscellaneous > Alarm control" you can define the layout and color

composition of the alarm control as well as the design of the header and the contents of the
table grid.

4. To ensure that the most current alarm is always displayed and highlighted in the alarm
control in runtime, activate the "Miscellaneous > Alarms - Show current" property.
The visible area of the alarm control is moved in runtime if necessary. Users cannot select
alarms individually or sort them by column. Alarms that have been filtered out of the alarm
control are not displayed.
If you configure the "Alarms - show current" button as visible and operable, users can pause
and start this behavior in runtime as required. The alarm control always starts with the
behavior configured via "Miscellaneous > Alarms - show current".

5. Under "Alarm source" you specify which alarms the alarm control displays in runtime by
default.
Depending on your task or the requirements in your company, you can select from the
following display options:
– "Not configured": The alarm control does not show any alarms.
– "Pending alarms": The alarm control shows the currently pending alarms.
– "Logged alarms": The alarm control shows the logged alarms.
– "Logged alarms updated": The alarm control shows the logged alarms that are updated at

specified intervals.
– "Alarm definition": The alarm control shows all alarms configured in the engineering

system, regardless of whether or not they have occurred.
Depending on your selection, the alarm control display already changes in the engineering
system. The buttons relevant for the settings are shown as being active, while buttons that
are not relevant are grayed out. These settings are applied for runtime.

Configuring alarms
6.4 Configuring an alarm control

754 System Manual, 11/2022

6. Define which alarms are displayed in runtime by default in the alarm lists for pending alarms
and for defined alarms.
– In the selection list under "Miscellaneous > Current alarms", select which alarms are

displayed as pending alarms.
– In the selection list under "Miscellaneous > Displayed alarms", select which alarms are

displayed as defined alarms.
Depending on your task or the requirements in your company, you select one or more display
options depending on the status of the alarms:
– "None": The alarm control shows all alarms.
– "Not suppressed": The alarm control only shows the non-suppressed alarms.
– "Locked": The alarm view only shows the locked alarms.
– "Suppressed by design": The alarm view only shows the alarms suppressed by design.
– "Shelved": The alarm control only shows the shelved alarms.
Your selection is displayed by default in the alarm control when you start runtime.
Note
If you do not make a selection, the alarm control shows all alarms.

Note
You can change the display at any time in runtime even if you have selected a different display
option in the engineering system under "Alarm source" or "Active alarms".

7. If necessary, select the authorization needed to operate the alarm control in runtime.
8. Under time zone you set the desired time zone by entering a decimal value for the time zone.

– "0" and positive numerical values: The values correspond to the index values of the
Microsoft time zones.

– "-1": The local time zone of the device

Note
In runtime you also have the option of setting the time zone via a selection list.

Result
Alarms of various alarm classes are output in the alarm control during runtime. To change the
control in runtime, click the configured buttons on the alarm control toolbar.

Configuring alarms
6.4 Configuring an alarm control

System Manual, 11/2022 755

Using alarm colors
To display the colors configured for an alarm in the alarm control, proceed as follows in the
engineering system:
1. Activate the property "Format > Use alarm color" in the properties of the alarm control.
2. Activate the "Use alarm color" property under "Alarm control > Columns" for each column

that is to use the configured alarm color.

See also
Configuring the toolbar (Page 757)
Configuring filters in the alarm control (Page 762)
Configuring alarm export (Page 764)
Configuring the printing of alarms (Page 764)
Show logged alarms (Page 765)
Defining the output format (Page 364)
Configuring columns and sorting (Page 760)
Alarm control (Page 309)
Configuring an alarm control for plant objects (Page 7084)
Configuring state texts of alarms (Page 733)
Display messages from participating devices (Page 7583)
Configuring reordering of the columns (Page 392)

6.4.2 Display all information about an alarm

Introduction
When configuring an alarm view, you have the possibility to provide the operator with a pop-up
in Runtime that shows further information about an alarm selected in Runtime.
The following system function is available for this purpose:
Alarm.GetSelectedAlarmAttributes() (Page 1480).

Requirement
• The alarm view has been configured.

Configuring alarms
6.4 Configuring an alarm control

756 System Manual, 11/2022

Procedure
1. In the Inspector window, select the "Selection changed" event.
2. Call the "GetSelectedAlarmAttributes" function in a script.

All attributes of the alarm are read out.
3. Display the attributes in Runtime in a pop-up.
The output of the attributes can also be triggered by a button.
A snippet "Get all alarm properties of the selected alarm from the alarm control" is available
under "HMI Runtime > Screen" in the script editor.

Result
The "Show current" button (Autoscroll) must be switched off.
The operator selects an entry in Runtime in the alarm view.
A pop-up with the attributes of the alarm is displayed.
The function also outputs attributes for archived alarms and alarms of the alarm statistics.

6.4.3 Configuring the toolbar

Introduction
You operate the alarm control in runtime using the buttons in the toolbar. During
configuration, you define the contents of the toolbar.
The following buttons are visible in the alarm control by default:
• "Show active alarms"
• "Show logged alarms"
• "Show and update logged alarms"
• "Alarm statistics - view"
• "First line"
• "Previous line"
• "Next line"
• "Last line"
• "Single acknowledgment"
• "Group acknowledgment"
• "Single confirm"
• "Alarms - show current"
• "Alarm statistics - configuration"

Configuring alarms
6.4 Configuring an alarm control

System Manual, 11/2022 757

• "Selection display"
• "Sorting setup"
The following buttons are not visible in the alarm view by default and must be made visible
via "Properties > Miscellaneous > Toolbar > Elements". To these additional buttons in the
object, activate the "Visibility" property in the settings of the corresponding button.
• "Show defined alarms"
• "Alarm annunciator"
• "Move to next acknowledgeable alarm"
• "Previous page"
• "Next page"
• "Info text setup"
• "Comments setup"
• "Statistics setup"
• "Disable alarm"
• "Enable alarm"
• "Shelve alarm"
• "Unshelve alarm"
• "Copy lines"
• "Time base setup"
• "Display options setup"
• "Disabled alarms setup"
• "Export"
• "Select context"

Requirement
• The alarm control is selected in the screen.
• The Inspector window is open.

Configuring the toolbar
1. Configure the general properties of the toolbar, such as alignment or background color, in the

Inspector window under "Properties > Properties > Miscellaneous > Toolbar".
2. In the Inspector window, enable the buttons you need in runtime, e.g. "Export" or "Print",

under "Properties > Properties > Miscellaneous > Toolbar > Elements".
3. Configure the display of the respective button, e.g. background color, border, and maximum

and minimum size.

Configuring alarms
6.4 Configuring an alarm control

758 System Manual, 11/2022

4. If needed, you can define a tooltip for the buttons.
5. If a button is not to be operated in runtime, deselect "Operator control - allow".

You can reactivate a deactivated a button using a script in runtime, for example.

Note
The order and functionality of the buttons are defined in the system and cannot be changed.

Custom ID
The custom ID can be used if you want to specifically access a certain button with an ID to be set
via scripting.
You set this property under "Properties > Properties > Miscellaneous > Toolbar > Elements >
Button".

Start behavior for "Alarms - Show current"
The "Alarms - Show Current" button starts with the behavior configured in "Properties >
Miscellaneous > Show Current".
If you configure the button as operable, users can change the behavior in runtime. By clicking
the button they pause the display of the current alarms or start it again as required.

See also
Configuring an alarm control (Page 753)
Configuring columns and sorting (Page 760)
Configuring filters in the alarm control (Page 762)
Configuring alarm export (Page 764)
Configuring the printing of alarms (Page 764)
Show logged alarms (Page 765)

6.4.4 Configuring the information bar

Introduction
The information bar displays status messages of the alarm control. During configuration, you
configure the content of the information bar.

Requirement
• The alarm control is selected in the screen.
• The Inspector window is open.

Configuring alarms
6.4 Configuring an alarm control

System Manual, 11/2022 759

Configuring the information bar
1. In the Inspector window, configure the general properties of the Information bar such as the

font or the background color under "Properties > Properties > Miscellaneous > Status bar".
2. In the Inspector window, select the elements you need in runtime, such as date, time,

connection status, etc. under "Properties > Properties > Miscellaneous > Information bar >
Elements".

3. To adjust the size of an element in the information bar, select "User-defined".
4. Enter the width and height in pixels.
5. To set the order of the elements, select the element in the list and move it to the desired

position.

Custom ID
The custom ID can be used if you want to specifically access a certain button with an ID to be set
via scripting.
You set this property under "Properties > Properties > Miscellaneous > Toolbar > Elements >
Button".

6.4.5 Configuring columns and sorting

Introduction
You configure the order in which the columns of the alarm control are displayed in runtime.

Requirement
• The alarm control is selected in the screen.
• The Inspector window is open.

Configuring columns
1. Click "Properties > Alarm control > Columns" in the Inspector window.
2. Enable the "Visibility" property for the relevant columns.

Configuring alarms
6.4 Configuring an alarm control

760 System Manual, 11/2022

3. Under "Alarm text block" select the content that is to be displayed in the column, e.g. "Alarm
class".

4. Under "Alarm column [n] > Header > Text", enter the desired column name that is to be
displayed in the alarm control.
Note
For the column names to be configured as multilingual, you must enter the name of the
column under "Alarm column [n] > Header > Text".
You will then see the configured text in the Inspector window under "Texts" and can store
additional languages.
If you only enter the name under "Alarm column [n] > Name", multilingual configuration is
not possible.

Configuring the sorting
To sort alarms in the alarm control by column, follow these steps:
1. Select "Properties > Alarm control" > Allow sorting" so that sorting is generally possible in the

alarm control in runtime.
2. Under "Properties > Alarm control > Columns" open the alarm column by which you want to

initially sort the alarms, e.g. the "Priority" column.
3. Select the sorting order "1".
4. Select the desired sorting direction, e.g. "Ascending".

– The number "1" with the arrow pointing upwards for ascending sort order is displayed in
runtime in the column with sorting order "1".

– If the sorting order "Ascending" is enabled in the alarm control, each click in the column
header toggles the sorting between the ascending and descending mode.

5. To allow sorting for this column, enable "Alarm column [n] > Allow sorting".
Note
You can configure any sorting order.
If the "Show recent" property was selected under "Properties", the latest alarms are always
shown first.

See also
Configuring an alarm control (Page 753)
Configuring the toolbar (Page 757)
Configuring filters in the alarm control (Page 762)
Configuring alarm export (Page 764)
Configuring the printing of alarms (Page 764)
Show logged alarms (Page 765)

Configuring alarms
6.4 Configuring an alarm control

System Manual, 11/2022 761

6.4.6 Configuring filters in the alarm control

Introduction
You can filter the display of alarms in the alarm control. You configure a static value, a tag or a
script for the filter. You can configure this function in the alarm control in the "Screens" editor. To
filter the alarms in Runtime, click "Selection display" in Runtime.
You can filter by all parameters, such as ID, name, alarm class, priority, etc.
This operating instruction introduces the process for configuring a filter using an example.

Requirement
• The alarm control is selected in the screen.
• The Inspector window is open.

Procedure
1. In the Inspector window under "Properties > Filter", click on the "..." button in the "Static

value" column.
The "Alarm filter configuration" dialog box opens.

2. Click "<Add>" in the "AND/OR" column to create a filter.
3. In the "Criterion" column, open the selection list and select the entry "Alarm class".
4. In the "Operand" column, open the selection list and select the entry "Equal to".
5. Enter the value "Alarm" in the field of the "Setting" column.
6. Click the "OK" button.

Note
The following characters cannot be used in the Settings column:
• Quotes
• Single quotation marks

Configuring alarms
6.4 Configuring an alarm control

762 System Manual, 11/2022

Tips for an efficient procedure
You can also create filter criteria directly in runtime and use them as filters. To operate the filter in runtime, enable the "Visibility" property under
"Properties > Toolbar > Elements > Control bar button Selection display [26]".

Examples of alarm filters
Example Criterion Condition Setting Description
Filter by alarm class Alarm class = Alarm Displays the alarms

that are members of
the "Alarm" alarm class.

Filter by priority Priority Greater than 4 Displays the alarms
with a priority greater
than 4.

Filter by alarm text Alarm text Contains Motor_12 Displays the alarms
that contain the alarm
text "Motor_12".

Filter by time Last modification Less than or equal to Wednesday, 15 April
2020 17:00

Displays the alarms
that occurred after 5
pm (17:00) on 15 April
2020.

Filter by time
When filtering by time, the start and stop values are not adjusted automatically when the time
base of the alarm control is changed.
Example
At a PC location with time zone "UTC + 1h", the alarm control has the "Local time zone" time
base. If you filter for the time 10:00 to 11:00 and then change the time base to "UTC", you
need to change the start value and stop value of the filter to 9:00 and 10:00 to display the
same alarms as before.

See also
Filtering alarms in runtime (Page 778)
Configuring an alarm control (Page 753)
Configuring the toolbar (Page 757)
Configuring columns and sorting (Page 760)
Configuring alarm export (Page 764)
Configuring the printing of alarms (Page 764)
Show logged alarms (Page 765)
Alarm control (Page 309)

Configuring alarms
6.4 Configuring an alarm control

System Manual, 11/2022 763

6.4.7 Configuring alarm export

Introduction
To export alarms to a "*.csv" file in runtime, click on the "Export" button in the alarm control. You
configure the "Export" button in the alarm control in the "Screens" editor.

Requirement
• The screen with the configured alarm control is open.
• The Inspector window is open.

Procedure
To configure the export of alarms, proceed as follows:
1. Select the alarm control and enable the "Visibility" property in the Inspector window under

"Properties > Toolbar > Elements > Export button [29]".
You define the export settings such as the file name, the scope of the export and the format
in runtime in the "Export data" dialog.

See also
Configuring an alarm control (Page 753)
Configuring the toolbar (Page 757)
Configuring columns and sorting (Page 760)
Configuring filters in the alarm control (Page 762)
Configuring the printing of alarms (Page 764)
Alarm control (Page 309)

6.4.8 Configuring the printing of alarms

Introduction
Click "Print" in the alarm control to print alarms in runtime. You configure the "Print" button in the
alarm control in the "Screens" editor.

Requirement
• The screen with the configured alarm control is open.
• The Inspector window is open.

Configuring alarms
6.4 Configuring an alarm control

764 System Manual, 11/2022

Procedure
To configure the printing of alarms, follow these steps:
1. Select the alarm control and enable the "Visibility" property in the Inspector window under

"Properties > Toolbar > Elements > Print button [28]".

See also
Configuring an alarm control (Page 753)
Configuring the toolbar (Page 757)
Configuring columns and sorting (Page 760)
Configuring filters in the alarm control (Page 762)
Configuring alarm export (Page 764)
Show logged alarms (Page 765)
Alarm control (Page 309)

6.4.9 Show logged alarms

Overview
When an alarm log is created, an alarm control also shows logged alarms in runtime.
The buttons relevant for logging, "Show logged alarms" and "Show and update logged
alarms", are activated in the alarm control by default and can be operated in Runtime.

You show logged alarms in runtime using these buttons.

See also
Basics of alarm logging (Page 769)
Displaying logged alarms in runtime (Page 779)
Configuring an alarm control (Page 753)
Configuring the toolbar (Page 757)
Configuring columns and sorting (Page 760)
Configuring filters in the alarm control (Page 762)
Configuring the printing of alarms (Page 764)
Configuring the display of security events (Page 795)
Alarm control (Page 309)

Configuring alarms
6.4 Configuring an alarm control

System Manual, 11/2022 765

6.4.10 Configuring alarm statistics

Introduction
The alarm statistics in the alarm control shows statistical calculations for logged alarms. The
alarm statistics also shows a selection of the configured alarm blocks. If there is dynamic
content, the alarm blocks show the data of the alarm last arrived. The columns of the alarm
statistics can be arranged individually.
The alarm statistics shows the following statistical calculation types:
• Frequency of an alarm

The system counts the number of occurrences of an alarm with "active" status in the log. If
the alarm number is not found, this alarm number is not included in the statistics.

• Total display time of an alarm in seconds
You can calculate the following time periods between alarm states:
– Sum active active
– Sum active inactive
– Sum active acknowledged

• Average display time of an alarm in seconds
You can calculate the following time periods between alarm states:
– Average active active
– Average active inactive
– Average active acknowledged

There is a column available in the alarm statistics for each type of calculation.
The calculation of the time of acknowledgment includes the "acknowledged" alarm status.
This "acknowledged" alarm state includes the acknowledgment by the controller.

Requirement
• The alarm control is selected in the screen.
• The Inspector window is open.

Setting up columns of the alarm statistics
To set up the alarm statistics columns, proceed as follows:
1. In the Inspector window, click "Properties > Miscellaneous > Alarm statistic view > Columns".
2. Select the "Visibility" option for the desired columns.

Configuring alarms
6.4 Configuring an alarm control

766 System Manual, 11/2022

Settings for calculating the alarm statistics
You can configure the following options:

Setting Description
Start time Start time for the calculation.
Time range start • Now

The current time is displayed as the start time of the calculation.
• Fixed

The start time of the calculation can be changed as required.
Time range base Unit of time for the calculation. The following settings are available:

• Undefined
The default time unit "Minute" is used with this setting.

• Millisecond
• Second
• Minute
• Hour
• Day
• Month
• Year

Time range factor The time range factor depends on the "Time range base" setting. For
example, if the number 4 is set for the time range factor and "Minutes" is
set for the time range base, all alarms that are logged within this period
will be evaluated.

To configure the settings for the alarm statistics, proceed as follows:
1. In the Inspector window, click "Properties > Miscellaneous > Alarm statistics settings".
2. Specify the desired properties.

6.4.11 Configuring the display of system diagnostic alarms

Introduction
System diagnostic alarms are installed with STEP 7 and are used for monitoring states and events
of a controller. To display system diagnostic alarms in an alarm control in runtime, configure
first in STEP 7 and then in WinCC.

Note
WinCC only supports system diagnostic alarms of a SIMATIC S7-1500 controller. In addition,
WinCC only supports system diagnostic alarms that are updated by the central alarm
management in the controller.

Configuring alarms
6.4 Configuring an alarm control

System Manual, 11/2022 767

Requirement
• There is an HMI connection between the HMI Device and a SIMATIC S7-1500 controller (as of

firmware version 2.0).

Configuring the display of system diagnostic alarms in STEP 7
To configure the display of system diagnostic alarms in runtime in STEP 7, proceed as follows:
1. Open the "Device configuration" of the controller in the project tree.
2. In the "Device view" tab, select the CPU on the rack.
3. Select "Properties > General > System diagnostics" in the Inspector window.

You will see that the option "Select system diagnostics for this device" is selected and cannot
be cleared. Because the system diagnostics of the controller is always enabled.

4. Activate the option "Central alarm management in the PLC" in the Inspector window under
"Properties > General > PLC alarms".
The automatic update of system diagnostic alarms on the HMI device is enabled in the
controller.

5. Open the "Common data" folder in the project tree and double-click "System diagnostic
settings".
The system diagnostic settings are opened. You can see the predefined categories of the
system diagnostic alarms in the table under "Category":
– "Error"
– "Maintenance demanded"
– "Maintenance required"
– "About"

6. In the table under "Category", select the alarm categories that are to be displayed in the alarm
control in runtime.

7. In the table under "Alarm class", assign common alarm classes to the alarm classes.
8. Right-click the controller in the project tree and select "Compile > Hardware (rebuild all)" in

the shortcut menu.

Configuring the display of system diagnostic alarms in WinCC
To configure the display of system diagnostic alarms in WinCC in runtime, proceed as follows:
1. Open the "Runtime settings" of the HMI device in the project tree.
2. Select the option "Automatic update" under "Alarms > Controller alarms".

The automatic update of system diagnostic alarms on the HMI device is enabled in the HMI
device.

3. Select the option "System diagnostics" under "Alarms > Controller alarms".
The display of system diagnostic alarms is enabled in runtime.

4. Configure an alarm control.

Configuring alarms
6.4 Configuring an alarm control

768 System Manual, 11/2022

Result
The alarm control displays of the system diagnostic alarms of the controller in runtime.

See also
Sending and automatically updating complete alarm from the controller to the HMI device
(Page 796)
Configuring automatic update of controller alarms on the HMI device (Page 797)
System-defined controller alarms (Page 712)
Workflow for configuring alarms (Page 724)

6.5 Logging alarms

6.5.1 Basics of alarm logging

Introduction
An alarm log is used to log alarms that occur in the monitored process. You can use alarm logging
to analyze error states and to document the process. When you analyze the logged alarms, you
can extract important business and technical information regarding the operational state of the
plant.
Alarms of connected and appropriately configured PLCs are also logged and made available in
all configured languages.

How it works
Each alarm is assigned to an alarm class. To ensure clarity with large amounts of data, alarm
classes can be prioritized and configured differently. Under "HMI alarms", you assign logs to the
alarm classes.
Alarm logs are created by the system in runtime. For example, when a fault or a limit
violation occurs, the corresponding alarm you configured in the "HMI alarms" editor is output
in runtime. Each alarm event is logged, for example, the status change of the alarm from
"incoming" to "acknowledged".

Content of the alarm log
Alarms and their properties in all configured languages are saved in the alarm logs. The time
stamp of a logged alarm is always specified in standard UTC format (Universal Time
Coordinated).

Configuring alarms
6.5 Logging alarms

System Manual, 11/2022 769

Displaying logged data
You display the logged data in runtime in the alarm control. To display logged data, use the
"Show logged alarms" button in the alarm control.

See also
Show logged alarms (Page 765)
Creating a data log and an alarm log (Page 848)
How it works (Page 839)
Log basics (Page 837)
Storage locations of logs (Page 843)
Editing log contents with scripts and system functions (Page 850)
Size of a log entry in the alarm log (Page 770)

6.5.2 Size of a log entry in the alarm log
The size of a log entry depends on the following factors:
• Number of configured languages

You configure the languages to be logged in the Runtime settings of the HMI device.
When more than one language is defined, memory is required for each additional language
to store the language entry.

• Alarm texts and additional texts
– Length of the alarm texts and additional texts
– Memory requirement of individual characters

Symbols and complex characters have greater memory requirements.
• Database type used

Calculation
The size of a log entry is calculated as follows:
Basic entry without alarm text + memory requirement of all texts + (number of configured
languages-1)*memory requirement of an additional language entry
The text lengths and the memory requirements of the individual characters depend on the
respective language. The following formula can be used to easily estimate the memory
requirement of all texts:
Number of configured languages*total length of the alarm text and the additional
texts*memory requirement of a character

Configuring alarms
6.5 Logging alarms

770 System Manual, 11/2022

The individual values depend on the database type used.

 SQLite Microsoft SQL
Additional memory requirement per segment - Approx. 3.5 MB
Basic entry without alarm texts Approx. 300 bytes Approx. 2000 bytes
Memory requirement of an additional language
entry

Approx. 100 bytes Approx. 200 bytes

Memory requirements of a character At least 1 byte At least 2 bytes

See also
How it works (Page 839)
Multilingual logging of alarms (Page 772)
Basics of alarm logging (Page 769)

6.5.3 Assign alarm class

Introduction
You assign one alarm log each to predefined and user-defined alarm classes. In this way, you can
categorize alarms in different logs.

Note
Assign alarm class
If you do not assign an alarm class to an alarm log, you will receive an error message when you
compile the project.
Assign at least one alarm class to each alarm log.

Requirement
• An alarm log has been created in the "Logs" editor.

Procedure
1. Double-click on the "HMI alarms" entry in the project tree.

The "HMI alarms" editor is opened.
2. Select the "Alarm classes" tab.

The list of alarm classes is displayed.
3. Double-click on an entry in the "Log" column.

The selection button is displayed.
4. Select an alarm log.

Configuring alarms
6.5 Logging alarms

System Manual, 11/2022 771

See also
Basics of alarm logging (Page 769)
Creating a data log and an alarm log (Page 848)

6.5.4 Multilingual logging of alarms

Introduction
You can log alarm texts in different languages. To do this, select the option in the runtime
settings of the HMI device.

Requirement
• The languages in which the alarm texts are to be logged are created as project languages.

Procedure
1. Open "Runtime settings" in the project tree below the HMI device.
2. Select "Language & Font".
3. To activate a language for runtime, select the check box in the "Activate" column.

This option must be activated to log alarm texts in the corresponding language.
4. To log the alarm texts in a language, select the check box in the "Enable for logging" column.

① Activate available languages in Runtime
② Enabling languages for logging
③ Adding project languages

Configuring alarms
6.5 Logging alarms

772 System Manual, 11/2022

See also
Basics of alarm logging (Page 769)
Size of a log entry in the alarm log (Page 770)

6.6 Displaying and using alarms

6.6.1 Operating the alarm control and displaying it in runtime

Introduction
In runtime, the "Alarm control" object displays alarms that occur during the process in a plant.
Alarms indicate events and states on the HMI device which have occurred in the system, in the
process or on the HMI device itself. A state is reported when it occurs. Use the alarm control
functions to work with incoming alarms. An alarm could trigger one of the following alarm
events:
• Incoming
• Outgoing
• Acknowledge
The configuration engineer defines which alarms must be acknowledged by the operator.

Alarm control
The alarm control shows selected alarms or alarm events from the alarm buffer or alarm log.
Whether alarm events have to be acknowledged or not is specified in your configuration. You can
configure the order in which the alarms are displayed. At the first position, the current, or the
oldest alarm will be displayed.

Configuring alarms
6.6 Displaying and using alarms

System Manual, 11/2022 773

In the alarm control, you have the option to display various lists that filter and sort according
to specific properties. To display the alarm lists in the alarm control and switch the alarm
control in runtime, click the associated button in the alarm control toolbar.

Button Description Description
Show active alarms Shows the pending alarms.

Show logged alarms Shows the logged alarms.
The view is not updated immediately when new incom‐
ing alarms occur.

Show and update logged
alarms

Shows the logged alarms.
The display is updated immediately when new incoming
alarms occur.

Show defined alarms Shows the alarms configured in the engineering system.

Note
The maximum number of alarms that can be displayed in an alarm control in runtime depends
on the selected view. Note the information in the performance features.

Roles and authorizations
When working with the alarm control, you can assign roles and authorizations that determine
who can configure and operate in the engineering system and runtime.
In the Engineering System under "Security Settings > Settings" you have the option to set
the user name and password for the open project with which the project is now protected
with "Protect this project". Under "Security settings > Users and roles" you create users under
the "Users" tab, to whom you can assign roles as well as rights. In addition to the predefined
roles, you can also define additional roles under the "Roles" tab and then assign them to a
user.

Operator control with the mouse
Selecting and controlling alarms
• Click on an alarm.
• Click on a button in the toolbar.
The function of the button is applied to the alarm.

Reordering columns
You have the option of changing the column order configured in the engineering system. You
can find additional information in the section Rearranging columns in runtime (Page 393).

Configuring alarms
6.6 Displaying and using alarms

774 System Manual, 11/2022

Sorting alarms by column
You have the option of sorting the alarms by column. You can find additional information in
the section Sorting alarms in runtime (Page 775).

Operator control with keyboard
Press <Shift + Enter> until the alarm control has the focus. Then select the alarm to be processed
and control it using the toolbar.
Use the following keys:

Keyboard shortcut Function
PAGE UP Navigates up the alarm control row by row.
PAGE DOWN Navigates down the alarm control row by row.
SHIFT + PAGE UP View the alarm control column by column to the

left.
SHIFT + PAGE DOWN Navigates the alarm control column by column to

the right.
CTRL + UP Sets the selection as the start of row.
CTRL + DOWN Sets the selection as end of row.
CTRL + RIGHT Sets the selection as start of column.
CTRL + LEFT Sets the selection as end of column.
HOME Sets the selection as the start of row.
END Sets the selection as end of row.

See also
Printing alarms in runtime (Page 793)
Filtering alarms in runtime (Page 778)
Displaying logged alarms in runtime (Page 779)
Acknowledging alarms (Page 784)
Group acknowledgement of alarms (Page 786)
Exporting alarms (Page 787)
Shelving alarms (Page 788)
Lock alarms (Page 791)

6.6.2 Sorting alarms in runtime

Introduction
In runtime, you can sort the alarms in the alarm control by column header.

Configuring alarms
6.6 Displaying and using alarms

System Manual, 11/2022 775

Sorting alarms:
• In descending order by date, time, and alarm number. The most recent alarm is displayed at

the top.
• Ascending:

The sequence for ascending order is:
– Incoming
– Incoming/acknowledged
– Incoming/acknowledged/outgoing
– Incoming/outgoing/acknowledged
– Shelved
– Suppressed

• No sorting
When the alarm control is sorted by columns, an arrow and a number are shown on the right
in the column header. The arrow indicates the ascending or descending sort order. The
number beside the arrow indicates the sort order of the column headers.

Standard sorting of alarms
• By priority

If the "Priority" column is defined in the alarm view, sorting is based on alarm priority.
As a result, in a single-line alarm control, only the top-priority alarm appears in the alarm
window. A lower-priority alarm will not be displayed, even if it is has a more recent date. The
alarms are displayed in chronological order.

• If one of the following columns in the alarm view is configured, sorting on a Unified Comfort
Panel is according to the specified order.

1. Priority
2. Modification time
3. Raise time
4. Alarm state
If none of the columns are configured, sorting occurs according to the "Time" column.

Configuring alarms
6.6 Displaying and using alarms

776 System Manual, 11/2022

Requirement
• In the Engineering System, "Allow sorting" is enabled in the alarm control for the respective

columns.
• The "Visibility" and "Allow operator control" settings are activated for the following alarm

control buttons in the Engineering System:

Sorting setup

Show recent

• "Show recent" is paused in runtime.

Sort alarms by clicking on the column header
To sort alarms in the alarm control by column header, proceed as follows:
1. In runtime, click the column header of the alarm control you want to sort by.

An arrow and a number are displayed in the column representing the order and method of
sorting.

Sorting alarms via button
To sort alarms in the alarm control by "Sorting setup" button, proceed as follows:
1. In runtime, click the "Sorting setup" button in the alarm control.

The window for sorting opens.
2. Use the drop-down list to select a column and define whether you want to sort in ascending

or descending order.
3. Apply your criteria via the "OK" button.

The alarm control is sorted according to your criteria. The current sorting of the columns is
indicated by an arrow and a number.

Note
To ensure that changes to existing sort criteria in the button are applied without errors, it is
recommended that you first reset the changes using the "Clear sort criteria" button.

See also
Filtering alarms in runtime (Page 778)
Printing alarms in runtime (Page 793)
Operating the alarm control and displaying it in runtime (Page 773)
Displaying logged alarms in runtime (Page 779)
Acknowledging alarms (Page 784)

Configuring alarms
6.6 Displaying and using alarms

System Manual, 11/2022 777

Group acknowledgement of alarms (Page 786)
Exporting alarms (Page 787)
Shelving alarms (Page 788)
Lock alarms (Page 791)

6.6.3 Filtering alarms in runtime

Introduction
In runtime, you can use criteria to define which alarms you want to display in the alarm control.
In the example below, only alarms that contain the alarm text "Motor on" are displayed. You use
the "Selection display" button in the alarm control for this purpose.

Requirement
• The "Visibility" and "Allow operator control" settings are activated for the following alarm

control buttons in the engineering system:

Selection display

Procedure
To filter alarms in the alarm control, proceed as follows:
1. Click "Selection display" in Runtime.

The "Selection" dialog opens.
2. Under "Criterion" select the criterion "Alarm text".
3. Enter the alarm text "Motor on" in the "Settings" column.

Note
The following characters cannot be used in the Settings column:
• Quotes
• Single quotation marks

Result
The alarm control only shows those alarms that contain the words "Motor on" in the alarm text.
If necessary, define additional filter criteria by selecting the required condition in the "AND/OR"
column and the respective criterion in the "Criterion" column.

Configuring alarms
6.6 Displaying and using alarms

778 System Manual, 11/2022

See also
Configuring filters in the alarm control (Page 762)
Sorting alarms in runtime (Page 775)
Displaying logged alarms in runtime (Page 779)
Printing alarms in runtime (Page 793)
Operating the alarm control and displaying it in runtime (Page 773)
Acknowledging alarms (Page 784)
Group acknowledgement of alarms (Page 786)
Exporting alarms (Page 787)
Shelving alarms (Page 788)
Lock alarms (Page 791)
Alarm control (Page 309)

6.6.4 Displaying logged alarms in runtime

Introduction
You can use the "Show logged alarms" and "Show and update logged alarms" alarm lists to
display logged alarms.

Requirements
• An alarm log has been configured.
• All the archived data that you intend to display in runtime must be stored locally on the

archive server. The alarm log does not allow access to backup files held elsewhere, such as on
another computer in the network.

• The "Visibility" and "Allow operator control" settings are activated for the following alarm
view buttons in the engineering system:

Show logged alarms

Show and update logged alarms

Configuring alarms
6.6 Displaying and using alarms

System Manual, 11/2022 779

Procedure
1. To display only logged alarms, click on the "Show logged alarms" buttons in the alarm view:

The alarm view shows the logged alarms. The view is not updated immediately when new
incoming alarms occur.
Each page shows a maximum of 1 000 alarms. Use the "Previous page" and "Next page"
buttons for scrolling.

2. To show logged and current alarms, click on the "Show and update logged alarms" button in
the alarm view.

The alarm view shows the logged alarms. The view is updated immediately when new active
alarms occur.
The alarm view shows a maximum of 100 alarms.

Limitation for the "Show logged alarms" alarm list
For log alarms with identical time stamps, log alarms may, in rare cases, be skipped when
scrolling forward and backward.
To display the skipped alarms, scroll again in the opposite direction.

Example
• The alarm log contains several thousand log alarms. Ten alarms in the log have an identical

time stamp. The first five of these alarms are displayed at the end of the current page.
The alarm view is sorted in ascending order by time stamp.

• Click on "Next page".
You see the next 1 000 alarms whose time stamp is higher than the time stamp of the last
alarm displayed on the previous page.
The remaining five alarms with identical time stamps are skipped when changing to the next
page.

• Click on "Previous page".
You can now see all ten alarms with identical time stamps, as well as the next 990 alarms with
a lower time stamp.

Note
If there are more than 1 000 log alarms with identical time stamps, not all the skipped alarms can
be displayed by scrolling in the opposite direction.

Configuring alarms
6.6 Displaying and using alarms

780 System Manual, 11/2022

See also
Show logged alarms (Page 765)
Filtering alarms in runtime (Page 778)
Acknowledging alarms (Page 784)
Printing alarms in runtime (Page 793)
Operating the alarm control and displaying it in runtime (Page 773)
Sorting alarms in runtime (Page 775)
Group acknowledgement of alarms (Page 786)
Exporting alarms (Page 787)
Shelving alarms (Page 788)
Lock alarms (Page 791)
Configuring the display of security events (Page 795)
Alarm control (Page 309)

6.6.5 Displaying alarm statistics

Introduction
The alarm statistics represent statistical calculations of logged alarms.

You can use a button in the alarm control to export the alarm statistics to an Excel file.

Note
Filter
A filter set in the alarm control is not effective in the alarm statistics.

Note
Display options
Display options selected via the "Display options setup" button in the alarm control are not
effective in the alarm statistics.

Configuring alarms
6.6 Displaying and using alarms

System Manual, 11/2022 781

Requirement
• Alarms are logged.
• For the following button of the alarm control, the "Visibility" and "Allow operator control" are

enabled in the engineering system:

Alarm statistics

Procedure
To display the alarm statistics in Runtime, proceed as follows:
1. Click the "Alarm statistics" button in the alarm control.

Result
The alarms to be displayed in the alarm statistics are specified in the engineering system.
Depending on the engineering system, the following columns are displayed:

Column Description
Number Configured number of the alarm.
Frequency Frequency of an alarm. The system counts the number of occurrences of

an alarm with "active" status in the log. If the alarm number is not found,
this alarm number is not included in the statistics.

Sum active active Total display time of an alarm in seconds. The time period between the
alarm states "active" and "active" is calculated.

Sum active inactive Total display time of an alarm in seconds. The time period between the
alarm states "active" and "inactive" is calculated.

Sum active acknowledged Total display time of an alarm in seconds. The time period between the
alarm states "active" and "acknowledged" is calculated.

Average active active Average display time of an alarm in seconds. The time period between
the alarm states "active" and "active" is calculated.

Average active inactive Average display time of an alarm in seconds. The time period between
the alarm states "active" and "inactive" is calculated.

Average active acknowledged Average display time of an alarm in seconds. The time period between
the alarm states "active" and "acknowledged" is calculated.

The calculation of the time of acknowledgment includes the "acknowledged" alarm state.
This "acknowledged" alarm state includes the acknowledgment by the controller.

Note
For the calculation, alarms in the "acknowledged" and "inactive" states are only used if a suitable
alarm with "active" state is found in the result set beforehand.
If an alarm from the controller is pending and Runtime is disabled and enabled several times, the
alarm is entered into the log several times with the state "active". The alarm will also be included
multiple times in the evaluation.

Configuring alarms
6.6 Displaying and using alarms

782 System Manual, 11/2022

See also
Exporting alarms (Page 787)

6.6.6 Operating alarm statistics

Introduction
Using the statistics setup, you can change the settings for calculating the alarm statistics. The
following settings are available:

Setting Description
Time range start • Now

The current time is displayed as the start time of the calculation.
• Fixed

The start time of the calculation can be changed as required.
Start time Start time for the calculation. If the "Now" option is selected under "Start

time range", the start time cannot be changed.
Time range base Unit of time for the calculation. The following settings are available:

• Undefined
The default time unit "Minute" is used with this setting.

• Millisecond
• Second
• Minute
• Hour
• Day
• Month
• Year

Time range factor The time range factor depends on the "Time range base" setting. For
example, if the number 4 is set for the time range factor and "Minutes" is
set for the time range base, all alarms that are logged within this period
will be evaluated.

Requirement
• Alarms are located in the alarm log.
• For the following button of the alarm control, the "Visibility" and "Allow operator control" are

enabled in the engineering system:

Statistics setup

• The alarm statistics are selected in the alarm control.

Configuring alarms
6.6 Displaying and using alarms

System Manual, 11/2022 783

Procedure
To display the statistics setup in Runtime, follow these steps:
1. Click the "Statistics setup" button in the alarm control.

Setup opens.
2. Change the settings as required.
3. Click "OK".

Result
The calculation of the alarm statistics is displayed according to the changed settings.

6.6.7 Acknowledging alarms

Introduction
You acknowledge pending alarms in runtime depending on the configuration of your project
and the defined alarm classes. The number of alarms to be acknowledged can be taken from the
counter next to the "Single confirm" button or the Information bar, if this has been configured
accordingly in the engineering system for the alarm control. According to the acknowledgement
concept, different variants are available.

Note
If an operator authorization is configured for the operator controls, the alarms can only be
acknowledged by authorized users.

Acknowledgment variants
You acknowledge individual alarms or multiple alarms together in runtime. The following
options are possible:
• Single acknowledgment

Acknowledgment of an alarm using the "Single acknowledgment" button
• Group acknowledgment

Acknowledgment of all pending, visible alarms that require acknowledgment in the alarm
control using the "Group acknowledgment" button in the alarm control.

• Acknowledgment and confirmation
When an alarm requires acknowledgment and confirmation, you acknowledge that the
alarm is incoming or outgoing. Once the alarm has gone out, you reset the alarm with the
"Single confirm" button of the alarm control.

Configuring alarms
6.6 Displaying and using alarms

784 System Manual, 11/2022

Requirement
• The "Visibility" and "Allow operator control" settings are activated for the following alarm

control buttons in the engineering system:

Single acknowledgment

Group acknowledgment

Single confirm

Show recent

Procedure
To acknowledge an alarm in runtime, follow these steps:
1. Click the "Show current" button in the alarm control.
2. Select the alarm.
3. Click "Single acknowledgment" in the alarm control.

Result
Depending on the state machine of the alarm class, the alarm receives the state
"Acknowledged". The alarm can also receive the state "outgoing" if the event for triggering an
alarm is no longer pending.

See also
Printing alarms in runtime (Page 793)
Configuring alarm acknowledgment (Page 749)
Displaying logged alarms in runtime (Page 779)
Group acknowledgement of alarms (Page 786)
Operating the alarm control and displaying it in runtime (Page 773)
Sorting alarms in runtime (Page 775)
Filtering alarms in runtime (Page 778)
Lock alarms (Page 791)
Shelving alarms (Page 788)
Exporting alarms (Page 787)

Configuring alarms
6.6 Displaying and using alarms

System Manual, 11/2022 785

Alarm control (Page 309)
Acknowledgment model (Page 715)

6.6.8 Group acknowledgement of alarms

Introduction
The acknowledgement of all pending, visible alarms in the alarm window that need to be
acknowledged is known as a group acknowledgement. In runtime, use the "Group
acknowledgment" button in the alarm control for this purpose.

Requirement
• The "Visibility" and "Allow operator control" settings are activated for the following alarm

control buttons in the engineering system:

Group acknowledgment

Procedure
For group acknowledgement of alarms in runtime, follow these steps:
1. Read the alarm texts of the pending alarms and perform corrective actions, if necessary.
2. Click the "Group acknowledgment" button in the alarm control.

Result
All pending alarms with the following properties have been acknowledged:
• Requires acknowledgement
• Visible

See also
Printing alarms in runtime (Page 793)
Acknowledging alarms (Page 784)
Exporting alarms (Page 787)
Operating the alarm control and displaying it in runtime (Page 773)
Sorting alarms in runtime (Page 775)
Filtering alarms in runtime (Page 778)
Displaying logged alarms in runtime (Page 779)

Configuring alarms
6.6 Displaying and using alarms

786 System Manual, 11/2022

Shelving alarms (Page 788)
Lock alarms (Page 791)
Alarm control (Page 309)

6.6.9 Exporting alarms

Introduction
In runtime you export the data directly from the alarm control, for example, for further
processing or analysis. You use the "Export" button in the alarm control for this purpose.

Requirement
• The "Visibility" and "Allow operator control" settings are activated for the following alarm

control buttons in the engineering system:

Export

Procedure
To export data from the alarm control in runtime, follow these steps:
1. Click the "Export" button in the alarm control.
2. Under "File name" specify the file name of the export file.
3. Under "Scope of data export" specify which data is to be exported from the alarm control.
4. Under "Format" select the format of the export file.
5. Confirm with "OK".

Result
The export file appears in the browser download and can be downloaded.

See also
Group acknowledgement of alarms (Page 786)
Shelving alarms (Page 788)
Printing alarms in runtime (Page 793)
Operating the alarm control and displaying it in runtime (Page 773)
Sorting alarms in runtime (Page 775)
Filtering alarms in runtime (Page 778)

Configuring alarms
6.6 Displaying and using alarms

System Manual, 11/2022 787

Displaying logged alarms in runtime (Page 779)
Acknowledging alarms (Page 784)
Lock alarms (Page 791)
Alarm control (Page 309)

6.6.10 Shelving alarms

Introduction
You shelve an alarm, for example, to prevent an error alarm from impairing the effectivity of your
system. In runtime, use the "Shelve alarm" button in the alarm control for this purpose.

Note
If an operator authorization is configured for these control elements, the alarms can only be
shelved by authorized users.

Requirement
The following setups have been made in the engineering system:
• The "Show defined alarms" alarm list is configured in such a way that shelved alarms are

displayed.
• The "Visibility" and "Allow operator control" settings are activated for the following alarm

control buttons in the engineering system:

Show defined alarms

Shelve alarm

Disabled alarms setup

Shelving alarms
To shelve an alarm in runtime, follow these steps:
1. Select the alarm list "Show defined alarms" in the alarm control.
2. Select the alarm.
3. Click the "Shelve alarm" button.

Configuring alarms
6.6 Displaying and using alarms

788 System Manual, 11/2022

Displaying shelved alarms
To display the currently shelved alarms in runtime, follow these steps:
1. Select the alarm list "Show defined alarms" in the alarm control.
2. Click the "Disabled alarms setup" button.
3. Activate the option for shelved alarms.

See also
Exporting alarms (Page 787)
Lock alarms (Page 791)
Printing alarms in runtime (Page 793)
Operating the alarm control and displaying it in runtime (Page 773)
Sorting alarms in runtime (Page 775)
Filtering alarms in runtime (Page 778)
Displaying logged alarms in runtime (Page 779)
Acknowledging alarms (Page 784)
Group acknowledgement of alarms (Page 786)
Alarm control (Page 309)

6.6.11 Unshelving an alarm

Introduction
An alarm that you have shelved can be released at any time. In runtime, use the "Unshelve alarm"
button in the alarm control for this purpose.

Note
If an operator authorization is configured for these control elements, the alarms can only be
shelved by authorized users.

Configuring alarms
6.6 Displaying and using alarms

System Manual, 11/2022 789

Requirement
The following setups have been made in the engineering system:
• The "Show defined alarms" alarm list is configured in such a way that shelved alarms are

displayed.
Alternatively: If the "Visibility" and "Allow operator control" settings are enabled for the
"Disabled alarms setup" button, you can change the alarm list configuration in Runtime with
this button.

• The "Visibility" and "Allow operator control" settings are activated for the following alarm
control buttons in the engineering system:

Show defined alarms

Unshelve alarm

Disabled alarms setup

Displaying shelved alarms
To display the currently shelved alarms in runtime, follow these steps:
1. Select the alarm list "Show defined alarms" in the alarm control.
2. Click the "Disabled alarms setup" button.
3. Activate the option for shelved alarms.

Revoke shelved alarms
To unshelve an alarm in runtime, follow these steps:
1. Select the alarm list "Show defined alarms" in the alarm control.
2. Select the alarm.
3. Click "Unshelve alarm".

See also
Shelving alarms (Page 788)
Printing alarms in runtime (Page 793)
Exporting alarms (Page 787)
Lock alarms (Page 791)
Acknowledging alarms (Page 784)
Group acknowledgement of alarms (Page 786)
Displaying logged alarms in runtime (Page 779)

Configuring alarms
6.6 Displaying and using alarms

790 System Manual, 11/2022

Sorting alarms in runtime (Page 775)
Filtering alarms in runtime (Page 778)

6.6.12 Lock alarms

Note
No locking and unlocking of PLC alarms
Locking and unlocking of PLC alarms for an S7-1500 PLC is not supported.

Introduction
You can disable alarms to avoid an excessive burden of information for the plant operator. If only
selected alarms are displayed, the operator can concentrate on the important alarms.
You can enable the disabled alarms at any time. In runtime, you use the buttons "Disable
alarm" and "Enable alarm" in the alarm control for this purpose.
Disabled alarms are automatically visible again when Runtime restarts.

Requirement
The following setups have been made in the engineering system:
• The "Show defined alarms" alarm list is configured in such a way that disabled alarms are

displayed.
Alternatively: If the "Visibility" and "Allow operator control" settings are enabled for the
"Disabled alarms setup" button, you can change the alarm list configuration in runtime with
this button.

• The user is authorized to disable and enable alarms
• The "Visibility" and "Allow operator control" settings are enabled for the following alarm

control buttons:

Show defined alarms

Disable alarm

Enable alarm

Disabled alarms setup

Configuring alarms
6.6 Displaying and using alarms

System Manual, 11/2022 791

Note
The "Disable alarms" and "Enable alarms" authorizations must be configured directly one under
the other. This is necessary because the authorization level used automatically for the "Enable
alarms" authorization is directly below the "Disable alarms" authorization.

Properties of disabled alarms
The following applies to disabled alarms:
• A disabled alarm is not logged.
• If a disabled alarm is reenabled, it is checked by the system and, if the cause still exists,

displayed again.

Displaying disabled alarms
To display an alarm in runtime, follow these steps:
1. Select the alarm list "Show defined alarms" in the alarm control.
2. Click the "Disabled alarms setup" button.
3. Enable the option for disabled alarms.

Disable alarms
To disable an alarm in runtime, follow these steps:
1. Select the alarm list "Show defined alarms" in the alarm control.
2. Select the alarm.
3. Click the "Disable alarm" button.

The alarm is removed from the alarm list.

Enable alarms
To enable an alarm in runtime, follow these steps:
1. Select the alarm list "Show defined alarms" in the alarm control.
2. Select the alarm.
3. Click the "Enable alarm" button.

See also
Shelving alarms (Page 788)
Printing alarms in runtime (Page 793)
Operating the alarm control and displaying it in runtime (Page 773)
Sorting alarms in runtime (Page 775)

Configuring alarms
6.6 Displaying and using alarms

792 System Manual, 11/2022

Filtering alarms in runtime (Page 778)
Displaying logged alarms in runtime (Page 779)
Acknowledging alarms (Page 784)
Group acknowledgement of alarms (Page 786)
Exporting alarms (Page 787)
Alarm control (Page 309)

6.6.13 Printing alarms in runtime

Introduction
In runtime you print the data directly from the alarm control, for example, for further logging or
analysis. You use the "Lock" button in the alarm control for this purpose.

Requirement
• The "Visibility" and "Allow operator control" settings are activated for the following alarm

control buttons in the engineering system:

Print

Procedure
To print an alarm in runtime, follow these steps:
1. Filter the alarm control using the alarm control controls, if necessary.
2. Click the "Print" button in the alarm control.

Depending on the browser settings, the print preview appears in a new browser tab.
3. Click "Print".

Result
The alarms displayed in the alarm window are output on the printer.

See also
Acknowledging alarms (Page 784)
Operating the alarm control and displaying it in runtime (Page 773)
Group acknowledgement of alarms (Page 786)
Lock alarms (Page 791)

Configuring alarms
6.6 Displaying and using alarms

System Manual, 11/2022 793

Shelving alarms (Page 788)
Exporting alarms (Page 787)
Displaying logged alarms in runtime (Page 779)
Filtering alarms in runtime (Page 778)
Sorting alarms in runtime (Page 775)
Alarm control (Page 309)

6.7 Display security events

6.7.1 Display security events on the HMI device

Introduction
In addition to the existing alarms in WinCC, you can also view security events on the HMI device.
Security events are, for example, an attack on a device over the network or a change of the
protection level for communication between the controller and the HMI device.
Security events are detected by the controller and passed on to the HMI device. Security
events are displayed in the alarm log on the HMI device.
It is not necessary to configure or activate the security event functionality within the
controller. Security events are automatically detected by the controller.

Configuring the display of security events
The following steps are necessary to display security events on the HMI Device:
• Selection of controller alarms
• Creation of an alarm log for controller alarms
You can find more detailed information on configuration here: Configuring the display of
security events (Page 795)

Notes
• WinCC only supports security events of a SIMATIC S7-1500 controller.
• WinCC only supports security events that are automatically updated by the central alarm

management in the controller.
• Security events always use the "System information" alarm class.

Configuring alarms
6.7 Display security events

794 System Manual, 11/2022

See also
Configuring the display of security events (Page 795)
Sending and automatically updating complete alarm from the controller to the HMI device
(Page 796)
Logging alarms (Page 769)
Alarm system (Page 707)
Alarms (Page 709)

6.7.2 Configuring the display of security events

Requirement
• There is an HMI connection between the HMI Device and a SIMATIC S7-1500 controller (as of

firmware version 2.0).
• The option "Central alarm management in the PLC" is selected (the automatic update of

security events on the HMI device is enabled in the controller).

Procedure
1. Open the "Runtime settings" of the HMI device.
2. Select the option "Automatic update" under "Alarms > Controller alarms".

The automatic update of security events on the HMI device is enabled in the HMI device.
3. Select the option "Security events" under "Alarms > Controller alarms".

The display by security events in runtime is enabled.
Note
The "Security events" option is cleared by default and must be selected for each HMI
connection.

4. Create a new alarm log in the "Log" editor under "Alarm logs".
5. Open an HMI screen.
6. Create an alarm control.

Result
The security events are displayed in the alarm log in runtime.

See also
Display security events on the HMI device (Page 794)
Configuring automatic update of controller alarms on the HMI device (Page 797)

Configuring alarms
6.7 Display security events

System Manual, 11/2022 795

Show logged alarms (Page 765)
Displaying logged alarms in runtime (Page 779)

6.8 Sending complete alarm from the controller to the HMI device

6.8.1 Sending and automatically updating complete alarm from the controller to
the HMI device

Basics
In addition to alarms in WinCC, you can configure controller alarms in STEP 7 and display them
on your HMI device.
If controller alarms are configured in STEP 7, an integrated HMI connection to a SIMATIC
S7-1500 controller is established and an alarm is triggered on the controller, the controller
alarms are automatically sent to the HMI devices and updated automatically in case of alarm
changes (e.g. change to alarm text). This will save you time because you do not have to load
configuration changes of the alarms to the HMI device separately. The HMI device does not
need to exit Runtime operation when the alarms are changed.
The following controller alarms can be sent to the HMI device:
• Program alarms
• ProDiag alarms
• GRAPH alarms
• System diagnostic alarms
The controller alarms can be sent completely to the HMI device if corresponding settings
are configured in the controller and on the HMI device. On the HMI Device, the option
"Automatic update" under "Runtime settings > Alarms > Controller alarms" must be selected
for the respective connection. You can find additional information on the settings at
Configuring automatic update of controller alarms on the HMI device (Page 797).

Device dependency
If the controller and the HMI device are configured accordingly, the controller alarms from the
following controller are sent automatically and completely to the HMI device when they occur:
• SIMATIC S7-1500 (firmware version 2.0 and higher)

Language settings
For alarms to be displayed in the correct language on the HMI device, the same three languages
or fewer must be configured for the alarms in the controller and on the HMI device. You might
have to coordinate the language selection with the configuration engineer.

Configuring alarms
6.8 Sending complete alarm from the controller to the HMI device

796 System Manual, 11/2022

If different languages are configured on the HMI device and in the controller, the HMI device
in operation shows the text "###Text missing###" instead of the controller alarms.

Notes
• If the "Only information" option was activated for a program alarm in STEP 7, the program

alarm uses the "Information" alarm class.
• Controller alarms that are automatically updated by the central alarm management in the

controller cannot be shelved or manually suppressed.
• If a security event occurs, the alarm class "system information" is used.
• The alarm number of an alarm corresponds to the alarm ID in the controller.

See also
Filtering controller alarms via display classes (Page 748)
Configuring automatic update of controller alarms on the HMI device (Page 797)
Configuring the display of system diagnostic alarms (Page 767)
Display security events on the HMI device (Page 794)
User-defined controller alarms (Page 710)
System-defined controller alarms (Page 712)
Workflow for configuring alarms (Page 724)

6.8.2 Configuring automatic update of controller alarms on the HMI device

Introduction
The "Automatic update" option is selected by default for a connection between a SIMATIC
S7-1500 controller (firmware version 2.0 or higher) and an HMI device.

Requirement
• There is an HMI connection between the HMI Device and a SIMATIC S7-1500 controller (as of

firmware version 2.0).
• The option "Central alarm management in the PLC" is selected in the properties of the

controller (the automatic update of controller alarms on the HMI device is enabled in the
controller).

• Controller alarms were configured in STEP 7.
• An alarm control is configured on the HMI device.
• The same three languages (or fewer) are configured in the controller and on the HMI device

for alarms.

Configuring alarms
6.8 Sending complete alarm from the controller to the HMI device

System Manual, 11/2022 797

Procedure
1. Open the "Runtime settings" of the HMI device.

One or more connections to controllers are displayed under "Alarms > Controller alarms".
2. Activate the "Automatic update" option for the respective connection for which you want to

display the controller alarms.
The "Automatic update" option must be selected separately for each connection.

Note
If the language of an alarm text is not available on the HMI device, the alarm text '##Text
missing##' is displayed.

Result
In runtime, the controller alarms are displayed in the alarm control.

See also
Sending and automatically updating complete alarm from the controller to the HMI device
(Page 796)
Filtering controller alarms via display classes (Page 748)
Configuring the display of system diagnostic alarms (Page 767)
Configuring the display of security events (Page 795)
User-defined controller alarms (Page 710)
System-defined controller alarms (Page 712)
Workflow for configuring alarms (Page 724)

6.9 Reference

6.9.1 Terminology used for alarms

WinCC DIN 19235 DIN EN 62682 Description
Analog alarm Absolute alarm An alarm that is triggered

with a limit value is excee‐
ded.

Discrete alarm Discrete alarm An alarm that is triggered
when digital signals
match a specified pattern
during an ongoing proc‐
ess.

Configuring alarms
6.9 Reference

798 System Manual, 11/2022

WinCC DIN 19235 DIN EN 62682 Description
Suppressed by design Suppressed by design An alarm is not signaled

based on a condition.
Event Event An event represents a re‐

quested or unrequested
status change.

Initial alarm Initial alarm Initial alarm An alarm that is selected
first after the last ac‐
knowledgment from sev‐
eral alarms.

Outgoing Inactive The condition for trigger‐
ing an alarm is no longer
fulfilled.

Outgoing alarm Outgoing alarm Inactive alarm The alarm is no longer dis‐
played because the trig‐
gering condition is no lon‐
ger fulfilled.

Incoming Active The condition for trigger‐
ing an alarm is fulfilled.

Locked alarm Locked alarm Locked alarm An alarm that is blocked
by interlocking.

Alarm group Group of alarms Alarm group A group of alarms with a
shared assignment. This
assignment can be, for ex‐
ample, the process area
or the equipment group.

Incoming alarm Incoming alarm Active alarm An alarm that is displayed
when the triggering con‐
dition is fulfilled.

Alarm log Alarm log A long-term archive for
alarm logging.

Alarm filter Criteria that limit the dis‐
play of alarms in the
alarm view.

Alarm list Alarm list A display that lists the sig‐
naled alarms with selec‐
ted information (e.g.
date, priority and alarm
type).

Alarm type Alarm type An alarm attribute that al‐
lows for a distinction be‐
tween the alarm condi‐
tion (e.g. alarm with low
or high process value).

Alarm procedures Alarm procedures Alarm procedures An alarm procedure mon‐
itors the plant. The alarms
of the individual alarm
procedures are triggered
in various ways.

Alarm Alarm Alarm Acoustic or visual infor‐
mation about the mal‐
function.

Configuring alarms
6.9 Reference

System Manual, 11/2022 799

WinCC DIN 19235 DIN EN 62682 Description
Alarm view Alarm view Alarm view The alarm view displays

alarms that occur during
the process in a plant.

Alarm class Alarm class Alarm class A group of alarms with a
shared set of manage‐
ment requirements (e.g.
safety requirements).

Alarm priority Alarm priority Alarm priority The relative significance
that is assigned to an
alarm in an alarm system
that represents the urgen‐
cy of the alarm.

Alarm report Alarm report A report of the logged or
pending alarms.

New value alarm New value alarm An alarm processing that
selects an alarm from sev‐
eral alarms whose status
has changed since the
last acknowledgment.

Acknowledgment Acknowledgment Acknowledgment Operator activity that
confirms the acknowledg‐
ment of the alarm.

Feedback Feedback The feedback confirms a
command, a status or a
condition. The feedback
also indicates whether a
change or a status
change has occurred.

Deadband Deadband The deadband suppress‐
es the noise component
in the settled controller
state of the PID controller.

Suppressed alarm Suppressed alarm Suppressed alarm An alarm that is blocked
by interlocking.

Alarm annunciator Alarm annunciator Alarm annunciator A device or device group
that alerts the operator
about changes in the
process conditions.

6.9.2 System events

6.9.2.1 Basics of System Events

System events
System events on the HMI device provide information about internal states of the HMI device
and PLC.

Configuring alarms
6.9 Reference

800 System Manual, 11/2022

The following overview illustrates when a system event occurs and how to eliminate the
cause of the error.

Note
System events are output in an alarm control. System events are output in the language
currently set on your HMI device.

Parameters of system events for HMI devices
System events are nested tag-based events. They are defined in a SystemData template for S7
Plus in the template for the S7 Plus HMI connection. Whenever engineering creates an S7 Plus
HMI connection, a nested event is also created.
As of version V18, system events must have a constant ID of the event. Therefore, each
component gets its own range of numbers.

Note
The ID of the event must be constant.

Configuring alarms
6.9 Reference

System Manual, 11/2022 801

6.9.2.2 S7Plus system events

S7Plus system events
The most important system events are listed below.

ID Name Effect/cause Solution
537526273 PLCDisconnectA‐

larm
The connection to a S7-1200/1500 PLC could not
be established.
Possible causes:
• General connection problems (cable not plug‐

ged in, PLC switched off, network component
interrupted).

• Failed authentication on the PLC side (wrong
or invalid password).

• Connection certificate error (wrong or invalid
connection certificate).

• Connection resources are exhausted.

1. Error from the lower-level communication lev‐
el.
• Error on HMI side
• Error on PLC side or network

– Not connected
– Access denied
– Authentication failed

2. General error with the connection certificate.
• OpenSSL has encountered an error while

checking the connection certificate. The de‐
tail error message contains the OpenSSL error
code.

3. The connection certificate used has expired.
• The alarm text contains the name of the cer‐

tificate.
4. The connection certificate used has been re‐
voked.
5. The connection certificate has not been trus‐
ted, but manual trust is possible.
6. The connection certificate has not been trus‐
ted, manual trust is not possible.

Check that the S7-1200/1500 PLC
and/or HMI station has no problems.
Check if the cable is plugged in, the PLC
is switched on and the network compo‐
nent is not interrupted.
Check if the password is correct and val‐
id.
Check if the IP address is correct and
pinging the IP address is possible.
Check the S7Online access point.
Check the validity of the certificate.

537526274 PLCInStopAlarm The S7-1200/1500 PLC is not in RUN mode.
The HMI station is connected to the PLC, but the
internal PLC program is not executed.

Check that the S7-1200/1500 PLC has
no problems.
Bring the S7-1200/1500 into the RUN
mode.

Configuring alarms
6.9 Reference

802 System Manual, 11/2022

ID Name Effect/cause Solution
537526275 FtaDisabledNoti‐

fication
System diagnostic alarms have been configured
for the S7-1200/1500 PLC, but the PLC does not
support full-text alarms.

Check the PLC configuration.
Upgrade the S7-1200/1500 PLC to a
company version that supports full text
messages, or deselect the "Automatic
update" setting.

537526276 PlcResOverload‐
Notification

The S7-1200/1500 PLC communication resour‐
ces for HMI tags are overloaded.
The communication resources required for cyclic
monitoring are more than the PLC has available.
Instead, cyclic read requests are used for the re‐
sources that are not available. This leads to in‐
creased communication load.
Time delays on HMI and PLC are to be expected.
The alarm is triggered by an overload of 50%
which is caused by the local HMI station.

Check the number of tags used simulta‐
neously with the resources of the
S7-1200/1500 PLC for cyclic jobs.
Check if other HMI stations are connec‐
ted to the S7-1200/1500 PLC.

6.9.2.3 Parameter set system events

2000 - System events parameter sets
The most important system events are listed below.

ID Alarm text Effect/causes
536920065 Parameter set [Name/ID]: Transfer

to PLC successfully completed
The parameter set was successfully written
from the memory to the PLC.

536920066 Parameter set [Name/ID]: Transfer
to PLC aborted with error

The message appears in the following situa‐
tions:
• A parameter set type with the name or ID

does not exist in Runtime. Transfer to the
PLC has been aborted.

• A parameter set with the name or ID does
not exist in Runtime. Transfer to the PLC has
been aborted.

536920067 Parameter set [Name/ID]: Transfer
from PLC successfully completed

The parameter set was successfully loaded into
memory by the PLC.

536920068 Parameter set [Name/ID]: Transfer
from PLC aborted with error

The possible causes are as follows:
• If a parameter set with the name or ID exists

in Runtime, the values of the parameter set
in the memory are overwritten with the val‐
ues read by the PLC.

• The transfer of PLC failed during the unsuc‐
cessful PLC connection.

536920069 Parameter set [Name/ID] not availa‐
ble:

A parameter set type with the name or ID is not
available in Runtime.

536920070 Parameter set [Name/ID] not availa‐
ble

A parameter set with the name or ID is not avail‐
able in memory.

Configuring alarms
6.9 Reference

System Manual, 11/2022 803

ID Alarm text Effect/causes
536920071 Parameter set [Name/ID]: Import

failed
The possible causes are as follows:
• The path specified for the import file cannot

be accessed.
• The header in the import file is incorrect.
• Specified import parameters are not availa‐

ble in the import file.
• Checksum validation failed if checksum was

activated during import.
536920072 Parameter set [Name/ID]: Import

successfully completed
The parameter set was successfully imported
from a file.

536920073 Parameter set [Name/ID]: Export
failed

The path specified for the export file cannot be
accessed.

536920080 Parameter set [Name/ID]: Export
successfully completed

The parameter set was successfully exported to
a file.

536920081 Invalid checksum: Import failed

Checksum validation failed due to a change in
the import file.

536920082 Import successfully completed All parameter sets were imported successfully.
536920083 Import failed The path specified for the import file cannot be

accessed. None of the parameter sets present in
the import file were imported.

536920084 Import partially completed Not all parameter sets present in the import file
could be imported. A possible cause is that the
values of the elements cannot be imported, e.g.
the value is not within the value range of the
elements or the value does not correspond to
the configured data type or data format.

536920085 Export successfully completed

All parameter sets available in Runtime have
been exported to the file.

536920086 Export failed The path specified for the export file cannot be
accessed.

6.9.2.4 Reporting system events

Reporting system events
The most important system events are listed below.

ID Alarm text Effect/causes Solution
538640385 Initialization of the reporting serv‐

ice failed
Initialization of the reporting serv‐
ice fails.

Contact Siemens customer service.

538640386 Report Data Provider cannot be
started

The data provider for reports could
not be started.

Contact Siemens customer service.

Configuring alarms
6.9 Reference

804 System Manual, 11/2022

ID Alarm text Effect/causes Solution
538640387 The report cannot be started for

the job [name].
The Report Creator for report jobs
cannot be started.

Check the report job settings.
If you use the "ExecuteReport" sys‐
tem function, check the name of
the report job and the parameters
passed when calling the function.

538640388 An error occurred during commu‐
nication with the database server

The reporting database cannot be
found or access is not possible for
other reasons.

Check whether the reporting data‐
base is available at the storage lo‐
cation configured in the Runtime
settings in engineering.
Example for panel:
• Is the SD card plugged in?
• Does the folder specified as

storage location in the Run‐
time settings exist?

• Has the folder been specified in
the correct notation?

538640389 The creation of the report job
[name] failed

The Report Creator is missing in‐
formation about the report job.
A possible reason for this are prob‐
lems with processing the report
template.

Check the report job settings and
the report template.

538640390 Report failed Report Creator reports an error
while generating the report.

Check the detailed error message
for the report:
Control "Reports" > "Reports" tab >
"Status" column.

6.9.2.5 Scripting system events

Scripting system events
The most important system events are listed below.

ID Alarm text Effect/cause Solution
537329665 Script debugger is acti‐

vated
The script debugger for screens is enabled in the Run‐
time Manager.

The alarm is cleared when
the script debugger for
screens is disabled in the
Runtime Manager.

537329666 Script debugger is acti‐
vated

Script debugger for the scheduled tasks is enabled in
Runtime Manager.

The alarm is fixed when the
script debugger for the
scheduled tasks is disabled
in the Runtime Manager.

537329667 The alarm text is speci‐
fied by the user via the
script.

This alarm is triggered by the CreateOperatorInputIn‐
formation system function.
The alarm text always comes in the language selected
by the user.

--

Configuring alarms
6.9 Reference

System Manual, 11/2022 805

ID Alarm text Effect/cause Solution
537329668 The alarm text is speci‐

fied by the user via the
script.

This alarm is triggered by the CreateSystemAlarm sys‐
tem function.
The alarm text always comes in the language selected
by the user.

--

537329669 The alarm text is speci‐
fied by the user via the
script.

This alarm is triggered by the CreateSystemInforma‐
tion system function. The alarm text always comes in
the language selected by the user.

--

6.9.2.6 Communication system events

Communication system events
The most important system events are listed below.

Drivers ID Alarm text Effect/cause Solution
AllenBradleyEIP 538574849 PLCDisconnectAlarm The connection to the Allen-Bradley PLC

could not be established.
Check if:
• The cable is

connected
• The PLC is

switched on.
• The network

component is
not interrup‐
ted.

538574850 Computer1 [Name]: Partner

is not fully operational
The PLC is not fully operational.

Omron EIP 538574851 PLCDisconnectAlarm The connection to the Omron PLC could
not be established.

Check if:
• The cable is

connected
• The PLC is

switched on.
• The network

component is
not interrup‐
ted.

538574852 Computer1 [Name]: Partner
is not fully operational

The PLC is not fully operational.

Configuring alarms
6.9 Reference

806 System Manual, 11/2022

Drivers ID Alarm text Effect/cause Solution
Mitsubishi MC 538574853 PLCDisconnectAlarm The connection to the Mitsubishi MC PLC

could not be established.
Check if:
• The cable is

connected
• The PLC is

switched on.
• The network

component is
not interrup‐
ted.

538574854 Computer1 [Name]: Partner
is not fully operational

The PLC is not fully operational.

Mitsubishi IQ 538574855 PLCDisconnectAlarm The connection to the Mitsubishi IQ PLC
could not be established.

Check if:
• The cable is

connected
• The PLC is

switched on.
• The network

component is
not interrup‐
ted.

538574856 Computer1 [Name]: Partner
is not fully operational

The PLC is not fully operational.

StdModbusTCP 538574857 PLCDisconnectAlarm The connection to the Modbus PLC could
not be established.

Check if:
• The cable is

connected
• The PLC is

switched on.
• The network

component is
not interrup‐
ted.

538574864 Computer1 [Name]: Partner
is not fully operational

The PLC is not fully operational.

Configuring alarms
6.9 Reference

System Manual, 11/2022 807

6.9.2.7 VCS system events

VCS system events
The most important system events are listed below.

ID Alarm text Effect/cause Solution
5372641
29

Computer1 (@2%s@):
Manager (@1%s@) is not
connected.

The alarm appears when the execution of the VCS (Visual
Core Service) module is restricted.
The VCS module is responsible for all processes needed to
display process pictures.
The possible causes are as follows:
• The processes crashed.
• The processes could not be started.

6.9.2.8 Runtime system events

IOWA system events
The most important system events are listed below.

ID Alarm text Effect/causes Solution
536870913 Comput‐

er1[@1%s@]:
System start‐
ing

The system is started. The alarm is triggered
as soon as the system starts booting and
cleared when this process is completed.

The alarm is cleared automatically when the
system is booted, i.e. when all managers lis‐
ted in the progs file are booted (except man‐
agers that are started manually).

536870914 Computer1
[@1%s@]: Sys‐
tem shutting
down

The system is stopped. The alarm is triggered
as soon as the system starts shutting down,
and cleared when the system is restarted.

The alarm is cleared automatically when the
system starts up again.

536870915 Comput‐
er1[@S1%s@]:
Delta activa‐
tion in progress

The alarm indicates that a delta download is in
progress. The alarm is set when the delta
download is started and remains active until
the delta activation is completed.

The alarm disappears automatically as soon
as the delta download is completed. No ac‐
tion is required by the operator.

536870916 Computer1
[@S1%s@]:
Delta rollback
in progress

The alarm appears when the delta activation
has failed and a rollback of the changes has
been triggered. It remains active while the
rollback is executed and is reset afterwards.

The alarm disappears automatically as soon
as the rollback and therefore the failed delta
download is completed. No action is required
by the operator.

536870917 Computer1
[@1%s@]: Low
work memory

The alarm indicates that the free physical
work memory (RAM) will soon be exhausted.

Increase the work memory (RAM) or reduce
the load.

536870918 Computer1
[@1%s@]: Very
low work mem‐
ory

The alarm indicates that the free physical
work memory (RAM) is critical.

Increase the work memory (RAM) or reduce
the load.

Configuring alarms
6.9 Reference

808 System Manual, 11/2022

ID Alarm text Effect/causes Solution
536870919 Computer1

[@1%s@]: Low
hard disk space

The alarm indicates that the free memory
space will soon be exhausted.

Delete the data that is not required.

536870920 Computer1
[@1%s@]: Very
low hard disk
space

The alarm indicates that the free memory
space is no longer sufficient.

Delete the data that is not required.

536870921 Computer1
[@2%s@]:
Manager
[@1%s@] is not
connected.

The alarm indicates that the connection to the
Service Manager has been lost.

Check the network connection or the status
of the manager. The system attempts to es‐
tablish a connection on its own.

536870922 Computer1
[@2%s@]:
Service
[@1%s@] is not
being execu‐
ted.

The alarm indicates that the connection to a
service instance has been lost.

Check the network connection or the status
of the manager. The system attempts to es‐
tablish a connection on its own.

536870923 Online backup
in progress

The alarm is displayed when the online back‐
up operation is performed. It remains set until
the online backup is completed.

The alarm disappears automatically when the
online backup is completed or aborted with
an error. No action is required by the operator.

536870924 SystemMana‐
gerAlarm

The alarm indicates that the System Manager
has its lost connection to the Event Manager.

Check the network connection or the status
of the manager. The system attempts to es‐
tablish a connection on its own.

536870925 Redundancy‐
LossAlarm

The alarm indicates that there is currently no
established connection to the redundant part‐
ner. This may be because the connection to
the other host has been lost or because the
connection has not yet been established (oth‐
er host not running, network problem).

Check the network connection and whether
the other host was started with the correct
configuration.
The system attempts to establish a connec‐
tion on its own.

536870926 RuntimeVer‐
sionDifferent

The alarm appears when a redundantly con‐
figured system is started with two different
Runtime versions on the two hosts.
The "RuntimeVersion" configuration entry is
different on the peers, which means that dif‐
ferent software versions are installed on the
two hosts.

Check the Runtime version value in the con‐
figurations on both devices and ensure that
the correct software versions are being used.
Update the incorrect hosts to the correct Run‐
time version.

536870927 Computer1
[@S1%s@]:
Connection ID:
@S7%u@, Con‐
nection status:
@2%u@

The alarm indicates that the status of the con‐
nection between the driver and the PLC has
changed.

536870928 Computer1
[@S1%s@]:
@5%t#4T@

The alarm appears when a configuration error
has been detected by a component.

The component should describe the problem
in detail so that the user can make the re‐
quired changes in the configuration.

Configuring alarms
6.9 Reference

System Manual, 11/2022 809

ID Alarm text Effect/causes Solution
536870929 Computer1

[@S1%s@]:
Successful roll‐
back after
failed activa‐
tion.

The alarm is displayed when a delta download
attempt fails and the changes are not activa‐
ted.

There can be several reasons why the delta
download process fails. The detailed reason
should help identify the problem.
Common problems include configuration is‐
sues within the delta project, incompatibility
with the currently running project, require‐
ments for a delta download are not met (such
as a mandatory manager not running), an‐
other process is running that is preventing the
delta download from running.

536870930 Computer1
[@S1%s@]:
Delta rollback
failed

The alarm is displayed when a problem is de‐
tected in a component during a delta down‐
load and a rollback is initiated.
However, this rollback also fails for unexpec‐
ted reasons. Consequently, this may result in
a project that is in an inconsistent state.

The project may be in an inconsistent state.
Perform a full download to return to a consis‐
tent project.

536870931 Computer1
[@S1%s@]:
Saving of con‐
figuration
changes has
failed.

The alarm is displayed when saving configu‐
ration changes fails.
Writing the changes was unsuccessful and the
changes are lost after shutdown.

Check whether the required write rights have
been granted for the project folder.

536870932 Computer1
[@S1%s@]:
Merging of the
RDF files has
failed: @2%s@

The alarm indicates that the Runtime config‐
uration data consolidation (RDF merge) failed.

Verify that the required authorizations have
been granted for the project folder and that
the files in the project are not locked by other
processes.

536870933 Computer1
[@S1%s@]:
Delta activa‐
tion has failed.
The file system
is damaged.

The alarm is activated when a delta download
was successfully activated, but the delta build
number could not be added to the permanent
list of activated deltas.

Verify that the required authorizations have
been assigned to the project folder and that
the files in the project are not locked by other
processes, especially the delta list file in the
deltas subdirectory.

536870934 Computer1
[@S1%s@]: A
leap in time of
@2%1.3f@ sec‐
onds was deter‐
mined.

The alarm indicates that a time jump has oc‐
curred. Do not change the system time.

Check the device battery and system time.

Configuring alarms
6.9 Reference

810 System Manual, 11/2022

ID Alarm text Effect/causes Solution
536870935 Runtime Col‐

laboration:
@2%t#<Runti‐
meCollabora‐
tionFailureRea‐
son.1>@ dur‐
ing the connec‐
tion of comput‐
er [@S1%s@]
with system
@5%u@
[@6%s@] to
@4%s@.

The alarm indicates an unsuccessful connec‐
tion attempt of the Dist Manager to another
system with the cause of the error specified in
the alarm text.
There can be several reasons why a connec‐
tion attempt fails. Common problems that can
occur: Target system not available, certificate
problems, wrong system ID or name config‐
ured for the target, time synchronization prob‐
lem.

The alarm text, which includes the reason for
the error and information about the connec‐
tion attempt, should help identify the prob‐
lem.
- If the target system is not available: Check if
the target system is running with correct con‐
figurations (Dist and, if necessary, Proxy Man‐
ager are started), check for network errors
(check if the device itself is reachable, the
ports used are open)
- Certificate problems: Check if both client and
server system have correct and valid certifi‐
cates.
Incorrect system ID or name: The client sys‐
tem has a mismatched configuration to the
target system (server), where either the sys‐
tem ID or name differs from the actual ID or
name of the system.
- Time synchronization problem: The system
time difference between the two systems is
greater than the maximum allowed differ‐
ence.

536870936 Computer1
[@2%s@]:
Loading of the
configuration
data created in
Runtime has
failed: @3%s@

The alarm indicates that configuration data
created through Runtime engineering or by
the Runtime itself could not be loaded.
This data is stored in Runtime configuration
files within the Runtime project and is read
when Runtime is restarted.

Usually indicates a serious problem.
Problems with the storage medium itself or
with corrupted files.

536870937 Computer1
[@S1%s@]:
'LoggingOver‐
loadError'
event was acti‐
vated.

Outdated Instead, use StorageSystemWriteDataLostA‐
larm_[StorageApplicationAbbreviation].

536870938 Computer1
[@S1%s@]:
User name:
@S2%s@, Tag
name:
@2%s@, Old
value: @3%v@,
New value:
@4%v@, Unit:
@5%s@,
Cause: @6%s@

A value was changed by the user. Audit Trail value change documentation.

Configuring alarms
6.9 Reference

System Manual, 11/2022 811

ID Alarm text Effect/causes Solution
536870939 Computer1

[@S1%s@]:
User name:
@S2%s@, Tag
name:
@2%s@, Old
value: @3%v@,
New value:
@4%v@, Unit:
@5%s@,
Cause: @6%s@

A value change by the user has not occurred. Audit Trail value change documentation.

536870940 Computer1
[@S1%s@]: On‐
line backup has
failed

The alarm is triggered when an online backup
was requested, but the operation fails.

The backup may fail for several reasons,
which can be found in the detailed descrip‐
tion.
A mandatory manager may not be running, or
may have been stopped during the backup, or
there may be an access rights problem in the
target directory.
Certain components may have also imple‐
mented their own logic for online backup that
fails.

536870941 Computer1
[@S1%s@]:
The certificate
for @2%s@
was not found
in the certifi‐
cate memory.
Details:
@3%s@

The alarm is triggered when a component
cannot use certificates due to problems.
Either no certificate is configured or there is a
problem with the public and/or private keys.

Check the configured certificates used by this
component.

536870942 Computer1
[@S1%s@]:
The certificate
for @2%s@ will
expire soon. Ex‐
piration date:
@3%s@. De‐
tails: @4%s@

The alarm is triggered when a component is
using a certificate that is about to expire. The
exact time depends on what the specific com‐
ponent has defined as soon to expire.
Usually, this alarm is expected to be triggered
about 1 week before the expiration date.

Update the certificates used by the respective
component.

536870943 Computer1
[@S1%s@]:
The certificate
for @2%s@ has
expired. Expira‐
tion date:
@3%s@. De‐
tails: @4%s@

The alarm is triggered when a component at‐
tempts to use an expired certificate.

Update the certificates used by the respective
component.

536870944 SystemDistri‐
butionMana‐
gerAlarm

The alarm indicates that the connection to the
Distribution Manager has been lost.

Check the network connection or the status
of the manager.
The system attempts to establish a connec‐
tion on its own.

Configuring alarms
6.9 Reference

812 System Manual, 11/2022

ID Alarm text Effect/causes Solution
536870945 Computer1

[@2%s@]: Driv‐
er [@1%s@]
Overload warn‐
ing.

The alarm indicates that the driver can no lon‐
ger continuously process the number of value
changes it receives from the PLC.
This state occurs either only temporarily, or
can also exist permanently. In this case, re‐
ceived values are temporarily stored by the
driver and processed at a later time.

If this occurs only temporarily, it is enough to
wait.
If this occurs more frequently, then using an‐
other driver can share the load between the
two drivers and thus prevent the problem.
It could also be an indication that the event
manager can no longer handle the number of
value changes. In this case, the driver is stor‐
ing the value changes, which in turn can
cause an overload condition with this driver.

536870946 Computer1
[@2%s@]: Driv‐
er [@1%s@}
Overload has
occurred.

The alarm indicates that the driver can no lon‐
ger handle the number of value changes it
receives
from the PLC.
This condition either occurs only temporarily,
or may continue permanently. In this case, it
cannot be excluded that values are lost.

If this occurs only temporarily, it is enough to
wait.
If this occurs more frequently, then using an‐
other driver can share the load between the
two drivers and thus prevent the problem.
It could also be an indication that the event
manager can no longer handle the number of
value changes. In this case, the driver is stor‐
ing the value changes, which in turn can
cause an overload condition with this driver.

536870948 Computer1
[@2%s@]:
Manager
[@1%s@] is not
connected.

The alarm indicates that the driver has lost the
connection to the Event Manager.

Check the network connection or the status
of the manager.
The system attempts to establish a connec‐
tion on its own.

536870949 DiskSpace‐
Warning

The alarm indicates that the configured limit
for free space on the external storage medium
has been exceeded.

Delete the data that is not required.
Expand the external storage medium.

536870950 DiskSpaceA‐
larm

The alarm indicates that the free space on the
external storage medium is no longer suffi‐
cient.

Delete the data that is not required.
Expand the external storage medium.

536870951 RemovableS‐
torageMediu‐
mAlarm

The alarm indicates that a removable device
has been removed.

The alarm can be disabled for permanently
installed data storage media.

536870952 High limit viola‐
ted for tag
@1%s@. Com‐
puter name:
@S1%s@

High limit violation for a tag value range. The tag value is above the defined value range
- check the cause.

536870953 Low limit viola‐
ted for tag
@1%s@. Com‐
puter name:
@S1%s@

Low limit violation of a tag value range. The tag value is below the defined value
range - check the cause.

536870954 MissingCRLA‐
larm

The alarm is triggered when the component
that monitors CRLs cannot find the CRLs for CA
certificate file(s). The subject names of all rel‐
evant CAs are specified in the alarm.

Specify the missing CRLs.

536870955 ExpiredCRLA‐
larm

The alarm is triggered by the component that
monitors CRLs when expired CRLs have been
provided. The subject names of all relevant
CAs are specified in the alarm.

Renew the CRLs used.

Configuring alarms
6.9 Reference

System Manual, 11/2022 813

ID Alarm text Effect/causes Solution
536871425 Computer1

[@5%s@]:
@3%t#2T@

The connection to the S7 PLC was interrupted. Check the S7 PLC and/or driver for problems.
Check if the IP address of the PLC is correct and
pinging the IP address is possible.

536871426 Computer1
[@2%s@]: Part‐
ner is not fully
operational.

The S7 PLC is in Stop mode. The driver is con‐
nected to the PLC, but the internal PLC pro‐
gram is not executed.

Check the S7 PLC for problems and bring the
S7 to the "Run" mode if necessary.

536871681 PlcDisconnec‐
tedAlarm_OP‐
CUA

The connection to the OPC UA server was in‐
terrupted.

Check the OPC UA server and/or driver for
problems.
Check the connection between the OPC UA
server and/or driver, especially if it is not
blocked by a firewall.

536871937 Computer1
[@3%s@]:
@1%s@
(@2%s@): has
no connection
to the logging
system.

AlarmLogging service has lost the connection
to the database.
This is probably due to an internal error of the
database.
If this situation continues for too long, the
buffers for values may become full, resulting
in data loss.

Check the status of the database server. In
some cases, starting/restarting the database
may solve the problem.
Otherwise, the database log files can help to
find the cause.

536871938 Computer1
[@4%s@]:
@1%s@
(@2%s@ -
@3%s@): Log
is full.

At least one storage medium used by the
AlarmLogging service is full, so new value
changes cannot be saved.
If this situation continues for too long, the
buffers for values may become full, resulting
in data loss.

Check the status of the connected storage
media and free some space on the devices
that are (almost) full.
Changing the log configuration can help re‐
duce the amount of disk space needed by lim‐
iting the maximum amount of space a partic‐
ular log can use before deleting data.

536871939 Computer1
[@4%s@]:
@1%s@
(@2%s@ -
@3%s@): Insuf‐
ficient resour‐
ces of the log‐
ging system.

The database used by the AlarmLogging serv‐
ice is still running, but has reported that it has
run out of resources (e.g. work memory, disk
space).
No more writing is possible.
(Only applicable with Process Historian.)

Check the storage medium if it is out of space.
The database server logs can also help to find
out the cause of the problem.
Storage space problems can be caused by a
high load that the system cannot handle.

536871940 Computer1
[@3%s@]:
@1%s@: A
write buffer
overflow has
occurred in log
@2%s@. Data
will be lost.

In the AlarmLogging service, the buffers are
full and therefore some data has already been
lost.
Possible causes:
• Infrastructural problem (e.g. connection

lost, hard disk full, see other system events
in this case).

• Generally, a high load that cannot be han‐
dled by the system.

With redundant deployment, if only one host
has this problem temporarily, the data from
the other host is synchronized once the prob‐
lem is resolved.

Correct the root cause of the problem.
If the problem is infrastructural, follow the in‐
structions in the appropriate system event. If
there is none, the cause is probably too much
load on the system or write speed degrada‐
tion (for example, slowing down of a storage
medium).
Check the hardware elements, reduce the sys‐
tem load, or if it is a persistent problem, the
hardware configuration may not be sufficient
for the current project.

Configuring alarms
6.9 Reference

814 System Manual, 11/2022

ID Alarm text Effect/causes Solution
536871941 Computer1

[@2%s@]:
@1%s@: The
passive log‐
ging system
has lost the
connection to
the active log‐
ging system.

The redundant databases used by the Alarm‐
Logging service have lost connection to each
other (triggered only on the passive host).
Possible causes:
• The active database is completely shut

down.
• A problem with the network connection.
If the StorageSystemPassiveSynchronizing
alarm is also triggered, it means that the prob‐
lem is corrected and the alarm is cleared as
soon as synchronization is completed.
(Only applicable with Process Historian.)

Check the status of the active database.
If it does not run, try restarting it or analyze its
log files to learn more about the problem.
If the database is running, ensure that the
network connection between the two hosts is
working.

536871942 Computer1
[@2%s@]:
@1%s@: Syn‐
chronizing data

Logged data synchronization is in progress
between the active and passive databases.
Redundancy failover during this state may re‐
sult in loss of logged data.
(Only applicable with Process Historian.)

This system event does not signify an error; it
is normal behavior when the two redundant
databases are synchronizing data. Therefore,
no action is required.
As long as this system event is pending, you
should not initiate redundancy failover, oth‐
erwise the logged data may be lost.

536871943 Computer1
[@2%s@]:
@1%s@: Fail‐
over error

AlarmLogging service: An error occurred
while the database was trying to switch roles
between the active and passive databases.
(Only applicable with Process Historian.)

Analyze the Process Historian log files to learn
more about the reason for the failure. If other
system events are also triggered, they may
also be related.

536871944 Computer1
(@3%s@):
@1%s@
(@2%s@) No
connection to
the logging sys‐
tem backend

AlarmLogging service: The backend of the da‐
tabase was shut down. It is either completely
down or the corresponding network connec‐
tion has problems.
(Only applicable with Process Historian.)

Check the status of the database backend. If it
does not work, try restarting it or analyze the
log files to learn more about the problem.
Otherwise, ensure that the network connec‐
tion is working.

536871945 Computer1
[@3%s@] -
@1%s@: An
overflow of the
transaction
buffer and
write buffer
has occurred in
log @2%s@ of
the passive
partner. Data
may be lost.
Avoid a manual
failover of the
redundancy
partner while
this alarm is ac‐
tive.

In the passive AlarmLogging service, the buf‐
fers are full and therefore some data has al‐
ready been lost.
Possible causes:
• Infrastructural problem (e.g. connection

lost, hard disk full, see other system events
in this case).

• Generally, a high load that cannot be han‐
dled by the system.

If the connection between the redundant
services is interrupted, this can also cause this
problem. If the active service has no prob‐
lems, this alarm does not mean real data loss.
(Only applicable with Process Historian.)

Correct the root cause of the problem.
If the problem is infrastructural, follow the in‐
structions in the appropriate system event. If
there is none, the cause is probably too much
load on the system or write speed degrada‐
tion (for example, slowing down of a storage
medium).
Check the hardware elements, reduce the sys‐
tem load, or if it is a persistent problem, the
hardware configuration may not be sufficient
for the current project.
If the connection to the active service has
been lost, but it is working without any prob‐
lems, it is important not to initiate redundan‐
cy failover after the connection is restored
while this alarm is still present to avoid real
data loss.

Configuring alarms
6.9 Reference

System Manual, 11/2022 815

ID Alarm text Effect/causes Solution
536871946 Computer1

[@3%s@] -
@1%s@:
(@2%s@) Con‐
nection to the
long-term log‐
ging system is
lost.

AlarmLogging service has its lost connection
to the long-term storage system.
This is probably due to an internal database
error or a network problem.
(Only applicable with Process Historian.)

Check the status of the long-term database
server. Starting/restarting the server may
solve the problem. If it is running, ensure that
the network connection is working.
Otherwise, the database logs may help find
the cause.

536871947 Computer1
[@4%s@] -
@1%s@
(@2%s@ -
@3%s@): Long-
term logging
system is out of
hard disk
space.

At least one storage medium used by the
AlarmLogging service long-term storage sys‐
tem is full, so new value changes cannot be
saved.
(Only applicable with Process Historian.)

Check the status of the connected storage
media on the long-term storage system and
free up some space on the devices (almost)
full.
Changing the log configuration can help re‐
duce the amount of disk space needed by lim‐
iting the maximum amount of space a partic‐
ular log can use before deleting the data.

536871948 Computer1
[@3%s@] -
@1%s@:
(@2%s@):
Long-term log‐
ging system no
longer has any
system resour‐
ces.

The long-term storage system used by the
AlarmLogging service is still running, but has
reported that it is out of resources (e.g. mem‐
ory, disk space). No more writing is possible.
(Only applicable with Process Historian.)

Check the long-term storage media to see if
they are running out of space. The database
server logs can also help to find out the cause
of the problem.
Storage space problems can be caused by a
high load that the system cannot handle.

536871949 Computer1
[@2%s@] -
@1%s@: The
passive and the
active long-
term logging
system are no
longer
synchronized.

The redundant long-term databases used by
AlarmLogging service have lost connection to
each other (triggered only on the passive
host).
Possible causes:
• The active database is completely shut

down.
• A problem with the network connection.
(Only applicable with Process Historian.)

Check the status of the active long-term stor‐
age system. If it is down, try to restart it or
analyze its logged files to learn more about
the problem.
If the database is running, ensure that the
network connection between the two hosts is
working.

536871950 Computer1
[@2%s@] -
@1%s@: Syn‐
chronizing
long-term log‐
ging system

AlarmLogging service: Synchronization of log‐
ged data between the active and passive long-
term storage systems is in progress. Redun‐
dancy failover during this state may result in
loss of logged data.
(Only applicable with Process Historian.)

This system event does not signify an error; it
is normal behavior when the two redundant
databases are synchronizing data. Therefore,
no action is required.
As long as this system event is pending, you
should not initiate redundancy failover, oth‐
erwise the logged data may be lost.

536871951 Computer1
[@2%s@] -
@1%s@: Fail‐
over error in
the long-term
logging sys‐
tem.

AlarmLogging service: An error occurred
when the long-term storage system tried to
switch roles between the active and passive
databases.
(Only applicable with Process Historian.)

Analyze the Process Historian log files to learn
more information about the reason for the
failure.

Configuring alarms
6.9 Reference

816 System Manual, 11/2022

ID Alarm text Effect/causes Solution
536871952 Computer1

[@3%s@] -
@1%s@:
(@2%s@) A
general error
has occurred.
Check the
traces for addi‐
tional informa‐
tion.

AlarmLogging service: An unknown error oc‐
curred during the execution of a database op‐
eration.

Analyze previous traces to learn more about
the problem.
One possible scenario that can cause this
problem is the unexpected removal of a stor‐
age medium. In this case, reinstall the storage
medium and restart Runtime. Otherwise, con‐
tact Siemens support for assistance.

536871953 Computer1
[@6%s@] -
@1%s@
(@2%s@ -
@3%s@): Log‐
ging medium
cannot be
reached.
@5%t#4T@

AlarmLogging service: When trying to create
a database or reconnect to a storage medium,
a storage medium was not available or au‐
thorizations were lacking.

Check if the configuration (path of the log) is
valid for all logs and if all required storage
media are connected and working.
If authorizations are available, ensure they
are set correctly for the file system.

536871954 Computer1
[@2%s@]: The
logging system
@1%s@ has de‐
tected a more
recent data‐
base version
that is not com‐
patible with
the current run‐
time version.
Update the run‐
time version
on your device
or use a device
with the same
runtime ver‐
sion as the da‐
tabase version.

AlarmLogging service: The Runtime software
used is older than the databases used. Proba‐
bly the database was moved from a device
with newer software to a device with older
software.

Move the database to a device with the same
or a newer version of the Runtime software,
or upgrade the software version of the device.

536871955 Computer1
[@2%s@]:
@1%s@: Syn‐
chronizing the
logging data of
the redundant
partners.

The redundant AlarmLogging services syn‐
chronize data with each other. This is normal
behavior that only serves as an indication that
the historical data on both hosts is not quite
up-to-date.

No action is required, but as long as this sys‐
tem event persists, it is recommended not to
shut down any of the hosts.
If this alarm has persisted since the last start‐
up/restart of one of the hosts, do not restart
or shut down the longer running host or data
loss may occur.

Configuring alarms
6.9 Reference

System Manual, 11/2022 817

ID Alarm text Effect/causes Solution
536871956 Computer1

[@2%s@]:
@1%s@: Error
during back‐
ground syn‐
chronization.
Check the
traces for addi‐
tional informa‐
tion.

AlarmLogging service: An error occurred dur‐
ing data synchronization.

Check the additional information of the alarm
to identify and eliminate the cause of the er‐
ror.
The synchronization is repeated at regular in‐
tervals so that it can be performed shortly af‐
ter the cause has been eliminated.

536872193 Computer1
[@3%s@]:
@1%s@
(@2%s@): has
no connection
to the logging
system.

AlarmPersistency service has its lost connec‐
tion to the database.
Possible cause: Internal error of the database.
If this situation continues for too long, the
buffers for values may become full, resulting
in data loss.

Check the status of the database.
Otherwise, the log files may help find the
cause.

536872194 Computer1
[@4%s@]:
@1%s@
(@2%s@ -
@3%s@): Log
is full.

At least one storage medium used by the
AlarmPersistency service is full, so new value
changes cannot be saved.
If this situation continues for too long, the
buffers for values may become full, resulting
in data loss.

Check the status of the connected storage
media and free up some space on the devices
(almost) full.

536872195 Computer1
[@4%s@]:
@1%s@
(@2%s@ -
@3%s@): Insuf‐
ficient resour‐
ces of the log‐
ging system.

Not applicable.

536872196 Computer1
[@3%s@]:
@1%s@: A
write buffer
overflow has
occurred in log
@2%s@. Data
will be lost.

In the AlarmPersistency service, the buffers
are full and therefore some data has already
been lost.
Possible causes:
• Infrastructural problem (e.g. connection

lost, hard disk full, see other system events
in this case).

• Generally, a high load that cannot be han‐
dled by the system.

With redundant deployment, if only one host
has this problem temporarily, the data from
the other host is synchronized once the prob‐
lem is resolved.

Correct the root cause of the problem.
If the problem is infrastructural, follow the in‐
structions in the appropriate system alarm. If
there is none, the cause is probably too much
load on the system or write speed degrada‐
tion (for example, slowing down of a storage
medium).
Check the hardware elements, reduce the sys‐
tem load, or if it is a persistent problem, the
hardware configuration may not be sufficient
for the current project.

536872197 Computer1
[@2%s@]:
@1%s@: The
passive log‐
ging system
has lost the
connection to
the active log‐
ging system.

Not applicable.

Configuring alarms
6.9 Reference

818 System Manual, 11/2022

ID Alarm text Effect/causes Solution
536872198 Computer1

[@2%s@]:
@1%s@: Syn‐
chronizing data

Not applicable.

536872199 Computer1
[@2%s@]:
@1%s@: Fail‐
over error

Not applicable.

536872200 Computer1
(@3%s@):
@1%s@
(@2%s@) No
connection to
the logging sys‐
tem backend

Not applicable.

536872201 Computer1
[@3%s@] -
@1%s@: An
overflow of the
transaction
buffer and
write buffer
has occurred in
log @2%s@ of
the passive
partner. Data
may be lost.
Avoid a manual
failover of the
redundancy
partner while
this alarm is ac‐
tive.

Not applicable.

536872202 Computer1
[@3%s@] -
@1%s@:
(@2%s@) Con‐
nection to the
long-term log‐
ging system is
lost.

Not applicable.

536872203 Computer1
[@4%s@] -
@1%s@
(@2%s@ -
@3%s@): Long-
term logging
system is out of
hard disk
space.

Not applicable.

Configuring alarms
6.9 Reference

System Manual, 11/2022 819

ID Alarm text Effect/causes Solution
536872204 Computer1

[@3%s@] -
@1%s@:
(@2%s@):
Long-term log‐
ging system no
longer has any
system resour‐
ces.

Not applicable.

536872205 Computer1
[@2%s@] -
@1%s@: The
passive and the
active long-
term logging
system are no
longer
synchronized.

Not applicable.

536872206 Computer1
[@2%s@] -
@1%s@: Syn‐
chronizing
long-term log‐
ging system

Not applicable.

536872207 Computer1
[@2%s@] -
@1%s@: Fail‐
over error in
the long-term
logging sys‐
tem.

Not applicable.

536872208 Computer1
[@3%s@] -
@1%s@:
(@2%s@) A
general error
has occurred.
Check the
traces for addi‐
tional informa‐
tion.

AlarmPersistency service: An unknown error
occurred during the execution of a database
operation.

Analyze previous traces to learn more about
the problem.
One possible scenario that can cause this
problem is the unexpected removal of a stor‐
age medium. In this case, reinstall the storage
medium and restart Runtime.
Otherwise, contact Siemens support for assis‐
tance.

536872209 Computer1
[@6%s@] -
@1%s@
(@2%s@ -
@3%s@): Log‐
ging medium
cannot be
reached.
@5%t#4T@

AlarmPersistency service: When trying to cre‐
ate a database or reconnect to a storage me‐
dium, no storage medium was available or
authorizations were lacking.

Check if the configuration (path of the Alarm‐
Persistency database) is valid and if all re‐
quired storage media are connected and
working.
If available, ensure that the file system au‐
thorizations are set correctly.

Configuring alarms
6.9 Reference

820 System Manual, 11/2022

ID Alarm text Effect/causes Solution
536872210 Computer1

[@2%s@]: The
logging system
@1%s@ has de‐
tected a more
recent data‐
base version
that is not com‐
patible with
the current run‐
time version.
Update the run‐
time version
on your device
or use a device
with the same
runtime ver‐
sion as the da‐
tabase version.

AlarmPersistency service: The Runtime soft‐
ware used is older than the databases used.
Probably the database was moved from a de‐
vice with newer software to a device with old‐
er software.

Move the database to a device with the same
or a newer version of the Runtime software or
update the software version of the device.

536872211 Computer1
[@2%s@]:
@1%s@: Syn‐
chronizing the
logging data of
the redundant
partners.

Not applicable.

536872212 Computer1
[@2%s@]:
@1%s@: Error
during back‐
ground syn‐
chronization.
Check the
traces for addi‐
tional informa‐
tion.

Not applicable.

536872449 Computer1
[@3%s@]:
@1%s@
(@2%s@): has
no connection
to the logging
system.

TagLogging service has lost its connection to
the database.
Possible cause: Internal error of the database.
If this situation continues for too long, the
buffers for values may become full, resulting
in data loss.

Check the status of the database server. In
some cases, starting/restarting the database
may solve the problem.
Otherwise, the database log files can help to
find the cause.

536872450 Computer1
[@4%s@]:
@1%s@
(@2%s@ -
@3%s@): Log
is full.

At least one storage medium used by the Ta‐
gLogging service is full, so new value changes
cannot be saved.
If this situation continues for too long, the
buffers for values may become full, resulting
in data loss.

Check the status of the connected storage
media and free some space on the devices
(almost) full.
Changing the log configuration can help re‐
duce the amount of disk space needed by lim‐
iting the maximum amount of space a partic‐
ular log can use before deleting data.

Configuring alarms
6.9 Reference

System Manual, 11/2022 821

ID Alarm text Effect/causes Solution
536872451 Computer1

[@4%s@]:
@1%s@
(@2%s@ -
@3%s@): Insuf‐
ficient resour‐
ces of the log‐
ging system.

The database used by the TagLogging service
is still running, but has reported that it is out
of resources (e.g. work memory, disk space).
No more writing is possible.
(Only applicable with Process Historian.)

Check the storage medium if it is out of space.
The database server logs can also help to find
out the cause of the problem.
Storage space problems can be caused by a
high load that the system cannot handle.

536872452 Computer1
[@3%s@]:
@1%s@: A
write buffer
overflow has
occurred in log
@2%s@. Data
will be lost.

In the TagLogging service, the buffers are full
and therefore some data has already been
lost.
Possible causes:
• Infrastructural problem (e.g. connection

lost, hard disk full, see other system events
in this case).

• Generally, a high load that cannot be han‐
dled by the system.

With redundant deployment, if only one host
has this problem temporarily, the data from
the other host is synchronized once the prob‐
lem is resolved.

Correct the root cause of the problem.
If the problem is infrastructural, follow the in‐
structions in the appropriate system event. If
there is none, the cause is probably too much
load on the system or write speed degrada‐
tion (for example, slowing down of a storage
medium).
Check the hardware elements, reduce the sys‐
tem load, or if it is a persistent problem, the
hardware configuration may not be sufficient
for the current project.

536872453 Computer1
[@2%s@]:
@1%s@: The
passive log‐
ging system
has lost the
connection to
the active log‐
ging system.

The redundant databases used by the TagLog‐
ging service have lost connection to each oth‐
er (triggered only on the passive host).
Possible causes:
• The active database is completely shut

down.
• A problem with the network connection.
If the StorageSystemPassiveSynchronizing
alarm is also triggered, it means that the prob‐
lem is corrected and the alarm will be cleared
as soon as synchronization is completed.
(Only applicable with Process Historian.)

Check the status of the active database.
If the database is not running, try restarting it
or analyze its log files to learn more about the
problem.
If the database is running, ensure that the
network connection between the two hosts is
working.

536872454 Computer1
[@2%s@]:
@1%s@: Syn‐
chronizing data

TagLogging service: Logged data synchroni‐
zation is in progress between the active and
passive databases. Redundancy failover dur‐
ing this state may result in loss of logged data.
(Only applicable with Process Historian.)

This system event does not signify an error; it
is normal behavior when the two redundant
databases are synchronizing data. Therefore,
no action is required.
As long as this system event is pending, you
should not initiate redundancy failover, oth‐
erwise the logged data may be lost.

536872455 Computer1
[@2%s@]:
@1%s@: Fail‐
over error

TagLogging service: An error occurred while
the database was trying to switch roles be‐
tween the active and passive databases.
(Only applicable with Process Historian.)

Analyze the Process Historian log files to learn
more about the reason for the failure. If other
system events are also triggered, they may
also be related.

536872456 Computer1
(@3%s@):
@1%s@
(@2%s@) No
connection to
the logging sys‐
tem backend

TagLogging service: The backend of the data‐
base was shut down. It is either completely
down or the network connection to it is hav‐
ing problems.
(Only applicable with Process Historian.)

Check the status of the database backend. If it
does not work, restart it or analyze the log
files to learn more about the causes.
Ensure that the network connection is work‐
ing.

Configuring alarms
6.9 Reference

822 System Manual, 11/2022

ID Alarm text Effect/causes Solution
536872457 Computer1

[@3%s@] -
@1%s@: An
overflow of the
transaction
buffer and
write buffer
has occurred in
log @2%s@ of
the passive
partner. Data
may be lost.
Avoid a manual
failover of the
redundancy
partner while
this alarm is ac‐
tive.

In the passive TagLogging service, the buffers
are full and therefore some data has already
been lost.
Possible causes:
• Infrastructural problem (e.g. connection

lost, hard disk full, see other system events
in this case).

• Generally, a high load that cannot be han‐
dled by the system.

• Interrupted connection between the re‐
dundant services.

If the active service has no problems, this
alarm does not mean real data loss.
(Only applicable with Process Historian.)

Correct the root cause of the problem.
If the problem is infrastructural, follow the in‐
structions in the appropriate system event. If
there is none, the cause is probably too much
load on the system or write speed degrada‐
tion (for example, slowing down of a storage
medium). Check the hardware elements, re‐
duce the system load, or if it is a persistent
problem, the hardware configuration may not
be sufficient for the current project.
If the connection to the active service has
been lost, but it is working without any prob‐
lems, it is important not to initiate redundan‐
cy failover after the connection is restored
while this alarm is still present to avoid real
data loss.

536872458 Computer1
[@3%s@] -
@1%s@:
(@2%s@) Con‐
nection to the
long-term log‐
ging system is
lost.

TagLogging service has its lost connection to
the long-term storage system.
Possible causes:
• Internal database error.
• Network problem.
(Only applicable with Process Historian.)

Check the status of the long-term database
server.
Start/restart the server.
If it is running, ensure that the network con‐
nection is working.
Database logs can also help to find the cause.

536872459 Computer1
[@4%s@] -
@1%s@
(@2%s@ -
@3%s@): Long-
term logging
system is out of
hard disk
space.

At least one storage medium used by the Ta‐
gLogging service long-term storage system is
full, so new value changes cannot be saved.
(Only applicable with Process Historian.)

Check the status of the connected storage
media on the long-term storage system and
free up some space on the devices (almost)
full.
Changing the log configuration can help re‐
duce the amount of disk space needed by lim‐
iting the maximum amount of space a partic‐
ular log can use before deleting the data.

536872460 Computer1
[@3%s@] -
@1%s@:
(@2%s@):
Long-term log‐
ging system no
longer has any
system resour‐
ces.

The long-term storage system used by the Ta‐
gLogging service is still running, but has re‐
ported that it is out of resources (e.g. memo‐
ry, disk space).
No more writing is possible.
(Only applicable with Process Historian.)

Check the long-term storage media to see if
they are running out of space.
The database server logs can also help to find
out the cause of the problem.
Storage space problems can be caused by a
large load that the system cannot handle.

536872461 Computer1
[@2%s@] -
@1%s@: The
passive and the
active long-
term logging
system are no
longer
synchronized.

The redundant long-term databases used by
the TagLogging service have lost connection
to each other (triggered only on the passive
host).
Possible causes:
• The active database is completely shut

down.
• A problem with the network connection.
(Only applicable with Process Historian.)

Check the status of the active long-term stor‐
age system. If it is down, try to restart it or
analyze its logged files to learn more about
the problem.
If the database is running, ensure that the
network connection between the two hosts is
working.

Configuring alarms
6.9 Reference

System Manual, 11/2022 823

ID Alarm text Effect/causes Solution
536872462 Computer1

[@2%s@] -
@1%s@: Syn‐
chronizing
long-term log‐
ging system

TagLogging service: Synchronization of log‐
ged data between the active and passive long-
term storage systems is in progress. Redun‐
dancy failover during this state may result in
loss of logged data.
(Only applicable with Process Historian.)

This system event does not signify an error; it
is normal behavior when the two redundant
databases are synchronizing data. Therefore,
no action is required.
As long as this system event is pending, you
should not initiate redundancy failover, oth‐
erwise the logged data may be lost.

536872463 Computer1
[@2%s@] -
@1%s@: Fail‐
over error in
the long-term
logging sys‐
tem.

TagLogging service: An error occurred while
the long-term storage system was trying to
switch roles between the active and passive
databases.
(Only applicable with Process Historian.)

Analyze the Process Historian log files to learn
more about the reason for the failure.

536872464 Computer1
[@3%s@] -
@1%s@:
(@2%s@) A
general error
has occurred.
Check the
traces for addi‐
tional informa‐
tion.

TagLogging service: An unknown error occur‐
red during the execution of a database oper‐
ation.

Analyze previous traces to learn more about
the problem. One possible cause of this prob‐
lem is the unexpected removal of a storage
device.
In this case, reinstall the storage medium and
restart Runtime. Otherwise, contact Siemens
support for assistance.

536872465 Computer1
[@6%s@] -
@1%s@
(@2%s@ -
@3%s@): Log‐
ging medium
cannot be
reached.
@5%t#4T@

TagLogging service: When trying to create a
database or reconnect to a storage medium, a
storage medium was not available or authori‐
zations were lacking.

Check if the configuration (path of the log) is
valid for all logs and if all required storage
media are connected and working.
If authorizations are available, ensure that the
file system authorizations are set correctly.

536872466 Computer1
[@2%s@]: The
logging system
@1%s@ has de‐
tected a more
recent data‐
base version
that is not com‐
patible with
the current run‐
time version.
Update the run‐
time version
on your device
or use a device
with the same
runtime ver‐
sion as the da‐
tabase version.

TagLogging service: The Runtime software
used is older than the databases used. Proba‐
bly the database was moved from a device
with newer software to a device with older
software.

Move the database to a device with the same
or a newer version of the Runtime software or
update the software version of the device.

Configuring alarms
6.9 Reference

824 System Manual, 11/2022

ID Alarm text Effect/causes Solution
536872467 Computer1

[@2%s@]:
@1%s@: Syn‐
chronizing the
logging data of
the redundant
partners.

The redundant TagLogging services synchron‐
ize the data with each other. This is normal
behavior that only indicates that the historical
data on both hosts is not quite up to date.

No action is required, but as long as this sys‐
tem event persists, it is recommended not to
shut down any of the hosts.
If this alarm has persisted since the last start‐
up/restart of one of the hosts, do not restart
or shut down the longer running host or data
loss may occur.

536872468 Computer1
[@2%s@]:
@1%s@: Error
during back‐
ground syn‐
chronization.
Check the
traces for addi‐
tional informa‐
tion.

TagLogging service: An error occurred during
data synchronization.

Check the additional information of the alarm
to identify and eliminate the cause of the er‐
ror.
The synchronization is repeated at regular in‐
tervals so that it can be performed shortly af‐
ter the cause has been eliminated.

536872705 Computer1
[@3%s@]:
@1%s@
(@2%s@): has
no connection
to the logging
system.

TagPersistency service has its lost connection
to the database.
Possible cause:
• Internal database error.
If this situation continues for too long, the
buffers for values may become full, resulting
in data loss.

Check the status of the database.
The log files of the Runtime system can also
help to find the cause.

536872706 Computer1
[@4%s@]:
@1%s@
(@2%s@ -
@3%s@): Log
is full.

At least one storage medium used by the Tag‐
Persistency service is full, so new value
changes cannot be saved.
If this situation continues for too long, the
buffers for values can become full, resulting in
data loss.

Check the status of the connected storage
media and free up some space on the devices
(almost) full.

536872707 Computer1
[@4%s@]:
@1%s@
(@2%s@ -
@3%s@): Insuf‐
ficient resour‐
ces of the log‐
ging system.

Not applicable.

536872708 Computer1
[@3%s@]:
@1%s@: A
write buffer
overflow has
occurred in log
@2%s@. Data
will be lost.

In the TagPersistency service, the buffers are
full and therefore some data has already been
lost.
Possible causes:
• Infrastructural problem (e.g. connection

lost, hard disk full, see other system events
in this case).

• Generally, a high load that cannot be han‐
dled by the system.

With redundant deployment, if only one host
has this problem temporarily, the data from
the other host is synchronized once the prob‐
lem is resolved.

Correct the root cause of the problem.
If the problem is infrastructural, follow the in‐
structions in the appropriate system event. If
there is none, the cause is probably too much
load on the system or write speed degrada‐
tion (for example, slowing down of a storage
medium). Check the hardware elements, re‐
duce the system load, or if it is a persistent
problem, the hardware configuration may not
be sufficient for the current project.

Configuring alarms
6.9 Reference

System Manual, 11/2022 825

ID Alarm text Effect/causes Solution
536872709 Computer1

[@2%s@]:
@1%s@: The
passive log‐
ging system
has lost the
connection to
the active log‐
ging system.

Not applicable.

536872710 Computer1
[@2%s@]:
@1%s@: Syn‐
chronizing data

Not applicable.

536872711 Computer1
[@2%s@]:
@1%s@: Fail‐
over error

Not applicable.

536872712 Computer1
(@3%s@):
@1%s@
(@2%s@) No
connection to
the logging sys‐
tem backend

Not applicable.

536872713 Computer1
[@3%s@] -
@1%s@: An
overflow of the
transaction
buffer and
write buffer
has occurred in
log @2%s@ of
the passive
partner. Data
may be lost.
Avoid a manual
failover of the
redundancy
partner while
this alarm is ac‐
tive.

Not applicable.

536872714 Computer1
[@3%s@] -
@1%s@:
(@2%s@) Con‐
nection to the
long-term log‐
ging system is
lost.

Not applicable.

Configuring alarms
6.9 Reference

826 System Manual, 11/2022

ID Alarm text Effect/causes Solution
536872715 Computer1

[@4%s@] -
@1%s@
(@2%s@ -
@3%s@): Long-
term logging
system is out of
hard disk
space.

Not applicable.

536872716 Computer1
[@3%s@] -
@1%s@:
(@2%s@):
Long-term log‐
ging system no
longer has any
system resour‐
ces.

Not applicable.

536872717 Computer1
[@2%s@] -
@1%s@: The
passive and the
active long-
term logging
system are no
longer
synchronized.

Not applicable.

536872718 Computer1
[@2%s@] -
@1%s@: Syn‐
chronizing
long-term log‐
ging system

Not applicable.

536872719 Computer1
[@2%s@] -
@1%s@: Fail‐
over error in
the long-term
logging sys‐
tem.

Not applicable.

536872720 Computer1
[@3%s@] -
@1%s@:
(@2%s@) A
general error
has occurred.
Check the
traces for addi‐
tional informa‐
tion.

TagPersistency service: An unknown error oc‐
curred during the execution of a database op‐
eration.

Analyze previous traces to learn more about
the problem. One possible cause is the unex‐
pected removal of a storage medium.
In this case, reinstall the storage medium and
restart Runtime. Otherwise, contact Siemens
support for assistance.

Configuring alarms
6.9 Reference

System Manual, 11/2022 827

ID Alarm text Effect/causes Solution
536872721 Computer1

[@6%s@] -
@1%s@
(@2%s@ -
@3%s@): Log‐
ging medium
cannot be
reached.
@5%t#4T@

TagPersistency service: When trying to create
a database or reconnect to the storage medi‐
um, no storage medium was available or au‐
thorizations were lacking.

Check if the configuration (path of the Tag‐
Persistency database) is valid and if all re‐
quired storage media are connected and
working.
If authorizations are available, ensure that the
file system authorizations are set correctly.

536872722 Computer1
[@2%s@]: The
logging system
@1%s@ has de‐
tected a more
recent data‐
base version
that is not com‐
patible with
the current run‐
time version.
Update the run‐
time version
on your device
or use a device
with the same
runtime ver‐
sion as the da‐
tabase version.

TagPersistency service: The Runtime software
used is older than the databases used. Proba‐
bly the database was moved from a device
with newer software to a device with older
software.

Move the database to a device with the same
or a newer version of the Runtime software or
update the software version of the device.

536872723 Computer1
[@2%s@]:
@1%s@: Syn‐
chronizing the
logging data of
the redundant
partners.

Not applicable.

536872724 Computer1
[@2%s@]:
@1%s@: Error
during back‐
ground syn‐
chronization.
Check the
traces for addi‐
tional informa‐
tion.

Not applicable.

536872961 Computer1
[@3%s@]:
@1%s@
(@2%s@): has
no connection
to the logging
system.

ContextLogging service has its lost connec‐
tion to the database.
Possible cause:
• Internal database error.
If this situation continues for too long, the
buffers for values may become full, resulting
in data loss.

Check the status of the database server.
Start/restart database.
The log files of the database can also help to
find the cause.

Configuring alarms
6.9 Reference

828 System Manual, 11/2022

ID Alarm text Effect/causes Solution
536872962 Computer1

[@4%s@]:
@1%s@
(@2%s@ -
@3%s@): Log
is full.

At least one storage medium used by Context‐
Logging service is full, so new value changes
cannot be saved.
If this situation continues for too long, the
buffers for values may become full, resulting
in data loss.

Check the status of the connected storage
media and free up some space on the devices
(almost) full.
Changing the log configuration can help re‐
duce the amount of disk space needed by lim‐
iting the maximum amount of space a partic‐
ular log can use before deleting the data.

536872963 Computer1
[@4%s@]:
@1%s@
(@2%s@ -
@3%s@): Insuf‐
ficient resour‐
ces of the log‐
ging system.

Not applicable.

536872964 Computer1
[@3%s@]:
@1%s@: A
write buffer
overflow has
occurred in log
@2%s@. Data
will be lost.

In the ContextLogging service, the buffers are
full and therefore some data has already been
lost.
Possible causes:
• Infrastructural problem (e.g. connection

lost, hard disk full, see other system events
in this case).

• Generally, a high load that cannot be han‐
dled by the system.

With redundant deployment, if only one host
has this problem temporarily, the data from
the other host is synchronized once the prob‐
lem is resolved.

Correct the root cause of the problem.
If the problem is infrastructural, follow the in‐
structions in the appropriate system event. If
there is none, the cause is probably too much
load on the system or write speed degrada‐
tion (for example, slowing down of a storage
medium). Check the hardware elements, re‐
duce the system load, or if it is a persistent
problem, the hardware configuration may not
be sufficient for the current project.

536872965 Computer1
[@2%s@]:
@1%s@: The
passive log‐
ging system
has lost the
connection to
the active log‐
ging system.

Not applicable.

536872966 Computer1
[@2%s@]:
@1%s@: Syn‐
chronizing data

Not applicable.

536872967 Computer1
[@2%s@]:
@1%s@: Fail‐
over error

Not applicable.

536872968 Computer1
(@3%s@):
@1%s@
(@2%s@) No
connection to
the logging sys‐
tem backend

Not applicable.

Configuring alarms
6.9 Reference

System Manual, 11/2022 829

ID Alarm text Effect/causes Solution
536872969 Computer1

[@3%s@] -
@1%s@: An
overflow of the
transaction
buffer and
write buffer
has occurred in
log @2%s@ of
the passive
partner. Data
may be lost.
Avoid a manual
failover of the
redundancy
partner while
this alarm is ac‐
tive.

Not applicable.

536872970 Computer1
[@3%s@] -
@1%s@:
(@2%s@) Con‐
nection to the
long-term log‐
ging system is
lost.

Not applicable.

536872971 Computer1
[@4%s@] -
@1%s@
(@2%s@ -
@3%s@): Long-
term logging
system is out of
hard disk
space.

Not applicable.

536872972 Computer1
[@3%s@] -
@1%s@:
(@2%s@):
Long-term log‐
ging system no
longer has any
system resour‐
ces.

Not applicable.

536872973 Computer1
[@2%s@] -
@1%s@: The
passive and the
active long-
term logging
system are no
longer
synchronized.

Not applicable.

Configuring alarms
6.9 Reference

830 System Manual, 11/2022

ID Alarm text Effect/causes Solution
536872974 Computer1

[@2%s@] -
@1%s@: Syn‐
chronizing
long-term log‐
ging system

Not applicable.

536872975 Computer1
[@2%s@] -
@1%s@: Fail‐
over error in
the long-term
logging sys‐
tem.

Not applicable.

536872976 Computer1
[@3%s@] -
@1%s@:
(@2%s@) A
general error
has occurred.
Check the
traces for addi‐
tional informa‐
tion.

ContextLogging service: An unknown error
occurred during the execution of a database
operation.

Analyze previous traces to learn more about
the problem. A possible cause can be the un‐
expected removal of a storage medium.
In this case, reinstall the storage medium and
restart Runtime. Otherwise, contact Siemens
support for assistance.

536872977 Computer1
[@6%s@] -
@1%s@
(@2%s@ -
@3%s@): Log‐
ging medium
cannot be
reached.
@5%t#4T@

ContextLogging service: When trying to cre‐
ate a database or reconnect to the storage
medium, no storage medium was available or
authorizations were lacking.

Check if the configuration (path of the log) is
valid for all logs and if all required storage
media are connected and working.
If authorizations are available, ensure that the
file system authorizations are set correctly.

536872978 Computer1
[@2%s@]: The
logging system
@1%s@ has de‐
tected a more
recent data‐
base version
that is not com‐
patible with
the current run‐
time version.
Update the run‐
time version
on your device
or use a device
with the same
runtime ver‐
sion as the da‐
tabase version.

ContextLogging service: The Runtime soft‐
ware used is older than the databases used.
Probably the database was moved from a de‐
vice with newer software to a device with old‐
er software.

Move the database to a device with the same
or a newer version of the Runtime software or
update the software version of the device.

Configuring alarms
6.9 Reference

System Manual, 11/2022 831

ID Alarm text Effect/causes Solution
536872979 Computer1

[@2%s@]:
@1%s@: Syn‐
chronizing the
logging data of
the redundant
partners.

The redundant ContextLogging services syn‐
chronize the data with each other. This is nor‐
mal behavior that only indicates that the his‐
torical data on both hosts is not quite up to
date.

No action is required, but as long as this sys‐
tem event persists, it is recommended not to
shut down any of the hosts.
If this alarm has persisted since the last start‐
up/restart of one of the hosts, do not restart
or shut down the longer running host or data
loss may occur.

536872980 Computer1
[@2%s@]:
@1%s@: Error
during back‐
ground syn‐
chronization.
Check the
traces for addi‐
tional informa‐
tion.

ContextLogging service: An error occurred
during data synchronization.

Check the additional information of the alarm
to identify and eliminate the cause of the er‐
ror.
The synchronization is repeated at regular in‐
tervals so that it can be performed shortly af‐
ter the cause has been eliminated.

536873217 Computer1
[@3%s@]:
@1%s@
(@2%s@): has
no connection
to the logging
system.

AuditTrail service has its lost connection to the
database.
Possible cause:
• Internal database error.
If this situation continues for too long, the
buffers for values may become full, resulting
in data loss.

Check the status of the database server.
Start/restart database.
The log files of the database can also help to
find the cause.

536873218 Computer1
[@4%s@]:
@1%s@
(@2%s@ -
@3%s@): Log
is full.

At least one storage medium used by the Au‐
ditTrail service is full, so new value changes
cannot be saved.
If this situation continues for too long, the
buffers for values may become full, resulting
in data loss.

Check the status of the connected storage
media and free up some space on the devices
(almost) full.
Changing the log configuration can help re‐
duce the amount of disk space needed by lim‐
iting the maximum amount of space a partic‐
ular log can use before deleting the data.

536873219 Computer1
[@4%s@]:
@1%s@
(@2%s@ -
@3%s@): Insuf‐
ficient resour‐
ces of the log‐
ging system.

Not applicable.

536873220 Computer1
[@3%s@]:
@1%s@: A
write buffer
overflow has
occurred in log
@2%s@. Data
will be lost.

In the AuditTrail service, the buffers are full
and therefore some data has already been
lost.
Possible cause:
• Infrastructural problem (e.g. connection

lost, hard disk full, see other system events
in this case).

• Generally, a high load that cannot be han‐
dled by the system.

With redundant deployment, if only one host
has this problem temporarily, the data from
the other host is synchronized once the prob‐
lem is resolved.

Correct the root cause of the problem.
If the problem is infrastructural, follow the in‐
structions in the appropriate system event. If
there is none, the cause is probably too much
load on the system or write speed degrada‐
tion (for example, slowing down of a storage
medium). Check the hardware elements, re‐
duce the system load, or if it is a persistent
problem, the hardware configuration may not
be sufficient for the current project.

Configuring alarms
6.9 Reference

832 System Manual, 11/2022

ID Alarm text Effect/causes Solution
536873221 Computer1

[@2%s@]:
@1%s@: The
passive log‐
ging system
has lost the
connection to
the active log‐
ging system.

Not applicable.

536873222 Computer1
[@2%s@]:
@1%s@: Syn‐
chronizing data

Not applicable.

536873223 Computer1
[@2%s@]:
@1%s@: Fail‐
over error

Not applicable.

536873224 Computer1
(@3%s@):
@1%s@
(@2%s@) No
connection to
the logging sys‐
tem backend

Not applicable.

536873225 Computer1
[@3%s@] -
@1%s@: An
overflow of the
transaction
buffer and
write buffer
has occurred in
log @2%s@ of
the passive
partner. Data
may be lost.
Avoid a manual
failover of the
redundancy
partner while
this alarm is ac‐
tive.

Not applicable.

536873226 Computer1
[@3%s@] -
@1%s@:
(@2%s@) Con‐
nection to the
long-term log‐
ging system is
lost.

Not applicable.

Configuring alarms
6.9 Reference

System Manual, 11/2022 833

ID Alarm text Effect/causes Solution
536873227 Computer1

[@4%s@] -
@1%s@
(@2%s@ -
@3%s@): Long-
term logging
system is out of
hard disk
space.

Not applicable.

536873228 Computer1
[@3%s@] -
@1%s@:
(@2%s@):
Long-term log‐
ging system no
longer has any
system resour‐
ces.

Not applicable.

536873229 Computer1
[@2%s@] -
@1%s@: The
passive and the
active long-
term logging
system are no
longer
synchronized.

Not applicable.

536873230 Computer1
[@2%s@] -
@1%s@: Syn‐
chronizing
long-term log‐
ging system

Not applicable.

536873231 Computer1
[@2%s@] -
@1%s@: Fail‐
over error in
the long-term
logging sys‐
tem.

Not applicable.

536873232 Computer1
[@3%s@] -
@1%s@:
(@2%s@) A
general error
has occurred.
Check the
traces for addi‐
tional informa‐
tion.

AuditTrail service: An unknown error occurred
during the execution of a database operation.

Analyze previous traces to learn more about
the problem.
A possible cause can be the unexpected re‐
moval of a storage medium.
In this case, reinstall the storage medium and
restart Runtime. Otherwise, contact Siemens
support for assistance.

Configuring alarms
6.9 Reference

834 System Manual, 11/2022

ID Alarm text Effect/causes Solution
536873233 Computer1

[@6%s@] -
@1%s@
(@2%s@ -
@3%s@): Log‐
ging medium
cannot be
reached.
@5%t#4T@

AuditTrail service: When trying to create a da‐
tabase or reconnect to the storage medium,
no storage medium was available or authori‐
zations were lacking.

Check if the configuration (path of the log) is
valid for all logs and if all required storage
media are connected and working.
If authorizations are available, ensure that the
file system authorizations are set correctly.

536873234 Computer1
[@2%s@]: The
logging system
@1%s@ has de‐
tected a more
recent data‐
base version
that is not com‐
patible with
the current run‐
time version.
Update the run‐
time version
on your device
or use a device
with the same
runtime ver‐
sion as the da‐
tabase version.

AuditTrail service: The Runtime software used
is older than the databases used. Probably the
database was moved from a device with new‐
er software to a device with older software.

Move the database to a device with the same
or a newer version of the Runtime software or
update the software version of the device.

536873235 Computer1
[@2%s@]:
@1%s@: Syn‐
chronizing the
logging data of
the redundant
partners.

The redundant AuditTrail services synchron‐
ize the data with each other. This is normal
behavior that only indicates that the historical
data on both hosts is not quite up to date.

No action is required, but as long as this sys‐
tem event persists, it is recommended not to
shut down any of the hosts.
If this alarm has persisted since the last start‐
up/restart of one of the hosts, do not restart
or shut down the longer running host or data
loss may occur.

536873236 Computer1
[@2%s@]:
@1%s@: Error
during back‐
ground syn‐
chronization.
Check the
traces for addi‐
tional informa‐
tion.

AuditTrail service: An error occurred during
data synchronization.

Check the additional information of the alarm
to identify and eliminate the cause of the er‐
ror.
The synchronization is repeated at regular in‐
tervals so that it can be performed shortly af‐
ter the cause has been eliminated.

Configuring alarms
6.9 Reference

System Manual, 11/2022 835

Configuring alarms
6.9 Reference

836 System Manual, 11/2022

Archiving data 7
7.1 Log basics

Introduction
The following types of logs are available for HMI devices:
• Data log

A data log is used to log process data from an industrial plant. You can find more detailed
information about this in section Logging tags (Page 653).

• Alarm log
An alarm log is used to log alarms that occur in the monitored process. You can find more
detailed information about this in section Logging alarms (Page 769).

• Context log
The context log is used to save user-defined and system-generated contexts of plant objects.
The context log is only available for Unified PC and is stored according to the settings in the
"WinCC Unified Configuration" tool.
The context log is not segmented and has no limit with regard to size or time period.

Database types
The following database types are supported by various HMI devices:

HMI device Supported database type
SIMATIC Unified Comfort Panel SQLite
SIMATIC WinCC Unified PC SQLite

Microsoft SQL

Note
Microsoft SQL for Unified PC
• Unified PCs use SQLite as the default database type. To use Microsoft SQL, the system

provides an installation option with a setup package. Logging with SQLite is not possible after
the installation of Microsoft SQL.
Existing SQLite files are retained, but they cannot be accessed in runtime.

• For SQLite, the segmented backup is not supported.

Database for simulation
SQLite is always used for simulations on the Unified PC. Exception: Runtime is installed on the
same Unified PC and Microsoft SQL is configured for runtime. The configuration of the storage
location is ignored during the simulation. Instead, a relative path is used in the project folder.

System Manual, 11/2022 837

Protection against loss of data
When the database cannot be reached for brief periods, a temporary buffer of 8 MB is available.
The buffer is used, for example, during a system overload caused by large amounts of data or
when changing the storage medium.
If the power supply is unintentionally interrupted, runtime is suddenly and unexpectedly shut
down. In this case, a loss of data may occur for up to 4 seconds. If the system was overloaded
by large amounts of data, the loss of data can be even higher.
The data already logged is retained and is available unchanged and completely after the
power supply has been restored and the system has been rebooted. Logging can be
continued with the same database.

NOTICE
Loss of data due to interrupted power supply and removed storage medium
Loss of data will occur when the power supply is interrupted and there is no connection to the
storage medium at the same time.

Protection against manipulation
Logs can contain sensitive and confidential content, such as performance parameters or product
data, that must be protected from unintentional or unauthorized modification.
In addition to physical protection measures, such as barriers, the Unified PC logs can also be
protected using standard tools such as access rights for folders.
On Microsoft SQL servers, you protect the log databases by using the Windows group
"Simatic HMI" (read/write) and "Simatic HMI Viewer" (read). Only members of these groups
have direct access to the databases.

Startup behavior
The startup behavior of the logs at runtime start is defined in the "Reset Logs" section of the "Load
Preview" dialog box when the project is loaded.
The following options are available:
• "No reset": Existing logged data is retained. This setting adds the data to be logged to an

existing log.
• "Reset all": Existing logged data is deleted.

Restoring log segments
You have the option of restoring log segments of tag and alarm logs in runtime with the Runtime
Manager. You can visualize the restored data in a trend control, for example.
You can find more information on this in the help of the Runtime Manager.

Archiving data
7.1 Log basics

838 System Manual, 11/2022

See also
Specifying runtime settings (Page 7134)
Specifying runtime settings (Page 7170)

7.2 How it works

Introduction
Segmented logs are used for logging.
Each log consists of a configurable number of segments. The segments are filled one after
the other.
When the maximum size or the maximum period of a log is reached, the oldest segment is
deleted.
When the maximum size or the maximum period of a segment is reached, a new segment is
created. The newly created segment is filled further.

Size of a log
You have the option of defining the size of a log both time-dependent and disk space dependent:
• Log time period: When the maximum period is reached, the oldest segment is deleted.

If you specify the value "0" for "Log time period", the oldest segment is deleted when the
maximum log size in megabytes is reached.
The limitation of the log by a time period is thus disabled.

• Maximum log size in megabytes: When the maximum log size is reached, the oldest segment
is deleted.
If you specify the value "0" for "Maximum log size (MB)", the oldest segment is deleted when
the maximum time period of the log is reached.
The limitation of the log by log size is thus disabled.

When you define both properties, the oldest segment is deleted as soon as the defined period
or the maximum log size has been reached.

Note
Performance problems with disabled segmentation
If you specify the value "0" for the time period of the log and the maximum log size, the value
for "Single segment time period" and for "Maximum segment size in megabytes" must also be
"0". The segmentation is thus disabled. All data is written to one segment. Disabled
segmentation results in performance problems when accessing the log. You cannot create a
backup when segmentation is disabled. Log contents can only be deleted with the system
functions "ClearTagLog" or "ClearAlarmLog".
The database can grow uncontrolled, as the log is not limited in size and time period.
Define at least the log period or the maximum log size in megabytes.

Archiving data
7.2 How it works

System Manual, 11/2022 839

When you define logs, keep the following rules in mind:
• The time period of a segment must not exceed the time period of the log.
• The maximum size of the segment must not exceed the maximum size of the log.

Note
Recommended log size
The following limits are recommended for the log size:
• At least 3 individual segments
• Max. 5000 segments (database type "Microsoft SQL")
• When the database type "SQLite" is used, the maximum number of segments is only limited

by the underlying file system.
Backups and segments that were restored from backups with the Runtime Manager are not
taken into account when the system checks the database size.

Size of a segment
According to the log, you can define the size of a segment both time-dependent and disk space
dependent:
• Segment time period: When the segment reaches the specified time, the current segment is

closed and a new segment is created and filled with data.
When you specify the value "0" for the "Single segment time period", the single segment is
filled until the maximum segment size has been reached. Time-based segmenting is thus
disabled.

• Maximum segment size in megabytes: When the segment reaches the specified size, the
current segment is closed and a new segment is created and filled with data.
When you specify the value "0" for the "Maximum segment size (MB)", the single segment is
filled until the maximum single segment time period has been reached. Size-based
segmentation is thus disabled.

When you define both properties, the current segment is closed and a new segment is
created as soon as the defined time or the maximum segment size has been reached.

Note
Performance problems with disabled segmentation
When you specify the value "0" for the "Segment time period" and for "Maximum segment size
in megabytes", segmentation is disabled. All data is written to one segment. Disabled
segmentation results in performance problems when accessing the log. You cannot create a
backup when segmentation is disabled. Log contents can only be deleted with the system
functions "ClearTagLog" or "ClearAlarmLog".

For SQLite, the segment size of a log is always an integer multiple of 4 MB. This means the
actual segment size is 8 MB when you configure a segment size of 7 MB.
For Microsoft SQL, the smallest segment size is 3 MB.

Archiving data
7.2 How it works

840 System Manual, 11/2022

Segment start time
You define the segment start time. The start time defines the time as of which log segments are
written to the log.

Response to segment change
The individual segments are filled one after the other in runtime. Once a segment is totally full,
the next segment is created and filled.

1. The process values are written continuously to the first segment.
2. When the configured size of the segment is reached or the period is exceeded, a new

segment is created and filled.
3. When the maximum log size or the maximum period of a log is reached, the oldest segment

is deleted.

Archiving data
7.2 How it works

System Manual, 11/2022 841

To avoid losing process data as a result of deleting, you can configure a backup for the log.

Note
If you change the segmentation settings and load the project in runtime, a new segment is
created.

Example
The following information has been configured:

Property Value
Log time period 1 week
Maximum log size (MB) 700 MB
Segment time period 1 day
Maximum segment size (MB) 100 MB
Segment start time Friday, 23 May 2020 18:00

With the configuration suggested in the table, log segments are written to the log starting on
23 May 2020 at 18:00 hours.
The next time-dependent segment changes take place cyclically after one day as of the
configured time. The segment will also change if the configured size of 100 MB is exceeded
in the course of one day.
When the maximum log size of 700 MB or the configured time period of one week is reached,
the oldest segment is deleted.

Backup
You can swap out data from the log database as a backup with the database type "Microsoft
SQL".
When you create a log you can configure a backup.
The data is swapped out in segments. A segment is always swapped out during a segment
change when a new segment is started.
The larger the segment, the more time a backup requires. When the backup of a segment is
complete, you can delete the segment.

Note
Creating backups
The backup is created with a delay of approx. 10 minutes.
If data is changed in a segment for which a backup has already been created, a new backup will
be created approx. 10 minutes later.

Archiving data
7.2 How it works

842 System Manual, 11/2022

See also
Log basics (Page 837)
Creating a data log and an alarm log (Page 848)
Size of a log entry in the data log (Page 654)
Size of a log entry in the alarm log (Page 770)

7.3 Storage locations of logs

Introduction
You adapt the main database storage locations for tag and alarm logging in the runtime settings
of the HMI device. Different options are available depending on the HMI device.
For Unified PCs, you have the option of storing the storage location in the "WinCC Unified
Configuration" tool under "Archive Settings".

Note
Default setting for the database storage location
The storage location "Default" is configured as default setting in the Runtime settings and in the
"Logs" editor. If you do not change these options, the database is saved according to the setting
in the "WinCC Unified Configuration" tool.

Storage location of a log
You adjust the storage location of the main database of the tag logs and alarm logs in the
runtime settings of the HMI device.

Archiving data
7.3 Storage locations of logs

System Manual, 11/2022 843

The following options are available depending on the HMI device:

HMI device Supported main database storage locations for logging
Unified Comfort Panel • SD-X51

Many read and write processes are being executed during logging.
Therefore, you should use memory cards rather than USB flash drives.

• USB-X61
• USB-X62
• Off: Logging is disabled.
You have the option of specifying a path on the storage medium.

Unified PC • Default: In the "WinCC Unified Configuration" tool, you store the path
at which the logs are saved under "Archive Settings".

• Local: Select a path on the local file system, on an external storage
medium or a network folder.
We do not recommend using network folders, because the power
supply can be interrupted at any time.

• Project folder: The logs are saved in a subfolder of the Runtime
project folder.

• Off: Logging is disabled.

When you define a storage location in the runtime settings of the HMI device, and thus
enable logging, you can specify the database storage location for individual tag and alarm
logs in the "Logs" editor under "Storage medium".
It must be ensured that the "WCCILScsService" service user under which Runtime is running
has read and write rights to the directory in which the logs are stored. You have the following
options here:
• Configure the directory for the logs with the "WinCC Unified - Configuration" tool and

configure the storage of logs in this directory or its subdirectories in the engineering system.
• In the engineering system, configure the storage of logs in directories for which no restriction

of the access rights is configured in the operating system. However, this means that the logs
are then not protected from access by third parties.

Note
If you want to access a large number of log values within a short time, it is advisable to set the
maximum memory of the SQL server to at least 4 GB in the "WinCC Unified – Configuration" tool.

Archiving data
7.3 Storage locations of logs

844 System Manual, 11/2022

Changing the storage location of the main database

Note
Data loss when changing the location of the main database
If you have already saved data in a log and then change the location of the main database and
reload the project, you can no longer access the already logged data in runtime.
Changing the location of individual logs in the "Logs" editor is possible without data loss as long
as the location of the main database remains unchanged.

In the following cases, access to already logged data is lost:
• Unified PC:

– If you use the storage medium "Standard" as the storage location of the main database in
the runtime settings of the Unified PC and change the storage location of the databases
in the Werkzeug "WinCC Unified - Configuration" tool

– If you use the storage medium "Local" as the storage location of the main database in the
runtime settings of the Unified PC and change the folder

– If you change the file path of the log in the file system of the Unified PC, e.g. rename
folders with a file explorer

• Unified Comfort Panel:
– If you change the storage medium or folder of the main database location in the runtime

settings of the Unified Comfort Panel
– If you change the file path of the log on the external storage medium, e.g. rename folders

with a file explorer

Naming conventions
The log names must be unique in an HMI device. Even if different storage locations are selected
for different logs, the log name must be unique.

Syntax examples for storage locations
Location of local file system on the Unified PC:
• <C:\My_File_Folder\My_Archives\Machine_1>: Saves the log on the local hard disk drive "C:"

in the subdirectory "My_File_Folder\My_Archives\Machine_1"
Memory card storage location on the Unified Comfort Panel:
• </media/simatic/data-storage /My_Archives/TagLogs>: Saves the log in the subdirectory

"My_Archives\TagLogs"

Archiving data
7.3 Storage locations of logs

System Manual, 11/2022 845

File name
The segments are stored according to the syntax <Unique name of the runtime
project>_<Abbreviation of the logging service>_<System ID>_<Start date of the
segment>_<Start time of the segment (UTC)> for example, as follows:
• Microsoft SQL: "HMI_RT_1_TLG200_20201106_135307.mdf" and

"HMI_RT_1_TLG200_20201106_135307_log.ldf"
• SQLite: "HMI_RT_1_TLG200_20201106_135307.db3"
When you use the "Microsoft SQL" database type, you can create a backup. The
backup files of the segments are stored with the syntax <Unique name of the
Runtime project>_<Abbreviation of the logging service>_<System ID>_<Start date of the
segment>_<Start time of the segment (UTC)> under the configured path, for example as
follows:
• "HMI_RT_1_TLG200_20201106_135307.bak"
• "HMI_RT_1_TLG200_20201106_135307_diff.bak"

The file with the extension "_diff.bak" is created when the backup was already created and
value changes occurred later, for example, by manually adding values.

External storage medium
You have the option of saving the logs on an external storage medium. To avoid the loss of data,
the storage medium must be properly removed.

NOTICE
Data loss due to improper removal of the storage medium
When the storage medium is not removed correctly, logging is interrupted. As soon as you
connect a storage medium and restart runtime, logging can be continued with existing
databases.
Data that occur between improper removal of the storage medium and the start of runtime are
not logged.

The procedure for ejecting the storage medium differs depending on the HMI device:
• Unified Comfort: You use the system function "EjectStorageMedium".
• Unified PC: Eject the storage medium using the PC operating system.
Next, you remove the storage medium and connect a different storage medium.
Data that occurs during the change process are written to a buffer. Logging is continued in a
new segment after the change has been completed.

Archiving data
7.3 Storage locations of logs

846 System Manual, 11/2022

Logs on different storage media

Note
Storage medium for Unified Comfort
The storage location of the main database of a logging type and the configured storage medium
of all associated logs must be identical.

Tag persistency
In runtime, you have the option of specifying tag persistency for internal tags. A separate
database, in which the last values of the persistent tags are stored, is used for tag persistency.
When the databases for data logs or alarm logs and the database for tag persistency are
stored on the same storage medium and the medium is changed while runtime is running,
tag persistency can be affected.

Note
Use different storage media for tag persistency and logging.

Parameter set types
With Unified Comfort, you have the option of saving parameter set types on external storage
media.
When the databases for data logs or alarm logs and the parameter set types are stored on the
same storage medium and the medium is changed while runtime is running, the parameter
set types can be affected.

Note
Use different storage media for parameter set types and logging.

See also
Storage system (Page 7138)
Storage system (Page 7173)
Basics of downloading projects (Page 7182)
Basics for downloading projects (Page 7147)

Archiving data
7.3 Storage locations of logs

System Manual, 11/2022 847

7.4 Creating a data log and an alarm log

Introduction
You create data logs and alarm logs for the HMI device in the "Logs" editor. In addition to the
name, storage location and backup, you define the size of the log and its segments.
The size of the log and the segments can be defined both time-dependent and disk space
dependent. The size of a log is calculated according to the log type as follows:
• Data log: Number of entries * Size of entries

In addition to the value of a logging tag, its time stamp and quality code are logged.
• Alarm log: Number of entries times the approximate size of the entries

The size of an entry depends on the alarm text, whether it contains parameter boxes and in
which languages the alarm text is logged.

Note
Make sure that the log size does not exceed the free disk space and the system limits. The system
does not validate the selected settings. A high number of linked log segments can lead to
prolonged waiting periods in the system when starting and ending runtime.

Requirement
• An HMI device has been created.
• A database storage location for data logs and alarm logs is stored in the runtime settings.

Procedure
To create data logs or alarm logs, follow these steps:
1. Double-click the "Logs" entry in the project tree below the HMI device.

The "Logs" editor opens.
2. Double-click "<Add>" in the "Name" column of the "Data logs" or "Alarm logs" tab.

A new log is created.
3. Specify the name of the log.

You can assign any name to the log. The name must contain at least one letter or one number.
You can create several logs for each HMI device.
The name must be unique for the respective HMI device.

Archiving data
7.4 Creating a data log and an alarm log

848 System Manual, 11/2022

4. Select the storage location of the log in the "Storage medium" field:
– "Local": Enter the storage path for the log under "Storage directory".

Note
Logging on network drives
Do not save databases directly on a network drive. Power supply can be interrupted at any
time. This means there is no guarantee for reliable operation of logs.
Save the logs on the local hard drive or an external storage medium, for example, a USB
stick.
In connection with SQLite, loss of data can occur for an external storage medium without
journaling file system in case of an unintentional system crash.

– "Default": Accepts the settings that you have defined in the runtime settings of the HMI
device under "Storage system".

Note
Data loss when changing the location of the main database
If you have already saved data in a log and then change the location of the main database and
reload the project, you can no longer access the already logged data in runtime.
Changing the location of individual logs in the "Logs" editor is possible without data loss as
long as the location of the main database remains unchanged.

5. In the "Log time period" field, define the maximum time period for logging in the format
<day>.<hour>:<minute>:<second>[.<millisecond>].

6. Define the maximum size in megabytes in the "Maximum log size (MB)" field.
Note
We recommend the following number of segments:
• Without backup: 3 segments
• With backup: 4 segments

7. In the "Segment" area, define the time period for a single segment in the format
<day>.<hour>:<minute>:<second>[.<millisecond>].

8. Define the maximum segment size.

Archiving data
7.4 Creating a data log and an alarm log

System Manual, 11/2022 849

9. Define the start time.
The start time defines the time as of which log segments are written to the log.

10.Set whether data is to be backed up and specify the path for the backup under "Backup >
Backup mode".
Note
Configuring a backup
Backups can only be created when you use the "Microsoft SQL" database type. You configure
the database type in the runtime settings of the HMI device.
The backup is created with a delay of approx. 10 minutes.
If data is changed in a segment for which a backup has already been created, a new backup
will be created about 10 minutes later.
When you subsequently change the primary path, the new backup file is written to the new
storage path after loading. The previous backup files remain in the previous storage location.

Tips for an efficient procedure
Configure the properties of a log directly in the "Logs" editor table. To view hidden columns, activate the column titles using the shortcut menu.

Result
• The log is created.
• The log database in the configured folder is created after the project is started in runtime.

See also
Configuring logging tags (Page 657)
Basics of alarm logging (Page 769)
How it works (Page 839)

7.5 Editing log contents with scripts and system functions

Using snippets
In the shortcut menu of the "Scripts" editor, you will find various snippets for logging. You have
the following options, for example:
• Read data logs and alarm logs
• Export data logs and alarm logs

Archiving data
7.5 Editing log contents with scripts and system functions

850 System Manual, 11/2022

• Correct entries in data logs
• Comment entries in data logs

Delete log contents
You can delete the contents of an alarm log or data log using the "ClearTagLog" or
"ClearAlarmLog" system functions. The log itself is retained, the alarm or logging data stored in
it is deleted. This procedure can be useful, for example, after a test phase has been completed
when existing logs are to be emptied.

See also
Alarm control (Page 309)
ClearTagLog (Page 934)
ClearAlarmLog (Page 933)
Input support (Page 982)
System functions (Page 909)

Archiving data
7.5 Editing log contents with scripts and system functions

System Manual, 11/2022 851

Archiving data
7.5 Editing log contents with scripts and system functions

852 System Manual, 11/2022

Configuring parameter sets 8
8.1 Basics

8.1.1 Basics of parameter control

Introduction
The parameter control is a comprehensive function for the control of parameter sets for
configuration engineers, operators and recipe creators. The parameter control brings you the
following benefits:
• You can apply the structure of a user data type for one or more parameter set types.
• You can change the structure of one or more parameter set types automatically via a new

user data type version.
• You can exchange a large number of parameters manually or automatically between HMI

device and PLC to set up a machine for a production.
• You can create parameter sets simply and uniformly for products to be manufactured in the

works during engineering or during ongoing operation.
• By structuring the associated parameters/setpoints, you can easily transfer parameters.

Elements of the parameter control
• Parameter set type

A parameter set type with parameter set type items determines the structure that is used for
parameter sets on a machine. You create a parameter set type with parameter set type items
on the basis of a released HMI or PLC user data type that has user data type elements.

• Parameter set type item
Element of a parameter set type that is based on a user data type element. A parameter set
type item has the same name and data type as the corresponding user data type element.

• Parameter record
Set of parameters with concrete values that can be activated on a machine.

• Parameters
Element of a parameter set that is based on a parameter set type item. A parameter has the
same display name and data type as well as the same unit of measure as the corresponding
parameter set type item. A parameter has a concrete value that can be activated on a
machine.

System Manual, 11/2022 853

Tools of the parameter control
• "Parameter set types" editor

In the "Parameter set types" editor, you create parameter set type items on the basis of an HMI
or PLC application data type. In addition, you configure the properties of parameter set types
and parameter set type items in the editor.

• Parameter set control
The parameter set control is a control with which you can display and manage parameter sets
in runtime and exchange them with the PLC.

Parameter set memory
Part of the parameter control is the parameter set memory. The parameter set memory can be
configured depending on the device.

Parameter control in the Engineering System
Perform the following tasks in Engineering System for the parameter control:
• You create a parameter set type to specify the structure of parameter sets.
• You change a parameter set type to change the structure of parameter sets.
• You assign a tag of the data type user data type to a parameter set type to transfer parameter

sets between HMI device and PLC in runtime.
• You create local scripts in screen objects or tasks to transfer parameter sets in runtime

between the HMI device and PLC.
• You assign control tags to a parameter set type to automatically transfer or delete parameter

sets between HMI device and PLC in runtime.
• You configure a parameter set control to display parameter sets, manage them and exchange

them with the PLC through the Control in runtime.
• In a screen, you configure an individual input mask to display, manage and exchange

parameter sets with the PLC without using the control "Parameter set control".

Parameter control in runtime
The following options are available in runtime with the parameter control:
• You create, change and delete parameter sets in a parameter set control to manage

parameter sets for different productions.
• Alternatively, create, change and delete parameter sets in an individual input mask to

manage them for different productions.
• You export parameter sets from the parameter set memory into a "*.tsv" file to edit them in

a text editor.
Note
A "*.tsv" file is a text file that uses the tabulator as a list separator.

• You import parameter sets from a "*.tsv" file into the parameter set memory.

Configuring parameter sets
8.1 Basics

854 System Manual, 11/2022

• You transfer parameter sets manually or automatically to the control system to set up
machines with values for different productions.

• You read parameter sets manually or automatically from the PLC to call up currently used
values of production machines for later use.

• You automatically delete parameter sets from the parameter set memory.

See also
Configuring parameter sets (Page 863)
Using parameter sets in runtime (Page 885)
Configuring user data types (Page 645)

8.1.2 Limitations

Unsupported data types in the parameter data set
Structure data types are not supported in a parameter data set:
• Struct, Array of Struct
• ErrorStruct
• CREF
• NREF

Restrictions on the PLC user data type
Observe the following restrictions when creating the PLC user data type:
• The user data type may have a maximum of 1000 elements.
• No user data type item may have the data type Time_Of_Day.
• The ARRAY data type is supported.

The use of a user data type is not supported in an ARRAY.
• The user data type may have a maximum of 8 levels.

Configuring parameter sets
8.1 Basics

System Manual, 11/2022 855

8.1.3 "Parameter set types" editor

Introduction
In the "Parameter set types" editor, you create a parameter set type with elements on the basis
of an HMI or PLC application data type. In addition, you configure the properties of parameter set
types and parameter set type items in the editor.

Note
Alternatively create the parameter set type items on the basis of a user data type in the Inspector
window. In addition, you configure the properties of parameter set types and parameter set type
items also alternatively in the Inspector window.

Structure of the "Parameter set types" editor
The "Parameter set types" editor is a tabular editor. The editor always contains only a single
parameter set type and, if applicable, its elements. To view hidden columns, activate the column
titles using the shortcut menu.

Properties of parameter set types
In the "Parameter set types" editor, you can configure the following properties:

Property Description
ID Number of a parameter set type. The ID uniquely identifies a parameter set type

within the HMI device. The ID appears in the parameter set control in runtime.
Name Name of a parameter set type. The name uniquely identifies a parameter set

type within the HMI device.
Display name Display name of a parameter set type. The display name appears in the param‐

eter set control in runtime. You can configure display names in multiple lan‐
guages. The property is optional. If you do not set a display name, the value
from the "Name" property appears in the parameter set control in runtime.

Data type Enabled HMI or PLC user data type with which you define the structure of a
parameter set type.

Configuring parameter sets
8.1 Basics

856 System Manual, 11/2022

Property Description
Tag External HMI tag of the data type HMI or PLC user data type. In runtime you

transfer parameter sets between HMI device and PLC via the HMI tag.
Edit tag Local session HMI tag used to manage the values of a parameter set in a screen.

Edit tags can be read from or written to the PLC.
The HMI tag must not contain any information about the range (Upper 2,
Lower 2).
The property is optional.

Parameter ID Control tag with numerical data type. The control tag is used to define an ID of
a parameter set which is the target of one of the following control jobs in
runtime:
• Control job with job ID "6": Reading a parameter set from the PLC and stor‐

ing it in the parameter set memory.
• Control job with job ID "7": Loading a parameter set from the parameter set

memory and writing it to the PLC.
• Control job with job ID "8": Deleting a parameter set from the parameter set

memory.
The property is optional.

Job ID Control tag with numerical data type. The control tag is used to define a control
job which is applied to a parameter set in runtime. In runtime, you can apply the
following control jobs to a parameter set:
• Control job with job ID "6": Reading a parameter set from the PLC and stor‐

ing it in the parameter set memory.
• Control job with job ID "7": Loading a parameter set from the parameter set

memory and writing it to the PLC.
• Control job with job ID "8": Deleting a parameter set from the parameter set

memory.
The property is optional.

Author Author of a parameter set type. The property is optional. By default, the prop‐
erty is pre-assigned with the logged-on Windows user. By default, the column
is hidden.

Version Version of a parameter set type. The property is optional. By default, the prop‐
erty is pre-assigned with the date and time of creation of the parameter set
type. By default, the column is hidden.

Storage medium For Unified PC, the storage medium is internal. The parameter set type is saved
in the system default directory.
For Unified Comfort Panel, you choose between the internal storage medium
and various external storage media.

Memory folder Internal storage medium: System standard folder in runtime, in which the
parameter set memory is located. The folder refers to the folder of the runtime
project. The property is write-protected.
External storage medium: Freely selectable memory folder.

Configuring parameter sets
8.1 Basics

System Manual, 11/2022 857

Properties of parameter set type items
In the "Parameter set types" editor, you can configure the following properties for parameter set
type items:

Property Description
Name Name of a parameter set type item. The name uniquely identifies a pa‐

rameter set type item. The name is write-protected and identical to the
name of the corresponding user data type element.

Display name Display name of a parameter set type item and a corresponding param‐
eter in a parameter set. The display name appears in the table of the
parameter set control in runtime. You can configure display names in
multiple languages. The property is pre-assigned with the value from the
"Name" property.

Data type Data type of a parameter set type item and a corresponding parameter
in a parameter set. The name is write-protected and identical to the data
type of the corresponding user data type element.

Start value Start value of a parameter set type item. The start value is used to pre-
assign a corresponding parameter in a newly created parameter set in
runtime.
If you have not set a start value in a user data type element with nu‐
merical data type or bit sequence data type, the corresponding param‐
eter set type item receives "0" as the start value.
When parameter set type items with the data type ARRAY are used, only
the start value for the items of the array can be defined.
The property is optional for parameter set type items with string data
types.

Minimum value Minimum permissible value of a parameter set type item and a corre‐
sponding parameter in a parameter set.
The minimum value of a parameter set type item may not be below the
minimum value of the data type of the parameter set type item.
When parameter set type items with the data type ARRAY are used, only
the minimum value for the items of the respective lowest level can be
defined.
The property is optional and is disabled for parameter set type items with
string data types and bit sequence data types.

Maximum value Maximum permissible value of a parameter set type item and a corre‐
sponding parameter in a parameter set.
The maximum value of a parameter set type item may not be above the
maximum value of the data type of the parameter set type item.
When parameter set type items with the data type ARRAY are used, only
the maximum value for the elements of the respective lowest level can
be defined.
The property is optional and is disabled for parameter set type items with
string data types and bit sequence data types.

Configuring parameter sets
8.1 Basics

858 System Manual, 11/2022

Property Description
Value required If the check box of the property "Value required" is selected in a param‐

eter set type item, a corresponding parameter must have a value in a
parameter set. Otherwise, a corresponding parameter must have no
value in a parameter set.
The check box of the property is selected by default for parameter set
type items with numerical data types. In this case, you cannot clear the
check box.
The check box of the property is cleared by default for parameter set type
items with string data types. In this case, however, you can select the
check box if required.
When parameter set type items with the data type ARRAY are used, only
the check box for the items of the respective lowest level can be defined.

Unit of measure Unit of measure of a parameter set type item and a corresponding pa‐
rameter in a parameter set. The unit of measure appears in the table of
the parameter set control in runtime.
When parameter set type items with the data type ARRAY are used, only
the unit of measurement for the items of the respective lowest level can
be defined.
The property is optional.

See also
Creating a parameter set type with elements via an HMI user data type (Page 863)
Creating a parameter set type with elements via a PLC user data type (Page 866)

Configuring parameter sets
8.1 Basics

System Manual, 11/2022 859

8.1.4 Parameter set control

Use
You can use the "Parameter set control" object to display and manage parameter sets in runtime
and to exchange them with the controller.

Layout
You can change the settings for the position, geometry, style, color, and font of the object in the
Inspector window. Under "Miscellaneous", adapt the following properties:
• "Editing mode": Defines the activation status of the toolbar buttons.
• "Toolbar": Defines the buttons of the parameter set control.
• "Information bar": Specifies the representation of the information bar.
• "Parameter view": Specifies the display of the parameter table in the object.

Using a parameter set type
If you only want to use a particular parameter set type with its parameter sets in runtime, select
the desired parameter set type under "Properties > General > Fixed parameter set type".

Configuring the time zone
To configure the time zone, follow these steps:
Under "Properties > Miscellaneous > Time zone", set the desired time zone by entering a
numerical value.

Configuring parameter sets
8.1 Basics

860 System Manual, 11/2022

The numerical value stands for a time zone, for example:
• "-1" stands for UTC-1h (Central European Time, standard time)
• "1" stands for UTC-12h (International Date Line West)
• "2" stands for UTC-11h (Hawaii)

Defining the editing mode
To specify the editing mode and to enable or disable the buttons, follow these steps:
Under "Properties > Miscellaneous > Editing mode", configure the activation status of the
toolbar buttons "Create", "Save", "Save as", "Rename" and "Delete". These toolbar buttons are
used to edit parameter sets.
You can select between the following settings:
• "None": Deactivates all buttons.
• "Update": Activates the "Save" and "Rename" buttons.
• "Create": Activates the "Create" and "Save as" buttons.
• "Delete": Activates the "Delete" button.

Configuring reordering of the columns
Configure whether operators can reorder the table columns in runtime using drag-and-drop.
More information is available in the section Configuring reordering of the columns (Page 392).

Dynamization of graphic properties with tags or scripts
You can dynamize the following properties containing a graphic with a tag or with a script:
• Graphic
• Icon

Configuring the information bar
To configure the information bar, follow these steps:
1. Configure the general properties of the information bar, such as the font and background

color, under "Properties > Miscellaneous > Information bar".
2. To adjust the height of the "Status text" element, specify the height under "Properties >

Miscellaneous > Information bar > Elements > [0] Element".
The "Status Text" element is the only status line element of the parameter set control. Status
messages are displayed in this element in runtime.

Configuring parameter sets
8.1 Basics

System Manual, 11/2022 861

Toolbar
You can define the buttons of the parameter set control in runtime and their operator
authorizations in the Inspector window under "Properties > Miscellaneous > Toolbar >
Elements". By default, all buttons are displayed in the toolbar. To hide specific buttons,
deactivate the "Visibility" property in the settings of the corresponding button.
"Toolbar": Defines the buttons of the parameter set control.

Note
Visibility of buttons in runtime
Buttons for which the "Visibility" option is deactivated during the configuration cannot be made
visible again in runtime by a script. After loading into a device, the array of available items
contains only those buttons that are configured as visible.

The following buttons are available for the parameter set control:

 Button Function
Create Creates a new parameter set.

Save Saves a parameter set.

Save as Saves an existing parameter set under a new name and new ID.

Rename Renames the selected parameter set.

Write to PLC Writes the values of the selected parameter set to the PLC.

Read from PLC Writes the values of the selected parameter set from the PLC.

Import Imports parameter sets from a "*.tsv" file.

Export Exports parameter sets to a "*.tsv" file.

Cancel Cancels the process.

Delete Deletes the selected parameter set.

Configuring parameter sets
8.1 Basics

862 System Manual, 11/2022

Note
A "*.tsv" file is a text file that uses the tabulator as a list separator.

See also
Configuring the parameter set view (Page 880)

8.2 Configuring parameter sets

8.2.1 Creating a parameter set type with elements via an HMI user data type

Introduction
You have created an HMI user data type with elements. You can assign the user data type to one
or more parameter set types and this way apply the elements of the user data type for the
parameter set type or types. A parameter set type with elements determines the structure that
is used for parameter sets on a machine. Because you do not have to create the elements of the
user data type again separately for the parameter set type(s), efficiency and reusability are a
given.

Note
Observe the following restrictions when creating the HMI user data type:
• The user data type may have a maximum of 1000 elements.
• No user data type item may have the data type Textref, Time_Of_Day, or Raw.

Note
You can also create a parameter set type with elements via a PLC user data type that is created
in a SIMATIC S7-1200/1500 control system.

Requirement
• An HMI device has been created.
• An HMI user data type with a user data type element is created.
• The communication driver SIMATIC S7-300/400 or SIMATIC S7-1200/1500 is set for the HMI

user data type.
• The HMI user data type is released.

Configuring parameter sets
8.2 Configuring parameter sets

System Manual, 11/2022 863

Creating a parameter set type with elements via an HMI user data type
Proceed as follows to create a parameter set type with elements via an HMI user data type:
1. Open the "Parameter set types" folder in the project tree of the HMI device.
2. Double-click "Add new parameter set type".

A parameter set type with unique standard name and unique ID is created. The "Parameter
set types" editor opens.

3. Select the released HMI user data type in the "Data type" column in the "Parameter set types"
editor.
In the editor, parameter set elements which are based on the user data type elements are
added to the parameter set type.

Note
The parameter set type items have the same name and data type as the user data type
elements. The name and data type of the parameter set type items are write-protected in the
editor.

Configuring parameter sets
8.2 Configuring parameter sets

864 System Manual, 11/2022

Configuring a parameter set type
To configure the created parameter set type, proceed as follows:
1. Enter a meaningful name for the parameter set type in the "Name" column in the "Parameter

set types" editor
The name uniquely identifies the parameter set type within the HMI device.

2. Enter a language-dependent name for the parameter set type in the "Display name" column.
The display name appears in the parameter set control in runtime.

3. If required, enter an own number for the parameter set type in the "ID" column.
The ID uniquely identifies the parameter set type within the HMI device. The ID appears in the
parameter set control in runtime.

Configuring parameter set type items
To configure the created parameter set type items, proceed as follows:
1. In the "Display name" column of the "Parameter set types" editor configure a language-

dependent name for the parameter set type items and corresponding parameters in a
parameter set.
The display name appears in the table of the parameter set control in runtime.

2. Configure a unit of measure In the "Unit of measure" column for parameter set type items and
corresponding parameters in a parameter set.
The unit of measure appears in the table of the parameter set control in runtime.

3. Configure a start value in the "Start value" column for parameter set type items.
The start value is used to pre-assign the corresponding parameters in a newly created
parameter set in runtime.

Configuring parameter sets
8.2 Configuring parameter sets

System Manual, 11/2022 865

Result
You have created a parameter set type with elements via an HMI user data type.

See also
Creating an HMI user data type (Page 645)
Creating HMI user data type elements (Page 647)
"Parameter set types" editor (Page 856)
Changing a parameter set type with elements (Page 870)
Configuring the parameter set view (Page 880)
Assigning a tag of the data type HMI user data type to a parameter set type (Page 873)

8.2.2 Creating a parameter set type with elements via a PLC user data type

Introduction
You have created a PLC user data type with elements. You can assign the user data type to one
or more parameter set types and this way apply the elements of the user data type for the
parameter set type or types. A parameter set type with elements determines the structure that
is used for parameter sets on a machine. Because you do not have to create the elements of the
user data type again separately for the parameter set type(s), efficiency and reusability are a
given.

Note
Observe the following restrictions when creating the PLC user data type:
• The user data type may have a maximum of 1000 elements.
• No user data type item may have the data type Time_Of_Day.
• The ARRAY data type is supported.

The use of a user data type is not supported in an ARRAY.
The user data type may have a maximum of 8 levels.

Note
You can also create a parameter set type with elements via an HMI user data type for which the
SIMATIC S7-300/400 or SIMATIC S7-1200/1500 communication driver is set.

Requirement
• The HMI device has been created.
• A PLC user data type with user data type elements is created in a SIMATIC S7-1200/1500 PLC.
• The "Libraries" task card is open.
• The project library is open.

Configuring parameter sets
8.2 Configuring parameter sets

866 System Manual, 11/2022

Adding a PLC user data type to the project library
To add a PLC user data type to the project library, follow these steps:
1. Open the PLC's folder in the project tree.
2. Open the folder "PLC data types" in the folder of the controller.

The created PLC user data type is displayed in the "PLC data types" folder.
3. Move the PLC user data type to the "Types" folder in the project library.

The "Add type" dialog opens.

4. Make the following settings in the dialog:
– Enter a unique name for the PLC user data type under "Type name".
– Enter a valid version number for the PLC user data type under "Version".
– Enter the author responsible for the PLC user data type under "Author".
– Enter a comment for the PLC user data type under "Comment".

5. Click the "OK" button.
The PLC user data type is added with a released version to the "Types" folder in the project
library.
Note
When you use other user data types within the user data type that are not yet available in the
library, these user data types are also applied to the library.

Configuring parameter sets
8.2 Configuring parameter sets

System Manual, 11/2022 867

Creating a parameter set type with elements via a PLC user data type
Proceed as follows to create a user data type with elements via a PLC user data type:
1. Open the "Parameter set types" folder in the project tree.
2. Double-click "Add new parameter set type".

A parameter set type with unique standard name and unique ID is created. The "Parameter
set types" editor opens.

3. Select the released PLC user data type in the "Data type" column in the "Parameter set types"
editor.
In the editor, parameter set elements which are based on the user data type elements are
added to the parameter set type.

Note
The parameter set type items have the same name and data type as the user data type
elements. The name and data type of the parameter set type items are write-protected in the
editor.

Configuring parameter sets
8.2 Configuring parameter sets

868 System Manual, 11/2022

Configuring a parameter set type
To configure the created parameter set type, proceed as follows:
1. Enter a meaningful name for the parameter set type in the "Name" column in the "Parameter

set types" editor
The name uniquely identifies the parameter set type within the HMI device.

2. Enter a language-dependent name for the parameter set type in the "Display name" column.
The display name appears in the parameter set control in runtime.

3. If required, enter an own number for the parameter set type in the "ID" column.
The ID uniquely identifies the parameter set type within the HMI device. The ID appears in the
parameter set control in runtime.

Configuring parameter set type items
To configure the created parameter set type items, proceed as follows:
1. In the "Display name" column of the "Parameter set types" editor configure a language-

dependent name for the parameter set type items and corresponding parameters in a
parameter set.
The display name appears in the table of the parameter set control in runtime.

2. Configure a unit of measure In the "Unit of measure" column for parameter set type items and
corresponding parameters in a parameter set.
The unit of measure appears in the table of the parameter set control in runtime.

3. Configure a start value in the "Start value" column for parameter set type items.
The start value is used to pre-assign the corresponding parameters in a newly created
parameter set in runtime.

Configuring parameter sets
8.2 Configuring parameter sets

System Manual, 11/2022 869

Result
You have created a parameter set type with elements via a PLC user data type.

See also
Configuring user data types (Page 645)
"Parameter set types" editor (Page 856)
Changing a parameter set type with elements (Page 870)
Configuring the parameter set view (Page 880)
Assigning a tag of the data type "PLC user data type" to a parameter set type (Page 875)

8.2.3 Changing a parameter set type with elements

Introduction
You have created one or more parameter set types with elements via a user data type. A
parameter set type with elements determines the structure that is used for parameter sets on a
machine. You have the following options to change parameter set types with elements:
• You can change one or more parameter set types automatically via a new version of the user

data type.
• You can change a parameter set type manually via a new version of the user data type.
• You can change a parameter set type via another user data type.

Requirement
• One or more parameter set types with elements are created on the basis of an HMI or PLC user

data type.

Changing parameter set types automatically via a new version of the user data type
To change parameter set types with elements automatically via a new version of the user data
type, follow these steps:
1. Select the released user data type in the project library.
2. Select "Edit type" in the shortcut menu.

In the case of an HMI user data type the "HMI user data types" editor is opened and a new user
data type version with the "In process" status is generated in the project library. In the case
of a PLC user data type the "Edit type" dialog is opened.

3. In the case of a PLC user data type click "OK" in the "Edit type" dialog.
The "PLC data type" editor opens. A new user data type version with the "Testing" status is
generated in the project library.

4. Change the user data type in the case of an HMI user data type in the "HMI user data types"
editor and in the case of a PLC user data type in the "PLC data types" editor.

Configuring parameter sets
8.2 Configuring parameter sets

870 System Manual, 11/2022

5. Select the new user data type version in the project library.
6. Select "Release version" in the shortcut menu.

The "Release type version" dialog box opens.

7. If necessary, change the properties of the version:
– Enter a unique name for the user data type in the "Type name" field.
– Enter a valid version number for the version to be released in the "Version" field.
– Under "Author" enter the editor of the version to be released.
– Under "Comment" enter a comment on the version to be released.

8. If you want to revise the version management of the user data type, enable the "Delete
unused type versions from the library".

Configuring parameter sets
8.2 Configuring parameter sets

System Manual, 11/2022 871

9. To automatically change the parameter set type or types via the new user data type version,
activate the option "Update instances in the project".

10.Click the "OK" button.
The parameter set type or types are changed in the following way via the user data type
version:
– An element that you have not changed in the user data type, also remains in the

parameter set type with all its settings.
– An element that you have added new to the user data type is also added to the parameter

set type.
– The element that you have deleted from the user data type is also deleted from the

parameter set type.
– If you have changed the name of an element in the user data type, the parameter set type

of the element's name is changed as well. All other properties of the element remain
unchanged such as the start value or the display name.

– If you have changed the data type of an element in the user data type, the parameter set
type of the element's data type is changed as well. Other properties of the elements
remain unchanged.
Note
An element whose data type you have changed is treated like a new element in runtime.
Consequently the values of the element are deleted in the existing parameter sets and the
start values are assigned as default to the element.

– If you have changed a numerical data type of an element into a string data type in the user
data type, the minimum and maximum values previously specified of the element are also
removed.

Changing the parameter set type manually via a new version of the user data type
Proceed as follows to change a parameter set type with elements manually via a new version of
the user data type:
1. Execute Steps 1 to 8 and 10 of the description above.
2. Open the "Parameter set types" folder in the project navigation.
3. Double-click a created parameter set type.

The "Parameter set types" editor opens.
4. Select the new user data type version in the "Data type" column in the "Parameter set types"

editor.
The parameter set type is changed via the new user data type version as described in Step 10
of the above description.

Configuring parameter sets
8.2 Configuring parameter sets

872 System Manual, 11/2022

Changing parameter set type via another user data type
Proceed as follows to change a parameter set type with elements manually via another user data
type:
1. Open the "Parameter set types" folder in the project navigation.
2. Double-click a created parameter set type.

The "Parameter set types" editor opens.
3. Select another released user data type in the "Data type" column in the "Parameter set types"

editor.
The structure of the parameter set type is created completely new in accordance with the
structure of the other user data types.

See also
Creating a parameter set type with elements via an HMI user data type (Page 863)
Creating a parameter set type with elements via a PLC user data type (Page 866)

8.2.4 Assigning a tag of the data type HMI user data type to a parameter set type

Introduction
To exchange parameter sets between an HMI device and PLC in runtime, assign an external HMI
tag to a parameter set type created via an HMI user data type in the Engineering System. To this
purpose the HMI tag uses the HMI user data type as the data type with which you created the
parameter set type.

Note
You can also assign an external HMI tag to a parameter set type that was created via a PLC user
data type. In doing so the HMI tag uses the PLC user data type as the data type with which you
created the parameter set type.

Requirement
• An HMI user data type is created in the HMI device.
• The SIMATIC S7-300/400 or SIMATIC S7 1200/1500 communication driver is set for the HMI

user data type.
• User data type elements are added to the HMI user data type.
• The HMI user data type is released.
• A parameter set type with elements is created on the basis of the HMI user data type.
• An external HMI tag is created that uses the HMI user data type as the data type.

Configuring parameter sets
8.2 Configuring parameter sets

System Manual, 11/2022 873

Procedure
To assign an external HMI tag of the data type HMI user data type to a parameter set type,
proceed as follows:
1. Open the "Parameter set types" folder in the project tree.
2. Double-click the created parameter set type.

The "Parameter set types" editor opens. The Inspector window opens.
3. Select the created HMI tag of the data type "HMI user data type" in the column "Tag" in the

"Parameter set types" editor.

Result
You have assigned an external HMI tag of the data type "HMI user data type" to a parameter set
type.

See also
Creating a parameter set type with elements via an HMI user data type (Page 863)
Creating tags with a HMI user data type (Page 651)
Assigning a tag of the data type "PLC user data type" to a parameter set type (Page 875)
Transferring and deleting parameter sets automatically (Page 876)
Transferring parameter sets (Page 897)

Configuring parameter sets
8.2 Configuring parameter sets

874 System Manual, 11/2022

8.2.5 Assigning a tag of the data type "PLC user data type" to a parameter set type

Introduction
To exchange parameter sets between an HMI device and PLC in runtime, assign an external HMI
tag to a parameter set type created via a PLC user data type in the Engineering System. In doing
so the HMI tag uses the PLC user data type as the data type with which you created the parameter
set type.

Note
You can also assign an external HMI tag to a parameter set type which was created via a HMI user
data type. To this purpose the HMI tag uses the HMI user data type as the data type with which
you created the parameter set type.

Requirement
• An HMI device has been created.
• A PLC user data type with user data type items is created in a SIMATIC S7-1200/1500 PLC.
• A parameter set type with elements is created on the basis of the PLC user data type.
• An external HMI tag is created that uses the PLC user data type as the data type.

Note
You have the following possibilities to create an external HMI tag of the data type "PLC user
data type":
• Assign a PLC tag to an HMI tag, whereby the PLC tag is based on a PLC user data type.
• Assign a PLC data block that is based on a PLC user data type to an HMI tag.
• Assign a PLC data block element that is based on a PLC user data type to an HMI tag.

Configuring parameter sets
8.2 Configuring parameter sets

System Manual, 11/2022 875

Procedure
To assign an external HMI tag of the data type "PLC user data type" to a parameter set, follow
these steps:
1. Open the "Parameter set types" folder in the project tree.
2. Double-click the created parameter set type.

The "Parameter set types" editor opens. The Inspector window opens.
3. Select the created HMI tag of the data type "PLC user data type" in the "Tag" column in the

"Parameter set types" editor.

Result
You have assigned an external HMI tag of the data type "PLC user data type" to a parameter set
type.

See also
Creating a parameter set type with elements via a PLC user data type (Page 866)
External tags (Page 610)
Creating external tags (Page 626)
Assigning a tag of the data type HMI user data type to a parameter set type (Page 873)
Transferring and deleting parameter sets automatically (Page 876)
Transferring parameter sets (Page 897)

8.2.6 Transferring and deleting parameter sets automatically

Introduction
In the Engineering System you assign control tags to a parameter set type with elements. The
control tags serve to automatically transfer or delete parameter sets between an HMI device and
PLC in runtime. In the process either the control program or the HMI device controls the
automatic transfer or deleting via control requests.

Configuring parameter sets
8.2 Configuring parameter sets

876 System Manual, 11/2022

Requirement
• A parameter set type with elements is created on the basis of an HMI or PLC user data type.
• An external HMI tag that uses the HMI or PLC user data type as the data type is assigned to

the parameter set type.
• Two control tags with numerical data type are created, for example, "ParameterSetIDTag" and

"JobIDTag".
Note
If you want to automatically transfer or delete parameter sets by means of the control
program, create 2 external control tags. If you want to automatically transfer or delete
parameter sets by means of the HMI device, however, create 2 internal control tags.

Note
The control tags must use a signed data type.

• The "Toolbox" task card is open.

Assigning control tags to a parameter set type with elements
Proceed as follows to assign control tags to a parameter set type with elements in the
Engineering System:
1. Open the "Parameter set types" folder in the project tree.
2. Double-click the created parameter set type.

The "Parameter set types" editor opens. The Inspector window opens.
3. Select the control tag "ParameterSetIDTag" in the "Parameter set ID" column in the "Parameter

set types" editor.
4. Select the "JobIDTag" control tag in the "Job ID" column.

Configuring parameter sets
8.2 Configuring parameter sets

System Manual, 11/2022 877

Note
Please observe each of the following rules to not obtain any errors when compiling the project:
• If you set a control tag in the "Parameter set ID" column of the "Parameter set types" editor,

you also set a control tag in the "Job ID" column.
• Do not set the same control tag in the columns "Parameter set ID" and "Job ID" in the

"Parameter set types" editor.
• If you assign a control tag to a parameter set type in the "Parameter set types" editor, do not

assign the same control tag to another parameter set type.

Reading a parameter set from the PLC
Proceed as follows to automatically read a parameter set from the PLC and store it in the
parameter set memory in runtime:
1. Automatically set the control tag "ParameterSetIDTag" to an ID of an existing parameter set.
2. Automatically set the control tag "JobIDTag" to the control job ID "6".

The control job is executed. In the case of success the control tag "JobIDTag" is set to the value
"0", otherwise to the value "-1".

Note
If you set a non-existing parameter set ID and the control job ID to "6", a new parameter set is
created with the parameter set values available in the PLC.

Writing a parameter set to the PLC
To automatically load a parameter set from the parameter set memory in runtime and write it
into the PLC, follow these steps:
1. Automatically set the control tag "ParameterSetIDTag" to an ID of an existing parameter set.
2. Set the control tag "JobIDTag" automatically to the control job ID "7".

The control job is executed. In the case of success the control tag "JobIDTag" is set to the value
"0", otherwise to the value "-1".

Deleting a parameter set
To automatically delete a parameter set from the parameter set memory in runtime, follow these
steps:
1. Automatically set the control tag "ParameterSetIDTag" to an ID of an existing parameter set.
2. Set the control tag "JobIDTag" automatically to the control job ID "8".

The control job is executed. In the case of success the control tag "JobIDTag" is set to the value
"0", otherwise to the value "-1".

Configuring parameter sets
8.2 Configuring parameter sets

878 System Manual, 11/2022

Result
You have assigned control tags to a parameter set type with items in the engineering system and
automatically transferred and deleted parameter sets between the HMI device and PLC via the
control tags in runtime.

See also
Assigning a tag of the data type HMI user data type to a parameter set type (Page 873)
Assigning a tag of the data type "PLC user data type" to a parameter set type (Page 875)
External tags (Page 610)
Creating external tags (Page 626)
Configuring the parameter set view (Page 880)
Transferring parameter sets via scripts (Page 879)
Managing parameter sets (Page 885)
Transferring parameter sets (Page 897)

8.2.7 Transferring parameter sets via scripts

Introduction
In runtime, you can transfer parameter sets via local scripts between the HMI device and PLC. To
do so configure the local scripts in the Engineering Systems at events of screen objects or at the
"Update" event of tasks.

Note
You can also use system functions in the function list or in scripts to transfer parameter sets
between HMI device and PLC:
• With the system function "ReadAndSaveParameterSet" or "ReadAndSaveParameterSet", a

parameter set is read from the PLC and saved in the parameter set memory.
• With the system function "LoadAndWriteParameterSet" or "LoadAndWriteParameterSet", a

parameter set is loaded from the parameter set memory and written to the PLC.

Code examples for transferring parameter sets
To load a parameter set from the parameter set memory and write it into the PLC, use the
following code example:

let ps1 = HMIRuntime.ParameterSetTypes('MyPST1').ParameterSets(1);
ps1.LoadAndWrite(true);

Configuring parameter sets
8.2 Configuring parameter sets

System Manual, 11/2022 879

To read a parameter set from the PLC and store it in the parameter set memory, use the
following code example:

let ps1 = HMIRuntime.ParameterSetTypes('MyPST1').ParameterSets(1);
ps1.ReadAndSave(HMIRuntime.ParameterSetTypes.Enums.hmiOverwrite.Disabled, true);

Tip for an efficient procedure

You can find the code examples in the shortcut menu of the "Scripts" editor under "Snippets > HMI
Runtime > Parameter Set".

See also
Local scripts (Page 980)
Transferring and deleting parameter sets automatically (Page 876)
Transferring parameter sets (Page 897)
LoadAndWriteParameterSet (Page 924)
ReadAndSaveParameterSet (Page 932)

8.2.8 Configuring the parameter set view

Introduction
To display, manage and exchange parameter sets with the PLC in runtime, use a parameter set
control. You configure a parameter set control in the engineering system.

Requirement
• At least one parameter set type with elements has been created.
• A screen is open.
• The "Toolbox" task card is open.

Configuring parameter sets
8.2 Configuring parameter sets

880 System Manual, 11/2022

Procedure
To configure a parameter set control, proceed as follows:
1. Insert the "Parameter set control" object from the "Tools" task card into the screen.

2. Set the desired height, width and position for the parameter set control in the Inspector
window under "Properties > Size and Position".

3. If you only want to use a particular parameter set type with its parameter sets in runtime,
select the desired parameter set type under "Properties > General > Fixed parameter set type".
Note
The parameter set type is only visible in the parameter set control in runtime when the
extended style is used in the runtime settings under "General > Screen".

Note
A tag that you use as a dynamization tag of the fixed parameter set type in the parameter set
control must have the data type "String" or "WString".

4. Change the labels of the fields, if required.
5. If required, change the display of the parameter table under "Properties > Miscellaneous >

Parameter view".
Note
To change the visibility of columns, click on "Columns" under "Properties > Miscellaneous >
Parameter view". In the extended parameter control display, you can enable or disable the
visibility of individual columns under "Visibility". Changing the visibility via the preset value
in the "Blocks" property is not supported.

6. In "Properties > Miscellaneous > Editing mode", configure the activation status of the toolbar
buttons "Create", "Save", "Save as", "Rename" and "Delete" as required.
These toolbar buttons are used to edit parameter sets.

Configuring parameter sets
8.2 Configuring parameter sets

System Manual, 11/2022 881

7. If you want to hide specific buttons in the toolbar, deactivate the "Visibility" property under
"Properties > Miscellaneous > Toolbar > Elements" in the settings of the corresponding
button.

8. Under "Properties > Miscellaneous > Time zone", change the time zone as required by
entering a different numerical value.
The numerical value stands for a time zone, for example:
– "-1" stands for UTC-1h (Central European Time, standard time)
– "1" stands for UTC-12h (International Date Line West)
– "2" stands for UTC-11h (Hawaii)

See also
Configuring reordering of the columns (Page 392)
Parameter set control (Page 860)
Creating a parameter set type with elements via an HMI user data type (Page 863)
Creating a parameter set type with elements via a PLC user data type (Page 866)
Transferring and deleting parameter sets automatically (Page 876)
Managing parameter sets (Page 885)
Exporting and importing parameter sets (Page 891)
Transferring parameter sets (Page 897)

8.2.9 Assigning an edit tag to a parameter set item

Introduction
To adjust the values of the parameter sets in the HMI device and the PLC in runtime, you can
assign a local session HMI tag to a parameter set type in the Engineering System.
The edit tag enables you to manage the values of a parameter set in a screen. To do this, you
use system functions or scripts to transfer values between the HMI device and the PLC.

Requirement
• An HMI device has been created.
• An HMI or PLC user data type with user data type items is created in a SIMATIC S7-1200/1500

PLC.
• A parameter set type with parameter set items based on the HMI or PLC user data type is

created.
• A local session HMI tag with the same number of items and the same data type is created.

The HMI tag must not contain any information about the range (Upper 2, Lower 2).

Configuring parameter sets
8.2 Configuring parameter sets

882 System Manual, 11/2022

Procedure
Tip for an efficient procedure

To create the same structure for the edit tag as for the parameter set tag, copy the corresponding data
type in the library. Change the connection to "Internal connection" in the copy. In this way, you make the
data type available for a local session edit tag.

To assign a local session HMI tag to a parameter set, follow these steps:
1. Open the "Parameter set types" folder in the project tree.
2. Double-click the created parameter set type.

The "Parameter set types" editor opens.
3. In the "Parameter set types" editor, select a local session HMI tag in the "Edit tag" column.

Result
You have assigned a local session HMI tag to a parameter set type.

8.2.10 Configuring parameter sets without parameter set control

Introduction
In one or more screens, you configure an individual input mask as an extension or replacement
of the parameter set control. You create the input mask from I/O fields and other display and
operating objects. System functions or scripts are used to configure the parameter set
functionality, such as saving parameter sets.

Use
Configuring directly in screens allows you to display and manage parameter sets according to
your needs. You can spread parameter sets containing lots of entries across several screens to
create a better overview. For example, you can configure a separate screen with the
corresponding input masks for the parameter sets for each area of the plant.
You can visually map your machine in a screen using graphical screen objects. This enables
you to display parameter settings clearly by positioning I/O fields directly next to machine
elements such as axes or guide rails. This is how you produce a direct relationship between
the values and the machine.
You configure system functions and scripts with which you call up system information, create
and manage parameter sets or adapt active parameter sets via edit tags.

Requirement
• The parameter set type is created.
• The "Screens" editor is open.

Configuring parameter sets
8.2 Configuring parameter sets

System Manual, 11/2022 883

Procedure
To configure a screen with which you can display and manage parameter sets, follow these steps:
1. Configure a screen and create the I/O fields for the recipe input mask in it.

You can create multiple screens to suit the size and complexity of the recipe.
2. Configure the I/O fields with the tags that you have connected to the parameter set items.
3. Configure I/O fields for the parameter set type and parameter set selection.
4. Configure the system functions for editing parameter sets on the configured operator

controls.
Operator controls are configured buttons in the screen or function keys on the HMI device.
In the "Scripts" editor, you will find snippets with the system functions under "HMI Runtime
> Parameter set".

Alternative procedure
1. Configure a parameter set control as a selection list for parameter set types and parameter

sets.
2. Hide the buttons that are not required in the parameter set control.
3. Configure the system functions for editing parameter sets on the configured operator

controls.

Result
A screen that offers the possibility to display and manage parameter sets has been created.
With the use of scripts and the use of system functions, you have the following possibilities:
• Reading the name of a parameter set
• Reading the name of a type of parameter set
• Reading a selected parameter set
• Writing a parameter set to the PLC
• Trigger event on parameter set
• Display of system information of the status display in a separate screen

See also
System functions (Page 909)
ParameterSetTypes (Page 1233)
ParameterSetType (Page 1234)

Configuring parameter sets
8.2 Configuring parameter sets

884 System Manual, 11/2022

8.3 Using parameter sets in runtime

8.3.1 Managing parameter sets

Introduction
You manage parameter sets for different productions in a parameter set control in runtime. You
have the following options for managing parameter sets:
• Create new parameter sets
• Copy parameter sets
• Change parameter sets
• Delete parameter sets
• Rename parameter sets

Requirement
• At least one parameter set type with elements has been created.
• A parameter set control has been configured.
• The project is in runtime.

Configuring parameter sets
8.3 Using parameter sets in runtime

System Manual, 11/2022 885

Creating a new parameter set
To create a new parameter set, proceed as follows:
1. In the "Parameter set type" field, select the parameter set type for which you want to create

a new parameter set.
The elements of the selected parameter set type are displayed in the table.

2. Click the "Create" button.
The "Create parameter set" dialog opens.

3. Enter a unique parameter set name under "Parameter set name".
4. Enter a unique parameter set ID under "Number".

Configuring parameter sets
8.3 Using parameter sets in runtime

886 System Manual, 11/2022

5. Confirm the dialog.
A new parameter set has been created and saved. The parameters of the new parameter set
are displayed in the table. The parameters have the same values in the columns "Name" and
"Unit of measurement" as the elements of the previously selected parameter set type. The
defined start values are applied for the "Value" column. If you have not defined start values,
the corresponding default values are used.

Note
If you do not make any entries in the "Create parameter set" dialog and confirm the dialog, a
new parameter set is also created and saved. In this case the new parameter set, however, has
a unique parameter set name and a unique parameter set ID which were both automatically
assigned by the system.

Configuring parameter sets
8.3 Using parameter sets in runtime

System Manual, 11/2022 887

6. Enter values for the parameters in the "Value" column.
Depending on the configuration, the parameters already contain start values.

Note
The character ' is not permitted in the value of a parameter set.

7. Click the "Save" button.

Configuring parameter sets
8.3 Using parameter sets in runtime

888 System Manual, 11/2022

Copying a parameter set
To copy a parameter set, proceed as follows:
1. In the "Parameter set type" field, select the parameter set type in which you want to copy an

existing parameter set.
The elements of the selected parameter set type are displayed in the table.

2. In the "Parameter set" field, select the parameter set you want to copy.
The parameters of the selected parameter set are displayed in the table.

3. Click the "Save as" button.
The "Save parameter set" dialog opens. A unique parameter set name is pre-assigned to the
"Parameter set name" field.

4. Enter a different unique parameter set name under "Parameter set name" as required.

Configuring parameter sets
8.3 Using parameter sets in runtime

System Manual, 11/2022 889

5. Enter a unique parameter set ID under "Number" as required.
6. Confirm the dialog.

Note
If you do not enter a parameter set ID in the "Save parameter set" dialog and confirm the
dialog, a unique parameter set ID is automatically assigned to the new parameter set.

Changing the parameter set
To change a parameter set, proceed as follows:
1. In the "Parameter set type" field, select the parameter set type in which you want to change

an existing parameter set.
The elements of the selected parameter set type are displayed in the table.

2. In the "Parameter set" field, select the parameter set you want to change.
The parameters of the selected parameter set are displayed in the table.

3. Edit the values of the parameters in the "Value" column.
4. Click the "Save" button.

Deleting a parameter set
To delete a parameter set, proceed as follows:
1. In the "Parameter set type" field select the parameter set type in which you want to delete an

existing parameter set.
The elements of the selected parameter set type are displayed in the table.

2. In the "Parameter set" field, select the parameter set you want to delete.
The parameters of the selected parameter set are displayed in the table.

3. Click "Delete".

Renaming a parameter set
To rename a parameter set, proceed as follows:
1. In the "Parameter set type" field, select the parameter set type in which you want to rename

an existing parameter set.
The elements of the selected parameter set type are displayed in the table.

2. In the "Parameter set" field, select the parameter set you want to rename.
The parameters of the selected parameter set are displayed in the table.

Configuring parameter sets
8.3 Using parameter sets in runtime

890 System Manual, 11/2022

3. Click the "Rename" button.
The "Rename parameter set" dialog opens.

4. Enter a different unique name for the parameter set under "Parameter set name".
5. Confirm the dialog.

See also
Parameter set control (Page 860)
Configuring the parameter set view (Page 880)
Transferring and deleting parameter sets automatically (Page 876)
Exporting and importing parameter sets (Page 891)
Transferring parameter sets (Page 897)

8.3.2 Exporting and importing parameter sets

Introduction
In a parameter set control in runtime you export parameter sets from the parameter set memory
to a "*.tsv" file to be able to edit them a text editor. In a parameter set control in runtime you
furthermore import parameter sets from a "*.tsv" file into the parameter set memory. A "*.tsv"
file is a text file that uses the tabulator as a list separator.

Note
To export and import the parameter sets, you can also use the system functions in the function
list or in the scripts:
• With the system function "ExportParameterSets" or "ExportParameterSets", the parameter

sets are exported from the parameter set memory to a "*.tsv" file.
• With the system function "ImportParameterSets" or "ImportParameterSets", the parameter

records are imported from a "*.tsv" file into the parameter set memory.
If the parameter OutputStatus is set to True, a status message is output in an alarm control
configured in the screen.

Configuring parameter sets
8.3 Using parameter sets in runtime

System Manual, 11/2022 891

Requirement
• At least one parameter set type with elements has been created.
• A parameter set control has been configured.
• The project is in runtime.

Configuring parameter sets
8.3 Using parameter sets in runtime

892 System Manual, 11/2022

Exporting parameter sets of a parameter set type
Follow these steps to export the parameter sets of a parameter set type:
1. In the "Parameter set type" field, select the parameter set type whose parameter sets you

want to export.

2. Click the "Export" button.
The "Export parameter set" dialog box opens. The name of the parameter set control is pre-
assigned in the "File name" field.

Configuring parameter sets
8.3 Using parameter sets in runtime

System Manual, 11/2022 893

3. If appropriate, change the name of the file to which you want to export the parameter sets
under "File name".

Configuring parameter sets
8.3 Using parameter sets in runtime

894 System Manual, 11/2022

4. Enable "Generate checksum" to export the parameter data set with a checksum.
Parameter data sets with a checksum cannot be imported if they have been manipulated in
the meantime.

5. Confirm the dialog.
The parameter sets are exported to a ".tsv" file.
This file is stored according to the download settings.
The file has the following structure:
– The first line contains the file header. The file header consists of identifier, delimiter,

version of the exported file, decimal symbol and information on the number of languages
in which the name of the parameter sets is stored.
The line must not be changed. Otherwise, it is not possible to import parameter sets.

– The second line contains the name of the parameter set type.
– The third row contains the headers for parameter sets. LCID of the language and the

names of the parameter set type items are listed.
The header for parameter sets must not be changed.

– From the fourth line on the parameter sets are listed.

Edit exported file
1. You can customize the file to meet your needs:

– Change the values of existing parameters.
– Add parameter sets.
To be able to import the parameter sets after editing, note the following information:
Note
• The parameters must be valid for the defined data type.
• The parameters must be within the limits defined in the parameter set type item.
• ID and name of the individual parameter sets must be unique.

2. Save the changes.

Configuring parameter sets
8.3 Using parameter sets in runtime

System Manual, 11/2022 895

Importing parameter sets into a parameter set type
To be able to import parameter sets, note the following requirements:

Note
• The import file must have the same file header and the same header for parameter sets as the

export file. Otherwise, it is not possible to import parameter sets.
• There is no parameter set with the same display name in any of the configured languages.
• The numerical values in the import file are within the permitted value range of the

corresponding configured data type.

To import parameter sets into a parameter set type, follow these steps:
1. In the "Parameter set type" field, select the parameter set type into which you want to import

the parameter sets.
2. Click the "Import" button.

The "Import parameter set" dialog box opens.

3. Select the file from which you want to import the parameter sets.
4. To overwrite parameter sets in the parameter set control that have the same ID as the

imported parameter sets, activate the "Overwrite" option.
Note
If you deactivate overwriting and if a parameter set with the same ID or the same parameter
set name exists in the parameter set control, the import of parameter sets is not possible.
Any added parameter sets whose IDs and parameter set names deviate from the existing
parameter sets are imported regardless of the "Overwrite" option.

5. Enable "Check checksum" when importing a parameter data set exported with the "Generate
checksum" option.

6. Confirm the dialog.
The parameter sets are imported to the parameter set type.

Configuring parameter sets
8.3 Using parameter sets in runtime

896 System Manual, 11/2022

See also
SysFct.ExportParameterSets() (Page 1248)
SysFct.ImportParameterSets() (Page 1254)
Parameter set control (Page 860)
Configuring the parameter set view (Page 880)
Managing parameter sets (Page 885)

8.3.3 Transferring parameter sets

Introduction
You have assigned an external HMI tag of the data type HMI or PLC user data type to a parameter
set type. In a parameter set control in runtime you transfer the values of parameter sets to the
PLC via the HMI tag. The parameter set values are used to set up machines for different
productions.
In a parameter set control in runtime you furthermore read active parameter sets from the
PLC into the parameter set control via the HMI tag. The read parameter set values are stored
in the parameter set memory. By reading from the PLC, you call up currently used values
from production machines for later use.

Note
You can also use system functions in the function list or in scripts to transfer parameter sets
between HMI device and PLC:
• With the system function "ReadAndSaveParameterSet" or "ReadAndSaveParameterSet", a

parameter set is read from the PLC and saved in the parameter set memory.
• With the system function "LoadAndWriteParameterSet" or "LoadAndWriteParameterSet", a

parameter set is loaded from the parameter set memory and written to the PLC.

Requirement
• A parameter set type with elements has been created.
• An external HMI tag of the data type HMI or PLC user data type is assigned to the parameter

set type.
• A parameter set control has been configured.
• The project is in runtime.
• At least one parameter set has been created in the parameter set type.

Configuring parameter sets
8.3 Using parameter sets in runtime

System Manual, 11/2022 897

Transferring a parameter set to the PLC
To transfer a parameter set to the PLC, follow these steps:
1. In the "Parameter set type" field, select the parameter set type.
2. In the "Parameter set" field, select the parameter set whose values you want to transfer to the

PLC.

3. Click the "Write to PLC" button.

Reading a parameter set from PLC
To read a parameter set from the PLC, follow these steps:
1. In the "Parameter set type" field, select the parameter set type.
2. In the "Parameter set" field, select the parameter set whose values you want to read from the

PLC.
Note
If do you not select a parameter set in the in the "Parameter set" field, a new parameter set is
created in the parameter set control while reading from the PLC.

3. Click the "Read from PLC" button.

Note
A parameter set cannot be read from the PLC if minimum and/or maximum values are defined
for a parameter set type item and the value in the parameter set to be transferred is outside this
range. An alarm is triggered.

Configuring parameter sets
8.3 Using parameter sets in runtime

898 System Manual, 11/2022

Result
You have transferred the values of parameter sets between the HMI device and PLC.

See also
LoadAndWriteParameterSet (Page 924)
ReadAndSaveParameterSet (Page 932)
Assigning a tag of the data type HMI user data type to a parameter set type (Page 873)
Assigning a tag of the data type "PLC user data type" to a parameter set type (Page 875)
Parameter set control (Page 860)
Configuring the parameter set view (Page 880)
Managing parameter sets (Page 885)
Transferring and deleting parameter sets automatically (Page 876)
Transferring parameter sets via scripts (Page 879)

Configuring parameter sets
8.3 Using parameter sets in runtime

System Manual, 11/2022 899

Configuring parameter sets
8.3 Using parameter sets in runtime

900 System Manual, 11/2022

Using system functions 9
9.1 Working with function lists

9.1.1 Basics of the function list

Introduction
A function list performs one or more functions when the configured event occurs.
The following are available:
• System functions
• Functions which you configure in global modules
• Functions which you configure in script modules

Principle
The function list is configured for an event of the following objects:
• Screen
• Screen object
• Task
You can configure exactly one function list for each event. Which events are available
depends on the selected object. Events occur only when the project is in runtime.
Events include:
• Execution of a task
• Pressing of a button
The function list is opened in the Inspector window under "Properties > Events" as soon as an
object has been selected.

System Manual, 11/2022 901

Layout

The function list is divided into two columns. In the "Name" column you see the names of the
functions and the corresponding parameters.
In the Values column you assign values to the parameters. You use different parameter types
depending on the parameter.
The following buttons are located above the function list:

Button Function
Move function up

Move function down

Display parameters

Hide parameter

Convert function list to script

Delete function list

If the function list cannot be edited, the buttons are locked. This is the case, for example,
with reference projects.

See also
Editing a function list (Page 906)
System functions (Page 909)
"Scripts" editor (Page 981)

9.1.2 Input support
The function list supports you in:
• Function input
• Input of parameter values
• Troubleshooting

Using system functions
9.1 Working with function lists

902 System Manual, 11/2022

Function input
You have several options for entering a function in the function list:
• Enter the complete or partial name of the function.

Autocomplete is supported.
• Select the "<Add function>" field and open the selection menu.

The available functions are sorted by category.
• Select the "<Add function>" field and select the list icon.

The available functions are displayed in alphabetical order.
The system functions provided in the function list differ depending on the object selected.
For example, system functions of the "Screen" category are only available for screens and
screen items.

Input of parameter values
The parameters required in functions are displayed in the function list and differ depending on
the function selected.
You assign a value to each parameter.
The parameter type determines which values the parameter can accept.
The parameter type is either fixed by default or you can choose between several types.
Which parameter types are available depends on the respective parameter.
The following parameter types are implemented in the function list:
• Integer
• UInteger
• Double
• Bool
• String
• Color
• HMI tag: Specify a configured HMI tag. Autocomplete is supported.
• Screen object: Specify a configured screen item in the current screen. Autocomplete is

supported.
• Selection: Sets the current screen as value. If this type is selected, the value cannot be edited.
• Text list
• Screen window
• Runtime language

Note
HMI tags and screen items can be renamed without updating the function list. Objects of the
WinCC Unified object model are referenced in the function list.

Using system functions
9.1 Working with function lists

System Manual, 11/2022 903

Optional parameters are marked with "(optional)".
Parameters of functions that you have configured in global modules are always optional.

Assigning parameters via drag-and-drop operation
For some objects you can assign the objects to parameters of the function list using drag-and-
drop operation.
You assign the following objects from the detail view to function list parameters using the
drag-and-drop feature:
• HMI tag
• PLC tag

If you assign a PLC tag by drag-and-drop operation, a connected HMI tag is created
automatically. The HMI tag is linked to the parameter.

• Screen
In addition, you can assign screens from the project tree to parameters in the function list
using the drag-and drop features.

• Text list

Troubleshooting
The project data is tested in the background during the configuration.
To inform you of errors, missing or incorrect entries in the function list are highlighted in red:
• At least one function is not completely supplied with parameters.
• At least one function is contained which is not supported by the selected HMI device, for

example, by changing the device type.

Note
Missing screen items and HMI tags can be created later. Objects of the WinCC Unified object
model are referenced in the function list.

Alarms during the compiling and loading of a project are displayed in the Inspector window
in the "Info > Compile" tab.
The function list supports you by displaying missing or incorrect entries directly for editing:
• To go directly to the function list, select the green arrow .

See also
"Scripts" editor (Page 981)
System functions (Page 909)

Using system functions
9.1 Working with function lists

904 System Manual, 11/2022

9.1.3 Configuring a function list

Restrictions for events
• "Activated" and "Deactivated" events:

If the focus is on the affected screen item, scripts are executed at the "activated" and
"deactivated" events.

• "Press key" and "Release key" events:
The events "Press key" and "Release key" can only be queried when a keyboard is connected.

Requirement
One of the following objects is configured:
• Screen
• Screen item
• Task

Procedure
1. Select the object.
2. Go to "Properties > Events" in the Inspector window.

The function list opens.
3. Select an event.
4. Select "<Add function>" in the function list.
5. Enter the function.

If the desired function has parameters, the parameters are displayed.
6. Define the parameter values.
7. To add more functions, repeat steps 4.) to 6.).
8. Save the project.

Result
• The function list is configured.
• In addition, to the configured event, the status of the function list is displayed in the Inspector

window.
• The function list is executed from top to bottom when the configured event occurs in runtime.

Using system functions
9.1 Working with function lists

System Manual, 11/2022 905

9.1.4 Editing a function list

Editing function lists
The function list is executed from top to bottom. You have the following options for editing
function lists:

"Move function up"

"Move function down"

"Convert function list to script"

"Delete function list"

Requirement
• The function list is open.
• At least one function is configured at an event.

Changing the order of functions
You move a function within the function list as follows:
1. Select the name of the function or an associated parameter.
2. Select the "Move function up" or "Move function down" button.

If the function is already at the first or last position in the list, pressing the button has no effect.

Replacing a function
1. To replace a function, enter the name of another function in the input field. All parameter

settings of the replaced function are deleted.

Converting a function list to a local script
1. To convert the function list to a local script, use the "Convert function list to script" button.
2. The "Scripts" editor opens. Adapt the script to your requirements.
The function list can be converted to a local script even if the parameter specifications are
incorrect or incomplete. The parameter specifications must be adjusted accordingly in the
script.

Note
This action can only be revoked using the "Undo" button.

Using system functions
9.1 Working with function lists

906 System Manual, 11/2022

Delete function list
1. To delete the entire function list of an event, select the "Delete function list" button.

Deleting functions
To delete a single function, follow these steps:
1. Select the name of the function.
2. Press .

See also
"Scripts" editor (Page 981)

9.1.5 Using a screen item to specify the value of a parameter

Introduction
For some parameters, you can assign "Screen item" as parameter type.
For example, enter the "Value" parameter of the "IncreaseTag" function via the I/O field in
runtime.

Note
The assigned screen item must have the property "Process value".
Possible screen items are, for example:
• I/O field
• Bar
• Slider
• Radio button

The value entered in the screen item must correspond to the data type expected by the
system function.
If the data types do not match, convert the value using an additional tag.

Requirement
• A screen is configured.
• A suitable screen object (e.g. I/O field) is configured.
• A suitable system function (e.g. "IncreaseTag") is created in the function list.

Using system functions
9.1 Working with function lists

System Manual, 11/2022 907

Procedure
To assign a parameter to a screen item and convert the value entered in the screen item, proceed
as follows:
1. Assign the desired screen item to the parameter.
2. Select the screen item.
3. Go to "Properties > General > Process value" in the Inspector window.
4. Select "Tag" in the "Dynamization" column.

The tag selection range is displayed.
5. Select the selection button .
6. Select the "Add" button.
7. Assign a meaningful name.
8. Specify the required tag data type.

The "Value" parameter, for example, requires a numeric data type.

9.1.6 Adapt the function list to changed scripts
You use functions that you have defined for global modules in the function list. These functions
and associated parameters are referenced.
If you edit used functions after creating the function list, you must manually transfer some
changes to the function list:
• Adding of a parameter
• Deleting of a parameter
• Deleting of a function

Note
If you rename functions or parameters, these changes are automatically transferred to the
function list.

Requirement
• A function is defined in a global module.
• The function is used in a function list.

Using system functions
9.1 Working with function lists

908 System Manual, 11/2022

Procedure
1. Make at least one of the following changes to the function:

– Add a parameter
– Delete a parameter
– Delete a function

2. Go to the relevant function in the function list.
3. Double-click to apply the change marked in red.

See also
"Scripts" editor (Page 981)

9.2 System functions

9.2.1 LogOff

Description
Logs off the current user on the HMI device.

Use in the function list
Logoff()
The system function "Logoff" has no parameters.

Use in scripts
You can find more information on using the "LogOff" system function in JavaScript functions in
the WinCC Unified object model.

See also
SysFct.LogOff() (Page 6842)

Using system functions
9.2 System functions

System Manual, 11/2022 909

9.2.2 UpdateTag

Description
Reads the current value of the tags with the specified update ID from the PLC. An update ID can
be used for several tags.

Note
Tags of the STRUCT data type are not supported.

Use in the function list
UpdateTag (Update ID)
The system function "UpdateTag" has the following parameters:

Parameter Description
Update ID Specifies the Update ID.

Use in scripts
You can find more information on using the "UpdateTag" system function in JavaScript functions
in the WinCC Unified object model.

See also
SysFct.UpdateTag() (Page 1390)

9.2.3 InsertElectronicRecord

Description
This system function is used to log user actions in the Audit Trail that are not automatically
logged in the Audit Trail. You can also use this system function to require the user to enter an
acknowledgment or an electronic signature and a comment for the operator action. A
requirement for the use of the system function is that the GMP-compliant configuration is
activated under "Runtime settings > GMP".
If you use the "InsertElectronicRecord" system function in a function, the debugger may open
if you cancel your input by clicking "Cancel". To compensate for this reaction, you can use the
"On Error Resume Next" statement in a function. With this instruction, the next instruction is
executed after a runtime error. If you use the "On Error Resume Next" statement, output of
system alarms is also suppressed.

Using system functions
9.2 System functions

910 System Manual, 11/2022

Use in the function list
InsertElectronicRecord (name, category, operation type, old value, new value, confirmation
type, reason)
The "InsertElectronicRecord" system function has the following parameters:

Parameters Description
Name Name of the modified object
Category Category or class name of the modified object
Operation type Specifies the type of change.

1: New value
2: Modified value
3: Deleted value

Old value Value before the change
New value Value after the change
Confirmation type Specifies how the action must be confirmed

0 = (None): No confirmation required, an entry is created in the Audit Trail
1 = (Acknowledgement): Acknowledgment, the user must acknowledge the
action; an entry is created in the Audit Trail
2 = (Digital Signature): Electronic signature; a dialog window opens in which
the user must enter the electronic signature - an entry is created in the Audit
Trail

Reason (optional) May include a comment explaining the reason for the change.

Use in scripts
You can find more information on using the "InsertElectronicRecord" system function in
JavaScript functions in the WinCC Unified object model.

See also
SysFct.InsertElectronicRecord() (Page 1133)

9.2.4 ExecuteReport

Description
Executes a report automatically and independently of the general report cycle. The execution
can be triggered through a specific event, for example, change of a tag value, occurrence of a
specific message or exceeding a tag limiting value.

Use in the function list
ExecuteReport (name report order)

Using system functions
9.2 System functions

System Manual, 11/2022 911

The system function "ExecuteReport" has the following parameters:

Parameter Description
Report task name Specifies the name of the report to be executed.

Use in scripts
You can find more information on using the "ExecuteReport" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.ExecuteReport() (Page 1302)

9.2.5 EjectStorageMedium

Description
Ejects an inserted storage medium. The function checks whether the storage medium is
currently being accessed. If no current read or write process is taking place, the storage medium
can be removed without data loss.

Note
The "EjectStorageMedium" system function is only available for WinCC Unified Comfort Panel.
The system outputs a compiler warning if the function is used through manual input or through
a device replacement in SIMATIC WinCC Unified PC.
The system function only works correctly in runtime if you use the storage medium in question
for logging.

Use in the function list
EjectStorageMedium (storage device)
The system function "EjectStorageMedium" has the following parameters:

Parameter Description
Storage device System variable name of the storage medium with path specification

(e.g. /USB storage card)

Use in scripts
You can find more information on using the "EjectStorageMedium" system function in JavaScript
functions in the WinCC Unified object model.

Using system functions
9.2 System functions

912 System Manual, 11/2022

See also
SysFct.EjectStorageMedium() (Page 1164)

9.2.6 IncreaseTag

Description
Adds the specified value to the tag value: X = X + a
If you configure the system function for events of an alarm without the tag being used in the
current screen, it is not ensured that the actual tag value is being used in the PLC.
For the system function to be executed, the value of the tags must be current and valid,
which means the quality code must correspond to Good (cascade).
The following conditions must be met for external tags:
• the connection to the PLC is set up and
• the acquisition mode of the tags is "Cyclic in operation" and
• the tag is used at the "Process value" property of an object.

Note
The system function is executed with the last known process value. Since this process value
cannot be kept up to date in all cases, it is prohibited to write it from multiple sources (e.g. from
the HMI device via scripts and from the PLC). This ensures that the value that is changed actually
corresponds to the process value.

Use in the function list
IncreaseTag (Tag, Value)
The system function "IncreaseTag" has the following parameters:

Parameter Description
Tag Tag to which the specified value is added.

The following data types are not supported: Byte, Word, DWord, LWord.
Value Value to be added.

Note
Converting a value
The system function uses the same tag as input and output values. If you are using this system
function to convert a value, follow these steps:
1. Create an auxiliary tag.
2. Assign the tag value to the auxiliary tag with the "SetTagValue" system function.

Using system functions
9.2 System functions

System Manual, 11/2022 913

Use in scripts
You can find more information on using the "IncreaseTag" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.IncreaseTag() (Page 1384)

9.2.7 CreateParameterSet

Description
Creates a new parameter set. with the default values defined in the Engineering System.

Use in the function list
CreateParameterSet (parameter set type, Language, ParameterSetTypeName, Processing status)
The system function "CreateParameterSet" has the following parameters:

Parameter Description
Parameter set type Specifies the name or the ID of the parameter set type. If the name or ID

of the parameter set type does not exist, execution is terminated.
Parameter set ID (optional) ID of the parameter set that is created. If an ID is not entered, a unique

ID is assigned automatically.
Parameter set name (optional) Name of the parameter set that is created. If a name is not entered, a

unique name is assigned automatically.
Output status Defines the output status:

True = Alarms are output.
False = Alarms are not output.
If the output status is set to "True", alarms are generated and displayed
(if configured).

Processing status (optional) Indicates the execution status of a function:
2 = Function is being executed.
4 = Function successfully executed.
12 - Function was canceled.

Using scripts
You can find more information on the "CreateParameterSet" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.CreateParameterSet() (Page 1245)

Using system functions
9.2 System functions

914 System Manual, 11/2022

9.2.8 CreateScreenshot

Description
Creates and saves a screenshot. The .jpg and .jpeg image formats are supported. If images
already exist in the specified file path, they will be overwritten. If the specified file path cannot
be accessed, an error message is displayed.

Note
The system function "CreateScreenshot" is only available for WinCC Unified Comfort Panel. The
system outputs a compiler warning if the function is used through manual input or through a
device replacement in SIMATIC WinCC Unified PC.

Use in the function list
CreateScreenshot (path of storage medium)
The system function "CreateScreenshot" has the following parameters:

Parameter Description
Storage media path Path name of the screenshot.

Use in scripts
You can find more information on using the "CreateScreenshot" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.CreateScreenshot() (Page 1164)

9.2.9 CreateOperatorInputInformation

Description
Creates an alarm of the class "OperatorInputInformation".

Use in the function list
CreateOperatorInputInformation (alarm text, range, parameter value 1, parameter value 2,
parameter value 3, parameter value 4, parameter value 5, parameter value 6, parameter value
7)

Using system functions
9.2 System functions

System Manual, 11/2022 915

The system function "CreateSystemInformation" has the following parameters:

Parameter Description
Alarm text Specifies the alarm text.

The alarm text can only be defined in one language in the system function.
Area (optional) Specifies the scope of the alarm.
Parameter value 1 (op‐
tional)

Value of the first alarm parameter.

Parameter value 2 (op‐
tional)

Value of the second alarm parameter.

Parameter value 3 (op‐
tional)

Value of the third alarm parameter.

Parameter value 4 (op‐
tional)

Value of the fourth alarm parameter.

Parameter value 5 (op‐
tional)

Value of the fifth alarm parameter.

Parameter value 6 (op‐
tional)

Value of the sixth alarm parameter.

Parameter value 7 (op‐
tional)

Value of the seventh alarm parameter.

Use in scripts
You can find more information on using the "CreateOperatorInputInformation" system function
in JavaScript functions in the WinCC Unified object model.

See also
Creating alarms with multilingual alarm texts (Page 1015)
SysFct.CreateOperatorInputInformation() (Page 1101)

9.2.10 CreateSystemInformation

Description
Creates an alarm of the class "SystemInformation".
The alarm class "SystemInformation" only has the status "Incoming" and is therefore only
displayed under "Logged alarms" in the alarm control and not under "Pending alarms".

Use in the function list
CreateSystemInformation (alarm text, range, parameter value 1, parameter value 2, parameter
value 3, parameter value 4, parameter value 5, parameter value 6, parameter value 7)

Using system functions
9.2 System functions

916 System Manual, 11/2022

The system function "CreateSystemInformation" has the following parameters:

Parameter Description
Alarm text Specifies the alarm text.

The alarm text can only be defined in one language in the system function.
Area (optional) Specifies the scope of the alarm.
Parameter value 1 (op‐
tional)

Value of the first alarm parameter.

Parameter value 2 (op‐
tional)

Value of the second alarm parameter.

Parameter value 3 (op‐
tional)

Value of the third alarm parameter.

Parameter value 4 (op‐
tional)

Value of the fourth alarm parameter.

Parameter value 5 (op‐
tional)

Value of the fifth alarm parameter.

Parameter value 6 (op‐
tional)

Value of the sixth alarm parameter.

Parameter value 7 (op‐
tional)

Value of the seventh alarm parameter.

Use in scripts
You can find more information on using the "CreateSystemInformation" system function in
JavaScript functions in the WinCC Unified object model.

See also
Creating alarms with multilingual alarm texts (Page 1015)
SysFct.CreateSystemInformation() (Page 1104)

9.2.11 CreateSystemAlarm

Description
Creates an alarm of the class "SystemAlarm".

Use in the function list
CreateSystemAlarm (alarm text, range, parameter value 1, parameter value 2, parameter value
3, parameter value 4, parameter value 5, parameter value 6, parameter value 7)

Using system functions
9.2 System functions

System Manual, 11/2022 917

The system function "CreateSystemInformation" has the following parameters:

Parameter Description
Alarm text Specifies the alarm text.

The alarm text can only be defined in one language in the system function.
Area (optional) Specifies the scope of the alarm.
Parameter value 1 (op‐
tional)

Value of the first alarm parameter.

Parameter value 2 (op‐
tional)

Value of the second alarm parameter.

Parameter value 3 (op‐
tional)

Value of the third alarm parameter.

Parameter value 4 (op‐
tional)

Value of the fourth alarm parameter.

Parameter value 5 (op‐
tional)

Value of the fifth alarm parameter.

Parameter value 6 (op‐
tional)

Value of the sixth alarm parameter.

Parameter value 7 (op‐
tional)

Value of the seventh alarm parameter.

Use in scripts
You can find more information on using the "CreateSystemAlarm" system function in JavaScript
functions in the WinCC Unified object model.

See also
Creating alarms with multilingual alarm texts (Page 1015)
SysFct.CreateSystemAlarm() (Page 1103)

9.2.12 ExportParameterSets

Description
Exports parameter sets from the parameter set memory to a file.

Use in the function list
ExportParameterSets (parameter set type ID, parameter set ID, file name, overwrite, output
status, processing status (optional), generate checksum)

Using system functions
9.2 System functions

918 System Manual, 11/2022

The system function "ExportParameterSets" has the following parameters:

Parameter Description
Parameter set type ID Specifies the name or the ID of the parameter set type. If the name or ID of the

type does not exist, execution is terminated.
Parameter set ID Specifies the name or the ID of the parameter set. The following cases are

differentiated:
• If the parameter set ID is set to 0, all parameter sets available in the mem‐

ory are exported.
• If the specified name or the ID does not exist in the imported file, the

execution is canceled.
• If the specified name or the ID does not exist in the imported file, this

specific parameter set is imported.
In the following cases the import is aborted and an alarm appears:
• No parameter set available
• Name or ID does not exist in the import file

File name Specifies the file path of the file to be imported.
In the following cases the execution is canceled and an alarm is generated:
• Invalid file path
• Error during file access

Overwrite Specifies whether the existing file is overwritten:
0 = Overwriting is not allowed.
1 = Overwriting is allowed.
An alarm is generated and displayed if an error occurs during file access. This
can occur, for example, when the existing file cannot be overwritten even
though overwriting is allowed.

Output status Specifies the output status:
True = Alarms are output.
False = Alarms are not output.

Processing status (op‐
tional)

Indicates the execution status of a function:
2 = Function just executed
4 = Function successfully executed
12 = Function was canceled

Generate checksum Specifies whether a checksum is generated for the parameter set to be expor‐
ted:
True = Checksum is generated.
False = Checksum is not generated.

Use in scripts
You can find more information on using the "ExportParameterSets" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.ExportParameterSets() (Page 1248)

Using system functions
9.2 System functions

System Manual, 11/2022 919

9.2.13 GoToPLC

Description
Switches from a diagnostics indicator to the system diagnostics control.

Use in the function list
GoToPLC (Screen object path)
The system function "GoToPLC" has the following parameters:

Parameter Description
Screen object path Path to the screen object System Diagnostics Con‐

trol, for example, "./Screen window_1/Diagnostic
control_1"

Using scripts
You can find more information on the "GoToPlc" system function in JavaScript functions in the
WinCC Unified object model.

See also
SysFct.GoToPlc() (Page 6835)

9.2.14 ImportParameterSets

Description
Imports parameter sets from a file into the parameter set memory.

Use in the function list
ImportParameterSets (file name, parameter set ID, overwrite, output status, processing status
(optional), check checksum)

Using system functions
9.2 System functions

920 System Manual, 11/2022

The system function "ImportParameterSets" has the following parameters:

Parameter Description
File name Specifies the file path of the file to be imported.

In the following cases the execution is canceled and an alarm is generated:
• Invalid file path
• Error during file access

Parameter set ID Specifies the name or the ID of the parameter set. The following cases are
differentiated:
• If the parameter set ID is set to 0, all parameter sets are imported from the

file.
• If the name or the ID does not exist in the imported file, the execution is

canceled.
• If the specified name or the ID does not exist in the imported file, only this

specific parameter set is imported.
In the following cases the import is aborted and an alarm appears:
• Invalid file head.
• No parameter set available.
• Parameter set name or parameter set ID does not exist in the file.

Overwrite Specifies whether the values in the memory are overwritten with the values
from the import file:
0 = Overwriting is not allowed.
1 = Overwriting is allowed.
If the name / ID of the specified parameter set exists, the values in the memory
are overwritten with the parameter set values from the import file if overwrit‐
ing is allowed. If it may not be overwritten, the data in the memory is not
renewed.

Output status Specifies the output status:
True = Alarms are output.
False = Alarms are not output.
If the output status is set to "True", alarms are generated and displayed (if
configured).

Processing status (op‐
tional)

Indicates the execution status of a function:
2 = Function is being executed.
4 = Function successfully executed.
12 = Function was canceled.

Check checksum Specifies whether the checksum of the import file is verified:
True = Checksum is generated.
False = Checksum is not generated.

Use in scripts
You can find more information on using the "ImportParameterSets" system function in JavaScript
functions in the WinCC Unified object model.

Using system functions
9.2 System functions

System Manual, 11/2022 921

See also
Exporting and importing parameter sets (Page 891)
SysFct.ImportParameterSets() (Page 1254)

9.2.15 InvertBitInTag

Description
Inverts the bit with the specified number in the tag:
• If the bit in the tag has the value 1 (True), it will be set to 0 (False).
• If the bit in the tag has the value 0 (False), it will be set to 1 (True).
After changing the given bit, the system function transfers the entire tag back to the PLC. It is
not checked whether other bits in the tags have changed in the meantime.
While the function is running, the operator and controller have only read access to the
specified tag until it is transferred to the controller again.
For the system function to be executed, the value of the tags must be current and valid,
which means the quality code must correspond to Good (cascade).
The following conditions must be met for external tags:
• the connection to the PLC is set up and
• the acquisition mode of the tags is "Cyclic in operation" and
• the tag is used at the "Process value" property of an object.

Note
The system function is executed with the last known process value. Since this process value
cannot be kept up to date in all cases, it is prohibited to write it from multiple sources (e.g. from
the HMI device via scripts and from the PLC). This ensures that the value that is changed actually
corresponds to the process value.

Use in the function list
InvertBitInTag (Tag, Value)
The system function "InvertBitInTag" has the following parameters:

Parameter Description
Tag The tag in which the specified bit is inverted.
Bit number The number of the bit that is inverted.

When this system function is used in a user function, the bits in the given tag
will be counted from right to left independent of the controller that is used.
Numbering starts with 0.

Using system functions
9.2 System functions

922 System Manual, 11/2022

Use in scripts
You can find more information on using the "InvertBitInTag" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.InvertBitInTag() (Page 1384)

9.2.16 IsAlarmJumpPossible

Description
The function checks whether the alarm selected in the alarm control is a process diagnostics
alarm. If so, the specified screen object is enabled; otherwise, it is disabled.

Use in the function list
IsAlarmJumpPossible (Alarm control, Screen object path)
The "IsAlarmJumpPossible" system function has the following parameters:

Parameter Description
Alarm control Path of the alarm control with selected alarm.
Screen object path Path of the screen object

Use in scripts
You can find more information on using the "IsJumpableAlarm" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.IsJumpableAlarm() (Page 1561)

9.2.17 LoadParameterSet

Description
Loads parameter sets from the parameter set memory into the edit tag.

Use in the function list
LoadParameterSet (Parameter set type, Parameter set, Output status, Processing status
(optional))

Using system functions
9.2 System functions

System Manual, 11/2022 923

The system function "LoadParameterSet" has the following parameters:

Parameter Description
Parameter set type Specifies the name or the ID of the parameter set type. If the name or ID

of the parameter set type does not exist, execution is terminated.
Parameter set Specifies the name or the ID of the parameter set. If the name or ID of the

parameter set does not exist, execution is terminated.
Output status Defines the output status:

True = Alarms are output.
False = Alarms are not output.

Processing status (optional) Indicates the execution status of a function:
2 = Function is being executed.
4 = Function successfully executed.
12 - Function was canceled.

Using scripts
You can find more information on the "LoadParameterSet" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.LoadParameterSet() (Page 1257)

9.2.18 LoadAndWriteParameterSet

Description
Loads parameter sets from the parameter set memory and writes them to the PLC.

Use in the function list
LoadAndWriteParameterSet (parameter set type ID, parameter set ID, output status, processing
status (optional))
The system function "LoadAndWriteParameterSet" has the following parameters:

Parameter Description
Parameter set type ID Specifies the name or the ID of the parameter set type. If the name or ID of the

parameter set type does not exist, execution is terminated.
Parameter set ID Specifies the name or the ID of the parameter set. If the name or ID of the

parameter set does not exist, execution is terminated.

Using system functions
9.2 System functions

924 System Manual, 11/2022

Parameter Description
Output status Specifies the output status:

True = Alarms are output.
False = Alarms are not output.
If the output status is set to "True", alarms are generated and displayed (if
configured).

Processing status (op‐
tional)

Indicates the execution status of a function:
2 = Function is being executed.
4 = Function successfully executed.
12 - Function was canceled.

Use in scripts
You can find more information on using the "LoadAndWriteParameterSet" system function in
JavaScript functions in the WinCC Unified object model.

See also
Transferring parameter sets via scripts (Page 879)
Transferring parameter sets (Page 897)
SysFct.LoadAndWriteParameterSet() (Page 1256)

9.2.19 GetDHCPState

Description
Reads out the DHCP setting of the network adapter.

Note
The "GetDHCPState" system function is only available for WinCC Unified Comfort Panel. The
system outputs a compiler warning if the function is used through manual input or through a
device replacement in SIMATIC WinCC Unified PC.

Use in the function list
GetDHCPState (Adapter name, Status, IPV6 (optional))

Using system functions
9.2 System functions

System Manual, 11/2022 925

The system function "GetDHCPState" has the following parameters:

Parameter Description
Adapter name Specifies the name of the network adapter.

The following entries are possible:
• X1 = Static network adapter name 1
• X2 = Static network adapter name 2
• Manual input

Status Tag to which the status is written:
0 = DHCP is disabled.
1 = DHCP is enabled.

IP V6 (optional) Tag to which the IPv6 address is written.

Use in scripts
You can find more information on using the "GetDHCPState" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.GetDHCPState() (Page 1166)

9.2.20 GetBrightness

Description
Reads out the brightness value.

Note
The "GetBrightness" system function is only available for WinCC Unified Comfort Panel. The
system outputs a compiler warning if the function is used through manual input or through a
device replacement in SIMATIC WinCC Unified PC.

Use in the function list
GetBrightness (Value)
The system function "GetBrightness" has the following parameters:

Parameter Description
Value The tag to which the brightness value is written.

Using system functions
9.2 System functions

926 System Manual, 11/2022

Use in scripts
You can find more information on using the "GetBrightness" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.GetBrightness() (Page 1165)

9.2.21 GetIPV4Address

Description
Reads out the IPv4 settings of the network adapter.

Note
The "GetIPV4Address" system function is only available for WinCC Unified Comfort Panel. The
system outputs a compiler warning if the function is used through manual input or through a
device replacement in SIMATIC WinCC Unified PC.

Use in the function list
GetIPV4Address (Adapter name, IP address, Subnet mask, Default gateway (optional), DNS
server 1 (optional), DNS server 2 (optional))
The system function "GetIPV4Address" has the following parameters:

Parameter Description
Adapter name Specifies the name of the network adapter.

The following entries are possible:
• X1 = Static network adapter name 1
• X2 = Static network adapter name 2
• Manual input

IP address Tag to which the IP address is written.
Subnet mask Tag to which the subnet mask of the IPv4 address is written.
Default gateway (op‐
tional)

Tag to which the IP address of the default gateway is written.

DNS server 1 (optional) Tag to which the IP address of DNS server 1 is written.
DNS server 2 (optional) Tag to which the IP address of DNS server 2 is written.

Use in scripts
You can find more information on using the "GetIPV4Address" system function in JavaScript
functions in the WinCC Unified object model.

Using system functions
9.2 System functions

System Manual, 11/2022 927

See also
SysFct.GetIPV4Address() (Page 1168)

9.2.22 GetNetworkInterfaceState

Description
Reads out the status of the network adapter.

Note
The "GetNetworkInterfaceState" system function is only available for WinCC Unified Comfort
Panel. The system outputs a compiler warning if the function is used through manual input or
through a device replacement in SIMATIC WinCC Unified PC.

Use in the function list
GetNetworkInterfaceStatus (Adapter name, Status)
The system function "GetNetworkInterfaceState" has the following parameters:

Parameter Description
Adapter name Specifies the name of the network adapter. The following entries are possible:

• X1 addresses PROFINET (X1) Port 0
• X 1.0 addresses PROFINET (X1) Port 0
• X 1.1 addresses PROFINET (X1) Port 1
• X2 = addresses Ethernet (X2)
• Manual input

Status Tag to which the state of the network adapter is written:
0 = Network adapter is disabled.
1 = Network adapter is enabled.

Use in scripts
You can find more information on using the "GetNetworkInterfaceState" system function in
JavaScript functions in the WinCC Unified object model.

See also
SysFct.GetNetworkInterfaceState() (Page 1170)

Using system functions
9.2 System functions

928 System Manual, 11/2022

9.2.23 ReadParameterSet

Description
Transfers the values of the recipe data set loaded in the controller to the corresponding edit tags.

Use in the function list
ReadParameterSet (Parameter set type, Output status, Processing status (optional))
The system function "ReadParameterSet" has the following parameters:

Parameter Description
Parameter set type Specifies the name or the ID of the parameter set type. If the name or ID

of the parameter set type does not exist, execution is terminated.
Output status Defines the output status:

True = Alarms are output.
False = Alarms are not output.

Processing status (optional) Indicates the execution status of a function:
2 = Function is being executed.
4 = Function successfully executed.
12 = Function was canceled.

Using scripts
You can find more information on the "ReadParameterSet" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.ReadParameterSet() (Page 1261)

9.2.24 ReadParameterSetName

Description
Reads the name of the specified parameter set.

Use in the function list
ReadParameterSetName (Parameter set type ID, Parameter set ID, Language,
ParameterSetName, Processing status)

Using system functions
9.2 System functions

System Manual, 11/2022 929

The system function "ReadParameterSetName" has the following parameters:

Parameter Description
Parameter set type ID Specifies the name or the ID of the parameter set type. If the name or ID of the

parameter set type does not exist, execution is terminated.
Parameter set ID Specifies the name or the ID of the parameter set.
Language Specifies the language of the ID that is to be read.
Parameter set name The tag to which the name of the parameter set is written.
Processing status Indicates the execution status of a function:

2 = Function is currently being executed.
4 = Function successfully executed.
12 - Function was canceled

Use in scripts
You can find more information on using the "GetParameterSetName" system function in
JavaScript functions in the WinCC Unified object model.

See also
SysFct.GetParameterSetName() (Page 1250)

9.2.25 ReadParameterSetTypeName

Description
Reads the name of the specified parameter set type.

Use in the function list
ReadParameterSetTypeName (Parameter set type ID, Language, ParameterSetTypeName,
Processing status)
The system function "ReadParameterSetTypeName" has the following parameters:

Parameter Description
Parameter set type ID Specifies the name or the ID of the parameter set type. If the name or ID of

the parameter set type does not exist, execution is terminated.
Language Specifies the language of the ID that is to be read.
Parameter set type name The tag to which the name of the parameter set type is written.
Processing status Indicates the execution status of a function:

2 = Function is being executed.
4 = Function successfully executed.
12 = Function was canceled.

Using system functions
9.2 System functions

930 System Manual, 11/2022

Using scripts
You can find more information on the "GetParameterSetTypeName" system function in
JavaScript functions in the WinCC Unified object model.

See also
SysFct.GetParameterSetTypeName() (Page 1252)

9.2.26 GetSmartServerState

Description
Returns the activation state of the Smart server.

Note
The "GetSmartServerState" system function is only available for WinCC Unified Comfort Panel.
The system outputs a compiler warning if the function is used through manual input or through
a device replacement in SIMATIC WinCC Unified PC.

Use in the function list
GetSmartServerState (Status)
The system function "GetSmartServerState" has the following parameters:

Parameter Description
Status Tag to which the activation status of the Smart Server is written:

True = Smart Server is enabled.
False = Smart Server is disabled.

Use in scripts
You can find more information on using the "GetSmartServerState" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.GetSmartServerState() (Page 1171)

Using system functions
9.2 System functions

System Manual, 11/2022 931

9.2.27 ReadAndSaveParameterSet

Description
Reads a parameter set from the PLC and writes the parameter set to the parameter set memory.

Use in the function list
ReadAndWriteParameterSet (parameter set type ID, parameter set ID, overwrite, output status,
processing status (optional))
The system function "ReadAndWriteParameterSet" has the following parameters:

Parameter Description
Parameter set type ID Specifies the name or the ID of the parameter set type. If the name or ID of the

parameter set type does not exist, execution is terminated.
Parameter set ID Specifies the name or the ID of the parameter set. If the name or ID of the

parameter set does not exist, a new parameter set is created.
If the name or the ID of the specified parameter set exists, the values in the PLC
are overwritten with the parameter set values in the memory if hmiOver‐
write.Enabled is set. If hmiOverwrite.Disabled is set, the data in the memory
is not replaced.

Overwrite Specifies whether the values in the memory are overwritten with the values
from the import file:
0 = Overwriting is not allowed.
1 = Overwriting is allowed.
The following cases are differentiated:
• If the name / ID of the specified parameter set exists, the values in the PLC

are overwritten with the parameter set values in the memory if overwrit‐
ing is allowed.

• If overwriting is not allowed, the data in the memory is not replaced. The
process tag is updated to the status of the system function, if configured
accordingly.

Output status Specifies the output status:
True = Alarms are output.
False = Alarms are not output.
If the output status is set to "True", alarms are generated and displayed (if
configured).

Processing status (op‐
tional)

Indicates the execution status of a function:
2 = Function is being executed.
4 = Function was successfully executed.
12 = Function cancelled.

Use in scripts
You can find more information on using the "ReadAndSaveParameterSet" system function in
JavaScript functions in the WinCC Unified object model.

Using system functions
9.2 System functions

932 System Manual, 11/2022

See also
Transferring parameter sets via scripts (Page 879)
Transferring parameter sets (Page 897)
SysFct.ReadAndSaveParameterSet() (Page 1259)

9.2.28 ClearAlarmLog

Description
Deletes all recordings from the specified alarm log.

Note
No backup
Note that no automatic backup is performed before the execution of the function.

Use in the function list
ClearAlarmLog (Log name)
The system function "ClearAlarmLog" has the following parameters:

Parameter Description
Log name Name of the alarm log from which the entries are deleted.

Use in scripts
You can find more information on using the "ClearAlarmLog" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.ClearAlarmLog() (Page 1131)

9.2.29 DeleteParameterSet

Description
Deletes a parameter set.

Using system functions
9.2 System functions

System Manual, 11/2022 933

Use in the function list
DeleteParameterSet (Parameter set type, Parameter set, Output status, Processing status
(optional))
The system function "DeleteParameterSet" has the following parameters:

Parameter Description
Parameter set type Specifies the name or the ID of the type of parameter set from which the

parameter set will be deleted.
Parameter set Specifies the name or the ID of the parameter set that is being deleted.
Output status Defines the output status:

True = Alarms are output.
False = Alarms are not output.

Processing status (op‐
tional)

Indicates the execution status of a function:
2 = Function is being executed.
4 = Function was successfully executed.
12 - Function was canceled.

Use in scripts
You can find more information on using the "DeleteParameterSet" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.DeleteParameterSet() (Page 1247)

9.2.30 ClearTagLog

Description
Deletes all data records in the specified data log.

Note
No backup!
Note that no automatic backup is performed before execution of the function!

Use in the function list
ClearTagLog (Log name)
The system function "ClearTagLog" has the following parameters:

Parameter Description
Log name Name of the data log from which all entries are deleted.

Using system functions
9.2 System functions

934 System Manual, 11/2022

Use in scripts
You can find more information on using the "ClearTagLog" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.ClearTagLog() (Page 1331)

9.2.31 OpenScreenInPopup

Description
Opens a screen in a popup window.

Use in the function list
OpenScreenInPopup (Popup window name, Screen name, Close when open, Header, Left, Top,
Hide close button, Parent screen path)
The system function "OpenScreenInPopup" has the following parameters:

Parameter Description
Popup window name Name of the popup window. The name must be unique within the parent

screen and is required to close the pop-up window.
Screen name Name of the screen that is to be opened in the pop-up window.
Close when opened True = If the pop-up window is open when the function is called, it is closed.

False = If the popup window is open when the function is called, it remains
open.

Header Specifies the window title of the popup window.
Left Defines the window position as offset from the left margin.
Top Defines the window position as offset from the top margin.
Hide close button True = The "Close" button is not displayed.

False = The "Close" button is displayed.
Parent screen path (op‐
tional)

Path of the parent screen. With this parameter, you specify whether the pop-
up window is closed in case of a screen change or in case of a screen change
in a screen window.
If this value is not defined, the pop-up window is global. The pop-up window
remains open until it is closed manually, by means of a function call or by
exiting runtime.

Use in scripts
You can find more information on using the "OpenScreenInPopup" system function in JavaScript
functions in the WinCC Unified object model.

Using system functions
9.2 System functions

System Manual, 11/2022 935

See also
Opening and closing a screen in a pop-up window (Page 1017)
SysFct.OpenScreenInPopup() (Page 6844)

9.2.32 OpenScreenWithNumberInPopup

Description
Opens a screen in a popup window.

Use in the function list
OpenScreenWithNumberInPopup (Popup window name, Screen number, Close when open,
Header, Left, Top, Hide close button, Parent screen path)
The system function "OpenScreenWithNumberInPopup" has the following parameters:

Parameter Description
Popup window name Name of the popup window. The name must be unique within the parent

screen and is required to close the pop-up window.
Screen number Unique number (> 0) of the screen that will be loaded into the popup window.
Close when opened True = If the pop-up window is open when the function is called, it is closed.

False = If the popup window is open when the function is called, it remains
open.

Header Specifies the window title of the popup window.
Left Defines the window position as offset from the left margin.
Top Defines the window position as offset from the top margin.
Hide close button True = The "Close" button is not displayed.

False = The "Close" button is displayed.
Parent screen path (op‐
tional)

Path of the parent screen. With this parameter, you specify whether the pop-
up window is closed in case of a screen change or in case of a screen change
in a screen window.
If this value is not defined, the pop-up window is global. The pop-up window
remains open until it is closed manually, by means of a function call or by
exiting runtime.

Use in scripts
You can find more information on using the "OpenScreenByNumberInPopup" system function in
JavaScript functions in the WinCC Unified object model.

See also
SysFct.OpenScreenByNumberInPopup() (Page 6842)

Using system functions
9.2 System functions

936 System Manual, 11/2022

9.2.33 OpenViewGRAPHByBlock

Description
Switches from any screen object to the PLC code view.

Use in the function list
OpenViewGRAPHByBlock (PLC name, GRAPH instance name, step number, screen object path)
The "OpenGRAPHViewerGraphByBlock" system function has the following parameters:

Parameter Description
PLC name Indicates the name of the PLC.
GRAPH instance name Instance name of the GRAPH block to be displayed.
Step number Number of the step to be displayed.
Screen object path Path of the screen object PLC code view.

For example, "./Screen window_1/ PlcCodeViewer control_1"

Using scripts
You can find more information on the "OpenViewerGraphByBlock" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.OpenViewerGraphByBlock() (Page 1566)

9.2.34 OpenGRAPHViewFromOverview

Description
Switches from the GRAPH overview to the PLC code view.

Use in the function list
OpenGRAPHViewFromOverview (Object path to GRAPH overview, Object path to PLC code view)
The system function "OpenGRAPHViewFromOverview" has the following parameters:

Parameter Description
Object path to GRAPH overview Path to the screen object GRAPH overview, from which switching is to

take place.
Object path to PLC code display Path to the screen object PLC code view.

Using system functions
9.2 System functions

System Manual, 11/2022 937

Using scripts
You can find more information on the "OpenViewerGraphFromOverview" system function in
JavaScript functions in the WinCC Unified object model.

See also
SysFct.OpenViewerGraphFromOverview() (Page 1567)

9.2.35 OpenPLCCodeViewByAlarm

Description
Opens the corresponding block in the PLC code view according to the selected alarm in the alarm
control.

Use in the function list
OpenPLCCodeViewByAlarm (Alarm control, PLC code view)
The "OpenPLCCodeViewByAlarm" system function has the following parameters:

Parameter Description
Alarm control Path of the alarm control
PLC code view Path to the PLC code view

Use in scripts
You can find more information on the "OpenPlcCodeViewFromAlarm" system function in
JavaScript functions in the WinCC Unified object model.

See also
SysFct.OpenPlcCodeViewFromAlarm() (Page 1563)

9.2.36 ResetBitInTag

Description
Sets the bit with the specified number to 0 in the tag (False).
After changing the given bit, the system function transfers the entire tag back to the PLC. It is
not checked whether other bits in the tags have changed in the meantime. Operator and PLC
have read-only access to the indicated tag until it is transferred back to the PLC.

Using system functions
9.2 System functions

938 System Manual, 11/2022

For the system function to be executed, the value of the tags must be current and valid,
which means the quality code must correspond to Good (cascade).
The following conditions must be met for external tags:
• the connection to the PLC is set up and
• the acquisition mode of the tags is "Cyclic in operation" and
• the tag is used at the "Process value" property of an object.

Note
The system function is executed with the last known process value. Since this process value
cannot be kept up to date in all cases, it is prohibited to write it from multiple sources (e.g. from
the HMI device via scripts and from the PLC). This ensures that the value that is changed actually
corresponds to the process value.

Use in the function list
ResetBitInTag (Tag, Value)
The system function "ResetBitInTag" has the following parameters:

Parameter Description
Tag The tag in which a bit is set to 0 (False).
Bit number The number of the bit that is set to 0 (False).

When this system function is used in a user function, the bits in the given tag
will be counted from right to left independent of the controller that is used.
Numbering starts with 0.

Use in scripts
You can find more information on using the "ResetBitInTag" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.ResetBitInTag() (Page 1385)

9.2.37 ShiftAndMask

Description
The system function converts the input bit pattern of the source into an output bit pattern of the
target. This involves bit shifting and masking. An integer number serves as bit mask, with whose
bit pattern the shifted input bit pattern is multiplied. The shifted input bit pattern is multiplied
by the bit mask, with bit-by-bit logical AND operation. The result has a decimal value and is
stored in the target.

Using system functions
9.2 System functions

System Manual, 11/2022 939

The following conditions must be met for external tags:
• the connection to the PLC is set up and
• the acquisition mode of the tags is "Cyclic in operation" and
• the tag is used by an object, e.g. an I/O field.
You can enter the bit mask in three different ways:
• Hexadecimal: First, enter "0h" or "0H" as prefix, followed by an optional space for better

readability. Then group the bit pattern in blocks of four, for example (0000)(1001)(1010)
(1110), and set each block in hexadecimal code: (0)(9)(A)(E). Only the characters 0-9, A-F,
a-f are permitted for the input: "0h 09AE".

• Binary: First, enter "0b" or "0B" as prefix, followed by an optional space for better readability.
Then group the binary bit pattern into blocks of four, for example 0000 1001 1010 1110 with
spaces in between as a check. Only the characters "0" or "1" are permitted for the input: "0b
0000 1001 1010 1110".

• Decimal: Enter the value directly without prefix, for example "2478".

Use in the function list
ShiftAndMask (Source, Target, Bits to shift, Bit pattern)
The system function "ShiftAndMask" has the following parameters:

Parameter Description
Source The Source parameter includes the input bit pattern. Integer-type tags, e.g.

"Byte", "Char", "Int", "UInt", "Long" and "ULong", are permitted.
Example: The source of the 16-bit integer type has the current value 72:
0000000001001000.

Target The output-bit pattern is stored in the Target. Integer type tags, e.g. "Byte",
"Char", "Int", "UInt", "Long" and "ULong" are permitted.

Bits to shift Number of bits by which the input bit pattern is shifted right. A negative value
shifts the input bit pattern to the left.
Example: "Bits to shift" has the value "+3". The input bit pattern is shifted right
by three bits when the system function is called: 0000000000001001.
Bits to the left are padded with "0". Three bits are truncated on the right. The
new decimal value is "9".

Bit pattern An integer serves as bit mask. The bit pattern is used to multiply the shifted
input bit pattern.

Using system functions
9.2 System functions

940 System Manual, 11/2022

Note
Note the following:
• Source and target have the same number of bits. When the source and target have a

different number of bits, using the system function in the target can result in a violation of
the value range.

• The number of the bits to shift is smaller than the number of bits of source and target.
• Bit pattern has no more bits than source and target.
• The left bit is "1" if the source has a signed Integer data type with the sign "-". This sign bit is

padded with "0" when the bits are shifted right. The sign changes to "+".

Use in scripts
You can find more information on using the "ShiftAndMask" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.ShiftAndMask() (Page 1388)

9.2.38 ClosePopup

Description
Closes a pop-up window dynamically during runtime.

Use in the function list
ClosePopup (popup window path)
The system function "ClosePopup" has the following parameters:

Parameter Description
Popup window path Specifies the path to the popup window to be closed.

Use in scripts
You can find more information on using the "ClosePopup" system function in JavaScript
functions in the WinCC Unified object model.

Using system functions
9.2 System functions

System Manual, 11/2022 941

See also
Opening and closing a screen in a pop-up window (Page 1017)
SysFct.ClosePopup() (Page 6841)

9.2.39 WriteParameterSet

Description
Writes the values of the edit tag to the PLC.

Use in the function list
WriteParameterSet (Parameter set type, Output status, Processing status (optional))
The system function "WriteParametersSet" has the following parameters:

Parameter Description
Parameter set type Specifies the name or the ID of the parameter set type. If the

name or ID of the parameter set type does not exist, execution
is terminated.

Output status Defines the output status:
True = Alarms are output.
False = Alarms are not output.

Processing status (optional) Indicates the execution status of a function:
2 = Function is being executed.
4 = Function successfully executed.
12 = Function was canceled.

Using scripts
You can find more information on the "WriteParameterSet" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.WriteParameterSet() (Page 1266)

9.2.40 WriteManualValue

Description
Assigns a new value to the specified logging tag. The associated time stamp is transferred in this
process.

Using system functions
9.2 System functions

942 System Manual, 11/2022

Use in the function list
WriteManualValue (Logging tag name, Value, Time stamp)
The system function "WriteManualValue" has the following parameters:

Parameter Description
Logging tag name Logging tag to which the specified value is assigned.
Value The value assigned to the specified logging tag.
Time stamp The time stamp assigned to the specified value.

Use in scripts
You can find more information on using the "WriteManualValue" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.WriteManualValue() (Page 1332)

9.2.41 SetBitInTag

Description
Sets the bit with the specified number to 1 in the tag (True).
After the specified bit is changed, the system function transfers the entire tag back to the
PLC. It is not checked whether other bits in the tags have changed in the meantime. HMI
device and PLC only have read access to the specified tag until it is transferred back to the PLC.
For the system function to be executed, the value of the tags must be current and valid, and
the quality code must correspond to Good (cascade).
The following conditions must be met for external tags:
• The connection to the PLC is set up.
• The acquisition mode of the tags is "Cyclic in operation".
• The tag is used at the "Process value" property of an object.

Note
The system function is executed with the last known process value. Since this process value
cannot be kept up to date in all cases, it is prohibited to write it from multiple sources (e.g. from
the HMI device via scripts and from the PLC). This ensures that the value that is changed actually
corresponds to the process value.

Using system functions
9.2 System functions

System Manual, 11/2022 943

Data types not supported
The following data types are not supported by the function:
• UINT

Use in the function list
SetBitInTag (Tag, Value)
The "SetBitInTag" system function has the following parameters:

Parameter Description
Tag The tag in which a bit is set to 1 (True).
Bit number The number of the bit that is set to 1 (True).

When this system function is used in a user function, the bits in the given tag
will be counted from right to left independent of the controller that is used.
Numbering starts with 0.

Use in scripts
You can find more information on using the "SetBitInTag" system function in JavaScript functions
in the WinCC Unified object model.

Use of "SetBitInTag" in structure tags
If "SetBitInTag" is used at a structure tag, the result is that after setting and resetting individual
bits, all previously changed bits are overwritten when they are set again. This occurs, for
example, as a result of an event of a button.
To prevent this, follow these steps:
1. Convert the function at the event to JavaScript.

2. Replace the "SetBitInTag" system function with the "SetBit()" method of the "Tags" object.

Using system functions
9.2 System functions

944 System Manual, 11/2022

See also
Tag.SetBit() (Page 1351)
SysFct.SetBitInTag() (Page 1386)

9.2.42 SetDHCPState

Description
Changes the DHCP setting of the network adapter.

Note
The "SetDHCPState" system function is only available for WinCC Unified Comfort Panel. The
system outputs a compiler warning if the function is used through manual input or through a
device replacement in SIMATIC WinCC Unified PC.

Use in the function list
SetDHCPState (Adapter name, Enabled, IP V6 (optional))
The system function "SetDHCPState" has the following parameters:

Parameter Description
Adapter name Specifies the name of the network adapter.

The following entries are possible:
• X1 = Static network adapter name 1
• X2 = Static network adapter name 2
• Manual input

Enabled Defines the DHCP setting of the network adapter:
0 = DHCP is disabled.
1 = DHCP is enabled.

IP V6 (optional) Tag to which the IPv6 address is written.

Use in scripts
You can find more information on using the "SetDHCPState" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.SetDHCPState() (Page 1173)

Using system functions
9.2 System functions

System Manual, 11/2022 945

9.2.43 SetPropertyValue

Description
Assigns a new value to the specified property of the screen item.

Note
Depending on the type of the object property, you can use this system function to assign strings
and numbers.

Use in the function list
SetPropertyValue (Screen item path, Screen item property name, Value)
The system function "SetPropertyValue" has the following parameters:

Parameter Description
Screen object path Path of the screen item whose property is changed.
Screen object property
name

Name of the property that will be changed.
The property name can be copied with selected screen item to the Inspector
window under "Properties > Properties":
1. Right-click the name of the property.
2. Select "Copy property name".

Value The value assigned to the property.

Use in scripts
You can find more information on using the "SetPropertyValue" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.SetPropertyValue() (Page 6849)

9.2.44 SetBrightness

Description
Assigns a new value to the brightness of the display.
The value for the system function "SetBrightness" can be set between 0% and 100%. The
set value is transferred to the HMI device. The brightness settings on the HMI device can be
viewed and edited in "Start Center > Settings > Display". The HMI devices support a brightness
setting between 10% and 100%.

Using system functions
9.2 System functions

946 System Manual, 11/2022

If the system function "SetBrightness" is assigned a value of 0%, the display of the HMI device
is switched off by default in runtime. If the operator touches the display, the display switches
to the previous brightness setting.
If the system function "SetBrightness" is assigned a value between 1% and 10% and the
operator opens the display settings in the Start Center, brightness is reset to 10%.

Note
The "SetBrightness" system function is only available for WinCC Unified Comfort Panel. The
system outputs a compiler warning if the function is used through manual input or through a
device replacement in SIMATIC WinCC Unified PC.

Note
The configuration that is set in the Control Panel / Start Center will be reestablished when you
restart the HMI device.

Use in the function list
SetBrightness (value)
The system function "SetBrightness" has the following parameters:

Parameter Description
Value The new value for the brightness of the display.

Use in scripts
You can find more information on using the "SetBrightness" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.SetBrightness() (Page 1172)

9.2.45 SetIPV4Address

Description
Changes the IPv4 settings of the network adapter.

Note
The "SetIPV4Address" system function is only available for WinCC Unified Comfort Panel. The
system outputs a compiler warning if the function is used through manual input or through a
device replacement in SIMATIC WinCC Unified PC.

Using system functions
9.2 System functions

System Manual, 11/2022 947

Use in the function list
SetIPV4Address (Name adapter, IP address, Subnet mask, Standard gateway (optional), DNS
Server 1 (optional), DNS Server 2 (optional))
The system function "SetIPV4Address" has the following parameters:

Parameter Description
Adapter name Specifies the name of the network adapter.

The following entries are possible:
• X1 = Static network adapter name 1
• X2 = Static network adapter name 2
• Manual input

IP address Specifies the IP address.
Subnet mask Subnet mask of the IPv4 network.
Default gateway (optional) IP address of the default gateway.
DNS server 1 (optional) IP address of DNS server 1.
DNS server 2 (optional) IP address of DNS server 2.

Use in scripts
You can find more information on using the "SetIPV4Address" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.SetIPV4Address() (Page 1174)

9.2.46 SetNetworkInterfaceState

Description
Changes the state of the network adapter.

Note
The "SetNetworkInterfaceState" system function is only available for WinCC Unified Comfort
Panel. The system outputs a compiler warning if the function is used through manual input or
through a device replacement in SIMATIC WinCC Unified PC.

Use in the function list
SetNetworkInterfaceState (Adapter name, Enabled)

Using system functions
9.2 System functions

948 System Manual, 11/2022

The system function "SetNetworkInterfaceState" has the following parameters:

Parameter Description
Adapter name Specifies the name of the network adapter. The following entries are possible:

• X1 = addresses PROFINET (X1) Port 0.
• X1.0 = addresses PROFINET (X1) Port 0.
• X1.1 = addresses PROFINET (X1) Port 1.
• X2 = addresses Ethernet (X2).
• Manual input

Enabled Specifies the state of the network adapter:
0 = Network adapter is disabled.
1 = Network adapter is enabled.

Note
The Panel must be restarted after a change in the status of X1.0 or X1.1.

Use in scripts
You can find more information on using the "SetNetworkInterfaceState" system function in
JavaScript functions in the WinCC Unified object model.

See also
SysFct.SetNetworkInterfaceState() (Page 1176)

9.2.47 SetLanguage

Description
Toggles the language on the HMI device. All configured texts and system events are displayed on
the HMI device in the newly set language.

Use in the function list
SetLanguage (LCID)

Using system functions
9.2 System functions

System Manual, 11/2022 949

The system function "SetLanguage" has the following parameters:

Parameter Description
LCID LCID of the language set on the HMI device. Specify the language ID, e.g. 1031

for German - Standard, 1033 for English - USA.
You can find an overview of all languages under: "https://docs.microsoft.com/
de-de/deployoffice/office2016/language-identifiers-and-optionstate-id-val‐
ues-in-office-2016".

Use in scripts
You can find more information on using the "SetLanguage" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.SetLanguage() (Page 6845)

9.2.48 SetSmartServerState

Description
Allows you to enable or disable the smart server.

Note
The "SetSmartServerState" system function is only available for WinCC Unified Comfort Panel.
The system outputs a compiler warning if the function is used through manual input or through
a device replacement in SIMATIC WinCC Unified PC.

Use in the function list
SetSmartServerState (Status)
The "SetSmartServerState" system function has the following parameters:

Parameter Description
Status Status to which the Smart Server is to be set:

True = Smart Server is enabled.
False = Smart Server is disabled.

Use in scripts
You can find more information on using the "SetSmartServerStart" system function in JavaScript
functions in the WinCC Unified object model.

Using system functions
9.2 System functions

950 System Manual, 11/2022

See also
SysFct.SetSmartServerState() (Page 1177)

9.2.49 SetTagValue

Description
Assigns the specified tag a new value.
Depending on the tag type, you use this system function to assign strings and numbers.

Note
The "SetTagValue" system function is only executed after a connection has been established.

Use in the function list
SetTagValue (Tag, Value)
The system function "SetTagValue" has the following parameters:

Parameter Description
Tag Tag to which the specified value is assigned.
Value The value that is assigned to the specified variable.

Use in scripts
You can find more information on using the "SetTagValue" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.SetTagValue() (Page 1387)

9.2.50 SetConnectionMode

Description
The specified connection is established or disconnected.

Use in the function list
SetConnectionMode (Connection name, Activated)

Using system functions
9.2 System functions

System Manual, 11/2022 951

The "SetConnectionMode" system function has the following parameters:

Parameter Description
Connection name The PLC whose connection to the HMI device is established or disconnected. You

specify the name of the PLC in the connection editor.
Enabled 0 = Offline: Connection is terminated.

1 = Online: Connection is established.

Use in scripts
You can find more information on using the "SetConnectionMode" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.SetConnectionMode() (Page 1152)

9.2.51 SaveParameterSet

Description
Saves the current values of the edit tag of a parameter set to the memory of the HMI device.

Use in the function list
SaveParameterSet (Parameter set type, Parameter set, Output status, Overwrite, Processing
status (optional))
The system function "SaveParametersSet" has the following parameters:

Parameter Description
Parameter set type Specifies the name or the ID of the parameter set type. If the name or ID of the

parameter set type does not exist, execution is terminated.
Parameter set Specifies the name or the ID of the parameter set. If the name or ID of the param‐

eter set does not exist, a new parameter set is created.
Overwrite Specifies whether an existing parameter set is overwritten:

0 = Overwriting is not allowed.
1 = Overwriting is allowed.
The following cases are differentiated:
• If the name / ID of the specified parameter set exists, the values in the PLC are

overwritten with the parameter set values in the memory if overwriting is
allowed.

• If overwriting is not allowed, the data in the memory is not replaced. The
process tag is updated to the status of the system function, if configured ac‐
cordingly.

Using system functions
9.2 System functions

952 System Manual, 11/2022

Parameter Description
Output status Defines the output status:

True = Alarms are output.
False = Alarms are not output.

Processing status
(optional)

Indicates the execution status of a function:
2 = Function is being executed.
4 = Function successfully executed.
12 = Function was canceled.

Using scripts
You can find more information on the "SaveParameterSet" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.SaveParameterSet() (Page 1264)

9.2.52 StartProgram

Description
Starts the specified program on the HMI device.
The runtime software continues running in the background.
Alarms continue to be output and process values continue to be updated.
When the given application is exited, the screen which was active during the performance of
the system function is displayed on the HMI device.
This system function is used, for example, to edit recipe data records in MS Excel on the HMI
device.
The function is supported by both the Windows and Linux systems.

Note
On a SIMATIC Unified PC, this system function can only be used to start applications that do not
have a user interface.

Use in the function list
StartProgram (Program name, Program parameters, Display mode, Wait for end of program,
Result (optional))

Using system functions
9.2 System functions

System Manual, 11/2022 953

The system function "StartProgram" has the following parameters:

Parameter Description
Program name Name and path of the program which is started. Upper and lower case are

taken into account in this parameter.
Program parameters The parameters you transfer at the start of the program, for example a file that

is opened after the start of the program.
You can find additional information on the necessary parameters in the doc‐
umentation of the program to be started.

Display mode Determines how the program window is displayed on the HMI device. This
function has no effect on Linux systems.

Waiting for program to
end

Determines whether there is a change back to the project after the called up
program has ended:
0 = No change to project.
1 = Change to project.

Result (optional) Contains data that can be written to the standard output from an external
application.

Note
If the path for the program name contains spaces, the program can only be started correctly if
the path is specified in quotation marks, e.g. "C:\Program Files\START\start.exe".

Use in scripts
You can find more information on using the "StartProgram" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.StartProgram() (Page 1179)
Win32 Microsoft (https://docs.microsoft.com/en-us/locale/?target=https://docs.microsoft.com/
en-us/windows/win32/api/winuser/nf-winuser-showwindow)

9.2.53 StopRuntime

Description
Ends the runtime software and the project running on the HMI device.

Using system functions
9.2 System functions

954 System Manual, 11/2022

https://docs.microsoft.com/en-us/locale/?target=https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-showwindow
https://docs.microsoft.com/en-us/locale/?target=https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-showwindow

The system function can be used with or without parameters. If no parameters are specified,
the system function remains undefined and stops the running project. In this case, the HMI
device is not restarted.

Note
All functions after "StopRuntime" are not executed.

Use in the function list
StopRuntime (StopRuntime, stop runtime and restart operating system)
The "StopRuntime" system function can be used with or without the following parameter:

Parameter Description
Mode (optional) Sets the type of termination:

0 = Ends runtime.
1 = Ends runtime and restarts the device.

Use in scripts
You can find more information on using the "StopRuntime" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.StopRuntime() (Page 1181)

9.2.54 LookUpText

Description
Identifies a list entry from a text list. The result depends on the value of the list entry and the
selected runtime language. The result is saved to a tag of data type "String".

Use in the function list
CallText (output text, index, LCID, text list name)
The system function "LookUpText" has the following parameters:

Parameter Description
Output text The tag to which the result is written.
Index The tag that defines the value of the list entry.

Using system functions
9.2 System functions

System Manual, 11/2022 955

Parameter Description
LCID LCID of the language set on the HMI device. Specify the language ID, e.g.

0x0409 for English - USA, 0x0007 for German - Standard.
You can find an overview of all languages under: "https://msdn.microsoft.com/
en-us/library/cc233982.aspx".

Text list name Defines the text list. The list entry is read from the text list.

Use in scripts
You can find more information on using the "LookUpText" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.LookUpText() (Page 1312)

9.2.55 RenameParameterSet

Description
Changes the name of a parameter set.

Use in the function list
RenameParameterSet (Parameter set type, Parameter set, NewParameterSetName, Output
status, Processing status (optional))
The system function "RenameParametersSet" has the following parameters:

Parameter Description
Parameter set type Specifies the name or the ID of the parameter set type. If the name or ID of the

parameter set type does not exist, execution is terminated.
Parameter set Specifies the name or the ID of the parameter set. If the name or ID of the

parameter set does not exist, execution is terminated.
New parameter set
name

Specifies the new name of the parameter set in the current Runtime language.

Output status Defines the output status:
True = Alarms are output.
False = Alarms are not output.

Processing status (op‐
tional)

Indicates the execution status of a function:
2 = Function is being executed.
4 = Function successfully executed.
12 = Function was canceled.

Using system functions
9.2 System functions

956 System Manual, 11/2022

Using scripts
You can find more information on the "RenameParameterSet" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.RenameParameterSet() (Page 1262)

9.2.56 ToggleGRAPHViewerMode

Description
Switches to the GRAPH-Viewer Mode of the PLC code view.

Use in the function list
ToggleGRAPHViewerMode (object path to PLC code view)
The system function "ToggleGRAPHViewerMode" has the following parameters:

Parameter Description
Object path to PLC code display Path to the PLC code view.

Using scripts
You can find more information on the "ToggleGRAPHViewerMode" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.ToggleGRAPHViewerMode() (Page 1569)

9.2.57 ToggleNetworkDisplay

Description
Switches to the network display of the PLC code view.

Use in the function list
ToggleNetworkDisplay (Object path to PLC code view)

Using system functions
9.2 System functions

System Manual, 11/2022 957

The system function "ToggleNetworkDisplay" has the following parameters:

Parameter Description
Object path to PLC code display Path to the PLC code view.

Using scripts
You can find more information on the "ToggleNetworkDisplay" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.ToggleNetworkDisplay() (Page 1570)

9.2.58 ToggleLanguage

Description
This function allows you to change the runtime language in order to display language-
dependent texts correctly on the user interface. The conversion takes place according to the
runtime language configuration.

Use in the function list
ToggleLanguage()
The system function "ToggleLanguage" has no parameters.

Use in scripts
You can find more information on using the "ToggleLanguage" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.ToggleLanguage() (Page 6849)

9.2.59 ZoomIn

Description
Zooms in the view of the network in the network area of a PLC Code View.

Using system functions
9.2 System functions

958 System Manual, 11/2022

Use in the function list
Zoom in (Object path to PLC code view)
The system function "ZoomIn" has the following parameters:

Parameter Description
Object path to PLC code display Path to the PLC code view.

Using scripts
You can find more information on the "ZoomIn" system function in JavaScript functions in the
WinCC Unified object model.

See also
SysFct.ZoomIn() (Page 1570)

9.2.60 ZoomOut

Description
Zooms out of the view of the network in the network area of a PLC code view.

Use in the function list
ZoomOut (Object path to PLC code view)
The system function "ZoomOut" has the following parameters:

Parameter Description
Object path to PLC code display Path to the PLC code view.

Using scripts
You can find more information on the "ZoomOut" system function in JavaScript functions in the
WinCC Unified object model.

See also
SysFct.ZoomOut() (Page 1571)

Using system functions
9.2 System functions

System Manual, 11/2022 959

9.2.61 DecreaseTag

Description
Subtracts the given value from the tag value: X = X - a
If you configure the system function for events of an alarm without the tag being used in the
current screen, it is not ensured that the actual tag value is being used in the PLC.
For the system function to be executed, the value of the tags must be current and valid,
which means the quality code must correspond to Good (cascade).
The following conditions must be met for external tags:
• the connection to the PLC is set up and
• the acquisition mode of the tags is "Cyclic in operation" and
• the tag is used at the "Process value" property of an object.

Note
The system function is executed with the last known process value. Since this process value
cannot be kept up to date in all cases, it is prohibited to write it from multiple sources (e.g. from
the HMI device via scripts and from the PLC). This ensures that the value that is changed actually
corresponds to the process value.

Use in the function list
DecreaseTag (Tag, Value)
The system function "DecreaseTag" has the following parameters:

Parameter Description
Tag Tag from which the specified value is subtracted.

The following data types are not supported: Byte, Word, DWord, LWord.
Value Value to be subtracted.

Note
Converting a value
The system function uses the same tag as input and output values. If you are using this system
function to convert a value, follow these steps:
1. Create an auxiliary tag.
2. Assign the tag value to the auxiliary tag with the "SetTagValue" system function.

Use in scripts
You can find more information on using the "DecreaseTag" system function in JavaScript
functions in the WinCC Unified object model.

Using system functions
9.2 System functions

960 System Manual, 11/2022

See also
SysFct.DecreaseTag() (Page 1383)

9.2.62 ChangeScreen

Description
Loads a new screen into a screen window.

Note
The function list is updated when the screen changes. The functions after "ChangeScreen" are
therefore not executed.
Always execute "ChangeScreen" as the last function.

Use in the function list
ChangeScreen (Screen name, Screen window path)
The system function "ChangeScreen" has the following parameters:

Parameter Description
Screen name Name of the screen to which you change.
Screen window path Path of the screen window or base screen that is displayed after the change

has been completed.
You can find additional information at "Addressing screen windows".

Use in scripts
You can find more information on using the "ChangeScreen" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.ChangeScreen() (Page 6837)

9.2.63 ChangeScreenAsync

Description
Switches the screen in a screen window. Switching only takes place after the current screen has
been fully loaded.

Using system functions
9.2 System functions

System Manual, 11/2022 961

Principle
ChangeScreenAsync (Screen name, Screen window path)
The system function "ChangeScreenAsync" has the following parameters:

Parameter Description
Screen name Specifies the name of the new screen.
Screen window path Specifies the path of the screen window in which the screen is to be switched,

for example, "Screen_window_1"

Using scripts
You can find more information on the "ChangeScreenAsync" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.ChangeScreenAsync() (Page 6837)

9.2.64 ChangeScreenAsyncWithNumber

Description
Switches the screen asynchronously in a screen window. Switching only takes place after the
current screen has been fully loaded.

Principle
ChangeScreenAsyncWithNumber (screen number, screen window path)
The system function "ChangeScreenAsyncWithNumber" has the following parameters:

Parameter Description
Screen number Unique number (> 0) of the new screen to which you change.
Screen window
path

Path of the top-level screen window or screen in which the screen is to be switched,
for example, "Screen_window_1"

Using scripts
You can find more information on the "ChangeScreenAsyncByNumber" system function in
JavaScript functions in the WinCC Unified object model.

See also
SysFct.ChangeScreenAsyncByNumber() (Page 6838)

Using system functions
9.2 System functions

962 System Manual, 11/2022

9.2.65 ChangeScreenWithNumber

Description
Performs a screen change to the specified screen window.

Note
The function list is updated when the screen changes. The functions after
"ChangeScreenWithNumber" are therefore not executed.
Always execute "ChangeScreenWithNumber" as the last function.

Use in the function list
ChangeScreenWithNumber (screen number, screen window path)
The system function "ChangeScreenWithNumber" has the following parameters:

Parameter Description
Screen number Unique number (> 0) of the new screen to which you change.
Screen window path Path of the top-level screen window or screen in which the screen is to be

switched, for example, "Screen_window_1"

Use in scripts
You can find more information on using the "ChangeScreenByNumber" system function in
JavaScript functions in the WinCC Unified object model.

See also
SysFct.ChangeScreenByNumber() (Page 6840)

Using system functions
9.2 System functions

System Manual, 11/2022 963

9.2.66 ChangeConnection

Description
Changes the connection parameters of an HMI connection. The following parameters can be
changed: The IP address, the slot number and the rack number. Because the function is executed
synchronously, the return value returns an error code that provides immediate information
about the cause of the error. The error code can only be read if the function is called via a script.

Note
Change of function parameters after a function call
With the execution of the function you change the function parameters. The new connection
may not be active yet at this point.

Note
Usage on devices of the S7 Plus PLC family
For devices of the S7 Plus PLC family (PLCs 15xx and 12xx) it is not possible to change the slot or
the rack. The system function cannot be executed if parameters for slot or rack are set.

Use in the function list
ChangeConnection (Connection name, IP V4 address, Slot (optional), Rack (optional))
The "ChangeConnection" system function has the following parameters:

Parameter Description
Connection name Indicates the name of the connection.
IP V4 address Specifies the IPv4 address. Example: 192.169.153.45
Slot (optional) Specifies the slot number. Permitted values from 1 to 32.
Rack (optional) Specifies the rack number. Permitted values from 0 to 7.

Use in scripts
You can find more information on using the "ChangeConnection" system function in JavaScript
functions in the WinCC Unified object model.

See also
SysFct.ChangeConnection() (Page 1150)

Using system functions
9.2 System functions

964 System Manual, 11/2022

9.2.67 Next

Description
Goes to the next network in a PLC code view.

Use in the function list
Next (Object path to PLC code view)
The system function "Next" has the following parameters:

Parameter Description
Object path to PLC code display Path to the PLC code view.

Using scripts
You can find more information on the "Next" system function in JavaScript functions in the
WinCC Unified object model.

See also
SysFct.Next() (Page 1561)

9.2.68 ShowControlPanel

Description
• Hides or shows the Control Panel.
• Opens an applet in runtime.

Note
The "ShowControlPanel" system function is only available for WinCC Unified Comfort Panel. The
system outputs a compiler warning if the function is used through manual input or through a
device replacement in SIMATIC WinCC Unified PC.

Use in the function list
ShowControlPanel (Home)
The "ShowControlPanel" system function has the following parameter:

Parameter Description
Home page Specifies the applet to be displayed: "AppletName"

Using system functions
9.2 System functions

System Manual, 11/2022 965

Use in scripts
You can find more information on using the "ShowControlPanel" system function in JavaScript
functions in the WinCC Unified object model.

List of available applets
List of applet names that are available to the system function:

Display page Applet name
Panel information SystemProperties.PanelInformation
Display SystemProperties.Display
Screensaver SystemProperties.Screensaver
Reboot SystemProperties.Reboot
Network settings NetworkandInternet.NetworkSettings

See also
SysFct.ShowControlPanel() (Page 1178)

9.2.69 ShowSoftwareVersion

Description
Hides or shows the version number of the Runtime software.
Use this system function if during servicing, for example, you required the version of the
runtime software used.

Note
The "ShowSoftwareVersion" system function is only available for WinCC Unified Comfort Panel.
The system outputs a compiler warning if the function is used through manual input or through
a device replacement in SIMATIC WinCC Unified PC.

Use in the function list
ShowSoftwareVersion ()
The system function "ShowSoftwareVersion" has no parameters.

Use in scripts
You can find more information on using the "ShowSoftwareVersion" system function in
JavaScript functions in the WinCC Unified object model.

Using system functions
9.2 System functions

966 System Manual, 11/2022

See also
SysFct.ShowSoftwareVersion() (Page 1178)

9.2.70 Previous

Description
Navigates to the previous network in a PLC code view.

Use in the function list
Previous (Object path to PLC code view)
The "Back" system function has the following parameter:

Parameter Description
Object path to PLC code display Path to the PLC code view.

Using scripts
You can find more information on the "Previous" system function in JavaScript functions in the
WinCC Unified object model.

See also
SysFct.Previous() (Page 1567)

Using system functions
9.2 System functions

System Manual, 11/2022 967

Using system functions
9.2 System functions

968 System Manual, 11/2022

Programming scripts 10
10.1 Runtime scripting

10.1.1 Introduction to runtime scripting

Area of application
You use Runtime Scripting in WinCC for the following tasks in runtime:
• Dynamization of properties
• Triggering functions for an event
Runtime Scripting uses JavaScript as the programming language. Runtime Scripting is
supported at the following objects:
• Screen
• Screen object
• Task

Global modules for frequently required functions
Global modules contain scripts which are available in the entire project. Global modules are
therefore suitable for configuring frequently required functions.

Using scripts for dynamization
The properties of screens and screen items can be dynamized via local scripts. In addition, a
screen or screen item has its own script area to create a "Global definition".
The "Global definition" is used to define modules, local tags and functions and to import
other modules with "Import".

System Manual, 11/2022 969

① Global definition for screen or screen item
② Local scripts per property

Input support
The "Scripts" editor assists you in entering code through:
• Syntax highlighting
• Snippets
• System functions
• Referencing HMI objects
• Tooltips
• Autocomplete
• Error marking and correction

See also
Global modules (Page 978)
Local scripts (Page 980)
Configuring a script to an event (Page 987)
Dynamizing object properties by script (Page 988)
Input support (Page 982)

10.1.2 Basics

Scripting environment
WinCC provides you with a modern scripting environment that you can use to automate a variety
of system components, such as the graphical runtime system.

Programming scripts
10.1 Runtime scripting

970 System Manual, 11/2022

In the process, the scripting environment forms individual elements of the system
components, such as the screens of the graphical runtime system, through an object model.
You use this object model in your scripts to solve a variety of tasks or to control processes.
The script environment in WinCC offers:
• Efficiency and current technologies

The scripting environment supports Unicode and uses JavaScript (JS) as the scripting
language. The scripting environment is object-oriented and offers numerous asynchronous
operations for high-performance and secure script execution.

• Support of mass data
The script environment is optimized for the processing of mass data, for example the writing
of 1000 tags in one pass. Special script objects are available to this purpose that record
numerous HMI objects of the same type. These script objects execute operations on all the
HMI objects simultaneously instead of processing each HMI object individually.

JavaScript
The script environment supports JavaScript according to the ECMAScript Language
Specification. Google V8 is used as the script engine.
To find out which version of Node.js you are using, follow these steps:
1. Opens the file explorer.
2. Switch to "C:\Program Files\Siemens\Automation\WinCCUnified\WebRH\bin"

The path may differ depending on the installation settings.
3. Open the shortcut menu of the file: "node.exe".
4. You can find the version used under "Details > Product version".
An overview of the functions that can be used in the individual versions of Node.js can be
found under: https://node.green/ (https://node.green/).

Scripts in WinCC
As a rule the script environment executes all the scripts on the server side (NodeJS). Referenced
external resources such as files used in the script therefore have to be available in the server
environment.

Restrictions
The use of JavaScript is restricted when used with WinCC.

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 971

https://node.green/

Functions that access external resources are not available:
• Access to the file system via the Node.js module "fs".

Use WinCC Unified functions instead, for
example HMIRuntime.FileSystem.WriteFile(),
HMIRuntime.FileSystem.ReadFile()

• Connection to other web servers and access to content on the Internet, e.g.
via XMLHttpRequest or fetch().

• Import of other Node.js modules, e.g. via "import ... from ...".
This applies to both Node.js modules provided by third-party vendors and Node.js modules
provided with the current Node.js version.
Only global modules of the runtime in TIA Portal can be imported.

To access other web servers and to import other Node.js modules, follow these steps:
• Create your own application.

– On the Panel: Edge app
– on the PC: any app, JavaScript is recommended.

• Run the application independently of WinCC Unified.
• Results of the application are passed to the runtime via OpenPipe and corresponding HTML

tags.

10.1.3 Notes on creating scripts

Tips and tricks in SiePortal
Get to know the options for creating scripts (JavaScript) in SIMATIC WinCC Unified and how you
can quickly and easily create scripts with snippets. Tips and tricks on using objects via JavaScript
are available for selected objects.
Tips and tricks in SiePortal: Tips and tricks for scripting (JavaScript) (https://
support.industry.siemens.com/cs/ww/en/view/109758536)

Programming scripts
10.1 Runtime scripting

972 System Manual, 11/2022

https://support.industry.siemens.com/cs/ww/en/view/109758536
https://support.industry.siemens.com/cs/ww/en/view/109758536

Global search in scripts
Find and replace functions are available in a script.
1. To find strings that appear in a script or in the global definition range, use the global search

in the project.
2. To open the "Find and replace" function, use menu "Edit > Search in project".

- or -
Press <Ctrl> + <F>.

The search is run on the script opened in the script editor.
The Find and replace function is also available if you open a script module type from a library
for editing.

Floating-point numbers in JavaScript
JavaScript supports floating-point numbers with a mantissa of up to 54 bits. In scripting and Web
client, values with a mantissa greater than 54 bits are therefore rounded.
This includes:
• Tag values
• Constants in the properties of screen objects

Note
Values with a mantissa of up to 64 bits are correctly displayed by I/O fields.

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 973

Triggering scripts
To improve performance, trigger the execution of scripts with tags. Avoid cyclic triggers.

Scripts with trigger tags
A script triggered by a tag is not allowed to write to this tag.

Using scripts during short cycle times
Calls of scripts with a short cycle time can lead to overloads.

Memory allocation by scripts
Memory usage by scripts is not limited in runtime. Pay particular attention to the size of the
allocated memory when creating tags dynamically.

Application of graphic objects in runtime
Only those graphic objects which are referenced at least once, for example as an object
reference in a script, are loaded in runtime. The assignment of a tag and the referencing of the
tags does not function.
Example of correct referencing of a graphic object in a script:
Screen.Items("Grafikanzeige_1").Graphic =
HMIRuntime.Resources.Graphics("GraphicCollection.Up_Arrow").Name;

10.1.3.1 Data types

Data types in the object model
Unlike the basic JavaScript data types String, Number and Boolean, the data types in the WinCC
object model are more typified.
The following table lists the utilized data types of the object model:

Data type Description
Bool Logical values (True/False)
UInt8 Unsigned 8-bit integer
Int8 Signed 8-bit integer
UInt16 Unsigned 16-bit integer
Int16 Signed 16-bit integer
UInt32 Unsigned 32-bit integer
Int32 Signed 32-bit integer
Float Signed 32-bit floating-point number 1)

String Sequence of characters

Programming scripts
10.1 Runtime scripting

974 System Manual, 11/2022

Data type Description
Variant Object that can have any data type.
DateTime Date/time information
StringStringMap Map: Value pairs from strings
Promise Object
Object Object
Function Method
ErrorCode Error code

1) JavaScript supports floating-point numbers with a mantissa up to 54 bits. In scripting and Web client,
values with a mantissa greater than 54-bit are therefore rounded. This affects tag values and constants
in the properties of screen objects.

Values with a mantissa of up to 64 bits are correctly displayed by I/O fields.

10.1.3.2 Object instances

Create objects
In the object model, all object instances are returned via access methods. There are no
constructors that create objects.

Example
var t1 = Tags("Tag_1"); // returns HMITag object
var screenItem1 = Screen.FindItem("Button_1"); // returns HMIScreenItem
object

Error example
var t1 = new Tag("Tag_1"); // Error!

10.1.3.3 Enumerations

Description
Enumerations are enumeration types. Objects of this data type consist of elements with static
values. Each permissible value has a unique name and an assigned integer.
Here is an example for the background fill pattern of screen objects. The enumeration has the
name "HmiFillPattern" and defines the following 16 values with name and integer.
• Solid (0)
• Transparent (65536)
• Horizontal (131072)
• Vertical (131073)
• ForwardDiagonal (131074)
• BackwardDiagonal (131075)

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 975

• Cross (131076)
• DiagonalCross (131077)
• GradientHorizontal (1048576)
• GradientVertical (1048577)
• GradientForwardDiagonal (1048578)
• GradientBackwardDiagonal (1048579)
• GradientHorizontalTricolor (1048832)
• GradientVerticalTricolor (1048833)
• GradientForwardDiagonalTricolor (1048834)
• GradientBackwardDiagonalTricolor (1048835)

Use of enumerations
All enumeration can be found directly in context of their respective property.
Values of enumerations can be reference in scripts using the name or integer.
By way of example, the "GetSpecialFolder()" method of the "FileSystem" object is used for
this in the following. This method can return the current temporary directory or the user
directory according to the "FolderId" enumeration:
• TempDir (0): Directory for the temporary files
• HomeDir (1): Directory for the files of the current user

Referencing the value using the name of the element
Every enumeration can be addressed using the "Enums" object. This is followed by the name
of the enumeration and the name of the desired element to reference the value:

Copy code
let tempDir =
HMIRuntime.FileSystem.GetSpecialFolder(HMIRuntime.FileSystem.Enums.FolderI
d.TempDir);
HMIRuntime.Trace("Temp folder path: " + tempDir);

Referencing the value using the integer of the element
The value can also be directly referenced using the integer of the element:

Copy code
let tempDir = HMIRuntime.FileSystem.GetSpecialFolder(0);
HMIRuntime.Trace("Temp folder path: " + tempDir);

Programming scripts
10.1 Runtime scripting

976 System Manual, 11/2022

10.1.3.4 Asynchronous operations

Promises in JavaScript
Promises are used in the script environment to handle asynchronous operations. A Promise
object contains placeholders for results of an operation that are not yet known.
A Promise has the following status:
• Pending: Operation of the Promise object is still being executed.
• Settled: Operation of the Promise object has been completed.

– Fulfilled: Operation was successful. Result is a value.
– Rejected: Operation was unsuccessful. Result is a reason.

reason may contain an error code for an object with text, links or any other conceivable
contents of an object. For this reason, for targeted error processing, it is advisable
for reason to use an instance of an Error object.

As soon as the operation has been completed, a corresponding Handler with the available
result is called.
Promises minimize latencies (delay times caused by signal processing), because the script
continues to be executed during evaluation. In contrast, a script stops with asynchronous
calls. Promises allow clean error handling with the "catch" method.
Promises can be cascaded in order to transform results or to sequence asynchronous
operations.

Using promises
In the simplest form, promises return a value or error which is processed with the "then" and
"catch" methods of the Promise object:

getPromise()
.then(function(Value) {
 ...
})
.catch(function(ErrorCode) {
 ...
});

Cascaded promises each return a Promise and allow a sequence of asynchronous calls:

getPromise()
.then(return p1)
.then(return p2)
.then(return p3)
.catch();

The functions of the Promise objects are executed in the order p1 > p2 > p3 and the "catch"
method is called in case of error. All tags of the calling function are also available in the
internal functions.

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 977

10.1.3.5 Support for errors
The user has various options of diagnosing errors and then rectifying them.

Trace Log
WinCC writes a log file for every subsystem. This file contains helpful information of the
respective subsystem for narrowing down possible error causes.

Note
The log files are located in the directory "%PROGRAMDATA%
\Siemens\Automation\Logfiles\WinCC_Unified_SCADA_V*".

Trace Viewer
The Trace Viewer is an external application for the display and targeted filtering of Trace alarms.

See also
RTIL Trace Viewer (Page 1022)

10.1.3.6 Global modules
Global modules can only be linked with the global definition (script). All scripts except the global
definition are simple functions.
The "import" statement must be a top-level statement.

Description
A global module is a container for one or more global functions with a shared definition area.
Several global modules can be created for each device.
Global modules are suitable for categorizing or grouping global functions.

Note
Consider context when using global modules
After the import, a global module behaves like a local script. For example, it is not possible to use
a global module on a task if a screen or screen object is referenced in the global module or an
associated function. If an invalid reference to a screen or screen object is contained in a global
module imported at a task, an error is output.

Programming scripts
10.1 Runtime scripting

978 System Manual, 11/2022

Call and view
Global modules are represented in the project tree in the respective device under "Scripts" as
folder icons with the letters "JS" .

You can create new global modules via the shortcut menu of "Scripts".
You can create new global functions via the shortcut menu of the desired global module.
You can also add new global modules and functions via "Add ... new" in the project tree.

References to global modules
When you rename a global module, the alias is automatically renamed in all places where the
global module is referenced.
References to functions defined in a global module are automatically updated in:
• Local scripts
• Global scripts
• Global definitions
Naming within the project remains consistent and runtime errors are avoided.

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 979

Examples
• General mathematical operations
• General logic operations
• Conversions of units of measurement

See also
Local scripts (Page 980)

10.1.3.7 Local scripts
A local script is a function written in JavaScript which is assigned to the object in question.

Starting local scripts
A local script is always started by a trigger:
• an event at a screen object
• a trigger on dynamization of object properties (cycle or change of a tag value)
• the event "Update" of a task in the Scheduler (cycle, change to a tag value or alarm)

Access to global modules
Local scripts can call functions which are contained in the scripts of global modules.

Applications
For example, local scripts can be used to
• dynamize object properties,
• process user entries and
• automatize complex operations

See also
Script and execution context (Page 985)
Configuring a script to an event (Page 987)
Dynamizing object properties by script (Page 988)
Creating a global definition in a local script (Page 988)
Basics of cycles (Page 223)

Programming scripts
10.1 Runtime scripting

980 System Manual, 11/2022

10.1.4 "Scripts" editor

10.1.4.1 Structure of the "Scripts" editor
In the "Scripts" editor, you create and edit customized JavaScript functions.
The "Scripts" editor can be opened in the following execution contexts:
• Global functions in global modules

You open the "Scripts" editor via the project tree by double-clicking a script.
• Local scripts which are triggered by events ("Images" editor and Scheduler)

The "Scripts" editor is opened in the Inspector window under "Properties > Events" as soon as
you have selected an event and selected the "Convert function list to script" button.
Additional local scripts which are triggered by events can be triggered for each property
under "Properties > Properties" for the events "Change" and "Quality code change".

• Local scripts for dynamizing object properties
The "Scripts" editor is opened in the Inspector window under "Properties > Properties" as soon
as you select the "Scripts" entry in the "Dynamization" column.

Different representation formats
Depending on the application, the "Scripts" editor is shown in different areas of TIA Portal and
contains different operator controls.
Depending on the execution context, the code area opens either as a new editor window in
the working area (global modules) or embedded in the Inspector window (local script).

Overview

The code area represents the actual JavaScript code.
Buttons are located above the code area. Depending on the application context, buttons are
available with specific functions:

Button Description Global modules Event-related
functions

Dynamization
of object prop‐

erties
Syntax check ✓ ✓ ✓
Shows / hides the code area for the global definition. × ✓ ✓
Specifies whether the function is synchronous/asynchro‐
nous

✓ ✓ ✓

Enables the auto-completion of entries ✓ ✓ ✓
Shows information or provides a tip for the place in the
code where the insertion point is located

✓ ✓ ✓

Deletes the script × ✓ ×
Selects the trigger of dynamization (cycle or tag) × × ✓

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 981

Button Description Global modules Event-related
functions

Dynamization
of object prop‐

erties
Sets the insertion point to the previous error in the code ✓ ✓ ✓
Sets the insertion point to the next error in the code ✓ ✓ ✓

Note
Asynchronous functions cannot be used if the function returns a value.
Alternatively, the value can be specified via the respective property.

Shortcut menu
The shortcut menu contains so-called "snippets". Snippets provide frequently required code
templates.

See also
Global modules (Page 978)
Configuring a script to an event (Page 987)
Dynamizing object properties by script (Page 988)
Input support (Page 982)

10.1.4.2 Input support

Introduction
You create the JavaScript code of your scripts in the code area of the "Scripts" editor.
The editor supports you with the following functions:
• Syntax highlighting
• Snippets (code templates)
• System functions
• Referencing HMI objects
• Tooltips
• Autocomplete
• Error marking and correction

Programming scripts
10.1 Runtime scripting

982 System Manual, 11/2022

Syntax highlighting

The JavaScript code in the code area of the editor is highlighted in different colors to make it
easier to read.

Snippets for programming support
Snippets are code templates for frequently required instructions: Snippets are divided into the
following groups:
• HMIRuntime

Contains Snippets for accessing the object model, e.g. "Change base screen" or "Set
Connection Mode".

• Logic
Contains Snippets such as "If...Else" or "For loop".

• Faceplate
Only available in a faceplate.

You insert a Snippet in the local script via the shortcut menu.

System functions
The system functions are provided in the "Scripts" editor. For additional information, refer to
"System functions".

Referencing HMI objects
HMI objects (e.g. tags and screens) are referenced in scripts.
Therefore, you perform the following actions without editing the script:
• Rename HMI object
• Re-create a previously deleted HMI object
• Create HMI object used as text reference in the script

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 983

Info tips
While you compose the code, additional information about all objects of the
WinCC Unified object model is displayed. For example, you receive information on the required
parameters of the system functions.

Autocomplete

Autocomplete supports you in entering your code. Suitable objects of the
WinCC Unified object model are displayed.
You call up autocomplete using the shortcut <Ctrl + I> or <Ctrl + Spacebar>.

<Ctrl+J>
The object selection can be called context-specifically by using the shortcut <Ctrl+J>. For
example, you select screens, screen objects, tags, or graphics.

Error marking and correction
Errors can occur during compiling or during compiling and loading:
• Error while configuring

Your JavaScript code is checked immediately during input for a variety of criteria and
highlighted in color in case of errors.
– To get a tooltip, move the cursor over the marking.

• Errors during compiling and loading
Alarms during the compiling and loading of a project are displayed in the Inspector window
in the "Info > Compile" tab.
The "Scripts" editor supports you by displaying faulty scripts directly for editing:
– To go directly to the "Scripts" editor, select the green arrow .

See also
System functions (Page 909)

Programming scripts
10.1 Runtime scripting

984 System Manual, 11/2022

10.1.4.3 Script and execution context

Introduction
Scripts are functions in the form of JavaScript code that you develop yourself.
You can use scripts to solve individual tasks, e.g.
• Automating processes
• Dynamizing objects
• Evaluating events, such as user input
The execution of a script is triggered by:
• An event
• A tag change
• A scheduled job

Preparation for creating and using scripts
In advance of creating the script, consider where you will enter the script and how it will be
executed.
Depending on the objects and system components addressed, you enter the JavaScript code
in different editors. The editors have a similar structure.
Depending on the execution context, the script is executed with different scopes.

Note
Each module has its own namespace, which means it is possible to use the same function name
and global tag name in two modules.
The functions are distinguished by the symbol name of the imported module.
Example:
import * as modA from 'ModuleA';
import * as modB from 'ModuleB';
modA.function1();
modB.function1();

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 985

Execution context of the editor Script context and referencing
"Script" editor in the "Screens" editor Each screen has two independent script contexts:

• Context for dynamization of properties
• Context for evaluation of events
The script of a property cannot access global tags of an event
even in the same screen.
Each script context references the modules that it has impor‐
ted using the 'import' statement. However, each script context
receives its own copy of the tags defined there.

"Script" editor for "Scheduled tasks" All jobs share a script context.
Different tasks can access common global tags.
Each required module must be referenced by means of the
'import' statement.

Create "import" statement
A module can be referenced in a script or another module:
• Drag-and-drop the module to be referenced into the "Global Definition" area of the script or

into the definition area of the module.

Note
Copying the "import" statement together with objects
If you copy a screen object and paste it into another screen, then the "import" statement is copied
and pasted when the imported global module is used on the source object.
If the copied module has already been referenced under a different alias at the target, the copied
module is inserted additionally.

See also
Simulating value changes in tags (Page 992)
Converting values (Page 997)
Local scripts (Page 980)
Configuring a script to an event (Page 987)
Dynamizing object properties by script (Page 988)
Creating a global definition in a local script (Page 988)
WinCC Unified object model (Page 1037)

Programming scripts
10.1 Runtime scripting

986 System Manual, 11/2022

10.1.4.4 Configuring a script to an event

Note
Restriction of "activated" and "deactivated" events
If the focus is on the affected screen item, scripts are executed at the "activated" and
"deactivated" events.

Requirement
• One of the following objects is configured:

– Task
– Screen
– Screen object

Procedure
To configure a script to an event, follow these steps:
1. Open the relevant editor.
2. Select the object.
3. Select the event under "Properties > Events" in the Inspector window.
4. Generate the local script.
5. Write the code.
6. Perform a syntax check.
7. Save the project.

See also
Introduction to runtime scripting (Page 969)
Local scripts (Page 980)
Script and execution context (Page 985)
Creating a global definition in a local script (Page 988)

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 987

10.1.4.5 Dynamizing object properties by script

Requirement
• One of the following objects is configured:

– Screen
– Screen object

• The selected object property supports the dynamization type "Script".

Procedure
1. Open the editor of the object in question.
2. Select the object.
3. Select the desired object property under "Properties > Properties" in the Inspector window.
4. Dynamize the object property:

– Select the "Script" entry in the "Dynamization" column.
The editor creates a script and is displayed in the Inspector window.

– Write the code.
5. Select the trigger that triggers the dynamization in runtime.

Result
The script changes the selected property dynamically in line with the written code.

See also
Local scripts (Page 980)
Creating a global definition in a local script (Page 988)

10.1.4.6 Creating a global definition in a local script

Procedure
1. Open the local script.
2. Click "Global definition".
3. Write the code.
4. Perform a syntax check.
5. Edit the function.

Programming scripts
10.1 Runtime scripting

988 System Manual, 11/2022

See also
Local scripts (Page 980)
Script and execution context (Page 985)
Configuring a script to an event (Page 987)
Dynamizing object properties by script (Page 988)

10.1.5 Examples

10.1.5.1 Notes on the code examples

General
The comments at the beginning of each code example are required for technical reasons.
At the same time these comments show the relationships between various code examples
within a chapter.
Further comments in the code examples explain individual program code lines.

Executing examples
1. Set the language of the develop environment to "English", so that the object names used in

the examples are automatically assigned correctly.
2. Create a project with corresponding screens in which you can configure buttons, I/O fields,

etc. These elements are required to carry out the code examples.
3. Apply the code examples to the associated script areas.
4. Compile the project.
5. Start the simulation of the project.
6. Start the tracer to diagnose potential errors.

See also
RTIL Trace Viewer (Page 1022)

10.1.5.2 Dynamizing the position of an object

Introduction
The example shows how to dynamically change an object position using JavaScript.
One classic application would be the adjustment of the object position to the size and/or
position of adjacent objects on a screen.

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 989

Execution of example
1. Configure 4 tags with the names "HMI_Tag1" to "HMI_Tag_4".
2. Configure a screen with the following objects:

– 4 objects of the type I/O field with the process values "HMI_Tag_1" to "HMI_Tag_4"
– 1 object of the type "Circle" with the name "Circle_1"
– 1 object of the type "Button" with the name "Button_1"

3. Dynamize the parameters "Position X" and ""Position" Y" of the objects "Circle_1" and
"Button_1" using scripts.

4. Set the triggers for dynamization with the tags
– HMI_Tag_1 for Button_1/Position X,
– HMI_Tag_2 for Button_1/Position Y,
– HMI_Tag_3 for Circle_1/Position X,
– HMI_Tag_4 for Circle_1/Position Y.
The scripts are started accordingly by changing the tag.

5. Copy the sample code below to your project.

Reading out and returning the tag HMI_Tag_1
The script with the function "Circle_1_CenterX_Trigger(item)" is created when the
parameter "Position X" is dynamized by a script in the properties of the object "Circle_1".

//JEx: "Position X dynamization of a Circle with tags"
//TagsRequired: "HMI_Tag_1"
export function Circle_1_CenterX_Trigger(item) {
 var value = Tags("HMI_Tag_1").Read();
 return value;
}

Reading out and returning the tag HMI_Tag_2
The script with the function "Circle_1_CenterY_Trigger(item)" is generated when the
parameter "Position Y" is dynamized by a script in the properties of the object "Circle_1".

//JEx: "Position Y dynamization of a Circle with tag"
//TagsRequired: "HMI_Tag_2"
export function Circle_1_CenterY_Trigger(item) {
 var value = Tags("HMI_Tag_2").Read();
 return value;
}

Programming scripts
10.1 Runtime scripting

990 System Manual, 11/2022

Reading out and returning the tag HMI_Tag_3
The script with the function "Button_1_Left_Trigger(item)" is generated when the
parameter "Position X" is dynamized by a script in the properties of the object "Button_1".

//JEx: "Position X dynamization of a Button with tag"
//TagsRequired: "HMI_Tag_3"
export function Button_1_Left_Trigger(item) {
 var value = Tags("HMI_Tag_3").Read();
 return value;
}

Reading out and returning the tag HMI_Tag_4
The script with the function "Button_1_Top_Trigger(item)" is generated when the
parameter "Position Y" is dynamized by a script in the properties of the object "Button_1".

//JEx: "Position Y dynamization of a Button with tag"
//TagsRequired: "HMI_Tag_4"
export function Button_1_Top_Trigger(item) {
 var value = Tags("HMI_Tag_4").Read();
 return value;
}

Result (in runtime)
The position of the object in question changes in accordance with the values entered in the I/O
fields.

See also
Notes on the code examples (Page 989)

10.1.5.3 Reading and writing tag values

Introduction
The example shows how to read, multiply and write the values from two tags ("HMI_Tag_2",
"HMI_Tag_3") to another tag ("HMI_Tag_1").
In practical use, the tags could represent the following parameters:
• "HMI_Tag_1": Apparent power S
• "HMI_Tag_2": Electrical voltage U
• "HMI_Tag_3": Electrical current I

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 991

Executing an example
1. Configure three tags "HMI_Tag_1" to "HMI_Tag_3" of the type "Int".
2. You configure the following objects on a screen:

– 1 button (in the example "Button_1")
– 3 I/O fields with the process values "HMI_Tag_1" to "HMI_Tag_3"

3. Create a script for the event "Click left mouse button".
The JavaScript editor creates the function "Button_1_OnTapped(item, x, y,
modifiers, trigger)".

4. Insert the example code.

Sample code

//JEx: "Reading and writing tag values"
//Tags_Required: "HMI_Tag_1"; "HMI_Tag_2"; "HMI_Tag_3"
export function Button_1_OnTapped(item, x, y, modifiers, trigger) {
 Tags("HMI_Tag_1").Write(Tags("HMI_Tag_2").Read() * Tags("HMI_Tag_3").Read());
}

See also
Notes on the code examples (Page 989)

10.1.5.4 Simulating value changes in tags

Introduction
This example shows how tags are supplied with values in defined time intervals by a simulation.
With the simulation, demo projects can be created or tested without process integration.

Note
Connection of existing process tags leads to influencing of processes
The simulation writes the calculated values to the tags without further test steps.
• Do not link any external tags; these remain linked to any existing process.

The simulation thus influences the process in which the external tag is integrated.
• If you purposely want to influence a process with simulation, note that the external tag of the

process can only be reached for simulation if the following requirements are met:
– The connection to the controller (PLC) is established.
– The controller (PLC) is in "RUN" mode.

Programming scripts
10.1 Runtime scripting

992 System Manual, 11/2022

The global functions for generating sine and sawtooth waves use 5 parameters:
• counter: Counter that uses the current date in milliseconds.
• phase: Phase offset as a factor between 0.0 and 1.0

The factor 0.0 to 1.0 corresponds to a phase offset of 0° to 360°.
• period: Duration of a full vibration cycle in milliseconds
• amp: Strength of the amplitude
• offset: Shift of the amplitude on the y-axis

Executing an example
1. Create a global "Simulator" module.
2. Configure the two functions "sinWave" and "sawTooth" in this global module.

Use the source codes from the following sections for the functions:
– "Example code > Simulate sine wave (global script)"
– "Example code > Simulate sawtooth wave (global script)"

3. Create a script for the "Loaded" event for the screen.
4. Go to the "Global definition" view of the event.
5. Insert the sample code under "Sample code > Event - Global definition area" in the "Global

definition" view of the event.
6. If necessary, adapt the copied sample code to your project. For example, if you use more than

2 tags, you must add more lines with the function ts.Add(...).
7. Go back to the "Function" view of the event.
8. Insert the source code from "Example code > Event".
The tags HMI_Tag_1 and HMI_Tag_2 can now be connected to any objects in the screen that
can display the values, such as:
• Function trend control
• Gauges
• Bar graphs
• Text fields

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 993

Result
1. When the application is loaded in runtime, the import function initializes the scripts from

the global module "Simulator" for the "Loaded" event of the screen.
The example code can be found under "Event - Global definition area".

2. If the event is triggered when the screen is loaded, the function "simulateTags()" starts at the
specified intervals.
In the example, the interval is 500 ms.
The call of the function "simulateTags()" is stopped as soon as the screen is deselected.
The example code can be found under "Event" and "Event - Global definition area".

3. The function "simulateTags()" starts with each call of the functions "sinWave" and "sawTooth"
and transfers the new values to the tags.
The example code can be found under "Simulate sine wave (global script)" and "Simulate
sawtooth wave (global script)".

Sample code
Simulate sine wave (global script)

//JEx: "Simulate Sine Wave"
export function sinWave(counter, phase, period, amp, offset) {
 return offset + amp * Math.sin((phase + ((counter % period) / period)) * (2*Math.PI));
}

Simulate sawtooth wave (global script)

//JEx: "Simulate Saw Tooth Wave"
export function sawTooth(counter, phase, period, amp, offset) {
 return offset + amp * (((counter + phase * period) % period) / period);
}

Global event definition area

//JEx: "Generate signals"
//SOM_OM_"HmiTrendControl"
//JExRequired: "Simulate Sine Wave", "Simulate Saw Tooth Wave"
import * as sim from "Simulator";
function simulateTags() {
 let counter = Date.now();
 let ts = Tags.CreateTagSet();
 ts.Add([['HMI_Tag_1', sim.sinWave(counter, 0.00, 10000, 25, 25)]]);
 ts.Add([['HMI_Tag_2', sim.sawTooth(counter, 0.25, 37000, 30, 15)]]);
 ts.WriteAsync();
}

Programming scripts
10.1 Runtime scripting

994 System Manual, 11/2022

Event

//JEx: "Event Screen_1 OnLoad"
//SOM_OM_"HmiTrendControl"
//JExRequired: "Generate signals"
export function Screen_1_OnLoad(item) {
 HMIRuntime.Timers.SetInterval(simulateTags, 500);
}

See also
Notes on the code examples (Page 989)

10.1.5.5 Using tag values globally

Introduction
The example shows how to use tag values globally. A tag value can therefore be shared between
screens and tasks, for example.
The basic procedure is as follows:
1. The tag value is written into an internal tag via a script.
2. The tag value is read by another script at the desired place.
You can save and read the values of all data types supported by the object model in internal
tags.

Executing an example
The following example writes a structured value of a JavaScript tag to an internal tag. Another
member is added to the structured value in the sample code on button 2.
1. Configure an HMI tag "Tag".
2. Configure two buttons (in the example "Button_1" and "Button_2") on a screen.
3. Create a script for each "Click left mouse button" event of the buttons.

The JavaScript editor creates the functions "Button_1_OnTapped(item, x, y,
modifiers, trigger)" and Button_2_OnTapped(item, x, y, modifiers,
trigger).

4. Insert the sample code "Write structured value into internal tag" into the script of the first
button.

5. Insert the sample code "Enhance structure by member "c"" into the script of the second
button.

6. Compile and load it in runtime.
7. Trigger the event "Click left mouse button" on both buttons.

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 995

Result
Button 1
1. The JavaScript tag "tag" is created and initialized with the HMI tag "Tag".
2. The JavaScript tag "myObj" is created and initialized.
3. The JavaScript tag "myObj" is converted into a JSON string and assigned to the JavaScript tag

"json".
4. The value of the JavaScript tag "json" is written into the HMI tag "Tag".

Button 2
1. The JavaScript tag "tag" is created and initialized with the HMI tag "Tag".
2. The JavaScript tag "myObj" is created and initialized.
3. The JavaScript tag "myObj" is extended by the member "c".
4. The JavaScript tag "myObj" is converted into a JSON string and assigned to the JavaScript tag

"json".
5. The value of the JavaScript tag "json" is written into the HMI tag "Tag".

Sample code
Write structured value into internal tag

//JEx: "set initial values without 'c'"
export function Button_1_OnTapped(item, x, y, modifiers, trigger) {
let tag = Tags('Tag');
let myObj = {a:10, b:20, pos: {x:100, y:200}, layers: [1, 8, 18, 24, 33]};
let json = JSON.stringify(myObj);
HMIRuntime.Trace('Jason ' + json);
tag.Write(json, 1);
}

Enhance structure by member "c"

//JEx: "add member 'c'"
export function Button_2_OnTapped(item, x, y, modifiers, trigger) {
const tag = Tags('Tag');
let myObj = JSON.parse(tag.Read(1));
myObj.c = (myObj.c || 0) + 1; // increment 'c'
let json = JSON.stringify(myObj);
HMIRuntime.Trace("New JSON: " + json);
tag.Write(json, 1);
}

Programming scripts
10.1 Runtime scripting

996 System Manual, 11/2022

10.1.5.6 Converting values

Introduction
The example shows how temperature values can be converted into a different unit with
JavaScript.

Executing an example
1. Create a global module "TemperatureConversions" with 2 global scripts:

– "celsiusToFahrenheit(t_celsius)"
– "fahrenheitToCelsius(t_fahrenheit)"

2. Copy the corresponding sample code to the global scripts.
3. Copy the sample code from the "Global definition range" to the global definition range of the

global module "TemperatureConversion".
4. Create a screen with 2 elements of the type "I/O field".
5. Dynamize the "Process value" property of the two "I/O field" elements using scripts.
6. Copy the sample code of both scripts.

Celsius to Fahrenheit (global script)

//JEx: "CelsiusToFahrenheit"
//JExRequired: "TempConv_GlobalDefRange"
export function celsiusToFahrenheit(t_celsius) {
 return t_celsius * 1.8 + 32;
}

Fahrenheit to Celsius (global script)

//JEx: "FahrenheitToCelsius"
//JExRequired: "TempConv_GlobalDefRange"
export function fahrenheitToCelsius(t_fahrenheit) {
 return (t_fahrenheit - 32) / 1.8;
}

Global definition range

//JEx: "TempConv_GlobalDefRange"
import * as tempConv from 'TemperatureConversion';

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 997

Celsius to Fahrenheit (dynamization of process value)
The JavaScript function is triggered by the tag 'celsius1'.

//JEx: "DynCelsiusToFahrenheit"
//SOM_OM_"HmiIOField"
//TagsRequired: "celsius1"
//JExRequired: "celsiusToFahrenheit"
//JExRequired: "TempConv_GlobalDef"
export function I_O_field_1_ProcessValue_Trigger(item) {
 const tagCelsius = Tags('celsius1');
 tagCelsius.Read();
 return tempConv.celsiusToFahrenheit(tagCelsius.Value);
}

Fahrenheit to Celsius (dynamization of process value)
The JavaScript function is triggered by the tag 'fahrenheit1'.

//JEx: "DynFahrenheitToCelsius"
//SOM_OM_"HmiIOField"
//TagsRequired: "fahrenheit1"
//JExRequired: "fahrenheitToCelsius"
//JExRequired: "TempConv_GlobalDef"
export function I_O_field_2_ProcessValue_Trigger(item) {
 const tagFahrenheit = Tags('fahrenheit1');
 tagFahrenheit.Read();
 return tempConv.fahrenheitToCelsius(tagFahrenheit.Value);
}

See also
Notes on the code examples (Page 989)

10.1.5.7 Change language

Introduction
The example shows how the interface language is changed by JavaScript.

Programming scripts
10.1 Runtime scripting

998 System Manual, 11/2022

Executing an example
1. Configure a button "Button_1".
2. Activate the project languages required for the example:

– English
– German
– Hungarian
– French

3. Create a script for the event "Left mouse button clicked" of the button "Button_1".
4. Define the tag "step" under "Global definition" and assign the value "2" to it.

Global definition

//JEx: "LanguageChangeGlobalDef"
var step = 2;

Sample code
Clicking the button increments the tag "step". The stored code for the language is assigned
to HMIRuntime.Language according to its value.

//JEx: "LanguageChange"
//JExRequired: "LanguageChangeGlobalDef"
export function Button_1_OnTapped(item, x, y, modifiers, trigger) {
 //change to English
 if (step == 1) {HMIRuntime.Language = "1033";}
 //change to Hungarian
 if (step == 2) {HMIRuntime.Language = "1038";}
 //change to German
 if (step == 3) {HMIRuntime.Language = "1031";}
 //change to French
 if (step == 4) {HMIRuntime.Language = "1036";}
 step ++; //step
 if (step == 5) {step = 1;} //reset
}

See also
Notes on the code examples (Page 989)

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 999

10.1.5.8 Dynamically changing the output format of an object

Introduction
This example shows how to dynamically change the output format of an object of the type "I/O
field" using JavaScript.
The output in the example is switched between the following formats:
• Hexadecimal
• Decimal
• Binary

Executing an example
1. Configure a screen page with 3 buttons with the names "Button_1" to "Button_3".
2. Configure max. nine objects of the "I/O field" type with the names "HmiIOField_1" to

"HmiIOField_9".
3. Create a script for the event "Button pressed" for each button.
4. Define the constants as described in the section "Global definition of constants".
5. Create 2 global scripts:

– toggleOutputFormat()
– setOutputFormat(format)

6. Transfer the source code from the following sections.

Global script "toggleOutputFormat()"

//JEx: "Toggle Output Format"
//SOM_OM_"HmiIOField"
//JExRequired: "Set Output Format";"GlobalConstants for OutputFormat"
function toggleOutputFormat() {
 let index = outputFormats.indexOf(Screen.FindItem(screenItemNameBase +
minScreenItemIndex).OutputFormat);
 index = (index + 1) % outputFormats.length;
 setOutputFormat(outputFormats[index]);
}

Programming scripts
10.1 Runtime scripting

1000 System Manual, 11/2022

Global script "setOutputFormat(format)"

//JEx: "Set Output Format"
//SOM_OM_"HmiIOField"
//JExRequired: "GlobalConstants for OutputFormat"
function setOutputFormat(format) {
 for(let i = minScreenItemIndex; i <= maxScreenItemIndex; i++) {
 let name = screenItemNameBase + i;
 Screen.FindItem(name).OutputFormat = format;
 }
}

Global definition of constants

//JEx: "GlobalConstants for SetOutputFormat"
const outputFormats = ['{I}', '{H2,2}', '{B8,4}'];
// Creating dynamic object names which differ by a number at the end
const screenItemNameBase = 'HmiIOField_';
// the screen item names begin with the prefix 'HmiIOField_'
const minScreenItemIndex = 1; // range of the screen items: min
const maxScreenItemIndex = 9; // range of the screen items: max

Switch to hexadecimal output format

//JEx: "Switch Output Format Hex"
//SOM_OM_"HmiIOField"
//JExRequired: "Set Output Format"
export function Button_1_OnDown(item, x, y, modifiers, trigger) {
 setOutputFormat('{H2,2}');
}

Switch to decimal output format

//JEx: "Switch Output Format Dec"
//SOM_OM_"HmiIOField"
//JExRequired: "Set Output Format"
export function Button_2_OnDown(item, x, y, modifiers, trigger) {
 setOutputFormat('{I}');
}

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 1001

Switch to the next output format

//JEx: "Switch Output Format Bin"
//SOM_OM_"HmiIOField"
//JExRequired: "Toggle Output Format"
export function Button_3_OnDown(item, x, y, modifiers, trigger) {
 toggleOutputFormat();
}

See also
Notes on the code examples (Page 989)

10.1.5.9 Reading and writing binary files

Introduction
The example shows how to write a binary file to the file system with JavaScript.

Note
• For access to the data, use the class "DataView" or one of the "*Array" classes together with

the class "arrayBuffer".
• If the Endianess of the computer systems used for development (Compiler) and execution

(Runtime) are different, use the class "DataView".
• The method HMIRuntime.Trace(text) outputs whether the function was successful via the

Tracer.

Executing an example
1. Configure 3 buttons with the names "Button_10", "Button_11" and "Button_14".
2. Create a script for the event "Print" for each button.
3. Copy the sample code below to your project.

Programming scripts
10.1 Runtime scripting

1002 System Manual, 11/2022

Writing a binary file

//JEx: Write a binary file with class "Int32Array" into file system
export function Button_10_OnDown(item, x, y, modifiers, trigger) {
 var arrayBuffer = new Int32Array([1,2,3]);
 HMIRuntime.FileSystem.WriteFileBinary('C:\\Users\\Public\\binaryfile.bin',
arrayBuffer).then(
 function() {
 HMIRuntime.Trace('Write file finished successfully');
 }).catch(
 function(e) {
 HMIRuntime.Trace(`Write file failed with error code ${e}`);
 });
}

Reading a binary file with the class Int32Array

//JEx: Read a binary file with class "Int32Array" from file system
export function Button_11_OnDown(item, x, y, modifiers, trigger) {
 var arrayBuffer = new Int32Array([1,2,3]);
 HMIRuntime.FileSystem.ReadFileBinary('C:\\Users\\Public\\binaryfile.bin',
arrayBuffer).then(
 function(arrayBuffer) {
 let intView = new Int32Array(arrayBuffer);
 for(let i in intView) {
 HMIRuntime.Trace('intView[' + i + '] = ' + intView[i]);
 }
 }).catch(
 function(e) {
 HMIRuntime.Trace(`Read file failed with error code ${e}`);
 });
}

Reading a binary file with the class DataView

//JEx: Read a binary file with class "DataView" from file system
export function Button_14_OnDown(item, x, y, modifiers, trigger) {
 HMIRuntime.FileSystem.ReadFileBinary('C:\\Users\\Public\\binaryfile.bin').then(
 function(arrayBuffer) {
 let dv = new DataView(arrayBuffer, 0, arrayBuffer.length);
 HMIRuntime.Trace('Int32[0] LE:' + dv.getInt32(0, true).toString(16));
 HMIRuntime.Trace('Int32[0] BE:' + dv.getInt32(0).toString(16));
 HMIRuntime.Trace('Int16[2] LE:' + dv.getInt16(2, true).toString(16));
 }).catch(
 function(e) {
 HMIRuntime.Trace(`Read file failed with error code ${e}`);
 });
}

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 1003

See also
Notes on the code examples (Page 989)

10.1.5.10 Reading and writing text files

Introduction
This example shows how text files can be read and written with JavaScript.

Execution of example

Note
The method HMIRuntime.Trace(text) outputs whether the function was successful via the Tracer.

1. Configure 2 buttons "Button_12" and "Button_13".
2. Create a script for the event "Print" for each button.
3. Copy the sample code below to your project.

Writing sample code for text file

//JEx: "Write Text File"
export function Button_12_OnDown(item, x, y, modifiers, trigger) {
 HMIRuntime.FileSystem.WriteFile('C:\\Users\\Public\\textfile.txt', 'my utf8 string',
'utf8').then(
 function() {
 HMIRuntime.Trace('Write file finished successfully');
 }).catch(function(errorCode) {
 HMIRuntime.Trace('Write failed errorcode=' + errorCode);
 });
}

Reading sample code for text file

//JEx: "Read Text File"
export function Button_13_OnDown(item, x, y, modifiers, trigger) {
 HMIRuntime.FileSystem.ReadFile('C:\\Users\\Public\\textfile.txt',
'utf8').then(
 function(text) {
 HMIRuntime.Trace('Text=' + text);
 }).catch(function(errorCode) {
 HMIRuntime.Trace('Read failed errorcode=' + errorCode);
 });
}

Programming scripts
10.1 Runtime scripting

1004 System Manual, 11/2022

See also
Notes on the code examples (Page 989)

10.1.5.11 Setting bits

Introduction
The example shows how single and multiple bits are masked and set with JavaScript.

Note
Using different methods for integer data types
The methods of the "Math.Uint64" object and the standard model are available for setting and
resetting multiple bits.
The methods of the "Math.Uint64" object work with all integer data types.
• For values < 231 use the standard methods of JavaScript.
• For values ≥ 231 use BigInt of the standard model or the methods of the Math.Uint64

object.
BigInt of the standard model is used in the following examples.

Executing an example
1. Create 6 buttons in a project.
2. Create a tag of the "Int" type.
3. For all 6 buttons create local scripts for the event "Left mouse button pressed".
4. Transfer the source code for the examples to the respective script areas.
5. To retain a clear overview assign descriptive texts to the buttons.

Setting a single bit (no error handling)
The "Tag.SetBit()" and "Tag.ResetBit()" methods are available for setting and resetting
single bits.

//JEx: "SetSingleBit"
//SOM_OM_"
//TagsRequired: "HMI_Tag_1"
export function Button_1_OnTapped(item, x, y, modifiers, trigger) {
 Tags('HMI_Tag_1').SetBit(37);
}

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 1005

Setting a single bit
When error handling is included, a corresponding message is output with
the HMIRuntime.Trace() method.

//JEx: "SetSingleBitWithErrorHandling"
//SOM_OM_"
//TagsRequired: "HMI_Tag_1"
export function Button_5_OnTapped(item, x, y, modifiers, trigger) {
 const tag1 = Tags('HMI_Tag_1');
 const bitNum = 37;
 tag1.SetBit(bitNum).then(() => {HMIRuntime.Trace('SetBit succeeded');})
 .catch((e) => {HMIRuntime.Trace(`SetBit failed, error=${e}`);});
}

Changing bits with "Xor" without error handling
Changing multiple bits with 64 bits without error handling.

Copy code
//JEx: "SetMultipleBits"
//SOM_OM_"
//TagsRequired: "HMI_Tag_1"
export function Button_6_OnTapped(item, x, y, modifiers, trigger) {
 const tag1 = Tags('HMI_Tag_1');

 // Define a 64-bit mask using a binary constant
 const mask = 0b0110011000000000000000000000000000001n;

 // Read LWord Tag
 tag1.Read();

 let newValue = BigInt(tag1.Value);
 newValue ^= mask; // use Bit-operations for clearing / setting bits

 tag1.Write(newValue);
}

Setting bits with "Or"
The function sets every bit in the mask that has the value "1".

Programming scripts
10.1 Runtime scripting

1006 System Manual, 11/2022

The example uses asynchronous writing and includes an extended error handling.

//JEx: "SetMultipleBitsWithErrorHandlingOr"
//TagsRequired: "HMI_Tag_1"
// set bits with 'Or': sets every bit which is '1' in mask
export function Button_16_OnTapped(item, x, y, modifiers, trigger) {
 const tag1 = Tags('HMI_Tag_1');
 const mask = 0b0110011000000000000000000000000000001n;

 tag1.Read();

 if(tag1.LastError != 0) {
 HMIRuntime.Trace(`Read failed, error=${tag1.LastError}`);
 } else if((tag1.QualityCode & 0x80) == 0) {
 // Check whether QC is 'good' or 'good cascade'
 HMIRuntime.Trace(
 `Read succeeded, but Quality is not 'good', QC=$
{tag1.QualityCode}`
);
 } else {
 let newValue = BigInt(tag1.Value);
 newValue |= mask; // Set bits
 const ts = Tags.CreateTagSet([[tag1.Name, newValue]]);
 ts.WriteAsync().then(()=>{HMIRuntime.Trace('Write succeeded')})
 .catch((e)=>{HMIRuntime.Trace(`Write failed, error=${e}`)});
 }
}

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 1007

Deleting bits with "AND"
The script deletes each masked bit with the value "1".

//JEx: "ClearMultipleBitsWithErrorHandlingAnd"
//TagsRequired: "HMI_Tag_1"
export function Button_17_OnTapped(item, x, y, modifiers, trigger) {
 const tag1 = Tags('HMI_Tag_1');
 let mask = 0b0110011000000000000000000000000000001n;

 // invert all bit of mask for 'And' operation
 mask ^= 0xffffffffffffffffn;
 tag1.Read();

 if(tag1.LastError != 0) {
 HMIRuntime.Trace(`Read failed, error=${tag1.LastError}`);
 } else if((tag1.QualityCode & 0x80) == 0) {
 // Check whether QC is 'good' or 'good cascade'
 HMIRuntime.Trace(
 `Read succeeded, but Quality is not 'good', QC=$
{tag1.QualityCode}`
);
 } else {
 let newValue = BigInt(tag1.Value);
 newValue &= mask; // Delete bits

 const ts = Tags.CreateTagSet([[tag1.Name, newValue]]);
 ts.WriteAsync().then(()=>{HMIRuntime.Trace('Write succeeded')})
 .catch((e)=>{HMIRuntime.Trace(`Write failed, error=${e}`)});
 }
}

Programming scripts
10.1 Runtime scripting

1008 System Manual, 11/2022

Replacing bits with "Xor"
The script replaces each bit in the mask that has the value "1".

//JEx: "FlipMultipleBitsWithErrorHandlingXor"
//TagsRequired: "HMI_Tag_1"
export function Button_12_OnTapped(item, x, y, modifiers, trigger) {
 const tag1 = Tags('HMI_Tag_1');
 const mask = 0b0110011000000000000000000000000000001n;

 tag1.Read();
 if(tag1.LastError != 0) {
 HMIRuntime.Trace(`Read failed, error=${tag1.LastError}`);
 } else if((tag1.QualityCode & 0x80) == 0) {
 // Check whether QC is 'good' or 'good cascade'
 HMIRuntime.Trace(
 `Read succeeded, but Quality is not 'good', QC=$
{tag1.QualityCode}`
);
 } else {
 let newValue = BigInt(tag1.Value);
 newValue ^=mask;
 const ts = Tags.CreateTagSet([[tag1.Name, newValue]]);

 ts.WriteAsync().then(()=>{HMIRuntime.Trace('Write succeeded')})
 .catch((e)=>{HMIRuntime.Trace(`Write failed, error=${e}`)});
 }
}

See also
Notes on the code examples (Page 989)

10.1.5.12 Changing the date format

Introduction
The example shows how the date format is changed using JavaScript.

Executing an example
1. Create 2 I/O fields and 1 button.
2. Configure 2 global tags:

– HMI_Tag_1 of the type "Int"
– HMI_Tag_2 of the type "WString"

3. Create a script for the event "Press" of the button "Button_1".

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 1009

Sample code

//JEx: "ChangeDateformat"
//SOM_OM_"HmiIOField_1", SOM_OM"HmiIOField_2"
//TagsRequired: "HMI_Tag_1:Int","HMI_Tag_2:WString"
export function Button_1_OnDown(item, x, y, modifiers, trigger) {
 //Create array with all month names
 var monthNames = [
 "January", "February", "March",
 "April", "May", "June", "July",
 "August", "September", "October",
 "November", "December"
];
 var date = new Date(); //Create tag with current date
 var day = date.getDate(); //Separation of the individual date components
 var monthIndex = date.getMonth();
 var year = date.getFullYear();
 var month = monthIndex + 1;
 //The "getMonth()" object contains 12 values from "0" to "11".
 //Set the date format
 switch (Tags("HMI_Tag_1").Read()) {
 case 1: Tags("HMI_Tag_2").Write(day +'/' +month +'/' +year); break;
 case 2: Tags("HMI_Tag_2").Write(year +'-' +month+ '-' +day); break;
 case 3:
 Tags("HMI_Tag_2").Write(year +'-' +monthNames[monthIndex] + '-'
+day);
 break;
 default:
 Tags("HMI_Tag_2").Write(day + ' ' + monthNames[monthIndex] + '
' + year);
 break;
 }
}

See also
Notes on the code examples (Page 989)

10.1.5.13 Monitoring alarms

Introduction
This example shows how to create and monitor active alarms.
The reason (NotificationReason) for which the alarms were sent can have the following
values:
• Unknown (1)
• Add (1)

The alarm was added to the filtered result list. The alarm meets the filter criteria that apply to
the monitoring, for example "State = 1".

Programming scripts
10.1 Runtime scripting

1010 System Manual, 11/2022

• Modify (2)
Properties of the alarm were changed, but the alarm is still part of the filtered result list.

• Remove (3)
The alarm was part of the result list, but it no longer meets the filter criteria due to changes
to its properties.
Note
Changes to the alarm will not result in notifications until the alarm meets the filter criteria
again, such as "State = 1". In this case, "NotificationReason" is set to Add.

State-based and event-based monitoring
The respective client application determines whether or not notifications of alarms with the
"NotificationReason" Modify or Remove are ignored.
For example:
• State-based monitoring: A customer wants to create a list of incoming alarms. All

notification reasons are relevant. The client removes an alarm from the list as soon as the
notification reason is Remove.

• Event-based monitoring: If an alarm is received, an email should be sent. Only the
notification reason Add is relevant.

Execution of example
1. Configure a button (in the example "Button_1") on a screen.
2. Create a script for the event "Click left mouse button".

The JavaScript editor creates the function "Button_1_OnTapped(item, x, y,
modifiers, trigger)".

3. Insert the example code.
4. Compile and load it in Runtime.
5. Trigger the event "Click left mouse button" on the button.

Result
1. A customer begins monitoring with the filter criterion "State = 1".
2. An alarm is triggered. Runtime notifies the customer of the "NotificationReason" as follows:

NotificationReason Description
Add "State" is 1 The alarm has arrived.
Modify "State" property has not changed.

Another property that is not part of the filter criterion has changed, e.g.
"Priority".

Remove "State" has changed. The alarm is removed.

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 1011

Sample code

//JEx: "A client starts an alarm subscription with filter criterion “State = 1” (Raised
alarms)."
export function Button_1_OnTapped(item, x, y, modifiers, trigger) {
var subs = HMIRuntime.Alarming.CreateSubscription();
subs.Filter = 'State=1';
subs.Language = 1033;
subs.OnAlarm = function(Errorcode, SystemNames, ResultSet) {
 for (let index in ResultSet)
 {
 HMIRuntime.Trace('Alarm Name_' + (index+1) + ' = ' + ResultSet[index].Name);
 HMIRuntime.Trace(' Alarm State_' + (index+1) + '= ' + ResultSet[index].State);
 HMIRuntime.Trace(' Notification Reason_' + (index+1) + '= ' +
ResultSet[index].NotificationReason);
 }
}
subs.Start();
}

10.1.5.14 Set alarm filter

Introduction
The example shows how the alarm filter is set by a JavaScript function.
To make the examples easy, the filters are set by pressing a button.
Classic application example: Setting alarm filters using check boxes on a screen page.

Executing an example
1. Configure a screen with the following elements:

– 1 alarm control ("Alarm control_1")
– 2 buttons (in the example "Button_7" and "Button_8")

2. Configure the generation of alarms of the alarm class "Warning" and "Alarm".
3. Ensure that the alarms in the alarm control "Alarm control_1" are displayed.

Programming scripts
10.1 Runtime scripting

1012 System Manual, 11/2022

Filtering sample code for "Warning"
In the sample code, alarms of the alarm class "Warning" are filtered.

//JEx: "Alarm Filter Control with Warnings"
//SOM_OM_"Alarm control" (Alarm control_1);
//JExRequired: "Alarm Subscription"
export function Button_7_OnDown(item, x, y, modifiers, trigger) {
 let alarmControl = Screen.FindItem('Alarm control_1');
 alarmControl.Filter = "AlarmClassName='Warning'";
}

Filtering sample code for "Warning" and "Alarm"
In the sample code, alarms of the alarm class "Warning" and "Alarm" are filtered.

//JEx: "Alarm Filter Control with Warnings and Alarms"
//SOM_ON_"Alarm control" (Alarm control_1);
//JExRequired: "Alarm Subscription"
export function Button_8_OnDown(item, x, y, modifiers, trigger) {
 let alarmControl = Screen.FindItem('Alarm control_1');
 alarmControl.Filter = "AlarmClassName IN ('Warning','Alarm')";
}

See also
Notes on the code examples (Page 989)

10.1.5.15 Creating an alarm subscription

Introduction
The example shows how an "Alarm subscription" is programmed in JavaScript.

Executing an example
1. Configure a task in the Scheduler with the time interval for the update.
2. Create a script for the event "Update" at the configured task.
3. Create the tag "subs" under "Global definition" (compare section "Global definition").
4. Copy the code under "Example code" to the script for the "Update" event.

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 1013

Global definition

//JEx: "AlarmSubscriptionDef"
// A global tag is required for the Alarm Subscription,
// to be able to end the subscription
var subs;

Sample code
The JavaScript function in the example is started via the event "Update" of a task in the Scheduler.

//JEx: "AlarmSubsciption"
//JExRequired: "AlarmSubscriptionDef"
//TagsReqired: "HMI_Tag_1_Int"
// Function will be generated when you create a script on event "Update" of a task
export function Task_Task_1_Update() {
 let tag = Tags("HMI_Tag_1_Int");
 tag.Read();
 if(tag.Value == 1) {
 // start subscription
 if(subs) {
 // stop already existing subscription
 subs.Stop();
 subs = undefined;
 }
 subs = HMIRuntime.Alarming.CreateSubscription();
 subs.Filter = 'AlarmClassName=\'Warning\'';
 //subs.Language = 1033; // For explicit setting of a specific language
 subs.OnAlarm = function(Errorcode, SystemNames, ResultSet) {
 // Callback function is performed as soon as the alarm attribute changes
 for (let index in ResultSet) {
 HMIRuntime.Trace('Alarm[' + index + '] Name="' + ResultSet[index].Name + '"');
 HMIRuntime.Trace('Alarm[' + index + '] State="' + ResultSet[index].State +
'"');
 HMIRuntime.Trace('Alarm[' + index + '] EventText="' +
ResultSet[index].EventText + '"');
 }
 }
 subs.Start();
 } else if(tag.Value == 2) {
 // stop subscription
 if(subs) {
 // Stop already existing Alarm Subscription
 subs.Stop();
 subs = undefined;
 }
 }
}

See also
Notes on the code examples (Page 989)

Programming scripts
10.1 Runtime scripting

1014 System Manual, 11/2022

10.1.5.16 Creating alarms with multilingual alarm texts

Introduction
The example shows how you transfer multilingual alarm text to the system function
"CreateSystemAlarm" using text lists.
In the first sample code, you are using a text list entry in the "alarmText" parameter. In this
entry, you refer to the "alarmParameterValue1" parameter.
In the second sample code, you are also using a text list entry in the "alarmText" parameter.
In this entry, you refer to an additional text list.
This example can be transferred to the system functions "CreateSystemInformation" and
"CreateOperatorInputInformation".
The system functions "CreateSystemInformation", "CreateSystemAlarm" and
"CreateOperatorInputInformation" have the following parameters:
• "alarmText": Specifies the alarm text.

You have the option of establishing references to the parameter values.
• "area" (optional): Specifies the scope.
• "alarmParameterValue1" to "alarmParameterValue7" (optional): Specifies the alarm

parameters.

Tips for an efficient procedure
You can find the following snippets for the system function "CreateSystemInformation" in the shortcut menu of the "Scripts" editor under
"Snippets > HMI Runtime > Alarming":
• "CreateSystemInformation with monolingual Alarm Text"
• "CreateSystemInformation with multilingual Alarm Text and Parameter Value"
• "CreateSystemInformation with multilingual Alarm Text and embedded Text List"

Executing an example
1. Create multiple project languages. One of the languages is English.
2. Activate the desired project languages in the runtime settings of the HMI device under

"Language & Font".
3. Create a text list "Text_list_3" of the type "Value/Area".
4. Create an entry in the text list.
5. Set the value to "1".
6. Specify the English text: "Parameter value 1: @1%s@".

"Parameter value 1 :" can be displayed in multiple languages.
"@1%s@" is the reference to the "alarmParameterValue1" parameter. "1" indicates the
number and "s" the data type. The data type is String.

7. Specify the text for additional languages in the Inspector window under "Properties > Texts".
8. Create a text list "Text_list_1" of the type "Value/Area".
9. Create an entry in the text list.

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 1015

10.Set the value to "1".
11.Specify the text for all required languages: "@1%t#2T@".

"@1%t#2T@" is the reference to the parameters "alarmParameterValue1" and
"alarmParameterValue2".
The name of the text list in transferred in "alarmParameterValue2".
The value of the text list entry is transferred in "alarmParameterValue1".

12.Create a text list "Text_list_2" of the type "Value/Area".
13.Create an entry in the text list.
14.Set the value to "1".
15.Specify the English text: "MyText".
16.Specify the text for additional languages in the Inspector window under "Properties > Texts".
17.Configuring the buttons "Button_1" and "Button_2".
18.Configure an alarm control.
19.Configure the alarm control so that current alarms of the alarm class "SystemAlarm" are

displayed.
20.Create a script for the event "Click left mouse button" at each of the buttons.
21.Add the respective sample code.
22.Configure buttons for switching the language.
23.Compile and load the project.
24.Trigger the events at the buttons.

Result
"Button_1"
• When the runtime language "English" is active, the alarm of the alarm class "SystemAlarm" is

displayed as follows in the alarm control:
– The area is "MyArea".
– The alarm text is "Parameter value 1: My Parameter Value 1".

The alarm text comes from the entry of the text list "Text_list_3".
• When you switch the language in runtime, the language-dependent alarm text is displayed.

"My Parameter Value 1" is language-neutral.

"Button_2"
• When the runtime language "English" is active, the alarm of the alarm class "SystemAlarm" is

displayed as follows in the alarm control:
– The area is "MyArea".
– The alarm text is "MyText".

The alarm text comes from the entry of the text list "Text_list_2".
• When you change the language in runtime, the language-dependent message is displayed.

Programming scripts
10.1 Runtime scripting

1016 System Manual, 11/2022

Sample codes
"Button_1"

//JEx: "CreateSystemAlarm with multilingual Alarm Text and Parameter Value"
//TextListsRequired: "Text_list_3"
//EntryRequired: value: "1", Text: "Parameter value 1: @1%s@"
export function Button_1_OnTapped(item, x, y, modifiers, trigger) {
let value = 1;
HMIRuntime.Alarming.SysFct.CreateSystemAlarm(
 HMIRuntime.Resources.TextLists("Text_list_3").Item(value), "MyArea", "My
Parameter Value 1");
}

"Button_2"

//JEx: "CreateSystemAlarm with multilingual Alarm Text and Parameter Value"
//TextListsRequired: "Text_list_1", "Text_list_2"
//Text_list_1: value: "1", Text: "@1%t#2T@"
//Text_list_2: value: "1", Text: "MyText"
export function Button_1_OnTapped(item, x, y, modifiers, trigger) {
let value = 1;
HMIRuntime.Alarming.SysFct.CreateSystemAlarm(
 HMIRuntime.Resources.TextLists("Text_list_1").Item(value),
 "MyArea", 1, HMIRuntime.Resources.TextLists("Text_list_2"));
}

See also
CreateOperatorInputInformation (Page 915)
CreateSystemAlarm (Page 917)
CreateSystemInformation (Page 916)

10.1.5.17 Opening and closing a screen in a pop-up window

Introduction
The example shows you how to open and close a screen in a pop-up window. To do this, you use
the system functions "OpenScreenInPopup" and "ClosePopup".

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 1017

OpenScreenInPopup
The system function "OpenScreenInPopup" has the following parameters:
• "popupWindowName": Specifies the name of the pop-up window.

The name must be unique within the parent screen.
• "screenName": Specifies the name of the screen that is opened in the pop-up window.
• "toggleOpen": Indicates whether the pop-up window is closed when the function is called

again.
• "Caption": Specifies the title of the pop-up window.
• "Left": Defines the window position as offset from the left margin.
• "Top": Defines the window position as offset from the top margin.
• "hideCloseButton": Specifies whether to display the "Close" button.
• "parentScreenPath" (optional): Path of the parent screen. With this parameter you specify

whether the popup window closes when a screen change is executed in the screen or screen
window.
You can specify the path absolute or relative:
– Absolute path of the parent screen: "~/Screen"
– Relative path of the parent screen: "./Screen"
– Absolute path of the parent screen in a screen window: e.g. "~/Screen window_1/Screen"

"Screen window_1" is the name of the screen window.
– Relative path of the parent screen in a screen window: e.g. "./Screen window_1/Screen"

"Screen window_1" is the name of the screen window.
Relative path information is used in the following sample codes.

ClosePopup
The system function "ClosePopup" has the parameter "popupWindowPath". The parameter
specifies the path of the pop-up window to be closed.
The "popupWindowPath" value is the result of the parameters "popupWindowName" and
"parentScreenPath" of the system function "OpenScreenInPopup".
The parameter "popupWindowPath" is specified accordingly as relative or absolute path:
• Absolute path of the popup window: e.g. "~/MyPopup"

"MyPopup" is the name of the popup window.
• Relative path of the popup window: e.g. "./MyPopup"

"MyPopup" is the name of the popup window.
• Absolute path of the popup window with screen window: "~/Screen window_1/MyPopup"

"MyPopup" is the name of the popup window and "Screen window_1" is the name of the
screen window.

• Relative path of the popup windows with screen window: "./Screen window_1/MyPopup"
"MyPopup" is the name of the popup window and "Screen window_1" is the name of the
screen window.

Programming scripts
10.1 Runtime scripting

1018 System Manual, 11/2022

Note
When the "parentScreenPath" parameter of the system function "OpenScreenInPopup" is not
defined, the parameter is "popupWindowPath", for example, "/MyPopup". "MyPopup" is the
name of the popup window.

Executing an example
1. Configure five screens: "Screen_1", "Screen_2", "Screen_3", "Screen_4" and "Screen_5".
2. Configure the following objects in the screen "Screen_1":

– Five buttons: "Button_1", "Button_2", "Button_3", "Button_4" and "Button_5"
– One screen window "Screen window_1"

3. Configure a screen change to "Screen_5" at the button "Button_5".
4. Add a button in "Screen_5" that triggers a screen change to "Screen_1".
5. Add a button in "Screen_3" that triggers a screen change to "Screen_4".
6. Add a button in "Screen_4" that triggers a screen change to "Screen_3".
7. Select "Screen_3" for the "Screen" property of the screen window.
8. Create a script for the event "Click left mouse button" at the buttons "Button_1", "Button_2",

"Button_3" and "Button_4".
9. Add the respective sample code.
10.Compile and load the project.
11.Trigger the events at the buttons.

Result
• "Button_1":

– "Screen_2" is opened in the pop-up window.
– The pop-up window is closed when you change the screen by clicking "Button_5".

• "Button_2":
– The pop-up window that was opened with "Button_1" is closed.

• "Button_3":
– "Screen_2" is opened in the pop-up window.
– When you change the screen in the screen window, the pop-up window is closed.

• "Button_4":
– The pop-up window that was opened with "Button_3" is closed.

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 1019

Sample code "Button_1"

//JEx: "OpenScreenInPopup with linked parentScreen"
export async function Button_1_OnTapped(item, x, y, modifiers, trigger) {
HMIRuntime.UI.SysFct.OpenScreenInPopup("MyPopup", "Screen_2", true,
"Popup", 100, 100, false, "./Screen");
}

Sample code "Button_2"

//JEx: "ClosePopup with linked parent screen"
export async function Button_2_OnTapped(item, x, y, modifiers, trigger) {
HMIRuntime.UI.SysFct.ClosePopup("./MyPopup");
}

Sample code "Button_3"

//JEx: "OpenScreenInPopup with linked parent screen in screen window"
//SOM_OM_"hmiScreenWindowInterface"
export async function Button_3_OnTapped(item, x, y, modifiers, trigger) {
HMIRuntime.UI.SysFct.OpenScreenInPopup("MyPopup", "Screen_2", true,
"Popup", 100, 100, false, "./Screen window_1/Screen");
}

Sample code "Button_4"

//JEx: "ClosePopup with linked parent screen in screen window"
//SOM_OM_"hmiScreenWindowInterface"
export async function Button_4_OnTapped(item, x, y, modifiers, trigger) {
HMIRuntime.UI.SysFct.ClosePopup("./Screen window_1/MyPopup");
}

See also
ClosePopup (Page 941)
OpenScreenInPopup (Page 935)

10.1.5.18 Triggering a screen change with a tag

Introduction
The example shows how you can trigger a screen change in a screen window using a tag. In the
example, the tag value is changed by clicking on the buttons.

Programming scripts
10.1 Runtime scripting

1020 System Manual, 11/2022

Application example: The system contains a motor that is controlled with a PLC. As soon as
the motor displays a fault, a detailed view of the motor is displayed on the HMI device.

Executing an example
1. Configure three screens: "Screen_Motor", "Screen_Error" and "Screen_NoError".
2. Define different background colors for the screens "Screen_Error" and "Screen_NoError".
3. Create the tag "PLC_State_Tag" of the data type "Int".
4. Configure the following objects in the screen "Screen_Motor":

– Two buttons, "Error" and "NoError"
– One screen window

5. At the "Error" button configure the system function "SetTagValue" for the event "Click left
mouse button":
– Tag: "PLC_State_Tag"
– Value: "1" (data type "Int")

6. At the "NoError" button configure the system function "SetTagValue" for the event "Click left
mouse button":
– Tag: "PLC_State_Tag"
– Value: "0" (data type "Int")

7. Select the screen window.
8. Under "Properties > Properties > General" in the Inspector window, select the "Screen"

property.
9. In the "Dynamization" column, select the "Script" option.
10.Add a trigger.
11.Select "PLC_State_Tag" as the trigger tag.
12.Insert the sample code.
13.Compile and load the project.
14.Trigger the events at the buttons.

Result
• The screen window shows the screen "Screen_Error" by default.
• When you click the "Error" button, the screen in the screen window changes to "Screen_Error".
• When you click the "NoError" button, the screen in the screen window changes to

"Screen_NoError".

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 1021

Sample code

//JEx: "ActivateScreenByNumber"
//TagsRequired: "PLC_State_Tag"
//SOM_OM_"HMIScreenWindowInterface"
export function Screen_window_1_Screen_Trigger(item) {
 let screenName;
 // Read the state tag first which is the same as the trigger tag
 let tag1 = Tags("PLC_State_Tag");
 let value1 = tag1.Read();
 // Convert state to screen name
 switch(value1)
 {
 case 0: screenName = "Screen_NoError";
 break;
 case 1: screenName = "Screen_Error";
 break;
 default: screenName = "Screen_NoError";
 break;
 }
 return screenName;
}

10.1.6 Troubleshooting

10.1.6.1 RTIL Trace Viewer

Core statement
The RTIL Trace Viewer is a separate application which runs independently of the TIA Portal, but
which can be integrated into the TIA Portal as an "external application".

Principle
During runtime, the RTIL Trace Viewer displays all alarms which are listed in the configurable
TraceCatalog.

Layout
The traces are displayed in tabular form and can be sorted in ascending and descending
order by the columns displayed.

Filters
The required alarms can be filtered using filters. Alarms in non-selected categories are hidden.

Programming scripts
10.1 Runtime scripting

1022 System Manual, 11/2022

File functions
You export alarms as trace logs in the following formats:
• Text file (.txt, .log): Loading and evaluation in the RTIL Trace Viewer
• .csv file: Evaluation in conventional spreadsheet programs or other csv-compatible

applications

See also
Support for errors (Page 978)

10.1.6.2 Integrate RTIL Trace Viewer as an external application

Procedure
1. Open the settings via "Tools > Settings".
2. Open the category "External applications".
3. Double-click in the first empty line.

An input mask for the external application opens.
4. Assign a descriptive name for the application, e.g. "RTIL Trace Viewer" in the field "Name".
5. Insert the following path under "Command": %ProgramFiles%

\Siemens\Automation\WinCCUnified\bin\RTILtraceViewer.exe
6. Leave the fields "Arguments" and "Start in" empty.
7. Click "Add" and then close the "Settings" dialog.
The application is now available via the menu "Tools > External applications".

10.1.6.3 Tracing with the RTIL Trace Viewer
There is a "Trace Viewer" for finding errors in the JavaScript code.

Preparation
The "Trace Viewer" are located in the following path:
• %ProgramFiles%\Siemens\Automation\WinCCUnified\bin\RTILtraceViewer.exe

Requirement
• Simulation or runtime are started.
• RTILtraceViewer.exe has been started.

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 1023

Procedure
1. Carry out an action in the simulation which starts a JavaScript function.
2. Filter by the trace messages "Subsystem > ScriptFW".

Note
As long as no JavaScript function was executed in the simulation during the runtime of the
Trace Viewer, the entry "ScriptFW" is missing in the "Filter > Subsystem" menu.

3. Define additional filter criteria if required.
4. Evaluate trace messages if actions in the simulation lead to errors.

Note
If no messages are displayed in the Trace Viewer despite errors in the simulation, reset the
filters:
• Only in the submenu, e.g. "Subsystem": "Filter > Subsystem > Clear filter" menu
• All filters: "Filter > Clear all filters" menu

See also
Integrate RTIL Trace Viewer as an external application (Page 1023)

Programming scripts
10.1 Runtime scripting

1024 System Manual, 11/2022

10.1.7 Debugging scripts

10.1.7.1 Basics of debugging

Introduction
For example, you can use a debugger to test whether correct values are being transferred to tags
and whether abort conditions are being correctly implemented. Check the following in the
debugger:
• Source code of functions
• Function sequence
• Values

Note
Your code is displayed in the debugger but is write-protected.

Basic procedure
To find an error, check the script with the debugger.
The following options are available for your support:
• Setting breakpoints
• Step-by-step execution
• Viewing values parallel to execution of the script
You do not edit the code of your scripts directly in the debugger. When you find an error,
follow these steps:
1. Correct the error in the engineering system.
2. Compile the changed code.
3. Load the runtime.
4. Update the debugger.

See also
Starting the debugger (Page 1029)

10.1.7.2 Design and function of the debugger
Google Chrome provides the user interface of the debugger. Not all functions of the user
interface of the debugger are relevant for debugging WinCC Unified Scripts. Only the functions
that are needed to debug scripts in WinCC Unified are explained below.

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 1025

You can find more information on Chrome DevTools under: https://
developers.google.com/web/tools/chrome-devtools/ (https://developers.google.com/web/
tools/chrome-devtools/).
The debugger is divided into two areas:
• Debugger for screens
• Debugger for jobs
With the debugger for screens you view scripts at screens and screen objects. With the
debugger for jobs, you view scripts that you have configured in the Scheduler.

Start page of the debugger
After the debugger has been started, its start page is displayed.
The available contents differ depending on the selected area.
On the start page of the debugger for screens you can see two different contexts:
• Dynamizations (e.g. "UMCadmin@192.168.116.144 VCS_1 Dynamics")
• Events (e.g. "UMCadmin@192.168.116.144 VCS_1 Events")
The name of the contexts is composed as follows:
• UMCadmin: User name
• 192.168.116.144: IP address of the computer
• VCS: Name of the graphic component
• _1: Number of the open client
• Events/Dynamics: Scripts at events or dynamizations

Note
A client corresponds to a tab in Google Chrome in which the runtime is open. When you have
opened runtime in multiple tabs, multiple clients are used. The client opened first is given the
number 1. Numbering is reset when the runtime is restarted.

On the start page of the debugger for jobs you can see the context "JobsExecution".

Programming scripts
10.1 Runtime scripting

1026 System Manual, 11/2022

https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/

User interface of the debugger

① Navigation area
② Code display area
③ Console
④ Debugging area

Navigation area
In the navigation area, the available contents for the screen shown in runtime are displayed in
groups. The available groups vary depending on the use of scripts and functions.

Groups in the debugger for screens
The debugger for screens can contain the following groups in the dynamizations context:
• A group for scripts that were configured for dynamizations.
• One group per screen window in which scripts were configured for dynamizations.
The debugger for screens can contain the following groups in the events context:
• A group for scripts that were configured for events.
• One group for functions that were configured for events using the function list.
• One group per screen window in which scripts were configured for events.
• One group per screen window in which functions were configured for events using the

function list.

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 1027

Groups in the debugger for jobs
The debugger for jobs can contain the following groups:
• A group for scripts that were configured for tasks.
• One group for functions that were configured for tasks using the function list.

Code display area
Your code is displayed in the code display area. The rows are numbered.

Debugging area
The debugging area offers the following relevant options for WinCC Unified:
• Toolbar: Control for executing the script
• "Watch": Display of values
• "Callstack": Display of the current call stack
• "Scope": Available local values ("Local"), functions ("Module") and global values ("Global"),
• "Breakpoints": List of set breakpoints

10.1.7.3 Enabling the debugger

Requirement
• SIMATIC Runtime Manager is installed.
• The logged-on user has administrator rights.

Note
The debugger is only available locally.
Remote access from the debugger to other devices is not possible.

Procedure
The debugger is disabled by default.

Note
The debugger should be deactivated in production operation, as using the debugger can
endanger system stability and security. Actions can accumulate if the debugger is, for example,
at a breakpoint for a long time or the screen is not refreshed.

Programming scripts
10.1 Runtime scripting

1028 System Manual, 11/2022

To activate the debugger, follow these steps:
1. Run the SIMATIC Runtime application with administrator rights.
2. Click the button in the toolbar.
3. Switch to the "Scripts Debugger" tab.
4. To enable the debugger for screens, select the "Enable" check box in the "Screen debugger"

area.
5. To enable the debugger for scheduled tasks, select the "Enable" check box in the "Scheduler

debugger" area.
6. Assign an available port number to the debugger for screens (default port number: 9222).
7. Assign an available port number to the debugger for jobs (default port number: 9224).
8. Confirm your entries.

Note
Start the runtime after enabling the debugger.

10.1.7.4 Starting the debugger

Requirement
• Google Chrome (as of version 70) is installed.
• A project is opened in runtime.
• The debugger was activated in SIMATIC Runtime Manager.

Note
The debugger is only available locally.
Remote access from the debugger to other devices is not possible.

Procedure
1. In a new tab, call up the URL chrome://inspect in Google Chrome.
2. The home page of the Chrome DevTools is loaded in the tab.
3. Click "Devices".
4. Select the "Discover network targets" check box.
5. Click "Configure".

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 1029

6. In the "Target discovery settings" dialog box, enter one of the following strings:
– 127.0.0.1:<Port number>
– localhost:<Port number>
Use the port entered for the Script Debugger in SIMATIC Runtime Manager.

7. Press <Enter>.
8. Click "Done".
9. Under "Remote Target", click "inspect" for the desired target.

The DevTools open in a separate window with the selected target.
10.In the DevTools, select "Sources".

The debugger is displayed.
11.Click "Toggle screencast".
12.In the navigation area under "Page", select the desired script module.

Updating the debugger
The debugger must be updated:
• After starting a new project
• After restarting a running project, for example, because you have reloaded the project in

engineering with "Download to device > Software (all)".
• After a screen change in Runtime
The connection to the debugger is lost in each case. Google Chrome therefore shows an error
message and asks whether you want to restore the connection.
To restore the connection, proceed as follows:
1. Close the DevTools window.
2. On the DevTools start page under "Remote Target", click "inspect" again for the desired target.

Stopping the debugger
Exit the debugger by closing the DevTools window and, if necessary, the DevTools homepage.
This does not stop runtime.

See also
Design and function of the debugger (Page 1025)

10.1.7.5 Working with breakpoints
Set breakpoints to stop the execution of the script at certain points and thus localize errors step-
by-step. Previously set breakpoints are still available after updating the debugger.

Programming scripts
10.1 Runtime scripting

1030 System Manual, 11/2022

Requirement
• Runtime has started.
• The debugger has been started.
• The group you want to debug is selected.

Pause script
To pause the execution of a script, you have 2 options:
• To pause the script immediately, click the "Pause script execution" button while the script

is being executed.
• Set a breakpoint in the desired line.

The script pauses when a breakpoint is reached.
To pause a script at a breakpoint that is configured to an event, follow these steps:
1. Set a breakpoint in the script.
2. Trip the respective event in runtime.

The script pauses at the breakpoint.

Setting breakpoints
You have several options to set a breakpoint in a line of the script:
• Click on the line number.
• Right-click the line number and select "Add Breakpoint".
All set breakpoints are displayed in the debugging area under "Breakpoints".

Linking breakpoints to conditions
To link a breakpoint to a condition, proceed as follows:
1. Open the shortcut menu of the relevant line.
2. Select the entry "Add conditional breakpoint".

Execution of the script is stopped at the breakpoint when the condition is fulfilled.
Edit conditions as follows:
1. Open the shortcut menu of the relevant line.
2. Select the entry "Edit breakpoint...".
To prevent the script from pausing at a selected line, proceed as follows:
1. Open the shortcut menu of the respective line.
2. Select the entry "Never pause here".

Showing and hiding breakpoints
When you hide a breakpoint, its position is retained. The script then ignores the hidden
breakpoint. When you need the breakpoint again, it can simply be shown.

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 1031

In the debugging area, all breakpoints set in the selected group are displayed under
"Breakpoints".
You have several options to show a breakpoint:
• Set the check mark in front of the relevant breakpoint in the debugging area under

"Breakpoints".
• Alternatively, right-click the number of the respective line in the code display area and then

select "Enable breakpoint".
You have several options to hide a breakpoint:
• Remove the check mark in front of the relevant breakpoint in debugging area under

"Breakpoints".
• Alternatively, right-click the number of the respective line in the code display area and then

select "Disable breakpoint".
To show or hide all breakpoints, follow these steps:
1. Open the shortcut menu in the debugging area under "Breakpoints".
2. Select "Enable all breakpoints" or "Disable all breakpoints"

Enabling and disabling breakpoints
You can enable or disable all breakpoints independent of showing or hiding individual
breakpoints.
You have several options to enable or disable all breakpoints:
• Click on the "Deactivate breaktpoints" button in the debugging area.
• Open the shortcut menu of a breakpoint in the debugging area and select

"Activate breakpoints" or "Deactivate breakpoints".
• Press <Ctrl + F8>.

Deleting breakpoints
You have several options to delete a breakpoint:
• Click on the breakpoint in the code display area.
• Open the shortcut menu of the breakpoint in the code display area and select

"Remove breakpoint".
• Open the shortcut menu in the debugging area under "Breakpoints" and select

"Remove breakpoint"..
To delete breakpoints, the shortcut menu offers the following additional options in the
debugging area under "Breakpoints":
• Delete all breakpoints ("Remove all breakpoints")
• Delete all breakpoints except the selected breakpoint ("Remove other breakpoints")

Programming scripts
10.1 Runtime scripting

1032 System Manual, 11/2022

10.1.7.6 Step-by-step execution of scripts

Introduction
The following options are available to execute your script step-by-step:
• Execute script to the next breakpoint
• Force execution of a script
• Execute script to the next function call
• Jump into a function
• Jump out of a function
• Execute script up to a selected line
• Pause at Exceptions
• Use call stack

Requirement
• The group you want to debug is selected.
• The script pauses at a breakpoint.

Execute script to the next breakpoint
To pause the continuation of a script, you have several options:
• Click on the "Resume script execution" button in the debugging area.
• Press the <F8> key.

The script is executed to the next breakpoint. If there is no other breakpoint, the script is
executed completely.

Force execution of a script
To ignore the following breakpoints when resuming execution of a paused script, proceed as
follows:
1. Click and hold down the "Resume script execution" button.

The "Force script execution" button appears.
2. Move the mouse pointer to the "Force script execution" button while keeping the mouse

button pressed.
3. Now release the mouse button.

The script is executed to the end.

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 1033

Execute script to the next function call
If a line with a breakpoint contains a function that you are not interested in, you can suppress the
debugging of this function:
• Click on the "Step over next function call" button in the debugging area.
• Press the <F10> key.

The function is executed without the script pausing within the function.

Jumping into a function
If the script pauses in a line containing a function that interests you, you can pause the script in
that function:
• Click on the "Step into next function call" button in the debugging area.
• Press the <F11> key.

The script pauses in the first line of the function.

Note
You can only jump into functions that you have defined yourself.

Jump out of a function
If the script pauses within a function that you are not interested in, you can suppress further
debugging of this function:
• Click on the "Step out of current function" button in the debugging area.
• Press the key combination <Shift + F11>.

Note
You can only jump out of a function that you have defined yourself.

Execute script up to a selected line
To pause a paused script again at a selected line, proceeds as follows:
1. Right-click the number of the line in the code display area.
2. Select the entry "Continue to here".

The script pauses at the selected line.

Pause at Exceptions
• To pause the script at Exceptions, click on the "Pause on exceptions" button in the

debugging area.

Programming scripts
10.1 Runtime scripting

1034 System Manual, 11/2022

Use call stack
• To jump into a function of the call stack, click on the corresponding entry under "Call Stack".

Note
You can only jump into functions that you have defined yourself.

10.1.7.7 Show values

Introduction
To identify errors in your script efficiently, have current values displayed while the script is being
executed. This way you can view properties of objects or parameters of functions, for example.
You can find additional information on objects and their properties under "WinCC Unified Object
Model".

Requirements
• The group you want to debug is selected.
• The script pauses at a breakpoint.

Procedure
You view values by moving the mouse over the label in the code display area.
You also have the following options to view values:
• In the debugging area under "Scope"
• In the debugging area under "Watch"
• In the console

"Scope" area
All local values ("Local"), functions ("Module") and global values ("Global") that are defined at this
time are displayed in the "Scope" area.
The values cannot be edited.

"Watch" area
In the "Watch" area, you view how values change in the course of a script.

Programming scripts
10.1 Runtime scripting

System Manual, 11/2022 1035

The following buttons are available to you:
• "Add expression": Add a value
• "Refresh": Refresh the "Watch" area
• "Delete watch expression": Delete a value from the "Watch" area. Available when the

mouse pointer is located above the respective value.

Console
The values available at the current time can be called in the console.
• You show or hide the console with <Esc>.
Call the current values in the console as follows:
1. Enter the name of a local or global value in the console.
2. Press <Enter>.

See also
WinCC Unified object model (Page 1037)

Programming scripts
10.1 Runtime scripting

1036 System Manual, 11/2022

10.2 WinCC Unified object model

10.2.1 WinCC Unified object model

Object model
The figure below shows an overview of the object model of the graphical Runtime system of
WinCC Unified:

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1037

Object and List/
Factory

Object

You access the objects of the graphical runtime system through the object model.

Programming scripts
10.2 WinCC Unified object model

1038 System Manual, 11/2022

Use
You use the object model as follows:
• Objects

Objects and lists give you access to basic elements of the runtime system, for example, tags,
screens and levels.

• Properties
You use the properties to read the current status of individual objects, for example, the name
of a tag. You can also change many properties of the objects directly, for example, enable a
button.

• Methods
You apply methods to individual objects and write, for example, tag values back to the AS or
output alarms in runtime.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1039

10.2.2 HMIRuntime

Description

The "HMIRuntime" object represents the runtime system of WinCC Unified. The "HMIRuntime"
object contains properties, methods and all objects of the runtime that support scripting.

Programming scripts
10.2 WinCC Unified object model

1040 System Manual, 11/2022

Use

Note
The following objects have an alias to allow briefer notation:
• Alias Tags corresponds to HMIRuntime.Tags
• Alias UI corresponds to HMIRuntime.UI
• Alias Screen corresponds to the screen in which the script is executed.
• Alias PlantModel corresponds to HMIRuntime.PlantModel
• Alias ParameterSetTypes corresponds to HMIRuntime.ParameterSetTypes
• Alias Faceplate corresponds to the faceplate type in which the script is executed.

Object type
HMIRuntime

Properties
The "HMIRuntime" object has the following properties:
Language
Sets the runtime language.

Methods
The "HMIRuntime" object has the following methods:
• GetDetailedErrorDescription()

Returns a detailed error description of the error code.
• Trace()

Outputs a user-defined text via the debug output of the trace viewer in runtime.

10.2.2.1 HMIRuntime.Language

Description
The "Language" property specifies the runtime language.

Type
UInt32, HMILCID

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1041

Syntax
HMIRuntime.Language

Locale IDs (HMILCID)
The following table contains the Microsoft locale IDs of the languages supported in runtime:

Language Country/Region Locale ID
Afrikaans South Africa 1078
Albanian Albania 1052
Armenian Armenia 1067
Azerbaijani (Cyrillic) Azerbaijan 2092
Azerbaijani (Latin) Azerbaijan 1068
Basque Basque country 1069
Belarusian Belarus 1059
Bulgarian Bulgaria 1026
Chinese Hong Kong S.A.R. 3076
Chinese Macao S.A.R. 5124
Chinese Singapore 4100
Chinese Taiwan 1028
Chinese PR China 2052
Danish Denmark 1030
German Germany 1031
German Liechtenstein 5127
German Luxembourg 4103
German Austria 3079
German Switzerland 2055
English Australia 3081
English Belize 10249
English United Kingdom 2057
English Ireland 6153
English Jamaica 8201
English Canada 4105
English Caribbean 9225
English New Zealand 5129
English Philippines 13321
English Zimbabwe 12297
English South Africa 7177
English Trinidad and Tobago 11273
English USA 1033
Estonian Estonia 1061
Faroese Faroe Islands 1080
Finnish Finland 1035
French Belgium 2060

Programming scripts
10.2 WinCC Unified object model

1042 System Manual, 11/2022

Language Country/Region Locale ID
French France 1036
French Canada 3084
French Luxembourg 5132
French Monaco 6156
French Switzerland 4108
Galician Galicia 1110
Georgian Georgia 1079
Greek Greece 1032
Hindi India 1081
Indonesian Indonesia 1057
Icelandic Iceland 1039
Italian Italy 1040
Italian Switzerland 2064
Japanese Japan 1041
Kazakh Kazakhstan 1087
Catalan Catalonia 1027
Kyrgyz Kyrgyzstan 1088
Konkani India 1111
Korean Korea 1042
Croatian Croatia 1050
Latvian Latvia 1062
Malay Brunei Darussalam 2110
Malay Malaysia 1086
Macedonian Macedonia, FYRM 1071
Mongolian (Cyrillic) Mongolia 1104
Dutch Belgium 2067
Dutch Netherlands 1043
Norwegian (Bokmål) Norway 1044
Norwegian (Nynorsk) Norway 2068
Polish Poland 1045
Portuguese Brazil 1046
Portuguese Portugal 2070
Romanian Romania 1048
Russian Russia 1049
Sanskrit India 1103
Swedish Finland 2077
Swedish Sweden 1053
Serbian (Cyrillic) Serbia and Montenegro (former‐

ly)
3098

Serbian (Latin) Serbia and Montenegro (former‐
ly)

2074

Slovakian Slovakia 1051
Slovenian Slovenia 1060

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1043

Language Country/Region Locale ID
Spanish Argentina 11274
Spanish Bolivia 16394
Spanish Chile 13322
Spanish Costa Rica 5130
Spanish Dominican Republic 7178
Spanish Ecuador 12298
Spanish El Salvador 17418
Spanish Guatemala 4106
Spanish Honduras 18442
Spanish Colombia 9226
Spanish Mexico 2058
Spanish Nicaragua 19466
Spanish Panama 6154
Spanish Paraguay 15370
Spanish Peru 10250
Spanish Puerto Rico 20490
Spanish Spain 1034
Spanish Uruguay 14346
Spanish Venezuela 8202
Swahili Kenya 1089
Tatar Russia 1092
Thai Thailand 1054
Czech Czech Republic 1029
Turkish Turkey 1055
Ukrainian Ukraine 1058
Hungarian Hungary 1038
Uzbek (Cyrillic) Uzbekistan 2115
Uzbek (Latin) Uzbekistan 1091
Vietnamese Vietnam 1066

See also
HMIRuntime (Page 1040)

10.2.2.2 HMIRuntime.GetDetailedErrorDescription()

Description
The "GetDetailedErrorDescription" method returns a detailed error description of the error code
passed.

Programming scripts
10.2 WinCC Unified object model

1044 System Manual, 11/2022

Syntax
HMIRuntime.GetDetailedErrorDescription(errorCode);

Parameters
errorCode
Type: ErrorCode
Error code for which the detailed error description is to be output.

Return value
String

See also
HMIRuntime (Page 1040)

10.2.2.3 HMIRuntime.Trace()

Description
The "Trace" method outputs a user-defined text through the debug output of the trace viewer in
runtime.

Syntax
HMIRuntime.Trace(message);

Parameter
message
Type: String
The text which is output.

Return value
--

See also
HMIRuntime (Page 1040)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1045

10.2.2.4 Alarming

Description

The "Alarming" object ("HMIAlarming" type) enables access to the WinCC Unified alarm
system. You can create a new "AlarmSet" list, compile active alarms ("AlarmSubscription"
objects) and reference configured alarms ("Alarm" objects) for read and write access.

Object type
HMIAlarming

Properties
--

Methods
The "Alarming" object has the following methods:
• Alarms()

Returns an "Alarm" object.
• CreateAlarmSet()

Creates an "AlarmSet" object.
• CreateSubscription()

Creates an "AlarmSubscription" object.
• GetActiveAlarms()

Supplies all active alarms at the time of the call.

Programming scripts
10.2 WinCC Unified object model

1046 System Manual, 11/2022

Alarming.Alarms()

Description
The "Alarms" method returns an "Alarm" object ("HMIAlarm" type). You can use the "Alarm"
object to perform operations with an alarm, for example, acknowledge or comment.

Syntax
HMIRuntime.Alarming.Alarms(AlarmName);

Parameters
AlarmName
Type: String, HMIAlarm
Name of an alarm

Return value
Object, HMIAlarm (Page 1050)

Example
Create an "Alarm" object with the "alarm1" alarm:

Copy code
var alarm = HMIRuntime.Alarming.Alarms('alarm1');

See also
Alarm (Page 1050)
Alarming (Page 1046)

Alarming.CreateAlarmSet()

Description
The "CreateAlarmSet" method creates a new "AlarmSet" object ("HMIAlarmSet" type). With the
returned "AlarmSet" object, you can execute operations with multiple alarms in one call, for
example, acknowledge or comment.

Syntax
HMIRuntime.Alarming.CreateAlarmSet([AlarmNames]);

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1047

Parameters
AlarmNames
Optional, type: String, HMIAlarm | String[], HMIAlarm | Variant[][], HMIAlarm
Name of one or more active alarms added to the "AlarmSet" object. Without parameters, an
empty "AlarmSet" object is created.

Return value
Object, HMIAlarmSet (Page 1056)

Example
Create an "AlarmSet" object with two alarms:

Copy code
var alarmSet = HMIRuntime.Alarming.CreateAlarmSet(['alarm1', 'alarm2']);

See also
Alarming (Page 1046)
AlarmSet (Page 1056)

Alarming.CreateSubscription()

Description
The "CreateSubscription" method creates an "AlarmSubscription" object
("HMIAlarmSubscription" type). With the returned object "AlarmSubscription" you specify the
grouping of active alarms.

Syntax
HMIRuntime.Alarming.CreateSubscription();

Parameters
--

Return value
Object, HMIAlarmSubscription (Page 1067)

Programming scripts
10.2 WinCC Unified object model

1048 System Manual, 11/2022

See also
Alarming (Page 1046)
AlarmSubscription (Page 1067)

Alarming.GetActiveAlarms()

Description
The "GetActiveAlarms" method returns all active alarms at the time of the call. Unlike with an
AlarmSubscription, no status changes or new alarms are signaled that occur after the function
call.
Users can filter the alarms or specify a SystemName if they only want to receive the active
alarms of a specific system.
The method executes an asynchronous read operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the read operation. Depending on the result,
once execution is complete the corresponding handler of the Promise pattern is called with
the "AlarmResult" objects or the error code as parameter.

Syntax
HMIRuntime.Alarming.GetActiveAlarms(Language[,Filter][,SystemNames])
.then(function(HMIAlarmResult[]) {
 ...
});
.catch(function(ErrorCode) {
 ...
});

Parameters
Language
Type: UInt32, HMILCID
Language for all texts of an alarm and the filter

Filter
Optional, type: String, HMIAlarmFilterString
SQL-type string for filtering

SystemNames
Optional, type: String[], HMISystem
A string array containing the SystemNames of the systems by which alarms are to be filtered.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1049

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled

Object, HMIAlarmResult[] (Page 1077) as parameter of the "then()" handler.
• Promise rejected

ErrorCode as parameter of the "catch()" handler.

Example
Read out all active alarms of the "RUNTIME_1" system:

Copy code
var promise = HMIRuntime.Alarming.GetActiveAlarms(1033,"","RUNTIME_1");

See also
Alarming (Page 1046)
AlarmResult (Page 1077)

Alarm

Description
The "Alarm" object ("HMIAlarm" type) enables access to properties and methods of active alarms.
An "Alarm" object is returned by the "Alarming" or "AlarmSet" lists.

Object type
HMIAlarm

Properties
The "Alarm" object has the following properties:
• Name

Specifies the name of the alarm.
• ErrorCode

Specifies the error code of the last method call of the object.

Programming scripts
10.2 WinCC Unified object model

1050 System Manual, 11/2022

Methods
The "Alarm" object has the following methods:
• Acknowledge()

Acknowledges active alarms.
• Disable()

Temporarily disables the generation of alarms.
• Enable()

Re-enables disabled alarms for display.
• Reset()

Acknowledges the outgoing state of an active alarm.
• Shelve()

Hides active alarms.
• Unshelve()

Makes hidden active alarms visible again.

Alarm.ErrorCode

Description
The "ErrorCode" property specifies the error code of the last method call of the "Alarm" object.

Type
ErrorCode

Access
Read-write

Syntax
Alarm.ErrorCode

See also
Alarm (Page 1050)

Alarm.Name

Description
The "Name" property specifies the name of the alarm ("Alarm" object).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1051

Type
String, HMIAlarm

Access
Read-write

Syntax
Alarm.Name

See also
Alarm (Page 1050)

Alarm.Acknowledge()

Description
The "Acknowledge" method acknowledges active alarms. The method uses the entire "Alarm"
object as reference.
The method is executed as a synchronous operation.

Syntax
Alarm.Acknowledge([InstanceID])

Parameters
InstanceID
Optional, type: UInt32
Number of the alarm instance.

Return value
ErrorCode

Example
Acknowledge an alarm:

Copy code
var AckErrorcode = alarm.Acknowledge();

Programming scripts
10.2 WinCC Unified object model

1052 System Manual, 11/2022

See also
Alarm (Page 1050)

Alarm.Disable()

Description
The "Disable" method temporarily deactivates the generation of alarms in the alarm source. You
can reactivate the generation of the alarms with the "Enable" method.
You can use the "Disable" method to prevent the display of the alarms, for example, for
maintenance work.
The method is executed as a synchronous operation.

Syntax
Alarm.Disable()

Parameters
--

Return value
ErrorCode

Example
Deactivate an alarm:

Copy code
var DisableErrorcode = alarm.Disable();

See also
Alarm (Page 1050)
Alarm.Enable() (Page 1053)

Alarm.Enable()

Description
The "Enable" method re-enables disabled alarms for display. You can temporarily deactivate the
generation of alarms in the alarm source with the "Disable" method.
The method is executed as a synchronous operation.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1053

Syntax
Alarm.Enable()

Parameters
--

Return value
ErrorCode

Example
Log an alarm:

Copy code
var EnableErrorcode = alarm.Enable();

See also
Alarm (Page 1050)
Alarm.Disable() (Page 1053)

Alarm.Reset()

Description
The "Reset" method acknowledges the outgoing state of an active alarm. The alarm is removed
from the alarm system. The method uses the entire "Alarm" object as reference.
The method is executed as a synchronous operation.

Syntax
Alarm.Reset([InstanceID])

Parameters
InstanceID
Optional, type: UInt32
Number of the alarm instance.

Return value
ErrorCode

Programming scripts
10.2 WinCC Unified object model

1054 System Manual, 11/2022

See also
Alarm (Page 1050)

Alarm.Shelve()

Description
The "Shelve" method hides active alarms. These are no longer displayed by the alarm control in
runtime. You can show the alarms again with the "Unshelve" method.
The method is executed as a synchronous operation.

Syntax
Alarm.Shelve()

Parameters
--

Return value
ErrorCode

Example
Hides an alarm:

Copy code
var Errorcode = alarm.Shelve();

See also
Alarm (Page 1050)
Alarm.Unshelve() (Page 1055)

Alarm.Unshelve()

Description
The "Unshelve" method makes active alarms visible again. These are displayed again by the
alarm control in runtime. You can hide the alarms again with the "Shelve" method.
The method is executed as a synchronous operation.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1055

Syntax
Alarm.Unshelve()

Parameters
--

Return value
ErrorCode

See also
Alarm (Page 1050)
Alarm.Shelve() (Page 1055)

AlarmSet

Description
The "AlarmSet" object ("HMIAlarmSet" type) is a list of "Alarm" objects that provides optimized
access to active alarms in runtime. After the initialization of the "AlarmSet" object, you can
execute operations with multiple alarms in one call, such as acknowledge or comment.
Simultaneous access demonstrates better performance and lower communication load than
single access to multiple tags.
You create a new "AlarmSet" object with the "Alarming.CreateAlarmSet" method.

Object type
HMIAlarmSet

Properties
The "AlarmSet" object has the following properties:
• Count

Returns the number of elements of the "AlarmSet" list.

Methods
The "AlarmSet" object has the following methods:
• Acknowledge()

Acknowledges active alarms.
• Add()

Adds alarms to the "AlarmSet" list.

Programming scripts
10.2 WinCC Unified object model

1056 System Manual, 11/2022

• Disable()
Temporarily disables the generation of alarms.

• Enable()
Re-enables disabled alarms for display.

• Item()
Returns an alarm of the "AlarmSet" list.

• Remove()
Removes alarms by their name from the "AlarmSet" list.

• Reset()
Acknowledges the outgoing state of active alarms.

• Shelve()
Hides active alarms.

• Unshelve()
Makes hidden active alarms visible again.

See also
Alarming.CreateAlarmSet() (Page 1047)

AlarmSet.Count

Description
The "Count" property returns the number of elements in the "AlarmSet" list.

Type
UInt32

Access
Read-only

Syntax
AlarmSet.Count

See also
AlarmSet (Page 1056)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1057

AlarmSet.Acknowledge()

Description
The "Acknowledge" method acknowledges active alarms. The method uses the entire "Alarm"
object as reference.
The method is applied to all "Alarm" objects of the list. The method is executed as
asynchronous operation without blocking further script execution. To do this, the method
uses a Promise object which has handlers for the successful ("then()") and faulty ("catch()")
execution of the operation. Depending on the result, the corresponding handler of the
Promise pattern is called with the ErrorCode as parameter after execution.

Syntax
AlarmSet.Acknowledge()
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
})

Parameters
--

Return value
Promise
ErrorCode, depending on the status of the Promise object:
• Promise successful (fulfilled)

ErrorCode "0" as parameter of the "then()" handler
• Promise rejected

ErrorCode as parameter of the "catch()" handler

Example
Acknowledge all alarms of an "AlarmSet" object:

Copy code
var alarmSet = HMIRuntime.Alarming.CreateAlarmSet('alarm1', 'alarm2', 'alarm3');
var promise = alarmSet.Acknowledge();

See also
AlarmSet (Page 1056)

Programming scripts
10.2 WinCC Unified object model

1058 System Manual, 11/2022

AlarmSet.Add()

Description
The "Add" method adds alarms to the "AlarmSet" list. The alarms are referenced by name.

Syntax
AlarmSet.Add(AlarmName,[InstanceID])

Parameters
AlarmName
Type: String, HMIAlarm | String[], HMIAlarm | Variant[][], HMIAlarm
Names of "Alarm" objects that are added to the list.
The following data types are supported:
• Alarm name
• Array with alarm names
• Two-dimensional array with alarm name/value pairs

InstanceID
Optional, type: UInt32
Number of the alarm instance.

Return value
Object[], HMIAlarm (Page 1050)

Example
Create an "AlarmSet" object with two alarms:

Copy code
var name1 = ResultSet[index].Name;
var name2 = ResultSet[index+1].Name;
var alarmSet = HMIRuntime.Alarming.CreateAlarmSet();
var addedAlarms = alarmSet.Add([name1,name2]);

See also
AlarmSet (Page 1056)
Alarm (Page 1050)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1059

AlarmSet.Disable()

Description
The "Disable" method temporarily deactivates the generation of alarms in the alarm source. You
can reactivate the generation of the alarms with the "Enable" method.
You can use the "Disable" method to prevent the display of the alarms, for example, for
maintenance work.
The method is applied to all "Alarm" objects of the list. The method is executed as
asynchronous operation without blocking further script execution. To do this, the method
uses a Promise object which has handlers for the successful ("then()") and faulty ("catch()")
execution of the operation. Depending on the result, the corresponding handler of the
Promise pattern with the ErrorCode as parameter is called after the execution.

Syntax
AlarmSet.Disable()
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
})

Parameters
--

Return value
Promise
ErrorCode, for "AlarmSet" objects depending on the status of the Promise object:
• Promise successful (fulfilled)

ErrorCode "0" as parameter of the "then()" handler
• Promise rejected

ErrorCode as parameter of the "catch()" handler

Example
Deactivate all alarms of an "AlarmSet" object:

Copy code
var alarmSet = HMIRuntime.Alarming.CreateAlarmSet('alarm1', 'alarm2');
var promise = alarmSet.Disable();

Programming scripts
10.2 WinCC Unified object model

1060 System Manual, 11/2022

See also
AlarmSet (Page 1056)
AlarmSet.Enable() (Page 1061)

AlarmSet.Enable()

Description
The "Enable" method re-enables disabled alarms for display. You can temporarily deactivate the
generation of alarms in the alarm source with the "Disable" method.
The method is applied to all "Alarm" objects of the list. The method is executed as
asynchronous operation without blocking further script execution. To do this, the method
uses a Promise object which has handlers for the successful ("then()") and faulty ("catch()")
execution of the operation. Depending on the result, the corresponding handler of the
Promise pattern with the ErrorCode as parameter is called after the execution.

Syntax
AlarmSet.Enable()
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
})

Parameters
--

Return value
Promise
ErrorCode, for "AlarmSet" objects depending on the status of the Promise object:
• Promise successful (fulfilled)

ErrorCode "0" as parameter of the "then()" handler
• Promise rejected

ErrorCode as parameter of the "catch()" handler

Example
Activate all alarms of an "AlarmSet" object:

Copy code
var alarmSet = HMIRuntime.Alarming.CreateAlarmSet('alarm1', 'alarm2');
var promise = alarmSet.Enable();

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1061

See also
AlarmSet (Page 1056)
AlarmSet.Disable() (Page 1060)

AlarmSet.Item()

Description
The "Item" method returns an "Alarm" object of the "AlarmSet" list.

Syntax
AlarmSet[.Item](name,[InstanceID])

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "AlarmSet" object.

Parameters
name
Type: String, HMIAlarm | Int32, HMIAlarm
Name or index number (1...n) of an "Alarm" object in the list

Note
The index number of an "Alarm" object does not represent the order in which the "Alarm" objects
were added to the "AlarmSet" list.

InstanceID
Optional, type: UInt32
Number of the alarm instance

Return value
Object, HMIAlarm (Page 1050)

See also
AlarmSet (Page 1056)
Alarm (Page 1050)

Programming scripts
10.2 WinCC Unified object model

1062 System Manual, 11/2022

AlarmSet.Remove()

Description
The "Remove" method removes alarms ("Alarm" objects) from the "AlarmSet" list by their names.

Syntax
AlarmSet.Remove(AlarmName,[InstanceID])

Parameters
AlarmName
Type: String, HMITag | String[], HMITag
Name of "Alarm" objects that are removed from the "AlarmSet" list.
The following data types are supported:
• Alarm name
• Array with alarm names

Note
No "Alarm" object can be transferred as a parameter. An "Alarm" object is referenced using the
name.

InstanceID
Optional, type: UInt32
Number of the alarm instance

Return value
ErrorCode

Example
Create an "AlarmSet" object with two alarms and then remove both alarms from the AlarmSet
again:

Copy code
var name1 = ResultSet[index].Name;
var alarmSet = HMIRuntime.Alarming.CreateAlarmSet([name1, 'alarm2']);
alarmSet.remove([name1,'alarm2']);

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1063

See also
AlarmSet (Page 1056)

AlarmSet.Reset()

Description
The "Reset" method acknowledges the outgoing state of active alarms. The alarms are removed
from the alarm system. The method uses the entire "Alarm" object as reference.
The method is applied to all "Alarm" objects of the list. The method is executed as
asynchronous operation without blocking further script execution. To do this, the method
uses a Promise object which has handlers for the successful ("then()") and faulty ("catch()")
execution of the operation. Depending on the result, the corresponding handler of the
Promise pattern with the ErrorCode as parameter is called after the execution.

Syntax
AlarmSet.Reset()
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
})

Parameters
--

Return value
Promise
ErrorCode, depending on the status of the Promise object:
• Promise successful (fulfilled)

ErrorCode "0" as parameter of the "then()" handler
• Promise failed ("rejected")

ErrorCode as parameter of the "catch()" handler

See also
AlarmSet (Page 1056)

Programming scripts
10.2 WinCC Unified object model

1064 System Manual, 11/2022

AlarmSet.Shelve()

Description
The "Shelve" method hides active alarms. These are no longer displayed by Alarm Control in
runtime. You can show the alarms again with the "Unshelve" method.
The method is applied to all "Alarm" objects of the list. The method is executed as
asynchronous operation without blocking further script execution. To do this, the method
uses a Promise object which has handlers for the successful ("then()") and faulty ("catch()")
execution of the operation. Depending on the result, the corresponding handler of the
Promise pattern with the ErrorCode as parameter is called after the execution.

Syntax
AlarmSet.Shelve()
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
})

Parameters
--

Return value
Promise
ErrorCode, for "AlarmSet" objects depending on the status of the Promise object:
• Promise successful (fulfilled)

ErrorCode "0" as parameter of the "then()" handler
• Promise rejected

ErrorCode as parameter of the "catch()" handler

Example
Hide all alarms of an "AlarmSet" object:

Copy code
var alarmSet = HMIRuntime.Alarming.CreateAlarmSet('alarm1', 'alarm2');
var promise = alarmSet.Shelve();

See also
AlarmSet (Page 1056)
AlarmSet.Unshelve() (Page 1066)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1065

AlarmSet.Unshelve()

Description
The "Unshelve" method makes active alarms visible again. These are once again displayed by the
Alarm Control in runtime. You can hide the alarms again with the "Shelve" method.
The method is applied to all "Alarm" objects of the list. The method is executed as
asynchronous operation without blocking further script execution. To do this, the method
uses a Promise object which has handlers for the successful ("then()") and faulty ("catch()")
execution of the operation. Depending on the result, the corresponding handler of the
Promise pattern with the ErrorCode as parameter is called after the execution.

Syntax
AlarmSet.Unshelve()
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
})

Parameters
--

Return value
Promise
ErrorCode, for "AlarmSet" objects depending on the status of the Promise object:
• Promise successful (fulfilled)

ErrorCode "0" as parameter of the "then()" handler
• Promise rejected

ErrorCode as parameter of the "catch()" handler

Example
Show all alarms of an "AlarmSet" object again:

Copy code
var alarmSet = HMIRuntime.Alarming.CreateAlarmSet('alarm1', 'alarm2');
var promise = alarmSet.Unshelve();

See also
AlarmSet (Page 1056)
AlarmSet.Shelve() (Page 1065)

Programming scripts
10.2 WinCC Unified object model

1066 System Manual, 11/2022

Alarm

Description
Alarm (Page 1050)

AlarmSubscription

Description
The "AlarmSubscription" object ("HMIAlarmSubscription" type) enables access to active alarms.

Use
The "AlarmSubscription" object represents a selection of active alarms. An "AlarmSubscription"
object is initialized through the "CreateSubscription" method of the "Alarming" object. The active
alarms are then grouped and called according to the properties of the "AlarmSubscription"
object. Finally, notification is given of the changes to the alarm image.

Object type
HMIAlarmSubscription

Properties
The "AlarmSubscription" object has the following properties:
• Filter

Defines a string for filtering active alarms.
• Language

Specifies the current runtime language.
• OnAlarm

Sets the name of the callback function "OnAlarm" for monitoring active alarms.
• SystemNames

Specifies the name of the runtime for compiling active alarms.

Methods
The "AlarmSubscription" object has the following methods:
• Start()

Activates the monitoring of defined alarms of the "AlarmSubscription" object.
• Stop()

Stops monitoring of defined alarms of the "AlarmSubscription" object.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1067

See also
Alarming.CreateSubscription() (Page 1048)

AlarmSubscription.Filter

Description
The "Filter" property specifies a string for filtering active alarms.
The syntax of the filter string corresponds to the WHERE clause of an SQL command.

Type
String, HMIAlarmFilterString

Access
Read-write

Syntax
AlarmSubscription.Filter

Supported alarm properties
The following properties of an alarm can be used in the filter string:
• AcknowledgementTime
• Alarm
• AlarmClassName
• AlarmClassSymbol
• AlarmParameterValues
• AlarmText1 … 9
• Area
• BackColor
• ChangeReason
• ClearTime
• Connection
• EventText
• Flashing
• InfoText
• InstanceID
• LoopInAlarm

Programming scripts
10.2 WinCC Unified object model

1068 System Manual, 11/2022

• ModificationTime
• Name
• Origin
• Priority
• RaiseTime
• ResetTime
• SourceID
• SourceType
• State
• StateMachine
• StateText
• SuppressionState
• SystemSeverity
• TextColor
• Value
• ValueLimit

Operators
The following operators can be used in the filter string:

Operator Description Example
= equal to AlarmClassName = 'demo'
IS NOT string is not equal to the string string AlarmText4 IS NOT

'Text5'
<> not equal Value <> 0.0
> greater than ModificationTime >

'11.08.2016'
< less than Value < 75.0
>= greater than or equal to Value >= 25.0
<= less than or equal to Value <= 75.0
OR, || logical OR State = 1 OR State = 3
AND, && logical AND EventText = 'Text1' AND

Origin = 'Motor'
BETWEEN within a range Value BETWEEN 25.0 AND

75.0
NOT BETWEEN outside a range Value NOT BETWEEN 25.0

AND 75.0
LIKE string corresponds to the string string Name LIKE 'Motor*'
NOT LIKE string does not correspond to the string string Name NOT LIKE 'Valve*'
IN (v1, v2, …) corresponds to one or more values State IN (1, 4, 7)
NOT IN (v1, v2, …) does not correspond to one or more values State NOT IN (0, 2, 3,

5, 6)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1069

Operator Description Example
IS NULL compares to zero (missing data) Context IS NULL
IS NOT NULL compares to zero (unknown data) Context IS NOT NULL

Wildcards
The following wildcards can be used for characters of filter strings:

Wildcard Description Example
* replaces 0, 1 or more characters Name LIKE 'Motor*'
? replaces exactly 1 character Name = 'Recipe?'

See also
AlarmSubscription (Page 1067)

AlarmSubscription.Language

Description
The "Language" property specifies the current language for all texts of an alarm and the filter.

Type
UInt32, HMILCID

Access
Read-write

Syntax
AlarmSubscription.Language

Locale IDs (HMILCID)
The following table contains the Microsoft locale IDs of the languages supported in runtime:

Language Country/Region Locale ID
Afrikaans South Africa 1078
Albanian Albania 1052
Armenian Armenia 1067
Azerbaijani (Cyrillic) Azerbaijan 2092
Azerbaijani (Latin) Azerbaijan 1068
Basque Basque country 1069
Belarusian Belarus 1059

Programming scripts
10.2 WinCC Unified object model

1070 System Manual, 11/2022

Language Country/Region Locale ID
Bulgarian Bulgaria 1026
Chinese Hong Kong S.A.R. 3076
Chinese Macao S.A.R. 5124
Chinese Singapore 4100
Chinese Taiwan 1028
Chinese PR China 2052
Danish Denmark 1030
German Germany 1031
German Liechtenstein 5127
German Luxembourg 4103
German Austria 3079
German Switzerland 2055
English Australia 3081
English Belize 10249
English United Kingdom 2057
English Ireland 6153
English Jamaica 8201
English Canada 4105
English Caribbean 9225
English New Zealand 5129
English Philippines 13321
English Zimbabwe 12297
English South Africa 7177
English Trinidad and Tobago 11273
English USA 1033
Estonian Estonia 1061
Faroese Faroe Islands 1080
Finnish Finland 1035
French Belgium 2060
French France 1036
French Canada 3084
French Luxembourg 5132
French Monaco 6156
French Switzerland 4108
Galician Galicia 1110
Georgian Georgia 1079
Greek Greece 1032
Hindi India 1081
Indonesian Indonesia 1057
Icelandic Iceland 1039
Italian Italy 1040
Italian Switzerland 2064
Japanese Japan 1041

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1071

Language Country/Region Locale ID
Kazakh Kazakhstan 1087
Catalan Catalonia 1027
Kyrgyz Kyrgyzstan 1088
Konkani India 1111
Korean Korea 1042
Croatian Croatia 1050
Latvian Latvia 1062
Malay Brunei Darussalam 2110
Malay Malaysia 1086
Macedonian Macedonia, FYRM 1071
Mongolian (Cyrillic) Mongolia 1104
Dutch Belgium 2067
Dutch Netherlands 1043
Norwegian (Bokmål) Norway 1044
Norwegian (Nynorsk) Norway 2068
Polish Poland 1045
Portuguese Brazil 1046
Portuguese Portugal 2070
Romanian Romania 1048
Russian Russia 1049
Sanskrit India 1103
Swedish Finland 2077
Swedish Sweden 1053
Serbian (Cyrillic) Serbia and Montenegro (former‐

ly)
3098

Serbian (Latin) Serbia and Montenegro (former‐
ly)

2074

Slovakian Slovakia 1051
Slovenian Slovenia 1060
Spanish Argentina 11274
Spanish Bolivia 16394
Spanish Chile 13322
Spanish Costa Rica 5130
Spanish Dominican Republic 7178
Spanish Ecuador 12298
Spanish El Salvador 17418
Spanish Guatemala 4106
Spanish Honduras 18442
Spanish Colombia 9226
Spanish Mexico 2058
Spanish Nicaragua 19466
Spanish Panama 6154
Spanish Paraguay 15370

Programming scripts
10.2 WinCC Unified object model

1072 System Manual, 11/2022

Language Country/Region Locale ID
Spanish Peru 10250
Spanish Puerto Rico 20490
Spanish Spain 1034
Spanish Uruguay 14346
Spanish Venezuela 8202
Swahili Kenya 1089
Tatar Russia 1092
Thai Thailand 1054
Czech Czech Republic 1029
Turkish Turkey 1055
Ukrainian Ukraine 1058
Hungarian Hungary 1038
Uzbek (Cyrillic) Uzbekistan 2115
Uzbek (Latin) Uzbekistan 1091
Vietnamese Vietnam 1066

See also
AlarmSubscription (Page 1067)

AlarmSubscription.OnAlarm

Description
The "OnAlarm" property specifies the name of the "OnAlarm" callback function for monitoring
active alarms.
The properties of the active alarms are passed to the "OnAlarm" callback function as the
"AlarmResultArray" object.
Required prototype of the callback function:
OnAlarm(errorCode,systemName,alarmResultArray)

Type
Function, HMIOnAlarmCB

Access
Write-only

Syntax
AlarmSubscription.OnAlarm

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1073

Parameters
Parameters of the callback function:

errorCode
Type: ErrorCode
Error code of the active alarm

systemName
Type: String
Name of the runtime system

alarmResultArray
Type: Object, HMIAlarmResult[]
Array with "AlarmResult" objects of the active alarm

Example
Monitor active alarms and output their properties:

Copy code
function AlarmSubscribe() {
 var subs = HMIRuntime.Alarming.CreateSubscription();
 subs.Filter = "";
 subs.language = 1033;
 subs.SystemNames = "System4";
 subs.OnAlarm = OnAlarm;
 subs.Start();
}

function OnAlarm(Errorcode, SystemName, ResultArray) {
 HMIRuntime.Trace("Script OnAlarm Called");
 var alarmcount = ResultArray.length;

 for (var index = 0; index < alarmcount; ++index) {
 if(ErrorCode[index] >= 0) //access resultarray only when it's
succeeded
 {
 HMIRuntime.Trace(ResultArray[index].EventText);
 HMIRuntime.Trace(ResultArray[index].InstanceID);
 HMIRuntime.Trace(ResultArray[index].AlarmClassName);
 HMIRuntime.Trace(ResultArray[index].State);
 HMIRuntime.Trace(SystemName[index]);
 HMIRuntime.Trace(Errorcode[index]);
 }
 }
}

Programming scripts
10.2 WinCC Unified object model

1074 System Manual, 11/2022

See also
AlarmSubscription (Page 1067)
AlarmSubscription.Start() (Page 1075)

AlarmSubscription.SystemNames

Description
The "SystemNames" property specifies the name of the runtime ("HMISystem" type) for
compiling active alarms.

Type
String[], HMISystem

Access
Read-write

Syntax
AlarmSubscription.SystemNames

See also
AlarmSubscription (Page 1067)

AlarmSubscription.Start()

Description
The "Start" method activates the monitoring of defined alarms of the "AlarmSubscription" object.

Syntax
AlarmSubscription.Start()

Parameters
--

Return value
ErrorCode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1075

Example
Start monitoring of alarms and output number of alarms:

Copy code
var subs = HMIRuntime.Alarming.CreateSubscription();
subs.SystemNames = "System24";
subs.Language = 1033;
subs.OnAlarm = function (Errorcode, sysID, ResultSet){
 HMIRuntime.Trace("Script OnAlarm Called");
 var alarmCount = ResultSet.length;
 HMIRuntime.Trace("Alarm count = " + alarmCount);
};
subs.Start();

See also
AlarmSubscription (Page 1067)
AlarmSubscription.OnAlarm (Page 1073)
AlarmSubscription.Stop() (Page 1076)

AlarmSubscription.Stop()

Description
The "Stop" method stops the monitoring of defined alarms of the "AlarmSubscription" object.

Syntax
AlarmSubscription.Stop()

Parameters
--

Return value
ErrorCode

Programming scripts
10.2 WinCC Unified object model

1076 System Manual, 11/2022

Example
Cancel monitoring of alarms after the first output:

Copy code
var subs = HMIRuntime.Alarming.CreateSubscription();
subs.SystemNames = "System24";
subs.Language = 1033;
subs.OnAlarm = function (Errorcode, sysID, ResultSet){
 HMIRuntime.Trace("Script OnAlarm Called");
 var alarmCount = ResultSet.length;
 HMIRuntime.Trace("Alarm count = " + alarmCount);
 subs.Stop();
};
subs.Start();

See also
AlarmSubscription (Page 1067)
AlarmSubscription.Start() (Page 1075)

AlarmResult

Description
The "AlarmResult" object ("HMIAlarmResult" type) provides access to the properties of an active
alarm. The "AlarmResult" object is a pure data object which maps all properties of an active alarm.

Use
The OnAlarm callback function is called after an active alarm has been output. The "AlarmResult"
object together with the SystemName and ErrorCode are transferred as parameters to this
function.
In the case of multiple active alarms, the parameters are passed as lists to the OnAlarm
callback function. Alarms from different servers are processed in only one call of the OnAlarm
callback function.
The "AlarmResult" object only contains properties and no methods.
All texts of the "AlarmResult" object are monolingual strings. The language is specified with
the "AlarmSubscription.Language" property.

Object type
HMIAlarmResult

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1077

Properties
The "AlarmResult" object has the following properties:
• AcknowledgementTime

Returns the time when an alarm was acknowledged.
• AlarmClassName

Returns the name of the alarm class.
• AlarmClassSymbol

Returns the abbreviation for the display of the alarm class.
• AlarmGroupID

Returns the alarm group ID.
• AlarmParameterValues

Returns an array with parameter values of an alarm.
• AlarmText

Returns the localized additional texts 1-9 of an alarm as array.
• Area

Returns the area of origin of an alarm.
• BackColor

Returns the background color of an alarm.
• ChangeReason

Returns the event that triggered the change in the alarm state.
• ClearTime

Returns the time of the reset of an alarm.
• Connection

Returns the name of the connection via which an alarm was triggered.
• Duration

Returns the duration of an alarm.
• EventText

Returns a localized text describing an event to the alarm.
• Flashing

Returns whether the specified object flashes in runtime.
• ID

Returns the ID of the alarm that is also used in the display.
• InstanceID

Returns the ID of alarms with multiple instances.
• InvalidFlags

Returns the cause of invalid data of an alarm.
• LoopInAlarm

Returns the name of the function that navigates from the display of an active alarm to its
origin.

• LoopInAlarmParameterValues
Returns the parameters of the function that navigates from the display of an active alarm to
its origin.

Programming scripts
10.2 WinCC Unified object model

1078 System Manual, 11/2022

• ModificationTime
Returns the time stamp of the last change of the alarm state.

• Name
Returns the name of the alarm.

• NotificationReason
Returns the reason of an alarm.

• Origin
Returns the origin of an alarm.

• Priority
Returns the relevance of an alarm or a machine status.

• RaiseTime
Returns the raise time of an alarm.

• ResetTime
Returns the time of the reset of an alarm.

• SourceID
Returns the source where an alarm was triggered.

• State
Returns the state of an alarm.

• StateText
Returns the alarm state as text, for example, "Incoming" or "Outgoing".

• SuppressionState
Returns the visibility status of an active alarm.

• SystemSeverity
Returns the level of the severity of a system fault as property of a system alarm.

• TextColor
Returns the text color of the alarm state.

• UserName
Returns the name of the user who triggered the alarm.

• UserResponse
Returns the expected or required user response to an alarm.

• Value
Returns the process value of an alarm.

• ValueLimit
Returns the limit of a process value of an alarm.

• ValueQuality
Returns the quality level of a process value of an alarm.

Methods
--

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1079

See also
Alarming.GetActiveAlarms() (Page 1049)

AlarmResult.AcknowledgementTime

Description
The "AcknowledgementTime" property returns the time of the acknowledgment of an alarm.

Type
DateTime

Access
Read-only

Syntax
AlarmResult.AcknowledgementTime

See also
AlarmResult (Page 1077)

AlarmResult.AlarmClassName

Description
The "AlarmClassName" property returns the name of the alarm class.

Type
String

Access
Read-only

Syntax
AlarmResult.AlarmClassName

Programming scripts
10.2 WinCC Unified object model

1080 System Manual, 11/2022

See also
AlarmResult (Page 1077)

AlarmResult.AlarmClassSymbol

Description
The "AlarmClassSymbol" property returns the abbreviation for the display of the alarm class of
the alarm, for example, "W" for the alarm class "Warning".

Type
String

Access
Read-only

Syntax
AlarmResult.AlarmClassSymbol

See also
AlarmResult (Page 1077)

AlarmResult.AlarmGroupID

Description
The "AlarmGroupID" property returns the alarm group ID.

Type
UInt8

Access
Read-only

Syntax
AlarmResult.AlarmGroupID

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1081

See also
AlarmResult (Page 1077)

AlarmResult.AlarmParameterValues

Description
The "AlarmParameterValues" property returns an array with parameter values of an alarm.
The parameter values are added to an alarm from the source in the "Incoming" and "Reset"
state. They can also include diagnostic or raw data from the PLC in addition to simple tag
values from the configured AlarmParamterTags.

Type
Variant[]

Access
Read-only

Syntax
AlarmResult.AlarmParameterValues

See also
AlarmResult (Page 1077)

AlarmResult.AlarmText

Description
The "AlarmText" property returns the localized additional texts 1-9 as an array. The text can
contain triggered placeholders and reference all "AlarmParameterValues" properties of the
respective alarm state "Incoming" or "Reset".

Type
String[]

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

1082 System Manual, 11/2022

Syntax
AlarmResult.AlarmText

See also
AlarmResult (Page 1077)

AlarmResult.Area

Description
The "Area" property specifies the area of origin of an alarm.
The "Area" property can be configured and, together with the "Origin" property, defines the
source of an alarm. You can also use placeholders for context-sensitive format.
The "Area" property, for example, includes subsystem, application name or PLC ID. You can
sort and filter alarms through the "Area" context.

Type
String

Access
Read-only

Syntax
AlarmResult.Area

See also
AlarmResult (Page 1077)

AlarmResult.BackColor

Description
The "BackColor" property returns the background color of an alarm.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1083

Access
Read-only

Syntax
AlarmResult.BackColor

See also
AlarmResult (Page 1077)

AlarmResult.ChangeReason

Description
The "ChangeReason" property returns the event that triggered the change in the alarm state. The
time of last modification is saved in the "ModificationTime" property.
The alarm status may change for the following reasons:

Values ChangeReason Description
0x0001 AlarmStateChanged The "State" property has changed
0x0003 RaisedEvent Status change "Incoming"
0x0005 ClearEvent Status change "Reset"
0x0007 AcknowledgeEvent Status change "Acknowledged"
0x0009 ResetEventReason Status change "Deleted"
0x000F RemoveEvent Status change "Removed"
0x0010 AlarmQualityChanged The "Quality" property has changed
0x0020 AlarmParameterValueChanged A value of the "AlarmParameterVal‐

ues" property has changed
0x0040 AlarmPriorityChanged The "Priority" property has changed
0x0080 AlarmSuppressionStateChanged The "SuppressionState" property has

changed
0x0100 AlarmEscalationReasonChanged The "EscalationReason" property has

changed
0x0200 AlarmEnableStateChanged Is set together with "RemoveEvent" to

show that the alarm was deactivated
0x0400 TextUpdate Alarm texts have changed
0x1000 ConfigurationChanged Alarm configuration has changed
0x2000 ExternalUpdate The "ModificationTime" property was

changed for certain application-spe‐
cific alarm scenarios

0x8000 IgnoreInLogging For suppressing the reporting of spe‐
cific alarms.

Programming scripts
10.2 WinCC Unified object model

1084 System Manual, 11/2022

Type
UInt16

Access
Read-only

Syntax
AlarmResult.ChangeReason

See also
AlarmResult (Page 1077)

AlarmResult.ClearTime

Description
The "ClearTime" property returns the time of the reset of an alarm.

Type
DateTime

Access
Read-only

Syntax
AlarmResult.ClearTime

See also
AlarmResult (Page 1077)

AlarmResult.Connection

Description
The "Connection" property returns the name of the connection by which an alarm was triggered.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1085

Type
String

Access
Read-only

Syntax
AlarmResult.Connection

See also
AlarmResult (Page 1077)

AlarmResult.Duration

Description
The "Duration" property returns the duration of an alarm.

Type
Time

Access
Read-only

Syntax
AlarmResult.Duration

See also
AlarmResult (Page 1077)

AlarmResult.EventText

Description
The "EventText" property returns a localized text that describes an alarm event.
The text can contain triggered placeholders and reference all "AlarmParameterValues"
properties of the respective alarm state "Incoming" or "Reset".

Programming scripts
10.2 WinCC Unified object model

1086 System Manual, 11/2022

Type
String

Access
Read-only

Syntax
AlarmResult.EventText

See also
AlarmResult (Page 1077)

AlarmResult.Flashing

Description
The "Flashing" property returns whether the specified object flashes in runtime.

Value Status
1 Alarm flashes
0 Alarm does not flash

A background color for flashing is specified with the "BackColor" property. The second
background color and the frequency of the flashing is configured in the alarm control.

Type
Bool

Access
Read-only

Syntax
AlarmResult.Flashing

See also
AlarmResult (Page 1077)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1087

AlarmResult.ID

Description
The "ID" property returns the ID of an alarm.

Type
UInt32

Access
Read-only

Syntax
AlarmResult.ID

See also
AlarmResult (Page 1077)

AlarmResult.InstanceID

Description
The "InstanceID" property returns the ID of alarms with multiple instances.

Type
UInt32

Access
Read-only

Syntax
AlarmResult.InstanceID

See also
AlarmResult (Page 1077)

Programming scripts
10.2 WinCC Unified object model

1088 System Manual, 11/2022

AlarmResult.InvalidFlags

Description
The "InvalidFlags" property returns the cause of invalid data of an alarm.
An invalid alarm is marked with the following bits:

Bit number InvalidFlags Description
Bit 0 Invalid configuration flag Alarm configuration is invalid. HMI device does not

match data source.
Bit 1 Invalid timestamp flag Data source transfers invalid time stamps.
Bit 2 Invalid alarm parameter flag Data source transfers invalid parameter values.
Bit 3 Invalid event text flag Runtime cannot format the text due to missing pa‐

rameter values.

The valid alarm has the following properties:
• InvalidFlags = 0
• Quality = "good"

Type
UInt8

Access
Read-only

Syntax
AlarmResult.InvalidFlags

See also
AlarmResult (Page 1077)

AlarmResult.LoopInAlarm

Description
The "LoopInAlarm" property returns the name of the function that navigates from the display of
an active alarm to its origin.
The required parameters of the function are returned with the associated
"LoopInAlarmParameterValues" property.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1089

Type
String

Access
Read-only

Syntax
AlarmResult.LoopInAlarm

See also
AlarmResult (Page 1077)

AlarmResult.LoopInAlarmParameterValues

Description
The "LoopInAlarmParameterValues" property returns the parameters of the function that
navigates from the display of an active alarm to its origin. The associated "LoopInAlarm" property
contains the name of the function used for the call, for example, the "OpenScreen" function if
the origin of the alarm is a screen.

Type
Variant[]

Access
Read-only

Syntax
AlarmResult.LoopInAlarmParameterValues

See also
AlarmResult (Page 1077)

Programming scripts
10.2 WinCC Unified object model

1090 System Manual, 11/2022

AlarmResult.ModificationTime

Description
The "ModificationTime" property returns the time stamp of the last modification of the alarm
state.
The reason for the change is included in the "ChangeReason" property.

Type
DateTime

Access
Read-only

Syntax
AlarmResult.ModificationTime

See also
AlarmResult (Page 1077)

AlarmResult.Name

Description
The "Name" property returns the name of the alarm ("Alarm" object).

Type
String, HMIAlarm

Access
Read-only

Syntax
AlarmResult.Name

See also
AlarmResult (Page 1077)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1091

AlarmResult.NotificationReason

Description
The "NotificationReason" property returns the reason for an alarm.
The property can have the following values:
• 0: Unknown (for example, if the alarm was read out from a log).
• 1: Add
• 2: Change
• 3: Remove

Type
UInt8

Access
Read-only

Syntax
AlarmResult.NotificationReason

See also
AlarmResult (Page 1077)

AlarmResult.Origin

Description
The "Origin" property returns the origin of an alarm.
For example, the "Origin" property contains system name, data source or CPU ID. You can
sort and filter alarms through the "Origin" context.
The "Origin" property can be configured and, together with the "Area" property, defines the
source of an alarm. You can also use placeholders for context-sensitive format.

Type
String

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

1092 System Manual, 11/2022

Syntax
AlarmResult.Origin

See also
AlarmResult (Page 1077)

AlarmResult.Priority

Description
The "Priority" property defines the relevance of an alarm or a machine status.

Type
UInt8

Access
Read-only

Syntax
AlarmResult.Priority

See also
AlarmResult (Page 1077)

AlarmResult.RaiseTime

Description
The "RaiseTime" property returns the trigger time of an alarm.

Type
DateTime

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1093

Syntax
AlarmResult.RaiseTime

See also
AlarmResult (Page 1077)

AlarmResult.ResetTime

Description
The "ResetTime" property returns the time of the reset of an alarm. After resetting, the alarm is
removed from the alarm system.

Type
DateTime

Access
Read-only

Syntax
AlarmResult.ResetTime

See also
AlarmResult (Page 1077)

AlarmResult.SourceID

Description
The "SourceID" property returns the source at which an alarm was triggered.
The value depends on the origin of the alarm and is assigned by the data source, for
example, Range-ID, controller/connection name or computer name.

Type
String

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

1094 System Manual, 11/2022

Syntax
AlarmResult.SourceID

See also
AlarmResult (Page 1077)

AlarmResult.State

Description
The "State" property returns the state of an alarm.
The table below shows the possible states of an alarm.

Value State Description
0x00 Normal (Idle) Not an active alarm
0x01 Raised Incoming
0x02 RaisedCleared Incoming and reset
0x05 RaisedAcknowledged Incoming and acknowledged
0x06 RaisedAcknowledgedCleared Incoming, acknowledged and reset
0x07 RaisedClearedAcknowledged Incoming, reset and acknowledged
0x80 Removed Alarm has been removed and is no lon‐

ger available

Type
UInt32

Access
Read-only

Syntax
AlarmResult.State

See also
AlarmResult (Page 1077)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1095

AlarmResult.StateText

Description
The "StateText" property returns the alarm state as text, for example, "Incoming" or "Outgoing".
The texts can be assigned system-wide for each alarm status.

Type
String

Access
Read-only

Syntax
AlarmResult.StateText

See also
AlarmResult (Page 1077)

AlarmResult.SuppressionState

Description
The "SuppressionState" property returns the status of visibility of an active alarm.

Value SuppressionState Description
0x0 Unsuppressed Alarm is visible.
0x1 Suppressed Alarm is configured as not visible.
0x3 Shelved Alarm was hidden manually. The methods "Unshelve"

and "Shelve" can be applied.

Type
UInt8

Access
Read-only

Syntax
AlarmResult.SuppressionState

Programming scripts
10.2 WinCC Unified object model

1096 System Manual, 11/2022

See also
AlarmResult (Page 1077)

AlarmResult.SystemSeverity

Description
The "SystemSeverity" property returns the level of the severity of a system fault as property of a
system alarm. The value of the "SystemSeverity" property also influences runtime monitoring
(SystemHealthIndex).
The "SystemSeverity" property can indicate the following severity:

Value SystemSeverity Description
0 None No effect on system monitoring.
1 Lowest severity Fault with lowest impact on system monitoring.
2 Low severity Fault with low impact on system monitoring.
3 Medium severity Fault with medium impact on system monitoring.
4 High severity Fault with great impact on system monitoring.
5 Highest severity Fault with greatest impact on system monitoring.

Type
UInt16

Access
Read-only

Syntax
AlarmResult.SystemSeverity

See also
AlarmResult (Page 1077)

AlarmResult.TextColor

Description
The "TextColor" property returns the text color of the alarm state. Each alarm state has its own
visual representation.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1097

Type
UInt32

Access
Read-only

Syntax
AlarmResult.TextColor

See also
AlarmResult (Page 1077)

AlarmResult.UserName

Description
The "UserName" property returns the name of the user who triggered the alarm.

Type
String

Access
Read-only

Syntax
AlarmResult.UserName

See also
AlarmResult (Page 1077)

Programming scripts
10.2 WinCC Unified object model

1098 System Manual, 11/2022

AlarmResult.UserResponse

Description
The "UserResponse" property returns the expected or required user response to an alarm:

Value UserResponse Description
0x0 No response Active alarm does not expect user response
0x1 Acknowledgment Active alarm expects acknowledgment (also in group)
0x2 Reset Active alarm expects reset (also in group)
0x5 Single acknowledgment Active alarm explicitly expects single acknowledgment
0x6 Single reset Active alarm explicitly expects single reset

Type
UInt16

Access
Read-only

Syntax
Alarmesult.UserResponse

See also
AlarmResult (Page 1077)

AlarmResult.Value

Description
The "Value" property returns the process value of an alarm.

Type
Variant

Access
Read-only

Syntax
AlarmResult.Value

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1099

See also
AlarmResult (Page 1077)

AlarmResult.ValueLimit

Description
The "ValueLimit" property returns the limit of the process value of an alarm.

Type
Variant

Access
Read-only

Syntax
AlarmResult.ValueLimit

See also
AlarmResult (Page 1077)

AlarmResult.ValueQuality

Description
The "ValueQuality" property returns the level of the quality of the process value of an alarm.

Type
UInt16

Access
Access depends on the object.

Syntax
AlarmResult.ValueQuality

Programming scripts
10.2 WinCC Unified object model

1100 System Manual, 11/2022

See also
AlarmResult (Page 1077)

SysFct

Description
The "SysFct" object ("HMIAlarmingSysFct" type) enables access to the system functions of the
"Alarming" object.

Object type
HMIAlarmingSysFct

Properties
--

Methods
The "SysFct" object has the following methods:
• CreateOperatorInputInformation()

Creates an alarm of the "OperatorInputInformation" class.
• CreateSystemAlarm()

Creates an alarm of the "SystemAlarm" class.
• CreateSystemInformation()

Creates an alarm of the "SystemInformation" class.

See also
Alarming (Page 1046)

SysFct.CreateOperatorInputInformation()

Description
The "CreateOperatorInputInformation" method creates an alarm of the
"OperatorInputInformation" class.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1101

Syntax
HMIRuntime.Alarming.SysFct.CreateOperatorInputInformation(AlarmText[
,Area][,AlarmParameterValue1][,AlarmParameterValue2]
[,AlarmParameterValue3][, AlarmParameterValue4]
[,AlarmParameterValue5][,AlarmParameterValue6]
[,AlarmParameterValue7]);

Parameters
AlarmText
Type: String
Specifies the alarm text.
In a script, the alarm text can be either a fixed string or a reference to a text list. Alarm texts
can also be defined language-dependent using text lists.

Area
Optional, type: String
Specifies the scope of the alarm.

AlarmParameterValue1
Optional, type: Variant, Scalar
Value of the first alarm parameter.

AlarmParameterValue2
Optional, type: Variant, Scalar
Value of the second alarm parameter.

AlarmParameterValue3
Optional, type: Variant, Scalar
Value of the third alarm parameter.

AlarmParameterValue4
Optional, type: Variant, Scalar
Value of the fourth alarm parameter.

AlarmParameterValue5
Optional, type: Variant, Scalar
Value of the fifth alarm parameter.

AlarmParameterValue6
Optional, type: Variant, Scalar
Value of the sixth alarm parameter.

Programming scripts
10.2 WinCC Unified object model

1102 System Manual, 11/2022

AlarmParameterValue7
Optional, type: Variant, Scalar
Value of the seventh alarm parameter.

Return value
ErrorCode

See also
SysFct (Page 1101)
AlarmResult.AlarmParameterValues (Page 1082)

SysFct.CreateSystemAlarm()

Description
The "CreateSystemAlarm" method creates an alarm of the "SystemAlarm" class.

Syntax
HMIRuntime.Alarming.SysFct.CreateSystemAlarm(AlarmText[,Area]
[,AlarmParameterValue1][,AlarmParameterValue2]
[,AlarmParameterValue3][,AlarmParameterValue4]
[,AlarmParameterValue5][,AlarmParameterValue6]
[,AlarmParameterValue7]);

Parameters
AlarmText
Type: String
Specifies the alarm text.
In a script, the alarm text can be either a fixed string or a reference to a text list. Alarm texts
can also be defined language-dependent using text lists.

Area
Optional, type: String
Specifies the scope of the alarm.

AlarmParameterValue1
Optional, type: Variant, Scalar
Value of the first alarm parameter.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1103

AlarmParameterValue2
Optional, type: Variant, Scalar
Value of the second alarm parameter.

AlarmParameterValue3
Optional, type: Variant, Scalar
Value of the third alarm parameter.

AlarmParameterValue4
Optional, type: Variant, Scalar
Value of the fourth alarm parameter.

AlarmParameterValue5
Optional, type: Variant, Scalar
Value of the fifth alarm parameter.

AlarmParameterValue6
Optional, type: Variant, Scalar
Value of the sixth alarm parameter.

AlarmParameterValue7
Optional, type: Variant, Scalar
Value of the seventh alarm parameter.

Return value
ErrorCode

See also
SysFct (Page 1101)
AlarmResult.AlarmParameterValues (Page 1082)

SysFct.CreateSystemInformation()

Description
The "CreateSystemInformation" method creates an alarm of the "SystemInformation" class.
The "SystemInformation" alarm class only has the state "Incoming" and is therefore only
displayed in the alarm control under "Logged alarms" and not under "Pending alarms".

Programming scripts
10.2 WinCC Unified object model

1104 System Manual, 11/2022

Syntax
HMIRuntime.Alarming.SysFct.CreateSystemInformation(AlarmText[,Area]
[,AlarmParameterValue1][,AlarmParameterValue2]
[,AlarmParameterValue3][,AlarmParameterValue4]
[,AlarmParameterValue5][,AlarmParameterValue6]
[,AlarmParameterValue7]);

Parameters
AlarmText
Type: String
Specifies the alarm text.
In a script, the alarm text can be either a fixed string or a reference to a text list. Alarm texts
can also be defined language-dependent using text lists.

Area
Optional, type: String
Specifies the scope of the alarm.

AlarmParameterValue1
Optional, type: Variant, Scalar
Value of the first alarm parameter.

AlarmParameterValue2
Optional, type: Variant, Scalar
Value of the second alarm parameter.

AlarmParameterValue3
Optional, type: Variant, Scalar
Value of the third alarm parameter.

AlarmParameterValue4
Optional, type: Variant, Scalar
Value of the fourth alarm parameter.

AlarmParameterValue5
Optional, type: Variant, Scalar
Value of the fifth alarm parameter.

AlarmParameterValue6
Optional, type: Variant, Scalar
Value of the sixth alarm parameter.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1105

AlarmParameterValue7
Optional, type: Variant, Scalar
Value of the seventh alarm parameter.

Return value
ErrorCode

See also
SysFct (Page 1101)
AlarmResult.AlarmParameterValues (Page 1082)

10.2.2.5 AlarmLogging

Description
The object "AlarmLogging" (type "HMIAlarmLogging") enables access to the logging system. You
can read and comment on the logged alarms ("HMILoggedAlarmStateResult[]" objects)
asynchronously.

Object type
HMIAlarmLogging

Properties
--

Programming scripts
10.2 WinCC Unified object model

1106 System Manual, 11/2022

Methods
The "AlarmLogging" object has the following methods:
• AddComment()

Adds a comment to logged alarms asynchronously in the logging system.
• Read()

Reads out logged alarms of a time period asynchronously from a logging system.

AlarmLogging.AddComment()

Description
The "AddComment" method adds comments for logged alarms
("HMILoggedAlarmStateResult[]" objects) asynchronously in the logging system.
The method executes an asynchronous write operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the
successful (then()) and faulty (catch()) execution of the write operation. Depending on the
result, the corresponding handler of the Promise pattern is called after the write operation.

Note
The "LoggedAlarmStateObjectID", "InstanceID" and "TimeStamp" parameters must correspond
to the properties of the associated "HMILoggedAlarmStateResult" object.

Syntax
HMIRuntime.AlarmLogging.AddComment(LoggedAlarmStateObjectID,Instance
ID,TimeStamp,Language,Comment)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
LoggedAlarmStateObjectID
Type: String
ID of the logged alarm

InstanceID
Type: UInt32
InstanceID of the logged alarm

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1107

TimeStamp
Type: DateTime
Time stamp of the comment

Language
Type: UInt32, HMILCID
Country identification of the language of the comment

Comment
Type: String
Comment on the logged alarms

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
AlarmLogging (Page 1106)
LoggedAlarmStateResult (Page 1110)

AlarmLogging.Read()

Description
The "Read" method reads logged alarms ("HMILoggedAlarmStateResult[]" objects) of a time
period asynchronously from a logging system.
The method executes an asynchronous read operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the
successful (then()) and faulty (catch()) execution of the read operation. Depending on the
result, the corresponding handler of the Promise pattern is called after the read operation
with an Array of "HMILoggedAlarmStateResult" objects or an error code as parameter.

Syntax
HMIRuntime.AlarmLogging.Read(dateFrom,dateTo,filter,language,
[systemNames])
.then(function(alarmResultArray) {
 ...
})

Programming scripts
10.2 WinCC Unified object model

1108 System Manual, 11/2022

.catch(function(errorCode) {
 ...
});

Parameters
dateFrom
Type: DateTime
End date of the time period

dateTo
Type: DateTime
Start date of the time period

filter
Type: String, HMIAlarmFilterString
SQL-type string for filtering the result set of the logged alarms

language
Type: UInt32, HMILCID
Country code of the language of the logged alarms and the filter

systemNames
Type: String[], HMISystem
Array of system names

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

Object, HMILoggedAlarmStateResult[] (Page 1110) as parameter of the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
AlarmLogging (Page 1106)
LoggedAlarmStateResult (Page 1110)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1109

LoggedAlarmStateResult

Description
The "LoggedAlarmStateResult" object ("HMILoggedAlarmStateResult" type) provides access to
the properties of a logged alarm. The "LoggedAlarmStateResult" object is a pure data object that
maps all properties of a logged alarm.

Object type
HMILoggedAlarmStateResult

Properties
The "LoggedAlarmStateResult" object has the following properties:
• AcknowledgementTime

Returns the time when an alarm was acknowledged.
• AlarmClassName

Returns the name of the alarm class.
• AlarmClassSymbol

Returns the abbreviation for the display of the alarm class.
• AlarmGroupID

Returns the alarm group ID.
• AlarmParameterValues

Returns an array with parameter values of an alarm.
• AlarmText

Returns the localized additional texts 1-9 of an alarm as array.
• Area

Returns the area of origin of an alarm.
• BackColor

Returns the background color of an alarm.
• ChangeReason

Returns the event that triggered the change in the alarm state.
• ClearTime

Returns the time of the reset of an alarm.
• Connection

Returns the name of the connection via which an alarm was triggered.
• Deadband

Returns the hysteresis value of the trigger tag of an alarm.
• EventText

Returns a localized text describing an event to the alarm.
• HostName

Returns the name of the PC at which the alarm was triggered.

Programming scripts
10.2 WinCC Unified object model

1110 System Manual, 11/2022

• ID
Returns the ID of a logged alarm.

• InfoText
Returns the information text of an alarm in all archived languages.

• InstanceID
Returns the ID of alarms with multiple instances.

• InvalidFlags
Selects the valid or invalid alarm condition.

• LoggedAlarmStateObjectID
Returns the ID of a logged alarm.

• ModificationTime
Returns the time stamp of the last change of the alarm state.

• Origin
Returns the origin of an alarm.

• Priority
Returns the relevance of an alarm or a machine status.

• RaiseTime
Returns the trigger time of an alarm.

• ResetTime
Returns the time of the reset of an alarm.

• SingleAcknowledgement
Returns whether an alarm must be acknowledged exclusively or can also be acknowledged
in a group.

• SourceType
Returns the type of alarm source.

• State
Returns the state of an alarm.

• StateMachine
Returns the behavior of the alarm for states and events.

• StateText
Returns the alarm state as text.

• SuppressionState
Returns the status of visibility of an active alarm.

• TextColor
Returns the text color of the alarm state.

• UserName
Returns the name of the user who triggered the alarm object.

• UserResponse
Returns the expected or required user response to an alarm.

• Value
Returns the process value of an alarm.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1111

• ValueLimit
Returns the limit of a process value of an alarm.

• ValueQuality
Returns the level of the quality of a process value of an alarm.

Methods
--

See also
AlarmLogging (Page 1106)

LoggedAlarmStateResult.AcknowledgementTime

Description
The "AcknowledgementTime" property returns the time of the acknowledgment of an alarm.

Type
DateTime

Access
Read-only

Syntax
LoggedAlarmStateResult.AcknowledgementTime

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.AlarmClassName

Description
The "AlarmClassName" property returns the name of the alarm class.

Type
String

Programming scripts
10.2 WinCC Unified object model

1112 System Manual, 11/2022

Access
Read-only

Syntax
LoggedAlarmStateResult.AlarmClassName

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.AlarmClassSymbol

Description
The "AlarmClassSymbol" property returns the abbreviation for the display of the alarm class of
the alarm, for example, "W" for the alarm class "Warning".

Type
String

Access
Read-only

Syntax
LoggedAlarmStateResult.AlarmClassSymbol

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.AlarmGroupID

Description
The "AlarmGroupID" property returns the alarm group ID.

Type
UInt8

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1113

Access
Read-only

Syntax
LoggedAlarmStateResult.AlarmGroupID

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.AlarmParameterValues

Description
The "AlarmParameterValues" property returns an Array with parameter values of an alarm.
The parameter values are added to an alarm from the source in the "Incoming" and "Reset"
state. They can also include diagnostic or raw data from the PLC in addition to simple tag
values from the configured AlarmParamterTags.

Type
Variant[]

Access
Read-only

Syntax
LoggedAlarmStateResult.AlarmParameterValues

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.AlarmText

Description
The "AlarmText" property returns the localized additional texts 1-9 of an alarm as Array. The text
can contain triggered placeholders and reference all "AlarmParameterValues" properties of the
respective alarm state "Incoming" or "Reset".

Programming scripts
10.2 WinCC Unified object model

1114 System Manual, 11/2022

Type
String[]

Access
Read-only

Syntax
LoggedAlarmStateResult.AlarmText

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.Area

Description
The "Area" property returns the area of origin of an alarm.
The "Area" property can be configured and, together with the "Origin" property, defines the
source of an alarm. You can also use placeholders for context-sensitive format.
The "Area" property, for example, includes subsystem, application name or PLC ID. You can
sort and filter alarms through the "Area" context.

Type
String

Access
Read-only

Syntax
LoggedAlarmStateResult.Area

See also
LoggedAlarmStateResult (Page 1110)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1115

LoggedAlarmStateResult.BackColor

Description
The "BackColor" property returns the background color of an alarm.

Type
UInt32

Access
Read-only

Syntax
LoggedAlarmStateResult.BackColor

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.ChangeReason

Description
The "ChangeReason" property returns the event that triggered the change in the alarm state. The
time of last modification is saved in the "ModificationTime" property.
The alarm status may change for the following reasons:

Values ChangeReason Description
0x0001 AlarmStateChanged The "State" property has changed
0x0003 RaisedEvent Status change "Incoming"
0x0005 ClearEvent Status change "Reset"
0x0007 AcknowledgeEvent Status change "Acknowledged"
0x0009 ResetEventReason Status change "Deleted"
0x000F RemoveEvent Status change "Removed"
0x0010 AlarmQualityChanged The "Quality" property has changed
0x0020 AlarmParameterValueChanged A value of the "AlarmParameterVal‐

ues" property has changed
0x0040 AlarmPriorityChanged The "Priority" property has changed
0x0080 AlarmSuppressionStateChanged The "SuppressionState" property has

changed
0x0100 AlarmEscalationReasonChanged The "EscalationReason" property has

changed

Programming scripts
10.2 WinCC Unified object model

1116 System Manual, 11/2022

Values ChangeReason Description
0x0200 AlarmEnableStateChanged Is set together with "RemoveEvent" to

show that the alarm was deactivated
0x0400 TextUpdate Alarm texts have changed
0x1000 ConfigurationChanged Alarm configuration has changed
0x2000 ExternalUpdate The "ModificationTime" property was

changed for certain application-spe‐
cific alarm scenarios

0x8000 IgnoreInLogging For suppressing the reporting of spe‐
cific alarms.

Type
UInt16

Access
Read-only

Syntax
LoggedAlarmStateResult.ChangeReason

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.ClearTime

Description
The "ClearTime" property returns the time of the reset of an alarm.

Type
DateTime

Access
Read-only

Syntax
LoggedAlarmStateResult.ClearTime

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1117

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.Connection

Description
The "Connection" property returns the name of the connection by which an alarm was triggered.

Type
String

Access
Read-only

Syntax
LoggedAlarmStateResult.Connection

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.Deadband

Description
The "Deadband" property returns the hysteresis value of the trigger tag of an alarm.

Type
Variant

Access
Read-only

Syntax
LoggedAlarmStateResult.Deadband

See also
LoggedAlarmStateResult (Page 1110)

Programming scripts
10.2 WinCC Unified object model

1118 System Manual, 11/2022

LoggedAlarmStateResult.EventText

Description
The "EventText" property returns a localized text that describes an alarm event.
The text can contain triggered placeholders and reference all "AlarmParameterValues"
properties of the respective "incoming" or "reset" alarm state.

Type
String

Access
Read-only

Syntax
LoggedAlarmStateResult.EventText

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.HostName

Description
The "HostName" property returns the name of the PC at which an alarm was triggered.

Type
Boolean

Access
Read-only

Syntax
LoggedAlarmStateResult.HostName

See also
LoggedAlarmStateResult (Page 1110)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1119

LoggedAlarmStateResult.ID

Description
The "ID" property returns the ID of a logged alarm.

Type
UInt32

Access
Read-only

Syntax
LoggedAlarmStateResult.ID

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.InfoText

Description
The "InfoText" property returns the information text of an alarm in all archived languages.
Normally, the text is used for operator instructions.

Type
String

Access
Read-only

Syntax
LoggedAlarmStateResult.InfoText

See also
LoggedAlarmStateResult (Page 1110)

Programming scripts
10.2 WinCC Unified object model

1120 System Manual, 11/2022

LoggedAlarmStateResult.InstanceID

Description
The "InstanceID" property returns the ID of alarms with multiple instances.

Type
UInt32

Access
Read-only

Syntax
LoggedAlarmStateResult.InstanceID

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.InvalidFlags

Description
The "InvalidFlags" property marks the valid or invalid alarm state.

Type
UInt8

Access
Read-only

Syntax
LoggedAlarmStateResult.InvalidFlags

See also
LoggedAlarmStateResult (Page 1110)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1121

LoggedAlarmStateResult.LoggedAlarmStateObjectID

Description
The "LoggedAlarmStateObjectID" property returns the ID of a logged alarm.
The ID is used for referencing a logged alarm, for example, for commenting with the
"AlarmLogging.AddComment" method.

Type
String

Access
Read-only

Syntax
LoggedAlarmStateResult.LoggedAlarmStateObjectID

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.ModificationTime

Description
The "ModificationTime" property returns the time stamp of the last modification of the alarm
state.
The reason for the change is included in the "ChangeReason" property.

Type
DateTime

Access
Read-only

Syntax
LoggedAlarmStateResult.ModificationTime

Programming scripts
10.2 WinCC Unified object model

1122 System Manual, 11/2022

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.Origin

Description
The "Origin" property returns the origin of an alarm.
The "Origin" property, for example, includes system names, data source or CPU ID. You can
sort and filter alarms through the "Origin" context.
The "Origin" property can be configured and, together with the "Area" property, defines the
source of an alarm. You can also use placeholders for context-sensitive format.

Type
String

Access
Read-only

Syntax
LoggedAlarmStateResult.Origin

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.Priority

Description
The "Priority" property specifies the relevance of an alarm or a machine status.

Type
UInt8

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1123

Syntax
LoggedAlarmStateResult.Priority

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.RaiseTime

Description
The "RaiseTime" property returns the trigger time of an alarm.

Type
DateTime

Access
Read-only

Syntax
LoggedAlarmStateResult.RaiseTime

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.ResetTime

Description
The "ResetTime" property returns the time of the reset of an alarm.

Type
DateTime

Access
Read-only

Syntax
LoggedAlarmStateResult.ResetTime

Programming scripts
10.2 WinCC Unified object model

1124 System Manual, 11/2022

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.SingleAcknowledgement

Description
The "SingleAcknowledgement" property returns whether an alarm must be acknowledged
exclusively or can also be acknowledged in a group.

Type
Boolean

Access
Read-only

Syntax
LoggedAlarmStateResult.SingleAcknowledgement

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.SourceType

Description
The "SourceType" property returns the type of alarm source. During resetting, the alarm is
removed from the alarm system.

Type
UInt16

Access
Read-only

Syntax
LoggedAlarmStateResult.SourceType

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1125

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.State

Description
The "State" property returns the state of an alarm.

Type
UInt32

Access
Read-only

Syntax
LoggedAlarmStateResult.State

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.StateMachine

Description
The "StateMachine" property returns the behavior of an alarm for states and events.

Type
UInt8

Access
Read-only

Syntax
LoggedAlarmStateResult.StateMachine

See also
LoggedAlarmStateResult (Page 1110)

Programming scripts
10.2 WinCC Unified object model

1126 System Manual, 11/2022

LoggedAlarmStateResult.StateText

Description
The "StateText" property returns the alarm state as text, for example, "Incoming" or "Outgoing".
The texts can be assigned system-wide for each alarm status.

Type
String

Access
Read-only

Syntax
LoggedAlarmStateResult.StateText

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.SuppressionState

Description
The "SuppressionState" property returns the status of visibility of an active alarm.

Type
UInt8

Access
Read-only

Syntax
LoggedAlarmStateResult.SuppressionState

See also
LoggedAlarmStateResult (Page 1110)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1127

LoggedAlarmStateResult.TextColor

Description
The "TextColor" property returns the text color of the alarm state. Each alarm state has its own
visual representation.

Type
UInt32

Access
Read-only

Syntax
LoggedAlarmStateResult.TextColor

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.UserName

Description
The "UserName" property returns the name of the user who triggered the alarm object.

Type
String

Access
Read-only

Syntax
LoggedAlarmStateResult.UserName

See also
LoggedAlarmStateResult (Page 1110)

Programming scripts
10.2 WinCC Unified object model

1128 System Manual, 11/2022

LoggedAlarmStateResult.UserResponse

Description
The "UserResponse" property returns the expected or required user response to an alarm.

Type
UInt16

Access
Read-only

Syntax
LoggedAlarmStateResult.UserResponse

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.Value

Description
The "Value" property returns the process value of an alarm.

Type
Variant

Access
Read-only

Syntax
LoggedAlarmStateResult.Value

See also
LoggedAlarmStateResult (Page 1110)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1129

LoggedAlarmStateResult.ValueLimit

Description
The "ValueLimit" property returns the limit of the process value of an alarm.

Type
Variant

Access
Read-only

Syntax
LoggedAlarmStateResult.ValueLimit

See also
LoggedAlarmStateResult (Page 1110)

LoggedAlarmStateResult.ValueQuality

Description
The "ValueQuality" property returns the level of the quality of the process value of an alarm.

Type
UInt16

Access
Read-only

Syntax
LoggedAlarmStateResult.ValueQuality

See also
LoggedAlarmStateResult (Page 1110)

Programming scripts
10.2 WinCC Unified object model

1130 System Manual, 11/2022

SysFct

Description
The "SysFct" object ("HMIAlarmLoggingSysFct" type) enables access to the system functions of
the "HMIAlarmLogging" object.

Object type
HMIAlarmLoggingSysFct

Properties
--

Methods
The "SysFct" object has the following methods:
• ClearAlarmLog()

Removes all logged alarms from the specified logging system.

See also
AlarmLogging (Page 1106)

SysFct.ClearAlarmLog()

Description
The "ClearAlarmLog" method deletes the logged alarms from the alarm log whose name was
passed via the parameter. The method removes all records from the specified alarm log. All
segments up to the current segment are deleted. The remaining segment is given a new start
time.

Note
No automatic backup is created before the "ClearAlarmLog" method is executed.

The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
HMIRuntime.AlarmLogging.SysFct.ClearAlarmLog(LogName)
.then(function() {

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1131

 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
LogName
Type: String, HMIAlarmLog
Name of the logging system from which the alarms are deleted.

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
SysFct (Page 1131)
AlarmLogging (Page 1106)

10.2.2.6 Audit

Description

The "Audit" object provides access to the "AuditTrail" logs contained in
the project ("ElectronicRecordResult" objects) and to entries contained there
("ElectronicRecordValueResult" objects).

Programming scripts
10.2 WinCC Unified object model

1132 System Manual, 11/2022

Object type
HMIAudit

Properties
--

Methods
--

SysFct

Description
The "SysFct" object enables access to system functions of the "Audit" object.

Type
HMIAuditSysFct

Properties
--

Methods
The "SysFct" object has the following methods:
• InsertElectronicRecord()

Saves an entry in the Audit Trail.
• ReadElectronicRecord()

Reads entries from the Audit Trail.

SysFct.InsertElectronicRecord()

Description
The "InsertElectronicRecord" method saves an entry in the Audit Trail.
This method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1133

Syntax
HMIRuntime.Audit.SysFct.InsertElectronicRecord(ObjectName,
Category, OperationType, OldValue, NewValue, ConfirmationType[,
Reason])
.then(function(errorCode) {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
ObjectName
Type: String
Name of the edited object.

Category
Type: String
Category that classifies the change made.

OperationType
Type: hmiOperationType
Specifies the type of change:
• hmiCreation (1): Object newly created
• hmiUpdate (2): Object edited
• hmiDeletion (3): Object deleted

OldValue
Type: Variant
Previous value of the associated object.

NewValue
Type: Variant
New value for the edited object.

ConfirmationType
Type: UInt8, hmiConfirmationType
Specifies the type of approval needed for the change:
• hmiNone (0): No acknowledgment required.
• hmiConfirmationRequired (1): Acknowledgment required.
• hmiReasonRequired (2): Acknowledgement and indication of a reason for the change is

required.

Programming scripts
10.2 WinCC Unified object model

1134 System Manual, 11/2022

Reason
Optional, type: String, HMITextList
Text list to select a reason for the change.

Return value
Promise
Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

ErrorCode as parameter of the "then()" handler.
• Promise rejected (rejected):

ErrorCode as parameter of the "catch()" handler.

See also
SysFct (Page 1133)

SysFct.ReadElectronicRecord()

Description
The "ReadElectronicRecord" method reads entries from the Audit Trail.
This method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
HMIRuntime.Audit.SysFct.ReadElectronicRecord(dateFrom, dateTo,
offSet)
.then(function(electronicRecordResult) {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
dateFrom
Type: DateTime
Start of the time period

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1135

dateTo
Type: DateTime
End of the time period

offSet
Type: UInt32
Page number of the electronic report

Return value
Promise
Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

Object, HMIElectronicRecordResult (Page 1136) as parameter of the handler "then()".
• Promise rejected (rejected):

ErrorCode as parameter of the "catch()" handler.

See also
ElectronicRecordResult (Page 1136)
SysFct (Page 1133)

ElectronicRecordResult

Description
The "ElectronicRecordResult" object represents an AuditTrail log.

Object type
HMIElectronicRecordResult

Properties
The "ElectronicRecordResult" object has the following properties:
• InvalidValues

Specifies invalid values in the Audit Trail.
• More

Specifies that the page displayed in the AuditTrail is not the last page.
• Values

Specifies valid values in the Audit Trail.

Programming scripts
10.2 WinCC Unified object model

1136 System Manual, 11/2022

Methods
--

ElectronicRecordResult.InvalidValues

Description
The "InvalidValues" property represents invalid entries ("ElectronicRecordValueResult" objects)
in the Audit Trail.

Type
Object, HMIElectronicRecordValueResult[] (Page 1137)

Access
Read-write

Syntax
ElectronicRecordResult.InvalidValues

See also
ElectronicRecordValueResult (Page 1137)

ElectronicRecordValueResult

Description
The "ElectronicRecordValueResult" object represents an entry from the AuditTrail.

Object type
HMIElectronicRecordValueResult

Properties
The "ElectronicRecordValueResult" object has the following properties:
• AuditProvider

Specifies the name of the Audit Trail in which entries are stored.
• AuditProviderType

Specifies the format of the AuditTrail.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1137

• Integrity
Specifies the checksum.

• Language
Specifies the language of the entry.

• NewValue
Specifies the new value.

• ObjectName
Specifies the name of the associated object.

• ObjectReference
Refers to the associated object.

• OldValue
Specifies the original value.

• OperatorStation
Specifies the HMI device that generates the entry.

• OperationType
Defines the type of operation.

• Reason
Specifies the reason for the change.

• Signature
Specifies the electronic signature of the entry.

• TimeStamp
Specifies the time stamp of the entry.

• User
Specifies the operator who made the change.

Methods
--

ElectronicRecordValueResult.AuditProvider

Description
The "AuditProvider" property specifies the name of the Audit Trail where the entries are stored.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1138 System Manual, 11/2022

Syntax
ElectronicRecordValueResult.AuditProvider

See also
ElectronicRecordValueResult (Page 1137)

ElectronicRecordValueResult.AuditProviderType

Description
The "AuditProviderType" property specifies the format of the Audit Trail.

Type
UInt16

Access
Read-write

Syntax
ElectronicRecordValueResult.AuditProviderType

See also
ElectronicRecordValueResult (Page 1137)

ElectronicRecordValueResult.Integrity

Description
The "Integrity" property specifies the checksum.

Type
UInt16

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1139

Syntax
ElectronicRecordValueResult.Integrity

See also
ElectronicRecordValueResult (Page 1137)

ElectronicRecordValueResult.Language

Description
The "Language" property specifies the language of the entry.

Type
UInt32

Access
Read-write

Syntax
ElectronicRecordValueResult.Language

See also
ElectronicRecordValueResult (Page 1137)

ElectronicRecordValueResult.NewValue

Description
The "NewValue" property specifies the new value.

Type
Variant

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1140 System Manual, 11/2022

Syntax
ElectronicRecordValueResult.NewValue

See also
ElectronicRecordValueResult (Page 1137)
ElectronicRecordValueResult.OldValue (Page 1142)

ElectronicRecordValueResult.ObjectName

Description
The "ObjectName" property specifies the name of the associated object.

Type
Variant

Access
Read-write

Syntax
ElectronicRecordValueResult.ObjectName

See also
ElectronicRecordValueResult (Page 1137)

ElectronicRecordValueResult.ObjectReference

Description
The "ObjectReference" property refers to the associated object.

Type
Variant

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1141

Syntax
ElectronicRecordValueResult.ObjectReference

See also
ElectronicRecordValueResult (Page 1137)

ElectronicRecordValueResult.OldValue

Description
The "OldValue" property specifies the original value.

Type
Variant

Access
Read-write

Syntax
ElectronicRecordValueResult.OldValue

See also
ElectronicRecordValueResult (Page 1137)
ElectronicRecordValueResult.NewValue (Page 1140)

ElectronicRecordValueResult.OperatorStation

Description
The "OperatorStation" property specifies the HMI device that creates the entry.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1142 System Manual, 11/2022

Syntax
ElectronicRecordValueResult.OperatorStation

See also
ElectronicRecordValueResult (Page 1137)

ElectronicRecordValueResult.OperationType

Description
The "OperationType" property specifies the type of the operation.

Type
UInt8, hmiOperationTyp
Specifies the type of change:
• hmiCreation (1): Entry newly created.
• hmiUpdate (2): Entry edited.
• hmiDeletion (3): Entry deleted.

Access
Read-write

Syntax
ElectronicRecordValueResult.OperationType

See also
ElectronicRecordValueResult (Page 1137)

ElectronicRecordValueResult.Reason

Description
The "Reason" property specifies the reason for the change.

Type
Variant

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1143

Access
Read-write

Syntax
ElectronicRecordValueResult.Reason

See also
ElectronicRecordValueResult (Page 1137)

ElectronicRecordValueResult.Signature

Description
The "Signature" property specifies the electronic signature of the entry.

Type
Variant

Access
Read-write

Syntax
ElectronicRecordValueResult.Signature

See also
ElectronicRecordValueResult (Page 1137)

ElectronicRecordValueResult.TimeStamp

Description
The "TimeStamp" property specifies the time stamp of the entry.

Type
DateTime

Programming scripts
10.2 WinCC Unified object model

1144 System Manual, 11/2022

Access
Read-write

Syntax
ElectronicRecordValueResult.TimeStamp

See also
ElectronicRecordValueResult (Page 1137)

ElectronicRecordValueResult.User

Description
The "User" property specifies the operator who made the change.

Type
String

Access
Read-write

Syntax
ElectronicRecordValueResult.String

See also
ElectronicRecordValueResult (Page 1137)

ElectronicRecordResult.More

Description
The "More" property specifies that the displayed page in the AuditTrail is not the last page.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1145

Access
Read-write

Syntax
ElectronicRecordResult.More

See also
ElectronicRecordResult (Page 1136)

ElectronicRecordResult.Values

Description
The "Values" property represents valid entries ("ElectronicRecordValueResult" objects) in the
AuditTrail.

Type
Object, HMIElectronicRecordValueResult[] (Page 1137)

Access
Read-write

Syntax
ElectronicRecordResult.Values

See also
ElectronicRecordValueResult (Page 1137)
ElectronicRecordResult (Page 1136)

ElectronicRecordValueResult

Description
ElectronicRecordValueResult (Page 1137)

Programming scripts
10.2 WinCC Unified object model

1146 System Manual, 11/2022

10.2.2.7 Connections

Description

The "Connections" object ("HMIConnections" type) enables access to the connections of the
Runtime system. A connection is a configured, logical assignment of two communication
partners.

Use

Note
The "Connections" object is not a list, but rather a "Factory". You create an instance of the
"Connection" object using the tag name.
The "Connection" objects cannot be counted and enumerated like conventional lists.

To reduce the use of the "Connections" object, you can also use the alias Connections for
HMIRuntime.Connections.

Object type
HMIConnections

Properties
--

Methods
The "Connections" object has the following methods:
• Item()

Returns a connection ("Connection" object) of the runtime system.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1147

Connections.Item()

Description
The "Item" method returns a connection ("Connection" object) of the runtime system.

Syntax
HMIRuntime.Connections[.Item](name);

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "Connections" object.

Parameters
name
Type: String, HMIConnection
Name of a connection

Return value
Object, HMIConnection (Page 1148)

See also
Connection (Page 1148)

Connection

Description
The "Connection" object ("HMIConnection" type) enables access to individual connections of the
Runtime system. A connection is a configured, logical assignment of two communication
partners.

Object type
HMIConnection

Properties
--

Programming scripts
10.2 WinCC Unified object model

1148 System Manual, 11/2022

Methods
The "Connection" object has the following methods:
• SetConnectionMode()

Changes the status of a connection ("Connection" object) in the Runtime system.

Connection.SetConnectionMode()

Description
The "SetConnectionMode" method changes the status of a connection ("Connection" object) in
the runtime system.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful (then())
and faulty (catch()) execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern is called after the execution.

Syntax
Connection.SetConnectionMode(mode)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
mode
Type: Int32, hmiConnectionMode
Specifies the connection status:
• Disabled (0): Disconnect
• Enabled (1): Set up connection

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the handler "then()".
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1149

See also
Connection (Page 1148)

SysFct

Description
The "SysFct" object ("HMIConnectionsSysFct" type) enables access to the system functions of the
"Connections" object.

Object type
HMIConnectionsSysFct

Properties
--

Methods
The "SysFct" object has the following methods:
• ChangeConnection()

Changes the connection parameters of an HMI connection in the runtime system.
• SetConnectionMode()

Changes the status of a connection in the runtime system.

See also
Connection (Page 1148)

SysFct.ChangeConnection()

Description
The "ChangeConnection" method changes the connection parameters of an HMI connection.

Programming scripts
10.2 WinCC Unified object model

1150 System Manual, 11/2022

Because the function is executed synchronously, the return value returns an error code that
provides immediate information about the cause of the error. The error code can only be
read if the function is called via a script.

Note
Change of function parameters after a function call
With the execution of the function, you change the function parameters. The new connection
may not be active yet at this point.

Note
Usage on devices of the S7 Plus PLC family
For devices of the S7 Plus PLC family (PLCs 15xx and 12xx) it is not possible to change the slot or
the rack. The system function cannot be executed if parameters for slot or rack are set.

Syntax
HMIRuntime.Connections.SysFct.ChangeConnection(ConnectionName,IPv4Ad
dress[,Slot][,Rack]);

Parameters
ConnectionName
Type: String, HMIConnection
Indicates the name of the connection.

IPv4Address
Type: String, HMIIPv4Address
Specifies the IPv4 address. Example: 192.169.153.45

Slot
Optional, type: UInt8
Specifies the slot number. Permitted values from 1 to 32.

Rack
Optional, type: UInt8
Specifies the rack number. Permitted values from 0 to 7.

Return value
ErrorCode

See also
SysFct (Page 1150)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1151

SysFct.SetConnectionMode()

Description
The "SetConnectionMode" method changes the status of a connection ("Connection" object) in
the runtime system.

Syntax
HMIRuntime.Connections.SysFct.SetConnectionMode(ConnectionName,Enabl
eState);

Parameters
ConnectionName
Type: String, HMIConnection
Name of a connection in the runtime system

EnableState
Type: Bool
Status of a connection in the runtime system:
• False: Disconnect
• True: Set up connection

Return value
ErrorCode

See also
SysFct (Page 1150)

Programming scripts
10.2 WinCC Unified object model

1152 System Manual, 11/2022

10.2.2.8 Database

Description

The "Database" object represents the ODBC interface. You use this interface to access the
data in a database using SQL commands.
Requirement is that an ODBC interface is installed on the HMI device.

Object type
HMIDatabase

Properties
--

Methods
The "Database" object has the following methods:
• CreateConnection()

Establishes the connection to a database.

Database.CreateConnection()

Description
The "CreateConnection" method establishes the connection to a database.
The method executes an asynchronous read operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the
successful (then()) and faulty (catch()) execution of the read operation. Depending
on the result, the corresponding handler of the Promise pattern with the object
"DatabaseConnection" or "DatabaseResult" as parameter is called after the operation.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1153

Syntax
HMIRuntime.Database.CreateConnection(connectionString)
.then(function(DatabaseConnection) {
 ...
})
.catch(function(Result) {
 ...
});

Parameters
connectionString
Type: String
Name of the database

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

Object, HMIDatabaseConnection (Page 1154) as parameter of the "then()" handler
• Promise rejected (rejected)

Object, HMIDatabaseResult (Page 1157) as parameter of the "catch()" handler

See also
DatabaseConnection (Page 1154)
DatabaseResult (Page 1157)
Database (Page 1153)

DatabaseConnection

Description
The "DatabaseConnection" object displays the connection to a database.

Object type
HMIDatabaseConnection

Properties
--

Programming scripts
10.2 WinCC Unified object model

1154 System Manual, 11/2022

Methods
The "DatabaseConnection" object has the following methods:
• Close()

Terminates the connection to a database.
• Execute()

Executes a query in a database.

See also
Database (Page 1153)

DatabaseConnection.Close()

Description
The "Close" method terminates the connection to a database.
The method executes an asynchronous read operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the
successful (then()) and faulty (catch()) execution of the read operation. Depending on
the result, the corresponding handler of the Promise pattern with the "HMIDatabaseResult"
object as parameter is called after the execution.

Syntax
DatabaseConnection.Close()
.then(function(DatabaseResult) {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
--

Return value
Promise

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1155

Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

Object, HMIDatabaseResult (Page 1157) as parameter of the "then()" handler
• Promise rejected (rejected)

Object, HMIDatabaseResult (Page 1157) as parameter of the "catch()" handler.

See also
DatabaseConnection (Page 1154)
DatabaseResult (Page 1157)

DatabaseConnection.Execute()

Description
The "Execute" executes a query in the database.
The method executes an asynchronous read operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the
successful (then()) and faulty (catch()) execution of the read operation. Depending on
the result, the corresponding handler of the Promise pattern with the "HMIDatabaseResult"
object as parameter is called after the execution.

Syntax
DatabaseConnection.Execute(query[,values])
.then(function(DatabaseResult) {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
query
Type: String
Query

values
Type: Variant | Variant[]
Value array

Return value
Promise

Programming scripts
10.2 WinCC Unified object model

1156 System Manual, 11/2022

Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

Object, HMIDatabaseResult (Page 1157) as parameter of the "then()" handler
• Promise rejected (rejected)

Object, HMIDatabaseResult (Page 1157) as parameter of the "catch()" handler.

See also
DatabaseResult (Page 1157)
DatabaseConnection (Page 1154)

DatabaseResult

Description
DatabaseResult (Page 1157)

DatabaseResult

Description
The "DatabaseResult" object represents the result of a database query.

Object type
HMIDatabaseResult

Properties
The "DatabaseResult" object has the following properties:
• GlobalError

Returns the global error ID.
• Results

Contains the result of the database query.

Methods
--

See also
Database (Page 1153)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1157

DatabaseResult.GlobalError

Description
The "GlobalError" property returns the global error ID.

Type
ErrorCode

Access
Read-only

Syntax
DatabaseResult.GlobalError

See also
DatabaseResult (Page 1157)

DatabaseResult.Results

Description
The "Results" property contains the result of the database query.

Type
Object[], HMIDatabaseStatementResult (Page 1159)

Access
Read-only

Syntax
DatabaseResult.Results

See also
DatabaseStatementResult (Page 1159)

Programming scripts
10.2 WinCC Unified object model

1158 System Manual, 11/2022

DatabaseStatementResult

Description
The "DatabaseStatementResult" object represents table rows of a database query.

Object type
HMIDatabaseStatementResult

Properties
The "DatabaseStatementResult" object has the following properties:
• Errors

Returns the error descriptions.
• Rows

Returns the rows of the database table.

Methods
--

See also
Database (Page 1153)

DatabaseStatementResult.Errors

Description
The "Errors" property returns the error descriptions.

Type
Object[], HMIDatabaseDetailedError (Page 1160)

Access
Read-only

Syntax
DatabaseStatementResult.Errors

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1159

See also
DatabaseDetailedError (Page 1160)

DatabaseDetailedError

Description
The "DatabaseDetailedError" object displays the error description of a failed database query.

Object type
HMIDatabaseDetailedError

Properties
The "DatabaseDetailedError" object has the following properties:
• Message

Returns the error description.
• State

Returns the ODBC error type.

Methods
--

See also
Database (Page 1153)

DatabaseDetailedError.Message

Description
The "Message" property returns the error description.

Type
String

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

1160 System Manual, 11/2022

Syntax
DatabaseDetailedError.Message

See also
DatabaseDetailedError (Page 1160)

DatabaseDetailedError.State

Description
The "State" property returns the ODBC error type.

Type
String

Access
Read-only

Syntax
DatabaseDetailedError.State

See also
DatabaseDetailedError (Page 1160)

DatabaseStatementResult.Rows

Description
The "Rows" property returns the rows of the database table.

Type
Object[]

Access
Read-only

Syntax
DatabaseStatementResult.Rows

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1161

See also
DatabaseStatementResult (Page 1159)

10.2.2.9 Device

Description

The "Device" object represents a device that is configured in "Devices & networks".

Object type
HMIDevice

Properties
--

Methods
--

SysFct

Description
The "SysFct" object enables access to the system functions of the "Device" object.

Object type
HMIDeviceSysFct

Programming scripts
10.2 WinCC Unified object model

1162 System Manual, 11/2022

Properties
--

Methods
The "SysFct" object has the following methods:
• CreateScreenshot()

Creates a screenshot of the current screen and saves it to a specified location.
• EjectStorageMedium()

Safely ejects the external storage medium.
• GetBrightness()

Returns the value of the screen brightness.
• GetDHCPState()

Returns the DHCP status.
• GetIPV4Address()

Returns the static IPV4 address of a network adapter.
• GetNetworkInterfaceState()

Returns the status of the network adapter.
• GetSmartServerState()

Returns the status of the SmartServers.
• SetBrightness()

Sets the brightness of the screen.
• SetDHCPState()

Enables DHCP for the specified network adapter.
• SetIPV4Address()

Sets the static IPV4 address of a network adapter.
• SetNetworkInterfaceState()

Changes the status of the network adapter.
• SetSmartServerState()

Sets the status of the SmartServers.
• ShowControlPanel()

Shows the Control Panel of the HMI Panel.
• ShowSoftwareVersion()

Displays the software version.
• StartProgram()

Starts an external application.
• StopRuntime()

Ends the Runtime and the current project.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1163

SysFct.CreateScreenshot()

Description
The "CreateScreenshot" method creates a screenshot of the current screen and saves it to a
specified location.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
HMIRuntime.Device.SysFct.CreateScreenshot(StoragePath)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
StoragePath
Type: String
Path for the location of the screenshot

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
SysFct (Page 1162)

SysFct.EjectStorageMedium()

Description
The "EjectStorageMedium" method safely ejects the external storage medium.

Programming scripts
10.2 WinCC Unified object model

1164 System Manual, 11/2022

The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
HMIRuntime.Device.SysFct.EjectStorageMedium(StorageDevice)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
StorageDevice
Type: String, HMIStorageDevice
External storage medium, e.g. SD-X51, USB-X61, USB-X62

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
SysFct (Page 1162)

SysFct.GetBrightness()

Description
The "GetBrightness" method returns the value of the screen brightness.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1165

Syntax
HMIRuntime.Device.SysFct.GetBrightness(Value)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
Value
Type: Object, HMISetValueCommandBase
Specifies the HMI tag to which the current brightness of the HMI device is written.

Note
Define the HMI tag of the "Value" parameter with the "CreateSetTagCommand" system function.
Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
SysFct.CreateSetTagCommand() (Page 1382)
SysFct (Page 1162)

SysFct.GetDHCPState()

Description
The "GetDHCPState" method returns the DHCP status.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful

Programming scripts
10.2 WinCC Unified object model

1166 System Manual, 11/2022

(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
HMIRuntime.Device.SysFct.GetDHCPState(AdapterName,State[,IPV6])
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
AdapterName
Type: String
Name of the network adapter, for example, "X1"

State
Type: Object, HMISetValueCommandBase
Specifies the HMI tag to which the DHCP status is written.

Note
Define the HMI tag of the "State" parameter with the system function
"CreateSetTagCommand". Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

IPV6
Optional, type: Bool
Type of IP address:
• True: IPV6 address
• False or undefined: IPV4 address

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1167

See also
SysFct.CreateSetTagCommand() (Page 1382)
SysFct (Page 1162)

SysFct.GetIPV4Address()

Description
The "GetIPV4Address" returns the static IP address of a network adapter.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
HMIRuntime.Device.SysFct.GetIPV4Address(AdapterName,IPAddress,Subnet
Mask[,DefaultGateway][,DNSServer1][,DNSServer2])
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
AdapterName
Type: String
Name of the network adapter, for example, "X1"

IPAddress
Type: Object, HMISetValueCommandBase
Specifies the HMI tag into which the IPv4 address of the network adapter is written in dotted
decimal notation, e.g. 192.168.133.15.

Note
Define the HMI tag of the "IPAddess" parameter with the "CreateSetTagCommand" system
function. Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

SubnetMask
Type: Object, HMISetValueCommandBase

Programming scripts
10.2 WinCC Unified object model

1168 System Manual, 11/2022

Specifies the HMI tag to which the new subnet mask of the network adapter is written in
dotted decimal notation, e.g. 255.255.255.0.

Note
Define the HMI tag of the "SubnetMask" parameter with the "CreateSetTagCommand" system
function. Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

DefaultGateway
Optional, type: Object, HMISetValueCommandBase
Specifies the HMI tag to which the IP address of the default gateway is written in dotted
decimal notation, e.g. 192.168.133.1.

Note
Define the HMI tag of the "DefaultGateway" parameter with the "CreateSetTagCommand"
system function. Use, for example,
the HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") instruction for the
"MyTag" HMI tag.

DNSServer1
Optional, type: Object, HMISetValueCommandBase
Specifies the HMI tag to which the IP address of the primary DNS server, for example,
192.168.133.1, is written.

Note
Define the HMI tag of the "DNSServer1" parameter with the "CreateSetTagCommand" system
function. Use, for example,
the HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") instruction for the
"MyTag" HMI tag.

DNSServer2
Optional, type: Object, HMISetValueCommandBase
Specifies the HMI tag to which the IP address of the secondary DNS server, for example,
192.168.133.2, is written.

Note
Define the HMI tag of the "DNSServer2" parameter with the "CreateSetTagCommand" system
function. Use, for example,
the HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") instruction for the
"MyTag" HMI tag.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1169

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
SysFct (Page 1162)

SysFct.GetNetworkInterfaceState()

Description
The "GetNetworkInterfaceState" method returns the status of the network adapter.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
HMIRuntime.Device.SysFct.GetNetworkInterfaceState(AdapterName,State)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
AdapterName
Type: String
Name of the network adapter, for example, "X1"

State
Type: Object, HMISetValueCommandBase

Programming scripts
10.2 WinCC Unified object model

1170 System Manual, 11/2022

Specifies the HMI tag to which the status of the network adapter is written.

Note
Define the HMI tag of the "State" parameter with the system function
"CreateSetTagCommand". Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
SysFct.CreateSetTagCommand() (Page 1382)
SysFct (Page 1162)

SysFct.GetSmartServerState()

Description
The "GetSmartServerState" method returns the status of the SmartServer.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
HMIRuntime.Device.SysFct.GetSmartServerState(State)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1171

Parameters
State
Type: Object, HMISetValueCommandBase
Specifies the HMI tag to which the SmartServer status is written.
• True: activated
• False: deactivated

Note
Define the HMI tag of the "State" parameter with the system function
"CreateSetTagCommand". Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
SysFct.CreateSetTagCommand() (Page 1382)

SysFct.SetBrightness()

Description
The "SetBrightness" method specifies the brightness of the screen.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
HMIRuntime.Device.SysFct.SetBrightness(Value)
.then(function() {
 ...
})
.catch(function(errorCode) {

Programming scripts
10.2 WinCC Unified object model

1172 System Manual, 11/2022

 ...
});

Parameters
Value
Type: UInt16
Brightness in percent

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
SysFct (Page 1162)

SysFct.SetDHCPState()

Description
The "SetDHCPState" enables DHCP for the specified network adapter.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
HMIRuntime.Device.SysFct.SetDHCPState(AdapterName,Enabled[,IPV6])
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1173

Parameters
AdapterName
Type: String
Name of the network adapter, for example, "X1"

Enabled
Type: Bool
DHCP mode

IPV6
Optional, type: Bool
Type of IP address:
• True: IPV6 address
• False or undefined: IPV4 address

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
SysFct (Page 1162)

SysFct.SetIPV4Address()

Description
The "SetIPV4Address" method sets the static IP address of a network adapter.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
HMIRuntime.Device.SysFct.SetIPV4Address(AdapterName,IPAddress,Subnet
Mask[,DefaultGateway][,DNSServer1][,DNSServer2])
.then(function() {

Programming scripts
10.2 WinCC Unified object model

1174 System Manual, 11/2022

 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
AdapterName
Type: String
Name of the network adapter, for example, "X1"

IPAddress
Type: Object, HMISetValueCommandBase
IP4 Address of the network adapter in dotted decimal notation, e.g. 192.168.133.15

SubnetMask
Type: Object, HMISetValueCommandBase
New subnet mask of the network adapter in dotted decimal notation, e.g. 255.255.255.0

DefaultGateway
Optional, type: Object, HMISetValueCommandBase
IP address of the default gateway in dotted decimal notation, e.g. 192.168.133.1

DNSServer1
Optional, type: Object, HMISetValueCommandBase
IP address of the primary DNS server, e.g. 192.168.133.1

DNSServer2
Optional, type: Object, HMISetValueCommandBase
IP address of the secondary DNS server, e.g. 192.168.133.2

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
SysFct (Page 1162)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1175

SysFct.SetNetworkInterfaceState()

Description
The "SetNetworkInterfaceState" method sets the status of the network adapter.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
HMIRuntime.Device.SysFct.SetNetworkInterfaceState(AdapterName,Enable
d)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
AdapterName
Type: String
Name of the network adapter, for example, "X1"

Enabled
Type: Bool
Status of the network adapter

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
SysFct (Page 1162)

Programming scripts
10.2 WinCC Unified object model

1176 System Manual, 11/2022

SysFct.SetSmartServerState()

Description
The "SetSmartServerState" method sets the status of the SmartServer.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
HMIRuntime.Device.SysFct.SetSmartServerState(State)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
State
Type: Bool
SmartServer status:
• True: activated
• False: deactivated

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
SysFct (Page 1162)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1177

SysFct.ShowControlPanel()

Description
The "ShowControlPanel" method shows the Control Panel of the HMI Panel.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
HMIRuntime.Device.SysFct.ShowControlPanel(StartPage)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
StartPage
Type: String
Home page of the Control Panel of the Panel.

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
SysFct (Page 1162)

SysFct.ShowSoftwareVersion()

Description
The "ShowSoftwareVersion" method shows the software version of the runtime.

Programming scripts
10.2 WinCC Unified object model

1178 System Manual, 11/2022

The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
HMIRuntime.Device.SysFct.ShowSoftwareVersion()
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
--

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
SysFct (Page 1162)

SysFct.StartProgram()

Description
The "StartProgram" method starts an external application.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
HMIRuntime.Device.SysFct.StartProgram(ProgramName,ProgramParams,Disp
layMode,WaitForProgramToEnd[,Result])
.then(function() {

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1179

 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
ProgramName
Type: String
Name of the application

ProgramParams
Type: String
Parameters of the application

DisplayMode
Type: UInt16
Display mode of the application

WaitForProgramToEnd
Type: Bool
Continues to execute the function list or waits until the application is terminated.

Result
Optional, type: Object, HMISetValueCommandBase
Specifies the HMI tag to which the result of the external application is written.

Note
Define the HMI tag of the "Result" parameter with the system function
"CreateSetTagCommand". Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

Programming scripts
10.2 WinCC Unified object model

1180 System Manual, 11/2022

See also
SysFct.CreateSetTagCommand() (Page 1382)
SysFct (Page 1162)

SysFct.StopRuntime()

Description
The "StopRuntime" method terminates the Runtime and the project that is running.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
HMIRuntime.Device.SysFct.StopRuntime([Mode])
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
Mode
Optional, type: HMIStopRuntimeMode
Specifies the type of termination:
• hmiStopRuntime (0): Ends the Runtime.
• hmiStopRuntimeAndRebootDevice (1): Ends the Runtime and restarts the device.

Return value
Promise
Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
SysFct (Page 1162)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1181

10.2.2.10 FileSystem

Description

The "FileSystem" object ("HMIFileSystem" type) enables access to the file system of the server
on which WinCC Unified is installed.

Object type
HMIFileSystem

Properties
--

Methods
The "FileSystem" object has the following methods:
• AppendFile()

Appends text to the end of a text file in the file system.
• AppendFileBinary()

Appends binary data to the end of a binary file in the file system.
• Browse()

Lists files and directories of a selected directory.
• CreateDirectory()

Creates a new directory in the file system.
• DeleteDirectory()

Deletes a directory with all subdirectories and files contained in the file system.
• DeleteFile()

Deletes a file from the file system.
• GetSpecialFolder()

Returns the path of a special directory.
• IsDirectory()

Checks if the path name is a directory in the file system.

Programming scripts
10.2 WinCC Unified object model

1182 System Manual, 11/2022

• ReadFile()
Reads the contents of a text file from the file system.

• ReadFileBinary()
Reads the contents of a binary file from the file system.

• WriteFile()
Writes text to a new file in the file system.

• WriteFileBinary()
Writes binary data to a new file in the file system.

FileSystem.AppendFile()

Description
The "AppendFile" method appends text to the end of a text file in the file system.
The method executes an asynchronous write operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the
successful (then()) and faulty (catch()) execution of the write operation. Depending on the
result, the corresponding handler of the Promise pattern is called after the execution.

Syntax
HMIRuntime.FileSystem.AppendFile(path,data,encoding)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
path
Type: String
Path of the text file in the file system

data
Type: String
Content that is appended to the text file.

encoding
Type: String
Encoding of text file, e.g. UFT-8 or UCS-2.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1183

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
FileSystem (Page 1182)
FileSystem.AppendFileBinary() (Page 1184)

FileSystem.AppendFileBinary()

Description
The "AppendFileBinary" method appends binary data to the end of a binary file in the file system.
The method executes an asynchronous write operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result,
after the execution, the corresponding handler of the Promise pattern is called.

Syntax
HMIRuntime.FileSystem.AppendFileBinary(path,data)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
path
Type: String
Path of the binary file in the file system

data
Type: Blob
Content that is appended to the binary file.

Programming scripts
10.2 WinCC Unified object model

1184 System Manual, 11/2022

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
FileSystem (Page 1182)
FileSystem.AppendFile() (Page 1183)

FileSystem.Browse()

Description
The "Browse" method lists files and directories of a selected directory.
This method executes an asynchronous read operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the
successful (then()) and faulty (catch()) execution of the read operation. Depending on the
result, the corresponding handler of the Promise pattern is called after the execution.

Note
Browsing directories with many files and subdirectories can lead to system performance
degradation until the result is available. Use the parameter filter to limit the search.

Syntax
HMIRuntime.FileSystem.Browse(path[,filter][,recursive])
.then(function(data) {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
path
Type: String
Path of the directory in the file system

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1185

filter
Optional, type: String
Filters for file names. Does not filter any directory names.
Wildcards are allowed:
• "*": Any sequence of characters (can be empty)
• "?": Exactly one random character.

recursive
Optional, type: Bool
• True: Search all included directories.
• False: Search only the selected directory.

Return value
Promise
Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

String[], as parameter of the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

Example
List all ".txt" files and directories from "/Temp" recursively:

Copy code
let fs = HMIRuntime.FileSystem;
fs.Browse("/Temp", "*.txt", true)
.then(/*handle path names*/);

See also
FileSystem (Page 1182)

FileSystem.CreateDirectory()

Description
The "CreateDirectory" method creates a new directory in the file system.
The method executes an asynchronous write operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the
successful (then()) and faulty (catch()) execution of the write operation. Depending on the
result, the corresponding handler of the Promise pattern is called after the execution.

Programming scripts
10.2 WinCC Unified object model

1186 System Manual, 11/2022

Syntax
HMIRuntime.FileSystem.CreateDirectory(path)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
path
Type: String
Path of the directory in the file system

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
FileSystem (Page 1182)
FileSystem.DeleteDirectory() (Page 1187)

FileSystem.DeleteDirectory()

Description
The "DeleteDirectory" method deletes a directory with all subdirectories and files contained in
the file system.
The method executes an asynchronous write operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the
successful (then()) and faulty (catch()) execution of the write operation. Depending on the
result, the corresponding handler of the Promise pattern is called after the execution.

Syntax
HMIRuntime.FileSystem.DeleteDirectory(path)
.then(function() {
 ...

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1187

})
.catch(function(errorCode) {
 ...
});

Parameters
path
Type: String
Path of the directory in the file system

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
FileSystem (Page 1182)
FileSystem.CreateDirectory() (Page 1186)

FileSystem.DeleteFile()

Description
The "DeleteFile" method deletes a file in the file system.
The method executes an asynchronous write operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the
successful (then()) and faulty (catch()) execution of the write operation. Depending on the
result, the corresponding handler of the Promise pattern is called after the execution.

Syntax
HMIRuntime.FileSystem.DeleteFile(path)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Programming scripts
10.2 WinCC Unified object model

1188 System Manual, 11/2022

Parameters
path
Type: String
Path of the file in the file system

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
FileSystem (Page 1182)

FileSystem.GetSpecialFolder()

Description
The "GetSpecialFolder" method returns the path of a special directory.
The following paths are typical:

Type Path in Windows Path in Linux
Temporary folder C:/WINDOWS/ServiceProfiles/WCCILScs‐

Service /AppData/Local/Temp/
/var/tmp/

Home directory of the user C:/WINDOWS/ServiceProfiles/WCCILScs‐
Service/

/home/industrial/

Syntax
HMIRuntime.FileSystem.GetSpecialFolder(Folder);

Parameters
Folder
Type: Int32, FolderId
Specifies the special directory:
• TempDir (0): Special directory for the temporary files
• HomeDir (1): Special directory for the files of the current user

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1189

Return value
String

Example
Copy code
let tempDir =
HMIRuntime.FileSystem.GetSpecialFolder(HMIRuntime.FileSystem.Enums.FolderId.TempDir);

See also
FileSystem (Page 1182)

FileSystem.IsDirectory()

Description
The "IsDirectory" method checks whether the path name is a directory in the file system.

Note
The returned path names of the FileSystem.Browse method can be passed directly to this
method.

Syntax
HMIRuntime.FileSystem.IsDirectory(path)

Parameters
path
Type: String
Path of the object in the file system

Return value
Bool

Programming scripts
10.2 WinCC Unified object model

1190 System Manual, 11/2022

Example
List all ".txt" files and directories from "/Temp" and check whether they are directories or files:

Copy code
let fs = HMIRuntime.FileSystem;
fs.Browse("/Temp", "*.txt", false)
.then(function (pathnames) {
 for (let path of pathnames) {
 if (fs.IsDirectory(path)) { /*handle directory*/

 } else { /*handle file*/}
 })
.catch(function (ErrorCode) { /*handle error*/});

See also
FileSystem (Page 1182)

FileSystem.ReadFile()

Description
The "ReadFile" method reads the contents of a text file from the file system.
The method executes an asynchronous read operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the
successful (then()) and faulty (catch()) execution of the read operation. Depending on the
result, the corresponding handler of the Promise pattern is called with the content of the file
or the error code as parameter after the execution.

Syntax
HMIRuntime.FileSystem.ReadFile(path,encoding)
.then(function(data) {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
path
Type: String
Path of the text file in the file system

encoding
Type: String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1191

Encoding of text file, e.g. UTF-8 or UCS-2.

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

String as parameter of the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
FileSystem (Page 1182)
FileSystem.ReadFileBinary() (Page 1192)

FileSystem.ReadFileBinary()

Description
The "ReadFileBinary" method reads the contents of a binary file from the file system.
The method executes an asynchronous read operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the
successful (then()) and faulty (catch()) execution of the read operation. Depending on the
result, the corresponding handler of the Promise pattern is called with the content of the file
or the error code as parameter after the execution.

Syntax
HMIRuntime.FileSystem.ReadFileBinary(path)
.then(function(data) {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
path
Type: String
Path of the binary file in the file system

Programming scripts
10.2 WinCC Unified object model

1192 System Manual, 11/2022

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled

Blob as parameter of the "then()" handler
• Promise rejected

ErrorCode as parameter of the handler "catch()".

See also
FileSystem (Page 1182)
FileSystem.ReadFile() (Page 1191)

FileSystem.WriteFile()

Description
The "WriteFile" method writes text to a new file in the file system.
The method executes an asynchronous write operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the
successful (then()) and faulty (catch()) execution of the write operation. Depending on the
result, the corresponding handler of the Promise pattern is called after the execution.

Syntax
HMIRuntime.FileSystem.WriteFile(path,data,encoding)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
path
Type: String
Path of the new text file in the file system

data
Type: String
Content that is written to the new text file.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1193

encoding
Type: String
Encoding of the new text file, e.g. UFT-8 or UCS-2.

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
FileSystem (Page 1182)
FileSystem.WriteFileBinary() (Page 1194)

FileSystem.WriteFileBinary()

Description
The "WriteFileBinary" method writes binary data to a new file in the file system.
The method executes an asynchronous write operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the
successful (then()) and faulty (catch()) execution of the write operation. Depending on the
result, the corresponding handler of the Promise pattern is called after the execution.

Syntax
HMIRuntime.FileSystem.WriteFileBinary(path,data)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
path
Type: String
Path of the new binary file in the file system

Programming scripts
10.2 WinCC Unified object model

1194 System Manual, 11/2022

data
Type: Blob
Content that is written to the new binary file.

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
FileSystem (Page 1182)
FileSystem.WriteFile() (Page 1193)

10.2.2.11 Math

Description

The "Math" object ("HMIMath" type) enables the use of 64-bit data types in the scripting
environment. Because JavaScript does not offer native support for 64-bit integer values,
these values are encapsulated as object for further processing.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1195

Some methods return different data types; the "Tag.Read" method, for example, returns the
data type "Variant". You can check the return values of these methods with the JavaScript
operator "instanceof" for agreement with a 64-bit data type.

Note
64-bit values should only be processed with the methods of the "Int64" and "Uint64" objects.
When you are using the native computing operations of JavaScript (e.g. "+" or "-"), the accuracy
of the results is diminished.

Object type
HMIMath

Properties
The "Math" object has the following properties:
• DatePrecise

Represents a time information in 100 ns resolution.
• Int64

Represents a 64-bit integer value with sign and contains methods for mathematical
operations.

• Int64Base
Checks for a 64-bit data type in combination with the instanceof operator.

• Uint64
Represents a 64-bit integer value without sign and contains methods for mathematical
operations.

Methods
The "Math" object has the following methods:
• RGB()

Converts an RGB(A) specification into the corresponding hexadecimal value.
• RGBWeb()

Converts a hexadecimal RGB(A) specification into the corresponding hexadecimal value.

Math.DatePrecise

Description
The "DatePrecise" property represents a "DatePrecise" object ("HMIDatePrecise" type) for high-
resolution time information with a resolution of 100 ns as a 64-bit integer value.

Programming scripts
10.2 WinCC Unified object model

1196 System Manual, 11/2022

The object contains methods for converting between different time-stamp formats. The
following representations are supported:
• Number of milliseconds since 1970-01-01T00:00:00
• "DOMHighResTimeStamp"

Number of milliseconds since 1970-01-01T00:00:00Z and the fraction for microseconds
(resolution is approx. 5 μs).

• "hrtime"
Array of two numbers [seconds, nanoseconds]
– seconds: Number of seconds since 1970-01-01T00:00:00Z
– nanosecs: Number of nanoseconds that cannot be expressed in seconds (resolution is

limited to 100 nanoseconds). This data type is taken from "node.js" (https://
nodejs.org/api/process.html#process_process_hrtime_time).

• "fileTime"
Number of 100 nanosecond intervals since 1601-01-01T00:00:00Z (corresponds to
Win32-"FILETIME").
This is the internal format and therefore the exact representation in terms of accuracy and
value range.

The object is used, for example, to enable commenting of alarms via scripting.

Use

Note
All internal time information is available as "DatePrecise" objects. To use the native JavaScript
functions for handling data objects, you must first convert the "DatePrecise" object to a
JavaScript "Date" object.

Type
Object, HMIDatePrecise

Access
Read-only

Syntax
HMIRuntime.Math.DatePrecise;

Properties
--

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1197

Methods
The "DatePrecise" object has the following methods:
• GetFiletime()

Returns the time information as FILETIME type.
• GetHrTime()

Returns the time information as high-resolution time (hrtime) as Array in the format
[seconds, nanoseconds].

• GetMicroseconds()
Returns the microseconds of time information in the value range of 0 to 999.

• GetNanoseconds()
Returns the nanoseconds of time information in the value range of 0 to 999.

• GetTime()
Returns the time information as type "DOMHighResTimeStamp".

• Item()
Creates a precise time information as a 64-bit integer value ("DatePrecise" object) and returns
it.

• SetFiletime()
Saves high-resolution time information as the FILETIME type.

• SetHrTime()
Saves high-resolution time information of the type "hrtime".

• SetMicroseconds()
Saves the microseconds of high-resolution time information.

• SetNanoseconds()
Saves the microseconds of high-resolution time information.

• SetTime()
Saves high-resolution time information of the type "DOMHighResTimeStamp".

• toString()
Converts the time information of a "DatePrecise" object into a string.

• valueOf()
Returns the time information saved in a "DatePrecise" object as "DOMHighResTimeStamp".

Example
Checks whether the time information is a "DatePrecise" object:

Copy code
function AlarmTriggerFunction(errorCode, SystemName, alarmResultArray) {
 let nanoSeconds; //check first if RaiseTime is a DatePrecise object
 if (alarmResultArray[0].RaiseTime instanceof HMIRuntime.Math.DatePrecise) {
 nanoSeconds = alarmResultArray[0].RaiseTime.GetNanoseconds();
 }
}

Programming scripts
10.2 WinCC Unified object model

1198 System Manual, 11/2022

Converts a "DatePrecise" object to a JavaScript "Date" object so that the native JavaScript
"getFullYear" function can be used:

Copy code
function AlarmTriggerFunction(errorCode, SystemName, alarmResultArray) {
 //convert to JavaScript-Date object first
 let fullYear = new Date(alarmResultArray[0].RaiseTime).getFullYear();
}

DatePrecise.GetFiletime()

Description
The "GetFiletime" method returns the time information as FILETIME type.
The type corresponds to the format of Win32-"FILETIME": Number of 100 nanosecond
intervals since 1601-01-01T00:00:00Z

Syntax
DatePrecise.GetFiletime()

Parameters
--

Return value
Object, HMIInt64 (Page 1207)

See also
Math.Int64 (Page 1207)
Math.DatePrecise (Page 1196)

DatePrecise.GetHrTime()

Description
The "GetHrTime" method returns the time information as high-resolution date (hrtime) as Array
in the format [seconds, nanoseconds].
Example: 2020-10-04 11:30:22.5454118 is returned as [13238335822, 545411800].

Syntax
DatePrecise.GetHrTime()

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1199

Parameters
--

Return value
Float[], hrtime

See also
Math.DatePrecise (Page 1196)

DatePrecise.GetMicroseconds()

Description
The "GetMicroseconds" method returns the microseconds of time information in the value range
of 0 to 999.

Syntax
DatePrecise.GetMicroseconds()

Parameters
--

Return value
UInt16

See also
Math.DatePrecise (Page 1196)

DatePrecise.GetNanoseconds()

Description
The "GetNanoseconds" method returns the nanoseconds of time information in the value range
of 0 to 999.

Syntax
DatePrecise.GetNanoseconds()

Programming scripts
10.2 WinCC Unified object model

1200 System Manual, 11/2022

Parameters
--

Return value
UInt16

See also
Math.DatePrecise (Page 1196)

DatePrecise.GetTime()

Description
The "GetTime" method returns the time information as type "DOMHighResTimeStamp".
The type corresponds to the following format: Number of milliseconds since
1970-01-01T00:00:00Z and the fraction for microseconds (resolution is approx. 5 μs).

Syntax
DatePrecise.GetTime()

Parameters
--

Return value
Float, DOMHighResTimeStamp

See also
Math.DatePrecise (Page 1196)

DatePrecise.Item()

Description
The "Item" method creates precise time information as a 64-bit integer value ("DatePrecise"
object) and returns this.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1201

Syntax
DatePrecise[.Item]([year,][month,][day,][hours,][seconds,]
[milliseconds,][microseconds,][nanoseconds])

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "DatePrecise" object.

Parameters
year
Optional, type: Variant, HMIInt64 | Variant, HMIDatePrecise | Variant,
DOMHighResTimeStamp | Variant, hrtime
Full year of the time information.

month
Optional, type: UInt8
Number that represents a month. (0 = January … 11 = December)

day
Optional, type: UInt8
Number that represents a day (1 ... 31)

hours
Optional, type: UInt8
Number that represents an hour (0 ... 23)

minutes
Optional, type: UInt8
Number that represents a minute (0 ... 59)

seconds
Optional, type: UInt8
Number that represents a second (0 ... 59)

milliseconds
Optional, type: UInt16
Number that represents a millisecond (0 ... 999)

microseconds
Optional, type: UInt16
Number that represents a microsecond (0 ... 999)

Programming scripts
10.2 WinCC Unified object model

1202 System Manual, 11/2022

nanoseconds
Optional, type: UInt16
Number that represents a nanosecond (0 ... 999)

Return value
Object, HMIDatePrecise (Page 1196)

See also
Math.DatePrecise (Page 1196)

DatePrecise.SetFiletime()

Description
The "SetFiletime" method saves high-resolution time information as type FILETIME.

Syntax
DatePrecise.SetFiletime([fileTime])

Parameters
fileTime
Optional, type: Object, HMIInt64
Time information in the format of Win32 "FILETIME": Number of 100 nanosecond intervals
since 1601-01-01T00:00:00Z

Return value
--

See also
Math.DatePrecise (Page 1196)

DatePrecise.SetHrTime()

Description
The "SetHrTime" method saves high-resolution time information of type "hrtime".

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1203

Syntax
DatePrecise.SetHrTime(hrtime)

Parameters
hrtime
Type: Float[], hrtime
Time information of type "hrtime" as an array in format [seconds, nanoseconds]: for
example, 2020-10-04 11:30:22.5454118 as [13238335822, 545411800]. The type is also
returned by the "GetHrTime" method.

Return value
--

See also
Math.DatePrecise (Page 1196)

DatePrecise.SetMicroseconds()

Description
The "SetMicroseconds" method saves the microseconds of high-resolution time information.

Syntax
DatePrecise.SetMicroseconds(microSeconds)

Parameters
microSeconds
Type: UInt16
Microseconds of time information in the value range of 0 ... 999

Return value
--

See also
Math.DatePrecise (Page 1196)

Programming scripts
10.2 WinCC Unified object model

1204 System Manual, 11/2022

DatePrecise.SetNanoseconds()

Description
The "SetNanoseconds" method saves the nanoseconds of a high-resolution time information.

Syntax
DatePrecise.SetNanoseconds(nanoSeconds)

Parameters
nanoSeconds
Type: UInt16
Nanoseconds of time information in the value range of 0 to 999

Return value
--

See also
Math.DatePrecise (Page 1196)

DatePrecise.SetTime()

Description
The "SetTime" method saves high-resolution time information of type
"DOMHighResTimeStamp".

Syntax
DatePrecise.SetTime(time)

Parameters
time
Type: Float, DOMHighResTimeStamp
Time information: Number of milliseconds since 1970-01-01T00:00:00Z and the fraction for
microseconds (resolution is approx. 5 μs). The type is also returned by the "GetTime" method.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1205

Return value
--

See also
Math.DatePrecise (Page 1196)

DatePrecise.toString()

Description
The "toString" method converts the time information of a "DatePrecise" object into a character
string.
The fixed format of the character string is "yyyy-mm-dd hh:mm:ss.HundredNanoSeconds", for
example, "2020-07-04 11:30:22.5454118".

Syntax
DatePrecise.toString()

Parameters
--

Return value
String

See also
Math.DatePrecise (Page 1196)

DatePrecise.valueOf()

Description
The "valueOf" method returns the time information saved in a "DatePrecise" object as
"DOMHighResTimeStamp".
The value can represent either a specific point in time (in milliseconds since 01/01/1970) or
the difference between two points in time.
The value is specified in the unit milliseconds. The accuracy is up to 5 μs.

Programming scripts
10.2 WinCC Unified object model

1206 System Manual, 11/2022

Syntax
DatePrecise.valueOf()

Parameters
--

Return value
Float, DOMHighResTimeStamp

See also
Math.DatePrecise (Page 1196)

Int64

Description
Int64 (Page 1207)

Math.Int64

Description
The "Int64" property represents a "Int64" object ("HMIInt64" type) for a 64-bit signed integer
value and contains basic arithmetic and bit operations. Because JavaScript does not offer native
support for 64-bit integer values, these values are encapsulated as "Int64" object.

Use

Note
64-bit values should only be processed with the methods of the "Int64" and "Uint64" objects.
When you are using the native computing operations of JavaScript (e.g. "+" or "-"), the accuracy
of the results is diminished.

Type
Object, HMIInt64

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1207

Syntax
HMIRuntime.Math.Int64;

Properties
The "Int64" object has the following properties:
• Hi

Saves and returns the high part (32-bit) of a 64-bit integer value.
• Lo

Saves and returns the low part (32-bit) of a 64-bit integer value.

Methods
The "Int64" object has the following methods:
• Add()

Provides the "Addition" arithmetic operation for 64-bit objects.
• And()

Provides the "AND" bit operation for 64-bit objects.
• Div()

Provides the "Division" arithmetic operation for 64-bit objects.
• Item()

Creates 64-bit integer values ("Int64" and "Uint64" objects) and returns them.
• Mul()

Provides the "Multiplication" arithmetic operation for 64-bit objects.
• Or()

Provides the "OR" bit operation for 64-bit objects.
• ShiftLeft()

Provides a bit shift "SHL" for 64-bit objects.
• ShiftRight()

Provides the bit shift "SHR" for 64-bit objects.
• Sub()

Provides the "Subtraction" arithmetic operation for 64-bit objects.
• toString()

Converts the value of a 64-bit object into a string.
• Xor()

Provides the "XOR" bit operation for 64-bit objects.

Programming scripts
10.2 WinCC Unified object model

1208 System Manual, 11/2022

Example
Creates a new "signed" 64-bit object and writes the value to the tag:

Copy code
function Write_Int64TagValue() {
 //create new Int64-object
 var newTagVal = HMIRuntime.Math.Int64('-6000000000000000000');
 //write to tag
 HMIRuntime.Tags('Tag1').Write(newTagVal);
}

Checks whether the value of a "Tag" object is a signed 64-bit data type, multiplies the value
with -1 and returns the result as 64-bit object:

Copy code
function NegMul_Int64TagValue() {
 var tagVal = HMIRuntime.Tags('Tag1').Read();
 //check if it is *signed* 64-Bit type
 if (tagVal instanceof HMIRuntime.Math.Int64) {
 //if yes, use Mul method with negative number
 return tagVal.Mul(-1);
 }
}

Int64.Hi

Description
The "Hi" property saves and returns the high part (32-bit) of a 64-bit integer value.

Type
UInt32

Access
Read-only

Syntax
Int64.Hi

See also
Math.Int64 (Page 1207)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1209

Int64.Lo

Description
The "Lo" property saves and returns the low part (32-bit) of a 64-bit integer value.

Type
UInt32

Access
Read-only

Syntax
Int64.Lo

See also
Math.Int64 (Page 1207)

Int64.Add()

Description
The "Add" method provides the "Addition" arithmetic operation for 64-bit objects. The value of
the "Int64" objects is increased by the specified value.
This method corresponds to the JavaScript operator "+" for other data types.

Syntax
Int64.Add(value)

Parameters
value
Type: Variant, HMIInt64 | Variant, HMIUint64
Value that is added to the current value of the object.

Return value
Object, HMIInt64 (Page 1207)

Programming scripts
10.2 WinCC Unified object model

1210 System Manual, 11/2022

See also
Math.Int64 (Page 1207)

Int64.And()

Description
The "And" method provides the "AND" bit operation for 64-bit objects. The binary value of the
"Int64" objects is ANDed with the specified value.
This method corresponds to the JavaScript operator "&" for other data types.

Syntax
Int64.And(value)

Parameters
value
Type: Variant, HMIInt64 | Variant, HMIUint64
Bit sequence of the same length with which the binary value of the object is ANDed.

Return value
Object, HMIInt64 (Page 1207)

See also
Math.Int64 (Page 1207)

Int64.Div()

Description
The "Div" method provides the "Division" arithmetic operation for 64-bit objects. The value of the
"Int64" objects is divided by the specified value.
This method corresponds to the JavaScript operator "/" for other data types.

Syntax
Int64.Div(value)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1211

Parameters
value
Type: Variant, HMIInt64 | Variant, HMIUint64
Value by which the current value of the object is divided.

Return value
Object, HMIInt64 (Page 1207)

See also
Math.Int64 (Page 1207)

Int64.Item()

Description
The "Item" method creates 64-bit integer values ("Int64" objects) and returns them.

Syntax
Int64[.Item](value)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "Int64" object.

Parameters
value
Type: Variant
New 64-bit integer value as integer string with base 10.

Return value
Object, HMIInt64 (Page 1207)

See also
Math.Int64 (Page 1207)

Programming scripts
10.2 WinCC Unified object model

1212 System Manual, 11/2022

Int64.Mul()

Description
The "Mul" method provides the "Multiplication" arithmetic operation for 64-bit objects. The
value of the "Int64" objects is multiplied by the specified value.
This method corresponds to the JavaScript operator "*" for other data types.

Syntax
Int64.Mul(value)

Parameters
value
Type: Variant, HMIInt64 | Variant, HMIUint64
Value by which the current value of the object is multiplied.

Return value
Object, HMIInt64 (Page 1207)

See also
Math.Int64 (Page 1207)

Int64.Or()

Description
The "Or" method provides the "OR" bit operation for 64-bit objects. The binary value of the
"Int64" objects is ANDed with the specified value.
This method corresponds to the JavaScript operator "|" for other data types.

Syntax
Int64.Or(value)

Parameters
value
Type: Variant, HMIInt64 | Variant, HMIUint64
Bit sequence of the same length with which the binary value of the object is ORed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1213

Return value
Object, HMIInt64 (Page 1207)

See also
Math.Int64 (Page 1207)

Int64.ShiftLeft()

Description
The "ShiftLeft" method provides a bit shift "SHL" for 64-bit objects. The binary value of the "Int64"
objects is shifted by the specified number of digits.
This method corresponds to the JavaScript operator "<<" for other data types.

Syntax
Int64.ShiftLeft(value)

Parameters
value
Type: UInt8
Number of digits by which the binary value of the object is shifted to the left.

Return value
Object, HMIInt64 (Page 1207)

See also
Math.Int64 (Page 1207)

Int64.ShiftRight()

Description
The "ShiftRight" method provides the bit shift "SHR" for 64-bit objects. The binary value of the
"Int64" objects is shifted by the specified number of digits.
This method corresponds to the JavaScript operator ">>" for other data types.

Programming scripts
10.2 WinCC Unified object model

1214 System Manual, 11/2022

Syntax
Int64.ShiftRight(value)

Parameters
value
Type: UInt8
Number of digits by which the binary value of the object is shifted to the right.

Return value
Object, HMIInt64 (Page 1207)

See also
Math.Int64 (Page 1207)

Int64.Sub()

Description
The "Sub" method provides the "Subtraction" arithmetic operation for 64-bit objects. The value
of the "Int64" objects is decreased by the specified value.
This method corresponds to the JavaScript operator "-" for other data types.

Syntax
Int64.Sub(value)

Parameters
value
Type: Variant, HMIInt64 | Variant, HMIUint64
Value that is subtracted from the current value of the object.

Return value
Object, HMIInt64 (Page 1207)

See also
Math.Int64 (Page 1207)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1215

Int64.toString()

Description
The "toString" method converts the value of a 64-bit object into a character string. For other data
types, you can use the native JavaScript method "toString" with the same name.

Syntax
Int64.toString([base])

Parameters
base
Optional, type: UInt8
Base to which 64-bit value of the object is converted to a character string. Without
parameters, the basis is set to "10".

Return value
String

See also
Math.Int64 (Page 1207)

Int64.Xor()

Description
The "Xor" method provides the "XOR" bit operation for 64-bit objects. The binary value of the
"Int64" objects is ANDed with the specified value.
This method corresponds to the JavaScript operator "^" for other data types.

Syntax
Int64.Xor(value)

Parameters
value
Type: Variant, HMIInt64 | Variant, HMIUint64
Bit sequence of the same length with which the binary value of the object is XORed.

Programming scripts
10.2 WinCC Unified object model

1216 System Manual, 11/2022

Return value
Object, HMIInt64 (Page 1207)

See also
Math.Int64 (Page 1207)

Math.Int64Base

Description
The "Int64Base" property represents an "Int64Base" object ("HMIInt64Base" type). The object is
used exclusively to check for a 64-bit integer data type. Because JavaScript does not offer native
support for 64-bit integer values, these values are encapsulated as "Int64" or "Uint64" objects for
further use.

Use

Note
64-bit values should only be processed with the methods of the "Int64" and "Uint64" objects.
When you are using the native computing operations of JavaScript (e.g. "+" or "-"), the accuracy
of the results is diminished.

The "Int64Base" object returns TRUE for all signed or unsigned 64-bit integer values when
checked with the "instanceof" operator against an object.

Type
Object, HMIInt64Base

Access
Read-only

Syntax
HMIRuntime.Math.Int64Base;

Properties
--

Methods
--

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1217

Example
Checks whether the value of a "Tag" object is a 64-bit data type:

Copy code
function Int64TagValue() {
 var tagVal = HMIRuntime.Tags('Tag1').Read(); //check if it is 64-Bit type (signed or
unsigned)
 if (tagVal instanceof HMIRuntime.Math.Int64Base) {
 ...
 }
}

See also
Math (Page 1195)

Math.Uint64

Description
The "Uint64" property represents a "Uint64" object ("HMIUint64" type) for a 64-bit unsigned
integer value and contains basic arithmetic and bit operations. Because JavaScript does not
offer native support for 64-bit integer values, these values are encapsulated as "Uint64" object.

Use

Note
64-bit values should only be processed with the methods of the "Int64" and "Uint64" objects.
When you are using the native computing operations of JavaScript (e.g. "+" or "-"), the accuracy
of the results is diminished.

Type
Object, HMIUint64

Access
Read-only

Syntax
HMIRuntime.Math.Uint64;

Programming scripts
10.2 WinCC Unified object model

1218 System Manual, 11/2022

Properties
The "Uint64" object has the following properties:
• Hi

Saves and returns the high part (32-bit) of a 64-bit integer value.
• Lo

Saves and returns the low part (32-bit) of a 64-bit integer value.

Methods
The "Int64" object has the following methods:
• Add()

Provides the "Addition" arithmetic operation for 64-bit objects.
• And()

Provides the "AND" bit operation for 64-bit objects.
• Div()

Provides the "Division" arithmetic operation for 64-bit objects.
• Item()

Creates 64-bit integer values ("Int64" and "Uint64" objects) and returns them.
• Mul()

Provides the "Multiplication" arithmetic operation for 64-bit objects.
• Or()

Provides the "OR" bit operation for 64-bit objects.
• ShiftLeft()

Provides a bit shift "SHL" for 64-bit objects.
• ShiftRight()

Provides the bit shift "SHR" for 64-bit objects.
• Sub()

Provides the "Subtraction" arithmetic operation for 64-bit objects.
• toString()

Converts the value of a 64-bit object into a string.
• Xor()

Provides the "XOR" bit operation for 64-bit objects.

Example
Creates a new "unsigned" 64-bit object and writes the value to the tag:

Copy code
function Write_Uint64TagValue() {
 //create new Uint64-object
 var newTagVal = HMIRuntime.Math.Uint64('6000000000000000000');
 //write to tag
 HMIRuntime.Tags('Tag1').Write(newTagVal);
}

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1219

Copy code

Checks whether the value of an object "Tag" is a signed 64-bit data type, adds the value 99
and returns the result as a 64-bit object:

Copy code
function Add_Int64TagValue() {
 var tagVal = HMIRuntime.Tags('Tag1').Read();
 //check if it is 64-Bit type (unsigned)
 if (tagVal instanceof HMIRuntime.Math.Uint64) {
 //if yes, use Add method
 return tagVal.Add(99);
 }
}

Uint64.Hi

Description
The "Hi" property saves and returns the high part (32-bit) of a 64-bit integer value.

Type
UInt32

Access
Read-only

Syntax
Uint64.Hi

See also
Math.Uint64 (Page 1218)

Uint64.Lo

Description
The "Lo" property saves and returns the low part (32-bit) of a 64-bit integer value.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

1220 System Manual, 11/2022

Access
Read-only

Syntax
Uint64.Lo

See also
Math.Uint64 (Page 1218)

Uint64.Add()

Description
The "Add" method provides the "Addition" arithmetic operation for 64-bit objects. The value of
the "Uint64" objects is increased by the specified value.
This method corresponds to the JavaScript operator "+" for other data types.

Syntax
Uint64.Add(value)

Parameters
value
Type: Variant, HMIInt64 | Variant, HMIUint64
Value that is added to the current value of the object.

Return value
Object, HMIUint64 (Page 1218)

See also
Math.Uint64 (Page 1218)

Uint64.And()

Description
The "And" method provides the "AND" bit operation for 64-bit objects. The binary value of the
"Uint64" objects is ANDed with the specified value.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1221

This method corresponds to the JavaScript operator "&" for other data types.

Syntax
Uint64.And(value)

Parameters
value
Type: Variant, HMIInt64 | Variant, HMIUint64
Bit sequence of the same length with which the binary value of the object is ANDed.

Return value
Object, HMIUint64 (Page 1218)

See also
Math.Uint64 (Page 1218)

Uint64.Div()

Description
The "Div" method provides the "Division" arithmetic operation for 64-bit objects. The value of the
"Uint64" objects is divided by the specified value.
This method corresponds to the JavaScript operator "/" for other data types.

Syntax
Uint64.Div(value)

Parameters
value
Type: Variant, HMIInt64 | Variant, HMIUint64
Value by which the current value of the object is divided.

Return value
Object, HMIUint64 (Page 1218)

Programming scripts
10.2 WinCC Unified object model

1222 System Manual, 11/2022

See also
Math.Uint64 (Page 1218)

Uint64.Item()

Description
The "Item" method creates 64-bit integer values ("Uint64" objects) and returns them.

Syntax
Uint64[.Item](value)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "Uint64" object.

Parameters
value
Type: Variant
New 64-bit integer value as integer string with base 10.

Return value
Object, HMIUint64 (Page 1218)

See also
Math.Uint64 (Page 1218)

Uint64.Mul()

Description
The "Mul" method provides the "Multiplication" arithmetic operation for 64-bit objects. The
value of the "Uint64" objects is multiplied by the specified value.
This method corresponds to the JavaScript operator "*" for other data types.

Syntax
Uint64.Mul(value)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1223

Parameters
value
Type: Variant, HMIInt64 | Variant, HMIUint64
Value by which the current value of the object is multiplied.

Return value
Object, HMIUint64 (Page 1218)

See also
Math.Uint64 (Page 1218)

Uint64.Or()

Description
The "Or" method provides the "OR" bit operation for 64-bit objects. The binary value of the
"Uint64" objects is ANDed with the specified value.
This method corresponds to the JavaScript operator "|" for other data types.

Syntax
Uint64.Or(value)

Parameters
value
Type: Variant, HMIInt64 | Variant, HMIUint64
Bit sequence of the same length with which the binary value of the object is ORed.

Return value
Object, HMIUint64 (Page 1218)

See also
Math.Uint64 (Page 1218)

Programming scripts
10.2 WinCC Unified object model

1224 System Manual, 11/2022

Uint64.ShiftLeft()

Description
The "ShiftLeft" method provides a bit shift "SHL" for 64-bit objects. The binary value of the
"Uint64" objects is shifted by the specified number of digits.
This method corresponds to the JavaScript operator "<<" for other data types.

Syntax
Uint64.ShiftLeft(value)

Parameters
value
Type: UInt8
Number of digits by which the binary value of the object is shifted to the left.

Return value
Object, HMIUint64 (Page 1218)

See also
Math.Uint64 (Page 1218)

Uint64.ShiftRight()

Description
The "ShiftRight" method provides the bit shift "SHR" for 64-bit objects. The binary value of the
"Uint64" objects is shifted by the specified number of digits.
This method corresponds to the JavaScript operator ">>" for other data types.

Syntax
Uint64.ShiftRight(value)

Parameters
value
Type: UInt8
Number of digits by which the binary value of the object is shifted to the right.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1225

Return value
Object, HMIUint64 (Page 1218)

See also
Math.Uint64 (Page 1218)

Uint64.Sub()

Description
The "Sub" method provides the "Subtraction" arithmetic operation for 64-bit objects. The value
of the "Uint64" objects is decreased by the specified value.
This method corresponds to the JavaScript operator "-" for other data types.

Syntax
Uint64.Sub(value)

Parameters
value
Type: Variant, HMIInt64 | Variant, HMIUint64
Value that is subtracted from the current value of the object.

Return value
Object, HMIUint64 (Page 1218)

See also
Math.Uint64 (Page 1218)

Uint64.toString()

Description
The "toString" method converts the value of a 64-bit object into a character string. For other data
types, you can use the native JavaScript method "toString" with the same name.

Syntax
Uint64.toString([base])

Programming scripts
10.2 WinCC Unified object model

1226 System Manual, 11/2022

Parameters
base
Optional, type: UInt8
Base to which 64-bit value of the object is converted to a character string. Without
parameters, the basis is set to "10".

Return value
String

See also
Math.Uint64 (Page 1218)

Uint64.Xor()

Description
The "Xor" method provides the "XOR" bit operation for 64-bit objects. The binary value of the
"Uint64" objects is ANDed with the specified value.
This method corresponds to the JavaScript operator "^" for other data types.

Syntax
Uint64.Xor(value)

Parameters
value
Type: Variant, HMIInt64 | Variant, HMIUint64
Bit sequence of the same length with which the binary value of the object is XORed.

Return value
Object, HMIUint64 (Page 1218)

See also
Math.Uint64 (Page 1218)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1227

Math.RGB()

Description
The "RGB" method converts a RGB(A) specification into the corresponding hexadecimal value.

Syntax
HMIRuntime.Math.RGB(R, G, B[, A]);

Parameters
R
Type: UInt32
Red value

G
Type: UInt32
Green value

B
Type: UInt32
Blue value

A
Optional, type: UInt32
Alpha value (density)

Return value
UInt32

See also
Math (Page 1195)

Math.RGBWeb()

Description
The "RGBWeb" method converts a hexadecimal RGB(A) specification into the corresponding
hexadecimal value.

Programming scripts
10.2 WinCC Unified object model

1228 System Manual, 11/2022

Syntax
HMIRuntime.Math.RGBWeb(RGB[, A]);

Parameters
RGB
Type: UInt32
Red-green-blue value in hexadecimal notation

A
Optional, type: UInt32
Alpha value (density) in hexadecimal format

Return value
UInt32

See also
Math (Page 1195)

10.2.2.12 OLEAutomation

Description

The "OLEAutomation" object communicates in Microsoft Windows with objects of other
applications (Automation objects) via script. These applications (Automation server) make
their functionality available to the scripting environment (Automation client) through the
COMinterface.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1229

This gives you the opportunity to integrate WinCC Unified in existing systems, e.g. databases,
Office applications or the file system. You can also integrate your own components. All COM
objects that implement the IDispatch interface and have a Library type are supported.

Note
When the scripting environment is started as a service, as of Microsoft Windows Vista it is no
longer possible to communicate with interactive programs (e.g. Microsoft Excel) by means of a
script. Database access via ADO (ActiveX Data Objects) to a closed application is still possible.

Use

Note
Note that the scripts are always executed on the server side. Therefore all the referenced
applications and files have to be available on the server.

Note
JavaScript does not support properties with parameters. Parameters must be referenced with a
function type syntax for COM objects:
var textcell = o.Cells.Range('A1');

Note
JavaScript does not support functions with return parameters. Return values for COM objects
must be referenced through an object:
var oReturnValue = {
 value: 100
};

AutomationObject.MethodWithOutParam(oReturnValue);
//out parameter set by function will be available as
"oReturnValue.value"

Object type
HMIOLEAutomation

Properties
--

Programming scripts
10.2 WinCC Unified object model

1230 System Manual, 11/2022

Methods
The "OLEAutomation" object has the following methods:
• CreateObject()

Creates a reference to an automation object.
• GetObject()

Returns a reference to an automation object from a file.

Example
A new "testfile.txt" file with the content "this is some data" is created in the file system:

Copy code
function WriteToFile() {
 var fso = HMIRuntime.OLEAutomation.CreateObject('Scripting.FileSystemObject');
 var f = fso.CreateTextFile('testfile.txt');
 f.WriteLine('this is some data');
 f.Close();
}

The "OLEAutomation" object is only available in Microsoft Windows. This is how you check to
determine if the functionality is available:

Copy code
if (undefined != HMIRuntime.OLEAutomation) {
 ...
}

OLEAutomation.CreateObject()

Description
The "CreateObject" method creates a reference to an automation object.

Syntax
HMIRuntime.OLEAutomation.CreateObject(progid);

Parameters
progid
Type: String
The name of the application that provides the object and the type or class of the object to be
created.

Return value
Object

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1231

Example
Create a reference to an automation object:

Copy code
var obj = HMIRuntime.OLEAutomation.CreateObject('Scripting.FileSystemObject');

See also
OLEAutomation (Page 1229)

OLEAutomation.GetObject()

Description
The "GetObject" method returns a reference to an automation object from a file.

Syntax
HMIRuntime.OLEAutomation.GetObject([pathname][, class]);

Parameters
pathname
Optional, type: String
Full path and name of the file containing the object to be retrieved.

Note
If the "pathname" parameter is omitted, the "class" parameter is required.

class
Optional, type: String
Class of the object

Note
If the "class" parameter is omitted, the "pathname" parameter is required.

Return value
Object

Programming scripts
10.2 WinCC Unified object model

1232 System Manual, 11/2022

Example
Return a reference to an automation object from a file:

Copy code
var obj = HMIRuntime.OLEAutomation.GetObject('C:\tmp\data.mdb');

See also
OLEAutomation (Page 1229)

10.2.2.13 ParameterSetTypes

Description

The "ParameterSetTypes" object represents the list of parameter set types.
To reduce the use of the "ParameterSetTypes" object, you can also use the alias
ParameterSetTypes for HMIRuntime.ParameterSetTypes.

Object type
HMIParameterSetTypes

Properties
--

Methods
The "ParameterSetTypes" object has the following methods:
• Item()

Returns a parameter set.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1233

ParameterSetTypes.Item()

Description
The "Item" method returns a parameter set type ("ParameterSetType" object).

Syntax
[HMIRuntime.]ParameterSetTypes[.Item](parameterSetTypeId)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "ParameterSetTypes" object.

Parameters
parameterSetTypeId
Type: String|UInt32
Custom ID or name of the parameter set type

Return value
Object, HMIParameterSetType (Page 1234)

See also
ParameterSetTypes (Page 1233)
ParameterSetType (Page 1234)

ParameterSetType

Description
The "ParameterSetType" object represents a parameter set type.

Object type
HMIParameterSetType

Programming scripts
10.2 WinCC Unified object model

1234 System Manual, 11/2022

Properties
The "ParameterSetType" object has the following properties:
• ParameterSets

Returns the list of the parameter sets ("ParameterSets" objects).

Methods
The "ParameterSetType" object has the following methods:
• Export()

Exports one or all parameter sets ("ParameterSets" objects) of a parameter set type
("ParameterSetType" object).

• GetName()
Returns the name of the parameter set.

• Import()
Imports one or all parameter sets ("ParameterSets" objects) of a parameter set type
("ParameterSetType" object).

See also
ParameterSetTypes (Page 1233)

ParameterSetType.Export()

Description
The "Export" method exports one or all parameter sets ("ParameterSets" objects) of a parameter
set type ("ParameterSetType" object).
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
ParameterSetType.Export(ParameterSetId, FileName, OverWrite,
OutputStatus, GenerateChecksum)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1235

Parameters
ParameterSetId
Type: Variant
Custom ID or name of the parameter set.

FileName
Type: String
Name of the file into which the parameter set is exported.

OverWrite
Type: UInt32, hmiOverwrite
Specifies whether an existing parameter set is overwritten:
• Disabled (0): Do not overwrite parameter set
• Enabled (1): Overwrite parameter set

OutputStatus
Type: Bool
Specifies whether a status message is output after the transfer.
• True: Output status message
• False: Do not output status message

GenerateChecksum
Type: Bool
Specifies whether the checksum is checked during export.
• True: Generate checksum
• False: Do not generate checksum

Return value
Promise
Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler.

See also
ParameterSetType (Page 1234)
ParameterSetType.Import() (Page 1237)

Programming scripts
10.2 WinCC Unified object model

1236 System Manual, 11/2022

ParameterSetType.GetName()

Description
The "GetName" method returns the name of the parameter set type.
This method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
ParameterSetType.GetName(Language)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
Language
Type: UInt32, HMILCID
LCID of the language of the parameter set type.

Return value
Promise
Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected):

ErrorCode as parameter of the "catch()" handler.

See also
ParameterSetType (Page 1234)

ParameterSetType.Import()

Description
The "Import" method imports one or all parameter sets ("ParameterSets" objects) of a parameter
set type ("ParameterSetType" object).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1237

The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
ParameterSetType.Import(FileName, ParameterSetId, OverWrite,
OutputStatus, VerifyChecksum)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
FileName
Type: String
Name of the file from which the parameter set is imported.

ParameterSetId
Type: Variant
Custom ID or name of the parameter set.

OverWrite
Type: UInt32, hmiOverwrite
Specifies whether an existing parameter set is overwritten:
• Disabled (0): Do not overwrite parameter set
• Enabled (1): Overwrite parameter set

OutputStatus
Type: Bool
Specifies whether a status message is output after the transfer.
• True: Output status message
• False: Do not output status message

VerifyChecksum
Type: Bool
Specifies whether the checksum is checked during import.
• True: Check checksum
• False: Do not check checksum

Programming scripts
10.2 WinCC Unified object model

1238 System Manual, 11/2022

Return value
Promise
Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler. This state is only present if no alarms of the
"ParameterSetType" object could be output.

See also
ParameterSetType (Page 1234)
ParameterSetType.Export() (Page 1235)

ParameterSetType.ParameterSets

Description
The "ParameterSets" property represents the list of parameter sets ("ParameterSets" objects).

Type
Object, HMIParameterSets

Access
Read-only

Syntax
ParameterSetType.ParameterSets

Properties
--

Methods
The "ParameterSets" object has the following methods:
• Item()

Returns an object of the type "ParameterSet".

See also
ParameterSetType (Page 1234)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1239

ParameterSets.Item()

Description
The "Item" method returns a parameter set ("ParameterSet" object).

Syntax
ParameterSets[.Item](parameterSetId)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "ParameterSets" object.

Parameters
parameterSetId
Type: String|UInt32
Custom ID or name of the parameter set.

Return value
Object, HMIParameterSet (Page 1240)

See also
ParameterSetType.ParameterSets (Page 1239)
ParameterSet (Page 1240)

ParameterSet

Description
The "ParameterSet" object represents a parameter set.

Object type
HMIParameterSet

Properties
--

Programming scripts
10.2 WinCC Unified object model

1240 System Manual, 11/2022

Methods
The "ParameterSet" object has the following methods:
• GetName()

Returns the name of the parameter set.
• LoadAndWrite()

Loads a parameter set ("ParameterSet" object) from the memory of the HMI device and writes
the parameter set to the PLC.

• ReadAndSave()
Reads a parameter set ("ParameterSet" object) from the PLC and writes the parameter set to
the local memory of the HMI device.

See also
ParameterSetType.ParameterSets (Page 1239)

ParameterSet.GetName()

Description
The "GetName" method returns the name of the parameter set type.
This method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful (then())
and faulty (catch()) execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern is called after the operation.

Syntax
ParameterSet.GetName(Language)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
Language
Type: UInt32, HMILCID
LCID of the language of the parameter set.

Return value
Promise

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1241

Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected):

ErrorCode as parameter of the "catch()" handler.

See also
ParameterSet (Page 1240)

ParameterSet.LoadAndWrite()

Description
The "LoadAndWrite" method loads a parameter set from the HMI device memory and writes the
parameter set to the PLC.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
ParameterSet.LoadAndWrite(OutputStatus)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
OutputStatus
Type: Bool
Specifies whether a status message is output after the transfer.
• True: Output status message
• False: Do not output status message

Return value
Promise

Programming scripts
10.2 WinCC Unified object model

1242 System Manual, 11/2022

Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler.

See also
ParameterSet (Page 1240)
ParameterSet.ReadAndSave() (Page 1243)

ParameterSet.ReadAndSave()

Description
The "ReadAndSave" method reads a parameter set from the PLC and writes the parameter set to
the local memory of the HMI device.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
ParameterSet.ReadAndSave(OutputStatus, OverWrite)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
OutputStatus
Type: Bool
Specifies whether a status message is output after the transfer.
• True: Output status message
• False: Do not output status message

OverWrite
Type: UInt32, hmiOverwrite

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1243

Specifies whether an existing parameter set is overwritten:
• Disabled (0): Do not overwrite parameter set
• Enabled (1): Overwrite parameter set

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected):

ErrorCode as parameter of the "catch()" handler.

See also
ParameterSet (Page 1240)
ParameterSet.LoadAndWrite() (Page 1242)

SysFct

Description
The "SysFct" object enables access to the system functions of the "ParameterSetTypes" object.

Object type
HMIParameterSetTypesSysFct

Properties
--

Methods
The "SysFct" object has the following methods:
• CreateParameterSet()

Creates a parameter set with default values configured in the Engineering System.
• DeleteParameterSet()

Deletes a parameter set.
• ExportParameterSets()

Exports one or all parameter sets of a parameter set type.
• GetParameterSetName()

Returns the name of a parameter set based on the parameter set ID and the language.

Programming scripts
10.2 WinCC Unified object model

1244 System Manual, 11/2022

• GetParameterSetTypeName()
Returns the name of a parameter set type based on the parameter set type ID and the
language.

• ImportParameterSets()
Imports one or all parameter sets of a parameter set type.

• LoadAndWriteParameterSet()
Loads a parameter set from the memory of the HMI and writes the parameter set to the PLC.

• LoadParameterSet()
Loads a parameter set from the local memory of the HMI device and writes the parameter set
to the edit tag.

• ReadAndSaveParameterSet()
Reads a parameter set from the PLC and writes the parameter set to the local memory of the
HMI.

• ReadParameterSet()
Reads a parameter set type from the PLC to the corresponding edit tag.

• RenameParameterSet()
Changes the name of a parameter set.

• SaveParameterSet()
Reads a parameter set from the edit tag and writes the parameter set to the local memory of
the HMI device.

• WriteParameterSet()
Loads a parameter set from the edit tag and writes the parameter set to the PLC.

See also
ParameterSetTypes (Page 1233)

SysFct.CreateParameterSet()

Description
The "CreateParameterSet" method creates a parameter set with default values configured in the
Engineering System.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful (then())
and faulty (catch()) execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern is called after the operation.

Syntax
[HMIRuntime.]ParameterSetTypes.SysFct.CreateParameterSet(ParameterSe
tType[, ParameterSetID][, ParameterSetName], OutputStatus[,
ProcessingStatus])
.then(function() {
 ...
})

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1245

.catch(function(errorCode) {
 ...
})

Parameters
ParameterSetType
Type: Variant
Custom ID or name of the parameter set type

ParameterSetID
Optional, type: UInt32
Custom ID of the parameter set. If not specified, the default ID is assigned.

ParameterSetName
Optional, type: String
Custom name of the parameter set. If not specified, the default name is assigned.

OutputStatus
Type: Bool
Specifies whether a status message is output after the transfer.
• True: Output status message
• False: Do not output status message

ProcessingStatus
Optional, type: Object, HMISetValueCommandBase
HMI tag in which the processing status is stored.
Indicates the execution status of the method:
• 2: Function is being executed.
• 4: Function completed successfully.
• 12: Function was canceled.

Note
Define the HMI tag of the "ProcessingStatus" parameter with the "CreateSetTagCommand"
system function. Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

Return value
Promise

Programming scripts
10.2 WinCC Unified object model

1246 System Manual, 11/2022

Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler.

See also
SysFct (Page 1244)

SysFct.DeleteParameterSet()

Description
The "DeleteParameterSet" method deletes a parameter set.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful (then())
and faulty (catch()) execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern is called after the operation.

Syntax
[HMIRuntime.]ParameterSetTypes.SysFct.DeleteParameterSet(ParameterSe
tType, ParameterSet, OutputStatus[, ProcessingStatus])
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
ParameterSetType
Type: Variant
Custom ID or name of the parameter set type

ParameterSet
Type: Variant
Custom ID or name of the parameter set.

OutputStatus
Type: Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1247

Specifies whether a status message is output after the transfer.
• True: Status message output.
• False: Status message not output.

ProcessingStatus
Optional, type: Object, HMISetValueCommandBase
HMI tag in which the processing status is stored.
Indicates the execution status of the method:
• 2: Function is being executed.
• 4: Function completed successfully.
• 12: Function was canceled.

Note
Define the HMI tag of the "ProcessingStatus" parameter with the "CreateSetTagCommand"
system function. Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

Return value
Promise
Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler.

See also
SysFct (Page 1244)

SysFct.ExportParameterSets()

Description
The "ExportParameterSets" method exports one or all parameter sets ("ParameterSets" objects)
of a parameter set type ("ParameterSetType" object).
This method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful (then())
and faulty (catch()) execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern is called after the operation.

Programming scripts
10.2 WinCC Unified object model

1248 System Manual, 11/2022

Syntax
[HMIRuntime.]ParameterSetTypes.SysFct.ExportParameterSets(ParameterS
etTypeId, ParameterSetId, FileName, OverWrite, OutputStatus[,
ProcessingStatus], GenerateChecksum)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
ParameterSetTypeId
Type: Variant
Custom ID or name of the parameter set type

ParameterSetId
Type: Variant
Custom ID or name of the parameter set.

FileName
Type: String
Name of the file into which the parameter set is exported.

OverWrite
Type: UInt32, hmiOverwrite
Specifies whether an existing parameter set is overwritten:
• Disabled (0): Do not overwrite parameter set.
• Enabled (1): Overwrite parameter set.

OutputStatus
Type: Bool
Specifies whether a status message is output after the transfer.
• True: Status message output.
• False: Status message not output.

ProcessingStatus
Optional, type: Object, HMISetValueCommandBase
HMI tag in which the processing status is stored.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1249

Indicates the execution status of the method:
• 2: Function is being executed.
• 4: Function completed successfully.
• 12: Function was canceled.

Note
Define the HMI tag of the "ProcessingStatus" parameter with the "CreateSetTagCommand"
system function. Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

GenerateChecksum
Type: Bool
Specifies whether the checksum is checked during export.
• True: Generate checksum.
• False: Do not generate checksum.

Return value
Promise
Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler.

See also
SysFct (Page 1244)
SysFct.ImportParameterSets() (Page 1254)
SysFct.CreateSetTagCommand() (Page 1382)

SysFct.GetParameterSetName()

Description
The "GetParameterSetName" method returns the name of a parameter set based on the
parameter set ID and the language.
This method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful (then())

Programming scripts
10.2 WinCC Unified object model

1250 System Manual, 11/2022

and faulty (catch()) execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern is called after the operation.

Syntax
[HMIRuntime.]ParameterSetTypes.SysFct.GetParameterSetName(ParameterS
etTypeId, ParameterSetId, Language, ParameterSetName,
ProcessingStatus)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
ParameterSetTypeId
Type: UInt32
Custom ID of the parameter set type.

ParameterSetId
Type: UInt32
Custom ID of the parameter set.

Language
Type: UInt32, HMILCID
LCID of the language

ParameterSetName
Type: Object, HMISetValueCommandBase
HMI tag in which the name of the parameter set is stored.

Note
Define the HMI tag of the "ParameterSetName" parameter with the "CreateSetTagCommand"
system function. Use, for example,
the HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") instruction for the
"MyTag" HMI tag.

ProcessingStatus
Type: Object, HMISetValueCommandBase
HMI tag in which the processing status is stored.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1251

Indicates the execution status of the method:
• 2: Function is being executed.
• 4: Function completed successfully.
• 12: Function was canceled.

Note
Define the HMI tag of the "ProcessingStatus" parameter with the "CreateSetTagCommand"
system function. Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

Return value
Promise
Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler.

See also
SysFct (Page 1244)

SysFct.GetParameterSetTypeName()

Description
The "GetParameterSetTypeName" method returns the name of a parameter set type based on
the parameter set type ID and the language.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful (then())
and faulty (catch()) execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern is called after the operation.

Syntax
[HMIRuntime.]ParameterSetTypes.SysFct.GetParameterSetTypeName(Parame
terSetTypeId, Language, ParameterSetTypeName, ProcessingStatus)
.then(function() {
 ...
})
.catch(function(errorCode) {

Programming scripts
10.2 WinCC Unified object model

1252 System Manual, 11/2022

 ...
})

Parameters
ParameterSetTypeId
Type: UInt32
Custom ID of the parameter set type.

Language
Type: UInt32, HMILCID
LCID of the language

ParameterSetTypeName
Type: Object, HMISetValueCommandBase
HMI tag in which the name of the parameter set type is stored.

Note
Define the HMI tag of the "ParameterSetTypeName" parameter with the
"CreateSetTagCommand" system function. Use, for example,
the HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") instruction for the
"MyTag" HMI tag.

ProcessingStatus
Type: Object, HMISetValueCommandBase
HMI tag in which the processing status is stored.
Indicates the execution status of the method:
• 2: Function is being executed.
• 4: Function completed successfully.
• 12: Function was canceled.

Note
Define the HMI tag of the "ProcessingStatus" parameter with the "CreateSetTagCommand"
system function. Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

Return value
Promise

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1253

Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler.

See also
SysFct (Page 1244)

SysFct.ImportParameterSets()

Description
The "ImportParameterSets" method imports one or all parameter sets ("ParameterSets" objects)
of a parameter set type ("ParameterSetType" object).
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful (then())
and faulty (catch()) execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern is called after the operation.

Syntax
[HMIRuntime.]ParameterSetTypes.SysFct.ImportParameterSets(FileName,
ParameterSetId, OverWrite, OutputStatus[, ProcessingStatus],
VerifyChecksum)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
FileName
Type: String
Name of the file from which the parameter set is imported.

ParameterSetId
Type: Variant
Custom ID or name of the parameter set.

OverWrite
Type: UInt32, hmiOverwrite

Programming scripts
10.2 WinCC Unified object model

1254 System Manual, 11/2022

Specifies whether an existing parameter set is overwritten:
• Disabled (0): Do not overwrite parameter set.
• Enabled (1): Overwrite parameter set.

OutputStatus
Type: Bool
Specifies whether a status message is output after the transfer.
• True: Status message output.
• False: Status message not output.

ProcessingStatus
Optional, type: Object, HMISetValueCommandBase
HMI tag in which the processing status is stored.
Indicates the execution status of the method:
• 2: Function is being executed.
• 4: Function completed successfully.
• 12: Function was canceled.

Note
Define the HMI tag of the "ProcessingStatus" parameter with the "CreateSetTagCommand"
system function. Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

VerifyChecksum
Type: Bool
Specifies whether the checksum is checked during import.
• True: Check checksum.
• False: Do not check checksum.

Return value
Promise
Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1255

See also
SysFct (Page 1244)
SysFct.ExportParameterSets() (Page 1248)
SysFct.CreateSetTagCommand() (Page 1382)

SysFct.LoadAndWriteParameterSet()

Description
The "LoadAndWriteParameterSet" method loads a parameter set from the HMI device memory
and writes the parameter set to the PLC.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful (then())
and faulty (catch()) execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern is called after the operation.

Syntax
[HMIRuntime.]ParameterSetTypes.SysFct.LoadAndWriteParameterSets(Para
meterSetTypeId, ParameterSetId, OutputStatus[, ProcessingStatus])
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
ParameterSetTypeId
Type: Variant
Custom ID or name of the parameter set.

ParameterSetId
Type: Variant
Custom ID or name of the parameter set.

OutputStatus
Type: Bool
Specifies whether a status message is output after the transfer.
• True: Status message output.
• False: Status message not output.

Programming scripts
10.2 WinCC Unified object model

1256 System Manual, 11/2022

ProcessingStatus
Optional, type: Object, HMISetValueCommandBase
HMI tag in which the processing status is stored.
Indicates the execution status of the method:
• 2: Function is being executed.
• 4: Function completed successfully.
• 12: Function was canceled.

Note
Define the HMI tag of the "ProcessingStatus" parameter with the "CreateSetTagCommand"
system function. Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

Return value
Promise
Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler.

See also
SysFct (Page 1244)
SysFct.ReadAndSaveParameterSet() (Page 1259)
SysFct.CreateSetTagCommand() (Page 1382)

SysFct.LoadParameterSet()

Description
The "LoadParameterSet" method loads a parameter set from the local memory of the HMI device
and writes the parameter set to the edit tag.
This method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful (then())
and faulty (catch()) execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern is called after the operation.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1257

Syntax
[HMIRuntime.]ParameterSetTypes.SysFct.LoadParameterSet(ParameterSetT
ype, ParameterSet, OutputStatus[, ProcessingStatus])
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
ParameterSetType
Type: Variant
Custom ID or name of the parameter set type

ParameterSet
Type: Variant
Custom ID or name of the parameter set.

OutputStatus
Type: Bool
Specifies whether a status message is output after the transfer.
• True: Status message output.
• False: Status message not output.

ProcessingStatus
Optional, type: Object, HMISetValueCommandBase
HMI tag in which the processing status is stored.
Indicates the execution status of the method:
• 2: Function is being executed.
• 4: Function completed successfully.
• 12: Function was canceled.

Note
Define the HMI tag of the "ProcessingStatus" parameter with the "CreateSetTagCommand"
system function. Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

Programming scripts
10.2 WinCC Unified object model

1258 System Manual, 11/2022

Return value
Promise
Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler.

See also
SysFct (Page 1244)

SysFct.ReadAndSaveParameterSet()

Description
The "ReadAndSaveParameterSet" method reads a parameter set from the PLC and writes the
parameter set to the local memory of the HMI device.
This method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful (then())
and faulty (catch()) execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern is called after the operation.

Syntax
[HMIRuntime.]ParameterSetTypes.SysFct.ReadAndSaveParameterSet(Parame
terSetTypeId, ParameterSetId, OverWrite, OutputStatus[,
ProcessingStatus])
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
ParameterSetTypeId
Type: Variant
Custom ID or name of the parameter set type

ParameterSetId
Type: Variant
Custom ID or name of the parameter set.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1259

OverWrite
Type: UInt32, hmiOverwrite
Specifies whether an existing parameter set is overwritten:
• Disabled (0): Do not overwrite parameter set.
• Enabled (1): Overwrite parameter set.

OutputStatus
Type: Bool
Specifies whether a status message is output after the transfer.
• True: Status message output.
• False: Status message not output.

ProcessingStatus
Optional, type: Object, HMISetValueCommandBase
HMI tag in which the processing status is stored.
Indicates the execution status of the method:
• 2: Function is being executed.
• 4: Function completed successfully.
• 12: Function was canceled.

Note
Define the HMI tag of the "ProcessingStatus" parameter with the "CreateSetTagCommand"
system function. Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

Return value
Promise
Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler.

See also
SysFct (Page 1244)
SysFct.LoadAndWriteParameterSet() (Page 1256)
SysFct.CreateSetTagCommand() (Page 1382)

Programming scripts
10.2 WinCC Unified object model

1260 System Manual, 11/2022

SysFct.ReadParameterSet()

Description
The "ReadParameterSet" method reads a parameter set from the PLC to the corresponding edit
tag.
This method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the read operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
[HMIRuntime.]ParameterSetTypes.SysFct.ReadParameterSet(ParameterSetT
ype, OutputStatus[, ProcessingStatus])
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
ParameterSetType
Type: Variant
Custom ID or name of the parameter set type

OutputStatus
Type: Bool
Specifies whether a status message is output after the transfer:
• True: Status message output.
• False: Status message not output.

ProcessingStatus
Optional, type: Object, HMISetValueCommandBase
HMI tag in which the processing status is stored.
Indicates the execution status of the method:
• 2: Function is being executed.
• 4: Function completed successfully.
• 12: Function was canceled.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1261

Note
Define the HMI tag of the "ProcessingStatus" parameter with the "CreateSetTagCommand"
system function. Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

Return value
Promise
Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler.

See also
SysFct (Page 1244)

SysFct.RenameParameterSet()

Description
The "RenameParameterSet" method changes the name of a parameter set.
This method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
[HMIRuntime.]ParameterSetTypes.SysFct.RenameParameterSet(ParameterSe
tType, ParameterSet, NewParameterSetName, OutputStatus[,
ProcessingStatus])
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Programming scripts
10.2 WinCC Unified object model

1262 System Manual, 11/2022

Parameters
ParameterSetType
Type: Variant
Custom ID or name of the parameter set type

ParameterSet
Type: Variant
Custom ID or name of the parameter set.

NewParameterSetName
Type: String
New user-defined name of the parameter set.

OutputStatus
Type: Bool
Specifies whether a status message is output after the transfer.
• True: Status message output.
• False: Status message not output.

ProcessingStatus
Optional, type: Object, HMISetValueCommandBase
HMI tag in which the processing status is stored.
Indicates the execution status of the method:
• 2: Function is being executed.
• 4: Function completed successfully.
• 12: Function was canceled.

Note
Define the HMI tag of the "ProcessingStatus" parameter with the "CreateSetTagCommand"
system function. Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

Return value
Promise

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1263

Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler.

See also
SysFct (Page 1244)

SysFct.SaveParameterSet()

Description
The "SaveParameterSet" method reads a parameter set from the edit tag and writes the
parameter set to the local memory of the HMI device.
This method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
[HMIRuntime.]ParameterSetTypes.SysFct.SaveParameterSet(ParameterSetT
ype, ParameterSet, OverWrite, OutputStatus[, ProcessingStatus])
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
ParameterSetType
Type: Variant
Custom ID or name of the parameter set type

ParameterSet
Type: Variant
Custom ID or name of the parameter set.

OverWrite
Type: Bool

Programming scripts
10.2 WinCC Unified object model

1264 System Manual, 11/2022

Specifies whether an existing parameter set is overwritten:
• True: Overwrite parameter set.
• False: Do not overwrite parameter set.

OutputStatus
Type: Bool
Specifies whether a status message is output after the transfer.
• True: Status message output.
• False: Status message not output.

ProcessingStatus
Optional, type: Object, HMISetValueCommandBase
HMI tag in which the processing status is stored.
Indicates the execution status of the method:
• 2: Function is being executed.
• 4: Function completed successfully.
• 12: Function was canceled.

Note
Define the HMI tag of the "ProcessingStatus" parameter with the "CreateSetTagCommand"
system function. Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

Return value
Promise
Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler.

See also
SysFct (Page 1244)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1265

SysFct.WriteParameterSet()

Description
The "WriteParameterSet" method loads a parameter set from the edit tag and writes the
parameter set to the PLC.
This method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
[HMIRuntime.]ParameterSetTypes.SysFct.WriteParameterSet(ParameterSet
Type, OutputStatus[, ProcessingStatus])
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
ParameterSetType
Type: Variant
Custom ID or name of the parameter set type

OutputStatus
Type: Bool
Specifies whether a status message is output after the transfer:
• True: Status message output.
• False: Status message not output.

ProcessingStatus
Optional, type: Object, HMISetValueCommandBase
HMI tag in which the processing status is stored.
Indicates the execution status of the method:
• 2: Function is being executed.
• 4: Function completed successfully.
• 12: Function was canceled.

Programming scripts
10.2 WinCC Unified object model

1266 System Manual, 11/2022

Note
Define the HMI tag of the "ProcessingStatus" parameter with the "CreateSetTagCommand"
system function. Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

Return value
Promise
Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler.

See also
SysFct (Page 1244)

10.2.2.14 PlantModel

Description

The "PlantModel" object ("HMIPlantModel" type) represents the common plant model of
the graphical runtime system. You reference all object instances ("PlantObject" objects) and
properties of the Common Plant Models by means of the "PlantModel" object.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1267

These object instances represent specific components or parts of the plant. This means that
you have access to all the properties and methods of these objects.

Note
The Common Plant Model can map plant hierarchies in runtime. Each hierarchy consists of
object instances which represent a component or a function part of the plant.
Each object instance is assigned to a hierarchy node of a plant hierarchy. Through this
assignment the object instance has a unique position and address in a hierarchy.
The address in the hierarchy is represented with a path. This hierarchy path is used to reference
specific objects in the properties and methods of the CommonPlantModels.

Object type
HMIPlantModel

Properties
The "PlantModel" object has the following properties:
• LastError

Returns an error code for the last faulty read or write operation.

Methods
The "PlantModel" object has the following methods:
• GetPlantObject()

Returns an object instance.
• GetPlantObjectsByExpression()

Returns an array of object instances.
• GetPlantObjectsByPropertyNames()

Returns an array of object instances.
• GetPlantObjectsByType()

Returns an array of object instances.

PlantModel.LastError

Description
The "LastError" property returns an error code for the last faulty read or write operation.

Note
When the property is read out via a set, the error code of the last method call is returned.

Programming scripts
10.2 WinCC Unified object model

1268 System Manual, 11/2022

Type
ErrorCode

Access
Read-only

Syntax
[HMIRuntime.]PlantModel.LastError;

Note
When the error occurs when accessing via a set, evaluate the "LastError" property for all objects
of the set.

See also
PlantModel (Page 1267)

PlantModel.GetPlantObject()

Description
The "GetPlantObject" method returns an object instance.

Syntax
[HMIRuntime.]PlantModel.GetPlantObject(plantObject);

Parameters
plantObject
Type: String, HMIPlantObject
Name of the plant object or its position in the plant hierarchy.

Return value
Object, HMIPlantObject (Page 1273)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1269

Example
An object instance is returned via view and path:

Copy code
var plantObject1 = PlantModel.GetPlantObject('.TechnologicalView::P1/S1/L2/LeftPump');

An object instance is returned via the name of the "HMIPlantObject" object:

Copy code
var plantObject2 = PlantModel.GetPlantObject('U4711');

See also
PlantModel (Page 1267)
PlantObject (Page 1273)

PlantModel.GetPlantObjectsByExpression()

Description
The "GetPlantObjectsByExpression" method returns an array of object instances.

Syntax
[HMIRuntime.]PlantModel.GetPlantObjectsByExpression(PropertyNames,Pl
antObjectType,ExpressionFilter[,ViewPath]);

Parameters
PropertyNames
Type: String, HMIPlantObjectProperty | String[], HMIPlantObjectProperty
List of the names of the properties

PlantObjectType
Type: String, HMIPlantObjectType
Name of the plant object type

ExpressionFilter
Type: String
Filter for the values of the properties.

ViewPath
Optional, type: String, HMIViewPath
Position of the plant object in the plant hierarchy.

Programming scripts
10.2 WinCC Unified object model

1270 System Manual, 11/2022

Return value
Object[], HMIPlantObject[] (Page 1273)

Example
Returns an array of object instances:

Copy code
var plantObjectArr = PlantModel.GetPlantObjectsByExpression("Temperature", "Motor",
"Temperature>100");

See also
PlantModel (Page 1267)
PlantObject (Page 1273)
PlantObjectProperty (Page 1295)

PlantModel.GetPlantObjectsByPropertyNames()

Description
The "GetPlantObjectsByPropertyNames" method returns an array of object instances.

Syntax
[HMIRuntime.]PlantModel.GetPlantObjectsByPropertyNames(PropertyName
s[,ViewPath]);

Parameters
PropertyNames
Type: String, HMIPlantObjectProperty | String[], HMIPlantObjectProperty
List of the names of the properties

ViewPath
Optional, type: String, HMIViewPath
Position of the plant object in the plant hierarchy.

Return value
Object[], HMIPlantObject[] (Page 1273)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1271

Example
Returns an array of object instances via their property names:

Copy code
var plantObjectArr = PlantModel.GetPlantObjects(["PPP", "ABC"]);

See also
PlantModel (Page 1267)
PlantObject (Page 1273)
PlantObjectProperty (Page 1295)

PlantModel.GetPlantObjectsByType()

Description
The "GetPlantObjectsByType" method returns an Array of object instances.

Syntax
[HMIRuntime.]PlantModel.GetPlantObjectsByType(PlantObjectType[,ViewP
ath]);

Parameters
PlantObjectType
Type: String, HMIPlantObjectType
Name of the plant object type

ViewPath
Optional, type: String, HMIViewPath
Position of the plant object in the plant hierarchy.

Return value
Object[], HMIPlantObject[] (Page 1273)

Example
Returns an Array of object instances via the plant object type:

Copy code
var plantObjectArr = PlantModel.GetPlantObjectsByType("Motor");

Programming scripts
10.2 WinCC Unified object model

1272 System Manual, 11/2022

See also
PlantModel (Page 1267)
PlantObject (Page 1273)

PlantObject

Description
The "PlantObject" object ("HMIPlantObject" object) represents the object instances of the
Common Plant Model.
The "PlantObject" object gives you access to all object properties or adjacent object instances
in the plant hierarchy.

Note
The Common Plant Model can map any number of plant hierarchies in runtime. Each hierarchy
consists of object instances which represent a component or a function part of the plant.
Each object instance is assigned to a hierarchy node in a plant hierarchy. Through this
assignment the object instance has a unique position and address in a hierarchy.
The address in the hierarchy is represented with a path. This hierarchy path is used to reference
specific objects in the properties and methods of the CommonPlantModels.

Object type
HMIPlantObject

Properties
The "PlantObject" object has the following properties:
• Children

Returns all child object instances of an object instance in the hierarchy.
• CurrentPlantView

Returns the current view of an object instance.
• InstanceScreens

Returns the list of HMI screens that are assigned to an object instance.
• LastError

Returns an error code for the last faulty read or write operation.
• Name

Returns the object name.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1273

• Parent
Returns the higher-level object instance (Parent) that contains the current object instance as
child.

• PlantViewPaths
Returns the path of an object instance in a view.

Methods
The "PlantObject" object has the following methods:
• CreateAlarmSubscription()

Creates a "PlantObjectAlarmSubscription" object for the object instance.
• GetActiveAlarms()

Returns all active alarms of the object instance at the time of the call.
• GetChild()

Returns the child object instance ("PlantObject" object) of an object instance.
• GetProperties()

Returns the properties of object instances ("PlantObject" objects) as
"PlantObjectPropertySet" list.

PlantObject.Children

Description
The "Children" property returns all child object instances of an object instance in the hierarchy.

Type
Object, HMIPlantObject[] (Page 1273)

Access
Read-only

Syntax
PlantObject.Children

See also
PlantObject (Page 1273)

Programming scripts
10.2 WinCC Unified object model

1274 System Manual, 11/2022

PlantObject

Description
PlantObject (Page 1273)

PlantObject.CurrentPlantView

Description
The "CurrentPlantView" property returns the current view of an object instance. The property
also specifies the view for referencing an object instance.

Type
String

Access
Read-write

Syntax
PlantObject.CurrentPlantView

Example
References the "Maintenance" view via the object path:

Copy code
let plantObject = PlantModel.GetPlantObject(".Maintenance::Plant1/Line3");
let maintChildren = plantObject.Children;

References the "Technological" view via the "CurrentPlantView" property:

Copy code
plantObject.CurrentPlantView = "Technological";
let techChildren = plantObject.Children;

See also
PlantObject (Page 1273)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1275

PlantObject.InstanceScreens

Description
The "InstanceScreens" property returns the list of HMI screens assigned to an object instance.

Type
String[], HmiScreen[]

Access
Read-only

Syntax
PlantObject.InstanceScreens

See also
PlantObject (Page 1273)

PlantObject.LastError

Description
The "LastError" property returns an error code for the last faulty read or write operation.

Type
ErrorCode

Access
Read-only

Syntax
PlantObject.LastError

See also
PlantObject (Page 1273)

Programming scripts
10.2 WinCC Unified object model

1276 System Manual, 11/2022

PlantObject.Name

Description
The "Name" property returns the name of an object instance.

Type
String, HMIPlantObject

Access
Read-only

Syntax
PlantObject.Name

See also
PlantObject (Page 1273)

PlantObject.Parent

Description
The "Parent" property returns the higher-level object instance (Parent) that contains the current
object instance as child.

Type
Object, HMIPlantObject (Page 1273)

Access
Read-only

Syntax
PlantObject.Parent

See also
PlantObject (Page 1273)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1277

PlantObject

Description
PlantObject (Page 1273)

PlantObject.PlantViewPaths

Description
The "PlantViewPaths" property returns the path of an object instance in a view.

Type
StringStringMap

Access
Read-only

Syntax
PlantObject.PlantViewPaths

Example
Returns the path of the object in the current view:

Copy code
let pathCurrent = plantObject.PlantViewPaths[plantObject.CurrentPlantView];

Returns the path of the object in the "Maintenance" view:

Copy code
let pathMaint = plantObject.PlantViewPaths["Maintenance"];

See also
PlantObject (Page 1273)

PlantObject.GetActiveAlarms()

Description
The "GetActiveAlarms" method returns all active alarms of the object instance at the time of the
call.

Programming scripts
10.2 WinCC Unified object model

1278 System Manual, 11/2022

The method executes an asynchronous read operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the
successful ("then()") and faulty ("catch()") execution of the read operation. Depending on
the result, once execution is complete the corresponding handler of the Promise pattern is
called with the "AlarmResult" objects or the error code as parameter.

Syntax
PlantObject.GetActiveAlarms(Language[,IncludeChildren][,Filter])
.then(function(alarmResultArray) {
 ...
});
.catch(function(errorCode) {
 ...
})

Parameters
Language
Type: UInt32, HMILCID
Language for all texts of an alarm and the filter

IncludeChildren
Optional, type: Bool
Specifies whether the alarms of all child object instances are included.

Filter
Optional, type: String, HMIAlarmFilterString
SQL-type string for filtering

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

Object, HMIAlarmResult[] (Page 1077) as parameter of the handler "then()".
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler. This state is only present if no alarms of the
"PlantObject" object could be output.

Example
Read out all active alarms of the "PlantObject" object instance:

Copy code
var promise = PlantObject.GetActiveAlarms(1033);

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1279

See also
PlantObject (Page 1273)
AlarmResult (Page 1077)

PlantObject.GetChild()

Description
The "GetChild" method returns the child object instance ("PlantObject" object) of an object
instance.

Syntax
PlantObject.GetChild(ChildName)

Parameters
ChildName
Type: String
Name of the child object instance in the view

Return
Object, HMIPlantObject (Page 1273)

See also
PlantObject (Page 1273)

PlantObject.GetProperties()

Description
The "GetProperties" method returns the properties of object instances ("PlantObject" objects) as
"PlantObjectPropertySet" list.

Syntax
PlantObject.GetProperties([propertyName])

Programming scripts
10.2 WinCC Unified object model

1280 System Manual, 11/2022

Parameters
propertyName
Optional, type: String | String[]
One or more properties of an object instance

Return
Object, HMIPlantObjectPropertySet (Page 1288)

Example
Returns the "Speed" and "Temperature" properties of an object instance.

Copy code
var plantObjectPropertySet = plantObject.GetProperties(['Speed', 'Temperature']);

See also
PlantObjectPropertySet (Page 1288)
PlantObject (Page 1273)

PlantObject.CreateAlarmSubscription()

Description
The "CreateAlarmSubscription" method creates a "PlantObjectAlarmSubscription" object for the
object instance. With the returned object "PlantObjectAlarmSubscription" you specify the
grouping of active alarms.

Syntax
PlantObject.CreateAlarmSubscription()

Parameters
--

Return value
Object, HMIPlantObjectAlarmSubscription (Page 1282)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1281

Example
Creates an object "PlantObjectAlarmSubscription" for the composition of active alarms of the
object instance "po":

Copy code
var po = PlantModel.GetPlantObject(".hierarchy::Node1\\Node2");
var alarmsubscription = po.CreateAlarmSubscription();

See also
PlantObjectAlarmSubscription (Page 1282)
PlantObject (Page 1273)

PlantObjectAlarmSubscription

Description
The "PlantObjectAlarmSubscription" object ("HMIPlantObjectAlarmSubscription" type) enables
access to active alarms from all object instances of the Common Plant Models.
The object represents a selection of active alarms. The object is initialized via the
"CreateAlarmSubscription" method of the "PlantObject" object. The active alarms are then
grouped and called according to the properties of the "PlantObjectAlarmSubscription" object.
Finally, notification is given of the changes to the alarm mapping.

Object type
HMIPlantObjectAlarmSubscription

Properties
The "PlantObjectAlarmSubscription" object has the following properties:
• Filter

Defines a string for filtering active alarms.
• IncludeChildren

Specifies whether all alarms of child object instances are included.
• Language

Specifies the current runtime language for all texts of a message and the filter.
• OnAlarm

Specifies the name of the "OnAlarm" Callback function for the monitoring of active alarms.
• SystemNames

Specifies the name of the runtime system for the grouping of active alarms.

Programming scripts
10.2 WinCC Unified object model

1282 System Manual, 11/2022

Methods
The "PlantObjectAlarmSubscription" object has the following methods:
• Start()

Activates the monitoring of defined alarms of the "PlantObjectAlarmSubscription" object.
• Stop()

Cancels monitoring of defined alarms of the "PlantObjectAlarmSubscription" object.

PlantObjectAlarmSubscription.Filter

Description
The "Filter" property specifies a string for filtering active alarms.
The syntax of the filter string corresponds to the WHERE clause of an SQL command.

Type
String, HMIAlarmFilterString

Access
Read-write

Syntax
PlantObjectAlarmSubscription.Filter

See also
PlantObjectAlarmSubscription (Page 1282)
AlarmSubscription.Filter (Page 1068)

PlantObjectAlarmSubscription.IncludeChildren

Description
The "IncludeChildren" property specifies whether all alarms of child object instances are
included.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1283

Access
Read-write

Syntax
PlantObjectAlarmSubscription.IncludeChildren

See also
PlantObjectAlarmSubscription (Page 1282)

PlantObjectAlarmSubscription.Language

Description
The "Language" specifies the current runtime language for all texts of a message and the filter.

Type
UInt32, HMILCID

Access
Read-write

Syntax
PlantObjectAlarmSubscription.Language

See also
PlantObjectAlarmSubscription (Page 1282)

PlantObjectAlarmSubscription.OnAlarm

Description
The "OnAlarm" property specifies the name of the "OnAlarm" Callback function for the
monitoring of active alarms.
The properties of the active alarms are passed to the Callback function "OnAlarm" as object
"AlarmResultArray".
Required prototype of the Callback function:
OnAlarm(errorCode,systemName,alarmResultArray)

Programming scripts
10.2 WinCC Unified object model

1284 System Manual, 11/2022

Type
Function, HMIOnAlarmCB

Access
Write-only

Syntax
PlantObjectAlarmSubscription.OnAlarm

Parameters
Parameters of the callback function:

errorCode
Type: ErrorCode
Error code of the active alarm

systemName
Type: String
Name of the runtime system

alarmResultArray
Type: Object, HMIAlarmResult[] (Page 1077)
Array with "AlarmResult" objects of the active alarm

See also
PlantObjectAlarmSubscription (Page 1282)
AlarmResult (Page 1077)

PlantObjectAlarmSubscription.SystemNames

Description
The "SystemNames" property specifies the name of the runtime system for compiling active
alarms.

Type
String[], HMISystem

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1285

Access
Read-write

Syntax
PlantObjectAlarmSubscription.SystemNames

See also
PlantObjectAlarmSubscription (Page 1282)

PlantObjectAlarmSubscription.Start()

Description
The "Start" method activates the monitoring of defined alarms of the
"PlantObjectAlarmSubscription" object.

Syntax
PlantObjectAlarmSubscription.Start()

Parameters
--

Return value
ErrorCode

Programming scripts
10.2 WinCC Unified object model

1286 System Manual, 11/2022

Example
Start monitoring of alarms for object instance "po" and output number of alarms:

Copy code
var po = PlantModel.GetPlantObject(".hierarchy::Node1\\Node2");
var alarmsubscription = po.CreateAlarmSubscription(); // returns
HMIPlantObjectAlarmSubscription
alarmsubscription.Language = 1033;
alarmsubscription.OnAlarm = function(ErrorCode, SystemName, ResultSet) {

 for (let index in ResultSet) {
 HMIRuntime.Trace('Alarm Name_' + (index + 1) + ' = ' + ResultSet[index].Name);
 HMIRuntime.Trace(' Alarm State_' + (index + 1) + '= ' + ResultSet[index].State);
 HMIRuntime.Trace(' Alarm Area_' + (index + 1) + '= ' + ResultSet[index].Area);
 }
};
alarmsubscription.Filter = 'AlarmClassName=\'Alarm\'';
alarmsubscription.IncludeChildren = true;
alarmsubscription.Start();

See also
PlantObjectAlarmSubscription (Page 1282)

PlantObjectAlarmSubscription.Stop()

Description
The "Stop" method cancels the monitoring of defined alarms of the
"PlantObjectAlarmSubscription" object.

Syntax
PlantObjectAlarmSubscription.Stop()

Parameters
--

Return value
ErrorCode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1287

Example
Stop monitoring of alarms:

Copy code
var po = PlantModel.GetPlantObject(".hierarchy::Node1\\Node2");

var alarmsubscription = po.CreateAlarmSubscription(); // returns
HMIPlantObjectAlarmSubscription
alarmsubscription.Language = 1033;
alarmsubscription.OnAlarm = function(ErrorCode, SystemName, ResultSet) {
 for (let index in ResultSet) {
 HMIRuntime.Trace('Alarm Name_' + (index + 1) + ' = ' + ResultSet[index].Name);
 HMIRuntime.Trace(' Alarm State_' + (index + 1) + '= ' + ResultSet[index].State);
 HMIRuntime.Trace(' Alarm Area_' + (index + 1) + '= ' + ResultSet[index].Area);

 }
};
alarmsubscription.Filter = 'AlarmClassName=\'Alarm\'';
alarmsubscription.IncludeChildren = true;
alarmsubscription.Start();

See also
PlantObjectAlarmSubscription (Page 1282)

PlantObjectPropertySet

Description
The object "PlantObjectPropertySet" (type "HMIPlantObjectPropertySet") is a list
"PlantObjectProperty" objects that provides optimized access to the properties of the object
instances of the Common Plant Models.
After initialization of the "PlantObjectPropertySet" object, you can read and write multiple
properties in a single call. Simultaneous access has better performance and a lower
communication load than single access to multiple properties.
You reference the "PlantObjectPropertySet" object via the "PlantObject" object. The
"PlantObjectPropertySet" object is a list and can be counted and enumerated. You can access
the "PlantObjectPropertySet" list through the index or the "item" method.

Object type
HMIPlantObjectPropertySet

Properties
The "PlantObjectPropertySet" object has the following properties:
• Count

Returns the number of object properties in the "PlantObjectPropertySet" list.

Programming scripts
10.2 WinCC Unified object model

1288 System Manual, 11/2022

Methods
The "PlantObjectPropertySet" object has the following methods:
• Add()

Adds one or more object properties to an existing "PlantObjectPropertySet" list.
• Item()

Returns a property from the "PlantObjectPropertySet" list.
• Read()

Reads in all object properties of the "PlantObjectPropertySet" list.
• ReadAsync()

Asynchronously reads in all object properties of the "PlantObjectPropertySet" list.
• Remove()

Removes one or more object properties from an existing "PlantObjectPropertySet" list.
• Write()

Writes the values of all object properties of the "PlantObjectPropertySet" list.
• WriteAsync()

Asynchronously writes the values of all object properties of the "PlantObjectPropertySet" list.

See also
PlantObjectProperty (Page 1295)
PlantObject (Page 1273)

PlantObjectPropertySet.Count

Description
The "Count" property returns the number of object properties in the "PlantObjectPropertySet"
list.

Type
UInt32

Access
Read-only

Syntax
PlantObjectPropertySet.Count

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1289

See also
PlantObjectProperty (Page 1295)
PlantObjectPropertySet (Page 1288)

PlantObjectPropertySet.Add()

Description
The "Add" method adds one or more object properties to an existing "PlantObjectPropertySet"
list. The object properties are referenced by name.

Syntax
PlantObjectPropertySet.Add(name)

Parameters
name
Type: String
Name of object properties that are added to the list.

Return
Object[], HMIPlantObjectProperty[] (Page 1295)

See also
PlantObjectProperty (Page 1295)
PlantObjectPropertySet (Page 1288)

PlantObjectPropertySet.Item()

Description
The "Item" method returns a property ("PlantObjectProperty" object) from the
"PlantObjectPropertySet" list.

Syntax
PlantObjectPropertySet[.Item](name)

Programming scripts
10.2 WinCC Unified object model

1290 System Manual, 11/2022

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "PlantObjectPropertySet" object.

Parameters
name
Type: String, HMIPlantObjectProperty | Int32, HMIPlantObjectProperty
Name or index number (0 ... n) of an object property of the "PlantObjectPropertySet" list.

Note
The index number of a "PlantObjectPropertySet" object does not describe the order in which the
"PlantObjectProperty" objects were added to the "PlantObjectPropertySet" list.

Return
Object, HMIPlantObjectProperty (Page 1295)

See also
PlantObjectProperty (Page 1295)
PlantObjectPropertySet (Page 1288)

PlantObjectPropertySet.Read()

Description
The "Read" method reads in all object properties ("PlantObjectProperty" objects) of the
"PlantObjectPropertySet" list. The value, the Quality Code and the time stamp of all properties
are determined when the properties are read.
The method executes a synchronous read operation. After the read operation is complete,
use the "LastError " property to determine whether the execution was successful.
if you do not want the read operation to block script execution use the method
"PlantObjectPropertySet.ReadAsync".

Syntax
PlantObjectPropertySet.Read()

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1291

Parameters
--

Return
--

See also
PlantObjectPropertySet (Page 1288)
PlantObjectProperty (Page 1295)

PlantObjectPropertySet.ReadAsync()

Description
The "ReadAsync" method reads in all object properties ("PlantObjectProperty" objects) of the
"PlantObjectPropertySet" list. The value, the Quality Code and the time stamp of all properties
are determined when the properties are read.
The method executes an asynchronous read operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the
successful (then()) and faulty (catch()) execution of the read operation. Depending on the
result, the corresponding handler of the Promise pattern with the "PlantObjectPropertySet"
object or the error code as parameter is called after the operation. Execution only fails
(promise rejected) when no "PlantObjectProperty" object of the "PlantObjectPropertySet" list
could be read.

Syntax
PlantObjectProperty.ReadAsync()
.then(function(propertySet) {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
--

Return
Promise

Programming scripts
10.2 WinCC Unified object model

1292 System Manual, 11/2022

Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

Object, HMIPlantObjectPropertySet (Page 1288) as parameter of the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler. This status only exists if no
"PlantObjectProperty" object of the "PlantObjectPropertySet" list could be read.

See also
PlantObjectPropertySet (Page 1288)

PlantObjectPropertySet.Remove()

Description
The "Remove" method removes one or more object properties ("PlantObjectProperty" objects)
from an existing "PlantObjectPropertySet" list. The properties are referenced by the name.

Syntax
PlantObjectPropertySet.Remove(name)

Parameters
name
Type: String
Name of object properties that will be removed from the list.

Return
--

See also
PlantObjectPropertySet (Page 1288)
PlantObjectProperty (Page 1295)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1293

PlantObjectPropertySet.Write()

Description
The "Write" method writes the values of all object properties ("PlantObjectProperty" objects) of
the "PlantObjectPropertySet" list. You must first set the values of the individual object properties
with the "Value" property. The value of the "Value" property does not have to correspond to the
actual current value of the "PlantObjectProperty" object after the write operation is complete. If
you want to update the "PlantObjectProperty" objects, execute a Read method.
The method executes a synchronous write operation. After the write operation is complete,
use the "LastError " property to determine whether the execution was successful. Use the
"WriteAsync" method to acquire the result of the write operation without blocking script
execution,
The properties "QualityCode" and "TimeStamp" of the "PlantObjectProperty" objects are not
determined during writing.

Syntax
PlantObjectPropertySet.Write()

Parameters
--

Return
--

See also
PlantObjectPropertySet (Page 1288)
PlantObjectProperty (Page 1295)

PlantObjectPropertySet.WriteAsync()

Description
The "WriteAsync" method writes the values of all object properties ("PlantObjectProperty") of the
"PlantObjectPropertySet" list. You must first set the values of the individual object properties
with the "Value" property. The value of the "Value" property does not have to correspond to the
actual current value of the "PlantObjectProperty" objects after completion of the write
operation. If you want to update the "PlantObjectProperty" objects, execute a Read method.
After the write operation is complete, use the "LastError " property to determine whether the
execution was successful.
The properties "QualityCode" and "TimeStamp" of the "PlantObjectProperty" objects are not
determined during writing.

Programming scripts
10.2 WinCC Unified object model

1294 System Manual, 11/2022

The method executes an asynchronous write operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the
successful (then()) and faulty (catch()) execution of the write operation. Depending on the
result, once execution is complete the corresponding handler of the Promise pattern is called
with the "PlantObjectPropertySet" object or the error code as parameter. Execution only
fails (Promise rejected) when no "PlantObjectProperty" object of the "PlantObjectPropertySet"
object could be written.

Syntax
PlantObjectPropertySet.WriteAsync()
.then(function(propertySet) {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
--

Return
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

Object, HMIPlantObjectPropertySet as parameter of the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler. This status only exists if no
"PlantObjectProperty" object of the "PlantObjectPropertySet" list could be written.

See also
PlantObjectPropertySet (Page 1288)
PlantObjectProperty (Page 1295)

PlantObjectProperty

Description
The "PlantObjectProperty" object ("HMIPlantObjectProperty" type) represents the property of an
object instance ("PlantObject" object) of the Common Plant Models.
A "PlantObjectProperty" object is returned by the "PlantObjectPropertySet" list or the
PlantObject.GetProperties method.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1295

Object type
HMIPlantObjectProperty

Properties
The "PlantObjectProperty" object has the following properties:
• LastError

Returns an error code for the last faulty read or write operation.
• Name

Returns the name of an object property.
• QualityCode

Returns the level of the quality of the value of an object property after reading.
• TimeStamp

Returns the time stamp of the last read operation.
• Value

Specifies the value of an object property.

Methods
The "PlantObjectProperty" object has the following methods:
• Read()

Reads an object property
• Write()

Writes the value of an object property.

See also
PlantModel (Page 1267)
PlantObject (Page 1273)
PlantObjectPropertySet (Page 1288)

PlantObjectProperty.LastError

Description
The "LastError" property returns an error code for the last faulty read or write operation.

Type
ErrorCode

Programming scripts
10.2 WinCC Unified object model

1296 System Manual, 11/2022

Access
Read-only

Syntax
PlantObjectProperty.LastError

See also
PlantObjectProperty (Page 1295)
PlantObject (Page 1273)

PlantObjectProperty.Name

Description
The "Name" property returns the name of the object property.

Type
String

Access
Read-only

Syntax
PlantObjectProperty.Name

See also
PlantObjectProperty (Page 1295)
PlantObject (Page 1273)

PlantObjectProperty.QualityCode

Description
The "QualityCode" property returns the level of the quality of the value of an object property after
the read operation.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1297

Access
Read-only

Syntax
PlantObjectProperty.QualityCode

See also
PlantObjectProperty (Page 1295)
PlantObject (Page 1273)
Tag.QualityCode (Page 1341)

PlantObjectProperty.TimeStamp

Description
The "TimeStamp" property returns the time stamp of the last read operation.
The value 0 is returned after writing or rejected reading.

Type
DateTime

Access
Read-only

Syntax
PlantObjectProperty.TimeStamp

See also
PlantObjectProperty (Page 1295)
PlantObject (Page 1273)
Tag.TimeStamp (Page 1345)

PlantObjectProperty.Value

Description
The "Value" property specifies a value of an object property.

Programming scripts
10.2 WinCC Unified object model

1298 System Manual, 11/2022

Type
Variant

Access
Read-write

Syntax
PlantObjectProperty.Value

See also
PlantObjectProperty (Page 1295)
PlantObject (Page 1273)

PlantObjectProperty.Read()

Description
The "Read" method reads a property ("PlantObjectProperty" object) of an object instance of the
Common Plant Models. The value, the Quality Code and the time stamp of the object property
are determined when the property is read.
The method executes a synchronous read operation. When completed, you can use the
property "PlantObjectProperty.LastError" to determine if the execution was successful.
if you do not want the read operation to block script execution use the method
"PlantObjectPropertySet.ReadAsync".

Syntax
PlantObjectProperty.Read()

Parameters
--

Return
Variant

See also
PlantObjectProperty (Page 1295)
PlantObject (Page 1273)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1299

PlantObjectProperty.Write()

Description
The "Write" method writes the value of the property ("PlantObjectProperty" object) of an object
instance of the Common Plant Models. Set the values of the individual "PlantObjectProperty"
objects beforehand with the property "Value". The value of the "Value" property does not have
to correspond to the actual current value of the "PlantObjectProperty" object after the write
operation is complete. To update the "PlantObjectProperty" objects, execute a Read method.
The "Write" method executes a synchronous write operation. When completed, you can use
the "LastError" property of the "PlantObjectProperty" object to determine if the execution was
successful.
To acquire the result of the write operation without blocking script execution, use the
"WriteAsync" method of the "PlantObjectPropertySet" object.
The "QualityCode" and "TimeStamp" properties of the "PlantObjectProperty" object are not
determined during writing.

Syntax
PlantObjectProperty.Write([value])

Parameters
value
Optional, type: Variant
Value of the object property:
• Specify value

The specified value overwrites the current value of the "Value" property of the
"PlantObjectProperty" object.

• Without value
The current value of the "Value" property of the "PlantObjectProperty" object is written.

Return
--

See also
PlantObjectProperty (Page 1295)
PlantObject (Page 1273)

Programming scripts
10.2 WinCC Unified object model

1300 System Manual, 11/2022

10.2.2.15 Reporting

Description

The "Reporting" object allows access to the report function (production logs) of the runtime.
When a report job is executed, the data source items defined in the report template are read
from the Runtime project and their data are imported into a table in the report.

Object type
HMIReporting

Properties
--

Methods
--

SysFct

Description
The "SysFct" object enables access to the system functions of the "Reporting" object.

Object type
HMIReportingSysFct

Properties
--

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1301

Methods
The "SysFct" object has the following methods:
• ExecuteReport()

Starts the specified report task.

See also
Reporting (Page 1301)

SysFct.ExecuteReport()

Description
The "ExecuteReport" method starts the specified report job.
The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Syntax
HMIRuntime.Reporting.SysFct.Report(ReportTaskName)
.then(function() {
 ...
})
.catch(function(errorCode){
 ...
});

Parameters
ReportTaskName
Type: String
Name of the report job

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler.

Programming scripts
10.2 WinCC Unified object model

1302 System Manual, 11/2022

See also
SysFct (Page 1301)

10.2.2.16 Resources

Description

The "Resources" object provides access to the runtime text and graphic lists.

Object type
HMIResources

Properties
The "Resources" object has the following properties:
• Graphics

Returns the "Graphics" list.
• TextLists

Returns the "TextLists" list.

Methods
--

Resources.Graphics

Description
The "Graphics" property returns the list of the "Graphic" objects. In the graphic list (object
"Graphics"), certain graphic ("Graphic" objects) are assigned to the possible values or value
ranges of a tag.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1303

Type
Object, HMIGraphics

Access
Read-only

Syntax
HMIRuntime.Resources.Graphics

Properties
--

Methods
The "Graphics" property has the following methods:
• Item

Returns an object of the type "Graphic".

See also
Resources (Page 1303)

Graphics.Item()

Description
The "Item" method returns a "Graphic" object of the "Graphics" list.

Syntax
HMIRuntime.Resources.Graphics[.Item](graphicName);

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "Graphics" object.

Parameters
graphicName
Type: String, HMIGraphic

Programming scripts
10.2 WinCC Unified object model

1304 System Manual, 11/2022

Fully qualified name of the graphic, e.g. "GraphicCollection.MyImage"

Return value
Object, HMIGraphic (Page 1305)

Example
Assign a graphic to the "Button_1" button:

Copy code
Screen.Items("Button_1").Graphic =
HMIRuntime.Resources.Graphics("GraphicCollection.Left_Arrow").Name;

See also
Resources.Graphics (Page 1303)
Graphic (Page 1305)

Graphic

Description
The "Graphic" object contains the graphic assigned to a defined value or value range of a tag.

Object type
HMIGraphic

Properties
The "Graphic" object has the following properties:
• Name

Returns the fully qualified name of the graphic.

Methods
--

See also
Resources.Graphics (Page 1303)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1305

Graphic.Name

Description
The "Name" property returns the fully qualified name of the graphic, e.g.
"GraphicCollection.MyImage".

Type
String

Access
Read-only

Syntax
Graphic.Name

See also
Graphic (Page 1305)

Resources.TextLists

Description
The "TextLists" property returns the list of the "TextList" objects. In the text list (object "TextLists"),
certain texts ("TextList" object) are assigned in multiple languages to the possible values or value
ranges of a tag.

Type
Object, HMITextLists

Access
Read-only

Syntax
HMIRuntime.Resources.TextLists

Properties
--

Programming scripts
10.2 WinCC Unified object model

1306 System Manual, 11/2022

Methods
The "TextLists" property has the following methods:
• Item

Returns an object of the type "TextList".

See also
Resources (Page 1303)

TextLists.Item()

Description
The "Item" method returns a "TextList" object of the "TextLists" list.

Syntax
HMIRuntime.Resources.TextLists[.Item](textListName);

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "TextLists" object.

Parameters
textListName
Type: String, HMITextList
Fully qualified name of the text list of the "TextList" object of the "TextLists" list.

Return value
Object, HMITextList (Page 1308)

See also
Resources.TextLists (Page 1306)
TextList (Page 1308)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1307

TextList

Description
The "TextList" object contains the multilingual text list entries assigned to a defined value or
value range of a tag ("TextListEntry" objects).

Object type
HMITextList

Properties
The "TextList" object has the following properties:
• Name

Returns the fully qualified name of the text list.

Methods
The "TextList" object has the following methods:
• Item()

Returns an entry of the text list.

See also
Resources.TextLists (Page 1306)
TextListEntry (Page 1309)

TextList.Name

Description
The "Name" property returns the fully qualified name of the text list.

Type
String

Access
Read-only

Syntax
TextList.Name

Programming scripts
10.2 WinCC Unified object model

1308 System Manual, 11/2022

See also
TextList (Page 1308)

TextList.Item()

Description
The "Item" method returns a "TextListEntry" object of the "TextList" list.

Syntax
TextList[.Item](index)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "TextList" object.

Parameters
index
Type: Int32
Index of the "TextListEntry" object in the "TextList" list.

Return value
Object, HMITextListEntry (Page 1309)

See also
TextList (Page 1308)
TextListEntry (Page 1309)

TextListEntry

Description
The "TextListEntry" object contains the language-dependent texts of a text list.

Object type
HMITextListEntry

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1309

Properties
The "TextListEntry" object has the following properties:
• Index

Returns the index of the text list entry.

Methods
The "TextListEntry" object has the following methods:
• Item()

Returns a text list entry.

See also
TextList (Page 1308)

TextListEntry.Index

Description
The "Index" property returns the index of a text list entry.

Type
Int32

Access
Read-only

Syntax
TextListEntry.Index

See also
TextListEntry (Page 1309)

TextListEntry.Item()

Description
The "Item" method returns the language-dependent text of the "TextListEntry" object.

Programming scripts
10.2 WinCC Unified object model

1310 System Manual, 11/2022

Syntax
TextListEntry[.Item](lcid)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "TextListEntry" object.

Parameters
lcid
Type: Int32, HMILCID
Language of the text

Return value
String

See also
TextListEntry (Page 1309)

SysFct

Description
The "SysFct" object enables access to the system functions of the "Resources" object.

Object type
HMIResourcesSysFct

Properties
--

Methods
The "SysFct" object has the following methods:
• LookUpText

Returns the contents of a text list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1311

See also
Resources (Page 1303)

SysFct.LookUpText()

Description
The "LookUpText" method returns the text of a text list.

Syntax
HMIRuntime.Resources.SysFct.LookUpText(OutputText, index, lcid,
TextListName);

Parameters
OutputText
Type: Object, HMISetValueCommandBase
HMI tag in which the selected text is stored.

Note
Define the HMI tag of the "OutputText" parameter with the "CreateSetTagCommand" system
function. Use, for example, the
instruction HMIRuntime.Tags.SysFct.CreateSetTagCommand("MyTag") for the HMI
tag "MyTag".

index
Type: Variant
Index of the text list entry

lcid
Type: UInt32, HMILCID
LCID the language of the text list entry

TextListName
Type: String, HMITextList
Name of the text list

Return value
ErrorCode

Programming scripts
10.2 WinCC Unified object model

1312 System Manual, 11/2022

See also
SysFct (Page 1311)
SysFct.CreateSetTagCommand() (Page 1382)

10.2.2.17 TagLogging

Description

The "TagLogging" object ("HMITagLogging" type) enables access to the logging tags of a
logging system.

Object type
HMITagLogging

Properties
--

Methods
The "TagLogging" object has the following methods:
• CreateLoggedTagSet()

Creates a new "LoggedTagSet" object.
• LoggedTags()

References a logging tag ("LoggedTag" object) of a logging system.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1313

TagLogging.CreateLoggedTagSet()

Description
The "CreateLoggedTagSet" method creates a new "LoggedTagSet" object ("HMILoggedTagSet"
type). The "LoggedTagSet" object can be filled with one or more logging tags.
You use the returned "LoggedTagSet" object for optimized read and write access to multiple
logging tags.

Syntax
HMIRuntime.TagLogging.CreateLoggedTagSet([loggedTagNameArray]);

Parameter
loggedTagNameArray
Type: String, HMILoggedTag | String[], HMILoggedTag[]
Logging tag name or array with names of multiple logging tags that are added to the
"LoggedTagSet" object. Without parameters, an empty "LoggedTagSet" object is created.

Return value
Object, HMILoggedTagSet (Page 1324)

See also
TagLogging (Page 1313)
LoggedTagSet (Page 1324)
LoggedTagSet (Page 1324)

TagLogging.LoggedTags()

Description
The "LoggedTags" method references a logging tag ("LoggedTag" object) of a logging system.

Syntax
HMIRuntime.TagLogging.LoggedTags(loggedTagName);

Parameter
loggedTagName
Type: String, HMILoggedTag

Programming scripts
10.2 WinCC Unified object model

1314 System Manual, 11/2022

Logging tag name of a "LoggedTag" object

Return value
Object, HMILoggedTag (Page 1315)

See also
TagLogging (Page 1313)
LoggedTag (Page 1315)

LoggedTag

Description
The "LoggedTag" object ("HMILoggedTag" type) represents a logging tag of a logging system. A
"LoggedTag" object is returned by the "TagLogging" object or the "LoggedTagSet" list.

Object type
HMILoggedTag

Properties
The "LoggedTag" object has the following property:
• Name

Returns the name of the logging tag.

Methods
The "LoggedTag" object has the following methods:
• AddComment()

Adds a comment to a logging tag asynchronously in the logging system.
• Read()

Reads a logging tag of a period from a logging system.
• WriteCorrectionValue()

Writes a correction value to a logging tag.

See also
TagLogging (Page 1313)
LoggedTagSet (Page 1324)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1315

LoggedTag.Name

Description
The "Name" property returns the name of the logging tag ("LoggedTag" object).

Type
String, HMILoggedTag

Access
Read-only

Syntax
LoggedTag.Name

See also
LoggedTag (Page 1315)

LoggedTag.AddComment()

Description
The "AddComment" method adds a comment to a logging tag ("LoggedTag" object)
asynchronously in the logging system.
The method executes an asynchronous write operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the
successful (then()) and faulty (catch()) execution of the write operation. Depending on the
result, the corresponding handler of the Promise pattern is called after the write operation.

Note
The comment properties "User", "OperatorStation" and "CommentTimeStamp" are determined
from the current script context and cannot be set manually.

Syntax
LoggedTag.AddComment(TimeStamp,Language,Comment)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Programming scripts
10.2 WinCC Unified object model

1316 System Manual, 11/2022

Parameters
TimeStamp
Type: DateTime
Time stamp of the comment

Language
Type: UInt32, HMILCID
Country identification of the language of the comment

Comment
Type: String
Comment on the logged tags

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
LoggedTag (Page 1315)

LoggedTag.Read()

Description
The "Read" method reads out a logging tag ("LoggedTag" object) of a time period from a logging
system. The value, the Quality Code, the time stamp and context information of the logging tag
are determined when the logging tag is read.
The method executes an asynchronous read operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the
successful (then()) and faulty (catch()) execution of the read operation. Depending on the
result, after execution is complete, the corresponding handler of the Promise pattern is called
with an "LoggedTagResult" object or an error code as parameter.

Syntax
LoggedTag.Read(dateFrom,dateTo,boundingValue)
.then(function(loggedTagResult) {
 ...

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1317

})
.catch(function(errorCode) {
 ...
});

Parameters
dateFrom
Type: DateTime
End date of the time period

dateTo
Type: DateTime
Start date of the time period

boundingValue
Type: Bool
Specifies whether the limit values of the time period are transferred.

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

Object, HMILoggedTagResult (Page 1319) as parameter of the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler.

See also
LoggedTag (Page 1315)
LoggedTagResult (Page 1319)

LoggedTag.WriteCorrectionValue()

Description
The "WriteCorrectionValue" method writes a correction value into a logging tag.

Syntax
LoggedTag.WriteCorrectionValue(Timestamp,Value)

Programming scripts
10.2 WinCC Unified object model

1318 System Manual, 11/2022

Parameters
Timestamp
Type: DateTime
Time stamp of the logging tag whose value is being corrected.

Value
Type: Variant
Corrected value which is assigned to the logging tag.

Return value
ErrorCode

See also
LoggedTag (Page 1315)

LoggedTagResult

Description
The "LoggedTagResult" object ("HMILoggedTagResult" type) enables access to the process values
of a logging tag. The "LoggedTagResult" object is returned by a read operation of objects
"LoggedTag" and "LoggedTagSet" in the logging system. You have access to the process values
of logging tags and errors of read operations in the logging system.

Object type
HMILoggedTagResult

Properties
The "LoggedTagResult" object has the following properties:
• Error

Returns an error code for the last faulty read or write operation.
• Name

Returns the name of the object or specifies it.
• Values

Returns an array of process values including the quality code.

Methods
--

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1319

See also
TagLogging (Page 1313)
LoggedTag (Page 1315)
LoggedTagSet (Page 1324)

LoggedTagResult.Error

Description
The "Error" property returns an error code for the last faulty read or write operation.

Note
The value "0" is returned after a successful read or write operation. The error code always relates
to the last method call of the object.

Type
ErrorCode

Access
Read-write

Syntax
LoggedTagResult.Error

See also
LoggedTagResult (Page 1319)

LoggedTagResult.Name

Description
The "Name" property returns or specifies the name of the logging tag.

Type
String, HMILoggedTag

Programming scripts
10.2 WinCC Unified object model

1320 System Manual, 11/2022

Access
Read-write

Syntax
LoggedTagResult.Name

See also
LoggedTagResult (Page 1319)

LoggedTagResult.Values

Description
The "Values" property returns an array of process values including quality code.

Type
Object, HMILoggedTagValueResult[] (Page 1321)

Access
Read-write

Syntax
LoggedTagResult.Values

See also
LoggedTagResult (Page 1319)
LoggedTagValueResult (Page 1321)

LoggedTagValueResult

Description
The "LoggedTagValueResult" object ("HMILoggedTagValueResult" type) represents the process
values of a logging tag with all associated context information.
The object is referenced via the LoggedTagResult.Values property.

Object type
HMILoggedTagValueResult

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1321

Properties
The "LoggedTagValueResult" object has the following properties:
• Flags

Returns context information on the process value.
• Quality

Returns the level of the quality of the process value.
• TimeStamp

Returns the time stamp of the process value.
• Value

Returns the process value.

Methods
--

See also
TagLogging (Page 1313)
LoggedTagResult.Values (Page 1321)

LoggedTagValueResult.Flags

Description
The "Flags" property returns context information on the process value.

Type
Int32, hmiTagLoggingValueFlags
Returns context information on the process value:
• Extra (0): There are still additional values at the time of the process value.
• Calculated (2): Process value is calculated.
• Bounding (16): Process value is a limit value.
• NoData (32): No additional information available
• FirstStored (64): Process value is the first value stored in the logging system.
• LastStored (128): Process value is the last value stored in the logging system.

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1322 System Manual, 11/2022

Syntax
LoggedTagValueResult.Flags

See also
LoggedTagValueResult (Page 1321)

LoggedTagValueResult.Quality

Description
The "Quality" property returns the level of the quality of the process value.

Type
UInt32

Access
Read-write

Syntax
LoggedTagValueResult.Quality

See also
LoggedTagValueResult (Page 1321)

LoggedTagValueResult.TimeStamp

Description
The "TimeStamp" property returns the time stamp of the process value.

Type
DateTime

Access
Read-write

Syntax
LoggedTagValueResult.TimeStamp

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1323

See also
LoggedTagValueResult (Page 1321)

LoggedTagValueResult.Value

Description
The "Value" property returns the process value.

Type
Variant

Access
Read-write

Syntax
LoggedTagValueResult.Value

See also
LoggedTagValueResult (Page 1321)

LoggedTagSet

Description
The "LoggedTagSet" object ("HMILoggedTagSet" type) is a list of "LoggedTag" objects that
provides optimized access to logging tags. After initialization of the "LoggedTagSet" object, you
have read access to multiple logging tags in one call. Access demonstrates better performance
and lower communication load than single access to multiple logging tags.
You create a new "LoggedTagSet" object with the "TagLogging.CreateLoggedTagSet" method.
The "LoggedTagSet" object can be counted and enumerated. You can access the
"LoggedTagSet" list via the index or the logging tag name.

Object type
HMILoggedTagSet

Programming scripts
10.2 WinCC Unified object model

1324 System Manual, 11/2022

Properties
The "LoggedTagSet" object has the following properties:
• Count

Returns the number of elements of the "LoggedTagSet" list.
• Error

Returns an error code for the last faulty read or write operation.

Methods
The "LoggedTagSet" object has the following methods:
• Add()

Adds a logging tag to the "LoggedTagSet" list.
• Clear()

Removes all logging tags from the "LoggedTagSet" list.
• Item()

Returns a logging tag of the "LoggedTagSet" list.
• Read()

Reads in all logging tags of the "LoggedTagSet" list.
• Remove()

Removes a logging tag by its name from the "LoggedTagSet" list.

See also
TagLogging (Page 1313)
TagLogging.CreateLoggedTagSet() (Page 1314)
LoggedTag (Page 1315)

LoggedTagSet.Count

Description
The "Count" property returns the number of elements in the "LoggedTagSet" list.

Type
UInt32

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1325

Syntax
LoggedTagSet.Count

See also
LoggedTagSet (Page 1324)

LoggedTagSet.Error

Description
The "Error" property returns an error code for the last faulty read or write operation.
The value "0" is returned after a successful read or write operation. The error code always
relates to the last method call of the object.
Evaluate the "Error" property for all objects of the "LoggedTagSet".

Type
ErrorCode

Access
Read-only

Syntax
LoggedTagSet.Error

See also
LoggedTagSet (Page 1324)

LoggedTagSet.Add()

Description
The "Add" method adds logging tags ("LoggedTag" objects) to the "LoggedTagSet" list. The
logging tags are referenced using the name.

Syntax
LoggedTagSet.Add(loggedTags)

Programming scripts
10.2 WinCC Unified object model

1326 System Manual, 11/2022

Parameters
loggedTags
Type: String, HMILoggedTag | String[], HMILoggedTag
Names of "LoggedTag" objects that are added to the list.

Note
No "LoggedTag" object can be transferred as a parameter. A "LoggedTag" object is referenced
using the name.

Return value
Object[], HMILoggedTag[] (Page 1315)

See also
LoggedTag (Page 1315)
LoggedTagSet (Page 1324)

LoggedTagSet.Clear()

Description
The "Clear" method removes all logging tags ("LoggedTag" objects) from the "LoggedTagSet" list.

Syntax
LoggedTagSet.Clear()

Parameter
--

Return value
--

See also
LoggedTagSet (Page 1324)
LoggedTag (Page 1315)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1327

LoggedTagSet.Item()

Description
The "Item()" method returns a "LoggedTag" object of the "LoggedTagSet" list.

Syntax
LoggedTagSet[.Item](name)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "LoggedTagSet" object.

Parameters
name
Type: String, HMILoggedTag | Int32, HMILoggedTag
Tag name or index number (1 ... n) of a "LoggedTag" object of the list.

Note
The index number does not describe the order in which the "LoggedTag" objects were added to
the "LoggedTagSet" list.

Return
Object, HMILoggedTag (Page 1315)

See also
LoggedTagSet (Page 1324)
LoggedTag (Page 1315)

LoggedTagSet.Read()

Description
The "Read" method reads all logging tags ("LoggedTag" objects) from the "LoggedTagSet" list.
The value, the Quality Code, the time stamp and context information of all logging tags are
determined when the logging tag is read.
The method executes an asynchronous read operation without blocking further script
execution. To do this, the method uses a Promise object which has handlers for the

Programming scripts
10.2 WinCC Unified object model

1328 System Manual, 11/2022

successful (then()) and faulty (catch()) execution of the read operation. Depending on the
result, after execution is complete, the corresponding handler of the Promise pattern is called
with an array with "LoggedTagResult" object or an error code as parameter.

Syntax
LoggedTagSet.Read(dateFrom,dateTo,boundingValue)
.then(function(loggedTagArrayResult) {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
dateFrom
Type: DateTime
End date of the time period

dateTo
Type: DateTime
Start date of the time period

boundingValue
Type: Boolean
Specifies whether the limit values of the time period are transferred.

Return value
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

Object, HMILoggedTagResult[] (Page 1319) as parameter of the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler. This status only exists when all logging tags
of the "LoggedTagSet" object could not be read.

See also
LoggedTagSet (Page 1324)
LoggedTag (Page 1315)
LoggedTagResult (Page 1319)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1329

LoggedTagSet.Remove()

Description
The "Remove" method removes logging tags ("LoggedTag" objects) using their names from the
"LoggedTagSet" list.

Syntax
LoggedTagSet.Remove(loggedTags)

Parameters
loggedTags
Type: String, HMILoggedTag | String[], HMILoggedTag
Removes a "LoggedTag" object from the "LoggedTagSet" list.

Note
No "LoggedTag" object can be transferred as a parameter. A "LoggedTag" object is referenced
using the name.

Return value
--

See also
LoggedTagSet (Page 1324)
LoggedTag (Page 1315)

LoggedTag

Description
LoggedTag (Page 1315)

LoggedTagResult

Description
LoggedTagResult (Page 1319)

Programming scripts
10.2 WinCC Unified object model

1330 System Manual, 11/2022

SysFct

Description
The "SysFct" object ("HMITagLoggingSysFct" type) enables access to system functions of the
"TagLogging" object.

Object type
HMITagLoggingSysFct

Properties
--

Methods
The "SysFct" object has the following methods:
• ClearTagLog()

Deletes all logging tags in the specified logging system.
• WriteManualValue()

Assigns a new value to the specified logging tag.

See also
TagLogging (Page 1313)

SysFct.ClearTagLog()

Description
The "ClearTagLog" method deletes the logged tags from the logging system whose name was
passed via the parameter. The method removes all records from the specified logging system. All
segments up to the current segment are deleted. The remaining segment is given a new start
time.

Note
No automatic backup is created before the "ClearTagLog" method is executed.

The method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful
(then()) and faulty (catch()) execution of the write operation. Depending on the result, the
corresponding handler of the Promise pattern is called after the operation.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1331

Syntax
HMIRuntime.TagLogging.SysFct.ClearTagLog(LogName)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
});

Parameters
LogName
Type: String, HMIDataLog
Name of the logging system from which the logging tags are deleted.

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler

See also
SysFct (Page 1331)

SysFct.WriteManualValue()

Description
The "WriteManualValue" method assigns a new value to the specified logging tag. The associated
time stamp is transferred in this process.

Syntax
HMIRuntime.TagLogging.SysFct.WriteManualValue(LoggedTagName,Value,Ti
mestamp);

Parameter
LoggedTagName
Type: String, HMILoggedTag

Programming scripts
10.2 WinCC Unified object model

1332 System Manual, 11/2022

Logging tag which is assigned the specified value.

Value
Type: Variant
Value assigned to the specified logging tag.

Timestamp
Type: DateTime
Time stamp assigned to the specified value.

Return value
ErrorCode

See also
SysFct (Page 1331)

10.2.2.18 Tags

Description

The "Tags" object ("HMITags" type) enables access to HMI tags in runtime. By default, you
reference a "Tag" object ("HMITag" type) through the "Tags" object. The "Tag" object gives you
access to all properties and methods of the tags.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1333

Use

Note
The "Tags" object is not a listing like, for example the objects "TagSet" or "AlarmSet", but rather
a Factory. You create an instance of the "Tag" object via the tag name.
The "Tag" objects cannot be counted and enumerated like conventional lists.

The Tags object declares tags ("Tag" objects) for read and write access. The appropriate HMI
tags must exist for the read and write access to be executed without errors.
To reduce the use of the "Tags" object, you can also use the alias Tags for
HMIRuntime.Tags.

Object type
HMITags

Properties
--

Methods
The "Tags" object has the following methods:
• CreateSubscription()

Creates a "TagSubscription" object for monitoring HMI tags
• CreateTagSet()

Creates a new "TagSet" object.
• Item()

Returns a new instance of a "Tag" object.

Tags.CreateSubscription()

Description
The "CreateSubscription" method creates a "TagSubscription" object ("HMITagSubscription"
type). The "TagSubscription" returned object enables HMI tags to be monitored for change.

Syntax
Tags.CreateSubscription(tagNameArray, OnTag);

Programming scripts
10.2 WinCC Unified object model

1334 System Manual, 11/2022

Parameters
tagNameArray
Type: String | String[], HMITag[]
Name or array of names of the monitored HMI tags.

OnTag
Type: Function, HMIOnTagCB
Callback function that is executed when HMI tags are changed.
Prototype of the callback function: OnTag(tagResult)
The "tagResult" parameter is an object of type "HMITagResult[]" that contains the properties
of the changed HMI tags.

Return value
Object, HMITagSubscription (Page 1363)

Example
Monitor changes to HMI tags "HMI_Tag_1", "HMI_Tag_2", "HMI_Tag_3", and output names and
changed values:

Copy code
let subs = HMIRuntime.Tags.CreateSubscription(['HMI_Tag_1', 'HMI_Tag_2',
'HMI_Tag_3'], function (TagArray) {
 for (let index in TagArray) {
 HMIRuntime.Trace("Tag Name_" + (index + 1) + " = " +
TagArray[index].Name);
 HMIRuntime.Trace("Tag Value_" + (index + 1) + "= " +
TagArray[index].Value);
 }
});
subs.Start();

See also
Tags (Page 1333)
TagResult (Page 1356)
TagSubscription (Page 1363)

Tags.CreateTagSet()

Description
The "CreateTagSet" method creates a new "TagSet" object ("HMITagSet" type). The "TagSet"
object can be filled with one or more tags.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1335

You use the returned "TagSet" object for read and write access to multiple tags.

Syntax
[HMIRuntime.]Tags.CreateTagSet([tagNameArray]);

Note
The HMIRuntime. part of the expression is not required. The alias Tags stands
for HMIRuntime.Tags.

Parameters
tagNameArray
Optional, type: String, HMITag | String[], HMITag
Name of a tag or array with names of multiple tags that are added to the "TagSet" object.
Without parameters, an empty "TagSet" object is created.

Return value
Object, HMITagSet (Page 1365)

Example
Create a "TagSet" object and add multiple objects "Tag" by their names:

Copy code
function TagSetCreate() {
 //Tags_Required: "Tag0"; "Tag1"; "Tag2"
 var tagnameArray = ["Tag0","Tag1","Tag2"];
 var ts = Tags.CreateTagSet(tagnameArray);
}

See also
Tags (Page 1333)
TagSet (Page 1365)

Tags.Item()

Description
The "Item" returns a new instance of a "Tag" object.

Programming scripts
10.2 WinCC Unified object model

1336 System Manual, 11/2022

Syntax
[HMIRuntime.]Tags[.Item](tagName);

Note
The HMIRuntime. part of the expression is not required. The alias Tags stands
for HMIRuntime.Tags.
The .Item part of the expression is not required. The "Item" method is the standard method of
the "Tags" object.

Parameters
tagName
Type: String, HMITag
Tag name of a "Tag" object.

Note
The "Tags" object is not a list, but rather a Factory. The "Tag" objects cannot be counted and
enumerated like conventional lists. Tags are only referenced through their configured name.

Return value
Object, HMITag (Page 1338)

Example
Instantiate the "TankLevel" tag as the "Tag" object and assign it to the "level" tag:

Copy code
var level = HMIRuntime.Tags.Item("TankLevel");

or

Copy code
var level = Tags("TankLevel");

See also
Tags (Page 1333)
Tag (Page 1338)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1337

Tag

Description
The "Tag" object (type "HMITag") represents an HMI tag in runtime. A "Tag" object is returned by
the "Tags" object or the "TagSet" list. The "Tag" object gives you access to all properties and
methods of a tag.

Object type
HMITag

Properties
The "Tag" object has the following properties:
• ErrorDescription

Returns a description of the error code for the last faulty access.
• LastError

Returns an error code for the last faulty read or write operation.
• Name

Returns the name of the tag.
• QualityCode

Returns the quality level of a tag value after reading a tag.
• TimeStamp

Returns the time stamp of the last read operation.
• Value

Specifies a value for the object being used or returns it.

Methods
The "Tag" object has the following methods:
• Decrease()

Reduces the current tag value in the AS by the specified value.
• Increase()

Increases the current tag value in the AS by the specified value.
• Read()

Reads a tag ("Tag" object).
• ResetBit()

Deletes a bit of the tag in the automation system.
• SetBit()

Sets a bit of the tag in the AS.
• Write()

Writes tag in the automation system.

Programming scripts
10.2 WinCC Unified object model

1338 System Manual, 11/2022

• WriteQCD()
Writes the value of the tag ("Tag" object).

• WriteWithOperatorMessage()
Writes the values of the tag ("Tag" object) and then triggers an operator input alarm.

Values after initialization
The properties of the "Tag" object include the following values after successful initialization of
the object:

Property After successful initialization
Name Tag name (unchanged)
Value VT_EMPTY
QualityCode BAD NON-SPECIFIC
TimeStamp 0
LastError 0
ErrorDescription ""

Values after a read operation
The properties of the "Tag" object include the following values after the last read operation:

Property After successful read opera‐
tion

After unsuccessful read opera‐
tion

Name Tag name (unchanged)
Value Current value of the tag VT_EMPTY
QualityCode Quality level BAD OUT OF SERVICE
TimeStamp Current time stamp of the tag 0
LastError 0 Error code of read operation
ErrorDescription "" Description of the error code

Values after a write operation
The properties of the "Tag" object include the following values after the last write operation:

Property After successful write opera‐
tion

After unsuccessful write oper‐
ation

Name Tag name (unchanged)
Value Current value of the "Tag" object (unchanged)
QualityCode BAD OUT OF SERVICE
TimeStamp 0
LastError 0 Error code of write operation
ErrorDescription "" Description of the error code

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1339

Tag.ErrorDescription

Description
The "ErrorDescription" property returns a description of the error code for the last faulty access.

Note
An empty string is returned after a successful read or write operation.

Type
String

Access
Read-only

Syntax
Tag.ErrorDescription

See also
Tag (Page 1338)

Tag.LastError

Description
The "LastError" property returns an error code for the last faulty read or write operation.

Note
The value "0" is returned after a successful read or write operation.

Type
ErrorCode

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

1340 System Manual, 11/2022

Syntax
Tag.LastError

See also
Tag (Page 1338)

Tag.Name

Description
The "Name" property returns the name of the tag ("Tag" object).

Type
String, HMITag

Access
Read-only

Syntax
Tag.Name

See also
Tag (Page 1338)

Tag.QualityCode

Description
The "QualityCode" property returns the level of the quality of a tag value after the reading of a
tag.
The quality code has the binary 8-bit structure QQSSSLL. The first two positions (QQ) of the
quality code define the quality of the tag value:

Quality Description Q Q S S S S L L
Bad Tag value cannot be used. 0 0 - - - - - -
Uncertain Quality of the tag value is worse than usual. However, it

might still be possible to use the tag value.
0 1 - - - - - -

Good (Non-Cas‐
cade)

Quality of the tag value is good. Attention should be paid
to substatus.

1 0 - - - - - -

Good (Cascade) Quality of the tag value is good. Tag value could be used. 1 1 - - - - - -

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1341

Positions 3 to 6 (SSSS) of the quality code specify the substatus of the quality. Positions 7 and
8 (LL) are optional and define possible limits.

Note
Directly after initializing a "Tag" object, the "BAD NON-SPECIFIC" value is returned. After a write
operation or an incorrect read operation, the value "BAD OUT OF SERVICE" is returned.

Type
UInt32

Access
Read-write

Syntax
Tag.QualityCode

Quality code of tags
The realized quality codes are listed in the following table. The table begins with the worst
quality code and ends with the best quality code. The best quality code has the lowest priority,
while the worst quality has the highest priority. If several statuses occur simultaneously for a tag
in the processing chain, the poorest code is passed on.

Code
(hex)

Quality Description Q Q S S S S L L

0x23 Bad Device passivated - Diagnostic alerts inhibited 0 0 1 0 0 0 1 1
0x3F Bad Function check - Local override 0 0 1 1 1 1 1 1
0x1C Bad Out of Service - The value is not reliable be‐

cause the block is not being evaluated, and
may be under construction by a configurer. Set
if the block mode is O/S.

0 0 0 1 1 1 - -

0x73 Uncertain Simulated value - Start 0 1 1 1 0 0 1 1
0x74 Uncertain Simulated value - End 0 1 1 1 0 1 - -
0x84 Good (Non-Cas‐

cade)
Active Update event - Set if the value is good
and the block has an active Update event.

1 0 0 0 0 1 - -

0x24 Bad Maintenance alarm - More diagnostics availa‐
ble.

0 0 1 0 0 1 - -

0x18 Bad No Communication, with no usable value - Set
if there has never been any communication
with this value since it was last "Out of Service".

0 0 0 1 1 0 - -

0x14 Bad No Communication, with last usable value - Set
if this value had been set by communication,
which has now failed.

0 0 0 1 0 1 - -

Programming scripts
10.2 WinCC Unified object model

1342 System Manual, 11/2022

Code
(hex)

Quality Description Q Q S S S S L L

0x0C Bad Device Failure - Set if the source of the value is
affected by a device failure.

0 0 0 0 1 1 - -

0x10 Bad Sensor failure 0 0 0 1 0 0 - -
0x08 Bad Not Connected - Set if this input is required to

be connected and is not connected.
0 0 0 0 1 0 - -

0x04 Bad Configuration Error - Set if the value is not use‐
ful because there is some inconsistency regard‐
ing the parameterization or configuration, de‐
pending on what a specific manufacturer can
detect.

0 0 0 0 0 1 - -

0x00 Bad Non-specific - There is no specific reason why
the value is bad. Used for propagation.

0 0 0 0 0 0 - -

0x28 Bad Process related - Substitute value 0 0 1 0 1 0 - -
0x2B Bad Process related - No maintenance 0 0 1 0 1 0 1 1
0x68 Uncertain Maintenance demanded 0 1 1 0 1 0 - -
0x60 Uncertain Simulated value - Set when the process value is

written by the operator while the block is in
manual mode.

0 1 1 0 0 0 - -

0x64 Uncertain Sensor calibration 0 1 1 0 0 1 - -
0x5C Uncertain Configuration error 0 1 0 1 1 1 - -
0x58 Uncertain Sub-normal 0 1 0 1 1 0 - -
0x54 Uncertain Engineering Unit Range Violation - Set if the

value lies outside of the set of values defined
for this parameter. The Limits define which di‐
rection has been exceeded.

0 1 0 1 0 1 - -

0x50 Uncertain Sensor conversion not accurate 0 1 0 1 0 0 - -
0x4B Uncertain Substitute (constant) 0 1 0 0 1 0 1 1
0x78 Uncertain Process related - No maintenance 0 1 1 1 1 0 - -
0x4C Uncertain Initial Value - Value of volatile parameters dur‐

ing and after reset of the device or of a param‐
eter.

0 1 0 0 1 1 - -

0x48 Uncertain Substitute value - Predefined value is used in‐
stead of the calculated one. This is used for fail
safe handling.

0 1 0 0 1 0 - -

0x44 Uncertain Last Usable Value - Whatever was writing this
value has stopped doing so. This is used for fail
safe handling.

0 1 0 0 0 1 - -

0x40 Uncertain Non-specific - There is no specific reason why
the value is uncertain.

0 1 0 0 0 0 - -

0xE0 Good (Cascade) Initiate Fail Safe (IFS) - The value is from a block
that wants its downstream output block (e.g.
AO) to go to Fail Safe.

1 1 1 0 0 0 - -

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1343

Code
(hex)

Quality Description Q Q S S S S L L

0xD8 Good (Cascade) Local Override (LO) - The value is from a block
that has been locked out by a local key switch
or is a Complex AO/DO with interlock logic ac‐
tive. The failure of normal control must be
propagated to a function running in a host sys‐
tem for alarm and display purposes. This also
implies "Not Invited".

1 1 0 1 1 0 - -

0xD4 Good (Cascade) Do Not Select (DNS) - The value is from a block
which should not be selected, due to condi‐
tions in or above the block.

1 1 0 1 0 1 - -

0xCC Good (Cascade) Not Invited (NI) - The value is from a block
which does not have a target mode that would
use this input.

1 1 0 0 1 1 - -

0xC8 Good (Cascade) Initialization Request (IR) - The value is an ini‐
tialization value for a source (back calculation
input parameter), because the lower loop is
broken or the mode is wrong.

1 1 0 0 1 0 - -

0xC4 Good (Cascade) Initialization Acknowledge (IA) - The value is an
initialized value from a source (cascade input,
remote-cascade in, and remote-output in pa‐
rameters).

1 1 0 0 0 1 - -

0xC0 Good (Cascade) OK - No error or special condition is associated
with this value.

1 1 0 0 0 0 - -

0xA0 Good (Non-Cas‐
cade)

Initiate fail safe 1 0 1 0 0 0 - -

0x98 Good (Non-Cas‐
cade)

Unacknowledged Critical Alarm - Set if the val‐
ue is good and the block has an unacknowl‐
edged Alarm with a priority greater than or
equal to 8.

1 0 0 1 1 0 - -

0x94 Good (Non-Cas‐
cade)

Unacknowledged Advisory Alarm - Set if the
value is good and the block has an unacknowl‐
edged Alarm with a priority less than 8.

1 0 0 1 0 1 - -

0x90 Good (Non-Cas‐
cade)

Unacknowledged Update event - Set if the val‐
ue is good and the block has an unacknowl‐
edged Update event.

1 0 0 1 0 0 - -

0x8C Good (Non-Cas‐
cade)

Active Critical Alarm - Set if the value is good
and the block has an active Alarm with a prior‐
ity greater than or equal to 8.

1 0 0 0 1 1 - -

0x88 Good (Non-Cas‐
cade)

Active Advisory Alarm - Set if the value is good
and the block has an active Alarm with a prior‐
ity less than 8.

1 0 0 0 1 0 - -

0xA8 Good (Non-Cas‐
cade)

Maintenance demanded 1 0 1 0 1 0 - -

0xA4 Good (Non-Cas‐
cade)

Maintenance required 1 0 1 0 0 1 - -

0xBC Good (Non-Cas‐
cade)

Function check - Local override 1 0 1 1 1 1 - -

0x80 Good (Non-Cas‐
cade)

OK - No error or special condition is associated
with this value.

1 0 0 0 0 0 - -

Programming scripts
10.2 WinCC Unified object model

1344 System Manual, 11/2022

Limit
The quality codes can be further subdivided by limits. Limits are optional.

Description Q Q S S S S L L
O.K. - The value is free to move. - - - - - - 0 0
Low limited - The value has acceded its low limits. - - - - - - 0 1
High limited - The value has acceded its high limits. - - - - - - 1 0
Constant (high and low limited) - The value cannot move, no matter what the
process does.

- - - - - - 1 1

See also
Tag (Page 1338)
Tag.WriteQCD() (Page 1353)

Tag.TimeStamp

Description
The "TimeStamp" property returns or specifies the time stamp of the last read operation.

Note
After a write operation or an incorrect read operation, the value "0" is returned.

Type
DateTime

Access
Read-write

Syntax
Tag.TimeStamp

See also
Tag (Page 1338)
Tag.WriteQCD() (Page 1353)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1345

Tag.Value

Description
The "Value" property specifies or returns the value of a tag.

Note
Immediately after initialization of a "Tag" object or an incorrect read operation, the value
"VT_EMPTY" is returned.

Type
Variant

Access
Read-write

Syntax
Tag.Value

See also
Tag (Page 1338)

Tag.Decrease()

Description
The "Decrease" method reduces the current tag value in the automation system by the specified
value. The value is written directly to the AS and not returned to the "Tag" object. If you need the
changed tag value, execute a "Read" method.
The method prevents multiple transfer of the tag value for reading, calculating and writing.
The method executes an asynchronous write operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result,
the corresponding handler of the Promise pattern with the error code as parameter is called
after the execution. In case of a successful execution, the handler will always receive the
error code "0".
For the method to be executed, the value of the tags must be current and valid, the quality
code must correspond to Good (cascade).

Programming scripts
10.2 WinCC Unified object model

1346 System Manual, 11/2022

The following conditions must be met for external tags:
• the connection to the PLC is set up and
• the acquisition mode of the tags is "Cyclic in operation" and
• the tag is used by an object, e.g. an I/O field.

Syntax
Tag.Decrease(value)
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
})

Parameters
value
Type: Float
Numerical value by which the current tag value is decreased in the AS.

Return value
Promise
Depending on the status of the Promise object:
• Promise successful (fulfilled)

ErrorCode "0" as parameter of the "then()" handler
• Promise failed ("rejected")

ErrorCode as parameter of the "catch()" handler

See also
Tag (Page 1338)
Tag.Increase() (Page 1347)
SysFct.DecreaseTag() (Page 1383)

Tag.Increase()

Description
The "Increase" method increases the current tag value in the AS by the specified value. The value
is written directly to the AS and not returned to the "Tag" object. If you need the changed tag
value, execute a "Read-" method.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1347

The method prevents multiple transfer of the tag value for reading, calculating and writing.
The method executes an asynchronous write operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result,
the corresponding handler of the Promise pattern with the error code as parameter is called
after the execution. In case of a successful execution, the handler will always receive the
error code "0".
For the method to be executed, the value of the tags must be current and valid, the quality
code must correspond to Good (cascade).
The following conditions must be met for external tags:
• the connection to the PLC is set up and
• the acquisition mode of the tags is "Cyclic in operation" and
• the tag is used by an object, e.g. an I/O field.

Syntax
Tag.Increase(value)
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
})

Parameters
value
Type: Float
Numerical value by which the current tag value is increased in the AS.

Return value
Promise
Depending on the status of the Promise object:
• Promise successful (fulfilled)

ErrorCode "0" as parameter of the "then()" handler
• Promise failed ("rejected")

ErrorCode as parameter of the "catch()" handler

Programming scripts
10.2 WinCC Unified object model

1348 System Manual, 11/2022

See also
Tag (Page 1338)
Tag.Decrease() (Page 1346)
SysFct.IncreaseTag() (Page 1384)

Tag.Read()

Description
The "Read" method reads a tag ("Tag" object). The value, the Quality Code and the time stamp
of the tag are determined when the tag is read.
The tags are either read from the tag image (cache) or directly from the AS. When the tag
image is used, the method registers all tags that are not yet registered. You should use the
tag image for cyclic readout of tags. If you do not need the tag value cyclically or the update
cycle of the tag is too long, use direct readout (hmiReadDirect).
The method executes a synchronous read operation. When completed, you can use the ""
properties "LastError" and "ErrorDescription" to determine if the execution was successful.

Syntax
Tag.Read([readType])

Parameters
readType
Optional, type: Int32, hmiReadType
Origin of the tag values:
• hmiReadCache (0) or empty

Reads the tag value from the tag image. If no registration exists, the tag is registered. For
high-performance access, define the used tags as triggers of the script.

• hmiReadDirect (1)
Reads the tag value directly from the AS. The tag image is not used.

Return value
Variant

See also
Tag (Page 1338)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1349

Tag.ResetBit()

Description
The "ResetBit" method deletes a bit of the tag in the AS. The bit of the tag is written directly to
the AS and not returned to the "Tag" object. If you need the changed tag value, execute a "Read"
method.
The method prevents multiple transfer of the tag value for reading, calculating and writing.
The method executes an asynchronous write operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result,
the corresponding handler of the Promise pattern with the error code as parameter is called
after the execution. In case of a successful execution, the handler will always receive the
error code "0".
For the method to be executed, the value of the tags must be current and valid, the quality
code must correspond to Good (cascade).
The following conditions must be met for external tags:
• the connection to the PLC is set up and
• the acquisition mode of the tags is "Cyclic in operation" and
• the tag is used by an object, e.g. an I/O field.

Syntax
Tag.ResetBit(BitNumber)
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
})

Parameters
BitNumber
Type: UInt8, value range: 0-63, depending on the data type of the tag
Bit of tag which is set to "0" (False).

Return value
Promise

Programming scripts
10.2 WinCC Unified object model

1350 System Manual, 11/2022

Depending on the status of the Promise object:
• Promise successful (fulfilled)

ErrorCode "0" as parameter of the "then()" handler
• Promise failed ("rejected")

ErrorCode as parameter of the "catch()" handler

See also
Tag (Page 1338)
Tag.SetBit() (Page 1351)
SysFct.ResetBitInTag() (Page 1385)

Tag.SetBit()

Description
The "SetBit" method sets a bit of the tag in the AS. The bit of the tag is written directly to the AS
and not returned to the "Tag" object. If you need the changed tag value, execute a "Read" method.
The method prevents multiple transfer of the tag value for reading, calculating and writing.
The method executes an asynchronous write operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result,
the corresponding handler of the Promise pattern with the error code as parameter is called
after the execution. In case of a successful execution, the handler will always receive the
error code "0".
For the method to be executed, the value of the tags must be current and valid, the quality
code must correspond to Good (cascade).
The following conditions must be met for external tags:
• the connection to the PLC is set up and
• the acquisition mode of the tags is "Cyclic in operation" and
• the tag is used by an object, e.g. an I/O field.

Syntax
Tag.SetBit(BitNumber)
.then(function(ErrorCode) {
 ...
})
.catch(function(ErrorCode) {
 ...
})

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1351

Parameters
BitNumber
Type: UInt8, value range: 0-63, depending on the data type of the tag
Bit of the tag that is set to "1" (TRUE).

Return value
Promise
Depending on the status of the Promise object:
• Promise successful (fulfilled)

ErrorCode "0" as parameter of the "then()" handler
• Promise failed ("rejected")

ErrorCode as parameter of the "catch()" handler

See also
Tag (Page 1338)
Tag.ResetBit() (Page 1350)
SysFct.SetBitInTag() (Page 1386)

Tag.Write()

Description
The "Write" method writes the values of the tag ("Tag" object). You must first set the values of the
individual tags with the "Value" property. The value of the "Value" property does not have to be
the current value of the tag after the write operation is complete. If you want to update the
information for the tags, execute a "Read" method.
The Tag.Write method works asynchronously. The Tag.Read method may return unexpected
results if the processing of a preceding Write call is not yet complete.
If the method waits for the write operation to be completed ("hmiWriteWait"), the properties
"LastError" and "ErrorDescription" are also written for each tag. This enables you to determine
if the execution was successful. If you need the result of the write operation without blocking
the script execution, use the "WriteAsync" method of the "TagSet" object.
The properties "QualityCode" and "TimeStamp" of the tags are not determined during writing.
The tags are written directly to the AS. The tag image and the process image are not used by
the method.

Syntax
Tag.Write([value],[writeType])

Programming scripts
10.2 WinCC Unified object model

1352 System Manual, 11/2022

Parameters
value
Optional, type: Variant
Writes the tag value:
• Specify value

The specified value overwrites the current value of the "Value" property of the tag.
• Without value

The current value of the "Value" property of the tag is written.

writeType
Optional, type: Int32, hmiWriteType
Specifies if the method waits for the write operation to be completed:
• hmiWriteNoWait (0) or empty

Writes the tag value without waiting. Errors for the write operation are not detected.
• hmiWriteWait (1)

Waits until the tag value is written in the AS. The properties "LastError" and "ErrorDescription"
of the tags are written.

Return value
ErrorCode

See also
Tag (Page 1338)
Tag.WriteQCD() (Page 1353)
Tag.WriteWithOperatorMessage() (Page 1354)

Tag.WriteQCD()

Description
The "WriteQCD" method writes the value of an internal tag ("Tag" object), including its quality
code and time stamp, both synchronously and asynchronously.
When you call the method for an external tag, it writes the quality code and time stamp
predefined by the system, not the one defined by the user.
Use this method to import already logged tag values from a runtime system to WinCC
Unified.

Syntax
Tag.WriteQCD([value],[writeType],[TimeStamp],[QualityCode])

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1353

Parameters
value
Optional, type: Variant
Writes the tag value.

writeType
Optional, type: Int32, hmiWriteType
Specifies if the method waits for the write operation to be completed:
• hmiWriteNoWait (0) or empty

Writes the tag value without waiting. Errors for the write operation are not detected.
• hmiWriteWait (1)

Waits until the tag value is written in the AS. The properties "LastError" and "ErrorDescription"
of the tags are written.

TimeStamp
Optional, type: DateTime
Writes the time stamp.

QualityCode
Optional, type: UInt32
Writes the quality code.

Return value
ErrorCode

See also
Tag (Page 1338)
Tag.QualityCode (Page 1341)
Tag.TimeStamp (Page 1345)
Tag.Write() (Page 1352)
Tag.WriteWithOperatorMessage() (Page 1354)

Tag.WriteWithOperatorMessage()

Description
The "WriteWithOperatorMessage" method writes the values of the tag ("Tag" object) and then
triggers an operator input alarm. The value of the "Value" property does not have to be the
current value of the tags after the write operation is complete. If you want to update the
information for the tags, execute a "Read" method.

Programming scripts
10.2 WinCC Unified object model

1354 System Manual, 11/2022

The triggered operator input alarm contains the reason for the value change, the old and
new value, the user and host name and the unit.
Once the write operation is completed, the properties "LastError" and "ErrorDescription" are
also written for each tag. This enables you to determine if the execution was successful.
The properties "QualityCode" and "TimeStamp" of the tags are not determined during writing.
The tags are written directly to the AS. The tag image and the process image are not used by
the method.

Syntax
Tag.WriteWithOperatorMessage(value,reason)

Parameters
value
Type: Variant
Tag value. The specified value overwrites the current value of the "Value" property of the tags.

reason
Type: String
Reason for the value change of the triggered alarm.

Return value
ErrorCode

Example
Write a tag and then output the operator input alarm "Reason":

Copy code
var tag1 = Tags("Tag1");
var err = tag1.WriteWithOperatorMessage(5000,"Reason");

See also
Tag (Page 1338)
Tag.Write() (Page 1352)
Tag.WriteQCD() (Page 1353)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1355

TagResult

Description
The "TagResult" object represents the result of a changed HMI tag.

Object type
HMITagResult

Properties
The "TagResult" object has the following properties:
• ErrorDescription

Returns a description of the error code for the last faulty access.
• LastError

Returns an error code for the last faulty read or write operation.
• Name

Returns the name of the tag.
• QualityCode

Returns the quality level of a tag value after reading a tag.
• TimeStamp

Returns the time stamp of the last read operation.
• Value

Specifies or returns a value, depending on the object being used.

Methods
--

TagResult.ErrorDescription

Description
The "ErrorDescription" property returns a description of the error code for the last faulty access.

Note
An empty string is returned after a successful read or write operation.

Type
String

Programming scripts
10.2 WinCC Unified object model

1356 System Manual, 11/2022

Access
Read-only

Syntax
TagResult.ErrorDescription

See also
TagResult (Page 1356)

TagResult.LastError

Description
The "LastError" property returns an error code for the last faulty read or write operation.

Note
The value "0" is returned after a successful read or write operation.

Type
ErrorCode

Access
Read-only

Syntax
TagResult.LastError

See also
TagResult (Page 1356)

TagResult.Name

Description
The "Name" property returns the name of the tag ("Tag" object).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1357

Type
String, HMITag

Access
Read-only

Syntax
TagResult.Name

See also
TagResult (Page 1356)

TagResult.QualityCode

Description
The "QualityCode" property returns the quality level of a tag value after reading a tag.
The quality code has the binary 8-bit structure QQSSSLL. The first two positions (QQ) of the
quality code define the quality of the tag value:

Quality Description Q Q S S S S L L
Bad Tag value cannot be used. 0 0 - - - - - -
Uncertain Quality of the tag value is worse than usual. However, it

might still be possible to use the tag value.
0 1 - - - - - -

Good (Non-Cas‐
cade)

Quality of the tag value is good. Attention should be paid
to substatus.

1 0 - - - - - -

Good (Cascade) Quality of the tag value is good. Tag value could be used. 1 1 - - - - - -

Positions 3 to 6 (SSSS) of the quality code specify the substatus of the quality. Positions 7 and
8 (LL) are optional and define possible limits.

Note
Directly after initializing a "Tag" object, the "BAD NON-SPECIFIC" value is returned. After a write
operation or an incorrect read operation, the value "BAD OUT OF SERVICE" is returned.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1358 System Manual, 11/2022

Syntax
TagResult.QualityCode

Quality code of tags
The implemented quality codes are listed in the following table. The table begins with the worst
quality code and ends with the best quality code. The best quality code has the lowest priority,
while the worst quality has the highest priority. If multiple statuses occur simultaneously for a
tag in the processing chain, the poorest code is passed on.

Code
(hex)

Quality Description Q Q S S S S L L

0x23 Bad Device passivated - Diagnostic alerts inhibited 0 0 1 0 0 0 1 1
0x3F Bad Function check - Local override 0 0 1 1 1 1 1 1
0x1C Bad Out of Service - The value is not reliable be‐

cause the block is not being evaluated, and
may be under construction by a configurer. Set
if the block mode is O/S.

0 0 0 1 1 1 - -

0x73 Uncertain Simulated value - Start 0 1 1 1 0 0 1 1
0x74 Uncertain Simulated value - End 0 1 1 1 0 1 - -
0x84 Good (Non-Cas‐

cade)
Active Update event - Set if the value is good
and the block has an active Update event.

1 0 0 0 0 1 - -

0x24 Bad Maintenance alarm - More diagnostics availa‐
ble.

0 0 1 0 0 1 - -

0x18 Bad No Communication, with no usable value - Set
if there has never been any communication
with this value since it was last "Out of Service".

0 0 0 1 1 0 - -

0x14 Bad No Communication, with last usable value - Set
if this value had been set by communication,
which has now failed.

0 0 0 1 0 1 - -

0x0C Bad Device Failure - Set if the source of the value is
affected by a device failure.

0 0 0 0 1 1 - -

0x10 Bad Sensor failure 0 0 0 1 0 0 - -
0x08 Bad Not Connected - Set if this input is required to

be connected and is not connected.
0 0 0 0 1 0 - -

0x04 Bad Configuration Error - Set if the value is not use‐
ful because there is some inconsistency regard‐
ing the parameterization or configuration, de‐
pending on what a specific manufacturer can
detect.

0 0 0 0 0 1 - -

0x00 Bad Non-specific - There is no specific reason why
the value is bad. Used for propagation.

0 0 0 0 0 0 - -

0x28 Bad Process related - Substitute value 0 0 1 0 1 0 - -
0x2B Bad Process related - No maintenance 0 0 1 0 1 0 1 1
0x68 Uncertain Maintenance demanded 0 1 1 0 1 0 - -
0x60 Uncertain Simulated value - Set when the process value is

written by the operator while the block is in
manual mode.

0 1 1 0 0 0 - -

0x64 Uncertain Sensor calibration 0 1 1 0 0 1 - -

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1359

Code
(hex)

Quality Description Q Q S S S S L L

0x5C Uncertain Configuration error 0 1 0 1 1 1 - -
0x58 Uncertain Sub-normal 0 1 0 1 1 0 - -
0x54 Uncertain Engineering Unit Range Violation - Set if the

value lies outside of the set of values defined
for this parameter. The Limits define which di‐
rection has been exceeded.

0 1 0 1 0 1 - -

0x50 Uncertain Sensor conversion not accurate 0 1 0 1 0 0 - -
0x4B Uncertain Substitute (constant) 0 1 0 0 1 0 1 1
0x78 Uncertain Process related - No maintenance 0 1 1 1 1 0 - -
0x4C Uncertain Initial Value - Value of volatile parameters dur‐

ing and after reset of the device or of a param‐
eter.

0 1 0 0 1 1 - -

0x48 Uncertain Substitute value - Predefined value is used in‐
stead of the calculated one. This is used for fail
safe handling.

0 1 0 0 1 0 - -

0x44 Uncertain Last Usable Value - Whatever was writing this
value has stopped doing so. This is used for fail
safe handling.

0 1 0 0 0 1 - -

0x40 Uncertain Non-specific - There is no specific reason why
the value is uncertain.

0 1 0 0 0 0 - -

0xE0 Good (Cascade) Initiate Fail Safe (IFS) - The value is from a block
that wants its downstream output block (e.g.
AO) to go to Fail Safe.

1 1 1 0 0 0 - -

0xD8 Good (Cascade) Local Override (LO) - The value is from a block
that has been locked out by a local key switch
or is a Complex AO/DO with interlock logic ac‐
tive. The failure of normal control must be
propagated to a function running in a host sys‐
tem for alarm and display purposes. This also
implies "Not Invited".

1 1 0 1 1 0 - -

0xD4 Good (Cascade) Do Not Select (DNS) - The value is from a block
which should not be selected, due to condi‐
tions in or above the block.

1 1 0 1 0 1 - -

0xCC Good (Cascade) Not Invited (NI) - The value is from a block
which does not have a target mode that would
use this input.

1 1 0 0 1 1 - -

0xC8 Good (Cascade) Initialization Request (IR) - The value is an ini‐
tialization value for a source (back calculation
input parameter), because the lower loop is
broken or the mode is wrong.

1 1 0 0 1 0 - -

0xC4 Good (Cascade) Initialization Acknowledge (IA) - The value is an
initialized value from a source (cascade input,
remote-cascade in, and remote-output in pa‐
rameters).

1 1 0 0 0 1 - -

0xC0 Good (Cascade) OK - No error or special condition is associated
with this value.

1 1 0 0 0 0 - -

0xA0 Good (Non-Cas‐
cade)

Initiate fail safe 1 0 1 0 0 0 - -

Programming scripts
10.2 WinCC Unified object model

1360 System Manual, 11/2022

Code
(hex)

Quality Description Q Q S S S S L L

0x98 Good (Non-Cas‐
cade)

Unacknowledged Critical Alarm - Set if the val‐
ue is good and the block has an unacknowl‐
edged Alarm with a priority greater than or
equal to 8.

1 0 0 1 1 0 - -

0x94 Good (Non-Cas‐
cade)

Unacknowledged Advisory Alarm - Set if the
value is good and the block has an unacknowl‐
edged Alarm with a priority less than 8.

1 0 0 1 0 1 - -

0x90 Good (Non-Cas‐
cade)

Unacknowledged Update event - Set if the val‐
ue is good and the block has an unacknowl‐
edged Update event.

1 0 0 1 0 0 - -

0x8C Good (Non-Cas‐
cade)

Active Critical Alarm - Set if the value is good
and the block has an active Alarm with a prior‐
ity greater than or equal to 8.

1 0 0 0 1 1 - -

0x88 Good (Non-Cas‐
cade)

Active Advisory Alarm - Set if the value is good
and the block has an active Alarm with a prior‐
ity less than 8.

1 0 0 0 1 0 - -

0xA8 Good (Non-Cas‐
cade)

Maintenance demanded 1 0 1 0 1 0 - -

0xA4 Good (Non-Cas‐
cade)

Maintenance required 1 0 1 0 0 1 - -

0xBC Good (Non-Cas‐
cade)

Function check - Local override 1 0 1 1 1 1 - -

0x80 Good (Non-Cas‐
cade)

OK - No error or special condition is associated
with this value.

1 0 0 0 0 0 - -

Limit
The quality codes can be further subdivided by limits. Limits are optional.

Description Q Q S S S S L L
O.K. - The value is free to move. - - - - - - 0 0
Low limited - The value has acceded its low limits. - - - - - - 0 1
High limited - The value has acceded its high limits. - - - - - - 1 0
Constant (high and low limited) - The value cannot move, no matter what the
process does.

- - - - - - 1 1

See also
TagResult (Page 1356)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1361

TagResult.TimeStamp

Description
The "TimeStamp" property returns or specifies the time stamp of the last read operation.

Note
After a write operation or an incorrect read operation, the value "0" is returned.

Type
DateTime

Access
Read-write

Syntax
TagResult.TimeStamp

See also
TagResult (Page 1356)

TagResult.Value

Description
The "Value" property specifies or returns the value of a tag.

Note
Immediately after initialization of a "Tag" object or an incorrect read operation, the value
"VT_EMPTY" is returned.

Type
Variant

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1362 System Manual, 11/2022

Syntax
TagResult.Value

See also
TagResult (Page 1356)

TagSubscription

Description
The "TagSubscription" object enables HMI tags to be monitored for change.

Use
The "AlarmSubscription" object represents a selection of active alarms. A "TagSubscription"
object is initialized through the "CreateSubscription" method of the "Tags" object.

Object type
HMITagSubscription

Properties
--

Methods
The "TagSubscription" object has the following methods:
• Start()

Activates monitoring of HMI tags of the "TagSubscription" object.
• Stop()

Stops monitoring of HMI tags of the "TagSubscription" object.

TagSubscription.Start()

Description
The "Start" method activates the monitoring of HMI tags of the "TagSubscription" object.

Syntax
TagSubscription.Start();

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1363

Parameters
--

Return value
ErrorCode

Example
Monitor changes to the "HMI_Tag_1" and "HMI_Tag_1" tags:

Copy code
const subs = HMIRuntime.Tags.CreateSubscription(['HMI_Tag_1', 'HMI_Tag_2'], (changedTags)
=> {
 for (const tag of changedTags) {
 HMIRuntime.Trace(`Tag ${tag.Name} value updated to ${tag.Value}`);
 }
 subs.Stop();
});
subs.Start();

See also
TagSubscription (Page 1363)
TagSubscription.Stop() (Page 1364)

TagSubscription.Stop()

Description
The "Stop" method terminates the monitoring of HMI tags of the "TagSubscription" object.

Syntax
TagSubscription.Stop();

Parameters
--

Return value
ErrorCode

Programming scripts
10.2 WinCC Unified object model

1364 System Manual, 11/2022

Example
Stop monitoring the changes to the "HMI_Tag_1" and "HMI_Tag_1" tags:

Copy code
const subs = HMIRuntime.Tags.CreateSubscription(['HMI_Tag_1', 'HMI_Tag_2'], (changedTags)
=>
 {
 for(const tag of changedTags)
 {
 HMIRuntime.Trace(`Tag ${tag.Name} value updated to ${tag.Value}`);
 }
 subs.Stop();
 });
subs.Start();

See also
TagSubscription (Page 1363)
TagSubscription.Start() (Page 1363)

TagSet

Description
The "TagSet" object ("HMITagSet" type) is a list of "Tag" objects that provides optimized access to
tags in runtime. After initialization of the "TagSet" object, you can execute read and write access
to multiple tags in one call. Access demonstrates better performance and lower communication
load than single access to multiple tags.
You reference a "TagSet" object through the "Tags" object or create a new "TagSet" object with
the "Tags.CreateTagSet" method.
By default, you access a "Tag" object (type "HMITag") through the "TagSet" object. The "Tag"
object gives you access to all properties and methods of the tags.

Use
The "TagSet" object is a list and can be counted and enumerated. You can access the "TagSet" list
using the index or the tag name.
The appropriate HMI tags must exist for the read and write access to tags ("Tag" objects) of
the list to be executed without errors. If a read or write access error has occurred, can be
read out with the properties "LastError" and "ErrorDescription" once the methods have been
executed.

Object type
HMITagSet

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1365

Properties
The "TagSet" object has the following properties:
• Count

Returns the number of elements of the "TagSet" list.
• ErrorDescription

Returns a description of the error code for the last faulty access.
• LastError

Returns an error code for the last faulty read or write operation.

Methods
The "TagSet" object has the following methods:
• Add()

Adds a tag to the "TagSet" list.
• Clear()

Removes all tags from the "TagSet" list.
• Item()

Returns a tag of the "TagSet" list.
• Read()

Reads in all tags of the "TagSet" list.
• ReadAsync()

Reads in all tags of the "TagSet" list (asynchronous).
• ReadMaxAge()

Reads in all tags of the "TagSet" list and ensures that these are not older than the specified
time period (maxAge).

• Remove()
Removes a tag by its name from the "TagSet" list.

• Write()
Writes the values of all tags of the "TagSet" list.

• WriteAsync()
Writes the values of all tags of the "TagSet" list (asynchronous).

• WriteAsyncQCD()
Writes the values of all tags in the "TagSet" list, including their quality code and time stamps
(asynchronous).

• WriteQCD()
Writes the values of all tags in the "TagSet" list, including their quality code and time stamps.

• WriteWithOperatorMessage()
Writes the values of all tags of the "TagSet" list and then triggers an operator input alarm for
each tag.

Programming scripts
10.2 WinCC Unified object model

1366 System Manual, 11/2022

TagSet.Count

Description
The "Count" property returns the number of elements in the "TagSet" list.

Type
UInt32

Access
Read-only

Syntax
TagSet.Count

See also
TagSet (Page 1365)

TagSet.ErrorDescription

Description
The "ErrorDescription" property returns a description of the error code for the last faulty access.
The description of the error code of the last method call is returned.

Note
An empty string is returned after a successful read or write operation.

Type
String

Access
Read-only

Syntax
TagSet.ErrorDescription

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1367

See also
TagSet (Page 1365)

TagSet.LastError

Description
The "LastError" property returns an error code for the last faulty read or write operation. The error
code for the last method call is returned.

Note
The value "0" is returned after a successful read or write operation.

Type
ErrorCode

Access
Read-only

Syntax
TagSet.LastError

Note
Evaluate the "LastError" property for all objects of the TagSet.

See also
TagSet (Page 1365)

TagSet.Add()

Description
The "Add" method adds a tag ("Tag" object) to the "TagSet" list. The tags are referenced by the
name.

Syntax
TagSet.Add(tag)

Programming scripts
10.2 WinCC Unified object model

1368 System Manual, 11/2022

Parameters
tag
Type: String, HMITag | String[], HMITag | Variant[][], HMITag
Names of "Tag" objects that are added to the list.

Note
No "Tag" object can be transferred as a parameter. A "Tag" object is referenced using the name.

Return value
Object[], HMITag (Page 1338)

See also
Tag (Page 1338)
TagSet (Page 1365)

TagSet.Clear()

Description
The "Clear" method removes all tags ("Tag" objects) from the "TagSet" list.

Syntax
TagSet.Clear()

Parameter
--

Return value
--

See also
TagSet (Page 1365)
TagSet.Remove() (Page 1374)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1369

TagSet.Item()

Description
The "Item" method returns a "Tag" object of the "TagSet" list.

Syntax
TagSet[.Item](name)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "TagSet" object.

Parameter
name
Type: String, HMITag | Int32, HMITag
Tag name or index number (1...n) of a "Tag" object in the list

Note
The index number of a "Tag" object does not represent the order in which the "Tag" objects were
added to the TagSet list.

Return value
Object, HMITag (Page 1338)

See also
Tag (Page 1338)
TagSet (Page 1365)

TagSet.Read()

Description
The "Read" method reads in all tags ("Tag" objects) of the "TagSet" list. The value, the Quality
Code and the time stamp of all tags are determined when the tag is read.
The tags are either read from the tag image (cache) or directly from the AS. When the tag
image is used, the method registers all tags that are not yet registered. You should use the

Programming scripts
10.2 WinCC Unified object model

1370 System Manual, 11/2022

tag image for cyclic readout of tags. If you do not need the tag value cyclically or the update
cycle of the tag is too long, use direct readout (hmiReadDirect).
The method executes a synchronous read operation. When completed, you can use the
"TagSet" properties "LastError" and "ErrorDescription" to determine if the execution was
successful.

Syntax
TagSet.Read([readType])

Parameter
readType
Optional, type: Int32, hmiReadType
Origin of the tag values:
• hmiReadCache (0) or empty

Reads the tag value from the tag image. If no registration exists, the tag is registered. For
high-performance access, define the used tags as triggers of the script.

• hmiReadDirect (1)
Reads the tag value directly from the AS. The tag image is not used.

Return value
--

See also
TagSet (Page 1365)
TagSet.ReadAsync() (Page 1371)
TagSet.ReadMaxAge() (Page 1373)

TagSet.ReadAsync()

Description
The "ReadAsync" method reads in all tags ("Tag" objects) of the "TagSet" list. The value, the
Quality Code and the time stamp of all tags are determined when the tag is read.
The tags are either read from the tag image (cache) or directly from the AS. When the tag
image is used, the method registers all tags that are not yet registered. You should use the
tag image for cyclic readout of tags. If you do not need the tag value cyclically or the update
cycle of the tag is too long, use direct readout (hmiReadDirect).
The method executes an asynchronous read operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the read operation. Depending on the result,

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1371

once execution is complete the corresponding handler of the Promise pattern is called with
the "TagSet" object or the error code as parameter.

Syntax
TagSet.ReadAsync([readType])
.then(function(HMITagSet) {
 ...
})
.catch(function(ErrorCode) {
 ...
})

Parameters
readType
Optional, type: Int32, hmiReadType
Origin of the tag values:
• hmiReadCache (0) or empty

Reads the tag value from the tag image. If no registration exists, the tag is registered. For
high-performance access, define the used tags as triggers of the script.

• hmiReadDirect (1)
Reads the tag value directly from the AS. The tag image is not used.

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled

Object, HMITagSet (Page 1365) as parameter of the "then()" handler.
• Promise failed (rejected)

ErrorCode as parameter of the "catch()" handler. This status only exists when all tags of the
"TagSet" object could not be read.

See also
TagSet (Page 1365)
TagSet.Read() (Page 1370)
TagSet.ReadMaxAge() (Page 1373)

Programming scripts
10.2 WinCC Unified object model

1372 System Manual, 11/2022

TagSet.ReadMaxAge()

Description
The "ReadMaxAge" method reads in all tags ("Tag" objects) of the "TagSet" list and ensures that
these are not older than the specified time period (maxAge). The value, the Quality Code and the
time stamp of all tags are determined when the tag is read.
The tags are read either from the process image (maxAge > 0) or directly from the AS
(maxAge = 0). The method does not use the tag image and does not register tags. You should
not use this method for cyclic readout of tags.
The method executes an asynchronous read operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the read operation. Depending on the result,
once execution is complete the corresponding handler of the Promise pattern is called with
the "TagSet" object or the error code as parameter.

Syntax
TagSet.ReadMaxAge(maxAge)
.then(function(HMITagSet) {
 ...
})
.catch(function(ErrorCode) {
 ...
})

Parameters
maxAge
Type: UInt32
Time interval in milliseconds after which a tag value must be updated.
• maxAge = 0

Read tag value immediately directly from the AS.
• maxAge > 0

Read tag value from process image according to time stamp.

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled

Object, HMITagSet (Page 1365) as parameter of the "then()" handler.
• Promise failed (rejected)

ErrorCode as parameter of the "catch()" handler. This status only exists when all tags of the
"TagSet" object could not be read.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1373

See also
TagSet (Page 1365)
TagSet.Read() (Page 1370)
TagSet.ReadAsync() (Page 1371)

TagSet.Remove()

Description
The "Remove" method removes tags ("Tag" objects) using their names from the "TagSet" list.

Syntax
TagSet.Remove(tag)

Parameters
tag
Type: String, HMITag | String[], HMITag | Variant[][], HMITag
Removes a "Tag" object from the "TagSet" list.

Note
No "Tag" object can be transferred as a parameter. A "Tag" object is referenced using the name.

Return value
--

See also
TagSet (Page 1365)
TagSet.Clear() (Page 1369)

TagSet.Write()

Description
The "Write" method writes the values of all tags ("Tag" objects) of the "TagSet" list. You must first
set the values of the individual tags with the "Value" property. The value of the "Value" property
must not correspond to the actual value of the tag once the write operation is complete. If you
want to update the information for the tags, execute a "Read" method.

Programming scripts
10.2 WinCC Unified object model

1374 System Manual, 11/2022

If the method waits for the write operation to be completed ("hmiWriteWait"), the properties
"LastError" and "ErrorDescription" are also written for each tag. This enables you to determine
if the execution was successful. If you need the result of the write operation without blocking
the script execution, use the "WriteAsync" method.
The properties "QualityCode" and "TimeStamp" of the tags are not determined during writing.
The tags are written directly to the AS. The tag image and the process image are not used by
the method.

Syntax
TagSet.Write([writeType])

Parameters
writeType
Optional, type: Int32, hmiWriteType
Specifies if the method waits for the write operation to be completed:
• hmiWriteNoWait (0) or empty

Writes the tag value without waiting. Errors for the write operation are not detected.
• hmiWriteWait (1)

Waits until the tag value is written in the AS. The properties "LastError" and "ErrorDescription"
of the tags are written.

Return value
--

See also
TagSet (Page 1365)
TagSet.WriteAsync() (Page 1375)
TagSet.WriteAsyncQCD() (Page 1377)
TagSet.WriteQCD() (Page 1378)
TagSet.WriteWithOperatorMessage() (Page 1379)

TagSet.WriteAsync()

Description
The "WriteAsync" method writes the values of all tags ("Tag" objects) of the "TagSet" list. You must
first set the values of the individual tags with the "Value" property. The value of the "Value"
property must not correspond to the actual value of the tag once the write operation is
complete. If you want to update the information for the tags, execute a "Read" method.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1375

If the method waits for the write operation to be completed ("hmiWriteWait"), the properties
"LastError" and "ErrorDescription" are written for each tag. This enables you to determine if
the execution was successful.
The properties "QualityCode" and "TimeStamp" of the tags are not determined during writing.
The tags are written directly to the AS. The tag image and the process image are not used by
the method.
The method executes an asynchronous write operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result,
once execution is complete the corresponding handler of the Promise pattern is called with
the "TagSet" object or the error code as parameter. An execution is only faulty ("Promise
rejected") when none of the tags of the "TagSet" object could be written.

Syntax
TagSet.WriteAsync([writeType])
.then(function(HMITagSet) {
 ...
})
.catch(function(ErrorCode) {
 ...
})

Parameters
writeType
Optional, type: Int32, hmiWriteType
Specifies if the method waits for the write operation to be completed:
• hmiWriteNoWait (0) or empty

Writes the tag value without waiting. Errors for the write operation are not detected.
• hmiWriteWait (1)

Waits until the tag value is written in the AS. The properties "LastError" and "ErrorDescription"
of the tags are written.

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled

Object, HMITagSet (Page 1365) as parameter of the "then()" handler.
• Promise failed (rejected)

ErrorCode as parameter of the "catch()" handler. This status only exists when none of the tags
of the "TagSet" object could be written.

Programming scripts
10.2 WinCC Unified object model

1376 System Manual, 11/2022

See also
TagSet (Page 1365)
TagSet.Write() (Page 1374)
TagSet.WriteAsyncQCD() (Page 1377)
TagSet.WriteQCD() (Page 1378)
TagSet.WriteWithOperatorMessage() (Page 1379)

TagSet.WriteAsyncQCD()

Description
The "WriteAsync" method writes the values of all tags ("Tag" objects) of the "TagSet" list,
including their quality code and time stamps.
You must first set the values of the individual tags with the "Value" property. The value of the
"Value" property must not correspond to the actual value of the tag once the write operation
is complete. If you want to update the information for the tags, execute a "Read" method.
If the method waits for the write operation to be completed ("hmiWriteWait"), the properties
"LastError" and "ErrorDescription" are written for each tag. This enables you to determine if
the execution was successful.
The tags are written directly to the AS. The tag image and the process image are not used by
the method.
The method executes an asynchronous write operation without blocking further script
execution. In doing so, the method uses a Promise object, which has handlers for successful
("then()") and faulty ("catch()") execution of the write operation. Depending on the result,
once execution is complete the corresponding handler of the Promise pattern is called with
the "TagSet" object or the error code as parameter. An execution is only faulty ("Promise
rejected") when none of the tags of the "TagSet" object could be written.
When you call the method for external tags, it writes the quality code and time stamp
predefined by the system, not the one defined by the user.

Syntax
TagSet.WriteAsyncQCD([writeType])
.then(function(HMITagSet) {
 ...
})
.catch(function(ErrorCode) {
 ...
})

Parameters
writeType
Optional, type: Int32, hmiWriteType

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1377

Specifies if the method waits for the write operation to be completed:
• hmiWriteNoWait (0) or empty

Writes the tag value without waiting. Errors for the write operation are not detected.
• hmiWriteWait (1)

Waits until the tag value is written in the AS. The properties "LastError" and "ErrorDescription"
of the tags are written.

Return value
Promise
Depending on the status of the Promise object:
• Promise fulfilled

Object, HMITagSet (Page 1365) as parameter of the "then()" handler.
• Promise failed (rejected)

ErrorCode as parameter of the "catch()" handler. This status only exists when none of the tags
of the "TagSet" object could be written.

See also
TagSet (Page 1365)
TagSet.Write() (Page 1374)
TagSet.WriteAsync() (Page 1375)
TagSet.WriteQCD() (Page 1378)
TagSet.WriteWithOperatorMessage() (Page 1379)

TagSet.WriteQCD()

Description
The "Write" method writes the values of all tags ("Tag" objects) of the "TagSet" list, including their
quality code and time stamps.
You must first set the values of the individual tags with the "Value" property. The value of the
"Value" property must not correspond to the actual value of the tag once the write operation
is complete. If you want to update the information for the tags, execute a "Read" method.
If the method waits for the write operation to be completed ("hmiWriteWait"), the properties
"LastError" and "ErrorDescription" are also written for each tag. This enables you to determine
if the execution was successful. If you need the result of the write operation without blocking
the script execution, use the "WriteAsync" method.
The tags are written directly to the AS. The tag image and the process image are not used by
the method.
When you call the method for external tags, it writes the quality code and time stamp
predefined by the system, not the one defined by the user.

Programming scripts
10.2 WinCC Unified object model

1378 System Manual, 11/2022

Syntax
TagSet.WriteQCD([writeType])

Parameter value
writeType
Optional, type: Int32, hmiWriteType
Specifies if the method waits for the write operation to be completed:
• hmiWriteNoWait (0) or empty

Writes the tag value without waiting. Errors for the write operation are not detected.
• hmiWriteWait (1)

Waits until the tag value is written in the AS. The properties "LastError" and "ErrorDescription"
of the tags are written.

Return value
--

See also
TagSet (Page 1365)
TagSet.Write() (Page 1374)
TagSet.WriteAsync() (Page 1375)
TagSet.WriteAsyncQCD() (Page 1377)
TagSet.WriteWithOperatorMessage() (Page 1379)

TagSet.WriteWithOperatorMessage()

Description
The "WriteWithOperatorMessage" method writes the values of all tags ("Tag" objects) of the
"TagSet" list and then triggers an operator input alarm for each tag. You must first set the values
of the individual tags with the "Value" property. The value of the "Value" property does not
correspond to the actual value of the tag once the write operation is complete. If you want to
update the information for the tags, execute a "Read" method.
In addition to the reason, the triggered operator input alarms contain the old and new value,
the user and host name and the unit.
Once the write operation is completed, the properties "LastError" and "ErrorDescription" are
also written for each tag. This enables you to determine if the execution was successful. If
you need the result of the write operation without blocking the script execution, use the
"WriteAsync" method.
The properties "QualityCode" and "TimeStamp" of the tags are not determined during writing.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1379

The tags are written directly to the AS. The tag image and the process image are not used by
the method.

Syntax
TagSet.WriteWithOperatorMessage(reason)

Parameters
reason
Type: String
Reason for the change in value of the triggered alarms.

Return value
ErrorCode

Example
Write tags in a TagSet and then output the operator input alarm "Reason":

Copy code
var ts = Tags.CreateTagSet();
ts.Add("Tag1"); ts.Add("Tag2");
ts.Item("Tag1").Value = 10; ts.Item("Tag2").Value = 20;
var err = tag1.WriteWithOperatorMessage("Reason");

See also
TagSet (Page 1365)
TagSet.Write() (Page 1374)
TagSet.WriteAsync() (Page 1375)
TagSet.WriteAsyncQCD() (Page 1377)
TagSet.WriteQCD() (Page 1378)

Tag

Description
Tag (Page 1338)

Programming scripts
10.2 WinCC Unified object model

1380 System Manual, 11/2022

SysFct

Description
The "SysFct" object ("HMITagSysFct" type) enables access to the system functions of the "Tags"
object.

Object type
HMITagSysFct

Properties
--

Methods
The "SysFct" object has the following methods:
• DecreaseTag()

Subtracts a value from the value of the tag.
• IncreaseTag()

Adds a value to the value of the tag.
• InvertBitInTag()

Inverts a bit in the tag.
• ResetBitInTag()

Resets a bit in the tag.
• SetBitInTag()

Sets a bit in the tag.
• SetTagValue()

Assigns a new value to the tag.
• ShiftAndMask()

Converts the bit pattern of a source tag into the bit pattern of a target tag.
• UpdateTag()

Reads from the PLC the current value of the tags with the specified update ID.

See also
Tags (Page 1333)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1381

SysFct.CreateSetTagCommand()

Description
The "CreateSetTagCommand" method is an auxiliary function via which the result of return
parameters of system functions can be written to HMI tags.

Syntax
[HMIRuntime.]Tags.SysFct.CreateSetTagCommand(TagName);

Parameters
TagName
Type: String, HMITag
HMI tag to which the return is written.

Return value
Object, HMISetTagCommand

Example
Write the result of the "LookUpText" system function to the "tempResultTagName" HMI tag and
read it out:

Copy code
let setTagCommand = HMIRuntime.Tags.SysFct.CreateSetTagCommand(tempResultTagName);
HMIRuntime.Resources.SysFct.LookUpText(setTagCommand, qualitiyValue.value,
HMIRuntime.Language, nameTextList);
result = Tags(tempResultTagName).Read();

See also
SysFct (Page 1381)

Programming scripts
10.2 WinCC Unified object model

1382 System Manual, 11/2022

SysFct.DecreaseTag()

Description
The "DecreaseTag" method subtracts the given value from the value of the tag.

Note
The system function uses the same tag as input and output values. When this system function
is used to convert a value, an auxiliary tag must be used. You can assign the tag value to the
auxiliary tag with the "SetTagValue" system function.

Syntax
[HMIRuntime.]Tags.SysFct.DecreaseTag(Tag,value);

Parameters
Tag
Type: String, HMITag
Tag from which the specified value is subtracted.

value
Type: Float
Numeric value that is subtracted.

Return value
ErrorCode

See also
SysFct (Page 1381)
SysFct.IncreaseTag() (Page 1384)
Tag.Decrease() (Page 1346)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1383

SysFct.IncreaseTag()

Description
The "IncreaseTag" method adds the specified value to the value of the tag.

Note
The system function uses the same tag as input and output values. When this system function
is used to convert a value, an auxiliary tag must be used. You can assign the tag value to the
auxiliary tag with the "SetTagValue" system function.

Syntax
[HMIRuntime.]Tags.SysFct.IncreaseTag(Tag,value);

Parameters
Tag
Type: String, HMITag
Tag to which the specified value is added.

value
Type: Float
Numeric value that is added.

Return value
ErrorCode

See also
SysFct (Page 1381)
SysFct.DecreaseTag() (Page 1383)
Tag.Increase() (Page 1347)

SysFct.InvertBitInTag()

Description
The "InvertBitInTag" method inverts a bit in the specified tag:
• If the bit in the tag has the value "1" (True), it is set to "0" (False).
• If the bit in the tag has the value "0" (False), it is set to "1" (True).

Programming scripts
10.2 WinCC Unified object model

1384 System Manual, 11/2022

After changing the specified bit, the system function transfers the entire tag back to the PLC.
In the meantime it is not checked whether other bits in the tag have changed. Operator and
PLC have read-only access to the specified tag until it is transferred back to the PLC.

Syntax
[HMIRuntime.]Tags.SysFct.InvertBitInTag(Tag,BitNumber);

Parameters
Tag
Type: String, HMITag
tag in which the bit is inverted.

BitNumber
Type: UInt8, value range: 0-63, depending on the data type of the tag
Bit of the tag that is inverted.
The bits are counted in a tag from right to left. The counting begins with 0.

Return value
ErrorCode

See also
SysFct (Page 1381)
SysFct.ResetBitInTag() (Page 1385)
SysFct.SetBitInTag() (Page 1386)

SysFct.ResetBitInTag()

Description
The "ResetBitInTag" method sets a bit in the specified tag to "0" (False).
After changing the specified bit, the system function transfers the entire tag back to the PLC.
In the meantime it is not checked whether other bits in the tag have changed. Operator and
PLC have read-only access to the specified tag until it is transferred back to the PLC.

Syntax
[HMIRuntime.]Tags.SysFct.ResetBitInTag(Tag,BitNumber);

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1385

Parameters
Tag
Type: String, HMITag
Tag in which the bit is set.

BitNumber
Type: UInt8, value range: 0-63, depending on the data type of the tag
Bit of tag which is set to "0" (False).
The bits are counted in a tag from right to left. The counting begins with 0.

Return value
ErrorCode

See also
SysFct (Page 1381)
SysFct.InvertBitInTag() (Page 1384)
SysFct.SetBitInTag() (Page 1386)
Tag.ResetBit() (Page 1350)

SysFct.SetBitInTag()

Description
The "SetBitInTag" method sets a bit in the specified tag to "1" (True).
After changing the specified bit, the system function transfers the entire tag back to the PLC.
In the meantime it is not checked whether other bits in the tag have changed. Operator and
PLC have read-only access to the specified tag until it is transferred back to the PLC.

Note
This function does not support data types of type UInt.

Syntax
[HMIRuntime.]Tags.SysFct.SetBitInTag(Tag,BitNumber);

Parameters
Tag
Type: String, HMITag

Programming scripts
10.2 WinCC Unified object model

1386 System Manual, 11/2022

Tag in which the bit is set.

BitNumber
Type: UInt8, value range: 0-63, depending on the data type of the tag
Bit of tag which is set to "1" (True).
The bits are counted in a tag from right to left. The counting begins with 0.

Return value
ErrorCode

See also
SysFct (Page 1381)
SysFct.InvertBitInTag() (Page 1384)
SysFct.ResetBitInTag() (Page 1385)
Tag.SetBit() (Page 1351)

SysFct.SetTagValue()

Description
The "SetTagValue" method assigns a new value to the specified tag.

Note
This system function can be used to assign strings and numbers, depending on the type of tag.

Note
The system function is only executed after a connection has been established.

Syntax
[HMIRuntime.]Tags.SysFct.SetTagValue(Tag,Value);

Parameters
Tag
Type: String, HMITag
Tag to which a value is assigned.

Value
Type: Variant

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1387

Value that is assigned.

Return value
ErrorCode

See also
SysFct (Page 1381)

SysFct.ShiftAndMask()

Description
The "ShiftAndMask" method converts the input bit pattern of a source tag into the output bit
pattern of a target tag. This involves bit shifting and masking.

Note
If the source and target tag have a different number of bits, using the system function in the
target tag can result in a violation of the value range.

Syntax
[HMIRuntime.]Tags.SysFct.ShiftAndMask(Source,Target,bitsToShift,bitP
attern);

Parameter
Source
Type: String, HMITag
Source tag that receives the input bit pattern. Tags of integer type are allowed.
The source and target tags must have the same number of bits.

Target
Type: String, HMITag
Target tag to which the output bit pattern is saved. Tags of integer type are allowed.
The source and target tags must have the same number of bits.

bitsToShift
Type: Int8
Number of bits by which the input bit pattern is shifted right. A negative value shifts the
input bit pattern to the left.

Programming scripts
10.2 WinCC Unified object model

1388 System Manual, 11/2022

The number of bits to be shifted must be less than the number of bits of the source and
target tags.

Note
The left bit is "1" in a source tag of the data type with negative signed integer. This sign bit is
padded with "0" when the bits are shifted right. The sign changes to "+".

bitPattern
Type: UInt32
Integer number that is used as bit mask. The bit pattern is used to multiply the shifted input
bit pattern.
The bit mask must not have more bits than the source and target tags.

Return value
ErrorCode

Example
The source tag of the 16-bit integer type has the current value "72": 0000000001001000.

Shift bits
bitsToShift has the value "+3". The input bit pattern is shifted 3 bits to the right.
Left is filled with "0". Three bits are truncated on the right: 0000000000001001. The new
decimal value is "9".

Mask bits
bitPattern has the value "2478" with the bit pattern "0000100110101110". The shifted
input bit pattern (0000000000001001) is multiplied by the bit mask, with bit-by-bit logical
AND operation. The result is the decimal value "8".

Save result
The decimal value is stored in the target tag.

See also
SysFct (Page 1381)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1389

SysFct.UpdateTag()

Description
The "UpdateTag" method reads from the PLC the current value of the tags with the specified
update ID. An update ID can be used for several tags.

Note
Tags of the data type STRUCT are not supported.

Syntax
[HMIRuntime.]Tags.SysFct.UpdateTag(UpdateID);

Parameter
UpdateID
Type: UInt32, HMITagUpdateID
Specifies the Update ID.

Return value
ErrorCode

See also
SysFct (Page 1381)

10.2.2.19 Timers

Description

The "Timers" object can time the script run by means of one-time or cyclic timers. You can
execute individual functions delayed or repeatedly.

Programming scripts
10.2 WinCC Unified object model

1390 System Manual, 11/2022

Object type
HMITimers

Properties
--

Methods
The "Timers" object has the following methods:
• ClearInterval()

Deletes a timer object for cyclic execution of a function.
• ClearTimeout()

Deletes a timer object for delayed execution of a function.
• SetInterval()

Creates a timer object for the cyclic execution of a function.
• SetTimeout()

Creates a timer object for delayed execution of a function.

Example
Execution of the "myFunc" function is delayed:

Copy code
function setDelay() {
 var timerId = HMIRuntime.Timers.SetTimeout(myFunc, 5000);
 function myFunc() {
 HMIRuntime.Trace("SetTimeout triggered");
 }
}

Timers.ClearInterval()

Description
The "ClearIntervall" method deletes a timer object for cyclic execution of a function. You can
delete a timer object at any time prior to the next execution.

Syntax
HMIRuntime.Timers.ClearIntervall(TimerID);

Parameters
TimerID
Type: Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1391

ID of the timer object to be deleted. The ID is returned by the "SetInterval" method during
creation of the timer object.

Return value
--

Example
Create and delete a cyclic timer:

Copy code
var TimerID = HMIRuntime.Timers.SetInterval(update, 1000);
HMIRuntime.Timers.ClearInterval(TimerID);

See also
Timers (Page 1390)
Timers.SetInterval() (Page 1393)

Timers.ClearTimeout()

Description
The "ClearTimeout" method deletes a timer object for delayed execution of a function. You can
delete a timer object at any time prior to the execution.

Syntax
HMIRuntime.Timers.ClearTimeout(TimerID);

Parameters
TimerID
Type: Int32
ID of the timer object to be deleted. The ID is returned by the "SetTimeout" method during
creation of the timer object.

Return value
--

Programming scripts
10.2 WinCC Unified object model

1392 System Manual, 11/2022

Example
Create and delete a one-time timer:

Copy code
var TimerID = HMIRuntime.Timers.SetTimeout(update,1000);
HMIRuntime.Timers.ClearTimeout(TimerID);

See also
Timers (Page 1390)
Timers.SetTimeout() (Page 1394)

Timers.SetInterval()

Description
The "SetIntervall" method creates a timer object for cyclic execution of a function and returns the
ID of the timer object. When a time interval expires, a function is started and scheduled for a new
execution according to the time interval.

Syntax
HMIRuntime.Timers.SetIntervall(CallbackFunction, DelayInMillisecs);

Parameters
CallbackFunction
Type: Function, HMIOnTimerCB
Function that is executed cyclically.
Required prototype of the callback function: TimerCallback()

DelayInMillisecs
Type: UInt32
Time interval in milliseconds in which the function is executed cyclically.

Return value
Int32

Example
Create a cyclic timer:

Copy code
var TimerID = HMIRuntime.Timers.SetInterval(update,1000);

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1393

See also
Timers (Page 1390)
Timers.ClearInterval() (Page 1391)

Timers.SetTimeout()

Description
The "SetTimeout" method creates a timer object for time-delayed execution of a function and
returns the ID of the timer object. When a time interval has elapsed, a function is started.

Syntax
HMIRuntime.Timers.SetTimeout(CallbackFunction, DelayInMillisecs);

Parameters
CallbackFunction
Type: Function, HMIOnTimerCB
Function that is executed once.
Required prototype of the callback function: TimerCallback()

DelayInMillisecs
Type: UInt32
Time interval in milliseconds after which the function is executed delayed.

Return value
Int32

Example
Create a one-time timer:

Copy code
var TimerID = HMIRuntime.Timers.SetInterval(update,1000);

See also
Timers (Page 1390)
Timers.ClearTimeout() (Page 1392)

Programming scripts
10.2 WinCC Unified object model

1394 System Manual, 11/2022

10.2.2.20 UI

Description

The "UI" object ("HMIUI" type) represents the user interface of the graphical runtime. You use
the "UI" object to directly reference the currently active screen or the listing of the screen
windows on the highest level.

Application
The "UI" object is used to reference the configured elements of the graphical runtime system,
such as screen windows, screens or screen objects. This means that you have access to all the
properties and methods of these elements.
To simplify the use of the "UI" object, you can also use the alias UI for HMIRuntime.UI.

Note
Several screens can be opened simultaneously in runtime. These screens are displayed in screen
windows. Each screen window contains exactly one screen (Screen) that can contain any
number of further screen windows (Screen Window). The resulting hierarchy can be mapped by
using an object path, which is used in the "FindItem" method for addressing.
In the window arrangement of the runtime (Screen Window Layout), one screen window can be
defined at the highest level (Top Level Screen Window) for each existing monitor.

Object type
HMIUI

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1395

Properties
The "UI" object has the following properties:
• ActiveScreen

Returns the screen that has the input focus.
• DataSet

Returns the global parameter set.
• PopupScreenWindows

Returns the list of all popup screen windows.
• RootWindow

Returns the top-level screen window (Top Level Screen Window) of the screen in which the
script is executed.

• Style
Specifies the style of the display and operating objects.

• Windows
Returns the "Windows" object with the list of screen windows.

Methods
The "UI" object has the following methods:
• FindItem()

Returns screen windows or screen objects through their object path.
• GetClientInfo()

Returns information about the client.
• OpenFaceplateInPopup()

Opens a faceplate in a popup window and sets the values of the faceplate interface.

Example
Modify the screen of the own screen window on the highest level:

UI.RootWindow.Screen = 'NewScreen';

or with the "FindItem" method and relative addressing:

UI.FindItem('~').Screen = 'NewScreen';

Reference and modify the screen of a screen window in absolute terms on the highest level
outside of the own screen hierarchy:

UI.FindItem('/TopLevelWindow2').Screen = 'NewScreen';

Programming scripts
10.2 WinCC Unified object model

1396 System Manual, 11/2022

UI.ActiveScreen

Description
The "ActiveScreen" property returns the screen that has the input focus.

Note
You access the screen with input focus via the "ActiveScreen" property without specification of
an object path.
If the runtime loses the input focus, the "ActiveScreen" property references the screen that last
had the input focus.

Type
Object, HmiScreen (Page 1397)

Access
Read-only

Syntax
[HMIRuntime.]UI.ActiveScreen

See also
UI (Page 1395)
Screen (Page 1397)

Screen

Description
The "Screen" object ("HMIScreen" type) displaya screen in runtime. A screen can contain any
number of screen windows ("Window" objects) and screen objects ("ScreenItem" object).
You reference a "Screen" object via the properties UI.ActiveScreen,
Window.CurrentScreen, Screen.ParentScreen or ScreenItem.Parent.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1397

Use
You can use the "this" and "Item" objects in scripts. The "this" object refers in this case to the
screen ("Screen" object) and the "Item" object to the screen object (ScreenItem) in which the
script is created. For better clarity, you can also use the Screen alias for the "this" object.

Note
Several screens can be opened simultaneously in runtime. These screens are displayed in screen
windows. Each screen window contains exactly one screen (Screen) that can contain any
number of additional screen windows (Screen Window). The resulting hierarchy can be mapped
by using an object path, which is used in the "FindItem" method for addressing.
You can specify one top level screen window (Top Level Screen Window) for each monitor in the
window layout of the runtime system (Screen Window Layout).

Object type
HmiScreen

Properties
The "Screen" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BackFillPattern

Specifies the fill pattern of the background.
• BackGraphic

Specifies the graphic for the image background.
• BackGraphicStretchMode

Specifies the type of scaling of the background graphic in the screen.
• BackgroundFillMode

Specifies the fill area of the background fill.
• CurrentWindow

Returns the screen window which contains the current screen.
• DataSet

Returns the parameter set of the screen.
• DisplayName

Specifies the display name.
• Enabled

Specifies whether the screen can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

1398 System Manual, 11/2022

• EnableExplicitUnlock
Returns which button must be pressed for the screen to be operable.

• Height
Specifies the height.

• HorizontalAlignment
Specifies the horizontal alignment.

• HotKeys
Returns the hotkeys defined for the screen.

• Items
Returns a list of all screen objects of the screen.

• Layers
Returns a list of all layers of the screen.

• Name
Returns the name of the screen.

• Operability
Returns whether the screen is operable.

• Parent
Returns the higher-level screen object (here: screen window).

• ParentScreen
Returns the higher-level screen.

• RequireExplicitUnlock
Returns whether the screen can only be operated while the associated button is being
pressed.

• ScreenMaster
Specifies the screen template of the screen.

• ScreenNumber
Returns the screen number.

• VerticalAlignment
Specifies the vertical alignment.

• Width
Specifies the width.

• Windows
Returns a list of all screen windows of the screen.

Methods
The "Screen" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the screen.
• FindItem()

Returns screen windows or screen objects through their object path.
• PropertyFlashing()

Configures flashing of a property.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1399

Events
The "Screen" object has the following events:
• OnContextTapped()

Occurs when the screen is right-clicked or long-touched.
• OnHotKey()

Occurs when a hotkey is pressed.
• OnLoaded()

Occurs when the screen is fully loaded in runtime.
• OnTapped()

Occurs when the screen is clicked with the left mouse button or short-touched.
• OnUnloaded()

Occurs when the active screen on the HMI device is completely cleared.

Screen.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
Screen.AlternateBackColor

See also
Screen (Page 1397)

Screen.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the screen.

Programming scripts
10.2 WinCC Unified object model

1400 System Manual, 11/2022

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
Screen.Authorization

See also
Screen (Page 1397)

Screen.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
Screen.BackColor

See also
Screen (Page 1397)

Screen.BackFillPattern

Description
The "BackFillPattern" property specifies the fill pattern of the background.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1401

Type
Int32, HmiFillPattern
Specifies the fill pattern:
• Solid (0): Solid
• Transparent (65536): Transparent. Depending on the runtime settings, visible objects in the

background can be selected.
• Horizontal (131072): Horizontal
• Vertical (131073): Vertical
• ForwardDiagonal (131074): Forward diagonally striped
• BackwardDiagonal (131075): Backward diagonally striped
• Cross (131076): Cross
• DiagonalCross (131077): Diagonal cross
• GradientHorizontal (1048576): Horizontal gradient
• GradientVertical (1048577): Vertical gradient
• GradientForwardDiagonal (1048578): Gradient forward diagonal
• GradientBackwardDiagonal (1048579): Gradient backward diagonal
• GradientHorizontalTricolor (1048832): Horizontal tricolor gradient
• GradientVerticalTricolor (1048833): Gradient vertical tricolor
• GradientForwardDiagonalTricolor (1048834): Gradient forward diagonal tricolor
• GradientBackwardDiagonalTricolor (1048835): Gradient backward diagonal tricolor

Access
Read-write

Syntax
Screen.BackFillPattern

See also
Screen (Page 1397)

Screen.BackGraphic

Description
The "BackGraphic" property specifies the graphic for the screen background.

Programming scripts
10.2 WinCC Unified object model

1402 System Manual, 11/2022

Type
String

Access
Read-write

Syntax
Screen.BackGraphic

See also
Screen (Page 1397)

Screen.BackGraphicStretchMode

Description
The "BackGraphicStretchMode" property specifies the type of scaling of the background graphic
in the screen.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Screen.BackGraphicStretchMode

See also
Screen (Page 1397)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1403

Screen.BackgroundFillMode

Description
The "BackgroundFillMode" property specifies the fill area of the background fill.

Type
Int32, HmiBackgroundFillMode
Specifies the type of background fill:
• Window (0): The filling is adapted to the size of the window.
• Screen (1): The filling is adapted to the size of the screen.

Access
Read-write

Syntax
Screen.BackgroundFillMode

See also
Screen (Page 1397)

Screen.CurrentWindow

Description
The "CurrentWindow" property returns the screen window which contains the current screen.

Type
Object, HmiScreenWindow (Page 1436)

Access
Read-only

Syntax
Screen.CurrentWindow

Programming scripts
10.2 WinCC Unified object model

1404 System Manual, 11/2022

See also
Screen (Page 1397)
ScreenWindow (Page 1436)

ScreenWindow

Description
ScreenWindow (Page 1436)

Screen.DataSet

Description
The "DataSet" property returns the data set ("DataSet" object) of the screen.

Type
Object, HMIDataSet (Page 1405)

Access
Read-only

Syntax
Screen.DataSet

See also
Screen (Page 1397)
DataSet (Page 1405)

DataSet

Description
The "DataSet" object ("HMIDataSet" type) is a list of "DataSetElement" objects that enable data
exchange in runtime.
A "DataSet" object is defined globally (on the "UI" object) or on a screen (the "Screen" object).
You can access the data from any action.
You reference a "DataSet" object via the UI.DataSet property or via the respective screen
with the Screen.DataSet property.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1405

The "DataSet" object exists as long as the screen is displayed. The global object exists over the
entire time period in which runtime runs.

Use
The "DataSet" object is a list which be counted and enumerated. You can access the "DataSet" list
via the index or the element names.

Object type
HMIDataSet

Properties
The "DataSet" object has the following properties:
• Count

Returns the number of elements of the "DataSet" list.

Methods
The "DataSet" object has the following methods:
• Add()

Adds an element with value to the "DataSet" list.
• Clear()

Removes all elements from the "DataSet" list.
• Exists()

Checks whether an element is present in the "DataSet" list.
• Item()

Returns the value of an element of the "DataSet" list.
• Remove()

Removes an element by its name from the "DataSet" list.

DataSet.Count

Description
The "Count" property returns the number of elements in the "DataSet" list.

Type
UInt32

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

1406 System Manual, 11/2022

Syntax
DataSet.Count

See also
DataSet (Page 1405)

DataSet.Add()

Description
The "Add" method adds an element ("DataSetElement" object) to the "DataSet" list. The elements
are referenced by name.

Syntax
DataSet.Add(name,value)

Parameters
name
Type: String
Name of the element that will be added to the list.

value
Type: Variant
Value of the element that will be added to the list.

Return value
--

See also
DataSet (Page 1405)

DataSet.Clear()

Description
The "Clear" method removes all elements ("DataSetElement" objects) from the "DataSet" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1407

Syntax
DataSet.Clear()

Parameter
--

Return value
--

See also
DataSet (Page 1405)

DataSet.Exists()

Description
The "Exists" method searches for an element ("DataSetElement" object) in the "DataSet" list.

Syntax
DataSet.Exists(name)

Parameters
name
Type: String
Name of the element that is being searched for.

Return value
Bool

See also
DataSet (Page 1405)

DataSet.Item()

Description
The "Item" method returns the value of a "DataSetElement" object of the "DataSet" list.

Programming scripts
10.2 WinCC Unified object model

1408 System Manual, 11/2022

Syntax
DataSet[.Item](name)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "DataSet" object.

Parameter
name
Type: String
Element name or index number (1...n) of an object "DataSetElement" of the list

Return value
Variant

See also
DataSet (Page 1405)
DataSetElement (Page 1410)

DataSet.Remove()

Description
The "Remove" method removes an element ("DataSetElement" object) from the "DataSet" list by
its name.

Syntax
DataSet.Remove(name)

Parameters
name
Type: String
Name of the element that will be removed.

Return value
--

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1409

See also
DataSet (Page 1405)

DataSetElement

Description
The "DataSetElement" object represents a data set element in the "DataSet" list.

Object type
HMIDataSetElement

Properties
The "DataSetElement" object has the following properties:
• Name

Returns the name of the element.
• Value

Returns the value of the element.

Methods
--

DataSetElement.Name

Description
The "Name" property returns the name of the element ("DataSetElement" object).

Type
String

Access
Read-only

Syntax
DataSetElement.Name

Programming scripts
10.2 WinCC Unified object model

1410 System Manual, 11/2022

See also
DataSetElement (Page 1410)

DataSetElement.Value

Description
The "Name" property returns the value of the element ("DataSetElement" object).

Type
Variant

Access
Read-only

Syntax
DataSetElement.Value

See also
DataSetElement (Page 1410)

Screen.DisplayName

Description
The "DisplayName" property specifies the display name of the screen.

Type
String

Access
Read-write

Syntax
Screen.DisplayName

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1411

See also
Screen (Page 1397)

Screen.Enabled

Description
The "Enabled" property specifies whether the screen can be operated with all screen objects in
runtime.

Type
Bool

Access
Read-write

Syntax
Screen.Enabled

See also
Screen (Page 1397)

Screen.EnableExplicitUnlock

Description
The "EnableExplicitUnlock" property returns the button that must be pressed for the screen to be
operable.

Type
Object, HmiButton (Page 1961)

Access
Read-only

Syntax
Screen.EnableExplicitUnlock

Programming scripts
10.2 WinCC Unified object model

1412 System Manual, 11/2022

See also
Screen (Page 1397)
Button (Page 1961)

Button

Description
Button (Page 1961)

Screen.Height

Description
The "Height" property specifies the height of the screen in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Screen.Height

See also
Screen (Page 1397)

Screen.HorizontalAlignment

Description
The "HorizontalAlignment" property specifies the horizontal alignment of the screen. This
property is used when the screen is smaller than the screen window.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1413

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Screen.HorizontalAlignment

See also
Screen (Page 1397)

Screen.Items

Description
The "Items" property returns a list of all screen objects of the screen.

Type
Object, HMIScreenItems (Page 1415)

Access
Read-only

Syntax
Screen.Items

See also
Screen (Page 1397)
ScreenItems (Page 1415)

Programming scripts
10.2 WinCC Unified object model

1414 System Manual, 11/2022

ScreenItems

Description
The "ScreenItems" object is a list of all screen objects ("HmiScreenItemBase" objects) of the
screen.
You reference a "ScreenItems" object via the Screen.Items property.

Use
The "ScreenItems" object is a list and can be enumerated. You can access the "ScreenItems" list
using the index or the tag name.

Object type
HMIScreenItems

Properties
--

Methods
The "ScreenItems" object has the following methods:
• Item()

Returns a screen object of the "ScreenItems" list.

ScreenItems.Item()

Description
The "Item" method returns a screen object of a screen window via the "ScreenItems" list.

Syntax
ScreenItems[.Item](ScreenItemName);

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "ScreenItems" object.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1415

Parameters
ScreenItemName
Type: String, HmiScreenItemBase
Name of the screen object

Return value
Object, HmiScreenItemBase (Page 1571)

See also
ScreenItems (Page 1415)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Screen.Layers

Description
The "Layers" property returns a list of all layers of the screen.

Type
Object, HmiLayerCollection (Page 1417)

Access
Read-only

Syntax
Screen.Layers

See also
Screen (Page 1397)
HmiLayerCollection (Page 1417)

Programming scripts
10.2 WinCC Unified object model

1416 System Manual, 11/2022

HmiLayerCollection

Description
The "HmiLayerCollection" object is a list of all layers ("Layer" objects) of the screen.
You reference a "HmiLayerCollection" object via the Screen.Layers property.

Use
The "HmiLayerCollection" object is a list and can be counted and enumerated. You can access the
"HmiLayerCollection" list using the index or the tag name.

Object type
HmiLayerCollection

Properties
The "HmiLayerCollection" object has the following properties:
• Count

Returns the number of layers of the "HmiLayerCollection" list.

Methods
The "HmiLayerCollection" object has the following methods:
• Item()

Returns a level of the "HmiLayerCollection" list.

HmiLayerCollection.Count

Description
The "Count" property returns the number of screen layers of the "HmiLayerCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiLayerCollection.Count

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1417

See also
HmiLayerCollection (Page 1417)

HmiLayerCollection.Item()

Description
The "Item" method returns a screen layer of the "HmiLayerCollection" list.

Syntax
HmiLayerCollection[.Item](HmiLayerName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiLayerCollection" object.

Parameters
HmiLayerName
Type: String, HmiLayerPart
Name of the screen layer

Return value
Object, HmiLayerPart (Page 1418)

See also
HmiLayerCollection (Page 1417)
Layer (Page 1418)

Layer

Description
The "Layer" object represents the layers of an object (e.g. screen).

Object type
HmiLayerPart

Programming scripts
10.2 WinCC Unified object model

1418 System Manual, 11/2022

Properties
The "Layer" object has the following properties:
• MaximumZoom

Specifies the maximum zoom of the screen up to which the level is to be seen.
• MinimumZoom

Specifies the minimum zoom of the screen up to which the level is to be seen.
• Name

Returns the name of the screen layer.
• Visible

Specifies whether the screen layer and contained objects are visible.

Methods
--

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
Layer (Page 1418)
Layer.MinimumZoom (Page 1419)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1419

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
Layer (Page 1418)
Layer.MaximumZoom (Page 1419)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
Layer (Page 1418)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Programming scripts
10.2 WinCC Unified object model

1420 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
Layer (Page 1418)

Screen.Name

Description
The "Name" property returns the name of the screen.

Type
String

Access
Read-only

Syntax
Screen.Name

See also
Screen (Page 1397)

Screen.Operability

Description
The "Operability" property returns whether the screen is operable.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1421

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
Screen.Operability

See also
Screen (Page 1397)

Screen.Parent

Description
The "Parent" property specifies the parent screen object (here: screen window).

Type
Object, HmiScreenWindow (Page 1436)

Access
Read-only

Syntax
Screen.Parent

See also
Screen (Page 1397)
ScreenWindow (Page 1436)

Programming scripts
10.2 WinCC Unified object model

1422 System Manual, 11/2022

ScreenWindow

Description
ScreenWindow (Page 1436)

Screen.ParentScreen

Description
The "ParentScreen" property returns the parent screen that contains the screen window of the
current screen.

Type
Object, HmiScreen (Page 1397)

Access
Read-only

Syntax
Screen.ParentScreen

See also
Screen (Page 1397)

Screen

Description
Screen (Page 1397)

Screen.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the screen can only be operated while the
associated button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1423

Access
Read-only

Syntax
Screen.RequireExplicitUnlock

See also
Screen (Page 1397)

Screen.ScreenMaster

Description
The "ScreenMaster" property specifies the screen template of the screen. All screen objects,
layers and properties of the referenced screen template are inherited.

Type
Object, HmiScreenMaster (Page 1424)

Access
Read-write

Syntax
Screen.ScreenMaster

See also
Screen (Page 1397)
ScreenMaster (Page 1424)

ScreenMaster

Description
The "ScreenMaster" object is the screen template of a screen. All screen objects, layers and
properties of a screen template are inherited by the screen. The screen template is a type of main
layer of the screen.

Programming scripts
10.2 WinCC Unified object model

1424 System Manual, 11/2022

Object type
HmiScreenMaster

Properties
The "ScreenMaster" object has the following properties:
• DisplayName

Specifies the display name.
• HotKeys

Returns the hotkeys specified for the screen template.
• Layers

Returns a list of all layers of the screen template.
• Name

Returns the name of the screen template.
• Visible

Specifies whether the screen template is visible in the screen.

Methods
--

ScreenMaster.DisplayName

Description
The "DisplayName" property specifies the display name of the screen template.

Type
String

Access
Read-write

Syntax
ScreenMaster.DisplayName

See also
ScreenMaster (Page 1424)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1425

ScreenMaster.Layers

Description
The "Layers" property returns a list of all layers of the screen template.

Type
Object, HmiLayerCollection (Page 1426)

Access
Read-only

Syntax
ScreenMaster.Layers

See also
ScreenMaster (Page 1424)
HmiLayerCollection (Page 1426)

HmiLayerCollection

Description
The "HmiLayerCollection" object is a list of all layers ("Layer" objects) of the screen.
You reference a "HmiLayerCollection" object via the Screen.Layers property.

Use
The "HmiLayerCollection" object is a list and can be counted and enumerated. You can access the
"HmiLayerCollection" list using the index or the tag name.

Object type
HmiLayerCollection

Properties
The "HmiLayerCollection" object has the following properties:
• Count

Returns the number of layers of the "HmiLayerCollection" list.

Programming scripts
10.2 WinCC Unified object model

1426 System Manual, 11/2022

Methods
The "HmiLayerCollection" object has the following methods:
• Item()

Returns a level of the "HmiLayerCollection" list.

HmiLayerCollection.Count

Description
The "Count" property returns the number of screen layers of the "HmiLayerCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiLayerCollection.Count

See also
HmiLayerCollection (Page 1426)

HmiLayerCollection.Item()

Description
The "Item" method returns a screen layer of the "HmiLayerCollection" list.

Syntax
HmiLayerCollection[.Item](HmiLayerName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiLayerCollection" object.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1427

Parameters
HmiLayerName
Type: String, HmiLayerPart
Name of the screen layer

Return value
Object, HmiLayerPart (Page 1428)

See also
HmiLayerCollection (Page 1426)
Layer (Page 1428)

Layer

Description
The "Layer" object represents the layers of an object (e.g. screen).

Object type
HmiLayerPart

Properties
The "Layer" object has the following properties:
• MaximumZoom

Specifies the maximum zoom of the screen up to which the level is to be seen.
• MinimumZoom

Specifies the minimum zoom of the screen up to which the level is to be seen.
• Name

Returns the name of the screen layer.
• Visible

Specifies whether the screen layer and contained objects are visible.

Methods
--

Programming scripts
10.2 WinCC Unified object model

1428 System Manual, 11/2022

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
Layer (Page 1428)
Layer.MinimumZoom (Page 1429)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
Layer (Page 1428)
Layer.MaximumZoom (Page 1429)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1429

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
Layer (Page 1428)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
Layer (Page 1428)

Programming scripts
10.2 WinCC Unified object model

1430 System Manual, 11/2022

ScreenMaster.Name

Description
The "Name" property returns the name of the screen template.

Type
String

Access
Read-only

Syntax
ScreenMaster.Name

See also
ScreenMaster (Page 1424)

ScreenMaster.Visible

Description
The "Visible" property specifies whether the screen template is visible. The screen template is a
type of main layer of a screen.

Type
Bool

Access
Read-write

Syntax
ScreenMaster.Visible

See also
ScreenMaster (Page 1424)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1431

Screen.ScreenNumber

Description
The "ScreenNumber" property returns the screen number.

Type
UInt16

Access
Read-only

Syntax
Screen.ScreenNumber

See also
Screen (Page 1397)

Screen.VerticalAlignment

Description
The "VerticalAlignment" property specifies the vertical alignment.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Screen.VerticalAlignment

Programming scripts
10.2 WinCC Unified object model

1432 System Manual, 11/2022

See also
Screen (Page 1397)

Screen.Width

Description
The "Width" property specifies the width of the screen in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Screen.Width

See also
Screen (Page 1397)

Screen.Windows

Description
The "Windows" returns a list of all screen windows of the screen.

Type
Object, HMIWindows (Page 1434)

Access
Read-only

Syntax
Screen.Windows

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1433

See also
Screen (Page 1397)
Windows (Page 1434)

Windows

Description
The "Windows" object is a list of all screen windows ("ScreenWindow" objects) of the screen.
You reference a "Windows" object via the Screen.Windows property.

Use
The "Windows" object is a list and can be counted and enumerated. You can access the
"Windows" list using the index or the tag name.

Object type
HMIWindows

Properties
The "Windows" object has the following properties:
• Count

Returns the number of screen windows of the "Windows" list.

Methods
The "Windows" object has the following methods:
• Item()

Returns a screen window of the "Windows" list.

Windows.Count

Description
The "Count" property returns the number of screen windows in the "Windows" list.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

1434 System Manual, 11/2022

Access
Read-only

Syntax
Windows.Count

See also
Windows (Page 1434)

Windows.Item()

Description
The "Item" method returns a screen window of the "Windows" list.

Syntax
Windows[.Item](WindowName);

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "Windows" object.

Parameters
WindowName
Type: String, HmiScreenWindow
Name of the screen window

Return value
Object, HmiScreenWindow (Page 1436)

See also
Windows (Page 1434)
ScreenWindow (Page 1436)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1435

ScreenWindow

Description
The "ScreenWindow" object represents a screen window in runtime. A screen window contains
exactly one screen ("Screen" object).
The "ScreenWindow" object is returned from the Screen.Windows list, the FindItem()
method or the Screen.CurrentWindow and Screen.Parent properties.

Object type
HmiScreenWindow

Use
You use the "ScreenWindow" object to reference a "Screen" object and have access to all the
objects and properties of a screen.

Note
Several screens can be opened simultaneously in runtime. These screens are displayed in screen
windows. Each screen window contains exactly one screen (Screen) that can contain any
number of additional screen windows (Screen Window). The resulting hierarchy can be mapped
by using an object path, which is used in the "FindItem" method for addressing.
You can specify one top level screen window (Top Level Screen Window) for each monitor in the
window layout of the runtime system (Screen Window Layout).

Properties
The "ScreenWindow" object has the following properties:
• Adaption

Specifies how the window size adapts.
• Caption

Specifies the text to be displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.
• CurrentQuality

Returns the poorest quality code of all tags which influence the specified screen window.
• CurrentScreen

Returns the screen of the current screen window.
• CurrentZoomFactor

Specifies the zoom factor which is applied to the displayed screen.
• Enabled

Specifies whether the specified object can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

1436 System Manual, 11/2022

• Height
Specifies the height.

• HorizontalScrollBarPosition
Specifies the horizontal alignment for the scroll bar.

• HorizontalScrollBarVisibility
Specifies the setting for the horizontal scroll bar of the window.

• Icon
Specifies the icon.

• InteractiveZooming
Specifies whether zooming is supported.

• Layer
Returns the layer of the screen that contains the screen window.

• Left
Specifies the value of the X coordinate.

• Margin
Specifies the margin of the screen window.

• Monitor
Returns the monitor on which the screen window is displayed.

• Name
Returns the name of the screen window.

• Parent
Returns the higher-level screen object (Parent container).

• Path
Returns the absolute object path of the screen window.

• RenderingTemplate
Returns the name of the template from which the object was created.

• Screen
Specifies the name of the screen contained in the screen window.

• ScreenName
Returns the screen name.

• ScreenNumber
Returns the screen number.

• ShowFocusVisual
Specifies whether the screen window is highlighted when in focus.

• StartupPosition
Specifies the position of the screen window at runtime start.

• StyleItemClass
Returns the style which is applied to the screen window.

• System
Specifies the server prefix.

• TabIndex
Returns the position of the screen window in the tab sequence.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1437

• TabIntoWindow
Specifies that the configured tab sequence of the displayed screen is resumed on activation
via the tab sequence.

• Top
Specifies the value of the Y coordinate.

• VerticalScrollBarPosition
Specifies the vertical alignment for the scroll bar.

• VerticalScrollBarVisibility
Specifies the setting for the vertical scroll bar of the window.

• Visible
Specifies whether the screen window is visible.

• Width
Specifies the width.

• WindowFlags
Specifies the screen window configuration.

Methods
The "ScreenWindow" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the screen window.
• Close()

Closes the screen window.
• PropertyFlashing()

Configures flashing of a property.

Events
The "ScreenWindow" object has the following events:
• OnActivated()

Occurs when a screen window receives focus.
• OnDeactivated()

Occurs when a screen window loses focus.

Example
Change the screen in the adjacent screen window "Window2":

Screen.ParentScreen.Windows('Window2').Screen = 'NewScreen';

or with the "FindItem" method and relative addressing:

Screen.FindItem('../Window2').Screen = 'NewScreen';

Programming scripts
10.2 WinCC Unified object model

1438 System Manual, 11/2022

ScreenWindow.Adaption

Description
The "Adaption" property specifies how the window size adapts.

Type
Int32, HmiScreenWindowAdaption
Specifies how the window size adapts:
• None (0): No adaptation
• WindowToScreen (1): Window size corresponds to screen size
• ScreenToWindow (2): Screen is scaled to window size.

Access
Read-write

Syntax
ScreenWindow.Adaption

See also
ScreenWindow (Page 1436)

ScreenWindow.Caption

Description
The "Caption" property specifies the text to be displayed in the title bar.

Type
Object, HmiTextPart

Access
Read-write

Syntax
ScreenWindow.Caption

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1439

See also
ScreenWindow (Page 1436)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
ScreenWindow.Caption (Page 1439)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

Programming scripts
10.2 WinCC Unified object model

1440 System Manual, 11/2022

See also
Text.Font (Page 1440)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 1440)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1441

See also
Text.Font (Page 1440)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 1440)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1442 System Manual, 11/2022

Syntax
Font.Underline

See also
Text.Font (Page 1440)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 1440)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1443

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
ScreenWindow.Caption (Page 1439)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
ScreenWindow.Caption (Page 1439)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Programming scripts
10.2 WinCC Unified object model

1444 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
ScreenWindow.Caption (Page 1439)

ScreenWindow.CaptionColor

Description
The "CaptionColor" property specifies the color of the title bar.

Type
UInt32

Access
Read-write

Syntax
ScreenWindow.CaptionColor

See also
ScreenWindow (Page 1436)

ScreenWindow.CurrentQuality

Description
The property "CurrentQuality" returns the current worst quality code of all tags which influence
the specified screen window.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1445

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable. Quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
ScreenWindow.CurrentQuality

See also
ScreenWindow (Page 1436)

ScreenWindow.CurrentScreen

Description
The "CurrentScreen" property returns the screen of the current screen window.

Type
Object, HmiScreen (Page 1397)

Access
Read-only

Syntax
ScreenWindow.CurrentScreen

Programming scripts
10.2 WinCC Unified object model

1446 System Manual, 11/2022

See also
Screen (Page 1397)
ScreenWindow (Page 1436)

Screen

Description
Screen (Page 1397)

ScreenWindow.CurrentZoomFactor

Description
The "CurrentZoomFactor" property specifies the zoom factor of the screen window. The zoom
factor may differ from the containing screen. The value 1.0 corresponds to a zoom factor of
100%.

Type
Float

Access
Read-write

Syntax
ScreenWindow.CurrentZoomFactor

See also
ScreenWindow (Page 1436)

ScreenWindow.Enabled

Description
The "Enabled" property specifies whether the screen window can be operated in runtime.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1447

Access
Read-write

Syntax
ScreenWindow.Enabled

See also
ScreenWindow (Page 1436)

ScreenWindow.Height

Description
The "Height" property specifies the height of the screen window in DIU (Device Independent
Unit).

Type
UInt32

Access
Read-write

Syntax
ScreenWindow.Height

See also
ScreenWindow (Page 1436)

ScreenWindow.HorizontalScrollBarPosition

Description
The "HorizontalScrollBarPosition" property specifies the horizontal alignment for the scroll bar.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

1448 System Manual, 11/2022

Access
Read-write

Syntax
ScreenWindow.HorizontalScrollBarPosition

See also
ScreenWindow (Page 1436)
ScreenWindow.HorizontalScrollBarVisibility (Page 1449)

ScreenWindow.HorizontalScrollBarVisibility

Description
The "HorizontalScrollBarVisibility" property specifies the visibility of the horizontal scroll bar.

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
ScreenWindow.HorizontalScrollBarVisibility

See also
ScreenWindow (Page 1436)
ScreenWindow.HorizontalScrollBarPosition (Page 1448)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1449

ScreenWindow.Icon

Description
The "Icon" property specifies the icon of the screen window.

Type
String

Access
Read-write

Syntax
ScreenWindow.Icon

See also
ScreenWindow (Page 1436)

ScreenWindow.InteractiveZooming

Description
The "InteractiveZooming" property specifies whether zooming is supported.

Type
Bool

Access
Read-write

Syntax
ScreenWindow.InteractiveZooming

See also
ScreenWindow (Page 1436)

Programming scripts
10.2 WinCC Unified object model

1450 System Manual, 11/2022

ScreenWindow.Layer

Description
The "Layer" property returns the layer of the screen that contains the screen window.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
ScreenWindow.Layer

See also
ScreenWindow (Page 1436)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
ScreenWindow.Layer (Page 1451)
Layer.MinimumZoom (Page 1452)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1451

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
ScreenWindow.Layer (Page 1451)
Layer.MaximumZoom (Page 1451)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
ScreenWindow.Layer (Page 1451)

Programming scripts
10.2 WinCC Unified object model

1452 System Manual, 11/2022

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
ScreenWindow.Layer (Page 1451)

ScreenWindow.Left

Description
The "Left" property specifies the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
ScreenWindow.Left

See also
ScreenWindow (Page 1436)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1453

ScreenWindow.Margin

Description
The "Margin" property specifies the surrounding outer distance of the screen window.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ScreenWindow.Margin

See also
ScreenWindow (Page 1436)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ScreenWindow.Margin (Page 1454)

Programming scripts
10.2 WinCC Unified object model

1454 System Manual, 11/2022

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ScreenWindow.Margin (Page 1454)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ScreenWindow.Margin (Page 1454)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1455

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ScreenWindow.Margin (Page 1454)

ScreenWindow.Monitor

Description
The "Monitor" property returns the monitor on which the window is displayed.

Type
UInt8

Access
Read-only

Syntax
ScreenWindow.Monitor

See also
ScreenWindow (Page 1436)

Programming scripts
10.2 WinCC Unified object model

1456 System Manual, 11/2022

ScreenWindow.Name

Description
The "Name" property returns the name of the screen window.

Type
String

Access
Read-only

Syntax
ScreenWindow.Name

See also
ScreenWindow (Page 1436)

ScreenWindow.Parent

Description
The "Parent" property returns the parent screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
ScreenWindow.Parent

See also
ScreenWindow (Page 1436)
Screen Items (Page 1571)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1457

Screen Items

Description
Screen Items (Page 1571)

ScreenWindow.Path

Description
The "Path" property returns the absolute object path of a screen window in runtime starting from
the screen window on the highest level.

Note
For the syntax of an object path, see the "FindItem" method (Page 1549).

Type
String

Access
Read-only

Syntax
ScreenWindow.Path

See also
UI.FindItem() (Page 1549)
ScreenWindow (Page 1436)

ScreenWindow.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the object has
been created.

Type
String

Programming scripts
10.2 WinCC Unified object model

1458 System Manual, 11/2022

Access
Read-only

Syntax
ScreenWindow.RenderingTemplate

See also
ScreenWindow (Page 1436)

ScreenWindow.Screen

Description
The "Screen" property specifies the name of the screen ("HMIScreen" type) that is contained in
the screen window. Loads a new screen via its name into the screen window.
The "Screen" property returns a different value than the "CurrentScreen" when the referenced
screen is not yet loaded completely or does not exist.

Type
String, HmiStoredScreen

Access
Read-write

Syntax
ScreenWindow.Screen

See also
ScreenWindow (Page 1436)

ScreenWindow.ScreenName

Description
The "ScreenName" property returns the screen name.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1459

Access
Read-only

Syntax
ScreenWindow.ScreenName

See also
ScreenWindow (Page 1436)

ScreenWindow.ScreenNumber

Description
The "ScreenNumber" property returns the screen number.

Type
UInt16

Access
Read-only

Syntax
ScreenWindow.ScreenNumber

See also
ScreenWindow (Page 1436)

ScreenWindow.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the screen window is highlighted when in
focus.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

1460 System Manual, 11/2022

Access
Read-write

Syntax
ScreenWindow.ShowFocusVisual

See also
ScreenWindow (Page 1436)

ScreenWindow.StartupPosition

Description
The "StartupPosition" property sets the position of the screen window at runtime start.

Type
Int32, HmiWindowStartupPosition
Specifies the position of the screen window:
• None (0): Relative placement on the configured monitor via "Left" and "Top".
• CenteredMonitor (1): Centered on the configured monitor.
• Maximized (2): Maximized on the configured monitor.
• CenteredOwner (3): Centered on the displayed screen.

Access
Read-write

Syntax
ScreenWindow.StartupPosition

See also
ScreenWindow (Page 1436)

ScreenWindow.StyleItemClass

Description
The "StyleItemClass" property returns the style that is applied to the screen window.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1461

Type
String

Access
Read-only

Syntax
ScreenWindow.StyleItemClass

See also
ScreenWindow (Page 1436)

ScreenWindow.System

Description
The "System" property specifies the server prefix.

Type
String, HmiSystem

Access
Read-write

Syntax
ScreenWindow.System

See also
ScreenWindow (Page 1436)

ScreenWindow.TabIndex

Description
The "TabIndex" returns the position of the screen window in the tab sequence.

Programming scripts
10.2 WinCC Unified object model

1462 System Manual, 11/2022

Type
UInt16

Access
Read-only

Syntax
ScreenWindow.TabIndex

See also
ScreenWindow (Page 1436)

ScreenWindow.TabIntoWindow

Description
The "TabIntoWindow" property specifies that the configured tab sequence of the displayed
screen is resumed on activation via the configured tab sequence.

Type
Bool

Access
Read-write

Syntax
ScreenWindow.TabIntoWindow

See also
ScreenWindow (Page 1436)

ScreenWindow.Top

Description
The "Top" property specifies the value of the Y coordinate in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1463

Type
Int32

Access
Read-write

Syntax
ScreenWindow.Top

See also
ScreenWindow (Page 1436)

ScreenWindow.VerticalScrollBarPosition

Description
The "VerticalScrollBarPosition" property specifies the vertical position for the scroll bar.

Type
Int32

Access
Read-write

Syntax
ScreenWindow.VerticalScrollBarPosition

See also
ScreenWindow (Page 1436)
ScreenWindow.VerticalScrollBarVisibility (Page 1464)

ScreenWindow.VerticalScrollBarVisibility

Description
The "VerticalScrollBarVisibility" property specifies the visibility of the vertical scroll bar of the
window.

Programming scripts
10.2 WinCC Unified object model

1464 System Manual, 11/2022

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
ScreenWindow.VerticalScrollBarVisibility

See also
ScreenWindow (Page 1436)
ScreenWindow.VerticalScrollBarPosition (Page 1464)

ScreenWindow.Visible

Description
The "Visible" property specifies whether the screen window is visible.

Type
Bool

Access
Read-write

Syntax
ScreenWindow.Visible

See also
ScreenWindow (Page 1436)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1465

ScreenWindow.Width

Description
The "Width" property specifies the width of the screen window in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ScreenWindow.Width

See also
ScreenWindow (Page 1436)

ScreenWindow.WindowFlags

Description
The "WindowFlags" property specifies the screen window configuration.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title
• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be positioned
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Programming scripts
10.2 WinCC Unified object model

1466 System Manual, 11/2022

Note
Enable multiple properties by adding the integer values or bit operators.

Access
Read-write

Syntax
ScreenWindow.WindowFlags

Example
Adapt the "windowFlags" tag depending on the window configuration:

Copy code
var windowFlags = HmiWindowFlag.ShowCaption | HmiWindowFlag.ShowBorder;
if (CanClose){
 windowFlags |= HmiWindowFlag.CanClose;
} else {
 windowFlags &= HmiWindowFlag.CanClose;
}

See also
ScreenWindow (Page 1436)

ScreenWindow.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
screen window.

Syntax
ScreenWindow.CheckAuthorization()

Parameters
--

Return value
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1467

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
ScreenWindow (Page 1436)

ScreenWindow.Close()

Description
The "Close" method closes the screen window.

Syntax
ScreenWindow.Close()

Parameters
--

Return value
Bool

See also
ScreenWindow (Page 1436)

ScreenWindow.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing means the
change between two values of a property.

Programming scripts
10.2 WinCC Unified object model

1468 System Manual, 11/2022

Syntax
ScreenWindow.PropertyFlashing(propertyName,enable[,value]
[,alternateValue][,rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flashing frequency:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
ScreenWindow (Page 1436)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1469

ScreenWindow_OnActivated()

Description
The "OnActivated" event occurs when a screen window receives focus:
• A screen window is selected via the configured tab sequence.
• A screen window that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and
receives focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
ScreenWindow_OnActivated(item)

Context
Item
Type: Object
Screen window where the event occurs.

See also
ScreenWindow (Page 1436)

ScreenWindow_OnDeactivated()

Description
The "OnDeactivated" event occurs when a screen window loses focus when the operator presses
the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
ScreenWindow_OnDeactivated(item)

Programming scripts
10.2 WinCC Unified object model

1470 System Manual, 11/2022

Context
Item
Type: Object
Screen window where the event occurs.

See also
ScreenWindow (Page 1436)

Screen.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
screen.

Syntax
Screen.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
Screen (Page 1397)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1471

Screen.FindItem()

Description
The "FindItem" method returns screen windows or screen objects through their object path.

Syntax
Screen.FindItem(ScreenItemPath)

Parameter
ScreenItemPath
Type: String
Object path of the searched screen window or screen object.

Note
The "UI.FindItem" method has a global search context and requires absolute object paths. The
"Screen.FindItem" method has the current screen as the search context and can also use relative
object paths.

Formulation of the object path
The syntax of the object path orients itself to the notation of the file system paths. The
object path consists of the names of the screen windows (Screen Windows) and screen
objects (Screen Items). The names are connected via a slash ("/") according to the hierarchical
positioning. Screens (Screens) and their names are not used in the formulation.
Relative and absolute object paths are distinguished by the prefix of the object path. The
following prefixes can be used:
• Relative object path

– "..": References the parent screen window (Parent) in the context of the current screen
window.

– ".": References the own screen window (Self).
– "": A screen object of the current screen window is referenced without prefix.

• Absolute object path
– "/": References a screen window on the highest level, whose name must follow.
– "~": References the screen window on the highest level in the own screen hierarchy.

Programming scripts
10.2 WinCC Unified object model

1472 System Manual, 11/2022

Additional rules for formulating an object path:
• The string ".." may be used several times in the object path, but only together at the

beginning of the object path, for example, "../../Window5".
• If the object path does not end with a screen object name, a screen window is referenced.
• A search is performed for screen objects of the object path in the screens of the referenced

screen window. It is not permitted to specify a screen name.

Examples of object paths
The following window / screen object hierarchy is adopted for the following examples:

The following objects paths for addressing the object result from this:
• Relative addressing:

– "Button_2" changes the label of "Button_1":
// Navigate one level up and find "Button_1" inside the
"ScreenWindowHeader"
Screen.FindItem("../ScreenWindowHeader/Button_1").Text =
"Changed by Button_2"

– "Button_3" changes the label of "Button_5":
// Navigate two levels up and find "Button 2" inside the
"ScreenWindowNavigation"
Screen.FindItem("../../ScreenWindowNavigation/Button_5").Text =
"Changed by Button_3"

– "Button_3" changes the label of "Button_4":
// Find "Button_4" in same screen ("ScreenContent_2")
Screen.FindItem("Button_4").Text = "Changed by Button_3"
Screen.FindItem("./Button_4").Text = "Changed by Button_3"

• Absolute addressing:
– "Button_4" changes the label of "Button_6":

// Navigate to the root screen and find "Button_6" inside the
"ScreenWindowNavigation"
Screen.FindItem("~/ScreenWindowNavigation/Button_6").Text =
"Changed by Button_4"

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1473

Return value
Object, HmiScreenObjectBase (Page 1571)

See also
Screen (Page 1397)
Screen Items (Page 1571)

Screen.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing means the
change between two values of a property.

Syntax
Screen.PropertyFlashing(propertyName,enable[,value][,alternateValue]
[,rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate

Programming scripts
10.2 WinCC Unified object model

1474 System Manual, 11/2022

Specifies the flashing frequency:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
Screen (Page 1397)

Screen_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• Screen is clicked with the right mouse button.
• Screen is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
Screen_OnContextTapped(item,x,y,modifiers,trigger)

Context
Item
Type: Object
Image where the event occurs.

x
Type: DInt
X-coordinate of the input point

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1475

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Screen (Page 1397)

Screen_OnHotKey()

Description
The "OnHotKey" event occurs when the operator presses a hotkey:
Hotkeys are unique within a screen. The hotkeys are activated from the active (local) screen
window down to the top level screen window.

Programming scripts
10.2 WinCC Unified object model

1476 System Manual, 11/2022

Syntax
Screen_OnHotKey(item,keyCode,modifiers)

Context
item
Type: Object
Image where the event occurs.

keyCode
Type: DInt
Numeric identifier of the pressed hotkey

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Screen (Page 1397)

Screen_OnLoaded()

Description
The "OnLoaded" event occurs when the screen is fully loaded in runtime.

Syntax
Screen_OnLoaded(item)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1477

Context
Item
Type: Object
Image at which the event occurs.

See also
Screen (Page 1397)

Screen_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• Screen is clicked with the left mouse button.
• <RETURN> or <SPACE> key is pressed when a screen has the focus.
• Screen is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
Screen_OnTapped(item,x,y,modifiers,trigger)

Context
Item
Type: Object
Image where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

1478 System Manual, 11/2022

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Screen (Page 1397)

Screen_OnUnloaded()

Description
The "OnUnloaded" event occurs when the active screen on the HMI device is completely
removed.

Syntax
Screen_OnUnloaded(item)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1479

Context
Item
Type: Object
Image at which the event occurs.

See also
Screen (Page 1397)

UI.Alarm

Description
The "Alarm" object enables access to the properties of a selected alarm in the alarm control.

Object type
HMIUIAlarm

Properties
--

Methods
The "Alarm" object has the following methods:
• GetSelectedAlarmAttributes()

Returns all properties of a selected alarm in the alarm control.

Alarm.GetSelectedAlarmAttributes()

Description
The "GetSelectedAlarmAttributes" method returns all properties of a selected alarm in the alarm
control.
This method executes an asynchronous read operation without blocking further script
execution. In doing so, the method uses a promise object which has handlers for successful
("then()") and faulty ("catch()") execution of the read operation. Depending on the result,
once execution is complete the corresponding handler of the promise pattern is called with
the "AlarmResult" objects or the error code as parameter.

Programming scripts
10.2 WinCC Unified object model

1480 System Manual, 11/2022

Syntax
[HMIRuntime.]UI.Alarm.GetSelectedAlarmAttributes(PathAlarmControl)
.then(function(HMIAlarmBlockResult[]) {
 ...
});
.catch(function(ErrorCode) {
 ...
});

Parameters
PathAlarmControl
Type: String, HmiAlarmControl
Path to the alarm control

Return value
Promise
Depending on the state of the promise object:
• Promise fulfilled

Object, HMIAlarmBlockResult[] (Page 1481) as parameter of the "then()" handler.
• Promise rejected

ErrorCode as parameter of the "catch()" handler.

See also
UI.Alarm (Page 1480)
AlarmBlockResult (Page 1481)

AlarmBlockResult

Description
The "AlarmBlockResult" object enables access to the properties of a selected alarm. The
"AlarmBlockResult" object is a pure data object which maps all the properties of a selected alarm.

Use
The "AlarmBlockResult" object only contains properties and no methods.
All texts of the "AlarmBlockResult" object are monolingual strings. The language is specified
with the "HMIRuntime.Language" property.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1481

Object type
HMIAlarmBlockResult

Properties
The "AlarmBlockResult" object has the following properties:
• AcknowledgeTime

Returns the time of the alarm acknowledgment.
• AlarmGroupID

Returns the alarm group ID.
• AlarmState

Returns the status of the alarm.
• AlarmText1

Returns the localized additional text 1 of the alarm.
• AlarmText2

Returns the localized additional text 2 of the alarm.
• AlarmText3

Returns the localized additional text 3 of the alarm.
• AlarmText4

Returns the localized additional text 4 of the alarm.
• AlarmText5

Returns the localized additional text 5 of the alarm.
• AlarmText6

Returns the localized additional text 6 of the alarm.
• AlarmText7

Returns the localized additional text 7 of the alarm.
• AlarmText8

Returns the localized additional text 8 of the alarm.
• AlarmText9

Returns the localized additional text 9 of the alarm.
• Area

Returns the alarm area of origin.
• AverageActiveActive

Returns the result of the alarm statistics, stating how many active alarms were active on
average.

• AverageActiveAcknowledged
Returns the result of the alarm statistics, stating how many active alarms were acknowledged
on average.

• AverageActiveInactive
Returns the result of the alarm statistics, stating how many active alarms were inactive on
average.

• Class
Returns the name of the alarm class.

Programming scripts
10.2 WinCC Unified object model

1482 System Manual, 11/2022

• ClassSymbol
Returns the icon of the alarm class.

• ClearTime
Returns the time of the alarm reset.

• Duration
Returns the duration of the alarm.

• EventText
Returns a localized text describing an event to the alarm.

• Frequency
Returns the result of the alarm statistics, stating how often the alarm occurred.

• HostName
Returns the name of the PC on which the alarm was triggered.

• ID
Returns the ID of the alarm that is also used in the display.

• InfoText
Returns the text information.

• LoopInAlarm
Returns the name of the function that navigates from the display of the alarm to its origin.

• ModificationTime
Returns the time stamp of the last alarm state modification.

• Name
Returns the name of the alarm.

• Origin
Returns the origin of the alarm.

• Priority
Returns the relevance of the alarm or of the machine status.

• ProcessValue1
Returns process value 1 of the alarm.

• ProcessValue2
Returns process value 2 of the alarm.

• ProcessValue3
Returns process value 3 of the alarm.

• ProcessValue4
Returns process value 4 of the alarm.

• ProcessValue5
Returns process value 5 of the alarm.

• ProcessValue6
Returns process value 6 of the alarm.

• ProcessValue7
Returns process value 7 of the alarm.

• ProcessValue8
Returns process value 8 of the alarm.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1483

• ProcessValue9
Returns process value 9 of the alarm.

• ProcessValue10
Returns process value 10 of the alarm.

• RaiseTime
Returns the raise time of the alarm.

• ResetTime
Returns the time of the alarm reset.

• SumActiveActive
Returns the result of the alarm statistics, stating how many active alarms are active in total.

• SumActiveAcknowledged
Returns the result of the alarm statistics, stating how many active alarms were acknowledged
in total.

• SumActiveInactive
Returns the result of the alarm statistics, stating how many active alarms are inactive in total.

• SuppressionState
Returns the visibility status of the alarm.

• UserName
Returns the name of the user who triggered the alarm.

• Value
Returns the process value of the alarm.

• ValueLimit
Returns the limit of the process value of the alarm.

• ValueQuality
Returns the quality level of the process value of the alarm.

Methods
--

See also
Alarm.GetSelectedAlarmAttributes() (Page 1480)

AlarmBlockResult.AcknowledgeTime

Description
The "AcknowledgeTime" property returns the time of the alarm acknowledgment.

Type
DateTime

Programming scripts
10.2 WinCC Unified object model

1484 System Manual, 11/2022

Access
Read-only

Syntax
AlarmBlockResult.AcknowledgeTime

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.AlarmGroupID

Description
The "AlarmGroupID" property returns the alarm group ID.

Type
UInt8

Access
Read-only

Syntax
AlarmBlockResult.AlarmGroupID

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.AlarmState

Description
The "AlarmState" property returns the status of the alarm.

Type
String

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1485

Syntax
AlarmBlockResult.AlarmState

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.AlarmText1

Description
The "AlarmText1" property returns the localized additional text 1 of the alarm.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.AlarmText1

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.AlarmText2

Description
The "AlarmText2" property returns the localized additional text 2 of the alarm.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.AlarmText2

Programming scripts
10.2 WinCC Unified object model

1486 System Manual, 11/2022

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.AlarmText3

Description
The "AlarmText3" property returns the localized additional text 3 of the alarm.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.AlarmText3

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.AlarmText4

Description
The "AlarmText4" property returns the localized additional text 4 of the alarm.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.AlarmText4

See also
AlarmBlockResult (Page 1481)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1487

AlarmBlockResult.AlarmText5

Description
The "AlarmText5" property returns the localized additional text 5 of the alarm.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.AlarmText5

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.AlarmText6

Description
The "AlarmText6" property returns the localized additional text 6 of the alarm.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.AlarmText6

See also
AlarmBlockResult (Page 1481)

Programming scripts
10.2 WinCC Unified object model

1488 System Manual, 11/2022

AlarmBlockResult.AlarmText7

Description
The "AlarmText7" property returns the localized additional text 7 of the alarm.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.AlarmText7

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.AlarmText8

Description
The "AlarmText8" property returns the localized additional text 8 of the alarm.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.AlarmText8

See also
AlarmBlockResult (Page 1481)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1489

AlarmBlockResult.AlarmText9

Description
The "AlarmText9" property returns the localized additional text 9 of the alarm.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.AlarmText9

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.Area

Description
The "Area" property specifies the alarm area of origin.
The "Area" property can be configured and, together with the "Origin" property, defines the
source of an alarm. You can also use placeholders for context-sensitive format.
The "Area" property, for example, includes subsystem, application name, or PLC ID. You can
sort and filter alarms using the "Area" context.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.Area

Programming scripts
10.2 WinCC Unified object model

1490 System Manual, 11/2022

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.AverageActiveActive

Description
The "AverageActiveActive" property returns the result of the alarm statistics, stating how many
active alarms are active on average.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.AverageActiveActive

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.AverageActiveAcknowledged

Description
The "AverageActiveAcknowledged" property returns the result of the alarm statistics, stating
how many active alarms were acknowledged on average.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.AverageActiveAcknowledged

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1491

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.AverageActiveInactive

Description
The "AverageActiveInactive" property returns the result of the alarm statistics, stating how many
active alarms were inactive on average.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.AverageActiveInactive

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.Class

Description
The "Class" property returns the name of the alarm class.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.Class

Programming scripts
10.2 WinCC Unified object model

1492 System Manual, 11/2022

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.ClassSymbol

Description
The "ClassSymbol" property returns the icon of the alarm class.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.ClassSymbol

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.ClearTime

Description
The "ClearTime" property returns the time of the alarm reset.

Type
DateTime

Access
Read-only

Syntax
AlarmBlockResult.ClearTime

See also
AlarmBlockResult (Page 1481)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1493

AlarmBlockResult.Duration

Description
The "Duration" property returns the duration of the alarm.

Type
Time

Access
Read-only

Syntax
AlarmBlockResult.Duration

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.EventText

Description
The "EventText" property returns a localized text describing an event to the alarm.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.EventText

See also
AlarmBlockResult (Page 1481)

Programming scripts
10.2 WinCC Unified object model

1494 System Manual, 11/2022

AlarmBlockResult.Frequency

Description
The "Frequency" property returns the result of the alarm statistics, stating how often the alarm
occurred.

Type
UInt32

Access
Read-only

Syntax
AlarmBlockResult.Frequency

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.HostName

Description
The "HostName" property returns the name of the PC on which the alarm was triggered.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.HostName

See also
AlarmBlockResult (Page 1481)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1495

AlarmBlockResult.ID

Description
The "ID" property returns the alarm ID.

Type
UInt32

Access
Read-only

Syntax
AlarmBlockResult.ID

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.InfoText

Description
The "InfoText" property returns the text information.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.InfoText

See also
AlarmBlockResult (Page 1481)

Programming scripts
10.2 WinCC Unified object model

1496 System Manual, 11/2022

AlarmBlockResult.LoopInAlarm

Description
The "LoopInAlarm" property returns the name of the function that navigates from the alarm
display to its origin.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.LoopInAlarm

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.ModificationTime

Description
The "ModificationTime" property returns the time stamp of the last modification to the alarm
state.

Type
DateTime

Access
Read-only

Syntax
AlarmBlockResult.ModificationTime

See also
AlarmBlockResult (Page 1481)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1497

AlarmBlockResult.Name

Description
The "Name" property returns the name of the alarm.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.Name

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.Origin

Description
The "Origin" property returns the origin of the alarm.
For example, the "Origin" property contains the system name, data source, or CPU ID. You
can sort and filter alarms using the "Origin" context.
The "Origin" property can be configured and, together with the "Area" property, defines the
source of an alarm. You can also use placeholders for context-sensitive format.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.Origin

Programming scripts
10.2 WinCC Unified object model

1498 System Manual, 11/2022

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.Priority

Description
The "Priority" property returns the relevance of the alarm or of the machine status.

Type
UInt8

Access
Read-only

Syntax
AlarmBlockResult.Priority

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.ProcessValue1

Description
The "ProcessValue1" property returns process value 1 of the alarm.

Type
Variant

Access
Read-only

Syntax
AlarmBlockResult.ProcessValue1

See also
AlarmBlockResult (Page 1481)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1499

AlarmBlockResult.ProcessValue2

Description
The "ProcessValue2" property returns process value 2 of the alarm.

Type
Variant

Access
Read-only

Syntax
AlarmBlockResult.ProcessValue2

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.ProcessValue3

Description
The "ProcessValue3" property returns process value 3 of the alarm.

Type
Variant

Access
Read-only

Syntax
AlarmBlockResult.ProcessValue3

See also
AlarmBlockResult (Page 1481)

Programming scripts
10.2 WinCC Unified object model

1500 System Manual, 11/2022

AlarmBlockResult.ProcessValue4

Description
The "ProcessValue4" property returns process value 4 of the alarm.

Type
Variant

Access
Read-only

Syntax
AlarmBlockResult.ProcessValue4

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.ProcessValue5

Description
The "ProcessValue5" property returns process value 5 of the alarm.

Type
Variant

Access
Read-only

Syntax
AlarmBlockResult.ProcessValue5

See also
AlarmBlockResult (Page 1481)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1501

AlarmBlockResult.ProcessValue6

Description
The "ProcessValue6" property returns process value 6 of the alarm.

Type
Variant

Access
Read-only

Syntax
AlarmBlockResult.ProcessValue6

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.ProcessValue7

Description
The "ProcessValue7" property returns process value 7 of the alarm.

Type
Variant

Access
Read-only

Syntax
AlarmBlockResult.ProcessValue7

See also
AlarmBlockResult (Page 1481)

Programming scripts
10.2 WinCC Unified object model

1502 System Manual, 11/2022

AlarmBlockResult.ProcessValue8

Description
The "ProcessValue8" property returns process value 8 of the alarm.

Type
Variant

Access
Read-only

Syntax
AlarmBlockResult.ProcessValue8

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.ProcessValue9

Description
The "ProcessValue9" property returns process value 9 of the alarm.

Type
Variant

Access
Read-only

Syntax
AlarmBlockResult.ProcessValue9

See also
AlarmBlockResult (Page 1481)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1503

AlarmBlockResult.ProcessValue10

Description
The "ProcessValue10" property returns process value 10 of the alarm.

Type
Variant

Access
Read-only

Syntax
AlarmBlockResult.ProcessValue10

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.RaiseTime

Description
The "RaiseTime" property returns the raise time of the alarm.

Type
DateTime

Access
Read-only

Syntax
AlarmBlockResult.RaiseTime

See also
AlarmBlockResult (Page 1481)

Programming scripts
10.2 WinCC Unified object model

1504 System Manual, 11/2022

AlarmBlockResult.ResetTime

Description
The "ResetTime" property returns the time of the alarm reset.

Type
DateTime

Access
Read-only

Syntax
AlarmBlockResult.ResetTime

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.SumActiveAcknowledged

Description
The "SumActiveAcknowledged" property returns the result of the alarm statistics, stating how
many active alarms were acknowledged in total.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.SumActiveAcknowledged

See also
AlarmBlockResult (Page 1481)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1505

AlarmBlockResult.SumActiveActive

Description
The "SumActiveActive" property returns the result of the alarm statistics, stating how many
active alarms are active in total.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.SumActiveActive

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.SumActiveInactive

Description
The "SumActiveInactive" property returns the result of the alarm statistics, stating how many
active alarms are inactive in total.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.SumActiveInactive

See also
AlarmBlockResult (Page 1481)

Programming scripts
10.2 WinCC Unified object model

1506 System Manual, 11/2022

AlarmBlockResult.SuppressionState

Description
The "SuppressionState" property returns the visibility status of the alarm.

Value SuppressionState Description
0x0 Unsuppressed Alarm is visible.
0x1 Suppressed Alarm is configured as not visible.
0x3 Shelved Alarm was hidden manually. The "Unshelve" and

"Shelve" methods can be applied.

Type
UInt8

Access
Read-only

Syntax
AlarmBlockResult.SuppressionState

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.UserName

Description
The "UserName" property returns the name of the user who triggered the alarm.

Type
String

Access
Read-only

Syntax
AlarmBlockResult.UserName

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1507

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.Value

Description
The "Value" property returns the process value of the alarm.

Type
Variant

Access
Read-only

Syntax
AlarmBlockResult.Value

See also
AlarmBlockResult (Page 1481)

AlarmBlockResult.ValueLimit

Description
The "ValueLimit" property returns the limit of the alarm process value.

Type
Variant

Access
Read-only

Syntax
AlarmBlockResult.ValueLimit

See also
AlarmBlockResult (Page 1481)

Programming scripts
10.2 WinCC Unified object model

1508 System Manual, 11/2022

AlarmBlockResult.ValueQuality

Description
The "ValueQuality" property returns the quality level of the process value of the alarm.

Type
UInt16

Access
Read-only

Syntax
AlarmBlockResult.ValueQuality

See also
AlarmBlockResult (Page 1481)

UI.DataSet

Description
The "DataSet" property returns the global data set ("DataSet" object) of the session.

Type
Object, HMIDataSet (Page 1510)

Access
Read-only

Syntax
[HMIRuntime.]UI.DataSet

See also
UI (Page 1395)
DataSet (Page 1510)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1509

DataSet

Description
The "DataSet" object ("HMIDataSet" type) is a list of "DataSetElement" objects that enable data
exchange in runtime.
A "DataSet" object is defined globally (on the "UI" object) or on a screen (the "Screen" object).
You can access the data from any action.
You reference a "DataSet" object via the UI.DataSet property or via the respective screen
with the Screen.DataSet property.
The "DataSet" object exists as long as the screen is displayed. The global object exists over the
entire time period in which runtime runs.

Use
The "DataSet" object is a list which be counted and enumerated. You can access the "DataSet" list
via the index or the element names.

Object type
HMIDataSet

Properties
The "DataSet" object has the following properties:
• Count

Returns the number of elements of the "DataSet" list.

Methods
The "DataSet" object has the following methods:
• Add()

Adds an element with value to the "DataSet" list.
• Clear()

Removes all elements from the "DataSet" list.
• Exists()

Checks whether an element is present in the "DataSet" list.
• Item()

Returns the value of an element of the "DataSet" list.
• Remove()

Removes an element by its name from the "DataSet" list.

Programming scripts
10.2 WinCC Unified object model

1510 System Manual, 11/2022

DataSet.Count

Description
The "Count" property returns the number of elements in the "DataSet" list.

Type
UInt32

Access
Read-only

Syntax
DataSet.Count

See also
DataSet (Page 1510)

DataSet.Add()

Description
The "Add" method adds an element ("DataSetElement" object) to the "DataSet" list. The elements
are referenced by name.

Syntax
DataSet.Add(name,value)

Parameters
name
Type: String
Name of the element that will be added to the list.

value
Type: Variant
Value of the element that will be added to the list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1511

Return value
--

See also
DataSet (Page 1510)

DataSet.Clear()

Description
The "Clear" method removes all elements ("DataSetElement" objects) from the "DataSet" list.

Syntax
DataSet.Clear()

Parameter
--

Return value
--

See also
DataSet (Page 1510)
DataSet.Remove() (Page 1514)

DataSet.Exists()

Description
The "Exists" method searches for an element ("DataSetElement" object) in the "DataSet" list.

Syntax
DataSet.Exists(name)

Parameters
name
Type: String

Programming scripts
10.2 WinCC Unified object model

1512 System Manual, 11/2022

Name of the element that is being searched for.

Return value
Bool

See also
DataSet (Page 1510)

DataSet.Item()

Description
The "Item" method returns the value of a "DataSetElement" object of the "DataSet" list.

Syntax
DataSet[.Item](name)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "DataSet" object.

Parameter
name
Type: String
Element name or index number (1...n) of an object "DataSetElement" of the list

Return value
Variant

See also
DataSet (Page 1510)
DataSetElement (Page 1514)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1513

DataSet.Remove()

Description
The "Remove" method removes an element ("DataSetElement" object) from the "DataSet" list by
its name.

Syntax
DataSet.Remove(name)

Parameters
name
Type: String
Name of the element that will be removed.

Return value
--

See also
DataSet (Page 1510)
DataSet.Clear() (Page 1512)

DataSetElement

Description
The "DataSetElement" object represents a data set element in the "DataSet" list.

Object type
HMIDataSetElement

Properties
The "DataSetElement" object has the following properties:
• Name

Returns the name of the element.
• Value

Returns the value of the element.

Programming scripts
10.2 WinCC Unified object model

1514 System Manual, 11/2022

Methods
--

DataSetElement.Name

Description
The "Name" property returns the name of the element ("DataSetElement" object).

Type
String

Access
Read-only

Syntax
DataSetElement.Name

See also
DataSetElement (Page 1514)

DataSetElement.Value

Description
The "Name" property returns the value of the element ("DataSetElement" object).

Type
Variant

Access
Read-only

Syntax
DataSetElement.Value

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1515

See also
DataSetElement (Page 1514)

UI.PopupScreenWindows

Description
The "Windows" property returns a list of all popup screen windows ("HMIPopupScreenWindows"
objects).

Type
Object, HMIPopupScreenWindows (Page 1516)

Access
Read-only

Syntax
[HMIRuntime.]UI.PopupScreenWindows

See also
UI (Page 1395)
PopupScreenWindows (Page 1516)

PopupScreenWindows

Description
The "PopupScreenWindows" object is a list of all popup screen windows ("PopupScreenWindow"
objects).

Use
The "PopupScreenWindows" object is a list which can be counted and enumerated. You can
access the "PopupScreenWindows" list using the index or the tag names.

Object type
HMIPopupScreenWindows

Programming scripts
10.2 WinCC Unified object model

1516 System Manual, 11/2022

Properties
The "PopupScreenWindows" object has the following properties:
• Count

Returns the number of popup screen windows in the "PopupScreenWindows" list.

Methods
The "PopupScreenWindows" object has the following methods:
• Item()

Returns a popup screen window of the "PopupScreenWindows" list.

See also
UI.PopupScreenWindows (Page 1516)

PopupScreenWindows.Count

Description
The "Count" property returns the number of popup screen windows in the
"PopupScreenWindows" list.

Type
UInt32

Access
Read-only

Syntax
PopupScreenWindows.Count

See also
PopupScreenWindows (Page 1516)

PopupScreenWindows.Item()

Description
The "Item" method returns a popup screen window of the "PopupScreenWindows" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1517

Syntax
PopupScreenWindows[.Item](WindowName);

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "PopupScreenWindows" object.

Parameter
WindowName
Type: String, HMIPopupScreenWindow
Name of the popup screen window

Return value
Object, HMIPopupScreenWindow (Page 4288)

See also
PopupScreenWindows (Page 1516)
PopupScreenWindow (Page 4288)

PopupScreenWindow

Description
PopupScreenWindow (Page 4288)

UI.RootWindow

Description
The "RootWindow" property returns the top level (Top Level Screen Window) screen window of
the screen where the script is executed.

Type
Object, HmiTopLevelScreenWindow (Page 1522)

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

1518 System Manual, 11/2022

Syntax
[HMIRuntime.]UI.RootWindow

See also
UI (Page 1395)
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow

Description
TopLevelScreenWindow (Page 1522)

UI.Style

Description
The "Style" property specifies the style of the display and operating objects.

Type
String, HmiStyle

Access
Read-write

Syntax
[HMIRuntime.]UI.Style

Example
Switch all objects in runtime to the dark style and then output the style via the debug output:

Copy code
HMIRuntime.UI.Style = "FlatStyle_Dark";
HMIRuntime.Trace("Switched style to: " + HMIRuntime.UI.Style);

See also
UI (Page 1395)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1519

UI.Windows

Description
The "Windows" property returns a list of all screen windows at the top level (Top Level Screen
Window).

Type
Object, HMITopLevelWindows (Page 1520)

Access
Read-only

Syntax
[HMIRuntime.]UI.Windows

See also
UI (Page 1395)
TopLevelWindows (Page 1520)

TopLevelWindows

Description
The "TopLevelWindows" object is a list of "TopLevelScreenWindow" objects that provides access
to the top-level screen windows in runtime.
You reference a "TopLevelWindows" object via the UI.Windows property.

Use
The "TopLevelWindows" object is a list and can be counted and enumerated. You can access the
"TopLevelWindows" list using the index or the tag name.

Object type
HMITopLevelWindows

Programming scripts
10.2 WinCC Unified object model

1520 System Manual, 11/2022

Properties
The "TopLevelWindows" object has the following properties:
• Count

Returns the number of screen windows at the highest level of the "TopLevelWindows" list.

Methods
The "TopLevelWindows" object has the following methods:
• Item()

Returns a screen window at the highest level of the "TopLevelWindows" list.

TopLevelWindows.Count

Description
The "Count" property returns the number of screen windows at the highest level of the
"TopLevelWindows" list.

Type
UInt32

Access
Read-only

Syntax
TopLevelWindows.Count

See also
TopLevelWindows (Page 1520)

TopLevelWindows.Item()

Description
The "Item" method returns a screen window at the highest level of the "TopLevelWindows" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1521

Syntax
TopLevelWindows[.Item](WindowName);

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "TopLevelWindows" object.

Parameter
WindowName
Type: String, HmiTopLevelScreenWindow
Name of the screen window at the highest level

Return value
Object, HmiTopLevelScreenWindow (Page 1522)

See also
TopLevelWindows (Page 1520)
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow

Description
The "TopLevelScreenWindows" object represents a screen window at the highest hierarchy level.

Object type
HmiTopLevelScreenWindow

Properties
The "TopLevelScreenWindow" object has the following properties:
• Adaption

Specifies how the window size adapts.
• Caption

Specifies the text to be displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.

Programming scripts
10.2 WinCC Unified object model

1522 System Manual, 11/2022

• CurrentScreen
Returns the screen of the current screen window.

• CurrentZoomFactor
Specifies the zoom factor which is applied to the displayed screen.

• Enabled
Specifies whether the specified object can be operated in runtime.

• Height
Specifies the height.

• HorizontalScrollBarPosition
Specifies the horizontal alignment for the scroll bar.

• HorizontalScrollBarVisibility
Specifies the setting for the horizontal scroll bar of the window.

• Icon
Specifies the icon.

• InteractiveZooming
Specifies whether zooming is supported.

• Layer
Returns the layer of the screen that contains the screen window.

• Left
Specifies the value of the X coordinate.

• Monitor
Returns the monitor on which the screen window is displayed.

• Name
Returns the name of the screen window.

• Parent
Returns the parent screen object (Parent container).

• Path
Returns the absolute object path of the screen window.

• RenderingTemplate
Returns the name of the template from which the object was created.

• Screen
Specifies the name of the screen contained in the referenced screen window.

• ScreenName
Returns the screen name.

• ScreenNumber
Returns the screen number.

• StartupPosition
Specifies the position of the screen window at runtime start.

• StyleItemClass
Returns the style that is applied to the screen window.

• System
Specifies the server prefix.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1523

• TabIndex
Returns the position of the screen window in the tab sequence.

• Top
Specifies the value of the Y coordinate.

• VerticalScrollBarPosition
Specifies the vertical alignment for the scroll bar.

• VerticalScrollBarVisibility
Specifies the setting for the vertical scroll bar of the window.

• Visible
Specifies whether the screen window is visible.

• Width
Specifies the width.

• WindowFlags
Specifies the screen window configuration.

Methods
The "TopLevelScreenWindow" object has the following methods:
• Close()

Closes the screen window.

TopLevelScreenWindow.Adaption

Description
The "Adaption" property specifies how the window size adapts.

Type
Int32, HmiScreenWindowAdaption
Specifies how the window size adapts:
• None (0): No adaptation
• WindowToScreen (1): Window size corresponds to screen size
• ScreenToWindow (2): Screen is scaled to window size.

Access
Read-write

Syntax
TopLevelScreenWindow.Adaption

Programming scripts
10.2 WinCC Unified object model

1524 System Manual, 11/2022

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.Caption

Description
The "Caption" property specifies the text to be displayed in the title bar.

Type
Object, HmiTextPart

Access
Read-write

Syntax
TopLevelScreenWindow.Caption

See also
TopLevelScreenWindow (Page 1522)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1525

See also
TopLevelScreenWindow.Caption (Page 1525)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 1525)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

Programming scripts
10.2 WinCC Unified object model

1526 System Manual, 11/2022

See also
Text.Font (Page 1525)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 1525)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1527

Syntax
Font.StrikeOut

See also
Text.Font (Page 1525)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 1525)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal

Programming scripts
10.2 WinCC Unified object model

1528 System Manual, 11/2022

• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 1525)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
TopLevelScreenWindow.Caption (Page 1525)

Text.Text

Description
The "Text" property specifies the label.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1529

Type
String

Access
Read-write

Syntax
Text.Text

See also
TopLevelScreenWindow.Caption (Page 1525)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
TopLevelScreenWindow.Caption (Page 1525)

TopLevelScreenWindow.CaptionColor

Description
The "CaptionColor" property specifies the color of the title bar.

Programming scripts
10.2 WinCC Unified object model

1530 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
TopLevelScreenWindow.CaptionColor

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.CurrentScreen

Description
The "CurrentScreen" property returns the screen of the current screen window.

Type
Object, HmiScreen (Page 1397)

Access
Read-only

Syntax
TopLevelScreenWindow.CurrentScreen

See also
TopLevelScreenWindow (Page 1522)
Screen (Page 1397)

Screen

Description
Screen (Page 1397)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1531

TopLevelScreenWindow.CurrentZoomFactor

Description
The "CurrentZoomFactor" property specifies the zoom factor of the screen window. The zoom
factor may differ from the containing screen. The value 1.0 corresponds to a zoom factor of
100%.

Type
Float

Access
Read-write

Syntax
TopLevelScreenWindow.CurrentZoomFactor

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.Enabled

Description
The "Enabled" property specifies whether the screen window can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
TopLevelScreenWindow.Enabled

See also
TopLevelScreenWindow (Page 1522)

Programming scripts
10.2 WinCC Unified object model

1532 System Manual, 11/2022

TopLevelScreenWindow.Height

Description
The "Height" property specifies the height of the screen window in DIU (Device Independent
Unit).

Type
UInt32

Access
Read-write

Syntax
TopLevelScreenWindow.Height

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.HorizontalScrollBarPosition

Description
The "HorizontalScrollBarPosition" property specifies the horizontal alignment for the scroll bar.

Type
Int32

Access
Read-write

Syntax
TopLevelScreenWindow.HorizontalScrollBarPosition

See also
TopLevelScreenWindow (Page 1522)
TopLevelScreenWindow.HorizontalScrollBarVisibility (Page 1534)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1533

TopLevelScreenWindow.HorizontalScrollBarVisibility

Description
The "HorizontalScrollBarVisibility" property specifies the visibility of the horizontal scroll bar.

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
TopLevelScreenWindow.HorizontalScrollBarVisibility

See also
TopLevelScreenWindow (Page 1522)
TopLevelScreenWindow.HorizontalScrollBarPosition (Page 1533)

TopLevelScreenWindow.Icon

Description
The "Icon" property specifies the icon of the screen window.

Type
String

Access
Read-write

Syntax
TopLevelScreenWindow.Icon

Programming scripts
10.2 WinCC Unified object model

1534 System Manual, 11/2022

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.InteractiveZooming

Description
The "InteractiveZooming" property specifies whether zooming is supported.

Type
Bool

Access
Read-write

Syntax
TopLevelScreenWindow.InteractiveZooming

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.Layer

Description
The "Layer" property returns the layer of the screen that contains the screen window.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
TopLevelScreenWindow.Layer

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1535

See also
TopLevelScreenWindow (Page 1522)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
Layer.MinimumZoom (Page 1536)
TopLevelScreenWindow.Layer (Page 1535)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

Programming scripts
10.2 WinCC Unified object model

1536 System Manual, 11/2022

See also
Layer.MaximumZoom (Page 1536)
TopLevelScreenWindow.Layer (Page 1535)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
TopLevelScreenWindow.Layer (Page 1535)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1537

See also
TopLevelScreenWindow.Layer (Page 1535)

TopLevelScreenWindow.Left

Description
The "Left" property specifies the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
TopLevelScreenWindow.Left

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.Monitor

Description
The "Monitor" property returns the monitor on which the window is displayed.

Type
UInt8

Access
Read-only

Syntax
TopLevelScreenWindow.Monitor

Programming scripts
10.2 WinCC Unified object model

1538 System Manual, 11/2022

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.Name

Description
The "Name" property returns the name of the screen window.

Type
String

Access
Read-only

Syntax
TopLevelScreenWindow.Name

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.Parent

Description
The "Parent" property returns the parent screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
TopLevelScreenWindow.Parent

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1539

See also
TopLevelScreenWindow (Page 1522)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

TopLevelScreenWindow.Path

Description
The "Path" property returns the absolute object path of a screen window in runtime starting from
the screen window on the highest level.

Note
For the syntax of an object path, see the "FindItem" method (Page 1549).

Type
String

Access
Read-only

Syntax
TopLevelScreenWindow.Path

See also
UI.FindItem() (Page 1549)
TopLevelScreenWindow (Page 1522)

Programming scripts
10.2 WinCC Unified object model

1540 System Manual, 11/2022

TopLevelScreenWindow.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the object has
been created.

Type
String

Access
Read-only

Syntax
TopLevelScreenWindow.RenderingTemplate

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.Screen

Description
The "Screen" property specifies the name of the screen ("HMIScreen" type) that is contained in
the screen window. Loads a new screen via its name into the screen window.
The "Screen" property returns a different value than the "CurrentScreen" when the referenced
screen is not yet loaded completely or does not exist.

Type
String, HmiStoredScreen

Access
Read-write

Syntax
TopLevelScreenWindow.Screen

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1541

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.ScreenName

Description
The "ScreenName" property returns the screen name.

Type
String

Access
Read-only

Syntax
TopLevelScreenWindow.ScreenName

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.ScreenNumber

Description
The "ScreenNumber" property returns the screen number.

Type
UInt16

Access
Read-only

Syntax
TopLevelScreenWindow.ScreenNumber

Programming scripts
10.2 WinCC Unified object model

1542 System Manual, 11/2022

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.StartupPosition

Description
The "StartupPosition" property sets the position of the screen window at runtime start.

Type
Int32, HmiWindowStartupPosition
Specifies the position of the screen window:
• None (0): Relative placement on the configured monitor via "Left" and "Top".
• CenteredMonitor (1): Centered on the configured monitor.
• Maximized (2): Maximized on the configured monitor.
• CenteredOwner (3): Centered on the displayed screen.

Access
Read-write

Syntax
TopLevelScreenWindow.StartupPosition

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.StyleItemClass

Description
The "StyleItemClass" property returns the style that is applied to the screen window.

Type
String

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1543

Syntax
TopLevelScreenWindow.StyleItemClass

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.System

Description
The "System" property specifies the server prefix.

Type
String, HmiSystem

Access
Read-write

Syntax
TopLevelScreenWindow.System

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.TabIndex

Description
The "TabIndex" returns the position of the screen window in the tab sequence.

Type
UInt16

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

1544 System Manual, 11/2022

Syntax
TopLevelScreenWindow.TabIndex

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.Top

Description
The "Top" property specifies the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
TopLevelScreenWindow.Top

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.VerticalScrollBarPosition

Description
The "VerticalScrollBarPosition" property specifies the vertical position for the scroll bar.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1545

Syntax
TopLevelScreenWindow.VerticalScrollBarPosition

See also
TopLevelScreenWindow (Page 1522)
TopLevelScreenWindow.VerticalScrollBarVisibility (Page 1546)

TopLevelScreenWindow.VerticalScrollBarVisibility

Description
The "VerticalScrollBarVisibility" property specifies the visibility of the vertical scroll bar of the
window.

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
TopLevelScreenWindow.VerticalScrollBarVisibility

See also
TopLevelScreenWindow (Page 1522)
TopLevelScreenWindow.VerticalScrollBarPosition (Page 1545)

TopLevelScreenWindow.Visible

Description
The "Visible" property specifies whether the screen window is visible.

Programming scripts
10.2 WinCC Unified object model

1546 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
TopLevelScreenWindow.Visible

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.Width

Description
The "Width" property specifies the width of the screen window in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
TopLevelScreenWindow.Width

See also
TopLevelScreenWindow (Page 1522)

TopLevelScreenWindow.WindowFlags

Description
The "WindowFlags" property specifies the screen window configuration.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1547

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title
• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be positioned
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
Enable multiple properties by adding the integer values or bit operators.

Access
Read-write

Syntax
TopLevelScreenWindow.WindowFlags

Example
Adapt the "windowFlags" tag depending on the window configuration:

Copy code
var windowFlags = HmiWindowFlag.ShowCaption | HmiWindowFlag.ShowBorder;
if (CanClose){
 windowFlags |= HmiWindowFlag.CanClose;
} else {
 windowFlags &= HmiWindowFlag.CanClose;
}

See also
TopLevelScreenWindow (Page 1522)

Programming scripts
10.2 WinCC Unified object model

1548 System Manual, 11/2022

TopLevelScreenWindow.Close()

Description
The "Close" method closes the screen window.

Syntax
TopLevelScreenWindow.Close()

Parameters
--

Return value
Bool

See also
TopLevelScreenWindow (Page 1522)

UI.FindItem()

Description
The "FindItem" method returns screen windows or screen objects through their object path.

Syntax
[HMIRuntime.]UI.FindItem(ScreenItemPath);

Parameter
ScreenItemPath
Type: String
Object path of the searched screen window or screen object.

Note
The "UI.FindItem" method has a global search context and requires absolute object paths. The
"Screen.FindItem" method has the current screen as the search context and can also use relative
object paths.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1549

Formulation of the object path
The syntax of the object path orients itself to the notation of the file system paths. The
object path consists of the names of the screen windows (Screen Windows) and screen
objects (Screen Items). The names are connected via a slash ("/") according to the hierarchical
positioning. Screens (Screens) and their names are not used in the formulation.
Relative and absolute object paths are distinguished by the prefix of the object path. The
following prefixes can be used:
• Relative object path

– "..": References the parent screen window (Parent) in the context of the current screen
window.

– ".": References the own screen window (Self).
– "": A screen object of the current screen window is referenced without prefix.

• Absolute object path
– "/": References a screen window on the highest level, whose name must follow.
– "~": References the screen window on the highest level in the own screen hierarchy.

Additional rules for formulating an object path:
• The string ".." may be used several times in the object path, but only together at the

beginning of the object path, for example, "../../Window5".
• If the object path does not end with a screen object name, a screen window is referenced.
• A search is performed for screen objects of the object path in the screens of the referenced

screen window. It is not permitted to specify a screen name.

Examples of object paths
The following window / screen object hierarchy is adopted for the following examples:

Programming scripts
10.2 WinCC Unified object model

1550 System Manual, 11/2022

The following objects paths for addressing the object result from this:
• Relative addressing:

– "Button_2" changes the label of "Button_1":
// Navigate one level up and find "Button_1" inside the
"ScreenWindowHeader"
Screen.FindItem("../ScreenWindowHeader/Button_1").Text =
"Changed by Button_2"

– "Button_3" changes the label of "Button_5":
// Navigate two levels up and find "Button 2" inside the
"ScreenWindowNavigation"
Screen.FindItem("../../ScreenWindowNavigation/Button_5").Text =
"Changed by Button_3"

– "Button_3" changes the label of "Button_4":
// Find "Button_4" in same screen ("ScreenContent_2")
Screen.FindItem("Button_4").Text = "Changed by Button_3"
Screen.FindItem("./Button_4").Text = "Changed by Button_3"

• Absolute addressing:
– "Button_4" changes the label of "Button_6":

// Navigate to the root screen and find "Button_6" inside the
"ScreenWindowNavigation"
Screen.FindItem("~/ScreenWindowNavigation/Button_6").Text =
"Changed by Button_4"

Return value
Object, HmiScreenObjectBase (Page 1571)

See also
UI (Page 1395)
Screen Items (Page 1571)

UI.GetClientInfo()

Description
The "GetClientInfo" method returns information about the resolution of the screen.

Syntax
[HMIRuntime.]UI.GetClientInfo(infoType);

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1551

Parameters
infoType
Type: Int32, HmiClientInfoType
Specifies which information is requested:
• None (0): Does not return any information.
• PrimaryDisplayWidth (1): Returns the width of the screen in DIU (Device Independent Unit).
• PrimaryDisplayHeight (2): Returns the height of the screen in DIU (Device Independent Unit).
• PrimaryDisplayPixelRatio (3): Returns the ratio of the screen pixels in DIU (Device

Independent Unit).

Return value
Variant

Example
Specify the screen window on the highest level depending on the resolution:

Copy code
let displayWidth = UI.GetClientInfo(UI.Enums.HmiClientInfoType.PrimaryDisplayWidth);
let displayHeight = UI.GetClientInfo(UI.Enums.HmiClientInfoType.PrimaryDisplayHeight);

if (displayHeight > displayWidth) {
 UI.RootWindow.Screen = "StartScreenPortrait";
} else {
 UI.RootWindow.Screen = "StartScreenLandscape";
}

See also
UI (Page 1395)

UI.OpenFaceplateInPopup()

Description
The "OpenFaceplateInPopup" method opens a faceplate from a screen in a popup window.

Syntax
[HMIRuntime.]UI.OpenFaceplateInPopup(faceplateType,title,interface[,
parentScreen][,invisible]);

Programming scripts
10.2 WinCC Unified object model

1552 System Manual, 11/2022

Parameters
faceplateType
Type: String, HmiFaceplateType
Name of the faceplate type

Note
The version of the faceplate type preset as "Default" is automatically displayed in runtime.

title
Type: String
Title of the popup window

interface
Type: Object
Interface data of the faceplate in literal notation, e.g.
{Interface_Tag_1:{Tag:"HMI_Tag_1"}, Color_Property_1:0xff00ff00,
ResourceList_Property_1:"@Default.Text_list_1"}. The specification of the
interface data by entering a graphics list is not supported.

parentScreen
Optional, type: Object, HmiScreen
Parent screen

invisible
Optional, type: Bool
Causes the faceplate to be configured so that it is invisible to the operator.
To then display the faceplate, set the property visible=true.

Return value
Object, HmiPopupScreenWindow (Page 4288)

See also
UI (Page 1395)
PopupScreenWindow (Page 4288)

ProDiag

Description
The "ProDiag" object

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1553

Object type
HMIUIProDiag

Properties
--

Methods
The "ProDiag" object has the following methods:
• OpenTIAPortalFromAlarm()

Opens a TIA Portal project and jumps to the "GRAPH" details block.
• OpenTIAPortalGRAPHDetails()

Opens a TIA Portal project and jumps to the "GRAPH" details block.
• OpenTIAPortalProDiagDetailsByAssignment()

Opens a TIA Portal project and jumps to the "GRAPH" details block.
• OpenTIAPortalProDiagDetailsByCall()

Opens a TIA Portal project and jumps to the "GRAPH" details block.
• OpenTIAPortalProject()

Opens a TIA Portal project.

See also
UI (Page 1395)

ProDiag.OpenTIAPortalFromAlarm()

Description
The "OpenTIAPortalFromAlarm" method opens a TIA Portal project and jumps to the "GRAPH"
details block.

Syntax
[HMIRuntime.]UI.ProDiag.OpenTIAPortalFromAlarm(DontUseModifiedProjec
t, ReadOnly, Online, AlarmView, pathToProject);

Parameters
DontUseModifiedProject
Type: Bool
If a changed project is already open, the project will not be opened.

Programming scripts
10.2 WinCC Unified object model

1554 System Manual, 11/2022

ReadOnly
Type: Bool
Opens the project write-protected.

Online
Type: Bool
Goes into online mode after opening the block.

AlarmView
Type: String
Path of the alarm control

pathToProject
Type: String
Path of the project

Return value
ErrorCode

See also
ProDiag (Page 1553)

ProDiag.OpenTIAPortalGRAPHDetails()

Description
The "OpenTIAPortalGRAPHDetails" method opens a TIA Portal project and jumps to the "GRAPH"
details block.

Syntax
[HMIRuntime.]UI.ProDiag.OpenTIAPortalGRAPHDetails(DontUseModifiedPro
ject, ReadOnly, Online, PlcName, Block, pathToProject);

Parameters
DontUseModifiedProject
Type: Bool
If a changed project is already open, the project will not be opened.

ReadOnly
Type: Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1555

Opens the project write-protected.

Online
Type: Bool
Goes into online mode after opening the block.

PlcName
Type: String
Name of the PLC

Block
Type: String
Name of the block

pathToProject
Type: String
Path of the project

Return value
ErrorCode

See also
ProDiag (Page 1553)

ProDiag.OpenTIAPortalProDiagDetailsByAssignment()

Description
The "OpenTIAPortalProDiagDetailsByAssignment" method opens a TIA Portal project and jumps
to the "GRAPH" details block.

Syntax
[HMIRuntime.]UI.ProDiag.OpenTIAPortalProDiagDetailsByAssignment(Dont
UseModifiedProject, ReadOnly, Online, PlcName, Block, Operand
pathToProject);

Parameters
DontUseModifiedProject
Type: Bool
If a changed project is already open, the project will not be opened.

Programming scripts
10.2 WinCC Unified object model

1556 System Manual, 11/2022

ReadOnly
Type: Bool
Opens the project write-protected.

Online
Type:Bool
Goes into online mode after opening the block.

PlcName
Type: String
Name of the PLC

Block
Type: String
Name of the block

Operand
Type: String
Operand of the access point

pathToProject
Type: String
Path of the project

Return value
ErrorCode

See also
ProDiag (Page 1553)

ProDiag.OpenTIAPortalProDiagDetailsByCall()

Description
The "OpenTIAPortalProDiagDetailsByCall" method opens a TIA Portal project and jumps to the
"GRAPH" details block.

Syntax
[HMIRuntime.]UI.ProDiag.OpenTIAPortalProDiagDetailsByCall(DontUseMod
ifiedProject, ReadOnly, Online, PlcName, ContainingBlock,
CalledBlock, Pin, pathToProject);

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1557

Parameters
DontUseModifiedProject
Type: Bool
If a changed project is already open, the project will not be opened.

ReadOnly
Type: Bool
Opens the project write-protected.

Online
Type: Bool
Goes into online mode after opening the block.

PlcName
Type: String
Name of the PLC

ContainingBlock
Type: String
Name of the contained block

CalledBlock
Type: String
Name of the called block

Pin
Type: String
Access point PIN

pathToProject
Type: String
Path of the project

Return value
ErrorCode

See also
ProDiag (Page 1553)

Programming scripts
10.2 WinCC Unified object model

1558 System Manual, 11/2022

ProDiag.OpenTIAPortalProject()

Description
The "OpenTIAPortalProject" method opens a TIA Portal project.

Syntax
[HMIRuntime.]UI.ProDiag.OpenTIAPortalProject(DontUseModifiedProject,
 ReadOnly, pathToProject);

Parameters
DontUseModifiedProject
Type: Bool
If a changed project is already open, the project will not be opened.

ReadOnly
Type: Bool
Opens the project write-protected.

pathToProject
Type: String
Path of the project

Return value
ErrorCode

See also
ProDiag (Page 1553)

SysFct

Description
The "SysFct" object enables access to the system functions of the "ProDiag" object.

Object type
HMIUIProDiagSysFct

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1559

Properties
--

Methods
The "SysFct" object has the following methods:
• IsJumpableAlarm()

Checks whether the alarm selected in the alarm control is a ProDiag alarm.
• Next()

Executes the "Next" command in the PLC code viewer.
• OpenPlcCodeViewByFCCall()

Represents the logic of a network input of a standard block in the PLC code viewer display
taking the UDT instance into account.

• OpenPlcCodeViewFromAlarm()
Opens the corresponding block in the PLC code view according to the selection in the alarm
control.

• OpenProDiagDetailsByAssignment()
Represents an assignment of an operand and its logic in the PLC code viewer display.

• OpenProDiagDetailsByCall()
Represents the logic of a network input of a standard block in the PLC code viewer display.

• OpenViewerGraphByBlock()
Jumps to the PLC code viewer and opens an S7 GRAPH step.

• OpenViewerGraphFromOverview()
Jumps from a graph overview control to the PLC code viewer.

• Previous()
Executes the "Previous" command in the PLC code viewer.

• ResetToConfiguration()
Executes the "ResetToConfiguration" command in the PLC code viewer.

• ToggleCriteriaAnalysis()
Executes the "ToggleCriteriaAnalysis" command in the PLC code viewer.

• ToggleGRAPHViewerMode()
Executes the "ToggleGRAPHViewerMode" command in the PLC code viewer.

• ToggleNetworkDisplay()
Executes the "ToggleNetworkDisplay" command in the PLC code viewer.

• ZoomIn()
Executes the "ZoomIn" command in the PLC code viewer.

• ZoomOut()
Executes the "ZoomOut" command in the PLC code viewer.

See also
ProDiag (Page 1553)

Programming scripts
10.2 WinCC Unified object model

1560 System Manual, 11/2022

SysFct.IsJumpableAlarm()

Description
The "IsJumpableAlarm" method checks whether the alarm selected in the alarm control is a
ProDiag alarm. If yes, the specified screen entry is enabled. Otherwise it is disabled.

Syntax
[HMIRuntime.]UI.ProDiag.SysFct.IsJumpableAlarm(AlarmView,
screenItemPath);

Parameters
AlarmView
Type: String, HmiAlarmControl
Path of the alarm control with selected alarm

screenItemPath
Type: String, HmiScreenItemBase
Path of the code viewer display

Return value
ErrorCode

See also
SysFct (Page 1559)

SysFct.Next()

Description
The "Next" method executes the "Next" command in the PLC code viewer.

Syntax
[HMIRuntime.]UI.ProDiag.SysFct.Next(screenItemPathCodeViewer);

Parameters
screenItemPathCodeViewer
Type: String, HmiProcessDiagnosisPlcCodeViewerControl
Path of the code viewer display

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1561

Return value
ErrorCode

See also
SysFct (Page 1559)

SysFct.OpenPlcCodeViewByFCCall()

Description
The "OpenPlcCodeViewByFCCall" represents the logic of a network input of a standard block in
the PLC code viewer display, taking the UDT instance into account.

Syntax
[HMIRuntime.]UI.ProDiag.SysFct.OpenPlcCodeViewByFCCall(pinSubstringS
earch, plcName, containingBlock, calledBlock, pin, UdtInstance,
screenItemPath);

Parameters
pinSubstringSearch
Type: Bool
Specifies whether the pin name starts with the transferred pin parameter.
• True: Pin name starts with the transferred pin parameter
• False: Pin name must be the same as the pin parameter

plcName
Type: String
Name of the PLC

containingBlock
Type: String
Name of the contained block

calledBlock
Type: String
Name of the called block

pin
Type: String
Name of the input pin of the "CalledBlock".

Programming scripts
10.2 WinCC Unified object model

1562 System Manual, 11/2022

UdtInstance
Type: String
UDT instance that is used to limit the display of FCs called multiple times.

screenItemPath
Type: String, HmiProcessDiagnosisPlcCodeViewerControl
Path of the code viewer display

Return value
ErrorCode

See also
SysFct (Page 1559)

SysFct.OpenPlcCodeViewFromAlarm()

Description
The "OpenPlcCodeViewFromAlarm" method opens the corresponding block in the PLC code view
according to the selection in the alarm control.

Syntax
[HMIRuntime.]UI.ProDiag.SysFct.OpenPlcCodeViewFromAlarm(AlarmView,
PlcCodeView);

Parameters
AlarmView
Type: String
Path of the alarm control

PlcCodeView
Type: String, HmiProcessDiagnosisPlcCodeViewerControl
Path to the PLC code view.

Return value
ErrorCode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1563

See also
SysFct (Page 1559)

SysFct.OpenProDiagDetailsByAssignment()

Description
The "OpenProDiagDetailsByAssignment" method represents an operand assignment and its
logic in the PLC code viewer display.

Syntax
[HMIRuntime.]UI.ProDiag.SysFct.OpenProDiagDetailsByAssignment(plcNam
e, containingBlock, operand, screenItemPath);

Parameters
plcName
Type: String
Name of the PLC

containingBlock
Type: String
Name of the contained block

operand
Type: String
Operand of the access point

screenItemPath
Type: String, HmiProcessDiagnosisPlcCodeViewerControl
Path of the code viewer display

Return value
ErrorCode

See also
SysFct (Page 1559)

Programming scripts
10.2 WinCC Unified object model

1564 System Manual, 11/2022

SysFct.OpenProDiagDetailsByCall()

Description
The "OpenProDiagDetailsByCall" represents the logic of a network input of a standard block in
the PLC code viewer display.

Syntax
[HMIRuntime.]UI.ProDiag.SysFct.OpenProDiagDetailsByCall(pinSubstring
Search, plcName, containingBlock, calledBlock, pin, screenItemPath);

Parameters
pinSubstringSearch
Type: Bool
Specifies whether the pin name starts with the transferred pin parameter.
• True: Pin name starts with the transferred pin parameter
• False: Pin name must be the same as the pin parameter

plcName
Type: String
Name of the PLC

containingBlock
Type: String
Name of the contained block

calledBlock
Type: String
Name of the called block

pin
Type: String
Name of the input pin of the "CalledBlock".

screenItemPath
Type: String, HmiProcessDiagnosisPlcCodeViewerControl
Path of the code viewer display

Return value
ErrorCode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1565

See also
SysFct (Page 1559)

SysFct.OpenViewerGraphByBlock()

Description
The "OpenViewerGraphByBlock" method jumps to the PLC code viewer and opens an S7 GRAPH
step.

Syntax
[HMIRuntime.]UI.ProDiag.SysFct.OpenViewerGraphByBlock(plcName,
graphBlockName, stepNumber, screenItemPath);

Parameters
plcName
Type: String
Name of the PLC

graphBlockName
Type: String
Name of the GRAPH block

stepNumber
Type: UInt32
Step number

screenItemPath
Type: String, HmiProcessDiagnosisPlcCodeViewerControl
Path of the code viewer display

Return value
ErrorCode

See also
SysFct (Page 1559)

Programming scripts
10.2 WinCC Unified object model

1566 System Manual, 11/2022

SysFct.OpenViewerGraphFromOverview()

Description
The "OpenViewerGraphFromOverview" method jumps from a graph overview control to the PLC
code viewer.

Syntax
[HMIRuntime.]UI.ProDiag.SysFct.OpenViewerGraphFromOverview(screenIte
mPathOverviewControl, screenItemPathCodeViewer);

Parameters
screenItemPathOverviewControl
Type: String, HmiProcessDiagnosisGraphOverviewControl
Path of the graph overview control

screenItemPathCodeViewer
Type: String, HmiProcessDiagnosisPlcCodeViewerControl
Path of the code viewer display

Return value
ErrorCode

See also
SysFct (Page 1559)

SysFct.Previous()

Description
The "Previous" method executes the "Previous" command in the PLC code viewer.

Syntax
[HMIRuntime.]UI.ProDiag.SysFct.Previous(blub);

Parameters
screenItemPathCodeViewer
Type: String, HmiProcessDiagnosisPlcCodeViewerControl
Path of the code viewer display

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1567

Return value
ErrorCode

See also
SysFct (Page 1559)

SysFct.ResetToConfiguration()

Description
The "ResetToConfiguration" method executes the "ResetToConfiguration" command in the PLC
code viewer.

Syntax
[HMIRuntime.]UI.ProDiag.SysFct.ResetToConfiguration(screenItemPathCo
deViewer);

Parameters
screenItemPathCodeViewer
Type: String, HmiProcessDiagnosisPlcCodeViewerControl
Path of the code viewer display

Return value
ErrorCode

See also
SysFct (Page 1559)

SysFct.ToggleCriteriaAnalysis()

Description
The "ToggleCriteriaAnalysis" method executes the "ToggleCriteriaAnalysis" command in the PLC
code viewer.

Syntax
[HMIRuntime.]UI.ProDiag.SysFct.ToggleCriteriaAnalysis(screenItemPath
CodeViewer);

Programming scripts
10.2 WinCC Unified object model

1568 System Manual, 11/2022

Parameters
screenItemPathCodeViewer
Type: String, HmiProcessDiagnosisPlcCodeViewerControl
Path of the code viewer display

Return value
ErrorCode

See also
SysFct (Page 1559)

SysFct.ToggleGRAPHViewerMode()

Description
The "ToggleGRAPHViewerMode" method executes the "ToggleGRAPHViewerMode" command in
the PLC code viewer.

Syntax
[HMIRuntime.]UI.ProDiag.SysFct.ToggleGRAPHViewerMode(screenItemPathC
odeViewer);

Parameters
screenItemPathCodeViewer
Type: String, HmiProcessDiagnosisPlcCodeViewerControl
Path of the code viewer display

Return value
ErrorCode

See also
SysFct (Page 1559)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1569

SysFct.ToggleNetworkDisplay()

Description
The "ToggleNetworkDisplay" method executes the "ToggleNetworkDisplay" command in the PLC
code viewer.

Syntax
[HMIRuntime.]UI.ProDiag.SysFct.ToggleNetworkDisplay(screenItemPathCo
deViewer);

Parameters
screenItemPathCodeViewer
Type: String, HmiProcessDiagnosisPlcCodeViewerControl
Path of the code viewer display

Return value
ErrorCode

See also
SysFct (Page 1559)

SysFct.ZoomIn()

Description
The "ZoomIn" method executes the "ZoomIn" command in the PLC code viewer.

Syntax
[HMIRuntime.]UI.ProDiag.SysFct.ZoomIn(screenItemPathCodeViewer);

Parameters
screenItemPathCodeViewer
Type: String, HmiProcessDiagnosisPlcCodeViewerControl
Path of the code viewer display

Return value
ErrorCode

Programming scripts
10.2 WinCC Unified object model

1570 System Manual, 11/2022

See also
SysFct (Page 1559)

SysFct.ZoomOut()

Description
The "ZoomOut" method executes the "ZoomOut" command in the PLC code viewer.

Syntax
[HMIRuntime.]UI.ProDiag.SysFct.ZoomOut(screenItemPathCodeViewer);

Parameters
screenItemPathCodeViewer
Type: String, HmiProcessDiagnosisPlcCodeViewerControl
Path of the code viewer display

Return value
ErrorCode

See also
SysFct (Page 1559)

Screen Items

AlarmControl

Description
The "AlarmControl" object represents an alarm control. It displays current or logged alarms of a
plant in list form.

Object type
HMIAlarmControl

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1571

Properties
The "AlarmControl" object has the following properties:
• AcknowledgmentFlashingRate

Specifies the flashing frequency for alarms that must be acknowledged.
• ActiveAlarmsViewSetup

Specifies which predefined alarm filter is applied to pending alarms.
• AlarmDefinitionViewSetup

Specifies which predefined alarm filter is applied for user-defined alarm definitions.
• AlarmSourceType

Specifies the alarm source of the alarm control.
• AlarmStatisticsSettings

Returns the "AlarmStatisticsSettings" object. Assigns parameters for the statistical
calculations for logged alarms.

• AlarmStatisticsView
Sets the "AlarmStatisticsView" object.
Sets an alarm window with columns and alarm rows for statistical calculations on logged
alarms.

• AlarmView
Specifies the "AlarmView" object.

• AlwaysShowRecent
Specifies whether the most recent alarm is displayed at the beginning or end of the list,
depending on the sorting.

• BackColor
Specifies the background color.

• Caption
Specifies the text to be displayed in the title bar.

• CaptionColor
Specifies the color of the title bar.

• CurrentQuality
Returns the current worst quality code of all tags which influence the alarm control.

• DefaultSortDirection
Specifies the sorting order of the time column if no other sorting is active.

• Enabled
Specifies whether the alarm control can be operated in runtime.

• Filter
Specifies a string for filtering alarms.

• Height
Specifies the height of the alarm control.

• Icon
Specifies the icon of the alarm control.

• Layer
Returns the layer of the screen where the alarm control is located.

Programming scripts
10.2 WinCC Unified object model

1572 System Manual, 11/2022

• Left
Specifies the value of the X coordinate of the alarm control.

• Margin
Specifies the margin.

• Name
Returns the name of the alarm control.

• Parent
Returns the higher-level screen object.

• RenderingTemplate
Returns the name of the template from which the object was created.

• ResetFlashingRate
Sets the flashing frequency for alarms that need to be reset.

• ShowFocusVisual
Specifies whether the alarm control is highlighted when in focus.

• StatusBar
Sets the information bar of the alarm control.

• StyleItemClass
Returns the style which is applied to the alarm control.

• SuppressFlashing
Specifies whether flashing is suppressed.

• Systems
Specifies the name of the runtime system for the grouping of active alarms.

• TabIndex
Returns the position of the alarm control in the tab sequence.

• TimeZone
Specifies the time zone.

• ToolBar
Sets the toolbar of the alarm control.

• Top
Specifies the value of the Y coordinate of the alarm control.

• UseAlarmColors
Specifies whether the configured color of the alarm is used.

• Visible
Specifies whether the alarm control is visible.

• Width
Specifies the width of the alarm control.

• WindowFlags
Specifies the window configuration of the alarm control.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1573

Methods
The "AlarmControl" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the alarm control.
• FireCommand()

Executes the command of an element of the toolbar or information bar of the alarm control.
• GetSelectedAlarmData()

Returns all the data of the selected alarm of the alarm control.
• PropertyFlashing()

Configures flashing of a property.

Events
The "AlarmControl" object has the following events:
• OnActivated()

Occurs when an alarm control receives focus.
• OnCommandFired()

Occurs when the operator has operated an element in the toolbar or information bar of the
alarm control.

• OnDeactivated()
Occurs when an alarm control loses focus.

• OnInitialized()
Occurs when an alarm control has been successfully initialized and the data connection to
the PLC has been established.

• OnSelectionChanged()
Occurs when the selection in the alarm control changes.

AlarmControl.AcknowledgmentFlashingRate

Description
The "AcknowledgmentFlashingRate" property specifies the flashing frequency for alarms that
must be acknowledged.

Type
Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Programming scripts
10.2 WinCC Unified object model

1574 System Manual, 11/2022

Access
Read-write

Syntax
AlarmControl.AcknowledgmentFlashingRate

See also
AlarmControl (Page 1571)

AlarmControl.ActiveAlarmsViewSetup

Description
The "ActiveAlarmsViewSetup" property specifies which predefined alarm filter is applied to
current alarms ("ActiveAlarms" alarm source).

Type
Int32, HmiVisibleAlarms
Specifies the displayed alarms:
• None (0): Show no alarms.
• UnSuppressed (1): Show all alarms that are not suppressed.
• Disabled (2): Show only locked alarms (only if alarm source "AlarmDefinition").
• SuppressedByDesign (4): Show only alarms suppressed by design.
• Shelved (8): Show only shelved alarms.

Access
Read-write

Syntax
AlarmControl.ActiveAlarmsViewSetup

See also
AlarmControl (Page 1571)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1575

AlarmControl.AlarmDefinitionViewSetup

Description
The "AlarmDefinitionViewSetup" property specifies which predefined alarm filter is applied to
displayed alarms from a configured alarm filter configuration (alarm source "AlarmDefinition").

Type
Int32, HmiVisibleAlarms
Specifies the displayed alarms:
• None (0): Show no alarms.
• UnSuppressed (1): Show all alarms that are not suppressed.
• Disabled (2): Show only locked alarms (only if alarm source "AlarmDefinition").
• SuppressedByDesign (4): Show only alarms suppressed by design.
• Shelved (8): Show only shelved alarms.

Access
Read-write

Syntax
AlarmControl.AlarmDefinitionViewSetup

See also
AlarmControl (Page 1571)

AlarmControl.AlarmSourceType

Description
The "AlarmSourceType" property specifies the alarm source of the alarm control.

Type
Int32, HmiAlarmSourceType
Specifies the alarm source:
• NotConfigured (0): Not defined
• ActiveAlarms (1): Pending alarms
• LoggedAlarms (2): Logged alarms

Programming scripts
10.2 WinCC Unified object model

1576 System Manual, 11/2022

• LoggedAlarmsUpdated (3): Logged alarms with updates
• AlarmDefintion (4): Alarms from configured alarm filter configuration
• AlarmStatistics (5): Alarm statistics

Access
Read-write

Syntax
AlarmControl.AlarmSourceType

See also
AlarmControl (Page 1571)

AlarmControl.AlarmStatisticsSettings

Description
The "AlarmStatisticsSettings" property specifies time settings for statistical calculations on
logged alarms.

Type
Object, HmiAlarmStatisticsSettingsPart

Access
Read-write

Syntax
AlarmControl.AlarmStatisticsSettings

See also
AlarmControl (Page 1571)

AlarmStatisticsSettings.BeginTime

Description
The "BeginTime" property specifies the date and time for the start time of the time range.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1577

Type
DateTime

Access
Read-write

Syntax
AlarmStatisticsSettings.BeginTime

See also
AlarmControl.AlarmStatisticsSettings (Page 1577)

AlarmStatisticsSettings.MaximumRecords

Description
The "MaximumRecords" property specifies the maximum number of logged alarms.

Type
UInt16

Access
Read-write

Syntax
AlarmStatisticsSettings.MaximumRecords

See also
AlarmControl.AlarmStatisticsSettings (Page 1577)

AlarmStatisticsSettings.TimeRangeBase

Description
The "TimeRangeBase" property specifies the base of the time range.

Programming scripts
10.2 WinCC Unified object model

1578 System Manual, 11/2022

Type
Int32, HmiTimeRangeBase
Specifies a time range:
• Undefined (0): Not defined
• Millisecond (1): Millisecond
• Second (2): Second
• Minute (3): Minute
• Hour (4): Hour
• Day (5): Day
• Month (6): Month
• Year (7): Year

Access
Read-write

Syntax
AlarmStatisticsSettings.TimeRangeBase

See also
AlarmControl.AlarmStatisticsSettings (Page 1577)

AlarmStatisticsSettings.TimeRangeFactor

Description
The "TimeRangeFactor" property specifies the factor of the time base for defining the time range.

Type
Int32

Access
Read-write

Syntax
AlarmStatisticsSettings.TimeRangeFactor

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1579

See also
AlarmControl.AlarmStatisticsSettings (Page 1577)

AlarmStatisticsSettings.TimeRangeStart

Description
The "TimeRangeStart" property specifies the start of the time range.

Type
Int32, HmiTimeRangeStart
Specifies the start of the time period:
• Now (0): Time period starts at the current time
• Fixed (1): Time period starts at a fixed time ("BeginTime" property)

Access
Read-write

Syntax
AlarmStatisticsSettings.TimeRangeStart

See also
AlarmControl.AlarmStatisticsSettings (Page 1577)

AlarmControl.AlarmStatisticsView

Description
The "AlarmStatisticsView" property specifies an alarm window with columns and alarm rows for
statistical calculations on logged alarms.

Type
Object, HmiDataGridViewPart (Page 1630)

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1580 System Manual, 11/2022

Syntax
AlarmControl.AlarmStatisticsView

See also
DataGridView (Page 1630)

DataGridView

DataGridView.AllowFilter

Description
The "AllowFilter" property specifies whether filtering of columns is permitted.

Type
Bool

Access
Read-write

Syntax
DataGridView.AllowFilter

See also
AlarmControl.AlarmStatisticsView (Page 1580)

DataGridView.AllowSort

Description
The "AllowSort" property specifies whether the sorting of columns is permitted.
• True: Activates the sorting and sets the "AllowSort" property of all columns to "true".
• False: Disables the sorting for all columns. The individual column properties remain

unchanged.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1581

Access
Read-write

Syntax
DataGridView.AllowSort

See also
AlarmControl.AlarmStatisticsView (Page 1580)

DataGridView.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
DataGridView.AlternateBackColor

See also
AlarmControl.AlarmStatisticsView (Page 1580)

DataGridView.AlternateForeColor

Description
The "AlternateForeColor" property specifies the flashing color for the text.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

1582 System Manual, 11/2022

Access
Read-write

Syntax
DataGridView.AlternateForeColor

See also
AlarmControl.AlarmStatisticsView (Page 1580)

DataGridView.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
DataGridView.BackColor

See also
AlarmControl.AlarmStatisticsView (Page 1580)

DataGridView.CellPadding

Description
The "CellPadding" property specifies the inner spacing of the content from the cell border.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1583

Access
Read-write

Syntax
DataGridView.CellPadding

See also
AlarmControl.AlarmStatisticsView (Page 1580)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
DataGridView.CellPadding (Page 1583)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

1584 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Left

See also
DataGridView.CellPadding (Page 1583)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
DataGridView.CellPadding (Page 1583)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1585

Access
Read-write

Syntax
Padding.Top

See also
DataGridView.CellPadding (Page 1583)

DataGridView.Columns

Description
The "Columns" property represents the quantity of columns.

Type
Object, HmiDataGridColumnCollection (Page 1586)

Access
Read-only

Syntax
DataGridView.Columns

See also
HmiDataGridColumnCollection (Page 1586)
AlarmControl.AlarmStatisticsView (Page 1580)

HmiDataGridColumnCollection

Description
The "HmiDataGridColumnCollection" object is a list of all columns ("DataGridColumn" objects) of
the table.
You reference a "HmiDataGridColumnCollection" object via the DataGridView.Columns
property.

Programming scripts
10.2 WinCC Unified object model

1586 System Manual, 11/2022

Use
The "HmiDataGridColumnCollection" object is a list and can be counted and enumerated. You
can access the "HmiDataGridColumnCollection" list using the index or the tag name.

Object type
HmiDataGridColumnCollection

Properties
The "HmiDataGridColumnCollection" object has the following properties:
• Count

Returns the number of columns in the "HmiDataGridColumnCollection" list.

Methods
The "HmiDataGridColumnCollection" object has the following methods:
• Item()

Returns a column of the "HmiDataGridColumnCollection" list.

HmiDataGridColumnCollection.Count

Description
The "Count" property returns the number of columns in the "HmiDataGridColumnCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiDataGridColumnCollection.Count

See also
HmiDataGridColumnCollection (Page 1586)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1587

HmiDataGridColumnCollection.Item()

Description
The "Item" method returns a column of the "HmiDataGridColumnCollection" list.

Syntax
HmiDataGridColumnCollection[.Item](HmiDataGridColumnName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiDataGridColumnCollection" object.

Parameters
HmiDataGridColumnName
Type: String
Name of the column

Return value
Object, HmiDataGridColumnPartBase (Page 1588)

See also
HmiDataGridColumnCollection (Page 1586)
AlarmStatisticColumn (Page 1588)

AlarmStatisticColumn

Description
The "AlarmStatisticColumn" object represents a value column.

Object type
HmiAlarmStatisticColumnPart

Programming scripts
10.2 WinCC Unified object model

1588 System Manual, 11/2022

Properties
The "AlarmStatisticColumn" object has the following properties:
• AlarmStatisticBlock

Sets the property of the alarm that is displayed in the column.
• AllowSort

Specifies whether the sorting of the column is permitted.
• BackColor

Specifies the background color.
• Content

Specifies display options for text and graphics.
• Enabled

Specifies whether the column can be operated in runtime.
• ForeColor

Specifies the font color of the text.
• Header

Specifies the properties of the column header.
• MaximumWidth

Specifies the maximum width.
• MinimumWidth

Specifies the minimum width.
• Name

Returns the name of the column.
• OutputFormat

Specifies the format for displaying values.
• SortDirection

Specifies the direction of the sorting.
• SortOrder

Specifies the order of the sorting.
• Visible

Specifies whether the column is visible.
• Width

Specifies the width of the column in DIU (Device Independent Unit).

Methods
--

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1589

AlarmStatisticColumn.AlarmStatisticBlock

Description
The "AlarmStatisticBlock" property specifies the property of the alarm that is displayed in the
column.

Type
Int32, HmiAlarmStatisticBlock
Specifies the alarm property:
• Undefined (0): Not defined
• AverageRaisedRaised (4097): Average time between the alarm and the resulting alarms
• AverageRaisedCleared (4098): Average time between the alarm and its clearance
• AverageRaisedAcknowledged (4099): Average time between the alarm and its

acknowledgment
• AverageRaisedReset (4100): Average time between the alarm and its reset
• Frequency (4101): Number of alarms per unit of time
• SumRaisedRaised (4102): Sum of all alarms and resulting alarms
• SumRaisedCleared (4103): Sum of all alarms and their elimination
• SumRaisedAcknowledged (4104): Sum of all alarms and their acknowledgement
• SumRaisedReset (4105): Sum of all alarms and their resets
• ID (1): Alarm number
• Name (2): Alarm name
• Class (3): Alarm class
• Priority (4): Priority
• Group (5): Alarm group
• Origin (6): Origin
• Area (7): Area
• Comments (8): Alarm comment
• Information (9): Information text
• LoopInAlarm (10): Navigates to the screen in which the alarm was triggered.
• EventText (11): Alarm text
• AlarmText1...9 (12-20): User-defined alarm text
• AlarmState (21): Alarm state
• ModificationTime (22): Time of modification
• RaiseTime (23): Tripping time
• AcknowledgeTime (24): Time of acknowledgment

Programming scripts
10.2 WinCC Unified object model

1590 System Manual, 11/2022

• ClearTime (25): Time of completion
• ResetTime (26): Reset time
• SuppressionState (27): Status of the alarm suppression
• EscalationLevel (28): Escalation level
• Context (29): Context
• Duration (30): Duration
• AcknowledgmentState (31): Acknowledgment state
• Value (32): Value
• ValueQuality (33): Quality code
• ValueLimit (34): Limit
• TagName (35): Name of the trigger tag
• HostName (36): PC name
• UserName (37): Logged-on user
• ProcessValue1...10 (38-47): Process value
• ClassSymbol (48): Alarm class icon
• StateText (49): Status text

Access
Read-write

Syntax
AlarmStatisticColumn.AlarmStatisticBlock

See also
AlarmStatisticColumn (Page 1588)

AlarmStatisticColumn.AllowSort

Description
The "AllowSort" property specifies whether the sorting of the column is permitted.
This property is ignored if the parent object has the "AllowSort" property set to "False".

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1591

Access
Read-write

Syntax
AlarmStatisticColumn.AllowSort

See also
AlarmStatisticColumn (Page 1588)

AlarmStatisticColumn.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
AlarmStatisticColumn.BackColor

See also
AlarmStatisticColumn (Page 1588)

AlarmColumn.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Programming scripts
10.2 WinCC Unified object model

1592 System Manual, 11/2022

Access
Read-write

Syntax
AlarmStatisticColumn.Content

See also
AlarmStatisticColumn (Page 1588)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
AlarmColumn.Content (Page 1592)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1593

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
AlarmColumn.Content (Page 1592)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1594 System Manual, 11/2022

Syntax
Content.HorizontalTextAlignment

See also
AlarmColumn.Content (Page 1592)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
AlarmColumn.Content (Page 1592)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1595

Syntax
Content.SplitRatio

See also
AlarmColumn.Content (Page 1592)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
AlarmColumn.Content (Page 1592)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Programming scripts
10.2 WinCC Unified object model

1596 System Manual, 11/2022

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
AlarmColumn.Content (Page 1592)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1597

See also
AlarmColumn.Content (Page 1592)

AlarmStatisticColumn.Enabled

Description
The "Enabled" property specifies whether the column can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
AlarmStatisticColumn.Enabled

See also
AlarmStatisticColumn (Page 1588)

AlarmStatisticColumn.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
AlarmStatisticColumn.ForeColor

Programming scripts
10.2 WinCC Unified object model

1598 System Manual, 11/2022

See also
AlarmStatisticColumn (Page 1588)

AlarmColumn.Header

Description
The "Header" property specifies the properties of the column header.

Type
Object, HmiDataGridColumnHeaderPart

Access
Read-write

Syntax
AlarmStatisticColumn.Header

See also
AlarmStatisticColumn (Page 1588)

DataGridColumnHeader.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
DataGridColumnHeader.Content

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1599

See also
AlarmColumn.Header (Page 1599)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
DataGridColumnHeader.Content (Page 1599)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.

Programming scripts
10.2 WinCC Unified object model

1600 System Manual, 11/2022

• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
DataGridColumnHeader.Content (Page 1599)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
DataGridColumnHeader.Content (Page 1599)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1601

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
DataGridColumnHeader.Content (Page 1599)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
DataGridColumnHeader.Content (Page 1599)

Programming scripts
10.2 WinCC Unified object model

1602 System Manual, 11/2022

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
DataGridColumnHeader.Content (Page 1599)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1603

Access
Read-write

Syntax
Content.TextTrimming

See also
DataGridColumnHeader.Content (Page 1599)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
DataGridColumnHeader.Content (Page 1599)

DataGridColumnHeader.Graphic

Description
The "Graphic" property specifies the graphic of the column header.

Programming scripts
10.2 WinCC Unified object model

1604 System Manual, 11/2022

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Graphic

See also
AlarmColumn.Header (Page 1599)

DataGridColumnHeader.Text

Description
The "Text" property specifies the label of the column header.

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Text

See also
AlarmColumn.Header (Page 1599)

AlarmStatisticColumn.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1605

Type
UInt32

Access
Read-write

Syntax
AlarmStatisticColumn.MaximumWidth

See also
AlarmStatisticColumn (Page 1588)

AlarmStatisticColumn.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
AlarmStatisticColumn.MinimumWidth

See also
AlarmStatisticColumn (Page 1588)

AlarmStatisticColumn.Name

Description
The "Name" property returns the name of the column.

Programming scripts
10.2 WinCC Unified object model

1606 System Manual, 11/2022

Type
String

Access
Read-only

Syntax
AlarmStatisticColumn.Name

See also
AlarmStatisticColumn (Page 1588)

AlarmStatisticColumn.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying values.

Type
String

Access
Read-write

Syntax
AlarmStatisticColumn.OutputFormat

See also
AlarmStatisticColumn (Page 1588)

AlarmStatisticColumn.SortDirection

Description
The "SortDirection" property specifies the direction of the sorting.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1607

Type
Int32, HmiSortDirection
Specifies the sorting order.
• None (0): None
• Ascending (1): Ascending
• Descending (2): Descending

Access
Read-write

Syntax
AlarmStatisticColumn.SortDirection

See also
AlarmStatisticColumn (Page 1588)

AlarmStatisticColumn.SortOrder

Description
The "SortOrder" property specifies the order of the sorting.
The sorting index starts at "1" (highest priority) in ascending order. Zero is ignored.

Type
UInt16

Access
Read-write

Syntax
AlarmStatisticColumn.SortOrder

See also
AlarmStatisticColumn (Page 1588)

Programming scripts
10.2 WinCC Unified object model

1608 System Manual, 11/2022

AlarmStatisticColumn.Visible

Description
The "Visible" property specifies whether the column is visible.

Type
Bool

Access
Read-write

Syntax
AlarmStatisticColumn.Visible

See also
AlarmStatisticColumn (Page 1588)

AlarmStatisticColumn.Width

Description
The "Width" property specifies the width of the column in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
AlarmStatisticColumn.Width

See also
AlarmStatisticColumn (Page 1588)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1609

DataGridView.ColoringMode

Description
The "ColoringMode" property specifies whether alternate coloring of every other row or column
is enabled.

Type
Int32, HmiGridColoringMode
Specifies the type of the coloring:
• None (0): None
• Columns (1): Color the columns alternately.
• Rows (2): Color the rows alternately.

Access
Read-write

Syntax
DataGridView.ColoringMode

See also
AlarmControl.AlarmStatisticsView (Page 1580)

DataGridView.Font

Description
The "Font" property specifies the font of the cells.

Type
Object, HmiFontPart

Access
Read-write

Syntax
DataGridView.Font

Programming scripts
10.2 WinCC Unified object model

1610 System Manual, 11/2022

See also
AlarmControl.AlarmStatisticsView (Page 1580)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
DataGridView.Font (Page 1610)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1611

See also
DataGridView.Font (Page 1610)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
DataGridView.Font (Page 1610)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1612 System Manual, 11/2022

Syntax
Font.StrikeOut

See also
DataGridView.Font (Page 1610)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
DataGridView.Font (Page 1610)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1613

• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
DataGridView.Font (Page 1610)

DataGridView.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
DataGridView.ForeColor

See also
AlarmControl.AlarmStatisticsView (Page 1580)

DataGridView.GridLineColor

Description
The "GridLineColor" property specifies the color of grid lines.

Programming scripts
10.2 WinCC Unified object model

1614 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
DataGridView.GridLineColor

See also
AlarmControl.AlarmStatisticsView (Page 1580)

DataGridView.GridLineVisibility

Description
The "GridLineVisibility" property specifies the visibility of the grid lines.

Type
Int32, HmiSimpleGridLine
Specifies the grid lines:
• None (0): None
• Vertikal (1): Vertical
• Horizontal (2): Horizontal

Access
Read-write

Syntax
DataGridView.GridLineVisibility

See also
AlarmControl.AlarmStatisticsView (Page 1580)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1615

DataGridView.GridLineWidth

Description
The "GridLineWidth" property specifies the thickness of the grid lines in pixels.

Type
UInt8

Access
Read-write

Syntax
DataGridView.GridLineWidth

See also
AlarmControl.AlarmStatisticsView (Page 1580)

DataGridView.GridSelectionMode

Description
The "GridSelectionMode" property specifies whether multiple selection is enabled in the table
content.

Type
Int32, HmiGridSelectionMode
Specifies the type of the selection:
• None (0): None
• Single (1): Only single selection
• Multi (2): Multiple selection

Access
Read-write

Syntax
DataGridView.GridSelectionMode

Programming scripts
10.2 WinCC Unified object model

1616 System Manual, 11/2022

See also
AlarmControl.AlarmStatisticsView (Page 1580)

DataGridView.HeaderSettings

Description
The "HeaderSettings" property specifies the settings for all column headers in the table.

Type
Object, HmiDataGridHeaderSettingsPart

Access
Read-write

Syntax
DataGridView.HeaderSettings

See also
AlarmControl.AlarmStatisticsView (Page 1580)

DataGridHeaderSettings.AllowColumnReorder

Description
The "AllowColumnReorder" property specifies whether the order of the columns can be changed.

Type
Bool

Access
Read-write

Syntax
DataGridHeaderSettings.AllowColumnReorder

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1617

See also
DataGridView.HeaderSettings (Page 1617)

DataGridHeaderSettings.AllowColumnResize

Description
The "AllowColumnResize" property specifies whether the width of the columns can be changed.

Type
Bool

Access
Read-write

Syntax
DataGridHeaderSettings.AllowColumnResize

See also
DataGridView.HeaderSettings (Page 1617)

DataGridHeaderSettings.ColumnHeaderType

Description
The "ColumnHeaderType" property specifies the type of content of a column header.

Type
Int32, HmiDataGridHeaderType
Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1618 System Manual, 11/2022

Syntax
DataGridHeaderSettings.ColumnHeaderType

See also
DataGridView.HeaderSettings (Page 1617)

DataGridHeaderSettings.HeaderBackColor

Description
The "HeaderBackColor" property specifies the background color of the header.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderBackColor

See also
DataGridView.HeaderSettings (Page 1617)

DataGridHeaderSettings.HeaderForeColor

Description
The "HeaderForeColor" property specifies the font color of the headers.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1619

Syntax
DataGridHeaderSettings.HeaderForeColor

See also
DataGridView.HeaderSettings (Page 1617)

DataGridHeaderSettings.HeaderGridLineColor

Description
The "HeaderGridLineColor" property specifies the color of the separation line between column
headers.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderGridLineColor

See also
DataGridView.HeaderSettings (Page 1617)

DataGridHeaderSettings.HeaderSelectionBackColor

Description
The "HeaderSelectionBackColor" property specifies the background color of the header of a
selected line or column.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1620 System Manual, 11/2022

Syntax
DataGridHeaderSettings.HeaderSelectionBackColor

See also
DataGridView.HeaderSettings (Page 1617)

DataGridHeaderSettings.HeaderSelectionForeColor

Description
The "HeaderSelectionForeColor" property specifies the font color of the header of a selected line
or column.

Type
UInt32

Access
Read-write

Syntax
Object.HeaderSelectionForeColor

Object
Required. An object from the "Availability" section.

See also
DataGridView.HeaderSettings (Page 1617)

DataGridHeaderSettings.RowHeaderType

Description
The "RowHeaderType" property specifies the type of content of a row header.

Type
Int32, HmiDataGridHeaderType

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1621

Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Access
Read-write

Syntax
DataGridHeaderSettings.RowHeaderType

See also
DataGridView.HeaderSettings (Page 1617)

DataGridHeaderSettings.Font

Description
The "Font" property specifies the font of the headers.

Type
Object, HmiFontPart

Access
Read-write

Syntax
DataGridHeaderSettings.Font

See also
DataGridView.HeaderSettings (Page 1617)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Programming scripts
10.2 WinCC Unified object model

1622 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
DataGridHeaderSettings.Font (Page 1622)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
DataGridHeaderSettings.Font (Page 1622)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1623

Type
Float

Access
Read-write

Syntax
Font.Size

See also
DataGridHeaderSettings.Font (Page 1622)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
DataGridHeaderSettings.Font (Page 1622)

Programming scripts
10.2 WinCC Unified object model

1624 System Manual, 11/2022

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
DataGridHeaderSettings.Font (Page 1622)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1625

Syntax
Font.Weight

See also
DataGridHeaderSettings.Font (Page 1622)

DataGridView.HorizontalScrollBarVisibility

Description
The "HorizontalScrollBarVisibility" property specifies the visibility of the horizontal scroll bar of
the display.

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
DataGridView.HorizontalScrollBarVisibility

See also
AlarmControl.AlarmStatisticsView (Page 1580)

DataGridView.RowHeight

Description
The "RowHeight" property specifies the height of all rows in the table in DIU (Device Independent
Unit).
"0" corresponds to a automatic mechanism, which adjusts the height of each line according
to the font size and number of paragraphs.

Programming scripts
10.2 WinCC Unified object model

1626 System Manual, 11/2022

Type
UInt8

Access
Read-write

Syntax
DataGridView.RowHeight

See also
AlarmControl.AlarmStatisticsView (Page 1580)

DataGridView.SelectFullRow

Description
The "SelectFullRow" property specifies whether only the cell or the entire row is included in the
selection.

Type
Bool

Access
Read-write

Syntax
DataGridView.SelectFullRow

See also
AlarmControl.AlarmStatisticsView (Page 1580)

DataGridView.SelectionBackColor

Description
The "SelectionBackColor" property specifies the background color of the selected cells.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1627

Type
UInt32

Access
Read-write

Syntax
DataGridView.SelectionBackColor

See also
AlarmControl.AlarmStatisticsView (Page 1580)

DataGridView.SelectionForeColor

Description
The "SelectionForeColor" property specifies the font color of the selected cells.

Type
UInt32

Access
Read-write

Syntax
DataGridView.SelectionForeColor

See also
AlarmControl.AlarmStatisticsView (Page 1580)

DataGridView.SelectionBorderColor

Description
The "SelectionBorderColor" property specifies the border color of the selected cells.

Programming scripts
10.2 WinCC Unified object model

1628 System Manual, 11/2022

Type
UInt8

Access
Read-write

Syntax
DataGridView.SelectionBorderColor

See also
AlarmControl.AlarmStatisticsView (Page 1580)

DataGridView.VerticalScrollBarVisibility

Description
The "VerticalScrollBarVisibility" property specifies the visibility of the vertical scroll bar of the
display.

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
DataGridView.VerticalScrollBarVisibility

See also
AlarmControl.AlarmStatisticsView (Page 1580)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1629

AlarmControl.AlarmView

Description
The "AlarmView" property specifies the alarm window with columns and alarm lines for alarms
without statistical evaluation.

Type
Object, HmiDataGridViewPart (Page 1630)

Access
Read-write

Syntax
AlarmControl.AlarmView

See also
AlarmControl (Page 1571)
DataGridView (Page 1630)

DataGridView

DataGridView.AllowFilter

Description
The "AllowFilter" property specifies whether filtering of columns is permitted.

Type
Bool

Access
Read-write

Syntax
DataGridView.AllowFilter

Programming scripts
10.2 WinCC Unified object model

1630 System Manual, 11/2022

See also
AlarmControl.AlarmView (Page 1630)

DataGridView.AllowSort

Description
The "AllowSort" property specifies whether the sorting of columns is permitted.
• True: Activates the sorting and sets the "AllowSort" property of all columns to "true".
• False: Disables the sorting for all columns. The individual column properties remain

unchanged.

Type
Bool

Access
Read-write

Syntax
DataGridView.AllowSort

See also
AlarmControl.AlarmView (Page 1630)

DataGridView.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1631

Syntax
DataGridView.AlternateBackColor

See also
AlarmControl.AlarmView (Page 1630)

DataGridView.AlternateForeColor

Description
The "AlternateForeColor" property specifies the flashing color for the text.

Type
UInt32

Access
Read-write

Syntax
DataGridView.AlternateForeColor

See also
AlarmControl.AlarmView (Page 1630)

DataGridView.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1632 System Manual, 11/2022

Syntax
DataGridView.BackColor

See also
AlarmControl.AlarmView (Page 1630)

DataGridView.CellPadding

Description
The "CellPadding" property specifies the inner spacing of the content from the cell border.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
DataGridView.CellPadding

See also
AlarmControl.AlarmView (Page 1630)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1633

Syntax
Padding.Bottom

See also
DataGridView.CellPadding (Page 1633)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
DataGridView.CellPadding (Page 1633)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1634 System Manual, 11/2022

Syntax
Padding.Right

See also
DataGridView.CellPadding (Page 1633)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
DataGridView.CellPadding (Page 1633)

DataGridView.Columns

Description
The "Columns" property represents the quantity of columns.

Type
Object, HmiDataGridColumnCollection (Page 1636)

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1635

Syntax
DataGridView.Columns

See also
HmiDataGridColumnCollection (Page 1636)
AlarmControl.AlarmView (Page 1630)

HmiDataGridColumnCollection

Description
The "HmiDataGridColumnCollection" object is a list of all columns ("DataGridColumn" objects) of
the table.
You reference a "HmiDataGridColumnCollection" object via the DataGridView.Columns
property.

Use
The "HmiDataGridColumnCollection" object is a list and can be counted and enumerated. You
can access the "HmiDataGridColumnCollection" list using the index or the tag name.

Object type
HmiDataGridColumnCollection

Properties
The "HmiDataGridColumnCollection" object has the following properties:
• Count

Returns the number of columns in the "HmiDataGridColumnCollection" list.

Methods
The "HmiDataGridColumnCollection" object has the following methods:
• Item()

Returns a column of the "HmiDataGridColumnCollection" list.

HmiDataGridColumnCollection.Count

Description
The "Count" property returns the number of columns in the "HmiDataGridColumnCollection" list.

Programming scripts
10.2 WinCC Unified object model

1636 System Manual, 11/2022

Type
UInt32

Access
Read-only

Syntax
HmiDataGridColumnCollection.Count

See also
HmiDataGridColumnCollection (Page 1636)

HmiDataGridColumnCollection.Item()

Description
The "Item" method returns a column of the "HmiDataGridColumnCollection" list.

Syntax
HmiDataGridColumnCollection[.Item](HmiDataGridColumnName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiDataGridColumnCollection" object.

Parameters
HmiDataGridColumnName
Type: String
Name of the column

Return value
Object, HmiDataGridColumnPartBase (Page 1638)

See also
HmiDataGridColumnCollection (Page 1636)
AlarmColumn (Page 1638)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1637

AlarmColumn

Description
The "AlarmColumn" object represents a value column.

Object type
HmiAlarmColumnPart

Properties
The "AlarmColumn" object has the following properties:
• AlarmBlock

Specifies which property of the alarm is displayed.
• AllowSort

Specifies whether the sorting of the column is permitted.
• BackColor

Specifies the background color.
• Content

Specifies display options for text and graphics.
• Enabled

Specifies whether the column can be operated in runtime.
• ForeColor

Specifies the font color of the text.
• Header

Specifies the properties of the column header.
• MaximumWidth

Specifies the maximum width.
• MinimumWidth

Specifies the minimum width.
• Name

Returns the name of the column.
• OutputFormat

Specifies the format for displaying values.
• SortDirection

Specifies the direction of the sorting.
• SortOrder

Specifies the order of the sorting.
• UseAlarmColors

Specifies whether the configured alarm colors are used.

Programming scripts
10.2 WinCC Unified object model

1638 System Manual, 11/2022

• Visible
Specifies whether the column is visible.

• Width
Specifies the width of the column in DIU (Device Independent Unit).

Methods
--

AlarmColumn.AlarmBlock

Description
The "AlarmBlock" property specifies which property of the alarm is displayed.

Type
Int32, HmiAlarmBlock
Specifies the alarm property:
• Undefined (0): Not defined
• ID (1): Alarm number
• Name (2): Alarm name
• Class (3): Alarm class
• Priority (4): Priority
• Group (5): Alarm group
• Origin (6): Origin
• Area (7): Area
• Comments (8): Alarm comment
• Information (9): Information text
• LoopInAlarm (10): Navigates to the screen in which the alarm was triggered.
• EventText (11): Alarm text
• AlarmText1...9 (12-20): User-defined alarm text
• AlarmState (21): Alarm state
• ModificationTime (22): Time of modification
• RaiseTime (23): Tripping time
• AcknowledgeTime (24): Time of acknowledgment
• ClearTime (25): Time of completion
• ResetTime (26): Reset time
• SuppressionState (27): Status of the alarm suppression

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1639

• EscalationLevel (28): Escalation level
• Context (29): Context
• Duration (30): Duration
• AcknowledgmentState (31): Acknowledgment state
• Value (32): Value
• ValueQuality (33): Quality code
• ValueLimit (34): Limit
• HostName (36): PC name
• UserName (37): Logged-on user
• ProcessValue1...10 (38-47): Process value
• ClassSymbol (48): Alarm class icon
• StateText (49): Status text
• GroupID (50): Number of the alarm group

Access
Read-write

Syntax
AlarmColumn.AlarmBlock

See also
AlarmColumn (Page 1638)

AlarmColumn.AllowSort

Description
The "AllowSort" property specifies whether the sorting of the column is permitted.
This property is ignored if the parent object has the "AllowSort" property set to "False".

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1640 System Manual, 11/2022

Syntax
AlarmColumn.AllowSort

See also
AlarmColumn (Page 1638)

AlarmColumn.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
AlarmColumn.BackColor

See also
AlarmColumn (Page 1638)

AlarmColumn.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1641

Syntax
AlarmColumn.Content

See also
AlarmColumn (Page 1638)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
AlarmColumn.Content (Page 1641)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode

Programming scripts
10.2 WinCC Unified object model

1642 System Manual, 11/2022

Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
AlarmColumn.Content (Page 1641)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1643

See also
AlarmColumn.Content (Page 1641)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
AlarmColumn.Content (Page 1641)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

Programming scripts
10.2 WinCC Unified object model

1644 System Manual, 11/2022

See also
AlarmColumn.Content (Page 1641)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
AlarmColumn.Content (Page 1641)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1645

Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
AlarmColumn.Content (Page 1641)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
AlarmColumn.Content (Page 1641)

Programming scripts
10.2 WinCC Unified object model

1646 System Manual, 11/2022

AlarmColumn.Enabled

Description
The "Enabled" property specifies whether the column can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
AlarmColumn.Enabled

See also
AlarmColumn (Page 1638)

AlarmColumn.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
AlarmColumn.ForeColor

See also
AlarmColumn (Page 1638)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1647

AlarmColumn.Header

Description
The "Header" property specifies the properties of the column header.

Type
Object, HmiDataGridColumnHeaderPart

Access
Read-write

Syntax
AlarmColumn.Header

See also
AlarmColumn (Page 1638)

DataGridColumnHeader.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
DataGridColumnHeader.Content

See also
AlarmColumn.Header (Page 1648)

Programming scripts
10.2 WinCC Unified object model

1648 System Manual, 11/2022

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
DataGridColumnHeader.Content (Page 1648)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1649

• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect
ratio is not changed.

• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
DataGridColumnHeader.Content (Page 1648)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
DataGridColumnHeader.Content (Page 1648)

Programming scripts
10.2 WinCC Unified object model

1650 System Manual, 11/2022

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
DataGridColumnHeader.Content (Page 1648)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
DataGridColumnHeader.Content (Page 1648)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1651

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
DataGridColumnHeader.Content (Page 1648)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

1652 System Manual, 11/2022

Access
Read-write

Syntax
Content.TextTrimming

See also
DataGridColumnHeader.Content (Page 1648)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
DataGridColumnHeader.Content (Page 1648)

DataGridColumnHeader.Graphic

Description
The "Graphic" property specifies the graphic of the column header.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1653

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Graphic

See also
AlarmColumn.Header (Page 1648)

DataGridColumnHeader.Text

Description
The "Text" property specifies the label of the column header.

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Text

See also
AlarmColumn.Header (Page 1648)

AlarmColumn.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Programming scripts
10.2 WinCC Unified object model

1654 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
AlarmColumn.MaximumWidth

See also
AlarmColumn (Page 1638)

AlarmColumn.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
AlarmColumn.MinimumWidth

See also
AlarmColumn (Page 1638)

AlarmColumn.Name

Description
The "Name" property returns the name of the column.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1655

Type
String

Access
Read-only

Syntax
AlarmColumn.Name

See also
AlarmColumn (Page 1638)

AlarmColumn.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying values.

Type
String

Access
Read-write

Syntax
AlarmColumn.OutputFormat

See also
AlarmColumn (Page 1638)

AlarmColumn.SortDirection

Description
The "SortDirection" property specifies the direction of the sorting.

Programming scripts
10.2 WinCC Unified object model

1656 System Manual, 11/2022

Type
Int32, HmiSortDirection
Specifies the sorting order.
• None (0): None
• Ascending (1): Ascending
• Descending (2): Descending

Access
Read-write

Syntax
AlarmColumn.SortDirection

See also
AlarmColumn (Page 1638)

AlarmColumn.SortOrder

Description
The "SortOrder" property specifies the order of the sorting.
The sorting index starts at "1" (highest priority) in ascending order. Zero is ignored.

Type
UInt16

Access
Read-write

Syntax
AlarmColumn.SortOrder

See also
AlarmColumn (Page 1638)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1657

AlarmColumn.UseAlarmColors

Description
The "UseAlarmColors" property specifies whether the configured alarm colors are used.

Type
Bool

Access
Read-write

Syntax
AlarmColumn.UseAlarmColors

See also
AlarmColumn (Page 1638)

AlarmColumn.Visible

Description
The "Visible" property specifies whether the column is visible.

Type
Bool

Access
Read-write

Syntax
AlarmColumn.Visible

See also
AlarmColumn (Page 1638)

Programming scripts
10.2 WinCC Unified object model

1658 System Manual, 11/2022

AlarmColumn.Width

Description
The "Width" property specifies the width of the column in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
AlarmColumn.Width

See also
AlarmColumn (Page 1638)

DataGridView.ColoringMode

Description
The "ColoringMode" property specifies whether alternate coloring of every other row or column
is enabled.

Type
Int32, HmiGridColoringMode
Specifies the type of the coloring:
• None (0): None
• Columns (1): Color the columns alternately.
• Rows (2): Color the rows alternately.

Access
Read-write

Syntax
DataGridView.ColoringMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1659

See also
AlarmControl.AlarmView (Page 1630)

DataGridView.Font

Description
The "Font" property specifies the font of the cells.

Type
Object, HmiFontPart

Access
Read-write

Syntax
DataGridView.Font

See also
AlarmControl.AlarmView (Page 1630)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

Programming scripts
10.2 WinCC Unified object model

1660 System Manual, 11/2022

See also
DataGridView.Font (Page 1660)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
DataGridView.Font (Page 1660)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1661

See also
DataGridView.Font (Page 1660)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
DataGridView.Font (Page 1660)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1662 System Manual, 11/2022

Syntax
Font.Underline

See also
DataGridView.Font (Page 1660)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
DataGridView.Font (Page 1660)

DataGridView.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1663

Type
UInt32

Access
Read-write

Syntax
DataGridView.ForeColor

See also
AlarmControl.AlarmView (Page 1630)

DataGridView.GridLineColor

Description
The "GridLineColor" property specifies the color of grid lines.

Type
UInt32

Access
Read-write

Syntax
DataGridView.GridLineColor

See also
AlarmControl.AlarmView (Page 1630)

DataGridView.GridLineVisibility

Description
The "GridLineVisibility" property specifies the visibility of the grid lines.

Programming scripts
10.2 WinCC Unified object model

1664 System Manual, 11/2022

Type
Int32, HmiSimpleGridLine
Specifies the grid lines:
• None (0): None
• Vertikal (1): Vertical
• Horizontal (2): Horizontal

Access
Read-write

Syntax
DataGridView.GridLineVisibility

See also
AlarmControl.AlarmView (Page 1630)

DataGridView.GridLineWidth

Description
The "GridLineWidth" property specifies the thickness of the grid lines in pixels.

Type
UInt8

Access
Read-write

Syntax
DataGridView.GridLineWidth

See also
AlarmControl.AlarmView (Page 1630)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1665

DataGridView.GridSelectionMode

Description
The "GridSelectionMode" property specifies whether multiple selection is enabled in the table
content.

Type
Int32, HmiGridSelectionMode
Specifies the type of the selection:
• None (0): None
• Single (1): Only single selection
• Multi (2): Multiple selection

Access
Read-write

Syntax
DataGridView.GridSelectionMode

See also
AlarmControl.AlarmView (Page 1630)

DataGridView.HeaderSettings

Description
The "HeaderSettings" property specifies the settings for all column headers in the table.

Type
Object, HmiDataGridHeaderSettingsPart

Access
Read-write

Syntax
DataGridView.HeaderSettings

Programming scripts
10.2 WinCC Unified object model

1666 System Manual, 11/2022

See also
AlarmControl.AlarmView (Page 1630)

DataGridHeaderSettings.AllowColumnReorder

Description
The "AllowColumnReorder" property specifies whether the order of the columns can be changed.

Type
Bool

Access
Read-write

Syntax
DataGridHeaderSettings.AllowColumnReorder

See also
DataGridView.HeaderSettings (Page 1666)

DataGridHeaderSettings.AllowColumnResize

Description
The "AllowColumnResize" property specifies whether the width of the columns can be changed.

Type
Bool

Access
Read-write

Syntax
DataGridHeaderSettings.AllowColumnResize

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1667

See also
DataGridView.HeaderSettings (Page 1666)

DataGridHeaderSettings.ColumnHeaderType

Description
The "ColumnHeaderType" property specifies the type of content of a column header.

Type
Int32, HmiDataGridHeaderType
Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Access
Read-write

Syntax
DataGridHeaderSettings.ColumnHeaderType

See also
DataGridView.HeaderSettings (Page 1666)

DataGridHeaderSettings.HeaderBackColor

Description
The "HeaderBackColor" property specifies the background color of the header.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1668 System Manual, 11/2022

Syntax
DataGridHeaderSettings.HeaderBackColor

See also
DataGridView.HeaderSettings (Page 1666)

DataGridHeaderSettings.HeaderForeColor

Description
The "HeaderForeColor" property specifies the font color of the headers.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderForeColor

See also
DataGridView.HeaderSettings (Page 1666)

DataGridHeaderSettings.HeaderGridLineColor

Description
The "HeaderGridLineColor" property specifies the color of the separation line between column
headers.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1669

Syntax
DataGridHeaderSettings.HeaderGridLineColor

See also
DataGridView.HeaderSettings (Page 1666)

DataGridHeaderSettings.HeaderSelectionBackColor

Description
The "HeaderSelectionBackColor" property specifies the background color of the header of a
selected line or column.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderSelectionBackColor

See also
DataGridView.HeaderSettings (Page 1666)

DataGridHeaderSettings.HeaderSelectionForeColor

Description
The "HeaderSelectionForeColor" property specifies the font color of the header of a selected line
or column.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1670 System Manual, 11/2022

Syntax
Object.HeaderSelectionForeColor

Object
Required. An object from the "Availability" section.

See also
DataGridView.HeaderSettings (Page 1666)

DataGridHeaderSettings.RowHeaderType

Description
The "RowHeaderType" property specifies the type of content of a row header.

Type
Int32, HmiDataGridHeaderType
Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Access
Read-write

Syntax
DataGridHeaderSettings.RowHeaderType

See also
DataGridView.HeaderSettings (Page 1666)

DataGridHeaderSettings.Font

Description
The "Font" property specifies the font of the headers.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1671

Type
Object, HmiFontPart

Access
Read-write

Syntax
DataGridHeaderSettings.Font

See also
DataGridView.HeaderSettings (Page 1666)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
DataGridHeaderSettings.Font (Page 1671)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Programming scripts
10.2 WinCC Unified object model

1672 System Manual, 11/2022

Type
String

Access
Read-write

Syntax
Font.Name

See also
DataGridHeaderSettings.Font (Page 1671)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
DataGridHeaderSettings.Font (Page 1671)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1673

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
DataGridHeaderSettings.Font (Page 1671)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
DataGridHeaderSettings.Font (Page 1671)

Programming scripts
10.2 WinCC Unified object model

1674 System Manual, 11/2022

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
DataGridHeaderSettings.Font (Page 1671)

DataGridView.HorizontalScrollBarVisibility

Description
The "HorizontalScrollBarVisibility" property specifies the visibility of the horizontal scroll bar of
the display.

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1675

Access
Read-write

Syntax
DataGridView.HorizontalScrollBarVisibility

See also
AlarmControl.AlarmView (Page 1630)

DataGridView.RowHeight

Description
The "RowHeight" property specifies the height of all rows in the table in DIU (Device Independent
Unit).
"0" corresponds to a automatic mechanism, which adjusts the height of each line according
to the font size and number of paragraphs.

Type
UInt8

Access
Read-write

Syntax
DataGridView.RowHeight

See also
AlarmControl.AlarmView (Page 1630)

DataGridView.SelectFullRow

Description
The "SelectFullRow" property specifies whether only the cell or the entire row is included in the
selection.

Programming scripts
10.2 WinCC Unified object model

1676 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
DataGridView.SelectFullRow

See also
AlarmControl.AlarmView (Page 1630)

DataGridView.SelectionBackColor

Description
The "SelectionBackColor" property specifies the background color of the selected cells.

Type
UInt32

Access
Read-write

Syntax
DataGridView.SelectionBackColor

See also
AlarmControl.AlarmView (Page 1630)

DataGridView.SelectionForeColor

Description
The "SelectionForeColor" property specifies the font color of the selected cells.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1677

Type
UInt32

Access
Read-write

Syntax
DataGridView.SelectionForeColor

See also
AlarmControl.AlarmView (Page 1630)

DataGridView.SelectionBorderColor

Description
The "SelectionBorderColor" property specifies the border color of the selected cells.

Type
UInt8

Access
Read-write

Syntax
DataGridView.SelectionBorderColor

See also
AlarmControl.AlarmView (Page 1630)

DataGridView.VerticalScrollBarVisibility

Description
The "VerticalScrollBarVisibility" property specifies the visibility of the vertical scroll bar of the
display.

Programming scripts
10.2 WinCC Unified object model

1678 System Manual, 11/2022

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
DataGridView.VerticalScrollBarVisibility

See also
AlarmControl.AlarmView (Page 1630)

AlarmControl.AlwaysShowRecent

Description
The "AlwaysShowRecent" specifies whether the most recent alarm is displayed at the beginning
or end of the list, depending on the sorting.

Type
Bool

Access
Read-write

Syntax
AlarmControl.AlwaysShowRecent

See also
AlarmControl (Page 1571)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1679

AlarmControl.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
AlarmControl.BackColor

See also
AlarmControl (Page 1571)

AlarmControl.Caption

Description
The "Caption" property specifies the text to be displayed in the header.

Type
Object, HmiTextPart

Access
Read-write

Syntax
AlarmControl.Caption

See also
AlarmControl (Page 1571)

Programming scripts
10.2 WinCC Unified object model

1680 System Manual, 11/2022

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
AlarmControl.Caption (Page 1680)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 1681)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1681

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 1681)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 1681)

Programming scripts
10.2 WinCC Unified object model

1682 System Manual, 11/2022

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 1681)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1683

See also
Text.Font (Page 1681)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 1681)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

1684 System Manual, 11/2022

Access
Read-write

Syntax
Text.ForeColor

See also
AlarmControl.Caption (Page 1680)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
AlarmControl.Caption (Page 1680)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1685

Access
Read-write

Syntax
Text.Visible

See also
AlarmControl.Caption (Page 1680)

AlarmControl.CaptionColor

Description
The "CaptionColor" property specifies the color of the header.

Type
UInt32

Access
Read-write

Syntax
AlarmControl.CaptionColor

See also
AlarmControl (Page 1571)

AlarmControl.CurrentQuality

Description
The "CurrentQuality" property returns the current worst quality code of all tags which influence
the alarm control.

Type
Int32, HmiQuality

Programming scripts
10.2 WinCC Unified object model

1686 System Manual, 11/2022

Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable. Quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
AlarmControl.CurrentQuality

See also
AlarmControl (Page 1571)

AlarmControl.DefaultSortDirection

Description
The "DefaultSortDirection" property specifies the sorting order of the time column if no other
sorting is active.

Type
Int32, HmiSortDirection
Specifies the sorting order.
• None (0): None
• Ascending (1): Ascending
• Descending (2): Descending

Access
Read-write

Syntax
AlarmControl.DefaultSortDirection

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1687

See also
AlarmControl (Page 1571)

AlarmControl.Enabled

Description
The "Enabled" property specifies whether the alarm control can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
AlarmControl.Enabled

See also
AlarmControl (Page 1571)

AlarmControl.Filter

Description
The "Filter" property specifies a string for filtering alarms.
The syntax of the filter string corresponds to the WHERE clause of an SQL command.

Type
String

Access
Read-write

Syntax
AlarmControl.Filter

Programming scripts
10.2 WinCC Unified object model

1688 System Manual, 11/2022

Supported alarm properties
The following properties of an alarm can be used in the filter string:
• AcknowledgementTime
• Alarm
• AlarmClassName
• AlarmClassSymbol
• AlarmParameterValues
• AlarmText1 … 9
• Area
• BackColor
• ChangeReason
• ClearTime
• Connection
• EventText
• Flashing
• InfoText
• InstanceID
• LoopInAlarm
• ModificationTime
• Name
• Origin
• Priority
• RaiseTime
• ResetTime
• SourceID
• SourceType
• State
• StateMachine
• StateText
• SuppressionState
• SystemSeverity
• TextColor
• Value
• ValueLimit

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1689

Operators
The following operators can be used in the filter string:

Operator Description Example
= equal to AlarmClassName = 'demo'
IS NOT string is not equal to the string string AlarmText4 IS NOT

'Text5'
<> not equal Value <> 0.0
> greater than ModificationTime >

'11.08.2016'
< less than Value < 75.0
>= greater than or equal to Value >= 25.0
<= less than or equal to Value <= 75.0
OR, || logical OR State = 1 OR State = 3
AND, && logical AND EventText = 'Text1' AND

Origin = 'Motor'
BETWEEN within a range Value BETWEEN 25.0 AND

75.0
NOT BETWEEN outside a range Value NOT BETWEEN 25.0

AND 75.0
LIKE string corresponds to the string string Name LIKE 'Motor*'
NOT LIKE string does not correspond to the string string Name NOT LIKE 'Valve*'
IN (v1, v2, …) corresponds to one or more values State IN (1, 4, 7)
NOT IN (v1, v2, …) does not correspond to one or more values State NOT IN (0, 2, 3,

5, 6)
IS NULL compares to zero (missing data) Context IS NULL
IS NOT NULL compares to zero (unknown data) Context IS NOT NULL

Wildcards
The following wildcards can be used for characters of filter strings:

Wildcard Description Example
* replaces 0, 1 or more characters Name LIKE 'Motor*'
? replaces exactly 1 character Name = 'Recipe?'

See also
AlarmControl (Page 1571)

AlarmControl.Height

Description
The "Height" property specifies the height of the alarm control in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

1690 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
AlarmControl.Height

See also
AlarmControl (Page 1571)

AlarmControl.Icon

Description
The "Icon" property specifies the icon of the alarm control.

Type
String

Access
Read-write

Syntax
AlarmControl.Icon

See also
AlarmControl (Page 1571)

AlarmControl.Layer

Description
The "Layer" property returns the layer of the screen in which the alarm control is located.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1691

Type
Object, HmiLayerPart

Access
Read-only

Syntax
AlarmControl.Layer

See also
AlarmControl (Page 1571)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
AlarmControl.Layer (Page 1691)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Programming scripts
10.2 WinCC Unified object model

1692 System Manual, 11/2022

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
AlarmControl.Layer (Page 1691)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
AlarmControl.Layer (Page 1691)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1693

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
AlarmControl.Layer (Page 1691)

AlarmControl.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
AlarmControl.Left

See also
AlarmControl (Page 1571)

AlarmControl.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the alarm control.

Programming scripts
10.2 WinCC Unified object model

1694 System Manual, 11/2022

Type
Object, HmiMarginPart

Access
Read-write

Syntax
AlarmControl.Margin

See also
AlarmControl (Page 1571)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
AlarmControl.Margin (Page 1694)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1695

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
AlarmControl.Margin (Page 1694)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
AlarmControl.Margin (Page 1694)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Programming scripts
10.2 WinCC Unified object model

1696 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
AlarmControl.Margin (Page 1694)

AlarmControl.Name

Description
The "Name" property returns the name of the alarm control.

Type
String

Access
Read-only

Syntax
AlarmControl.Name

See also
AlarmControl (Page 1571)

AlarmControl.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1697

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
AlarmControl.Parent

See also
AlarmControl (Page 1571)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

AlarmControl.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the object has
been created.

Type
String

Access
Read-only

Syntax
AlarmControl.RenderingTemplate

See also
AlarmControl (Page 1571)

Programming scripts
10.2 WinCC Unified object model

1698 System Manual, 11/2022

AlarmControl.ResetFlashingRate

Description
The "ResetFlashingRate" property specifies the flashing frequency for alarms that need to be
reset.

Type
Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Access
Read-write

Syntax
AlarmControl.ResetFlashingRate

See also
AlarmControl (Page 1571)

AlarmControl.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the alarm window is highlighted when in
focus.

Type
Bool

Access
Read-write

Syntax
AlarmControl.ShowFocusVisual

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1699

See also
AlarmControl (Page 1571)

AlarmControl.StatusBar

Description
The "StatusBar" property specifies the Information bar of the alarm control.

Type
Object, HmiStatusBarPart

Access
Read-write

Syntax
AlarmControl.StatusBar

See also
AlarmControl (Page 1571)

StatusBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
StatusBar.BackColor

Programming scripts
10.2 WinCC Unified object model

1700 System Manual, 11/2022

See also
AlarmControl.StatusBar (Page 1700)

StatusBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
information bar.

Type
Object, HmiControlBarElementCollection (Page 1701)

Access
Read-only

Syntax
StatusBar.Elements

See also
AlarmControl.StatusBar (Page 1700)
HmiControlBarElementCollection (Page 1701)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1701

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 1701)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

1702 System Manual, 11/2022

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 1720)

See also
HmiControlBarElementCollection (Page 1701)
Control Bar Elements (Page 1720)

Control Bar Elements

Description
Control Bar Elements (Page 1720)

StatusBar.Enabled

Description
The "Enabled" property specifies whether the information bar can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1703

Syntax
StatusBar.Enabled

See also
AlarmControl.StatusBar (Page 1700)

StatusBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
StatusBar.Font

See also
AlarmControl.StatusBar (Page 1700)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1704 System Manual, 11/2022

Syntax
Font.Italic

See also
StatusBar.Font (Page 1704)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
StatusBar.Font (Page 1704)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1705

Syntax
Font.Size

See also
StatusBar.Font (Page 1704)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
StatusBar.Font (Page 1704)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

1706 System Manual, 11/2022

Access
Read-write

Syntax
Font.Underline

See also
StatusBar.Font (Page 1704)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
StatusBar.Font (Page 1704)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1707

StatusBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the information bar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
StatusBar.Margin

See also
AlarmControl.StatusBar (Page 1700)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
StatusBar.Margin (Page 1708)

Programming scripts
10.2 WinCC Unified object model

1708 System Manual, 11/2022

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
StatusBar.Margin (Page 1708)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
StatusBar.Margin (Page 1708)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1709

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
StatusBar.Margin (Page 1708)

StatusBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the information
bar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
StatusBar.Padding

See also
AlarmControl.StatusBar (Page 1700)

Programming scripts
10.2 WinCC Unified object model

1710 System Manual, 11/2022

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
StatusBar.Padding (Page 1710)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
StatusBar.Padding (Page 1710)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1711

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
StatusBar.Padding (Page 1710)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
StatusBar.Padding (Page 1710)

Programming scripts
10.2 WinCC Unified object model

1712 System Manual, 11/2022

StatusBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
StatusBar.ShowToolTips

See also
AlarmControl.StatusBar (Page 1700)

StatusBar.Visible

Description
The "Visible" property specifies whether the information bar is visible.

Type
Bool

Access
Read-write

Syntax
StatusBar.Visible

See also
AlarmControl.StatusBar (Page 1700)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1713

AlarmControl.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the alarm control.

Type
String

Access
Read-only

Syntax
AlarmControl.StyleItemClass

See also
AlarmControl (Page 1571)

AlarmControl.SuppressFlashing

Description
The "SuppressFlashing" property suppresses all flashing of the alarm control.

Type
Bool

Access
Read-write

Syntax
AlarmControl.SuppressFlashing

See also
AlarmControl (Page 1571)

Programming scripts
10.2 WinCC Unified object model

1714 System Manual, 11/2022

AlarmControl.Systems

Description
The "Systems" property specifies the name of the runtime system for compiling active alarms.
If no reference is specified, all known systems are used.

Type
String[] | Int32[]

Access
Read-write

Syntax
AlarmControl.Systems

See also
AlarmControl (Page 1571)

AlarmControl.TabIndex

Description
The "TabIndex" property returns the position of the alarm control in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
AlarmControl.TabIndex

See also
AlarmControl (Page 1571)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1715

AlarmControl.TimeZone

Description
The "TimeZone" property specifies the time zone.

Type
Int32, HmiTimeZone

Access
Read-write

Syntax
AlarmControl.TimeZone

See also
AlarmControl (Page 1571)

AlarmControl.ToolBar

Description
The "ToolBar" property specifies the toolbar of the alarm control.

Type
Object, HmiToolBarPart

Access
Read-write

Syntax
AlarmControl.ToolBar

See also
AlarmControl (Page 1571)

Programming scripts
10.2 WinCC Unified object model

1716 System Manual, 11/2022

ToolBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ToolBar.BackColor

See also
AlarmControl.ToolBar (Page 1716)

ToolBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
toolbar.

Type
Object, HmiControlBarElementCollection (Page 1718)

Access
Read-only

Syntax
ToolBar.Elements

See also
AlarmControl.ToolBar (Page 1716)
HmiControlBarElementCollection (Page 1718)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1717

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

1718 System Manual, 11/2022

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 1718)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 1720)

See also
HmiControlBarElementCollection (Page 1718)
Control Bar Elements (Page 1720)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1719

Control Bar Elements

ControlBarButton

Description
The "ControlBarButton" object represents a button of an information bar or toolbar.
You can reference the "ControlBarButton" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarButtonPart

Properties
The "ControlBarButton" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the label of the button.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the button can be operated in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.

Programming scripts
10.2 WinCC Unified object model

1720 System Manual, 11/2022

• HotKey
Returns the hotkey specified for the button.

• Mapping
Returns the function of the button.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the button is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the button is only operable while the corresponding button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the button is visible.

• Width
Specifies the width.

Methods
--

ControlBarButton.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1721

Access
Read-write

Syntax
ControlBarButton.AlternateBackColor

See also
ControlBarButton (Page 1720)

ControlBarButton.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBorderColor

See also
ControlBarButton (Page 1720)

ControlBarButton.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the button of an information bar or toolbar.

Type
Object, HmiFunctionRight

Programming scripts
10.2 WinCC Unified object model

1722 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarButton.Authorization

See also
ControlBarButton (Page 1720)

ControlBarButton.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BackColor

See also
ControlBarButton (Page 1720)

ControlBarButton.Badge

Description
The "Badge" property specifies the label of the button.

Type
Object, HmiBadgePart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1723

Access
Read-write

Syntax
ControlBarButton.Badge

See also
ControlBarButton (Page 1720)

ControlBarButton.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BorderColor

See also
ControlBarButton (Page 1720)

ControlBarButton.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Programming scripts
10.2 WinCC Unified object model

1724 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.BorderWidth

See also
ControlBarButton (Page 1720)

ControlBarButton.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarButton.Content

See also
ControlBarButton (Page 1720)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1725

Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarButton.Content (Page 1725)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

Programming scripts
10.2 WinCC Unified object model

1726 System Manual, 11/2022

See also
ControlBarButton.Content (Page 1725)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarButton.Content (Page 1725)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1727

Syntax
Content.Spacing

See also
ControlBarButton.Content (Page 1725)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarButton.Content (Page 1725)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above

Programming scripts
10.2 WinCC Unified object model

1728 System Manual, 11/2022

• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarButton.Content (Page 1725)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarButton.Content (Page 1725)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1729

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarButton.Content (Page 1725)

ControlBarButton.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

1730 System Manual, 11/2022

Syntax
ControlBarButton.CustomID

See also
ControlBarButton (Page 1720)

ControlBarButton.Enabled

Description
The "Enabled" property specifies whether the button can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Enabled

See also
ControlBarButton (Page 1720)

ControlBarButton.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1731

Syntax
ControlBarButton.ForeColor

See also
ControlBarButton (Page 1720)

ControlBarButton.Graphic

Description
The "Graphic" property specifies the graphic of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Graphic

See also
ControlBarButton (Page 1720)

ControlBarButton.Height

Description
The "Height" property specifies the height of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1732 System Manual, 11/2022

Syntax
ControlBarButton.Height

See also
ControlBarButton (Page 1720)

ControlBarButton.HotKey

Description
The "HotKey" property returns the hotkey specified for the button. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
ControlBarButton.HotKey

See also
ControlBarButton (Page 1720)

ControlBarButton.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1733

• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled

Programming scripts
10.2 WinCC Unified object model

1734 System Manual, 11/2022

• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarButton.Mapping

See also
ControlBarButton (Page 1720)

ControlBarButton.Margin

Description
The "Margin" property specifies the surrounded outer distance of the button.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1735

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarButton.Margin

See also
ControlBarButton (Page 1720)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarButton.Margin (Page 1735)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Programming scripts
10.2 WinCC Unified object model

1736 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarButton.Margin (Page 1735)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarButton.Margin (Page 1735)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1737

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarButton.Margin (Page 1735)

ControlBarButton.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumHeight

See also
ControlBarButton (Page 1720)

ControlBarButton.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Programming scripts
10.2 WinCC Unified object model

1738 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumWidth

See also
ControlBarButton (Page 1720)

ControlBarButton.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumHeight

See also
ControlBarButton (Page 1720)

ControlBarButton.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1739

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumWidth

See also
ControlBarButton (Page 1720)

ControlBarButton.Operability

Description
The "Operability" property returns whether the button is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarButton.Operability

See also
ControlBarButton (Page 1720)

Programming scripts
10.2 WinCC Unified object model

1740 System Manual, 11/2022

ControlBarButton.Padding

Description
The "Padding" property specifies the distance of the content from the border of the button.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarButton.Padding

See also
ControlBarButton (Page 1720)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarButton.Padding (Page 1741)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1741

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarButton.Padding (Page 1741)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarButton.Padding (Page 1741)

Programming scripts
10.2 WinCC Unified object model

1742 System Manual, 11/2022

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarButton.Padding (Page 1741)

ControlBarButton.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the button can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarButton.RequireExplicitUnlock

See also
ControlBarButton (Page 1720)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1743

ControlBarButton.Text

Description
The "Text" property specifies the label of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Text

See also
ControlBarButton (Page 1720)

ControlBarButton.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.ToolTipText

See also
ControlBarButton (Page 1720)

Programming scripts
10.2 WinCC Unified object model

1744 System Manual, 11/2022

ControlBarButton.Visible

Description
The "Visible" property specifies whether the button is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Visible

See also
ControlBarButton (Page 1720)

ControlBarButton.Width

Description
The "Width" property specifies the width of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Width

See also
ControlBarButton (Page 1720)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1745

ControlBarDisplay

Description
The "ControlBarDisplay" object represents a display area for text and graphics of an information
bar or toolbar.
You can reference the "ControlBarDisplay" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarDisplayPart

Properties
The "ControlBarDisplay" object has the following properties:
• Authorization

Returns the operator authorization.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the display area is enabled in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• Mapping

Returns the function of the display area.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

1746 System Manual, 11/2022

• Operability
Returns whether the display area is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the display area is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the display area is visible.

• Width
Specifies the width.

Methods
--

ControlBarDisplay.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the display.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarDislay.Authorization

See also
ControlBarDisplay (Page 1746)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1747

ControlBarButton.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarDislay.Content

See also
ControlBarDisplay (Page 1746)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

1748 System Manual, 11/2022

See also
ControlBarButton.Content (Page 1748)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarButton.Content (Page 1748)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1749

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarButton.Content (Page 1748)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarButton.Content (Page 1748)

Programming scripts
10.2 WinCC Unified object model

1750 System Manual, 11/2022

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarButton.Content (Page 1748)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1751

Syntax
Content.TextPosition

See also
ControlBarButton.Content (Page 1748)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarButton.Content (Page 1748)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

1752 System Manual, 11/2022

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarButton.Content (Page 1748)

ControlBarDisplay.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarDislay.CustomID

See also
ControlBarDisplay (Page 1746)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1753

ControlBarDisplay.Enabled

Description
The "Enabled" property specifies whether the display is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Enabled

See also
ControlBarDisplay (Page 1746)

ControlBarDisplay.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.ForeColor

See also
ControlBarDisplay (Page 1746)

Programming scripts
10.2 WinCC Unified object model

1754 System Manual, 11/2022

ControlBarDisplay.Graphic

Description
The "Graphic" property specifies the graphic of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Graphic

See also
ControlBarDisplay (Page 1746)

ControlBarDisplay.Height

Description
The "Height" property specifies the height of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Height

See also
ControlBarDisplay (Page 1746)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1755

ControlBarDisplay.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page

Programming scripts
10.2 WinCC Unified object model

1756 System Manual, 11/2022

• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1757

Syntax
ControlBarDislay.Mapping

See also
ControlBarDisplay (Page 1746)

ControlBarButton.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the display.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarDislay.Margin

See also
ControlBarDisplay (Page 1746)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1758 System Manual, 11/2022

Syntax
Margin.Bottom

See also
ControlBarButton.Margin (Page 1758)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarButton.Margin (Page 1758)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1759

Syntax
Margin.Right

See also
ControlBarButton.Margin (Page 1758)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarButton.Margin (Page 1758)

ControlBarDisplay.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1760 System Manual, 11/2022

Syntax
ControlBarDislay.MaximumHeight

See also
ControlBarDisplay (Page 1746)

ControlBarDisplay.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MaximumWidth

See also
ControlBarDisplay (Page 1746)

ControlBarDisplay.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1761

Syntax
ControlBarDislay.MinimumHeight

See also
ControlBarDisplay (Page 1746)

ControlBarDisplay.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MinimumWidth

See also
ControlBarDisplay (Page 1746)

ControlBarDisplay.Operability

Description
The "Operability" property returns whether the display is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Programming scripts
10.2 WinCC Unified object model

1762 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarDislay.Operability

See also
ControlBarDisplay (Page 1746)

ControlBarButton.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the display.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarDislay.Padding

See also
ControlBarDisplay (Page 1746)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1763

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarButton.Padding (Page 1763)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarButton.Padding (Page 1763)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

1764 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Right

See also
ControlBarButton.Padding (Page 1763)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarButton.Padding (Page 1763)

ControlBarDisplay.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the display can only be operated while the
associated button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1765

Access
Read-only

Syntax
ControlBarDislay.RequireExplicitUnlock

See also
ControlBarDisplay (Page 1746)

ControlBarDisplay.Text

Description
The "Text" property specifies the label of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Text

See also
ControlBarDisplay (Page 1746)

ControlBarDisplay.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the display.

Type
String

Programming scripts
10.2 WinCC Unified object model

1766 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.ToolTipText

See also
ControlBarDisplay (Page 1746)

ControlBarDisplay.Visible

Description
The "Visible" property specifies whether the display is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Visible

See also
ControlBarDisplay (Page 1746)

ControlBarDisplay.Width

Description
The "Width" property specifies the width of the display in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1767

Access
Read-write

Syntax
ControlBarDislay.Width

See also
ControlBarDisplay (Page 1746)

ControlBarLabel

Description
The "ControlBarLabel" object represents an identifier of an information bar or toolbar.
You can reference the "ControlBarLabel" object via the "HmiControlBarElementCollection" list.

Object type
HmiControlBarLabelPart

Properties
The "ControlBarLabel" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the identifier can be operated in runtime.
• ForeColor

Specifies the font color.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Height

Specifies the height.
• Mapping

Returns the function of the identifier.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.

Programming scripts
10.2 WinCC Unified object model

1768 System Manual, 11/2022

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the identifier is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the identifier is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the identifier is visible.

• Width
Specifies the width.

Methods
--

ControlBarLabel.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the identifier.

Type
Object, HmiFunctionRight

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1769

Syntax
ControlBarLabel.Authorization

See also
ControlBarLabel (Page 1768)

ControlBarLabel.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarLabel.CustomID

See also
ControlBarLabel (Page 1768)

ControlBarLabel.Enabled

Description
The "Enabled" property specifies whether the identifier is active in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1770 System Manual, 11/2022

Syntax
ControlBarLabel.Enabled

See also
ControlBarLabel (Page 1768)

ControlBarLabel.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.ForeColor

See also
ControlBarLabel (Page 1768)

ControlBarLabel.Height

Description
The "Height" property specifies the height of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1771

Syntax
ControlBarLabel.Height

See also
ControlBarLabel (Page 1768)

ControlBarLabel.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.HorizontalTextAlignment

See also
ControlBarLabel (Page 1768)

ControlBarLabel.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID

Programming scripts
10.2 WinCC Unified object model

1772 System Manual, 11/2022

Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1773

• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarLabel.Mapping

See also
ControlBarLabel (Page 1768)

Programming scripts
10.2 WinCC Unified object model

1774 System Manual, 11/2022

ControlBarLabel.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the identifier.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarLabel.Margin

See also
ControlBarLabel (Page 1768)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarLabel.Margin (Page 1775)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1775

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarLabel.Margin (Page 1775)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarLabel.Margin (Page 1775)

Programming scripts
10.2 WinCC Unified object model

1776 System Manual, 11/2022

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarLabel.Margin (Page 1775)

ControlBarLabel.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumHeight

See also
ControlBarLabel (Page 1768)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1777

ControlBarLabel.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumWidth

See also
ControlBarLabel (Page 1768)

ControlBarLabel.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumHeight

See also
ControlBarLabel (Page 1768)

Programming scripts
10.2 WinCC Unified object model

1778 System Manual, 11/2022

ControlBarLabel.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumWidth

See also
ControlBarLabel (Page 1768)

ControlBarLabel.Operability

Description
The "Operability" property returns whether the identifier is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarLabel.Operability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1779

See also
ControlBarLabel (Page 1768)

ControlBarLabel.Padding

Description
The "Padding" property specifies the spacing of the content from the frame of the identifier.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarLabel.Padding

See also
ControlBarLabel (Page 1768)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

Programming scripts
10.2 WinCC Unified object model

1780 System Manual, 11/2022

See also
ControlBarLabel.Padding (Page 1780)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarLabel.Padding (Page 1780)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1781

See also
ControlBarLabel.Padding (Page 1780)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarLabel.Padding (Page 1780)

ControlBarLabel.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the identifier can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarLabel.RequireExplicitUnlock

Programming scripts
10.2 WinCC Unified object model

1782 System Manual, 11/2022

See also
ControlBarLabel (Page 1768)

ControlBarLabel.Text

Description
The "Text" property specifies the label of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.Text

See also
ControlBarLabel (Page 1768)

ControlBarLabel.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.ToolTipText

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1783

See also
ControlBarLabel (Page 1768)

ControlBarLabel.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.VerticalTextAlignment

See also
ControlBarLabel (Page 1768)

ControlBarLabel.Visible

Description
The "Visible" property specifies whether the identifier is visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1784 System Manual, 11/2022

Syntax
ControlBarLabel.Visible

See also
ControlBarLabel (Page 1768)

ControlBarLabel.Width

Description
The "Width" property specifies the width of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Width

See also
ControlBarLabel (Page 1768)

ControlBarSeparator

Description
The "ControlBarSeparator" object represents a separator of an information bar or toolbar.
You can reference the "ControlBarSeparator" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarSeparatorPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1785

Properties
The "ControlBarSeparator" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the disconnector can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• Mapping

Returns the function of the separator.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the separator is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the disconnector is only operable while the associated button is being
pressed.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the disconnector is visible.

• Width
Specifies the width.

Methods
--

Programming scripts
10.2 WinCC Unified object model

1786 System Manual, 11/2022

ControlBarSeparator.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the separator.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarSeparator.Authorization

See also
ControlBarSeparator (Page 1785)

ControlBarSeparator.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarSeparator.CustomID

See also
ControlBarSeparator (Page 1785)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1787

ControlBarSeparator.Enabled

Description
The "Enabled" property specifies whether the separator is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Enabled

See also
ControlBarSeparator (Page 1785)

ControlBarSeparator.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.ForeColor

See also
ControlBarSeparator (Page 1785)

Programming scripts
10.2 WinCC Unified object model

1788 System Manual, 11/2022

ControlBarSeparator.Height

Description
The "Height" property specifies the height of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Height

See also
ControlBarSeparator (Page 1785)

ControlBarSeparator.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1789

• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms

Programming scripts
10.2 WinCC Unified object model

1790 System Manual, 11/2022

• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarSeparator.Mapping

See also
ControlBarSeparator (Page 1785)

ControlBarSeparator.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the separator.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1791

Syntax
ControlBarSeparator.Margin

See also
ControlBarSeparator (Page 1785)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarSeparator.Margin (Page 1791)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1792 System Manual, 11/2022

Syntax
Margin.Left

See also
ControlBarSeparator.Margin (Page 1791)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarSeparator.Margin (Page 1791)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1793

Syntax
Margin.Top

See also
ControlBarSeparator.Margin (Page 1791)

ControlBarSeparator.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MaximumHeight

See also
ControlBarSeparator (Page 1785)

ControlBarSeparator.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1794 System Manual, 11/2022

Syntax
ControlBarSeparator.MaximumWidth

See also
ControlBarSeparator (Page 1785)

ControlBarSeparator.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MinimumHeight

See also
ControlBarSeparator (Page 1785)

ControlBarSeparator.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1795

Syntax
ControlBarSeparator.MinimumWidth

See also
ControlBarSeparator (Page 1785)

ControlBarSeparator.Operability

Description
The "Operability" property returns whether the separator is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarSeparator.Operability

See also
ControlBarSeparator (Page 1785)

ControlBarSeparator.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the separator.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

1796 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarSeparator.Padding

See also
ControlBarSeparator (Page 1785)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarSeparator.Padding (Page 1796)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1797

Access
Read-write

Syntax
Padding.Left

See also
ControlBarSeparator.Padding (Page 1796)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarSeparator.Padding (Page 1796)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

1798 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Top

See also
ControlBarSeparator.Padding (Page 1796)

ControlBarSeparator.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the disconnector can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarSeparator.RequireExplicitUnlock

See also
ControlBarSeparator (Page 1785)

ControlBarSeparator.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the separator.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1799

Access
Read-write

Syntax
ControlBarSeparator.ToolTipText

See also
ControlBarSeparator (Page 1785)

ControlBarSeparator.Visible

Description
The "Visible" property specifies whether the separator is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Visible

See also
ControlBarSeparator (Page 1785)

ControlBarSeparator.Width

Description
The "Width" property specifies the width of the separator in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

1800 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarSeparator.Width

See also
ControlBarSeparator (Page 1785)

ControlBarTextBox

Description
The "ControlBarTextBox" object represents a text box of an information bar or toolbar.
You can reference the "ControlBarTextBox" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarTextBoxPart

Properties
The "ControlBarTextBox" object has the following properties:
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the text box can be operated in runtime.
• ForeColor

Specifies the font color.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1801

• Height
Specifies the height.

• HorizontalTextAlignment
Specifies the horizontal alignment of the text.

• Mapping
Returns the function of the text box.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the text box is operable.

• Padding
Specifies the distance of the content from the border.

• Readonly
Specifies whether the text box is write-protected.

• RequireExplicitUnlock
Returns whether the text box is only operable while the associated button is being pressed.

• Text
Specifies the labeling.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the text box is visible.

• Width
Specifies the width.

Methods
--

Programming scripts
10.2 WinCC Unified object model

1802 System Manual, 11/2022

ControlBarTextBox.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.AlternateBorderColor

See also
ControlBarTextBox (Page 1801)

ControlBarTextBox.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the text box of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarTextBox.Authorization

See also
ControlBarTextBox (Page 1801)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1803

ControlBarTextBox.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BackColor

See also
ControlBarTextBox (Page 1801)

ControlBarTextBox.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BorderColor

See also
ControlBarTextBox (Page 1801)

Programming scripts
10.2 WinCC Unified object model

1804 System Manual, 11/2022

ControlBarTextBox.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarTextBox.BorderWidth

See also
ControlBarTextBox (Page 1801)

ControlBarTextBox.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarTextBox.CustomID

See also
ControlBarTextBox (Page 1801)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1805

ControlBarTextBox.Enabled

Description
The "Enabled" property specifies whether the text box can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Enabled

See also
ControlBarTextBox (Page 1801)

ControlBarTextBox.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.ForeColor

See also
ControlBarTextBox (Page 1801)

Programming scripts
10.2 WinCC Unified object model

1806 System Manual, 11/2022

ControlBarTextBox.Height

Description
The "Height" property specifies the height of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Height

See also
ControlBarTextBox (Page 1801)

ControlBarTextBox.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.HorizontalTextAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1807

See also
ControlBarTextBox (Page 1801)

ControlBarTextBox.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

1808 System Manual, 11/2022

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1809

Access
Read-only

Syntax
ControlBarTextBox.Mapping

See also
ControlBarTextBox (Page 1801)

ControlBarTextBox.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the text box.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarTextBox.Margin

See also
ControlBarTextBox (Page 1801)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

1810 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarTextBox.Margin (Page 1810)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarTextBox.Margin (Page 1810)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1811

Access
Read-write

Syntax
Margin.Right

See also
ControlBarTextBox.Margin (Page 1810)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarTextBox.Margin (Page 1810)

ControlBarTextBox.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

1812 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarTextBox.MaximumHeight

See also
ControlBarTextBox (Page 1801)

ControlBarTextBox.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumWidth

See also
ControlBarTextBox (Page 1801)

ControlBarTextBox.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1813

Access
Read-write

Syntax
ControlBarTextBox.MinimumHeight

See also
ControlBarTextBox (Page 1801)

ControlBarTextBox.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumWidth

See also
ControlBarTextBox (Page 1801)

ControlBarTextBox.Operability

Description
The "Operability" property returns whether the text box is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

1814 System Manual, 11/2022

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarTextBox.Operability

See also
ControlBarTextBox (Page 1801)

ControlBarTextBox.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the text box.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarTextBox.Padding

See also
ControlBarTextBox (Page 1801)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1815

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarTextBox.Padding (Page 1815)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarTextBox.Padding (Page 1815)

Programming scripts
10.2 WinCC Unified object model

1816 System Manual, 11/2022

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarTextBox.Padding (Page 1815)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarTextBox.Padding (Page 1815)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1817

ControlBarTextBox.ReadOnly

Description
The "ReadOnly" property specifies whether the text box is read-only.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.ReadOnly

See also
ControlBarTextBox (Page 1801)

ControlBarTextBox.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the text box can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarTextBox.RequireExplicitUnlock

See also
ControlBarTextBox (Page 1801)

Programming scripts
10.2 WinCC Unified object model

1818 System Manual, 11/2022

ControlBarTextBox.Text

Description
The "Text" property specifies the label of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.Text

See also
ControlBarTextBox (Page 1801)

ControlBarTextBox.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.ToolTipText

See also
ControlBarTextBox (Page 1801)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1819

ControlBarTextBox.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.VerticalTextAlignment

See also
ControlBarTextBox (Page 1801)

ControlBarTextBox.Visible

Description
The "Visible" property specifies whether the text box is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Visible

Programming scripts
10.2 WinCC Unified object model

1820 System Manual, 11/2022

See also
ControlBarTextBox (Page 1801)

ControlBarTextBox.Width

Description
The "Width" property specifies the width of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Width

See also
ControlBarTextBox (Page 1801)

ControlBarToggleSwitch

Description
The "ControlBarToggleSwitch" object represents a switch of an information bar or toolbar.
You can reference the "ControlBarToggleSwitch" object via the
"HmiControlBarElementCollection" list.

Object type
HmiControlBarToggleSwitchPart

Properties
The "ControlBarToggleSwitch" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1821

• AlternateGraphic
Specifies the graphic for the "pressed" state.

• AlternateText
Specifies the text for the "pressed" state.

• Authorization
Returns the operator authorization.

• BackColor
Specifies the background color.

• Badge
Specifies the identifier of the switch.

• BorderColor
Specifies the line color.

• BorderWidth
Specifies the line thickness.

• Content
Specifies display options for text and graphics.

• CustomID
Returns the custom ID.

• Enabled
Specifies whether the switch can be operated in runtime.

• ForeColor
Specifies the font color.

• Graphic
Specifies the graphic.

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the switch.

• IsAlternateState
Specifies the current state of the switch.

• Mapping
Returns the function of the switch.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

1822 System Manual, 11/2022

• Operability
Returns whether the switch is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the switch is only operable while the associated button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the switch is visible.

• Width
Specifies the width.

Methods
--

ControlBarToggleSwitch.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBackColor

See also
ControlBarToggleSwitch (Page 1821)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1823

ControlBarToggleSwitch.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBorderColor

See also
ControlBarToggleSwitch (Page 1821)

ControlBarToggleSwitch.AlternateGraphic

Description
The "AlternateGraphic" property specifies the graphic of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateGraphic

See also
ControlBarToggleSwitch (Page 1821)

Programming scripts
10.2 WinCC Unified object model

1824 System Manual, 11/2022

ControlBarToggleSwitch.AlternateText

Description
The "AlternateText" property specifies the text of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateText

See also
ControlBarToggleSwitch (Page 1821)

ControlBarToggleSwitch.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the switch of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarToggleSwitch.Authorization

See also
ControlBarToggleSwitch (Page 1821)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1825

ControlBarToggleSwitch.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BackColor

See also
ControlBarToggleSwitch (Page 1821)

ControlBarToggleSwitch.Badge

Description
The "Badge" property specifies the identifier of the switch.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarToggleSwitch.Badge

See also
ControlBarToggleSwitch (Page 1821)

Programming scripts
10.2 WinCC Unified object model

1826 System Manual, 11/2022

ControlBarToggleSwitch.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderColor

See also
ControlBarToggleSwitch (Page 1821)

ControlBarToggleSwitch.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderWidth

See also
ControlBarToggleSwitch (Page 1821)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1827

ControlBarToggleSwitch.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Content

See also
ControlBarToggleSwitch (Page 1821)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

1828 System Manual, 11/2022

See also
ControlBarToggleSwitch.Content (Page 1828)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarToggleSwitch.Content (Page 1828)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1829

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 1828)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarToggleSwitch.Content (Page 1828)

Programming scripts
10.2 WinCC Unified object model

1830 System Manual, 11/2022

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarToggleSwitch.Content (Page 1828)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1831

Syntax
Content.TextPosition

See also
ControlBarToggleSwitch.Content (Page 1828)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarToggleSwitch.Content (Page 1828)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

1832 System Manual, 11/2022

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 1828)

ControlBarToggleSwitch.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarToggleSwitch.CustomID

See also
ControlBarToggleSwitch (Page 1821)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1833

ControlBarToggleSwitch.Enabled

Description
The "Enabled" property specifies whether the switch can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Enabled

See also
ControlBarToggleSwitch (Page 1821)

ControlBarToggleSwitch.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.ForeColor

See also
ControlBarToggleSwitch (Page 1821)

Programming scripts
10.2 WinCC Unified object model

1834 System Manual, 11/2022

ControlBarToggleSwitch.Graphic

Description
The "Graphic" property specifies the graphic of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Graphic

See also
ControlBarToggleSwitch (Page 1821)

ControlBarToggleSwitch.Height

Description
The "Height" property specifies the height of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Height

See also
ControlBarToggleSwitch (Page 1821)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1835

ControlBarToggleSwitch.HotKey

Description
The "HotKey" property returns the hotkey specified for the switch. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
Button.HotKey

See also
ControlBarToggleSwitch (Page 1821)

ControlBarToggleSwitch.IsAlternateState

Description
The "IsAlternateState" property specifies the current state of the switch.
• True: Switch is in "On" state.
• False: Switch is in "Off" state.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.IsAlternateState

Programming scripts
10.2 WinCC Unified object model

1836 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 1821)

ControlBarToggleSwitch.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1837

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

1838 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarToggleSwitch.Mapping

See also
ControlBarToggleSwitch (Page 1821)

ControlBarToggleSwitch.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the switch.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Margin

See also
ControlBarToggleSwitch (Page 1821)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1839

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarToggleSwitch.Margin (Page 1839)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarToggleSwitch.Margin (Page 1839)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

1840 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Right

See also
ControlBarToggleSwitch.Margin (Page 1839)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarToggleSwitch.Margin (Page 1839)

ControlBarToggleSwitch.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1841

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumHeight

See also
ControlBarToggleSwitch (Page 1821)

ControlBarToggleSwitch.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumWidth

See also
ControlBarToggleSwitch (Page 1821)

ControlBarToggleSwitch.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

1842 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumHeight

See also
ControlBarToggleSwitch (Page 1821)

ControlBarToggleSwitch.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumWidth

See also
ControlBarToggleSwitch (Page 1821)

ControlBarToggleSwitch.Operability

Description
The property "Operability" returns whether the switch is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1843

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarToggleSwitch.Operability

See also
ControlBarToggleSwitch (Page 1821)

ControlBarToggleSwitch.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the switch.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Padding

See also
ControlBarToggleSwitch (Page 1821)

Programming scripts
10.2 WinCC Unified object model

1844 System Manual, 11/2022

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarToggleSwitch.Padding (Page 1844)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarToggleSwitch.Padding (Page 1844)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1845

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarToggleSwitch.Padding (Page 1844)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarToggleSwitch.Padding (Page 1844)

Programming scripts
10.2 WinCC Unified object model

1846 System Manual, 11/2022

ControlBarToggleSwitch.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the switch can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarToggleSwitch.RequireExplicitUnlock

See also
ControlBarToggleSwitch (Page 1821)

ControlBarToggleSwitch.Text

Description
The "Text" property specifies the label of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Text

See also
ControlBarToggleSwitch (Page 1821)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1847

ControlBarToggleSwitch.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.ToolTipText

See also
ControlBarToggleSwitch (Page 1821)

ControlBarToggleSwitch.Visible

Description
The "Visible" property specifies whether the switch is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Visible

See also
ControlBarToggleSwitch (Page 1821)

Programming scripts
10.2 WinCC Unified object model

1848 System Manual, 11/2022

ControlBarToggleSwitch.Width

Description
The "Width" property specifies the width of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Width

See also
ControlBarToggleSwitch (Page 1821)

ToolBar.Enabled

Description
The "Enabled" property specifies whether the toolbar can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ToolBar.Enabled

See also
AlarmControl.ToolBar (Page 1716)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1849

ToolBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ToolBar.Font

See also
AlarmControl.ToolBar (Page 1716)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
ToolBar.Font (Page 1850)

Programming scripts
10.2 WinCC Unified object model

1850 System Manual, 11/2022

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
ToolBar.Font (Page 1850)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
ToolBar.Font (Page 1850)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1851

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ToolBar.Font (Page 1850)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

1852 System Manual, 11/2022

See also
ToolBar.Font (Page 1850)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
ToolBar.Font (Page 1850)

ToolBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the toolbar.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1853

Access
Read-write

Syntax
ToolBar.Margin

See also
AlarmControl.ToolBar (Page 1716)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ToolBar.Margin (Page 1853)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

1854 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Left

See also
ToolBar.Margin (Page 1853)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ToolBar.Margin (Page 1853)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1855

Access
Read-write

Syntax
Margin.Top

See also
ToolBar.Margin (Page 1853)

ToolBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the toolbar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ToolBar.Padding

See also
AlarmControl.ToolBar (Page 1716)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

1856 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Bottom

See also
ToolBar.Padding (Page 1856)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ToolBar.Padding (Page 1856)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1857

Access
Read-write

Syntax
Padding.Right

See also
ToolBar.Padding (Page 1856)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ToolBar.Padding (Page 1856)

ToolBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

1858 System Manual, 11/2022

Access
Read-write

Syntax
ToolBar.ShowToolTips

See also
AlarmControl.ToolBar (Page 1716)

ToolBar.UseHotKeys

Description
The "UseHotKeys" property specifies whether the shortcut keys for the buttons in the toolbar are
activated.

Type
Bool

Access
Read-write

Syntax
ToolBar.UseHotKeys

See also
AlarmControl.ToolBar (Page 1716)

ToolBar.Visible

Description
The "Visible" property specifies whether the toolbar is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1859

Access
Read-write

Syntax
ToolBar.Visible

See also
AlarmControl.ToolBar (Page 1716)

AlarmControl.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
AlarmControl.Top

See also
AlarmControl (Page 1571)

AlarmControl.UseAlarmColors

Description
The "UseAlarmColors" property specifies whether the configured alarm colors are used.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

1860 System Manual, 11/2022

Access
Read-write

Syntax
AlarmControl.UseAlarmColors

See also
AlarmControl (Page 1571)

AlarmControl.Visible

Description
The "Visible" property specifies whether the alarm control is visible.

Type
Bool

Access
Read-write

Syntax
AlarmControl.Visible

See also
AlarmControl (Page 1571)

AlarmControl.Width

Description
The "Width" property specifies the width of the alarm control in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1861

Access
Read-write

Syntax
AlarmControl.Width

See also
AlarmControl (Page 1571)

AlarmControl.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the alarm control.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title
• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be positioned
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
Enable multiple properties by adding the integer values or bit operators.

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1862 System Manual, 11/2022

Syntax
AlarmControl.WindowFlags

Example
Adapt the "windowFlags" tag depending on the window configuration:

Copy code
var windowFlags = HmiWindowFlag.ShowCaption | HmiWindowFlag.ShowBorder;
if (CanClose){
 windowFlags |= HmiWindowFlag.CanClose;
} else {
 windowFlags &= HmiWindowFlag.CanClose;
}

See also
AlarmControl (Page 1571)

AlarmControl.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
alarm control.

Syntax
AlarmControl.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1863

See also
AlarmControl (Page 1571)

AlarmControl.FireCommand()

Description
The "FireCommand" method executes the command of an element in the toolbar or information
bar (control bar element, e.g. a button) of the alarm control.

Syntax
AlarmControl.FireCommand(commandId, custom)

Parameters
commandId
Type: Int32
ID of the element of the toolbar or information bar

custom
Type: Bool
Type of element ID:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

Return value
--

See also
AlarmControl (Page 1571)

AlarmControl.GetSelectedAlarmData()

Description
The "GetSelectedAlarmData" method returns the visible data of the selected alarm of the alarm
control.

Syntax
AlarmControl.GetSelectedAlarmData()

Programming scripts
10.2 WinCC Unified object model

1864 System Manual, 11/2022

Parameters
--

Return value
--

See also
AlarmControl (Page 1571)

AlarmControl.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
AlarmControl.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1865

Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
AlarmControl (Page 1571)

AlarmControl_OnActivated()

Description
The "OnActivated" event occurs when an alarm control receives focus:
• An alarm control is selected via the configured tab sequence.
• An alarm control that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and
receives focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
AlarmControl_OnActivated(item)

Context
item
Type: Object
Alarm control at which the event occurs.

Programming scripts
10.2 WinCC Unified object model

1866 System Manual, 11/2022

See also
AlarmControl (Page 1571)
AlarmControl_OnDeactivated() (Page 1867)

AlarmControl_OnDeactivated()

Description
The "OnDeactivated" event occurs when an alarm control loses focus when the operator presses
the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.

Syntax
AlarmControl_OnDeactivated(item)

Context
item
Type: Object
Alarm control at which the event occurs.

See also
AlarmControl (Page 1571)
AlarmControl_OnActivated() (Page 1866)

AlarmControl_OnInitialized()

Description
The "OnInitialized" event occurs when an alarm control has been successfully initialized and the
data connection to the PLC has been established.

Syntax
AlarmControl_OnInitialized(item)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1867

Context
item
Type: Object
Alarm control at which the event occurs.

See also
AlarmControl (Page 1571)

AlarmControl_OnCommandFired()

Description
The "OnCommandFired" event occurs when the operator has operated an element in the toolbar
or information bar (control bar element, e.g. a button) of the alarm control.

Syntax
AlarmControl_OnCommandFired(item, commandId, custom)

Context
item
Type: Object
Alarm control at which the event occurs.

commandId
Type: DInt
ID of the element of the toolbar or information bar that was operated.

custom
Type: Bool
Specifies the type of the ID of the operated element:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

See also
AlarmControl (Page 1571)
Control Bar Elements (Page 1720)

Programming scripts
10.2 WinCC Unified object model

1868 System Manual, 11/2022

AlarmControl_OnSelectionChanged()

Description
The "OnSelectionChanged" event occurs when the selection in the alarm control changes.

Syntax
AlarmControl_OnSelectionChanged(item, SelectedRowData)

Context
item
Type: Object
Alarm control at which the event occurs.

SelectedRowData
Type: Variant
Visible properties of the selected alarm row of the alarm control.

See also
AlarmControl (Page 1571)

Bar

Description
The "Bar" object represents a bar for the display of process values in runtime.

Object type
HmiBar

Properties
The "Bar" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1869

• BackColor
Specifies the background color.

• BarMode
Specifies the color of the bar.

• BorderColor
Specifies the border color.

• BorderWidth
Specifies the border thickness.

• ComputedMaxPeakValue
 Returns the highest process value that occurred.

• ComputedMinPeakValue
Returns the lowest process value that occurred.

• ComputedValueTendency
Returns the change of the process value.

• CurrentQuality
Returns the poorest quality code of all tags which influence the bar.

• Enabled
Specifies whether the bar can be operated in runtime.

• Font
Specifies the font of the text.

• Height
Specifies the height.

• Label
Specifies the labeling below the bar.

• Layer
Returns the layer of the screen in which the bar is located.

• Left
Specifies the value of the X coordinate.

• Margin
Specifies the margin.

• Name
Returns the name of the bar.

• NormalRangeColor
Specifies the color of the normal range.

• Opacity
Specifies the opacity.

• Operability
Returns whether the bar is operable.

• OriginValue
Specifies the output value of the normal range that is visualized.

• OutputFormat
Specifies the format for displaying the process values.

Programming scripts
10.2 WinCC Unified object model

1870 System Manual, 11/2022

• Parent
Returns the higher-level screen object.

• PeakIndicators
Specifies whether the highest and lowest process value up to this time are displayed.

• ProcessValue
Specifies the process value.

• ProcessValueIndicatorBackColor
Specifies the background color for the process value.

• ProcessValueIndicatorForeColor
Specifies the foreground color for the process value.

• ProcessValueIndicatorMode
Specifies the type of display of the current process value.

• RelativeToOrigin
Specifies whether the output value is an absolute or a percentage value between the
minimum and maximum value.

• RenderingTemplate
Returns the name of the template from which the bar was created.

• RequireExplicitUnlock
Returns whether the bar is only operable while the associated button is being pressed.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the bar rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ScaleBackColor
Specifies the background color of the scale.

• ScaleForeColor
Specifies the foreground color of the scale.

• ShowFocusVisual
Specifies whether the bar is highlighted when in focus.

• ShowTrendIndicator
Specifies whether the tendency (rising or falling) of the process value to be monitored is
indicated by means of a small arrow.

• StraightScale
Specifies the scale of the bar.

• StyleItemClass
Returns the style which is applied to the bar.

• TabIndex
Returns the position of the bar in the tab sequence.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1871

• ThresholdIndicators
Specifies how parameterized limit values are visualized.

• Thresholds
Returns the list of all limit values of the bar.

• Title
Specifies the caption which appears as the title.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• TrendIndicatorColor
Specifies the color of the trend indicator.

• Visible
Specifies whether the bar is visible.

• VisualizeQuality
Specifies whether the connection quality of the process value is displayed.

• Width
Specifies the width.

Methods
The "Bar" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the bar.
• PropertyFlashing()

Configures flashing of a property.

Events
The "Bar" object has the following events:
• OnActivated()

Occurs when a bar receives focus.
• OnContextTapped()

Occurs when a bar is right-clicked or long-touched.
• OnDeactivated()

Occurs when a bar loses focus.
• OnKeyDown()

Occurs when a key is pressed while the bar is in focus.
• OnKeyUp()

Occurs when a key is released while the bar is in focus.
• OnTapped()

Occurs when a bar is left-clicked or short-touched.

Programming scripts
10.2 WinCC Unified object model

1872 System Manual, 11/2022

Bar.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
Bar.AlternateBackColor

See also
Bar (Page 1869)

Bar.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color which is displayed for line
styles such as "Dash".

Type
UInt32

Access
Read-write

Syntax
Bar.AlternateBorderColor

See also
Bar (Page 1869)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1873

Bar.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
Bar.Authorization

See also
Bar (Page 1869)

Bar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
Bar.BackColor

See also
Bar (Page 1869)

Programming scripts
10.2 WinCC Unified object model

1874 System Manual, 11/2022

Bar.BarMode

Description
The "BarMode" property specifies the color of the bar.

Type
Int32, HmiBarMode
Specifies the bar mode:
• Segmented (0): Bar changes color according to the bar segments.
• Unicolor (1): Entire bar has same color.
• SegmentedStatic (2): Bar segments in the background, process value indicator in front of the

bar segments.
• UnicolorStatic (3): Background color changes according to the process value and the limit

colors, process value indicator runs in front of the bar segments.

Access
Read-write

Syntax
Bar.BarMode

See also
Bar (Page 1869)

Bar.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1875

Syntax
Bar.BorderColor

See also
Bar (Page 1869)

Bar.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
Bar.BorderWidth

See also
Bar (Page 1869)

Bar.ComputedMaxPeakValue

Description
The "ComputedMaxPeakValue" property returns the highest process value that occurred.

Type
Variant

Access
Read-only

Syntax
Bar.ComputedMaxPeakValue

Programming scripts
10.2 WinCC Unified object model

1876 System Manual, 11/2022

See also
Bar (Page 1869)
Bar.ComputedMinPeakValue (Page 1877)

Bar.ComputedMinPeakValue

Description
The "ComputedMinPeakValue" property returns the lowest process value which occurred.

Type
Variant

Access
Read-only

Syntax
Bar.ComputedMinPeakValue

See also
Bar (Page 1869)
Bar.ComputedMaxPeakValue (Page 1876)

Bar.ComputedValueTendency

Description
The "ComputedValueTendency" property returns the change in the process value.

Type
Int32, HmiValueTendency
Returns the modification:
• Steady (0): No change
• Upwards (1): Change upwards
• Downwards (2): Change downwards

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1877

Access
Read-only

Syntax
Bar.ComputedValueTendency

See also
Bar (Page 1869)

Bar.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
bar.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
Bar.CurrentQuality

See also
Bar (Page 1869)

Programming scripts
10.2 WinCC Unified object model

1878 System Manual, 11/2022

Bar.Enabled

Description
The "Enabled" property specifies whether the bar can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
Bar.Enabled

See also
Bar (Page 1869)

Bar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Bar.Font

See also
Bar (Page 1869)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1879

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Bar.Font (Page 1879)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Bar.Font (Page 1879)

Programming scripts
10.2 WinCC Unified object model

1880 System Manual, 11/2022

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Bar.Font (Page 1879)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1881

See also
Bar.Font (Page 1879)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Bar.Font (Page 1879)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Programming scripts
10.2 WinCC Unified object model

1882 System Manual, 11/2022

Access
Read-write

Syntax
Font.Weight

See also
Bar.Font (Page 1879)

Bar.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Bar.Height

See also
Bar (Page 1869)

Bar.Label

Description
The "Label" property specifies the label below the bar.

Type
Object, HmiTextPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1883

Access
Read-write

Syntax
Bar.Label

See also
Bar (Page 1869)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
Bar.Label (Page 1883)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

1884 System Manual, 11/2022

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 1884)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 1884)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1885

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 1884)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 1884)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Programming scripts
10.2 WinCC Unified object model

1886 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 1884)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 1884)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1887

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
Bar.Label (Page 1883)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
Bar.Label (Page 1883)

Programming scripts
10.2 WinCC Unified object model

1888 System Manual, 11/2022

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
Bar.Label (Page 1883)

Bar.Layer

Description
The "Layer" property returns the layer of the screen in which the bar is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
Bar.Layer

See also
Bar (Page 1869)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1889

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
Bar.Layer (Page 1889)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
Bar.Layer (Page 1889)

Programming scripts
10.2 WinCC Unified object model

1890 System Manual, 11/2022

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
Bar.Layer (Page 1889)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
Bar.Layer (Page 1889)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1891

Bar.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Bar.Left

See also
Bar (Page 1869)

Bar.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
Bar.Margin

See also
Bar (Page 1869)

Programming scripts
10.2 WinCC Unified object model

1892 System Manual, 11/2022

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
Bar.Margin (Page 1892)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
Bar.Margin (Page 1892)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1893

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
Bar.Margin (Page 1892)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
Bar.Margin (Page 1892)

Programming scripts
10.2 WinCC Unified object model

1894 System Manual, 11/2022

Bar.Name

Description
The "Name" property returns the name of the bar.

Type
String

Access
Read-only

Syntax
Bar.Name

See also
Bar (Page 1869)

Bar.NormalRangeColor

Description
The "NormalRangeColor" property specifies the color of the normal range.

Type
UInt32

Access
Read-write

Syntax
Bar.NormalRangeColor

See also
Bar (Page 1869)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1895

Bar.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" indicates completely transparent.

Type
Float

Access
Read-write

Syntax
Bar.Opacity

See also
Bar (Page 1869)

Bar.Operability

Description
The "Operability" property returns whether the bar is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
Bar.Operability

Programming scripts
10.2 WinCC Unified object model

1896 System Manual, 11/2022

See also
Bar (Page 1869)

Bar.OriginValue

Description
The "OriginValue" property specifies the output value of the normal range to be visualized.

Type
Float

Access
Read-write

Syntax
Bar.OriginValue

See also
Bar (Page 1869)

Bar.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying the process values, e.g. "{0000}"
for a 4-digit integer with leading zeros.

Type
String

Access
Read-write

Syntax
Bar.OutputFormat

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1897

See also
Bar (Page 1869)

Bar.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
Bar.Parent

See also
Bar (Page 1869)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Bar.PeakIndicators

Description
The "PeakIndicators" property specifies whether the highest and lowest process value up to this
time are displayed.

Type
Int32, HmiPeakIndicator

Programming scripts
10.2 WinCC Unified object model

1898 System Manual, 11/2022

Specifies the display of the peak indicator:
• None (0): No display
• Low (1): Only the lowest process value
• High (2): Only the highest process value

Access
Read-write

Syntax
Bar.PeakIndicators

See also
Bar (Page 1869)

Bar.ProcessValue

Description
The "ProcessValue" property specifies the process value.

Type
Variant

Access
Read-write

Syntax
Bar.ProcessValue

See also
Bar (Page 1869)

Bar.ProcessValueIndicatorBackColor

Description
The "ProcessValueIndicatorBackColor" property specifies the background color for the process
value indicator.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1899

Type
UInt32

Access
Read-write

Syntax
Bar.ProcessValueIndicatorBackColor

See also
Bar (Page 1869)
Bar.ProcessValueIndicatorForeColor (Page 1900)

Bar.ProcessValueIndicatorForeColor

Description
The "ProcessValueIndicatorForeColor" property specifies the foreground color for the process
value indicator.

Type
UInt32

Access
Read-write

Syntax
Bar.ProcessValueIndicatorForeColor

See also
Bar (Page 1869)
Bar.ProcessValueIndicatorBackColor (Page 1899)

Programming scripts
10.2 WinCC Unified object model

1900 System Manual, 11/2022

Bar.ProcessValueIndicatorMode

Description
The "ProcessValueIndicatorMode" property specifies the type of display of the current process
value.

Type
Int32, HmiProcessIndicatorMode
Specifies the type of display:
• Bar (0): Bar only
• Indicator (1): Hair line or needle, no numerical display of the process value.
• DetailedIndicator (2): Detailed display with numerical value
• BarWithDetailedIndicator (3): Bar with numerical value

Access
Read-write

Syntax
Bar.ProcessValueIndicatorMode

See also
Bar (Page 1869)

Bar.RelativeToOrigin

Description
The "RelativeToOrigin" property specifies whether the output value is an absolute or a
percentage value between minimum and maximum value.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1901

Syntax
Bar.RelativeToOrigin

See also
Bar (Page 1869)

Bar.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the bar was
created.

Type
String

Access
Read-only

Syntax
Bar.RenderingTemplate

See also
Bar (Page 1869)

Bar.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the bar can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

1902 System Manual, 11/2022

Syntax
Bar.RequireExplicitUnlock

See also
Bar (Page 1869)

Bar.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
Bar.RotationAngle

See also
Bar (Page 1869)
Bar.RotationCenterPlacement (Page 1903)
Bar.RotationCenterX (Page 1904)
Bar.RotationCenterY (Page 1905)

Bar.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the bar rotates.

Type
Int32, HmiRotationCenterPlacement

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1903

Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
Bar.RotationCenterPlacement

See also
Bar (Page 1869)
Bar.RotationAngle (Page 1903)
Bar.RotationCenterX (Page 1904)
Bar.RotationCenterY (Page 1905)

Bar.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
Bar.RotationCenterX

Programming scripts
10.2 WinCC Unified object model

1904 System Manual, 11/2022

See also
Bar (Page 1869)
Bar.RotationAngle (Page 1903)
Bar.RotationCenterPlacement (Page 1903)
Bar.RotationCenterY (Page 1905)

Bar.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
Bar.RotationCenterY

See also
Bar (Page 1869)
Bar.RotationAngle (Page 1903)
Bar.RotationCenterPlacement (Page 1903)
Bar.RotationCenterX (Page 1904)

Bar.ScaleBackColor

Description
The "ScaleBackColor" property specifies the background color of the scale.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1905

Access
Read-write

Syntax
Bar.ScaleBackColor

See also
Bar (Page 1869)
Bar.ScaleForeColor (Page 1906)

Bar.ScaleForeColor

Description
The "ScaleForeColor" property specifies the foreground color of the scale.

Type
UInt32

Access
Read-write

Syntax
Bar.ScaleForeColor

See also
Bar (Page 1869)
Bar.ScaleBackColor (Page 1905)

Bar.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the bar is highlighted when in focus.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

1906 System Manual, 11/2022

Access
Read-write

Syntax
Bar.ShowFocusVisual

See also
Bar (Page 1869)

Bar.ShowTrendIndicator

Description
The "ShowTrendIndicator" property specifies whether the tendency (rising or falling) of the
process value to be monitored is indicated by means of a small arrow.

Type
Bool

Access
Read-write

Syntax
Bar.ShowTrendIndicator

See also
Bar (Page 1869)

Bar.StraightScale

Description
The "StraightScale" property specifies the scale of the bar.

Type
Object, HmiStraightScalePart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1907

Access
Read-write

Syntax
Bar.StraightScale

See also
Bar (Page 1869)

StraightScale.AutoScaling

Description
The "AutoScaling" property specifies whether automatic scaling is activated.

Type
Bool

Access
Read-write

Syntax
StraightScale.AutoScaling

See also
Bar.StraightScale (Page 1907)

StraightScale.BeginValue

Description
The "BeginValue" property specifies the start of a value range or value range section.

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1908 System Manual, 11/2022

Syntax
StraightScale.BeginValue

See also
Bar.StraightScale (Page 1907)

StraightScale.DivisionCount

Description
The "DivisionCount" property specifies the number of main units with subdivisions. To this
purpose the automatic scaling must be switched off.

Type
Int32

Access
Read-write

Syntax
StraightScale.DivisionCount

See also
Bar.StraightScale (Page 1907)

StraightScale.EndValue

Description
The "EndValue" property specifies the end of a value range or value range section.

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1909

Syntax
StraightScale.EndValue

See also
Bar.StraightScale (Page 1907)

StraightScale.LabelColor

Description
The "LabelColor" property specifies the color of the labeling.

Type
UInt32

Access
Read-write

Syntax
StraightScale.LabelColor

See also
Bar.StraightScale (Page 1907)

StraightScale.LabelFont

Description
The "LabelFont" property specifies the font of the labeling.

Type
Object, HmiFontPart

Access
Read-write

Syntax
StraightScale.LabelFont

Programming scripts
10.2 WinCC Unified object model

1910 System Manual, 11/2022

See also
Bar.StraightScale (Page 1907)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
StraightScale.LabelFont (Page 1910)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1911

See also
StraightScale.LabelFont (Page 1910)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
StraightScale.LabelFont (Page 1910)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1912 System Manual, 11/2022

Syntax
Font.StrikeOut

See also
StraightScale.LabelFont (Page 1910)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
StraightScale.LabelFont (Page 1910)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1913

• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
StraightScale.LabelFont (Page 1910)

StraightScale.LargeTickLabelingStep

Description
The "LargeTickLabelingStep" property specifies the interval at which scale sections are labeled.

Type
UInt8

Access
Read-write

Syntax
StraightScale.LargeTickLabelingStep

See also
Bar.StraightScale (Page 1907)

StraightScale.MeasurementUnit

Description
The "MeasurementUnit" property returns the displayed unit.

Programming scripts
10.2 WinCC Unified object model

1914 System Manual, 11/2022

Type
String

Access
Read-only

Syntax
StraightScale.MeasurementUnit

See also
Bar.StraightScale (Page 1907)

StraightScale.MeasurementUnitType

Description
The "MeasurementUnitType" property specifies the display format of the unit.

Type
Int32, HmiMeasurementUnit
Specifies the display format:
• None (0): No unit
• Name (1): Unit name, for example "kilogram"
• Symbol (2): Unit, for example "kg"

Access
Read-write

Syntax
StraightScale.MeasurementUnitType

See also
Bar.StraightScale (Page 1907)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1915

StraightScale.Orientation

Description
The "Orientation" property specifies the orientation of the scale.

Type
Int32, HmiOrientation
Specifies the alignment:
• Horizontal (0): Horizontal
• Vertical (1): Vertical

Access
Read-write

Syntax
StraightScale.Orientation

See also
Bar.StraightScale (Page 1907)

StraightScale.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying the process values, e.g. "{0000}"
for a 4-digit integer with leading zeros.

Type
String

Access
Read-write

Syntax
StraightScale.OutputFormat

Programming scripts
10.2 WinCC Unified object model

1916 System Manual, 11/2022

See also
Bar.StraightScale (Page 1907)

StraightScale.ScaleMode

Description
The "ScaleMode" property specifies the type of scaling.

Type
Int32, HmiScaleMode
Specifies the scaling:
• None (0): None
• Labels (1): Labels
• Ticks (2): Tick marks

Access
Read-write

Syntax
StraightScale.ScaleMode

See also
Bar.StraightScale (Page 1907)

StraightScale.ScalingType

Description
The "ScalingType" property specifies the scaling.

Type
Int32, HmiScalingType
Specifies the scaling:
• Linear (0): Linear
• Logarithmic (1): Logarithmic
• NegativeLogarithmic (2): Negative logarithmic

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1917

• Tangent (4): Tangential
• Quadratic (5): Square
• Cubic (6): Cubic

Access
Read-write

Syntax
StraightScale.ScalingType

See also
Bar.StraightScale (Page 1907)

StraightScale.SubDivisionCount

Description
The "SubDivisionCount" property specifies the number of subdivisions of the main units.

Type
Int32

Access
Read-write

Syntax
StraightScale.SubDivisionCount

See also
Bar.StraightScale (Page 1907)

StraightScale.TickColor

Description
The "TickColor" property specifies the color of the tick marks.

Programming scripts
10.2 WinCC Unified object model

1918 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
StraightScale.TickColor

See also
Bar.StraightScale (Page 1907)

Bar.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the bar.

Type
String

Access
Read-only

Syntax
Bar.StyleItemClass

See also
Bar (Page 1869)

Bar.TabIndex

Description
The "TabIndex" property returns the position of the bar in the tab sequence.

Type
UInt16

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1919

Access
Read-only

Syntax
Bar.TabIndex

See also
Bar (Page 1869)

Bar.ThresholdIndicators

Description
The "ThresholdIndicators" property specifies how parameterized limit values are visualized.

Type
Int32, HmiThresholdIndicator
Specifies the visualization:
• None (0): None
• Lines (1): Lines
• Markers (2): Markers

Access
Read-write

Syntax
Bar.ThresholdIndicators

See also
Bar (Page 1869)

Bar.Thresholds

Description
The "Thresholds" property returns the list of all limit values ("Threshold" objects) of the bar.

Programming scripts
10.2 WinCC Unified object model

1920 System Manual, 11/2022

Type
Object, HmiThresholdCollection (Page 1921)

Access
Read-only

Syntax
Bar.Thresholds

See also
Bar (Page 1869)
HmiThresholdCollection (Page 1921)

HmiThresholdCollection

Description
The "HmiThresholdCollection" object is a list of all limit values ("Threshold" objects).

Use
The "HmiThresholdCollection" object is a list and can be counted and enumerated. You can
access the "HmiThresholdCollection" list using the index or the tag name.

Object type
HmiThresholdCollection

Properties
The "HmiThresholdCollection" object has the following properties:
• Count

Returns the number of limit values of the "HmiThresholdCollection" list.

Methods
The "HmiThresholdCollection" object has the following methods:
• Item()

Returns a limit value of the "HmiThresholdCollection" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1921

See also
Bar.Thresholds (Page 1920)

HmiThresholdCollection.Count

Description
The "Count" property returns the number of limit values in the "HmiThresholdCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiThresholdCollection.Count

See also
HmiThresholdCollection (Page 1921)

HmiThresholdCollection.Item()

Description
The "Item" method returns a limit value of the "HmiThresholdCollection" list.

Syntax
HmiThresholdCollection[.Item](HmiThresholdName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiThresholdCollection" object.

Parameters
HmiThresholdName
Type: String

Programming scripts
10.2 WinCC Unified object model

1922 System Manual, 11/2022

Name of the limit value

Return value
Object, HmiThresholdPart (Page 1923)

See also
HmiThresholdCollection (Page 1921)
Threshold (Page 1923)

Threshold

Description
The "Threshold" object represents a limit value.

Object type
HmiThresholdPart

Properties
The "Threshold" object has the following properties:
• Color

Specifies the color of the limit value.
• DisplayName

Specifies the display name of the limit value.
• Name

Specifies the name of the limit value.
• ThresholdMode

Specifies the type of limit value.
• Value

Returns the limit value.

Methods
--

See also
HmiThresholdCollection (Page 1921)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1923

Threshold.Color

Description
The "Color" property specifies the color of the limit value.

Type
UInt32

Access
Read-write

Syntax
Threshold.Color

See also
Threshold (Page 1923)

Threshold.DisplayName

Description
The "DisplayName" property specifies the display name of the limit value.

Type
String

Access
Read-write

Syntax
Threshold.DisplayName

See also
Threshold (Page 1923)

Programming scripts
10.2 WinCC Unified object model

1924 System Manual, 11/2022

Threshold.Name

Description
The "Name" property specifies the name of the limit value.

Type
String

Access
Read-write

Syntax
Threshold.Name

See also
Threshold (Page 1923)

Threshold.ThresholdMode

Description
The "ThresholdMode" property specifies the type of limit value.

Type
Int32, HmiThresholdMode
Specifies the threshold value:
• Undefined (0): Undefined
• Upper (1): Upper threshold
• Lower (2): Lower threshold
• Normal (3): Normal threshold
• Minimum (4): Minimum threshold
• Maximum (5): Maximum threshold

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1925

Syntax
Threshold.ThresholdMode

See also
Threshold (Page 1923)

Threshold.Value

Description
The "Value" property returns the limit value of the tag.

Type
Float

Access
Read-only

Syntax
Threshold.Value

See also
Threshold (Page 1923)

Bar.Title

Description
The "Title" property specifies the caption that appears as the title.

Type
Object, HmiTextPart

Access
Read-write

Syntax
Bar.Title

Programming scripts
10.2 WinCC Unified object model

1926 System Manual, 11/2022

See also
Bar (Page 1869)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
Bar.Title (Page 1926)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1927

See also
Text.Font (Page 1927)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 1927)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

Programming scripts
10.2 WinCC Unified object model

1928 System Manual, 11/2022

See also
Text.Font (Page 1927)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 1927)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1929

Syntax
Font.Underline

See also
Text.Font (Page 1927)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 1927)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Programming scripts
10.2 WinCC Unified object model

1930 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
Bar.Title (Page 1926)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
Bar.Title (Page 1926)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1931

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
Bar.Title (Page 1926)

Bar.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
Bar.ToolTipText

See also
Bar (Page 1869)

Bar.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

1932 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Bar.Top

See also
Bar (Page 1869)

Bar.TrendIndicatorColor

Description
The "TrendIndicatorColor" property specifies the color of the trend indicator. The trend indicator
uses a small arrow to represent the tendency (rising or falling) of the process value to be
monitored. To activate the trend indicator, the "ShowTrendIndicator" property must be activated.

Type
UInt32

Access
Read-write

Syntax
Bar.TrendIndicatorColor

See also
Bar (Page 1869)

Bar.Visible

Description
The "Visible" property specifies whether the bar is visible.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1933

Type
Bool

Access
Read-write

Syntax
Bar.Visible

See also
Bar (Page 1869)

Bar.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Access
Read-write

Syntax
Bar.VisualizeQuality

See also
Bar (Page 1869)

Bar.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

1934 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
Bar.Width

See also
Bar (Page 1869)

Bar.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
bar.

Syntax
Bar.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1935

See also
Bar (Page 1869)

Bar.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
Bar.PropertyFlashing(propertyName, enable[, value][, alternateValue]
[, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Programming scripts
10.2 WinCC Unified object model

1936 System Manual, 11/2022

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
Bar (Page 1869)

Bar_OnActivated()

Description
The "OnActivated" event occurs when a bar receives focus:
• A bar is selected via the configured tab sequence.
• A bar that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
Bar_OnActivated(item)

Context
item
Type: Object
Bar where the event occurs.

See also
Bar (Page 1869)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1937

Bar_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A bar is right-clicked.
• A bar is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
Bar_OnContextTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Bar where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

Programming scripts
10.2 WinCC Unified object model

1938 System Manual, 11/2022

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Bar (Page 1869)

Bar_OnDeactivated()

Description
The "OnDeactivated" event occurs when a bar loses focus because the operator presses the
<TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
Bar_OnDeactivated(item)

Context
item
Type: Object
Bar where the event occurs.

See also
Bar (Page 1869)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1939

Bar_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the bar is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
Bar_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Bar where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Bar (Page 1869)

Programming scripts
10.2 WinCC Unified object model

1940 System Manual, 11/2022

Bar_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the bar is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
Bar_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Bar where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Bar (Page 1869)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1941

Bar_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A bar is left-clicked.
• The <RETURN> or <SPACE> key is pressed when a bar has the focus.
• A bar is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
Bar_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Bar where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

1942 System Manual, 11/2022

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Bar (Page 1869)

BindingSourceElement

Description
The "BindingSourceElement" object represents a data source in runtime.

Object type
HmiBindingSourceElement

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1943

Properties
The "BindingSourceElement" object has the following properties:
• AutoRequery

Specifies whether the data source is queried automatically.
• ConsideredColumns

Returns information about the selected columns.
• CursorPosition

Specifies the position of the cursor.
• DataConnection

Returns the data connection.
• Parent

Returns the higher-level screen object.
• ReadCommand

Returns information about the command.
• RowCount

Returns the row count.
• SourceState

Returns the state of the data source.

Methods
The "BindingSourceElement" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the combo box.
• MoveFirst()

Moves the data source to the first position.
• MoveLast()

Moves the data source to the last position.
• MoveNext()

Moves the data source forwards.
• MovePrevious()

Moves the data source backwards.
• PropertyFlashing()

Configures flashing of a property.

BindingSourceElement.AutoRequery

Description
The "AutoRequery" property specifies whether the data source is queried automatically.

Programming scripts
10.2 WinCC Unified object model

1944 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
BindingSourceElement.AutoRequery

See also
BindingSourceElement (Page 1943)

BindingSourceElement.ConsideredColumns

Description
The "ConsideredColumns" returns information about the selected columns.

Type
Object, HmiConsideredColumnCollection (Page 1945)

Access
Read-only

Syntax
BindingSourceElement.ConsideredColumns

See also
BindingSourceElement (Page 1943)
HmiConsideredColumnCollection (Page 1945)

HmiConsideredColumnCollection

Description
The "HmiConsideredColumnCollection" object is a list of all columns ("ConsideredColumn"
objects).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1945

Use
The "HmiConsideredColumnCollection" object is a list which can be counted and enumerated.
You can access the "HmiConsideredColumnCollection" list using the index or the tag names.

Object type
HmiConsideredColumnCollection

Properties
The "HmiConsideredColumnCollection" object has the following properties:
• Count

Returns the number of columns in the "HmiConsideredColumnCollection" list.

Methods
The "HmiConsideredColumnCollection" object has the following methods:
• Item()

Returns a column of the "HmiConsideredColumnCollection" list.

See also
BindingSourceElement.ConsideredColumns (Page 1945)

HmiConsideredColumnCollection.Count

Description
The "Count" property returns the number of columns in the "HmiConsideredColumnCollection"
list.

Type
UInt32

Access
Read-only

Syntax
HmiConsideredColumnCollection.Count

See also
HmiConsideredColumnCollection (Page 1945)

Programming scripts
10.2 WinCC Unified object model

1946 System Manual, 11/2022

HmiConsideredColumnCollection.Item()

Description
The "Item" method returns a column of the "HmiConsideredColumnCollection" list.

Syntax
HmiConsideredColumnCollection.[.Item](HmiConsideredColumnName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiConsideredColumnCollection" object.

Parameters
HmiConsideredColumnName
Type: String
Name of the column

Return value
Object, HmiConsideredColumnPart (Page 1947)

See also
HmiConsideredColumnCollection (Page 1945)
ConsideredColumn (Page 1947)

ConsideredColumn

Description
The "ConsideredColumn" object represents a column.

Object type
HmiConsideredColumnPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1947

Properties
The "ConsideredColumn" object has the following properties:
• IsPrimary

Returns whether the column is the primary column.
• Key

Returns the key of the column.

Methods
--

See also
HmiConsideredColumnCollection (Page 1945)

ConsideredColumn.IsPrimary

Description
The "IsPrimary" property returns whether the column is the primary column.

Type
Bool

Access
Read-only

Syntax
ConsideredColumn.IsPrimary

See also
ConsideredColumn (Page 1947)

ConsideredColumn.Key

Description
The "Key" property returns the key of the column.

Programming scripts
10.2 WinCC Unified object model

1948 System Manual, 11/2022

Type
String

Access
Read-only

Syntax
ConsideredColumn.Key

See also
ConsideredColumn (Page 1947)

BindingSourceElement.CursorPosition

Description
The "CursorPosition" property specifies the position of the cursor.

Type
UInt32

Access
Read-write

Syntax
BindingSourceElement.CursorPosition

See also
BindingSourceElement (Page 1943)

BindingSourceElement.DataConnection

Description
The "DataConnection" property returns the data connection.

Type
String, DataConnection

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1949

Access
Read-only

Syntax
BindingSourceElement.DataConnection

See also
BindingSourceElement (Page 1943)

BindingSourceElement.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
BindingSourceElement.Parent

See also
BindingSourceElement (Page 1943)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

BindingSourceElement.ReadCommand

Description
The "ReadCommand" property returns information about the command.

Programming scripts
10.2 WinCC Unified object model

1950 System Manual, 11/2022

Type
Object, HmiCommandPart

Access
Read-only

Syntax
BindingSourceElement.ReadCommand

See also
BindingSourceElement (Page 1943)

Command.CommandParameters

Description
The "CommandParameters" property returns the parameters of the command.

Type
Object, HmiParameterCollection (Page 1953)

Access
Read-only

Syntax
Command.CommandParameters

See also
BindingSourceElement.ReadCommand (Page 1950)
HmiParameterCollection (Page 1953)

Command.CommandText

Description
The "CommandText" property returns the text of the command.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1951

Type
String

Access
Read-only

Syntax
Command.CommandText

See also
BindingSourceElement.ReadCommand (Page 1950)

Command.CommandType

Description
The "CommandType" property returns the type of the command.

Type
String

Access
Read-only

Syntax
Command.CommandType

See also
BindingSourceElement.ReadCommand (Page 1950)

Command.Execute()

Description
The "Execute" method executes the command.

Syntax
Command.Execute()

Programming scripts
10.2 WinCC Unified object model

1952 System Manual, 11/2022

Parameters
--

Return value
--

See also
BindingSourceElement.ReadCommand (Page 1950)

HmiParameterCollection

Description
The "HmiParameterCollection" object is a list of all parameters ("Parameter" objects).

Use
The "HmiParameterCollection" object is a list which can be counted and enumerated. You can
access the "HmiParameterCollection" list using the index or the tag names.

Object type
HmiParameterCollection

Properties
The "HmiParameterCollection" object has the following properties:
• Count

Returns the number of parameters in the "HmiParameterCollection" list.

Methods
The "HmiParameterCollection" object has the following methods:
• Item()

Returns a parameter of the "HmiParameterCollection" list.

HmiParameterCollection.Count

Description
The "Count" property returns the number of parameters in the "HmiParameterCollection" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1953

Type
UInt32

Access
Read-only

Syntax
HmiParameterCollection.Count

See also
HmiParameterCollection (Page 1953)

HmiParameterCollection.Item()

Description
The "Item" method returns a parameter of the "HmiParameterCollection" list.

Syntax
HmiParameterCollection.[.Item](HmiParameterName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiParameterCollection" object.

Parameters
HmiParameterName
Type: String
Name of the parameter

Return value
Object, HmiParameterPart (Page 1955)

See also
Parameter (Page 1955)
HmiParameterCollection (Page 1953)

Programming scripts
10.2 WinCC Unified object model

1954 System Manual, 11/2022

Parameter

Description
The "Parameter" object represents a parameter.

Object type
HmiParameterPart

Properties
The "Parameter" object has the following properties:
• ParameterName

Specifies the name of the parameter.
• ParameterValue

Specifies the value of the parameter.

Methods
--

See also
HmiParameterCollection (Page 1953)

Parameter.ParameterName

Description
The "ParameterName" property specifies the name of the parameter.

Type
String

Access
Read-write

Syntax
Parameter.ParameterName

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1955

See also
Parameter (Page 1955)

Parameter.ParameterValue

Description
The "ParameterValue" property specifies the value of the parameter.

Type
Variant

Access
Read-write

Syntax
Parameter.ParameterValue

See also
Parameter (Page 1955)

BindingSourceElement.RowCount

Description
The "RowCount" property returns the number of rows.

Type
UInt32

Access
Read-only

Syntax
BindingSourceElement.RowCount

See also
BindingSourceElement (Page 1943)

Programming scripts
10.2 WinCC Unified object model

1956 System Manual, 11/2022

BindingSourceElement.SourceState

Description
The "SourceState" property returns the state of the data source.

Type
Int32, HmiSourceState
Returns the state:
• Idle (0): Ready
• Busy (1): Busy

Access
Read-only

Syntax
BindingSourceElement.SourceState

See also
BindingSourceElement (Page 1943)

BindingSourceElement.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
data source.

Syntax
BindingSourceElement.CheckAuthorization()

Parameters
--

Return value
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1957

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
BindingSourceElement (Page 1943)

BindingSourceElement.MoveFirst()

Description
The "MoveFirst" method moves the data source to the first position.

Syntax
BindingSourceElement.MoveFirst()

Parameters
--

Return value
--

See also
BindingSourceElement (Page 1943)

BindingSourceElement.MoveLast()

Description
The "MoveLast" method moves the data source to the last position.

Syntax
BindingSourceElement.MoveLast()

Programming scripts
10.2 WinCC Unified object model

1958 System Manual, 11/2022

Parameters
--

Return value

See also
BindingSourceElement (Page 1943)

BindingSourceElement.MoveNext()

Description
The "MoveNext" method moves the data source forward.

Syntax
BindingSourceElement.MoveNext()

Parameters
--

Return value

See also
BindingSourceElement (Page 1943)

BindingSourceElement.MovePrevious()

Description
The "MovePrevious" method moves the data source backwards.

Syntax
BindingSourceElement.MovePrevious()

Parameters
--

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1959

Return value
--

See also
BindingSourceElement (Page 1943)

BindingSourceElement.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
BindingSourceElement.PropertyFlashing(propertyName, enable[, value]
[, alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Programming scripts
10.2 WinCC Unified object model

1960 System Manual, 11/2022

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
BindingSourceElement (Page 1943)

Button

Description
The "Button" object represents a button.
You can reference a "Button" object using the "ScreenItems" list or the "FindItem" method.

Object type
HmiButton

Properties
The "Button" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• AlternateGraphic

Specifies the graphic for the "pressed" state.
• AlternateText

Specifies the text for the "pressed" state.
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1961

• Content
Specifies display options for text and graphics.

• CurrentQuality
Returns the poorest quality code of all tags that affect the button.

• Enabled
Specifies whether the button can be operated in runtime.

• Font
Specifies the font of the text.

• ForeColor
Specifies the font color.

• Graphic
Specifies the graphic.

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the button.

• Layer
Returns the screen layer in which the button is located.

• Left
Specifies the value of the X coordinate.

• Margin
Specifies the margin.

• Name
Returns the name of the button.

• Opacity
Specifies the opacity.

• Operability
Returns whether the button is operable.

• Padding
Specifies the distance of the content from the border.

• Parent
Returns the higher-level screen object.

• RenderingTemplate
Returns the name of the template from which the button was created.

• RequireExplicitUnlock
Returns whether the object can only be operated while the associated button is being
pressed.

• RotationAngle
Specifies the rotation angle in degrees.

• RotationCenterPlacement
Specifies the reference point around which the button rotates.

Programming scripts
10.2 WinCC Unified object model

1962 System Manual, 11/2022

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFocusVisual
Specifies that the focus rectangle is displayed.

• StyleItemClass
Returns the style which is applied to the button.

• TabIndex
Returns the position of the button in the tab sequence.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the button is visible.

• VisualizeQuality
Specifies whether the connection quality of the process value is displayed.

• Width
Specifies the width.

Methods
The "Button" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the button.
• PropertyFlashing()

Configures flashing of a property.

Events
The "Button" object has the following events:
• OnActivated()

Occurs when a button receives focus.
• OnContextTapped()

Occurs when a button is right-clicked or long-touched.
• OnDeactivated()

Occurs when a button loses focus.
• OnDown()

Occurs when the operator presses a button.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1963

• OnKeyDown()
Occurs when a button is pressed while the button is in focus.

• OnKeyUp()
Occurs when a button is released while the button is in focus.

• OnTapped()
Occurs when a button is left-clicked or short-touched.

• OnUp()
Occurs when the operator resolves the pressure on a button via the input device.

Button.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
Button.AlternateBackColor

See also
Button (Page 1961)

Button.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1964 System Manual, 11/2022

Syntax
Button.AlternateBorderColor

See also
Button (Page 1961)

Button.AlternateGraphic

Description
The "AlternateGraphic" property specifies the graphic of the button for the "pressed" state.

Type
String

Access
Read-write

Syntax
Button.AlternateGraphic

See also
Button (Page 1961)

Button.AlternateText

Description
The "AlternateText" property specifies the text of the button for the "pressed" state.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1965

Syntax
Button.AlternateText

See also
Button (Page 1961)

Button.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the button.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
Button.Authorization

See also
Button (Page 1961)

Button.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1966 System Manual, 11/2022

Syntax
Button.BackColor

See also
Button (Page 1961)

Button.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
Button.BorderColor

See also
Button (Page 1961)

Button.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1967

Syntax
Button.BorderWidth

See also
Button (Page 1961)

Button.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
Button.Content

See also
Button (Page 1961)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Programming scripts
10.2 WinCC Unified object model

1968 System Manual, 11/2022

Access
Read-write

Syntax
Content.ContentMode

See also
Button.Content (Page 1968)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
Button.Content (Page 1968)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1969

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
Button.Content (Page 1968)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

Programming scripts
10.2 WinCC Unified object model

1970 System Manual, 11/2022

See also
Button.Content (Page 1968)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
Button.Content (Page 1968)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1971

Access
Read-write

Syntax
Content.TextPosition

See also
Button.Content (Page 1968)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
Button.Content (Page 1968)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Programming scripts
10.2 WinCC Unified object model

1972 System Manual, 11/2022

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
Button.Content (Page 1968)

Button.CurrentQuality

Description
The "CurrentQuality" property returns the current worst quality code of all tags which influence
the button.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable. Quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1973

Syntax
Button.CurrentQuality

See also
Button (Page 1961)

Button.Enabled

Description
The "Enabled" property specifies whether the button can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
Button.Enabled

See also
Button (Page 1961)

Button.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

1974 System Manual, 11/2022

Syntax
Button.Font

See also
Button (Page 1961)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Button.Font (Page 1974)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1975

Syntax
Font.Name

See also
Button.Font (Page 1974)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Button.Font (Page 1974)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Programming scripts
10.2 WinCC Unified object model

1976 System Manual, 11/2022

Access
Read-write

Syntax
Font.StrikeOut

See also
Button.Font (Page 1974)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Button.Font (Page 1974)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1977

Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Button.Font (Page 1974)

Button.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Button.ForeColor

See also
Button (Page 1961)

Programming scripts
10.2 WinCC Unified object model

1978 System Manual, 11/2022

Button.Graphic

Description
The "Graphic" property specifies the graphic of the button.

Type
String

Access
Read-write

Syntax
Button.Graphic

See also
Button (Page 1961)

Button.HotKey

Description
The "HotKey" property returns the hotkey specified for the button. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
Button.HotKey

See also
Button (Page 1961)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1979

Button.Height

Description
The "Height" property specifies the height of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Button.Height

See also
Button (Page 1961)

Button.Layer

Description
The "Layer" property returns the layer of the screen in which the button is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
Button.Layer

See also
Button (Page 1961)

Programming scripts
10.2 WinCC Unified object model

1980 System Manual, 11/2022

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
Button.Layer (Page 1980)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
Button.Layer (Page 1980)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1981

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
Button.Layer (Page 1980)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
Button.Layer (Page 1980)

Programming scripts
10.2 WinCC Unified object model

1982 System Manual, 11/2022

Button.Left

Description
The "Left" property specifies the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Button.Left

See also
Button (Page 1961)

Button.Margin

Description
The "Margin" property specifies the surrounded outer distance of the button.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
Button.Margin

See also
Button (Page 1961)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1983

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
Button.Margin (Page 1983)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
Button.Margin (Page 1983)

Programming scripts
10.2 WinCC Unified object model

1984 System Manual, 11/2022

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
Button.Margin (Page 1983)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
Button.Margin (Page 1983)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1985

Button.Name

Description
The "Name" property returns the name of the button.

Type
String

Access
Read-only

Syntax
Button.Name

See also
Button (Page 1961)

Button.Opacity

Description
The "Opacity" property specifies the opacity of the button. The value "0.0" means completely
transparent.

Type
Float

Access
Read-write

Syntax
Button.Opacity

See also
Button (Page 1961)

Programming scripts
10.2 WinCC Unified object model

1986 System Manual, 11/2022

Button.Operability

Description
The "Operability" property returns whether the button is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
Button.Operability

See also
Button (Page 1961)

Button.Padding

Description
The "Padding" property specifies the distance of the content from the border of the button.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
Button.Padding

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1987

See also
Button (Page 1961)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
Button.Padding (Page 1987)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

Programming scripts
10.2 WinCC Unified object model

1988 System Manual, 11/2022

See also
Button.Padding (Page 1987)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
Button.Padding (Page 1987)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1989

See also
Button.Padding (Page 1987)

Button.Parent

Description
The "Parent" property returns the parent screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
Button.Parent

See also
Button (Page 1961)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Button.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the button was
created.

Type
String

Programming scripts
10.2 WinCC Unified object model

1990 System Manual, 11/2022

Access
Read-only

Syntax
Button.RenderingTemplate

See also
Button (Page 1961)

Button.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the object can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
Button.RequireExplicitUnlock

See also
Button (Page 1961)

Button.RotationAngle

Description
The "RotationAngle" property specifies the rotation angle of the button in degrees.

Type
Int16

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1991

Access
Read-write

Syntax
Button.RotationAngle

See also
Button (Page 1961)

Button.RotationCenterPlacement

Description
The "RotationCenterPlacement" property specifies the reference point around which the button
rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also be outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
Button.RotationCenterPlacement

See also
Button (Page 1961)
Button.RotationCenterX (Page 1993)
Button.RotationCenterY (Page 1993)

Programming scripts
10.2 WinCC Unified object model

1992 System Manual, 11/2022

Button.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point.

Type
Float

Access
Read-write

Syntax
Button.RotationCenterX

See also
Button (Page 1961)
Button.RotationCenterPlacement (Page 1992)
Button.RotationCenterY (Page 1993)

Button.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point.

Type
Float

Access
Read-write

Syntax
Button.RotationCenterY

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1993

See also
Button (Page 1961)
Button.RotationCenterX (Page 1993)
Button.RotationCenterPlacement (Page 1992)

Button.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the button is highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
Button.ShowFocusVisual

See also
Button (Page 1961)

Button.StyleItemClass

Description
The "StyleItemClass" property returns the style that will be applied to the button.

Type
String

Access
Read-only

Syntax
Button.StyleItemClass

Programming scripts
10.2 WinCC Unified object model

1994 System Manual, 11/2022

See also
Button (Page 1961)

Button.TabIndex

Description
The "TabIndex" property returns the position of the button in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
Button.TabIndex

See also
Button (Page 1961)

Button.Text

Description
The "Text" property specifies the label of the button.

Type
String

Access
Read-write

Syntax
Button.Text

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1995

See also
Button (Page 1961)

Button.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the button.

Type
String

Access
Read-write

Syntax
Button.ToolTipText

See also
Button (Page 1961)

Button.Top

Description
The "Top" property specifies the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Button.Top

Programming scripts
10.2 WinCC Unified object model

1996 System Manual, 11/2022

See also
Button (Page 1961)

Button.Visible

Description
The "Visible" property specifies whether the button is visible.

Type
Bool

Access
Read-write

Syntax
Button.Visible

See also
Button (Page 1961)

Button.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Access
Read-write

Syntax
Button.VisualizeQuality

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1997

See also
Button (Page 1961)

Button.Width

Description
The "Width" property specifies the width of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Button.Width

See also
Button (Page 1961)

Button.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
button.

Syntax
Button.CheckAuthorization()

Parameters
--

Return value
Bool

Programming scripts
10.2 WinCC Unified object model

1998 System Manual, 11/2022

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
Button (Page 1961)

Button.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing means the
change between two values of a property.

Syntax
Button.PropertyFlashing(propertyName,enable[,value][,alternateValue]
[,rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 1999

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flashing frequency:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
Button (Page 1961)

Button_OnActivated()

Description
The "OnActivated" event occurs when a button receives focus:
• A button is selected via the configured tab sequence.
• A button that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and
receives focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
Button_OnActivated(item)

Context
Item
Type: Object
Button at which the event occurs.

Programming scripts
10.2 WinCC Unified object model

2000 System Manual, 11/2022

See also
Button (Page 1961)

Button_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A button is clicked with the right mouse button.
• A button is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnDown
2. OnUp
3. OnContextTapped

Syntax
Button_OnContextTapped(item,x,y,modifiers,trigger)

Context
Item
Type: Object
Button at which the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2001

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Button (Page 1961)

Button_OnDeactivated()

Description
The "OnDeactivated" event occurs when a button loses focus when the operator presses the
<TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Programming scripts
10.2 WinCC Unified object model

2002 System Manual, 11/2022

Syntax
Button_OnDeactivated(item)

Context
Item
Type: Object
Button at which the event occurs.

See also
Button (Page 1961)

Button_OnDown()

Description
The "OnDown" event occurs when the operator presses a button:
• A button is clicked with a mouse button.
• The <RETURN> or <SPACE> key is pressed when a button has the focus.
• A button is touched.

Order
The events are triggered in the following order:
1. OnDown
2. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
3. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
4. OnUp

Syntax
Button_OnDown(item,x,y,modifiers,trigger)

Context
Item
Type: Object
Button at which the event occurs.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2003

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Button (Page 1961)

Programming scripts
10.2 WinCC Unified object model

2004 System Manual, 11/2022

Button_OnKeyDown()

Description
The "OnKeyDown" event occurs when a button is pressed while the button is in focus. If the key
is <RETURN> or <SPACE>, an "OnKeyDown" event is triggered before an "OnDown" event.

Syntax
Button_OnKeyDown(item,keyCode,modifiers)

Order
The events are triggered in the following order:
1. OnDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyDown
3. OnKeyUp
4. OnUp (if triggered by the <RETURN> or <SPACE> key)

Context
Item
Type: Object
Button at which the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2005

See also
Button (Page 1961)

Button_OnKeyUp()

Description
The "OnKeyUp" event occurs when a button is released while the button is in focus. If the key is
<RETURN> or <SPACE>, an event "OnUp" is triggered after the event "OnKeyUp".

Syntax
Button_OnKeyUp(item,keyCode,modifiers)

Order
The events are triggered in the following order:
1. OnDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyDown
3. OnKeyUp
4. OnUp (if triggered by the <RETURN> or <SPACE> key)

Context
Item
Type: Object
Button at which the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key

Programming scripts
10.2 WinCC Unified object model

2006 System Manual, 11/2022

• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Button (Page 1961)

Button_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A button is clicked with the left mouse button.
• The <RETURN> or <SPACE> key is pressed when a button has the focus.
• A button is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnDown
2. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
3. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
4. OnUp
5. OnTapped

Syntax
Button_OnTapped(item,x,y,modifiers,trigger)

Context
Item
Type: Object
Button at which the event occurs.

x
Type: DInt

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2007

X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Button (Page 1961)

Programming scripts
10.2 WinCC Unified object model

2008 System Manual, 11/2022

Button_OnUp()

Description
The event "OnUp" occurs when the operator releases the pressure on a button via the input
device:
• The mouse button is released via a button.
• The <RETURN> or <SPACE> key is released when a button has the focus.
• The touch of a button is canceled.
• A button is exited while pressed.
This event does not occur as long as the operator keeps the button pressed.

Order
The events are triggered in the following order:
1. OnDown
2. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
3. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
4. OnUp

Syntax
Button_OnUp(item,x,y,modifiers,trigger)

Context
Item
Type: Object
Button at which the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2009

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Button (Page 1961)

CheckBoxGroup

Description
The "CheckBoxGroup" object represents a checkbox (group of checkboxes) in runtime.

Object type
HmiCheckBoxGroup

Programming scripts
10.2 WinCC Unified object model

2010 System Manual, 11/2022

Properties
The "CheckBoxGroup" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the border color.
• BorderWidth

Specifies the border thickness.
• Content

Specifies the display options for text and graphics.
• CurrentQuality

Returns the poorest quality code of all tags which influence the checkbox.
• Enabled

Specifies whether the checkbox can be operated in runtime.
• Font

Specifies the font of the text.
• ForeColor

Specifies the font color of the text.
• Height

Specifies the height.
• Layer

Returns the layer of the screen in which the checkbox is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the checkbox.
• Opacity

Specifies the opacity.
• Operability

Returns whether the checkbox is operable.
• Padding

Specifies the distance of the content from the border of the checkbox.
• Parent

Returns the higher-level screen object.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2011

• ProcessValue
Specifies the process value.

• RenderingTemplate
Returns the name of the template from which the check box was created.

• RequireExplicitUnlock
Returns whether the checkbox is only operable while the associated button is being pressed.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the checkbox rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• SelectionItemHeight
Specifies the height of the checkbox entries.

• SelectionItems
Returns the list of all the checkbox entries.

• SelectorPosition
Specifies the horizontal alignment of the checkbox entries.

• ShowFocusVisual
Specifies whether the checkbox is highlighted when in focus.

• StyleItemClass
Returns the style which is applied to the checkbox.

• TabIndex
Returns the position of the checkbox in the tab sequence.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the checkbox is visible.

• VisualizeQuality
Specifies whether the connection quality of the process value is displayed.

• Width
Specifies the width.

Programming scripts
10.2 WinCC Unified object model

2012 System Manual, 11/2022

Methods
The "CheckBoxGroup" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the checkbox.
• PropertyFlashing()

Configures flashing of a property.

Events
The "CheckBoxGroup" object has the following events:
• OnActivated()

Occurs when a checkbox receives focus.
• OnContextTapped()

Occurs when a checkbox is right-clicked or long-touched.
• OnDeactivated()

Occurs when a checkbox loses focus.
• OnKeyDown()

Occurs when a button is pressed while the checkbox is in focus.
• OnKeyUp()

Occurs when a key is released while the checkbox is in focus.
• OnTapped()

Occurs when a checkbox is left-clicked or short-touched.

CheckBoxGroup.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
CheckBoxGroup.AlternateBackColor

See also
CheckBoxGroup (Page 2010)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2013

CheckBoxGroup.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color which is displayed for line
styles such as "Dash".

Type
UInt32

Access
Read-write

Syntax
CheckBoxGroup.AlternateBorderColor

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
CheckBoxGroup.Authorization

See also
CheckBoxGroup (Page 2010)

Programming scripts
10.2 WinCC Unified object model

2014 System Manual, 11/2022

CheckBoxGroup.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
CheckBoxGroup.BackColor

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
CheckBoxGroup.BorderColor

See also
CheckBoxGroup (Page 2010)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2015

CheckBoxGroup.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
CheckBoxGroup.BorderWidth

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.Content

Description
The "Content" property specifies the display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
CheckBoxGroup.Content

See also
CheckBoxGroup (Page 2010)

Programming scripts
10.2 WinCC Unified object model

2016 System Manual, 11/2022

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
CheckBoxGroup.Content (Page 2016)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2017

• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect
ratio is not changed.

• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
CheckBoxGroup.Content (Page 2016)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
CheckBoxGroup.Content (Page 2016)

Programming scripts
10.2 WinCC Unified object model

2018 System Manual, 11/2022

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
CheckBoxGroup.Content (Page 2016)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
CheckBoxGroup.Content (Page 2016)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2019

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
CheckBoxGroup.Content (Page 2016)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

2020 System Manual, 11/2022

Access
Read-write

Syntax
Content.TextTrimming

See also
CheckBoxGroup.Content (Page 2016)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
CheckBoxGroup.Content (Page 2016)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2021

CheckBoxGroup.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
checkbox.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
CheckBoxGroup.CurrentQuality

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.Enabled

Description
The "Enabled" property specifies whether the checkbox can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2022 System Manual, 11/2022

Syntax
CheckBoxGroup.Enabled

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
CheckBoxGroup.Font

See also
CheckBoxGroup (Page 2010)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2023

See also
CheckBoxGroup.Font (Page 2023)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
CheckBoxGroup.Font (Page 2023)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

Programming scripts
10.2 WinCC Unified object model

2024 System Manual, 11/2022

See also
CheckBoxGroup.Font (Page 2023)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
CheckBoxGroup.Font (Page 2023)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2025

Syntax
Font.Underline

See also
CheckBoxGroup.Font (Page 2023)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
CheckBoxGroup.Font (Page 2023)

CheckBoxGroup.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Programming scripts
10.2 WinCC Unified object model

2026 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
CheckBoxGroup.ForeColor

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
CheckBoxGroup.Height

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.Layer

Description
The "Layer" property returns the layer of the screen in which the checkbox is located.

Type
Object, HmiLayerPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2027

Access
Read-only

Syntax
CheckBoxGroup.Layer

See also
CheckBoxGroup (Page 2010)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
CheckBoxGroup.Layer (Page 2027)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Programming scripts
10.2 WinCC Unified object model

2028 System Manual, 11/2022

Access
Read-write

Syntax
Layer.MinimumZoom

See also
CheckBoxGroup.Layer (Page 2027)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
CheckBoxGroup.Layer (Page 2027)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2029

Access
Read-write

Syntax
Layer.Visible

See also
CheckBoxGroup.Layer (Page 2027)

CheckBoxGroup.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
CheckBoxGroup.Left

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

2030 System Manual, 11/2022

Access
Read-write

Syntax
CheckBoxGroup.Margin

See also
CheckBoxGroup (Page 2010)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
CheckBoxGroup.Margin (Page 2030)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2031

Access
Read-write

Syntax
Margin.Left

See also
CheckBoxGroup.Margin (Page 2030)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
CheckBoxGroup.Margin (Page 2030)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

2032 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Top

See also
CheckBoxGroup.Margin (Page 2030)

CheckBoxGroup.Name

Description
The "Name" property returns the name of the checkbox.

Type
String

Access
Read-only

Syntax
CheckBoxGroup.Name

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" indicates completely transparent.

Type
Float

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2033

Access
Read-write

Syntax
CheckBoxGroup.Opacity

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.Operability

Description
The "Operability" property returns whether the checkbox is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
CheckBoxGroup.Operability

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the checkbox.

Programming scripts
10.2 WinCC Unified object model

2034 System Manual, 11/2022

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
CheckBoxGroup.Padding

See also
CheckBoxGroup (Page 2010)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
CheckBoxGroup.Padding (Page 2034)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2035

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
CheckBoxGroup.Padding (Page 2034)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
CheckBoxGroup.Padding (Page 2034)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

2036 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
CheckBoxGroup.Padding (Page 2034)

CheckBoxGroup.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
CheckBoxGroup.Parent

See also
CheckBoxGroup (Page 2010)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2037

CheckBoxGroup.ProcessValue

Description
The "ProcessValue" property specifies the process value.

Type
Variant

Access
Read-write

Syntax
CheckBoxGroup.ProcessValue

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the checkbox
was created.

Type
String

Access
Read-only

Syntax
CheckBoxGroup.RenderingTemplate

See also
CheckBoxGroup (Page 2010)

Programming scripts
10.2 WinCC Unified object model

2038 System Manual, 11/2022

CheckBoxGroup.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the checkbox can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
CheckBoxGroup.RequireExplicitUnlock

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
CheckBoxGroup.RotationAngle

See also
CheckBoxGroup (Page 2010)
CheckBoxGroup.RotationCenterPlacement (Page 2040)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2039

CheckBoxGroup.RotationCenterX (Page 2040)
CheckBoxGroup.RotationCenterY (Page 2041)

CheckBoxGroup.RotationCenterPlacement

Description
The "RotationCenterPlacement" property specifies the reference point around which the
checkbox rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
CheckBoxGroup.RotationCenterPlacement

See also
CheckBoxGroup (Page 2010)
CheckBoxGroup.RotationAngle (Page 2039)
CheckBoxGroup.RotationCenterX (Page 2040)
CheckBoxGroup.RotationCenterY (Page 2041)

CheckBoxGroup.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Programming scripts
10.2 WinCC Unified object model

2040 System Manual, 11/2022

Type
Float

Access
Read-write

Syntax
CheckBoxGroup.RotationCenterX

See also
CheckBoxGroup (Page 2010)
CheckBoxGroup.RotationAngle (Page 2039)
CheckBoxGroup.RotationCenterPlacement (Page 2040)
CheckBoxGroup.RotationCenterY (Page 2041)

CheckBoxGroup.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
CheckBoxGroup.RotationCenterY

See also
CheckBoxGroup (Page 2010)
CheckBoxGroup.RotationAngle (Page 2039)
CheckBoxGroup.RotationCenterPlacement (Page 2040)
CheckBoxGroup.RotationCenterX (Page 2040)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2041

CheckBoxGroup.SelectionItemHeight

Description
The "SelectionItemHeight" property specifies the height of the checkbox entries. The value "0"
indicates that the height is calculated automatically.

Type
UInt16

Access
Read-write

Syntax
CheckBoxGroup.SelectionItemHeight

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.SelectionItems

Description
The "SelectionItems" property returns the list of all checkbox entries ("SelectionItem" objects).

Type
Object, HmiSelectionItemCollection (Page 2043)

Access
Read-only

Syntax
CheckBoxGroup.SelectionItems

See also
CheckBoxGroup (Page 2010)
HmiSelectionItemCollection (Page 2043)

Programming scripts
10.2 WinCC Unified object model

2042 System Manual, 11/2022

HmiSelectionItemCollection

Description
The "HmiSelectionItemCollection" object is a list of all entries ("SelectionItem" objects) of a list
object.

Use
The "HmiSelectionItemCollection" object is a list and can be counted and enumerated. You can
access the "HmiSelectionItemCollection" list using the index or the tag name.

Object type
HmiSelectionItemCollection

Properties
The "HmiSelectionItemCollection" object has the following properties:
• Count

Returns the number of list entries of the "HmiSelectionItemCollection" list.

Methods
The "HmiSelectionItemCollection" object has the following methods:
• Item()

Returns a list entry of the "HmiSelectionItemCollection" list.

See also
CheckBoxGroup.SelectionItems (Page 2042)

HmiSelectionItemCollection.Count

Description
The "Count" property returns the number of list entries in the "HmiSelectionItemCollection" list.

Type
UInt32

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2043

Syntax
HmiSelectionItemCollection.Count

See also
HmiSelectionItemCollection (Page 2043)

HmiSelectionItemCollection.Item()

Description
The "Item" method returns a list entry of the "HmiSelectionItemCollection" list.

Syntax
HmiSelectionItemCollection[.Item](HmiSelectionItemName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiSelectionItemCollection" object.

Parameters
HmiSelectionItemName
Type: String
Name of the list entry

Return value
Object, HmiSelectionItemPart (Page 2044)

See also
HmiSelectionItemCollection (Page 2043)
SelectionItem (Page 2044)

SelectionItem

Description
The "SelectionItem" object represents a list entry.

Programming scripts
10.2 WinCC Unified object model

2044 System Manual, 11/2022

Object type
HmiSelectionItemPart

Properties
The "SelectionItem" object has the following properties:
• Graphic

Specifies the graphic of the list entry.
• IsSelected

Specifies whether the list entry is selected.
• Text

Specifies the list entry text.

Methods
--

See also
HmiSelectionItemCollection (Page 2043)

SelectionItem.Graphic

Description
The "Graphic" property specifies the graphic of the list entry.

Type
String

Access
Read-write

Syntax
SelectionItem.Graphic

See also
SelectionItem (Page 2044)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2045

SelectionItem.IsSelected

Description
The "IsSelected" property specifies whether the list entry is selected.

Type
Bool

Access
Read-write

Syntax
SelectionItem.IsSelected

See also
SelectionItem (Page 2044)

SelectionItem.Text

Description
The "Text" property specifies the text of the list entry.

Type
String

Access
Read-write

Syntax
SelectionItem.Text

See also
SelectionItem (Page 2044)

Programming scripts
10.2 WinCC Unified object model

2046 System Manual, 11/2022

CheckBoxGroup.SelectorPosition

Description
The "SelectorPosition" property specifies the horizontal alignment of the checkbox entries.

Type
Int32, HmiHorizontalAlignment
Specifies the text alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched. Can only be used with layout containers, Fallback behaves like Center

Access
Read-write

Syntax
CheckBoxGroup.SelectorPosition

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the checkbox is highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
CheckBoxGroup.ShowFocusVisual

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2047

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the checkbox.

Type
String

Access
Read-only

Syntax
CheckBoxGroup.StyleItemClass

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.TabIndex

Description
The "TabIndex" property returns the position of the checkbox in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
CheckBoxGroup.TabIndex

See also
CheckBoxGroup (Page 2010)

Programming scripts
10.2 WinCC Unified object model

2048 System Manual, 11/2022

CheckBoxGroup.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
CheckBoxGroup.ToolTipText

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
CheckBoxGroup.Top

See also
CheckBoxGroup (Page 2010)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2049

CheckBoxGroup.Visible

Description
The "Visible" property specifies whether the checkbox is visible.

Type
Bool

Access
Read-write

Syntax
CheckBoxGroup.Visible

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Access
Read-write

Syntax
CheckBoxGroup.VisualizeQuality

See also
CheckBoxGroup (Page 2010)

Programming scripts
10.2 WinCC Unified object model

2050 System Manual, 11/2022

CheckBoxGroup.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
CheckBoxGroup.Width

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
checkbox.

Syntax
CheckBoxGroup.CheckAuthorization()

Parameters
--

Return value
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2051

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
CheckBoxGroup.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

Programming scripts
10.2 WinCC Unified object model

2052 System Manual, 11/2022

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup_OnActivated()

Description
The "OnActivated" event occurs when a checkbox receives focus:
• A checkbox is selected via the configured tab sequence.
• A checkbox that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
CheckBoxGroup_OnActivated(item)

Context
item
Type: Object
Checkbox where the event occurs.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2053

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A checkbox is right-clicked.
• A checkbox is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
CheckBoxGroup_OnContextTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Checkbox where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key

Programming scripts
10.2 WinCC Unified object model

2054 System Manual, 11/2022

• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup_OnDeactivated()

Description
The "OnDeactivated" event occurs when the checkbox loses focus because the operator presses
the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
CheckBoxGroup_OnDeactivated(item)

Context
item
Type: Object

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2055

Checkbox where the event occurs.

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the checkbox is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
CheckBoxGroup_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Checkbox where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key

Programming scripts
10.2 WinCC Unified object model

2056 System Manual, 11/2022

• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the checkbox is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
CheckBoxGroup_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Checkbox where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2057

• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
CheckBoxGroup (Page 2010)

CheckBoxGroup_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A checkbox is left-clicked.
• The <RETURN> or <SPACE> key is pressed when a checkbox has the focus.
• A checkbox is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
CheckBoxGroup_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Checkbox where the event occurs.

x
Type: DInt
X-coordinate of the input point

Programming scripts
10.2 WinCC Unified object model

2058 System Manual, 11/2022

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
CheckBoxGroup (Page 2010)

Circle

Description
The "Circle" object represents a circle in runtime.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2059

Object type
HmiCircle

Properties
The "Circle" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BackFillPattern

Specifies the pattern of the background or the fill.
• BorderColor

Specifies the border color.
• BorderWidth

Specifies the border thickness.
• CenterX

Specifies the X coordinate of the center.
• CenterY

Sets the Y coordinate of the center.
• CurrentQuality

Returns the poorest quality code of all tags which influence the circle.
• DashType

Specifies the stroke style of the border or line.
• Enabled

Specifies whether the circle can be operated in runtime.
• FillDirection

Specifies the direction from which the circle is filled.
• FillLevel

Specifies the fill of the circle in percent.
• Layer

Returns the layer of the screen in which the circle is located.
• Margin

Specifies the margin.
• Name

Returns the name of the circle.
• Opacity

Specifies the opacity.

Programming scripts
10.2 WinCC Unified object model

2060 System Manual, 11/2022

• Operability
Returns whether the circle is operable.

• Parent
Returns the higher-level screen object.

• Radius
Specifies the radius.

• RequireExplicitUnlock
Returns whether the circle is only operable while the associated button is being pressed.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the circle rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFillLevel
Specifies whether the fill level is displayed.

• ShowFocusVisual
Specifies whether the circle is highlighted when in focus.

• StyleItemClass
Returns the style which is applied to the circle.

• TabIndex
Returns the position of the circle in the tab sequence.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the circle is visible.

Methods
The "Circle" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the circle.
• PropertyFlashing()

Configures flashing of a property.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2061

Events
The "Circle" object has the following events:
• OnActivated()

Occurs when a circle receives focus.
• OnContextTapped()

Occurs when a circle is right-clicked or long-touched.
• OnDeactivated()

Occurs when a circle loses focus.
• OnKeyDown()

Occurs when a key is pressed while the circle is in focus.
• OnKeyUp()

Occurs when a key is released while the circle is in focus.
• OnTapped()

Occurs when a circle is left-clicked or short-touched.

Circle.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
Circle.AlternateBackColor

See also
Circle (Page 2059)

Circle.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color which is displayed for line
styles such as "Dash".

Programming scripts
10.2 WinCC Unified object model

2062 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
Circle.AlternateBorderColor

See also
Circle (Page 2059)

Circle.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
Circle.Authorization

See also
Circle (Page 2059)

Circle.BackColor

Description
The "BackColor" property specifies the background color.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2063

Type
UInt32

Access
Read-write

Syntax
Circle.BackColor

See also
Circle (Page 2059)

Circle.BackFillPattern

Description
The "BackFillPattern" property specifies the pattern of the background or the fill.

Type
Int32, HmiFillPattern
Specifies the filling:
• Solid (0): Solid
• Transparent (65536): Transparent
• Horizontal (131072): Horizontal
• Vertical (131073): Vertical
• ForwardDiagonal (131074): Forward diagonally striped
• BackwardDiagonal (131075): Backward diagonally striped
• Cross (131076): Grid
• DiagonalCross (131077): Diagonal grid
• GradientHorizontal (1048576): Horizontal gradient
• GradientVertical (1048577): Vertical gradient
• GradientForwardDiagonal (1048578): Gradient forward diagonal
• GradientBackwardDiagonal (1048579): Gradient backward diagonal
• GradientHorizontalTricolor (1048832): Horizontal tricolor gradient
• GradientVerticalTricolor (1048833): Gradient vertical tricolor

Programming scripts
10.2 WinCC Unified object model

2064 System Manual, 11/2022

• GradientForwardDiagonalTricolor (1048834): Gradient forward diagonal tricolor
• GradientBackwardDiagonalTricolor (1048835): Gradient backward diagonal tricolor

Access
Read-write

Syntax
Circle.BackFillPattern

See also
Circle (Page 2059)
Circle.FillDirection (Page 2069)
Circle.FillLevel (Page 2070)
Circle.ShowFillLevel (Page 2081)

Circle.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
Circle.BorderColor

See also
Circle (Page 2059)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2065

Circle.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
Circle.BorderWidth

See also
Circle (Page 2059)

Circle.CenterX

Description
The "CenterX" property specifies the X coordinate of the center.

Type
Int32

Access
Read-write

Syntax
Circle.CenterX

See also
Circle (Page 2059)

Programming scripts
10.2 WinCC Unified object model

2066 System Manual, 11/2022

Circle.CenterY

Description
The "CenterY" property specifies the Y coordinate of the center.

Type
Int32

Access
Read-write

Syntax
Circle.CenterY

See also
Circle (Page 2059)

Circle.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
circle.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2067

Syntax
Circle.CurrentQuality

See also
Circle (Page 2059)

Circle.DashType

Description
The "DashType" property specifies the dash type of the border or the line.

Type
Int32, HmiDashType
Specifies the dash type:
• Solid (0): Solid
• Dash(1): Dashed
• Dot (2): Dotted
• DashDot (3): Dash-dot
• DashDotDot (4): Dash-dot-dot

Access
Read-write

Syntax
Circle.DashType

See also
Circle (Page 2059)

Circle.Enabled

Description
The "Enabled" property specifies whether the circle can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

2068 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
Circle.Enabled

See also
Circle (Page 2059)

Circle.FillDirection

Description
The "FillDirection" property specifies the direction from which the circle is filled.

Type
Int32, HmiFillDirection
Specifies the filling direction:
• BottomToTop (0): From bottom to top
• TopToBottom (1): From top to bottom
• LeftToRight (2): From left to right
• RightToLeft (3): From right to left

Access
Read-write

Syntax
Circle.FillDirection

See also
Circle (Page 2059)
Circle.BackFillPattern (Page 2064)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2069

Circle.FillLevel (Page 2070)
Circle.ShowFillLevel (Page 2081)

Circle.FillLevel

Description
The "FillLevel" property specifies the fill level of the circle in percent.

Type
UInt8

Access
Read-write

Syntax
Circle.FillLevel

See also
Circle (Page 2059)
Circle.BackFillPattern (Page 2064)
Circle.FillDirection (Page 2069)
Circle.ShowFillLevel (Page 2081)

Circle.Layer

Description
The "Layer" property returns the layer of the screen in which the circle is located.

Type
Object, HmiLayerPart

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

2070 System Manual, 11/2022

Syntax
Circle.Layer

See also
Circle (Page 2059)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
Circle.Layer (Page 2070)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2071

Syntax
Layer.MinimumZoom

See also
Circle.Layer (Page 2070)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
Circle.Layer (Page 2070)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2072 System Manual, 11/2022

Syntax
Layer.Visible

See also
Circle.Layer (Page 2070)

Circle.Margin

Description
The Margin property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
Circle.Margin

See also
Circle (Page 2059)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2073

Syntax
Margin.Bottom

See also
Circle.Margin (Page 2073)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
Circle.Margin (Page 2073)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2074 System Manual, 11/2022

Syntax
Margin.Right

See also
Circle.Margin (Page 2073)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
Circle.Margin (Page 2073)

Circle.Name

Description
The "Name" property returns the name of the circle.

Type
String

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2075

Syntax
Circle.Name

See also
Circle (Page 2059)

Circle.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" means completely transparent.

Type
Float

Access
Read-write

Syntax
Cricle.Opacity

See also
Circle (Page 2059)

Circle.Operability

Description
The "Operability" property returns whether the circle is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Programming scripts
10.2 WinCC Unified object model

2076 System Manual, 11/2022

Access
Read-only

Syntax
Circle.Operability

See also
Circle (Page 2059)

Circle.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
Circle.Parent

See also
Circle (Page 2059)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2077

Circle.Radius

Description
The "Radius" property specifies the radius.

Type
UInt32

Access
Read-write

Syntax
Circle.Radius

See also
Circle (Page 2059)

Circle.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the circle can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
Circle.RequireExplicitUnlock

See also
Circle (Page 2059)

Programming scripts
10.2 WinCC Unified object model

2078 System Manual, 11/2022

Circle.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
Circle.RotationAngle

See also
Circle (Page 2059)
Circle.RotationCenterPlacement (Page 2079)
Circle.RotationCenterX (Page 2080)
Circle.RotationCenterY (Page 2081)

Circle.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the circle
rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also be outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2079

Access
Read-write

Syntax
Circle.RotationCenterPlacement

See also
Circle (Page 2059)
Circle.RotationAngle (Page 2079)
Circle.RotationCenterX (Page 2080)
Circle.RotationCenterY (Page 2081)

Circle.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
Circle.RotationCenterX

See also
Circle (Page 2059)
Circle.RotationAngle (Page 2079)
Circle.RotationCenterPlacement (Page 2079)
Circle.RotationCenterY (Page 2081)

Programming scripts
10.2 WinCC Unified object model

2080 System Manual, 11/2022

Circle.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
Circle.RotationCenterY

See also
Circle (Page 2059)
Circle.RotationAngle (Page 2079)
Circle.RotationCenterPlacement (Page 2079)
Circle.RotationCenterX (Page 2080)

Circle.ShowFillLevel

Description
The "ShowFillLevel" property specifies whether the fill level is displayed.

Type
Bool

Access
Read-write

Syntax
Circle.ShowFillLevel

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2081

See also
Circle (Page 2059)
Circle.BackFillPattern (Page 2064)
Circle.FillDirection (Page 2069)
Circle.FillLevel (Page 2070)

Circle.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the circle is highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
Circle.ShowFocusVisual

See also
Circle (Page 2059)

Circle.StyleItemClass

Description
The "StyleItemClass" property returns the style applied to the circle.

Type
String

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

2082 System Manual, 11/2022

Syntax
Circle.StyleItemClass

See also
Circle (Page 2059)

Circle.TabIndex

Description
The "TabIndex" property returns the position of the circle in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
Circle.TabIndex

See also
Circle (Page 2059)

Circle.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2083

Syntax
Circle.ToolTipText

See also
Circle (Page 2059)

Circle.Visible

Description
The "Visible" property specifies whether the circle is visible.

Type
Bool

Access
Read-write

Syntax
Circle.Visible

See also
Circle (Page 2059)

Circle.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
circle.

Syntax
Circle.CheckAuthorization()

Parameters
--

Programming scripts
10.2 WinCC Unified object model

2084 System Manual, 11/2022

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
Circle (Page 2059)

Circle.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
Circle.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2085

Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
Circle (Page 2059)

Circle_OnActivated()

Description
The "OnActivated" event occurs when a circle receives focus:
• A circle is selected via the configured tab sequence.
• A circle that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and
receives focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
Circle_OnActivated(item)

Context
item
Type: Object
Circle at which the event occurs.

Programming scripts
10.2 WinCC Unified object model

2086 System Manual, 11/2022

See also
Circle (Page 2059)

Circle_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A circle is clicked with the right mouse button.
• A circle is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
Circle_OnContextTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Circle where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2087

• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Circle (Page 2059)

Circle_OnDeactivated()

Description
The "OnDeactivated" event occurs when a circle loses focus when the operator presses the
<TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
Circle_OnDeactivated(item)

Context
item
Type: Object

Programming scripts
10.2 WinCC Unified object model

2088 System Manual, 11/2022

Circle at which the event occurs.

See also
Circle (Page 2059)

Circle_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the circle is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
Circle_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Circle where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2089

• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Circle (Page 2059)

Circle_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the circle is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
Circle_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Circle where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key

Programming scripts
10.2 WinCC Unified object model

2090 System Manual, 11/2022

• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Circle (Page 2059)

Circle_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A circle is clicked with the left mouse button.
• The <RETURN> or <SPACE> key is pressed when a circle has the focus.
• A circle is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
Circle_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Circle where the event occurs.

x
Type: DInt
X-coordinate of the input point

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2091

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Circle (Page 2059)

CircleSegment

Description
The "CircleSegment" object represents a circle segment in runtime.

Programming scripts
10.2 WinCC Unified object model

2092 System Manual, 11/2022

Object type
HmiCircleSegment

Properties
The "CircleSegment" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• AngleRange

Specifies the arc angle.
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BackFillPattern

Specifies the pattern of the background or the fill.
• BorderColor

Specifies the border color.
• BorderWidth

Specifies the border thickness.
• CenterX

Specifies the X coordinate of the rotation point.
• CenterY

Specifies the Y coordinate of the rotation point.
• CurrentQuality

Returns the poorest quality code of all tags which influence the circle segment.
• DashType

Specifies the stroke style of the border or line.
• Enabled

Specifies whether the circle segment can be operated in runtime.
• FillDirection

Specifies the direction from which the circle segment is filled.
• FillLevel

Specifies the fill of the circle segment in percent.
• Layer

Returns the layer of the screen in which the circle segment is located.
• Margin

Specifies the margin.
• Name

Returns the name of the circle segment.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2093

• Opacity
Specifies the opacity.

• Operability
Returns whether the circle segment is operable.

• Parent
Returns the higher-level screen object.

• Radius
Specifies the radius.

• RequireExplicitUnlock
Returns whether the circle segment is only operable while the associated button is being
pressed.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the circle segment rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFillLevel
Specifies whether the fill level is displayed.

• ShowFocusVisual
Specifies whether the circle segment is highlighted when in focus.

• StartAngle
Specifies the angle by which the start point deviates from the zero position (0°).

• StyleItemClass
Returns the style which is applied to the circle segment.

• TabIndex
Returns the position of the circle segment in the tab sequence.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the circle segment is visible.

Methods
The "CircleSegment" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the circle segment.
• PropertyFlashing()

Configures flashing of a property.

Programming scripts
10.2 WinCC Unified object model

2094 System Manual, 11/2022

Events
The "CircleSegment" object has the following events:
• OnActivated()

Occurs when a circle segment receives focus.
• OnContextTapped()

Occurs when a circle segment is right-clicked or long-touched.
• OnDeactivated()

Occurs when a circle segment loses focus.
• OnKeyDown()

Occurs when a key is pressed while the circle segment is in focus.
• OnKeyUp()

Occurs when a key is released while the circle segment is in focus.
• OnTapped()

Occurs when a circle segment is left-clicked or short-touched.

CircleSegment.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
CircleSegment.AlternateBackColor

See also
CircleSegment (Page 2092)

CircleSegment.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color which is displayed for line
styles such as "Dash".

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2095

Type
UInt32

Access
Read-write

Syntax
CircleSegment.AlternateBorderColor

See also
CircleSegment (Page 2092)

CircleSegment.AngleRange

Description
The AngleRange property specifies the arc angle clockwise.

Type
Int32

Access
Read-write

Syntax
CircleSegment.AngleRange

See also
CircleSegment (Page 2092)

CircleSegment.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Programming scripts
10.2 WinCC Unified object model

2096 System Manual, 11/2022

Access
Read-only

Syntax
CircleSegment.Authorization

See also
CircleSegment (Page 2092)

CircleSegment.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
CircleSegment.BackColor

See also
CircleSegment (Page 2092)

CircleSegment.BackFillPattern

Description
The "BackFillPattern" property specifies the pattern of the background or the fill.

Type
Int32, HmiFillPattern
Specifies the filling:
• Solid (0): Solid
• Transparent (65536): Transparent

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2097

• Horizontal (131072): Horizontal
• Vertical (131073): Vertical
• ForwardDiagonal (131074): Forward diagonally striped
• BackwardDiagonal (131075): Backward diagonally striped
• Cross (131076): Grid
• DiagonalCross (131077): Diagonal grid
• GradientHorizontal (1048576): Horizontal gradient
• GradientVertical (1048577): Vertical gradient
• GradientForwardDiagonal (1048578): Gradient forward diagonal
• GradientBackwardDiagonal (1048579): Gradient backward diagonal
• GradientHorizontalTricolor (1048832): Horizontal tricolor gradient
• GradientVerticalTricolor (1048833): Gradient vertical tricolor
• GradientForwardDiagonalTricolor (1048834): Gradient forward diagonal tricolor
• GradientBackwardDiagonalTricolor (1048835): Gradient backward diagonal tricolor

Access
Read-write

Syntax
CircleSegment.BackFillPattern

See also
CircleSegment (Page 2092)
CircleSegment.FillDirection (Page 2102)
CircleSegment.FillLevel (Page 2103)
CircleSegment.ShowFillLevel (Page 2114)

CircleSegment.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

2098 System Manual, 11/2022

Access
Read-write

Syntax
CircleSegment.BorderColor

See also
CircleSegment (Page 2092)

CircleSegment.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
CircleSegment.BorderWidth

See also
CircleSegment (Page 2092)

CircleSegment.CenterX

Description
The "CenterX" property specifies the X coordinate of the rotation point.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2099

Syntax
CircleSegment.CenterX

See also
CircleSegment (Page 2092)

CircleSegment.CenterY

Description
The "CenterY" property specifies the Y coordinate of the rotation point.

Type
Int32

Access
Read-write

Syntax
CircleSegment.CenterY

See also
CircleSegment (Page 2092)

CircleSegment.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
circle segment.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.

Programming scripts
10.2 WinCC Unified object model

2100 System Manual, 11/2022

• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
CircleSegment.CurrentQuality

See also
CircleSegment (Page 2092)

CircleSegment.DashType

Description
The "DashType" property specifies the dash type of the border or the line.

Type
Int32, HmiDashType
Specifies the dash type:
• Solid (0): Solid
• Dash(1): Dashed
• Dot (2): Dotted
• DashDot (3): Dash-dot
• DashDotDot (4): Dash-dot-dot

Access
Read-write

Syntax
CircleSegment.DashType

See also
CircleSegment (Page 2092)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2101

CircleSegment.Enabled

Description
The "Enabled" property specifies whether the circle segment can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
CircleSegment.Enabled

See also
CircleSegment (Page 2092)

CircleSegment.FillDirection

Description
The "FillDirection" property specifies the direction from which the circle segment is filled.

Type
Int32, HmiFillDirection
Specifies the filling direction:
• BottomToTop (0): From bottom to top
• TopToBottom (1): From top to bottom
• LeftToRight (2): From left to right
• RightToLeft (3): From right to left

Access
Read-write

Syntax
CircleSegment.FillDirection

Programming scripts
10.2 WinCC Unified object model

2102 System Manual, 11/2022

See also
CircleSegment (Page 2092)
CircleSegment.BackFillPattern (Page 2097)
CircleSegment.FillLevel (Page 2103)
CircleSegment.ShowFillLevel (Page 2114)

CircleSegment.FillLevel

Description
The "FillLevel" property specifies the fill level of the circle segment in percent.

Type
UInt8

Access
Read-write

Syntax
CircleSegment.FillLevel

See also
CircleSegment (Page 2092)
CircleSegment.BackFillPattern (Page 2097)
CircleSegment.FillDirection (Page 2102)
CircleSegment.ShowFillLevel (Page 2114)

CircleSegment.Layer

Description
The "Layer" property returns the layer of the screen in which the circle segment is located.

Type
Object, HmiLayerPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2103

Access
Read-only

Syntax
CircleSegment.Layer

See also
CircleSegment (Page 2092)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
CircleSegment.Layer (Page 2103)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Programming scripts
10.2 WinCC Unified object model

2104 System Manual, 11/2022

Access
Read-write

Syntax
Layer.MinimumZoom

See also
CircleSegment.Layer (Page 2103)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
CircleSegment.Layer (Page 2103)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2105

Access
Read-write

Syntax
Layer.Visible

See also
CircleSegment.Layer (Page 2103)

CircleSegment.Margin

Description
The Margin property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
CircleSegment.Margin

See also
CircleSegment (Page 2092)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

2106 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Bottom

See also
CircleSegment.Margin (Page 2106)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
CircleSegment.Margin (Page 2106)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2107

Access
Read-write

Syntax
Margin.Right

See also
CircleSegment.Margin (Page 2106)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
CircleSegment.Margin (Page 2106)

CircleSegment.Name

Description
The "Name" property returns the name of the circle segment.

Type
String

Programming scripts
10.2 WinCC Unified object model

2108 System Manual, 11/2022

Access
Read-only

Syntax
CircleSegment.Name

See also
CircleSegment (Page 2092)

CircleSegment.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" means completely transparent.

Type
Float

Access
Read-write

Syntax
CircleSegment.Opacity

See also
CircleSegment (Page 2092)

CircleSegment.Operability

Description
The "Operability" property returns whether the circle segment is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2109

• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
CircleSegment.Operability

See also
CircleSegment (Page 2092)

CircleSegment.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
CircleSegment.Parent

See also
CircleSegment (Page 2092)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Programming scripts
10.2 WinCC Unified object model

2110 System Manual, 11/2022

CircleSegment.Radius

Description
The "Radius" property specifies the radius.

Type
UInt32

Access
Read-write

Syntax
CircleSegment.Radius

See also
CircleSegment (Page 2092)

CircleSegment.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the circle segment can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
CircleSegment.RequireExplicitUnlock

See also
CircleSegment (Page 2092)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2111

CircleSegment.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
CircleSegment.RotationAngle

See also
CircleSegment (Page 2092)
CircleSegment.RotationCenterPlacement (Page 2112)
CircleSegment.RotationCenterX (Page 2113)
CircleSegment.RotationCenterY (Page 2114)

CircleSegment.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the circle
segment rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also be outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

2112 System Manual, 11/2022

Access
Read-write

Syntax
CircleSegment.RotationCenterPlacement

See also
CircleSegment (Page 2092)
CircleSegment.RotationAngle (Page 2112)
CircleSegment.RotationCenterX (Page 2113)
CircleSegment.RotationCenterY (Page 2114)

CircleSegment.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
CircleSegment.RotationCenterX

See also
CircleSegment (Page 2092)
CircleSegment.RotationAngle (Page 2112)
CircleSegment.RotationCenterPlacement (Page 2112)
CircleSegment.RotationCenterY (Page 2114)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2113

CircleSegment.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
CircleSegment.RotationCenterY

See also
CircleSegment (Page 2092)
CircleSegment.RotationAngle (Page 2112)
CircleSegment.RotationCenterPlacement (Page 2112)
CircleSegment.RotationCenterX (Page 2113)

CircleSegment.ShowFillLevel

Description
The "ShowFillLevel" property specifies whether the fill level is displayed.

Type
Bool

Access
Read-write

Syntax
CircleSegment.ShowFillLevel

Programming scripts
10.2 WinCC Unified object model

2114 System Manual, 11/2022

See also
CircleSegment (Page 2092)
CircleSegment.BackFillPattern (Page 2097)
CircleSegment.FillDirection (Page 2102)
CircleSegment.FillLevel (Page 2103)

CircleSegment.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the circle segment is highlighted when in
focus.

Type
Bool

Access
Read-write

Syntax
CircleSegment.ShowFocusVisual

See also
CircleSegment (Page 2092)

CircleSegment.StartAngle

Description
The "StartAngle" specifies the angle by which the start point deviates from the zero position (0°
corresponds to 3 o'clock).

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2115

Syntax
CircleSegment.StartAngle

See also
CircleSegment (Page 2092)

CircleSegment.StyleItemClass

Description
The "StyleItemClass" property returns the style applied to the circle segment.

Type
String

Access
Read-only

Syntax
CircleSegment.StyleItemClass

See also
CircleSegment (Page 2092)

CircleSegment.TabIndex

Description
The "TabIndex" property returns the position of the circle segment in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
CircleSegment.TabIndex

Programming scripts
10.2 WinCC Unified object model

2116 System Manual, 11/2022

See also
CircleSegment (Page 2092)

CircleSegment.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
CircleSegment.ToolTipText

See also
CircleSegment (Page 2092)

CircleSegment.Visible

Description
The "Visible" property specifies whether the circle segment is visible.

Type
Bool

Access
Read-write

Syntax
CircleSegment.Visible

See also
CircleSegment (Page 2092)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2117

CircleSegment.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
circle segment.

Syntax
CircleSegment.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
CircleSegment (Page 2092)

CircleSegment.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
CircleSegment.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Programming scripts
10.2 WinCC Unified object model

2118 System Manual, 11/2022

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
CircleSegment (Page 2092)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2119

CircleSegment_OnActivated()

Description
The "OnActivated" event occurs when a circle segment receives focus:
• A circle segment is selected via the configured tab sequence.
• A circle segment that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and
receives focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
CircleSegment_OnActivated(item)

Context
item
Type: Object
Circle segment at which the event occurs.

See also
CircleSegment (Page 2092)

CircleSegment_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A circle segment is clicked with the right mouse button.
• A circle segment is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
CircleSegment_OnContextTapped(item, x, y, modifiers, trigger)

Programming scripts
10.2 WinCC Unified object model

2120 System Manual, 11/2022

Context
item
Type: Object
Circle segment where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2121

See also
CircleSegment (Page 2092)

CircleSegment_OnDeactivated()

Description
The "OnDeactivated" event occurs when a circle segment loses focus when the operator presses
the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
CircleSegment_OnDeactivated(item)

Context
item
Type: Object
Circle segment at which the event occurs.

See also
CircleSegment (Page 2092)

CircleSegment_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the circle segment is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

2122 System Manual, 11/2022

Syntax
CircleSegment_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Circle segment where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
CircleSegment (Page 2092)

CircleSegment_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the circle segment is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2123

Syntax
CircleSegment_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Circle segment where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
CircleSegment (Page 2092)

Programming scripts
10.2 WinCC Unified object model

2124 System Manual, 11/2022

CircleSegment_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A circle segment is clicked with the left mouse button.
• The <RETURN> or <SPACE> key is pressed when a circle segment has the focus.
• A circle segment is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
CircleSegment_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Circle segment where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2125

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
CircleSegment (Page 2092)

CircularArc

Description
The "CircularArc" object represents a circular arc in runtime.

Object type
HmiCircularArc

Programming scripts
10.2 WinCC Unified object model

2126 System Manual, 11/2022

Properties
The "CircularArc" object has the following properties:
• AlternateLineColor

Specifies the second line color which is displayed for line styles such as "Dash".
• AngleRange

Specifies the arc angle.
• Authorization

Returns the operator authorization.
• CapType

Specifies the shape of the line ends.
• CenterX

Specifies the X coordinate of the rotation point.
• CenterY

Specifies the Y coordinate of the rotation point.
• CurrentQuality

Returns the poorest quality code of all tags which influence the circular arc.
• DashType

Specifies the stroke style of the border or line.
• Enabled

Specifies whether the circular arc can be operated in runtime.
• EndType

Specifies the type of line end.
• Layer

Returns the layer of the screen in which the circular arc is located.
• LineColor

Specifies the line color.
• LineWidth

Specifies the line thickness.
• Margin

Specifies the margin.
• Name

Returns the name of the circular arc.
• Opacity

Specifies the opacity.
• Operability

Returns whether the circular arc is operable.
• Parent

Returns the higher-level screen object.
• Radius

Specifies the radius.
• RequireExplicitUnlock

Returns whether the circular arc is only operable while the associated button is being pressed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2127

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the circular arc rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFocusVisual
Specifies whether the circular arc is highlighted when in focus.

• StartAngle
Specifies the angle by which the start point deviates from the zero position (0°).

• StartType
Specifies the type of line start.

• StyleItemClass
Returns the style which is applied to the circular arc.

• TabIndex
Returns the position of the circular arc in the tab sequence.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the circular arc is visible.

Methods
The "CircularArc" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the circular arc.
• PropertyFlashing()

Configures flashing of a property.

Events
The "CircularArc" object has the following events:
• OnActivated()

Occurs when a circular arc receives focus.
• OnContextTapped()

Occurs when a circular arc is right-clicked or long-touched.
• OnDeactivated()

Occurs when a circular arc loses focus.
• OnKeyDown()

Occurs when a key is pressed while the circular arc is in focus.

Programming scripts
10.2 WinCC Unified object model

2128 System Manual, 11/2022

• OnKeyUp()
Occurs when a key is released while the circular arc is in focus.

• OnTapped()
Occurs when a circular arc is left-clicked or short-touched.

CircularArc.AlternateLineColor

Description
The "AlternateLineColor" property specifies the second line color which is displayed for line styles
such as "Dash".

Type
UInt32

Access
Read-write

Syntax
CircularArc.AlternateLineColor

See also
CircularArc (Page 2126)

CircularArc.AngleRange

Description
The AngleRange property specifies the arc angle clockwise.

Type
Int32

Access
Read-write

Syntax
CircularArc.AngleRange

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2129

See also
CircularArc (Page 2126)

CircularArc.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
CircularArc.Authorization

See also
CircularArc (Page 2126)

CircularArc.CapType

Description
The "CapType" property specifies the shape of the line ends.

Type
Int32, HmiCapType
Specifies the line ends:
• Round (0): Round (line extends beyond the line end point with half the line thickness)
• Square (256): Square (line extends beyond the line end point with half the line thickness)
• Flat (512): Justified (line ends at the line end point)

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2130 System Manual, 11/2022

Syntax
CircularArc.CapType

See also
CircularArc (Page 2126)

CircularArc.CenterX

Description
The "CenterX" property specifies the X coordinate of the rotation point.

Type
Int32

Access
Read-write

Syntax
CircularArc.CenterX

See also
CircularArc (Page 2126)

CircularArc.CenterY

Description
The "CenterY" property specifies the Y coordinate of the rotation point.

Type
Int32

Access
Read-write

Syntax
CircularArc.CenterY

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2131

See also
CircularArc (Page 2126)

CircularArc.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
circular arc.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
CircularArc.CurrentQuality

See also
CircularArc (Page 2126)

CircularArc.DashType

Description
The "DashType" property specifies the dash type of the border or the line.

Type
Int32, HmiDashType

Programming scripts
10.2 WinCC Unified object model

2132 System Manual, 11/2022

Specifies the dash type:
• Solid (0): Solid
• Dash(1): Dashed
• Dot (2): Dotted
• DashDot (3): Dash-dot
• DashDotDot (4): Dash-dot-dot

Access
Read-write

Syntax
CircularArc.DashType

See also
CircularArc (Page 2126)

CircularArc.Enabled

Description
The "Enabled" property specifies whether the circular arc can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
CircularArc.Enabled

See also
CircularArc (Page 2126)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2133

CircularArc.EndType

Description
The "EndType" property specifies the type of line end.

Type
Int32, HmiLineEndType
Specifies the end of the line:
• Line (0): Line
• EmptyArrow (1): Empty arrow
• Arrow (2): Arrow
• ReversedArrow (3): Reversed arrow
• EmptyCircle (5): Empty circle
• Circle (6): Circle

Access
Read-write

Syntax
CircularArc.EndType

See also
CircularArc (Page 2126)

CircularArc.Layer

Description
The "Layer" property returns the layer of the screen in which the circular arc is located.

Type
Object, HmiLayerPart

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

2134 System Manual, 11/2022

Syntax
CircularArc.Layer

See also
CircularArc (Page 2126)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
CircularArc.Layer (Page 2134)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2135

Syntax
Layer.MinimumZoom

See also
CircularArc.Layer (Page 2134)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
CircularArc.Layer (Page 2134)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2136 System Manual, 11/2022

Syntax
Layer.Visible

See also
CircularArc.Layer (Page 2134)

CircularArc.LineColor

Description
The "LineColor" property specifies the line color.

Type
UInt32

Access
Read-write

Syntax
CircularArc.LineColor

See also
CircularArc (Page 2126)

CircularArc.LineWidth

Description
The "LineWidth" property specifies the line thickness.

Type
UInt8

Access
Read-write

Syntax
CircularArc.LineWidth

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2137

See also
CircularArc (Page 2126)

CircularArc.Margin

Description
The Margin property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
CircularArc.Margin

See also
CircularArc (Page 2126)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

Programming scripts
10.2 WinCC Unified object model

2138 System Manual, 11/2022

See also
CircularArc.Margin (Page 2138)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
CircularArc.Margin (Page 2138)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2139

See also
CircularArc.Margin (Page 2138)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
CircularArc.Margin (Page 2138)

CircularArc.Name

Description
The "Name" property returns the name of the circular arc.

Type
String

Access
Read-only

Syntax
CircularArc.Name

Programming scripts
10.2 WinCC Unified object model

2140 System Manual, 11/2022

See also
CircularArc (Page 2126)

CircularArc.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" means completely transparent.

Type
Float

Access
Read-write

Syntax
CircularArc.Opacity

See also
CircularArc (Page 2126)

CircularArc.Operability

Description
The "Operability" property returns whether the circular arc is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2141

Syntax
CircularArc.Operability

See also
CircularArc (Page 2126)

CircularArc.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
CircularArc.Parent

See also
CircularArc (Page 2126)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

CircularArc.Radius

Description
The "Radius" property specifies the radius.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

2142 System Manual, 11/2022

Access
Read-write

Syntax
CircularArc.Radius

See also
CircularArc (Page 2126)

CircularArc.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the circular arc can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
CircularArc.RequireExplicitUnlock

See also
CircularArc (Page 2126)

CircularArc.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2143

Access
Read-write

Syntax
CircularArc.RotationAngle

See also
CircularArc (Page 2126)
CircularArc.RotationCenterPlacement (Page 2144)
CircularArc.RotationCenterX (Page 2145)
CircularArc.RotationCenterY (Page 2145)

CircularArc.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the circular arc
rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also be outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
CircularArc.RotationCenterPlacement

Programming scripts
10.2 WinCC Unified object model

2144 System Manual, 11/2022

See also
CircularArc (Page 2126)
CircularArc.RotationAngle (Page 2143)
CircularArc.RotationCenterX (Page 2145)
CircularArc.RotationCenterY (Page 2145)

CircularArc.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
CircularArc.RotationCenterX

See also
CircularArc (Page 2126)
CircularArc.RotationAngle (Page 2143)
CircularArc.RotationCenterPlacement (Page 2144)
CircularArc.RotationCenterY (Page 2145)

CircularArc.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2145

Access
Read-write

Syntax
CircularArc.RotationCenterY

See also
CircularArc (Page 2126)
CircularArc.RotationAngle (Page 2143)
CircularArc.RotationCenterX (Page 2145)
CircularArc.RotationCenterPlacement (Page 2144)

CircularArc.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the circular arc is highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
CircularArc.ShowFocusVisual

See also
CircularArc (Page 2126)

CircularArc.StartAngle

Description
The "StartAngle" specifies the angle by which the start point deviates from the zero position (0°
corresponds to 3 o'clock).

Programming scripts
10.2 WinCC Unified object model

2146 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
CircularArc.StartAngle

See also
CircularArc (Page 2126)

CircularArc.StartType

Description
The "StartType" property specifies the type of line start.

Type
Int32, HmiLineEndType
Specifies the start of the line:
• Line (0): Line
• EmptyArrow (1): Empty arrow
• Arrow (2): Arrow
• ReversedArrow (3): Reversed arrow
• EmptyCircle (5): Empty circle
• Circle (6): Circle

Access
Read-write

Syntax
CircularArc.StartType

See also
CircularArc (Page 2126)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2147

CircularArc.StyleItemClass

Description
The "StyleItemClass" property returns the style applied to the circular arc.

Type
String

Access
Read-only

Syntax
CircularArc.StyleItemClass

See also
CircularArc (Page 2126)

CircularArc.TabIndex

Description
The "TabIndex" property returns the position of the circular arc in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
CircularArc.TabIndex

See also
CircularArc (Page 2126)

Programming scripts
10.2 WinCC Unified object model

2148 System Manual, 11/2022

CircularArc.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
CircularArc.ToolTipText

See also
CircularArc (Page 2126)

CircularArc.Visible

Description
The "Visible" property specifies whether the circular arc is visible.

Type
Bool

Access
Read-write

Syntax
CircularArc.Visible

See also
CircularArc (Page 2126)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2149

CircularArc.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
circular arc.

Syntax
CircularArc.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
CircularArc (Page 2126)

CircularArc.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
CircularArc.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Programming scripts
10.2 WinCC Unified object model

2150 System Manual, 11/2022

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
CircularArc (Page 2126)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2151

CircularArc_OnActivated()

Description
The "OnActivated" event occurs when a circular arc receives focus:
• A circular arc is selected via the configured tab sequence.
• A circular arc that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and
receives focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
CircularArc_OnActivated(item)

Context
item
Type: Object
Circle segment at which the event occurs.

See also
CircularArc (Page 2126)

CircularArc_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A circular arc is clicked with the right mouse button.
• A circular arc is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
CircularArc_OnContextTapped(item, x, y, modifiers, trigger)

Programming scripts
10.2 WinCC Unified object model

2152 System Manual, 11/2022

Context
item
Type: Object
Circular arc where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2153

See also
CircularArc (Page 2126)

CircularArc_OnDeactivated()

Description
The "OnDeactivated" event occurs when an arc loses focus when the operator presses the <TAB>
key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
CircularArc_OnDeactivated(item)

Context
item
Type: Object
Circle segment at which the event occurs.

See also
CircularArc (Page 2126)

CircularArc_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the circular arc is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

2154 System Manual, 11/2022

Syntax
CircularArc_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Circular arc where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
CircularArc (Page 2126)

CircularArc_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the circular arc is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2155

Syntax
CircularArc_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Circular arc where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
CircularArc (Page 2126)

Programming scripts
10.2 WinCC Unified object model

2156 System Manual, 11/2022

CircularArc_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A circular arc is clicked with the left mouse button.
• The <RETURN> or <SPACE> key is pressed when a circular arc has the focus.
• A circular arc is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
CircularArc_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Circular arc where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2157

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
CircularArc (Page 2126)

Clock

Description
The "Clock" object represents a clock in runtime.

Object type
HmiClock

Programming scripts
10.2 WinCC Unified object model

2158 System Manual, 11/2022

Properties
The "Clock" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the border color.
• BorderWidth

Specifies the border thickness.
• CurrentQuality

Returns the poorest quality code of all tags which influence the clock.
• DialBackColor

Specifies the background color of the dial.
• DialLabelColor

Specifies the color of the dial label.
• DialLabelFont

Specifies the font of the dial.
• DialMode

Specifies the details of the dial that are displayed.
• DialTickColor

Specifies the color of the dial divisions.
• Enabled

Specifies whether the clock can be operated in runtime.
• Height

Specifies the height.
• Layer

Returns the layer of the screen in which the clock is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the clock.
• Opacity

Specifies the opacity.
• Operability

Returns whether the clock is operable.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2159

• Parent
Returns the higher-level screen object.

• RenderingTemplate
Returns the name of the template from which the clock was created.

• RequireExplicitUnlock
Returns whether the clock is only operable while the associated button is being pressed.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the clock rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFocusVisual
Specifies whether the clock is highlighted when in focus.

• ShowHours
Specifies whether the hour hand is displayed.

• ShowMinutes
Specifies whether the minute hand is displayed.

• ShowSeconds
Specifies whether the second hand is displayed.

• StyleItemClass
Returns the style which is applied to the clock.

• TabIndex
Returns the position of the clock in the tab sequence.

• TimeSource
Specifies the source for the displayed time.

• Title
Specifies the caption which appears as the title.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the clock is visible.

• VisualizeQuality
Specifies whether the connection quality of the process value is displayed.

• Width
Specifies the width.

Programming scripts
10.2 WinCC Unified object model

2160 System Manual, 11/2022

Methods
The "Clock" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the clock.
• PropertyFlashing()

Configures flashing of a property.

Events
The "Clock" object has the following events:
• OnActivated()

Occurs when a clock receives focus.
• OnContextTapped()

Occurs when a clock is right-clicked or long-touched.
• OnDeactivated()

Occurs when a clock loses focus.
• OnKeyDown()

Occurs when a key is pressed while the clock is in focus.
• OnKeyUp()

Occurs when a key is released while the clock is in focus.
• OnTapped()

Occurs when a clock is left-clicked or short-touched.

Clock.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
Clock.AlternateBackColor

See also
Clock (Page 2158)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2161

Clock.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color which is displayed for line
styles such as "Dash".

Type
UInt32

Access
Read-write

Syntax
Clock.AlternateBorderColor

See also
Clock (Page 2158)

Clock.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
Clock.Authorization

See also
Clock (Page 2158)

Programming scripts
10.2 WinCC Unified object model

2162 System Manual, 11/2022

Clock.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
Clock.BackColor

See also
Clock (Page 2158)

Clock.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
Clock.BorderColor

See also
Clock (Page 2158)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2163

Clock.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
Clock.BorderWidth

See also
Clock (Page 2158)

Clock.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
clock.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

2164 System Manual, 11/2022

Syntax
Clock.CurrentQuality

See also
Clock (Page 2158)

Clock.DialBackColor

Description
The "DialBackColor" property specifies the background color of the dial.

Type
UInt32

Access
Read-write

Syntax
Clock.DialBackColor

See also
Clock (Page 2158)

Clock.DialLabelColor

Description
The "DialLabelColor" property specifies the color of the dial labeling.

Type
UInt32

Access
Read-write

Syntax
Clock.DialLabelColor

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2165

See also
Clock (Page 2158)

Clock.DialLabelFont

Description
The "DialLabelFont" property specifies the font of the dial.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Clock.DialLabelFont

See also
Clock (Page 2158)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

Programming scripts
10.2 WinCC Unified object model

2166 System Manual, 11/2022

See also
Clock.DialLabelFont (Page 2166)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Clock.DialLabelFont (Page 2166)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2167

See also
Clock.DialLabelFont (Page 2166)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Clock.DialLabelFont (Page 2166)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2168 System Manual, 11/2022

Syntax
Font.Underline

See also
Clock.DialLabelFont (Page 2166)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Clock.DialLabelFont (Page 2166)

Clock.DialMode

Description
The "DialMode" property specifies the details of the dial that are displayed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2169

Type
Int32, HmiScaleMode
Specifies the displayed details:
• None (0): None
• Labels (1): Labels
• Ticks (2): Tick marks

Access
Read-write

Syntax
Clock.DialMode

See also
Clock (Page 2158)

Clock.DialTickColor

Description
The "DialTickColor" property specifies the color of the dial divisions.

Type
UInt32

Access
Read-write

Syntax
Clock.DialTickColor

See also
Clock (Page 2158)

Programming scripts
10.2 WinCC Unified object model

2170 System Manual, 11/2022

Clock.Enabled

Description
The "Enabled" property specifies whether the parameter set display can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
Clock.Enabled

See also
Clock (Page 2158)

Clock.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Clock.Height

See also
Clock (Page 2158)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2171

Clock.Layer

Description
The "Layer" property returns the layer of the screen in which the parameter set display is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
Clock.Layer

See also
Clock (Page 2158)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
Clock.Layer (Page 2172)

Programming scripts
10.2 WinCC Unified object model

2172 System Manual, 11/2022

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
Clock.Layer (Page 2172)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
Clock.Layer (Page 2172)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2173

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
Clock.Layer (Page 2172)

Clock.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Clock.Left

See also
Clock (Page 2158)

Programming scripts
10.2 WinCC Unified object model

2174 System Manual, 11/2022

Clock.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
Clock.Margin

See also
Clock (Page 2158)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
Clock.Margin (Page 2175)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2175

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
Clock.Margin (Page 2175)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
Clock.Margin (Page 2175)

Programming scripts
10.2 WinCC Unified object model

2176 System Manual, 11/2022

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
Clock.Margin (Page 2175)

Clock.Name

Description
The "Name" property returns the name of the clock.

Type
String

Access
Read-only

Syntax
Clock.Name

See also
Clock (Page 2158)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2177

Clock.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" indicates completely transparent.

Type
Float

Access
Read-write

Syntax
Clock.Opacity

See also
Clock (Page 2158)

Clock.Operability

Description
The "Operability" property returns whether the clock is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
Clock.Operability

Programming scripts
10.2 WinCC Unified object model

2178 System Manual, 11/2022

See also
Clock (Page 2158)

Clock.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
Clock.Parent

See also
Clock (Page 2158)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Clock.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the clock was
created.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2179

Access
Read-only

Syntax
Clock.RenderingTemplate

See also
Clock (Page 2158)

Clock.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the clock can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
Clock.RequireExplicitUnlock

See also
Clock (Page 2158)

Clock.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Programming scripts
10.2 WinCC Unified object model

2180 System Manual, 11/2022

Access
Read-write

Syntax
Clock.RotationAngle

See also
Clock (Page 2158)
Clock.RotationCenterPlacement (Page 2181)
Clock.RotationCenterX (Page 2182)
Clock.RotationCenterY (Page 2182)

Clock.RotationCenterPlacement

Description
The "RotationCenterPlacement" property specifies the reference point around which the clock
rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
Clock.RotationCenterPlacement

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2181

See also
Clock (Page 2158)
Clock.RotationAngle (Page 2180)
Clock.RotationCenterX (Page 2182)
Clock.RotationCenterY (Page 2182)

Clock.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
Clock.RotationCenterX

See also
Clock (Page 2158)
Clock.RotationAngle (Page 2180)
Clock.RotationCenterPlacement (Page 2181)
Clock.RotationCenterY (Page 2182)

Clock.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Programming scripts
10.2 WinCC Unified object model

2182 System Manual, 11/2022

Access
Read-write

Syntax
Clock.RotationCenterY

See also
Clock (Page 2158)
Clock.RotationAngle (Page 2180)
Clock.RotationCenterPlacement (Page 2181)
Clock.RotationCenterX (Page 2182)

Clock.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the clock is highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
Clock.ShowFocusVisual

See also
Clock (Page 2158)

Clock.ShowHours

Description
The "ShowHours" property specifies whether the hour hand is displayed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2183

Access
Read-write

Syntax
Clock.ShowHours

See also
Clock (Page 2158)
Clock.ShowMinutes (Page 2184)
Clock.ShowSeconds (Page 2184)

Clock.ShowMinutes

Description
The "ShowMinutes" property specifies whether the minute hand is displayed.

Type
Bool

Access
Read-write

Syntax
Clock.ShowMinutes

See also
Clock (Page 2158)
Clock.ShowHours (Page 2183)
Clock.ShowSeconds (Page 2184)

Clock.ShowSeconds

Description
The "ShowSeconds" property specifies whether the second hand is displayed.

Programming scripts
10.2 WinCC Unified object model

2184 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
Clock.ShowSeconds

See also
Clock (Page 2158)
Clock.ShowHours (Page 2183)
Clock.ShowMinutes (Page 2184)

Clock.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the clock.

Type
String

Access
Read-only

Syntax
Clock.StyleItemClass

See also
Clock (Page 2158)

Clock.TabIndex

Description
The "TabIndex" property returns the position of the clock in the tab sequence.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2185

Type
UInt16

Access
Read-only

Syntax
Clock.TabIndex

See also
Clock (Page 2158)

Clock.TimeSource

Description
The "TimeSource" property specifies the source for the displayed time. If the property is not
configured, local time is used.

Type
Variant

Access
Read-write

Syntax
Clock.TimeSource

See also
Clock (Page 2158)

Clock.Title

Description
The "Title" property specifies the caption that appears as the title.

Programming scripts
10.2 WinCC Unified object model

2186 System Manual, 11/2022

Type
Object, HmiTextPart

Access
Read-write

Syntax
Clock.Title

See also
Clock (Page 2158)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
Clock.Title (Page 2186)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2187

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 2187)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 2187)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

2188 System Manual, 11/2022

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 2187)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 2187)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2189

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 2187)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2190 System Manual, 11/2022

Syntax
Font.Weight

See also
Text.Font (Page 2187)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
Clock.Title (Page 2186)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2191

Syntax
Text.Text

See also
Clock.Title (Page 2186)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
Clock.Title (Page 2186)

Clock.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2192 System Manual, 11/2022

Syntax
Clock.ToolTipText

See also
Clock (Page 2158)

Clock.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Clock.Top

See also
Clock (Page 2158)

Clock.Visible

Description
The "Visible" property specifies whether the clock is visible.

Type
Bool

Access
Read-write

Syntax
Clock.Visible

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2193

See also
Clock (Page 2158)

Clock.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Access
Read-write

Syntax
Clock.VisualizeQuality

See also
Clock (Page 2158)

Clock.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Clock.Width

Programming scripts
10.2 WinCC Unified object model

2194 System Manual, 11/2022

See also
Clock (Page 2158)

Clock.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
clock.

Syntax
Clock.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
Clock (Page 2158)

Clock.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2195

Syntax
Clock.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
Clock (Page 2158)

Programming scripts
10.2 WinCC Unified object model

2196 System Manual, 11/2022

Clock_OnActivated()

Description
The "OnActivated" event occurs when a clock receives focus:
• A clock is selected via the configured tab sequence.
• A clock that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
Clock_OnActivated(item)

Context
item
Type: Object
Clock where the event occurs.

See also
Clock (Page 2158)

Clock_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A clock is right-clicked.
• A clock is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
Clock_OnContextTapped(item, x, y, modifiers, trigger)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2197

Context
item
Type: Object
Clock where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

Programming scripts
10.2 WinCC Unified object model

2198 System Manual, 11/2022

See also
Clock (Page 2158)

Clock_OnDeactivated()

Description
The "OnDeactivated" event occurs when the clock loses focus because the operator presses the
<TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
Clock_OnDeactivated(item)

Context
item
Type: Object
Clock where the event occurs.

See also
Clock (Page 2158)

Clock_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the clock is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2199

Syntax
Clock_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Clock where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Clock (Page 2158)

Clock_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the clock is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

2200 System Manual, 11/2022

Syntax
Clock_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Clock where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Clock (Page 2158)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2201

Clock_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A clock is left-clicked.
• The <RETURN> or <SPACE> key is pressed when a clock has the focus.
• A clock is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
Clock_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Clock where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

2202 System Manual, 11/2022

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Clock (Page 2158)

ComboBox

Description
The "ComboBox" object represents a combo box in runtime. The combo box is a combination of
text box and list box.

Object type
HmiComboBox

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2203

Properties
The "ComboBox" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the border color.
• BorderWidth

Specifies the border width.
• Content

Specifies display options for text and graphics.
• CurrentQuality

Returns the poorest quality code of all tags which influence the combo box.
• Enabled

Specifies whether the combo box can be operated in runtime.
• Font

Specifies the font of the text.
• ForeColor

Specifies the font color of the text.
• Height

Specifies the height.
• Layer

Returns the screen layer in which the combo box is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the combo box.
• Opacity

Specifies the opacity.
• Operability

Returns whether the combo box is operable.
• Padding

Specifies the distance of the content from the border of the combo box.
• Parent

Returns the higher-level screen object.

Programming scripts
10.2 WinCC Unified object model

2204 System Manual, 11/2022

• ProcessValue
Specifies the process value.

• RenderingTemplate
Returns the name of the template from which the combo box was created.

• RequireExplicitUnlock
Returns whether the combo box is only operable while the corresponding button is being
pressed.

• RotationAngle
Specifies the rotation angle in degrees.

• RotationCenterPlacement
Specifies the reference point around which the combo box rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• SelectionItemHeight
Specifies the height of the list entries.

• SelectionItems
Returns the list of all list entries in the combo box.

• SelectionMode
Specifies whether one or more list entries can be selected in the combo box.

• SelectorPosition
Specifies the horizontal alignment of the list entries.

• ShowFocusVisual
Specifies whether the combo box is highlighted when in focus.

• StyleItemClass
Returns the style which is applied to the combo box.

• TabIndex
Returns the position of the combo box in the tab sequence.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the combo box is visible.

• VisualizeQuality
Specifies whether the connection quality of the process value is displayed.

• Width
Specifies the width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2205

Methods
The "ComboBox" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the combo box.
• PropertyFlashing()

Configures flashing of a property.

Events
The "ComboBox" object has the following events:
• OnActivated()

Occurs when a combo box receives focus.
• OnContextTapped()

Occurs when a combo box is right-clicked or long-touched.
• OnDeactivated()

Occurs when a combo box loses focus.
• OnKeyDown()

Occurs when a key is pressed while the combo box is in focus.
• OnKeyUp()

Occurs when a key is released while the combo box is in focus.
• OnTapped()

Occurs when a combo box is left-clicked or short-touched.

ComboBox.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ComboBox.AlternateBackColor

See also
ComboBox (Page 2203)

Programming scripts
10.2 WinCC Unified object model

2206 System Manual, 11/2022

ComboBox.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color which is displayed for line
styles such as "Dash".

Type
UInt32

Access
Read-write

Syntax
ComboBox.AlternateBorderColor

See also
ComboBox (Page 2203)

ComboBox.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ComboBox.Authorization

See also
ComboBox (Page 2203)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2207

ComboBox.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ComboBox.BackColor

See also
ComboBox (Page 2203)

ComboBox.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ComboBox.BorderColor

See also
ComboBox (Page 2203)

Programming scripts
10.2 WinCC Unified object model

2208 System Manual, 11/2022

ComboBox.BorderWidth

Description
The "BorderWidth" property specifies the border width.

Type
UInt8

Access
Read-write

Syntax
ComboBox.BorderWidth

See also
ComboBox (Page 2203)

ComboBox.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ComboBox.Content

See also
ComboBox (Page 2203)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2209

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ComboBox.Content (Page 2209)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.

Programming scripts
10.2 WinCC Unified object model

2210 System Manual, 11/2022

• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect
ratio is not changed.

• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ComboBox.Content (Page 2209)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ComboBox.Content (Page 2209)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2211

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ComboBox.Content (Page 2209)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ComboBox.Content (Page 2209)

Programming scripts
10.2 WinCC Unified object model

2212 System Manual, 11/2022

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ComboBox.Content (Page 2209)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2213

Access
Read-write

Syntax
Content.TextTrimming

See also
ComboBox.Content (Page 2209)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ComboBox.Content (Page 2209)

Programming scripts
10.2 WinCC Unified object model

2214 System Manual, 11/2022

ComboBox.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
combo box.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.
• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
ComboBox.CurrentQuality

See also
ComboBox (Page 2203)

ComboBox.Enabled

Description
The "Enabled" property specifies whether the combo box can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2215

Syntax
ComboBox.Enabled

See also
ComboBox (Page 2203)

ComboBox.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ComboBox.Font

See also
ComboBox (Page 2203)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

Programming scripts
10.2 WinCC Unified object model

2216 System Manual, 11/2022

See also
ComboBox.Font (Page 2216)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
ComboBox.Font (Page 2216)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2217

See also
ComboBox.Font (Page 2216)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ComboBox.Font (Page 2216)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2218 System Manual, 11/2022

Syntax
Font.Underline

See also
ComboBox.Font (Page 2216)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
ComboBox.Font (Page 2216)

ComboBox.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2219

Type
UInt32

Access
Read-write

Syntax
ComboBox.ForeColor

See also
ComboBox (Page 2203)

ComboBox.Height

Description
The "Height" property specifies the height in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ComboBox.Height

See also
ComboBox (Page 2203)

ComboBox.Layer

Description
The "Layer" property returns the screen layer in which the combo box is located.

Type
Object, HmiLayerPart

Programming scripts
10.2 WinCC Unified object model

2220 System Manual, 11/2022

Access
Read-only

Syntax
ComboBox.Layer

See also
ComboBox (Page 2203)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
ComboBox.Layer (Page 2220)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2221

Access
Read-write

Syntax
Layer.MinimumZoom

See also
ComboBox.Layer (Page 2220)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
ComboBox.Layer (Page 2220)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

2222 System Manual, 11/2022

Access
Read-write

Syntax
Layer.Visible

See also
ComboBox.Layer (Page 2220)

ComboBox.Left

Description
The "Left" property sets the value of the X coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
ComboBox.Left

See also
ComboBox (Page 2203)

ComboBox.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2223

Access
Read-write

Syntax
ComboBox.Margin

See also
ComboBox (Page 2203)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ComboBox.Margin (Page 2223)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

2224 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Left

See also
ComboBox.Margin (Page 2223)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ComboBox.Margin (Page 2223)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2225

Access
Read-write

Syntax
Margin.Top

See also
ComboBox.Margin (Page 2223)

ComboBox.Name

Description
The "Name" property returns the name of the combo box.

Type
String

Access
Read-only

Syntax
ComboBox.Name

See also
ComboBox (Page 2203)

ComboBox.Opacity

Description
The "Opacity" property specifies the opacity. The "0" value indicates completely transparency.

Type
Float

Programming scripts
10.2 WinCC Unified object model

2226 System Manual, 11/2022

Access
Read-write

Syntax
ComboBox.Opacity

See also
ComboBox (Page 2203)

ComboBox.Operability

Description
The "Operability" property returns whether the combo box is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ComboBox.Operability

See also
ComboBox (Page 2203)

ComboBox.Padding

Description
The "Padding" property specifies the distance of the content from the border of the combo box.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2227

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ComboBox.Padding

See also
ComboBox (Page 2203)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ComboBox.Padding (Page 2227)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

2228 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ComboBox.Padding (Page 2227)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ComboBox.Padding (Page 2227)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2229

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ComboBox.Padding (Page 2227)

ComboBox.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
ComboBox.Parent

See also
ComboBox (Page 2203)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Programming scripts
10.2 WinCC Unified object model

2230 System Manual, 11/2022

ComboBox.ProcessValue

Description
The "ProcessValue" property specifies the process value.

Type
Variant

Access
Read-write

Syntax
ComboBox.ProcessValue

See also
ComboBox (Page 2203)

ComboBox.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the combo box
was created.

Type
String

Access
Read-only

Syntax
ComboBox.RenderingTemplate

See also
ComboBox (Page 2203)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2231

ComboBox.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the combo box can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ComboBox.RequireExplicitUnlock

See also
ComboBox (Page 2203)

ComboBox.RotationAngle

Description
The "RotationAngle" property specifies the rotation angle in degrees.

Type
Int16

Access
Read-write

Syntax
ComboBox.RotationAngle

See also
ComboBox (Page 2203)
ComboBox.RotationCenterPlacement (Page 2233)

Programming scripts
10.2 WinCC Unified object model

2232 System Manual, 11/2022

ComboBox.RotationCenterX (Page 2233)
ComboBox.RotationCenterY (Page 2234)

ComboBox.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the combo box
rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in the DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
ComboBox.RotationCenterPlacement

See also
ComboBox (Page 2203)
ComboBox.RotationAngle (Page 2232)
ComboBox.RotationCenterX (Page 2233)
ComboBox.RotationCenterY (Page 2234)

ComboBox.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2233

Type
Float

Access
Read-write

Syntax
ComboBox.RotationCenterX

See also
ComboBox (Page 2203)
ComboBox.RotationAngle (Page 2232)
ComboBox.RotationCenterPlacement (Page 2233)
ComboBox.RotationCenterY (Page 2234)

ComboBox.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
ComboBox.RotationCenterY

See also
ComboBox (Page 2203)
ComboBox.RotationAngle (Page 2232)
ComboBox.RotationCenterPlacement (Page 2233)
ComboBox.RotationCenterX (Page 2233)

Programming scripts
10.2 WinCC Unified object model

2234 System Manual, 11/2022

ComboBox.SelectionItemHeight

Description
The "SelectionItemHeight" property specifies the height of the list entries. The value "0" indicates
that the height is calculated automatically.

Type
UInt16

Access
Read-write

Syntax
ComboBox.SelectionItemHeight

See also
ComboBox (Page 2203)

ComboBox.SelectionItems

Description
The "SelectionItems" property returns the list of all list entries ("SelectionItem" objects) of the
combo box.

Type
Object, HmiSelectionItemCollection (Page 2236)

Access
Read-only

Syntax
ComboBox.SelectionItems

See also
ComboBox (Page 2203)
HmiSelectionItemCollection (Page 2236)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2235

HmiSelectionItemCollection

Description
The "HmiSelectionItemCollection" object is a list of all entries ("SelectionItem" objects) of a list
object.

Use
The "HmiSelectionItemCollection" object is a list and can be counted and enumerated. You can
access the "HmiSelectionItemCollection" list using the index or the tag name.

Object type
HmiSelectionItemCollection

Properties
The "HmiSelectionItemCollection" object has the following properties:
• Count

Returns the number of list entries of the "HmiSelectionItemCollection" list.

Methods
The "HmiSelectionItemCollection" object has the following methods:
• Item()

Returns a list entry of the "HmiSelectionItemCollection" list.

See also
ComboBox.SelectionItems (Page 2235)

HmiSelectionItemCollection.Count

Description
The "Count" property returns the number of list entries in the "HmiSelectionItemCollection" list.

Type
UInt32

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

2236 System Manual, 11/2022

Syntax
HmiSelectionItemCollection.Count

See also
HmiSelectionItemCollection (Page 2236)

HmiSelectionItemCollection.Item()

Description
The "Item" method returns a list entry of the "HmiSelectionItemCollection" list.

Syntax
HmiSelectionItemCollection[.Item](HmiSelectionItemName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiSelectionItemCollection" object.

Parameters
HmiSelectionItemName
Type: String
Name of the list entry

Return value
Object, HmiSelectionItemPart (Page 2237)

See also
HmiSelectionItemCollection (Page 2236)
SelectionItem (Page 2237)

SelectionItem

Description
The "SelectionItem" object represents a list entry.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2237

Object type
HmiSelectionItemPart

Properties
The "SelectionItem" object has the following properties:
• Graphic

Specifies the graphic of the list entry.
• IsSelected

Specifies whether the list entry is selected.
• Text

Specifies the list entry text.

Methods
--

See also
HmiSelectionItemCollection (Page 2236)

SelectionItem.Graphic

Description
The "Graphic" property specifies the graphic of the list entry.

Type
String

Access
Read-write

Syntax
SelectionItem.Graphic

See also
SelectionItem (Page 2237)

Programming scripts
10.2 WinCC Unified object model

2238 System Manual, 11/2022

SelectionItem.IsSelected

Description
The "IsSelected" property specifies whether the list entry is selected.

Type
Bool

Access
Read-write

Syntax
SelectionItem.IsSelected

See also
SelectionItem (Page 2237)

SelectionItem.Text

Description
The "Text" property specifies the text of the list entry.

Type
String

Access
Read-write

Syntax
SelectionItem.Text

See also
SelectionItem (Page 2237)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2239

ComboBox.SelectionMode

Description
The "SelectionMode" property specifies whether one or more list entries can be selected in the
combo box.

Type
Int32, HmiSelectionMode
Specifies the type of the selection:
• NonExclusive (0): Selection of multiple list entries possible
• Exclusive (1): Selection of only one list entry possible

Access
Read-write

Syntax
ComboBox.SelectionMode

See also
ComboBox (Page 2203)

ComboBox.SelectorPosition

Description
The "SelectorPosition" property specifies the horizontal alignment of the list entries.

Type
Int32, HmiHorizontalAlignment
Specifies the text alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched. Can only be used with layout containers, Fallback behaves like Center

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2240 System Manual, 11/2022

Syntax
ComboBox.SelectorPosition

See also
ComboBox (Page 2203)

ComboBox.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the combo box is highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
ComboBox.ShowFocusVisual

See also
ComboBox (Page 2203)

ComboBox.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the combo box.

Type
String

Access
Read-only

Syntax
ComboBox.StyleItemClass

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2241

See also
ComboBox (Page 2203)

ComboBox.TabIndex

Description
The "TabIndex" property returns the position of the combo box in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
ComboBox.TabIndex

See also
ComboBox (Page 2203)

ComboBox.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
ComboBox.ToolTipText

See also
ComboBox (Page 2203)

Programming scripts
10.2 WinCC Unified object model

2242 System Manual, 11/2022

ComboBox.Top

Description
The "Top" property sets the value of the Y coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
ComboBox.Top

See also
ComboBox (Page 2203)

ComboBox.Visible

Description
The "Visible" property specifies whether the combo box is visible.

Type
Bool

Access
Read-write

Syntax
ComboBox.Visible

See also
ComboBox (Page 2203)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2243

ComboBox.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Access
Read-write

Syntax
ComboBox.VisualizeQuality

See also
ComboBox (Page 2203)

ComboBox.Width

Description
The "Width" property specifies the width in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ComboBox.Width

See also
ComboBox (Page 2203)

Programming scripts
10.2 WinCC Unified object model

2244 System Manual, 11/2022

ComboBox.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
combo box.

Syntax
ComboBox.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
ComboBox (Page 2203)

ComboBox.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
ComboBox.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2245

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
ComboBox (Page 2203)

Programming scripts
10.2 WinCC Unified object model

2246 System Manual, 11/2022

ComboBox_OnActivated()

Description
The "OnActivated" event occurs when a combo box receives focus:
• A combo box is selected via the configured tab sequence.
• A combo box that had no focus is clicked/tapped.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
ComboBox_OnActivated(item)

Context
item
Type: Object
Combo box where the event occurs.

See also
ComboBox (Page 2203)

ComboBox_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A combo box is right-clicked.
• A combo box is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
ComboBox_OnContextTapped(item, x, y, modifiers, trigger)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2247

Context
item
Type: Object
Combo box where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

Programming scripts
10.2 WinCC Unified object model

2248 System Manual, 11/2022

See also
ComboBox (Page 2203)

ComboBox_OnDeactivated()

Description
The "OnDeactivated" event occurs when the combo box loses focus because the operator has
pressed the <TAB> key or executed another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
ComboBox_OnDeactivated(item)

Context
item
Type: Object
Combo box where the event occurs.

See also
ComboBox (Page 2203)

ComboBox_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the combo box is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2249

Syntax
ComboBox_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Combo box where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
ComboBox (Page 2203)

ComboBox_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the combo box is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

2250 System Manual, 11/2022

Syntax
ComboBox_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Combo box where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
ComboBox (Page 2203)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2251

ComboBox_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A combo box is left-clicked.
• The <RETURN> or <SPACE> key is pressed when an combo box has the focus.
• A combo box is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
ComboBox_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Combo box where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

2252 System Manual, 11/2022

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
ComboBox (Page 2203)

CommandSourceElement

Description
The "CommandSourceElement" object represents a command source in runtime.

Object type
HmiCommandSourceElement

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2253

Properties
The "CommandSourceElement" object has the following properties:
• Command

Returns information about the command.
• DataConnection

Returns the data connection.
• Parent

Returns the higher-level screen object.
• ResultSet

Returns the last result of the executed command.
• SourceState

Returns the state of the data source.

Methods
The "CommandSourceElement" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the command source.
• PropertyFlashing()

Configures flashing of a property.

CommandSourceElement.Command

Description
The "Command" property returns information about the command.

Type
Object, HmiCommandPart

Access
Read-only

Syntax
CommandSourceElement.Command

See also
CommandSourceElement (Page 2253)

Programming scripts
10.2 WinCC Unified object model

2254 System Manual, 11/2022

Command.CommandParameters

Description
The "CommandParameters" property returns the parameters of the command.

Type
Object, HmiParameterCollection (Page 2257)

Access
Read-only

Syntax
Command.CommandParameters

See also
CommandSourceElement.Command (Page 2254)
HmiParameterCollection (Page 2257)

Command.CommandText

Description
The "CommandText" property returns the text of the command.

Type
String

Access
Read-only

Syntax
Command.CommandText

See also
CommandSourceElement.Command (Page 2254)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2255

Command.CommandType

Description
The "CommandType" property returns the type of the command.

Type
String

Access
Read-only

Syntax
Command.CommandType

See also
CommandSourceElement.Command (Page 2254)

Command.Execute()

Description
The "Execute" method executes the command.

Syntax
Command.Execute()

Parameters
--

Return value
--

See also
CommandSourceElement.Command (Page 2254)

Programming scripts
10.2 WinCC Unified object model

2256 System Manual, 11/2022

HmiParameterCollection

Description
The "HmiParameterCollection" object is a list of all parameters ("Parameter" objects).

Use
The "HmiParameterCollection" object is a list which can be counted and enumerated. You can
access the "HmiParameterCollection" list using the index or the tag names.

Object type
HmiParameterCollection

Properties
The "HmiParameterCollection" object has the following properties:
• Count

Returns the number of parameters in the "HmiParameterCollection" list.

Methods
The "HmiParameterCollection" object has the following methods:
• Item()

Returns a parameter of the "HmiParameterCollection" list.

See also
Command.CommandParameters (Page 2255)

HmiParameterCollection.Count

Description
The "Count" property returns the number of parameters in the "HmiParameterCollection" list.

Type
UInt32

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2257

Syntax
HmiParameterCollection.Count

See also
HmiParameterCollection (Page 2257)

HmiParameterCollection.Item()

Description
The "Item" method returns a parameter of the "HmiParameterCollection" list.

Syntax
HmiParameterCollection.[.Item](HmiParameterName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiParameterCollection" object.

Parameters
HmiParameterName
Type: String
Name of the parameter

Return value
Object, HmiParameterPart (Page 2258)

See also
Parameter (Page 2258)
HmiParameterCollection (Page 2257)

Parameter

Description
The "Parameter" object represents a parameter.

Programming scripts
10.2 WinCC Unified object model

2258 System Manual, 11/2022

Object type
HmiParameterPart

Properties
The "Parameter" object has the following properties:
• ParameterName

Specifies the name of the parameter.
• ParameterValue

Specifies the value of the parameter.

Methods
--

Parameter.ParameterName

Description
The "ParameterName" property specifies the name of the parameter.

Type
String

Access
Read-write

Syntax
Parameter.ParameterName

See also
Parameter (Page 2258)

Parameter.ParameterValue

Description
The "ParameterValue" property specifies the value of the parameter.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2259

Type
Variant

Access
Read-write

Syntax
Parameter.ParameterValue

See also
Parameter (Page 2258)

CommandSourceElement.DataConnection

Description
The "DataConnection" property returns the data connection.

Type
Object, HmiDataConnection

Access
Read-only

Syntax
CommandSourceElement.DataConnection

See also
CommandSourceElement (Page 2253)

CommandSourceElement.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Programming scripts
10.2 WinCC Unified object model

2260 System Manual, 11/2022

Access
Read-only

Syntax
CommandSourceElement.Parent

See also
CommandSourceElement (Page 2253)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

CommandSourceElement.ResultSet

Description
The "ResultSet" property returns the last result of the executed command.

Type
Object, HmiParameterCollection (Page 2262)

Access
Read-only

Syntax
CommandSourceElement.ResultSet

See also
CommandSourceElement (Page 2253)
HmiParameterCollection (Page 2262)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2261

HmiParameterCollection

Description
The "HmiParameterCollection" object is a list of all parameters ("Parameter" objects).

Use
The "HmiParameterCollection" object is a list which can be counted and enumerated. You can
access the "HmiParameterCollection" list using the index or the tag names.

Object type
HmiParameterCollection

Properties
The "HmiParameterCollection" object has the following properties:
• Count

Returns the number of parameters in the "HmiParameterCollection" list.

Methods
The "HmiParameterCollection" object has the following methods:
• Item()

Returns a parameter of the "HmiParameterCollection" list.

See also
CommandSourceElement.ResultSet (Page 2261)

HmiParameterCollection.Count

Description
The "Count" property returns the number of parameters in the "HmiParameterCollection" list.

Type
UInt32

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

2262 System Manual, 11/2022

Syntax
HmiParameterCollection.Count

See also
HmiParameterCollection (Page 2262)

HmiParameterCollection.Item()

Description
The "Item" method returns a parameter of the "HmiParameterCollection" list.

Syntax
HmiParameterCollection.[.Item](HmiParameterName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiParameterCollection" object.

Parameters
HmiParameterName
Type: String
Name of the parameter

Return value
Object, HmiParameterPart (Page 2263)

See also
HmiParameterCollection (Page 2262)
Parameter (Page 2263)

Parameter

Description
The "Parameter" object represents a parameter.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2263

Object type
HmiParameterPart

Properties
The "Parameter" object has the following properties:
• ParameterName

Specifies the name of the parameter.
• ParameterValue

Specifies the value of the parameter.

Methods
--

Parameter.ParameterName

Description
The "ParameterName" property specifies the name of the parameter.

Type
String

Access
Read-write

Syntax
Parameter.ParameterName

See also
Parameter (Page 2263)

Parameter.ParameterValue

Description
The "ParameterValue" property specifies the value of the parameter.

Programming scripts
10.2 WinCC Unified object model

2264 System Manual, 11/2022

Type
Variant

Access
Read-write

Syntax
Parameter.ParameterValue

See also
Parameter (Page 2263)

CommandSourceElement.SourceState

Description
The "SourceState" property returns the state of the data source.

Type
Int32, HmiSourceState
Returns the state:
• Idle (0): Ready
• Busy (1): Busy

Access
Read-only

Syntax
CommandSourceElement.SourceState

See also
CommandSourceElement (Page 2253)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2265

CommandSourceElement.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
command source.

Syntax
CommandSourceElement.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
CommandSourceElement (Page 2253)

CommandSourceElement.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
CommandSourceElement.PropertyFlashing(propertyName, enable[, value]
[, alternateValue][, rate])

Programming scripts
10.2 WinCC Unified object model

2266 System Manual, 11/2022

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
CommandSourceElement (Page 2253)

CustomWebControlContainer

Description
The "CustomWebControlContainer" object represents a container as a custom display for user-
defined access to web objects in runtime.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2267

The following predefined displays are available:
• AuditAG
• Calendar control
• Performance analyzer
• Performance bar chart
• Performance control
• Performance Gantt chart
• Performance pie chart
• Plant overview
• Reports

Object type
HmiCustomWebControlContainer

Properties
The "CustomWebControlContainer" object has the following properties:
• Authorization

Returns the operator authorization.
• Caption

Specifies the text that is displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.
• ContainedType

Returns the type of the contained objects.
• CurrentQuality

Returns the poorest quality code of all tags which influence the custom display.
• Enabled

Specifies whether the custom display can be operated in runtime.
• Height

Specifies the height.
• Icon

Specifies the icon of the custom display.
• Layer

Returns the screen layer in which the custom display is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.

Programming scripts
10.2 WinCC Unified object model

2268 System Manual, 11/2022

• Name
Returns the name of the custom display.

• Operability
Returns whether the custom display is operable.

• Parent
Returns the higher-level screen object.

• Properties
Enables access to the dynamic properties of the web objects.

• RenderingTemplate
Returns the name of the template from which the custom display was created.

• RequireExplicitUnlock
Returns whether the custom display is only operable while the corresponding button is being
pressed.

• ShowFocusVisual
Specifies whether the custom display is highlighted when in focus.

• StyleItemClass
Returns the style which is applied to the custom display.

• TabIndex
Returns the position of the custom display in the tab sequence.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the custom display is visible.

• Width
Specifies the width.

• WindowFlags
Specifies the window configuration of the custom display.

Methods
The "CustomWebControlContainer" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the custom display.
• PropertyFlashing()

Configures flashing of a property.

Events
The "CustomWebControlContainer" object has the following events:
• OnActivated()

Occurs when a custom display receives focus.
• OnDeactivated()

Occurs when a custom display loses focus.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2269

The following events are only available for the "Plant overview" custom display:
• OnCollapse()

Occurs when a custom display is minimized.
• OnCollapseAll()

Occurs when all custom displays are minimized.
• OnExpand()

Occurs when the custom display is expanded.
• OnExpandAll()

Occurs when all custom displays are expanded.
• OnSelectionChanged()

Occurs when the selection is changed.

CustomWebControlContainer.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
CustomWebControlContainer.Authorization

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer.Caption

Description
The "Caption" property specifies the text that is displayed in the title bar.

Type
Object, HmiTextPart

Programming scripts
10.2 WinCC Unified object model

2270 System Manual, 11/2022

Access
Read-write

Syntax
CustomWebControlContainer.Caption

See also
CustomWebControlContainer (Page 2267)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
CustomWebControlContainer.Caption (Page 2270)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2271

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 2271)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 2271)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Programming scripts
10.2 WinCC Unified object model

2272 System Manual, 11/2022

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 2271)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 2271)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2273

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 2271)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 2271)

Programming scripts
10.2 WinCC Unified object model

2274 System Manual, 11/2022

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
CustomWebControlContainer.Caption (Page 2270)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
CustomWebControlContainer.Caption (Page 2270)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2275

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
CustomWebControlContainer.Caption (Page 2270)

CustomWebControlContainer.CaptionColor

Description
The "CaptionColor" property specifies the color of the title bar.

Type
UInt32

Access
Read-write

Syntax
CustomWebControlContainer.CaptionColor

See also
CustomWebControlContainer (Page 2267)

Programming scripts
10.2 WinCC Unified object model

2276 System Manual, 11/2022

CustomWebControlContainer.ContainedType

Description
The "ContainedType" property returns the type of the contained objects (CustomControl,
SwacComponent, or WidgetType).

Type
String

Access
Read-only

Syntax
CustomWebControlContainer.ContainedType

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
custom display.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.
• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2277

Syntax
CustomWebControlContainer.CurrentQuality

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer.Enabled

Description
The "Enabled" property specifies whether the custom display can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
CustomWebControlContainer.Enabled

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer.Height

Description
The "Height" property specifies the height in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
CustomWebControlContainer.Height

Programming scripts
10.2 WinCC Unified object model

2278 System Manual, 11/2022

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer.Icon

Description
The "Icon" property specifies the icon of the custom display.

Type
String

Access
Read-write

Syntax
CustomWebControlContainer.Icon

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer.Layer

Description
The "Layer" property returns the screen layer in which the custom display is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
CustomWebControlContainer.Layer

See also
CustomWebControlContainer (Page 2267)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2279

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
CustomWebControlContainer.Layer (Page 2279)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
CustomWebControlContainer.Layer (Page 2279)

Programming scripts
10.2 WinCC Unified object model

2280 System Manual, 11/2022

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
CustomWebControlContainer.Layer (Page 2279)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
CustomWebControlContainer.Layer (Page 2279)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2281

CustomWebControlContainer.Left

Description
The "Left" property sets the value of the X coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
CustomWebControlContainer.Left

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
CustomWebControlContainer.Margin

See also
CustomWebControlContainer (Page 2267)

Programming scripts
10.2 WinCC Unified object model

2282 System Manual, 11/2022

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
CustomWebControlContainer.Margin (Page 2282)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
CustomWebControlContainer.Margin (Page 2282)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2283

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
CustomWebControlContainer.Margin (Page 2282)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
CustomWebControlContainer.Margin (Page 2282)

Programming scripts
10.2 WinCC Unified object model

2284 System Manual, 11/2022

CustomWebControlContainer.Name

Description
The "Name" property returns the name of the custom display.

Type
String

Access
Read-only

Syntax
CustomWebControlContainer.Name

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer.Operability

Description
The "Operability" property returns whether the custom display is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
CustomWebControlContainer.Operability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2285

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
CustomWebControlContainer.Parent

See also
CustomWebControlContainer (Page 2267)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

CustomWebControlContainer.Properties

Description
The "Properties" property allows access to the dynamic properties of the web objects.

Type
Object, HmiDynamicPropertyPart

Programming scripts
10.2 WinCC Unified object model

2286 System Manual, 11/2022

Access
Read-write

Syntax
CustomWebControlContainer.Properties

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the custom
display was created.

Type
String

Access
Read-only

Syntax
CustomWebControlContainer.RenderingTemplate

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the custom display can only be operated
while the associated button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2287

Access
Read-only

Syntax
CustomWebControlContainer.RequireExplicitUnlock

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the custom display is highlighted when in
focus.

Type
Bool

Access
Read-write

Syntax
CustomWebControlContainer.ShowFocusVisual

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the custom display.

Type
String

Programming scripts
10.2 WinCC Unified object model

2288 System Manual, 11/2022

Access
Read-only

Syntax
CustomWebControlContainer.StyleItemClass

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer.TabIndex

Description
The "TabIndex" property returns the position of the custom display in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
CustomWebControlContainer.TabIndex

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer.Top

Description
The "Top" property sets the value of the Y coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2289

Syntax
CustomWebControlContainer.Top

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer.Visible

Description
The "Visible" property specifies whether the custom display is visible.

Type
Bool

Access
Read-write

Syntax
CustomWebControlContainer.Visible

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer.Width

Description
The "Width" property specifies the width in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
CustomWebControlContainer.Width

Programming scripts
10.2 WinCC Unified object model

2290 System Manual, 11/2022

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the custom display.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title
• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be moved
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
You can enable multiple properties by adding integer values or bit operators.

Access
Read-write

Syntax
CustomWebControlContainer.WindowFlags

See also
CustomWebControlContainer (Page 2267)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2291

CustomWebControlContainer.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
custom display.

Syntax
CustomWebControlContainer.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
CustomWebControlContainer.PropertyFlashing(propertyName, enable[,
value][, alternateValue][, rate])

Programming scripts
10.2 WinCC Unified object model

2292 System Manual, 11/2022

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
CustomWebControlContainer (Page 2267)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2293

CustomWebControlContainer_OnActivated()

Description
The "OnActivated" event occurs when a custom display receives focus:
• A custom display is selected via the configured tab sequence.
• A custom display that had no focus is clicked/tapped.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
CustomWebControlContainer_OnActivated(item)

Context
item
Type: Object
Custom display where the event occurs.

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer_OnDeactivated()

Description
The "OnDeactivated" event occurs when the custom display loses focus because the operator
has pressed the <TAB> key or executed another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
CustomWebControlContainer_OnDeactivated(item)

Programming scripts
10.2 WinCC Unified object model

2294 System Manual, 11/2022

Context
item
Type: Object
Custom display where the event occurs.

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer_OnCollapse()

Description
The "OnCollapse" event occurs when a custom display is minimized:

Note
The "OnCollapse" event is only available with the "Plant overview" custom display.

Syntax
CustomWebControlContainer_OnCollapse(item, collapsedNode)

Context
item
Type: Object
Custom display where the event occurs.

collapsedNode
Type: Object
Custom display which was minimized.

See also
CustomWebControlContainer (Page 2267)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2295

CustomWebControlContainer_OnCollapseAll()

Description
The "OnCollapseAll" event occurs when all custom displays are minimized.

Note
The "OnCollapseAll" event is only available with the "Plant overview" custom display.

Syntax
CustomWebControlContainer_OnCollapseAll(item, isCollapsed)

Context
item
Type: Object
Custom display where the event occurs.

isCollapsed
Type: Object
Returns whether the custom display is minimized.

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer_OnExpand()

Description
The "OnExpand" event occurs when the custom display is expanded.

Note
The "OnExpand" event is only available with the "Plant overview" custom display.

Syntax
CustomWebControlContainer_OnExpand(item, expandedNode)

Programming scripts
10.2 WinCC Unified object model

2296 System Manual, 11/2022

Context
item
Type: Object
Custom display where the event occurs.

expandedNode
Type: Object
Custom display which was expanded.

See also
CustomWebControlContainer (Page 2267)

CustomWebControlContainer_OnExpandAll()

Description
The "OnExpandAll" event occurs when all custom displays are expanded.

Note
The "OnExpandAll" event is only available with the "Plant overview" custom display.

Syntax
CustomWebControlContainer_OnExpandAll(item, isExpanded)

Context
item
Type: Object
Custom display where the event occurs.

isExpanded
Type: Object
Returns whether the custom display is expanded.

See also
CustomWebControlContainer (Page 2267)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2297

CustomWebControlContainer_OnSelectionChanged()

Description
The "OnSelectionChanged" event occurs when the selection is changed.

Note
The "OnSelectionChanged" event is only available with the "Plant overview" custom display.

Syntax
CustomWebControlContainer_OnSelectionChanged(item, selectedNode)

Context
item
Type: Object
Custom display where the event occurs.

selectedNode
Type: Object
Custom display which was selected.

See also
CustomWebControlContainer (Page 2267)

CustomWidgetContainer

Description
The "CustomWidgetContainer" object represents a container as custom display in runtime.

Object type
HmiCustomWidgetContainer

Programming scripts
10.2 WinCC Unified object model

2298 System Manual, 11/2022

Properties
The "CustomWidgetContainer" object has the following properties:
• Authorization

Returns the operator authorization.
• ContainedType

Returns the type of the contained objects.
• CurrentQuality

Returns the poorest quality code of all tags which influence the custom display.
• Enabled

Specifies whether the custom display can be operated in runtime.
• Height

Specifies the height.
• Layer

Returns the screen layer in which the custom display is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the custom display.
• Opacity

Specifies the opacity.
• Operability

Returns whether the custom display is operable.
• Parent

Returns the higher-level screen object.
• Properties

Enables access to the dynamic properties of the web objects in the customized display.
• RenderingTemplate

Returns the name of the template from which the custom display was created.
• RequireExplicitUnlock

Returns whether the custom display is only operable while the corresponding button is being
pressed.

• RotationAngle
Specifies the rotation angle in degrees.

• RotationCenterPlacement
Specifies the reference point around which the custom display rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2299

• ShowFocusVisual
Specifies whether the custom display is highlighted when in focus.

• StyleItemClass
Returns the style which is applied to the custom display.

• TabIndex
Returns the position of the custom display in the tab sequence.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the custom display is visible.

• VisualizeQuality
Specifies whether the connection quality of the process value is displayed.

• Width
Specifies the width.

Methods
The "CustomWidgetContainer" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the custom display.
• PropertyFlashing()

Configures flashing of a property.

Events
The "CustomWidgetContainer" object has the following events:
• OnActivated()

Occurs when a custom display receives focus.
• OnContextTapped()

Occurs when a custom display is right-clicked or long-touched.
• OnDeactivated()

Occurs when a custom display loses focus.
• OnKeyDown()

Occurs when a key is pressed while the custom display is in focus.
• OnKeyUp()

Occurs when a key is released while the custom display is in focus.
• OnTapped()

Occurs when a custom display is left-clicked or short-touched.

Programming scripts
10.2 WinCC Unified object model

2300 System Manual, 11/2022

CustomWidgetContainer.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
CustomWidgetContainer.Authorization

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer.ContainedType

Description
The "ContainedType" property returns the type of the contained objects (CustomControl,
SwacComponent, or WidgetType).

Type
String

Access
Read-only

Syntax
CustomWidgetContainer.ContainedType

See also
CustomWidgetContainer (Page 2298)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2301

CustomWidgetContainer.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
custom display.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.
• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
CustomWidgetContainer.CurrentQuality

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer.Enabled

Description
The "Enabled" property specifies whether the custom display can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2302 System Manual, 11/2022

Syntax
CustomWidgetContainer.Enabled

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer.Height

Description
The "Height" property specifies the height in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
CustomWidgetContainer.Height

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer.Layer

Description
The "Layer" property returns the screen layer in which the custom display is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
CustomWidgetContainer.Layer

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2303

See also
CustomWidgetContainer (Page 2298)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
CustomWidgetContainer.Layer (Page 2303)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

Programming scripts
10.2 WinCC Unified object model

2304 System Manual, 11/2022

See also
CustomWidgetContainer.Layer (Page 2303)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
CustomWidgetContainer.Layer (Page 2303)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2305

See also
CustomWidgetContainer.Layer (Page 2303)

CustomWidgetContainer.Left

Description
The "Left" property sets the value of the X coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
CustomWidgetContainer.Left

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
CustomWidgetContainer.Margin

See also
CustomWidgetContainer (Page 2298)

Programming scripts
10.2 WinCC Unified object model

2306 System Manual, 11/2022

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
CustomWidgetContainer.Margin (Page 2306)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
CustomWidgetContainer.Margin (Page 2306)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2307

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
CustomWidgetContainer.Margin (Page 2306)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
CustomWidgetContainer.Margin (Page 2306)

Programming scripts
10.2 WinCC Unified object model

2308 System Manual, 11/2022

CustomWidgetContainer.Name

Description
The "Name" property returns the name of the custom display.

Type
String

Access
Read-only

Syntax
CustomWidgetContainer.Name

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer.Opacity

Description
The "Opacity" property specifies the opacity. The "0" value indicates completely transparency.

Type
Float

Access
Read-write

Syntax
CustomWidgetContainer.Opacity

See also
CustomWidgetContainer (Page 2298)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2309

CustomWidgetContainer.Operability

Description
The "Operability" property returns whether the custom display is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
CustomWidgetContainer.Operability

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
CustomWidgetContainer.Parent

Programming scripts
10.2 WinCC Unified object model

2310 System Manual, 11/2022

See also
CustomWidgetContainer (Page 2298)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

CustomWidgetContainer.Properties

Description
The "Properties" property allows access to the dynamic properties of the objects in the
customized display.

Type
Object, HmiDynamicPropertyPart

Access
Read-write

Syntax
CustomWidgetContainer.Properties

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the custom
display was created.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2311

Access
Read-only

Syntax
CustomWidgetContainer.RenderingTemplate

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the custom display can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
CustomWidgetContainer.RequireExplicitUnlock

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer.RotationAngle

Description
The "RotationAngle" property specifies the rotation angle in degrees.

Type
Int16

Programming scripts
10.2 WinCC Unified object model

2312 System Manual, 11/2022

Access
Read-write

Syntax
CustomWidgetContainer.RotationAngle

See also
CustomWidgetContainer (Page 2298)
CustomWidgetContainer.RotationCenterPlacement (Page 2313)
CustomWidgetContainer.RotationCenterX (Page 2314)
CustomWidgetContainer.RotationCenterY (Page 2314)

CustomWidgetContainer.RotationCenterPlacement

Description
The "RotationCenterPlacement" property specifies the reference point around which the custom
display rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in the DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
CustomWidgetContainer.RotationCenterPlacement

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2313

See also
CustomWidgetContainer (Page 2298)
CustomWidgetContainer.RotationAngle (Page 2312)
CustomWidgetContainer.RotationCenterX (Page 2314)
CustomWidgetContainer.RotationCenterY (Page 2314)

CustomWidgetContainer.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
CustomWidgetContainer.RotationCenterX

See also
CustomWidgetContainer (Page 2298)
CustomWidgetContainer.RotationAngle (Page 2312)
CustomWidgetContainer.RotationCenterPlacement (Page 2313)
CustomWidgetContainer.RotationCenterY (Page 2314)

CustomWidgetContainer.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Programming scripts
10.2 WinCC Unified object model

2314 System Manual, 11/2022

Access
Read-write

Syntax
CustomWidgetContainer.RotationCenterY

See also
CustomWidgetContainer (Page 2298)
CustomWidgetContainer.RotationAngle (Page 2312)
CustomWidgetContainer.RotationCenterPlacement (Page 2313)
CustomWidgetContainer.RotationCenterX (Page 2314)

CustomWidgetContainer.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the custom display is highlighted when in
focus.

Type
Bool

Access
Read-write

Syntax
CustomWidgetContainer.ShowFocusVisual

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the custom display.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2315

Type
String

Access
Read-only

Syntax
CustomWidgetContainer.StyleItemClass

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer.TabIndex

Description
The "TabIndex" property returns the position of the custom display in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
CustomWidgetContainer.TabIndex

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Programming scripts
10.2 WinCC Unified object model

2316 System Manual, 11/2022

Access
Read-write

Syntax
CustomWidgetContainer.ToolTipText

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer.Top

Description
The "Top" property sets the value of the Y coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
CustomWidgetContainer.Top

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer.Visible

Description
The "Visible" property specifies whether the custom display is visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2317

Syntax
CustomWidgetContainer.Visible

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Access
Read-write

Syntax
CustomWidgetContainer.VisualizeQuality

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer.Width

Description
The "Width" property specifies the width in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2318 System Manual, 11/2022

Syntax
CustomWidgetContainer.Width

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
custom display.

Syntax
CustomWidgetContainer.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2319

Syntax
CustomWidgetContainer.PropertyFlashing(propertyName, enable[, value]
[, alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
CustomWidgetContainer (Page 2298)

Programming scripts
10.2 WinCC Unified object model

2320 System Manual, 11/2022

CustomWidgetContainer_OnActivated()

Description
The "OnActivated" event occurs when a custom display receives focus:
• A custom display is selected via the configured tab sequence.
• A custom display that had no focus is clicked/tapped.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
CustomWidgetContainer_OnActivated(item)

Context
item
Type: Object
Custom display where the event occurs.

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A custom display is right-clicked.
• A custom display is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
CustomWidgetContainer_OnContextTapped(item, x, y, modifiers,
trigger)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2321

Context
item
Type: Object
Custom display where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

Programming scripts
10.2 WinCC Unified object model

2322 System Manual, 11/2022

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer_OnDeactivated()

Description
The "OnDeactivated" event occurs when the custom display loses focus because the operator
has pressed the <TAB> key or executed another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
CustomWidgetContainer_OnDeactivated(item)

Context
item
Type: Object
Custom display where the event occurs.

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the custom display is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2323

Syntax
CustomWidgetContainer_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Custom display where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
CustomWidgetContainer (Page 2298)

CustomWidgetContainer_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the custom display is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

2324 System Manual, 11/2022

Syntax
CustomWidgetContainer_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Custom display where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
CustomWidgetContainer (Page 2298)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2325

CustomWidgetContainer_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A custom display is left-clicked.
• The <RETURN> or <SPACE> key is pressed when a custom display has the focus.
• A custom display is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
CustomWidgetContainer_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Custom display where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

2326 System Manual, 11/2022

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
CustomWidgetContainer (Page 2298)

DataGridControl

Description
The "DataGridControl" object represents a data table display for showing tag values in runtime.

Object type
HmiDataGridControl

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2327

Properties
The "DataGridControl" object has the following properties:
• BackColor

Specifies the background color.
• BindingSource

Returns the data source.
• Caption

Specifies the text that is displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.
• CurrentQuality

Returns the poorest quality code of all tags which influence the data table display.
• DataGridView

Specifies the appearance of the data table.
• Enabled

Specifies whether the data table display can be operated in runtime.
• Height

Specifies the height.
• Icon

Specifies the icon of the data table display.
• Layer

Returns the screen layer in which the data table display is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the data table display.
• Parent

Returns the higher-level screen object.
• RenderingTemplate

Returns the name of the template from which the data table display was created.
• ShowFocusVisual

Specifies whether the data table display is highlighted when in focus.
• StatusBar

Specifies the information bar of the data table display.
• StyleItemClass

Returns the style which is applied to the data table display.
• TabIndex

Returns the position of the data table display in the tab sequence.
• ToolBar

Specifies the toolbar of the data table display.

Programming scripts
10.2 WinCC Unified object model

2328 System Manual, 11/2022

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the data table display is visible.

• Width
Specifies the width.

• WindowFlags
Specifies the window configuration of the data table display.

Methods
The "DataGridControl" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the data table display.
• FireCommand()

Configures the occurrence of an event for an element.
• PropertyFlashing()

Configures flashing of a property.

Events
The "DataGridControl" object has the following events:
• OnActivated()

Occurs when a data table display receives focus.
• OnCommandFired()

Occurs when the operator has operated an element in the toolbar or information bar of the
data table display.

• OnDeactivated()
Occurs when a data table display loses focus.

• OnInitialized()
Occurs when a data table display has been successfully initialized and the data connection
to the PLC has been established.

DataGridControl.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2329

Access
Read-write

Syntax
DataGridControl.BackColor

See also
DataGridControl (Page 2327)

DataGridControl.BindingSource

Description
The "BindingSource" property returns the data source.

Type
Object, HmiBindingSourceElement (Page 1943)

Access
Read-only

Syntax
DataGridControl.BindingSource

See also
DataGridControl (Page 2327)
BindingSourceElement (Page 1943)

BindingSourceElement

Description
BindingSourceElement (Page 1943)

DataGridControl.Caption

Description
The "Caption" property specifies the text that is displayed in the title bar.

Programming scripts
10.2 WinCC Unified object model

2330 System Manual, 11/2022

Type
Object, HmiTextPart

Access
Read-write

Syntax
DataGridControl.Caption

See also
DataGridControl (Page 2327)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
DataGridControl.Caption (Page 2330)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2331

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 2331)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 2331)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

2332 System Manual, 11/2022

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 2331)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 2331)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2333

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 2331)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2334 System Manual, 11/2022

Syntax
Font.Weight

See also
Text.Font (Page 2331)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
DataGridControl.Caption (Page 2330)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2335

Syntax
Text.Text

See also
DataGridControl.Caption (Page 2330)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
DataGridControl.Caption (Page 2330)

DataGridControl.CaptionColor

Description
The "CaptionColor" property specifies the color of the title bar.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2336 System Manual, 11/2022

Syntax
DataGridControl.CaptionColor

See also
DataGridControl (Page 2327)

DataGridControl.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
data table display.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.
• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
DataGridControl.CurrentQuality

See also
DataGridControl (Page 2327)

DataGridControl.DataGridView

Description
The "DataGridView" property specifies the appearance of the data table.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2337

Type
Object, HmiDataGridViewPart (Page 2338)

Access
Read-write

Syntax
DataGridControl.DataGridView

See also
DataGridControl (Page 2327)
DataGridView (Page 2338)

DataGridView

DataGridView.AllowFilter

Description
The "AllowFilter" property specifies whether filtering of columns is permitted.

Type
Bool

Access
Read-write

Syntax
DataGridView.AllowFilter

See also
DataGridControl.DataGridView (Page 2337)

Programming scripts
10.2 WinCC Unified object model

2338 System Manual, 11/2022

DataGridView.AllowSort

Description
The "AllowSort" property specifies whether the sorting of columns is permitted.
• True: Activates the sorting and sets the "AllowSort" property of all columns to "true".
• False: Disables the sorting for all columns. The individual column properties remain

unchanged.

Type
Bool

Access
Read-write

Syntax
DataGridView.AllowSort

See also
DataGridControl.DataGridView (Page 2337)

DataGridView.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
DataGridView.AlternateBackColor

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2339

See also
DataGridControl.DataGridView (Page 2337)

DataGridView.AlternateForeColor

Description
The "AlternateForeColor" property specifies the flashing color for the text.

Type
UInt32

Access
Read-write

Syntax
DataGridView.AlternateForeColor

See also
DataGridControl.DataGridView (Page 2337)

DataGridView.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
DataGridView.BackColor

Programming scripts
10.2 WinCC Unified object model

2340 System Manual, 11/2022

See also
DataGridControl.DataGridView (Page 2337)

DataGridView.CellPadding

Description
The "CellPadding" property specifies the inner spacing of the content from the cell border.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
DataGridView.CellPadding

See also
DataGridControl.DataGridView (Page 2337)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2341

See also
DataGridView.CellPadding (Page 2341)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
DataGridView.CellPadding (Page 2341)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

Programming scripts
10.2 WinCC Unified object model

2342 System Manual, 11/2022

See also
DataGridView.CellPadding (Page 2341)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
DataGridView.CellPadding (Page 2341)

DataGridView.ColoringMode

Description
The "ColoringMode" property specifies whether alternate coloring of every other row or column
is enabled.

Type
Int32, HmiGridColoringMode
Specifies the type of the coloring:
• None (0): None
• Columns (1): Color the columns alternately.
• Rows (2): Color the rows alternately.

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2343

Syntax
DataGridView.ColoringMode

See also
DataGridControl.DataGridView (Page 2337)

DataGridView.Columns

Description
The "Columns" property represents the quantity of columns.

Type
Object, HmiDataGridColumnCollection (Page 2344)

Access
Read-only

Syntax
DataGridView.Columns

See also
DataGridControl.DataGridView (Page 2337)
HmiDataGridColumnCollection (Page 2344)

HmiDataGridColumnCollection

Description
The "HmiDataGridColumnCollection" object is a list of all columns ("DataGridColumn" objects) of
the table.
You reference a "HmiDataGridColumnCollection" object via the DataGridView.Columns
property.

Use
The "HmiDataGridColumnCollection" object is a list and can be counted and enumerated. You
can access the "HmiDataGridColumnCollection" list using the index or the tag name.

Programming scripts
10.2 WinCC Unified object model

2344 System Manual, 11/2022

Object type
HmiDataGridColumnCollection

Properties
The "HmiDataGridColumnCollection" object has the following properties:
• Count

Returns the number of columns in the "HmiDataGridColumnCollection" list.

Methods
The "HmiDataGridColumnCollection" object has the following methods:
• Item()

Returns a column of the "HmiDataGridColumnCollection" list.

HmiDataGridColumnCollection.Count

Description
The "Count" property returns the number of columns in the "HmiDataGridColumnCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiDataGridColumnCollection.Count

See also
HmiDataGridColumnCollection (Page 2344)

HmiDataGridColumnCollection.Item()

Description
The "Item" method returns a column of the "HmiDataGridColumnCollection" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2345

Syntax
HmiDataGridColumnCollection[.Item](HmiDataGridColumnName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiDataGridColumnCollection" object.

Parameters
HmiDataGridColumnName
Type: String
Name of the column

Return value
Object, HmiDataGridColumnPartBase (Page 2346)

See also
HmiDataGridColumnCollection (Page 2344)
DataGridColumn (Page 2346)

DataGridColumn

Description
The "DataGridColumn" object represents a value column.

Object type
HmiDataGridColumnPart

Properties
The "DataGridColumn" object has the following properties:
• AllowSort

Specifies whether column sorting is allowed.
• BackColor

Specifies the background color.
• Content

Specifies display options for text and graphics.

Programming scripts
10.2 WinCC Unified object model

2346 System Manual, 11/2022

• Enabled
Specifies whether the column can be operated in runtime.

• ForeColor
Specifies the font color of the text.

• Header
Specifies the properties of the column header.

• Key
Corresponds to the column definition from the "ConsideredColumns" property of the
connected source.

• MaximumWidth
Specifies the maximum width.

• MinimumWidth
Specifies the minimum width.

• Name
Returns the name of the column.

• OutputFormat
Specifies the format for displaying values.

• SortDirection
Specifies the sorting direction.

• SortOrder
Specifies the sorting order.

• Visible
Specifies whether the column is visible.

• Width
Specifies the width of the column in the DIU (Device Independent Unit).

Methods
--

See also
HmiDataGridColumnCollection (Page 2344)

DataGridColumn.AllowSort

Description
The "AllowSort" property specifies whether column sorting is permitted.
This property is ignored if the parent object has the "AllowSort" property set to "False".

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2347

Type
Bool

Access
Read-write

Syntax
DataGridColumn.AllowSort

See also
DataGridColumn (Page 2346)

DataGridColumn.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
DataGridColumn.BackColor

See also
DataGridColumn (Page 2346)

DataGridColumn.Content

Description
The "Content" property specifies display options for text and graphics.

Programming scripts
10.2 WinCC Unified object model

2348 System Manual, 11/2022

Type
Object, HmiContentPart

Access
Read-write

Syntax
DataGridColumn.Content

See also
DataGridColumn (Page 2346)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
DataGridColumn.Content (Page 2348)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2349

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
DataGridColumn.Content (Page 2348)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered

Programming scripts
10.2 WinCC Unified object model

2350 System Manual, 11/2022

• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
DataGridColumn.Content (Page 2348)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
DataGridColumn.Content (Page 2348)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2351

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
DataGridColumn.Content (Page 2348)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
DataGridColumn.Content (Page 2348)

Programming scripts
10.2 WinCC Unified object model

2352 System Manual, 11/2022

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
DataGridColumn.Content (Page 2348)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2353

Syntax
Content.VerticalTextAlignment

See also
DataGridColumn.Content (Page 2348)

DataGridColumn.Enabled

Description
The "Enabled" property specifies whether the column can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
DataGridColumn.Enabled

See also
DataGridColumn (Page 2346)

DataGridColumn.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2354 System Manual, 11/2022

Syntax
DataGridColumn.ForeColor

See also
DataGridColumn (Page 2346)

DataGridColumn.Header

Description
The "Header" property specifies the properties of the column header.

Type
Object, HmiDataGridColumnHeaderPart

Access
Read-write

Syntax
DataGridColumn.Header

See also
DataGridColumn (Page 2346)

DataGridColumnHeader.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2355

Syntax
DataGridColumnHeader.Content

See also
DataGridColumn.Header (Page 2355)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
DataGridColumnHeader.Content (Page 2355)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode

Programming scripts
10.2 WinCC Unified object model

2356 System Manual, 11/2022

Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
DataGridColumnHeader.Content (Page 2355)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2357

See also
DataGridColumnHeader.Content (Page 2355)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
DataGridColumnHeader.Content (Page 2355)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

Programming scripts
10.2 WinCC Unified object model

2358 System Manual, 11/2022

See also
DataGridColumnHeader.Content (Page 2355)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
DataGridColumnHeader.Content (Page 2355)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2359

Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
DataGridColumnHeader.Content (Page 2355)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
DataGridColumnHeader.Content (Page 2355)

Programming scripts
10.2 WinCC Unified object model

2360 System Manual, 11/2022

DataGridColumnHeader.Graphic

Description
The "Graphic" property specifies the graphic of the column header.

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Graphic

See also
DataGridColumn.Header (Page 2355)

DataGridColumnHeader.Text

Description
The "Text" property specifies the label of the column header.

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Text

See also
DataGridColumn.Header (Page 2355)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2361

DataGridColumn.Key

Description
The "Key" property corresponds to the column definition from the "ConsideredColumns"
property of the connected source.

Type
String

Access
Read-only

Syntax
DataGridColumn.Key

See also
DataGridColumn (Page 2346)

DataGridColumn.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
DataGridColumn.MaximumWidth

See also
DataGridColumn (Page 2346)

Programming scripts
10.2 WinCC Unified object model

2362 System Manual, 11/2022

DataGridColumn.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
DataGridColumn.MinimumWidth

See also
DataGridColumn (Page 2346)

DataGridColumn.Name

Description
The "Name" property returns the name of the column.

Type
String

Access
Read-only

Syntax
DataGridColumn.Name

See also
DataGridColumn (Page 2346)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2363

DataGridColumn.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying values.

Type
String

Access
Read-write

Syntax
DataGridColumn.OutputFormat

See also
DataGridColumn (Page 2346)

DataGridColumn.SortDirection

Description
The "SortDirection" property specifies the sorting direction.

Type
Int32, HmiSortDirection
Specifies the sorting order:
• None (0): None
• Ascending (1): Ascending
• Descending (2): Descending

Access
Read-write

Syntax
DataGridColumn.SortDirection

Programming scripts
10.2 WinCC Unified object model

2364 System Manual, 11/2022

See also
DataGridColumn (Page 2346)

DataGridColumn.SortOrder

Description
The "SortOrder" property specifies the sorting order.
The sorting index begins at "1" (highest priority) in ascending order. Zero is ignored.

Type
UInt16

Access
Read-write

Syntax
DataGridColumn.SortOrder

See also
DataGridColumn (Page 2346)

DataGridColumn.Visible

Description
The "Visible" property specifies whether the column is visible.

Type
Bool

Access
Read-write

Syntax
DataGridColumn.Visible

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2365

See also
DataGridColumn (Page 2346)

DataGridColumn.Width

Description
The "Width" property specifies the width of the column in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
DataGridColumn.Width

See also
DataGridColumn (Page 2346)

DataGridView.Font

Description
The "Font" property specifies the font of the cells.

Type
Object, HmiFontPart

Access
Read-write

Syntax
DataGridView.Font

Programming scripts
10.2 WinCC Unified object model

2366 System Manual, 11/2022

See also
DataGridControl.DataGridView (Page 2337)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
DataGridView.Font (Page 2366)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2367

See also
DataGridView.Font (Page 2366)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
DataGridView.Font (Page 2366)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2368 System Manual, 11/2022

Syntax
Font.StrikeOut

See also
DataGridView.Font (Page 2366)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
DataGridView.Font (Page 2366)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2369

• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
DataGridView.Font (Page 2366)

DataGridView.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
DataGridView.ForeColor

See also
DataGridControl.DataGridView (Page 2337)

DataGridView.GridLineColor

Description
The "GridLineColor" property specifies the color of grid lines.

Programming scripts
10.2 WinCC Unified object model

2370 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
DataGridView.GridLineColor

See also
DataGridControl.DataGridView (Page 2337)

DataGridView.GridLineVisibility

Description
The "GridLineVisibility" property specifies the visibility of the grid lines.

Type
Int32, HmiSimpleGridLine
Specifies the grid lines:
• None (0): None
• Vertikal (1): Vertical
• Horizontal (2): Horizontal

Access
Read-write

Syntax
DataGridView.GridLineVisibility

See also
DataGridControl.DataGridView (Page 2337)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2371

DataGridView.GridLineWidth

Description
The "GridLineWidth" property specifies the thickness of the grid lines in pixels.

Type
UInt8

Access
Read-write

Syntax
DataGridView.GridLineWidth

See also
DataGridControl.DataGridView (Page 2337)

DataGridView.GridSelectionMode

Description
The "GridSelectionMode" property specifies whether multiple selection is enabled in the table
content.

Type
Int32, HmiGridSelectionMode
Specifies the type of the selection:
• None (0): None
• Single (1): Only single selection
• Multi (2): Multiple selection

Access
Read-write

Syntax
DataGridView.GridSelectionMode

Programming scripts
10.2 WinCC Unified object model

2372 System Manual, 11/2022

See also
DataGridControl.DataGridView (Page 2337)

DataGridView.HeaderSettings

Description
The "HeaderSettings" property specifies the settings for all column headers in the table.

Type
Object, HmiDataGridHeaderSettingsPart

Access
Read-write

Syntax
DataGridView.HeaderSettings

See also
DataGridControl.DataGridView (Page 2337)

DataGridHeaderSettings.AllowColumnReorder

Description
The "AllowColumnReorder" property specifies whether the order of the columns can be changed.

Type
Bool

Access
Read-write

Syntax
DataGridHeaderSettings.AllowColumnReorder

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2373

See also
DataGridView.HeaderSettings (Page 2373)

DataGridHeaderSettings.AllowColumnResize

Description
The "AllowColumnResize" property specifies whether the width of the columns can be changed.

Type
Bool

Access
Read-write

Syntax
DataGridHeaderSettings.AllowColumnResize

See also
DataGridView.HeaderSettings (Page 2373)

DataGridHeaderSettings.ColumnHeaderType

Description
The "ColumnHeaderType" property specifies the type of content of a column header.

Type
Int32, HmiDataGridHeaderType
Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2374 System Manual, 11/2022

Syntax
DataGridHeaderSettings.ColumnHeaderType

See also
DataGridView.HeaderSettings (Page 2373)

DataGridHeaderSettings.Font

Description
The "Font" property specifies the font of the headers.

Type
Object, HmiFontPart

Access
Read-write

Syntax
DataGridHeaderSettings.Font

See also
DataGridView.HeaderSettings (Page 2373)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2375

Syntax
Font.Italic

See also
DataGridHeaderSettings.Font (Page 2375)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
DataGridHeaderSettings.Font (Page 2375)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2376 System Manual, 11/2022

Syntax
Font.Size

See also
DataGridHeaderSettings.Font (Page 2375)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
DataGridHeaderSettings.Font (Page 2375)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2377

Access
Read-write

Syntax
Font.Underline

See also
DataGridHeaderSettings.Font (Page 2375)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
DataGridHeaderSettings.Font (Page 2375)

Programming scripts
10.2 WinCC Unified object model

2378 System Manual, 11/2022

DataGridHeaderSettings.HeaderBackColor

Description
The "HeaderBackColor" property specifies the background color of the header.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderBackColor

See also
DataGridView.HeaderSettings (Page 2373)

DataGridHeaderSettings.HeaderForeColor

Description
The "HeaderForeColor" property specifies the font color of the headers.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderForeColor

See also
DataGridView.HeaderSettings (Page 2373)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2379

DataGridHeaderSettings.HeaderGridLineColor

Description
The "HeaderGridLineColor" property specifies the color of the separation line between column
headers.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderGridLineColor

See also
DataGridView.HeaderSettings (Page 2373)

DataGridHeaderSettings.HeaderSelectionBackColor

Description
The "HeaderSelectionBackColor" property specifies the background color of the header of a
selected line or column.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderSelectionBackColor

See also
DataGridView.HeaderSettings (Page 2373)

Programming scripts
10.2 WinCC Unified object model

2380 System Manual, 11/2022

DataGridHeaderSettings.HeaderSelectionForeColor

Description
The "HeaderSelectionForeColor" property specifies the font color of the header of a selected line
or column.

Type
UInt32

Access
Read-write

Syntax
Object.HeaderSelectionForeColor

Object
Required. An object from the "Availability" section.

See also
DataGridView.HeaderSettings (Page 2373)

DataGridHeaderSettings.RowHeaderType

Description
The "RowHeaderType" property specifies the type of content of a row header.

Type
Int32, HmiDataGridHeaderType
Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2381

Syntax
DataGridHeaderSettings.RowHeaderType

See also
DataGridView.HeaderSettings (Page 2373)

DataGridView.HorizontalScrollBarVisibility

Description
The "HorizontalScrollBarVisibility" property specifies the visibility of the horizontal scroll bar of
the display.

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
DataGridView.HorizontalScrollBarVisibility

See also
DataGridControl.DataGridView (Page 2337)

DataGridView.RowHeight

Description
The "RowHeight" property specifies the height of all rows in the table in DIU (Device Independent
Unit).
"0" corresponds to a automatic mechanism, which adjusts the height of each line according
to the font size and number of paragraphs.

Programming scripts
10.2 WinCC Unified object model

2382 System Manual, 11/2022

Type
UInt8

Access
Read-write

Syntax
DataGridView.RowHeight

See also
DataGridControl.DataGridView (Page 2337)

DataGridView.SelectFullRow

Description
The "SelectFullRow" property specifies whether only the cell or the entire row is included in the
selection.

Type
Bool

Access
Read-write

Syntax
DataGridView.SelectFullRow

See also
DataGridControl.DataGridView (Page 2337)

DataGridView.SelectionBackColor

Description
The "SelectionBackColor" property specifies the background color of the selected cells.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2383

Type
UInt32

Access
Read-write

Syntax
DataGridView.SelectionBackColor

See also
DataGridControl.DataGridView (Page 2337)

DataGridView.SelectionBorderColor

Description
The "SelectionBorderColor" property specifies the border color of the selected cells.

Type
UInt8

Access
Read-write

Syntax
DataGridView.SelectionBorderColor

See also
DataGridControl.DataGridView (Page 2337)

DataGridView.SelectionBorderWidth

Description
The "SelectionBorderWidth" property specifies the border width of the selected cells.

Programming scripts
10.2 WinCC Unified object model

2384 System Manual, 11/2022

Type
UInt8

Access
Read-write

Syntax
DataGridView.SelectionBorderWidth

See also
DataGridControl.DataGridView (Page 2337)

DataGridView.SelectionForeColor

Description
The "SelectionForeColor" property specifies the font color of the selected cells.

Type
UInt32

Access
Read-write

Syntax
DataGridView.SelectionForeColor

See also
DataGridControl.DataGridView (Page 2337)

DataGridView.VerticalScrollBarVisibility

Description
The "VerticalScrollBarVisibility" property specifies the visibility of the vertical scroll bar of the
display.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2385

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
DataGridView.VerticalScrollBarVisibility

See also
DataGridControl.DataGridView (Page 2337)

DataGridControl.Enabled

Description
The "Enabled" property specifies whether the data table display can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
DataGridControl.Enabled

See also
DataGridControl (Page 2327)

Programming scripts
10.2 WinCC Unified object model

2386 System Manual, 11/2022

DataGridControl.Height

Description
The "Height" property specifies the height in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
DataGridControl.Height

See also
DataGridControl (Page 2327)

DataGridControl.Icon

Description
The "Icon" property specifies the icon of the data table display.

Type
String

Access
Read-write

Syntax
DataGridControl.Icon

See also
DataGridControl (Page 2327)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2387

DataGridControl.Layer

Description
The "Layer" property returns the screen layer in which the data tables display is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
DataGridControl.Layer

See also
DataGridControl (Page 2327)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
DataGridControl.Layer (Page 2388)

Programming scripts
10.2 WinCC Unified object model

2388 System Manual, 11/2022

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
DataGridControl.Layer (Page 2388)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
DataGridControl.Layer (Page 2388)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2389

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
DataGridControl.Layer (Page 2388)

DataGridControl.Left

Description
The "Left" property sets the value of the X coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
DataGridControl.Left

See also
DataGridControl (Page 2327)

Programming scripts
10.2 WinCC Unified object model

2390 System Manual, 11/2022

DataGridControl.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
DataGridControl.Margin

See also
DataGridControl (Page 2327)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
DataGridControl.Margin (Page 2391)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2391

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
DataGridControl.Margin (Page 2391)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
DataGridControl.Margin (Page 2391)

Programming scripts
10.2 WinCC Unified object model

2392 System Manual, 11/2022

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
DataGridControl.Margin (Page 2391)

DataGridControl.Name

Description
The "Name" property returns the name of the data table display.

Type
String

Access
Read-only

Syntax
DataGridControl.Name

See also
DataGridControl (Page 2327)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2393

DataGridControl.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
DataGridControl.Parent

See also
DataGridControl (Page 2327)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

DataGridControl.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the data table
display was created.

Type
String

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

2394 System Manual, 11/2022

Syntax
DataGridControl.RenderingTemplate

See also
DataGridControl (Page 2327)

DataGridControl.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the data table display is highlighted when in
focus.

Type
Bool

Access
Read-write

Syntax
DataGridControl.ShowFocusVisual

See also
DataGridControl (Page 2327)

DataGridControl.StatusBar

Description
The "StatusBar" property specifies the information bar of the data table display.

Type
Object, HmiStatusBarPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2395

Syntax
DataGridControl.StatusBar

See also
DataGridControl (Page 2327)

StatusBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
StatusBar.BackColor

See also
DataGridControl.StatusBar (Page 2395)

StatusBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
information bar.

Type
Object, HmiControlBarElementCollection (Page 2397)

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

2396 System Manual, 11/2022

Syntax
StatusBar.Elements

See also
DataGridControl.StatusBar (Page 2395)
HmiControlBarElementCollection (Page 2397)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
StatusBar.Elements (Page 2396)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2397

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 2397)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Programming scripts
10.2 WinCC Unified object model

2398 System Manual, 11/2022

Return value
Object, HmiControlBarElementPartBase (Page 2414)

See also
HmiControlBarElementCollection (Page 2397)
Control Bar Elements (Page 2414)

Control Bar Elements

Description
Control Bar Elements (Page 2414)

StatusBar.Enabled

Description
The "Enabled" property specifies whether the information bar can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
StatusBar.Enabled

See also
DataGridControl.StatusBar (Page 2395)

StatusBar.Font

Description
The "Font" property specifies the font of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2399

Type
Object, HmiFontPart

Access
Read-write

Syntax
StatusBar.Font

See also
DataGridControl.StatusBar (Page 2395)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
StatusBar.Font (Page 2399)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Programming scripts
10.2 WinCC Unified object model

2400 System Manual, 11/2022

Type
String

Access
Read-write

Syntax
Font.Name

See also
StatusBar.Font (Page 2399)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
StatusBar.Font (Page 2399)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2401

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
StatusBar.Font (Page 2399)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
StatusBar.Font (Page 2399)

Programming scripts
10.2 WinCC Unified object model

2402 System Manual, 11/2022

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
StatusBar.Font (Page 2399)

StatusBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the information bar.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2403

Syntax
StatusBar.Margin

See also
DataGridControl.StatusBar (Page 2395)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
StatusBar.Margin (Page 2403)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2404 System Manual, 11/2022

Syntax
Margin.Left

See also
StatusBar.Margin (Page 2403)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
StatusBar.Margin (Page 2403)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2405

Syntax
Margin.Top

See also
StatusBar.Margin (Page 2403)

StatusBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the information
bar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
StatusBar.Padding

See also
DataGridControl.StatusBar (Page 2395)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2406 System Manual, 11/2022

Syntax
Padding.Bottom

See also
StatusBar.Padding (Page 2406)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
StatusBar.Padding (Page 2406)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2407

Syntax
Padding.Right

See also
StatusBar.Padding (Page 2406)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
StatusBar.Padding (Page 2406)

StatusBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2408 System Manual, 11/2022

Syntax
StatusBar.ShowToolTips

See also
DataGridControl.StatusBar (Page 2395)

StatusBar.Visible

Description
The "Visible" property specifies whether the information bar is visible.

Type
Bool

Access
Read-write

Syntax
StatusBar.Visible

See also
DataGridControl.StatusBar (Page 2395)

DataGridControl.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the data table display.

Type
String

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2409

Syntax
DataGridControl.StyleItemClass

See also
DataGridControl (Page 2327)

DataGridControl.TabIndex

Description
The "TabIndex" property returns the position of the data table display in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
DataGridControl.TabIndex

See also
DataGridControl (Page 2327)

DataGridControl.ToolBar

Description
The "ToolBar" property specifies the toolbar of the data table display.

Type
Object, HmiToolBarPart

Access
Read-write

Syntax
DataGridControl.ToolBar

Programming scripts
10.2 WinCC Unified object model

2410 System Manual, 11/2022

See also
DataGridControl (Page 2327)

ToolBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ToolBar.BackColor

See also
DataGridControl.ToolBar (Page 2410)

ToolBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
toolbar.

Type
Object, HmiControlBarElementCollection (Page 2412)

Access
Read-only

Syntax
ToolBar.Elements

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2411

See also
DataGridControl.ToolBar (Page 2410)
HmiControlBarElementCollection (Page 2412)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
ToolBar.Elements (Page 2411)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

2412 System Manual, 11/2022

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 2412)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 2414)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2413

See also
HmiControlBarElementCollection (Page 2412)
Control Bar Elements (Page 2414)

Control Bar Elements

ControlBarButton

Description
The "ControlBarButton" object represents a button of an information bar or toolbar.
You can reference the "ControlBarButton" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarButtonPart

Properties
The "ControlBarButton" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the label of the button.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the button can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

2414 System Manual, 11/2022

• ForeColor
Specifies the font color.

• Graphic
Specifies the graphic.

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the button.

• Mapping
Returns the function of the button.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the button is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the button is only operable while the corresponding button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the button is visible.

• Width
Specifies the width.

Methods
--

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2415

ControlBarButton.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBackColor

See also
ControlBarButton (Page 2414)

ControlBarButton.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBorderColor

See also
ControlBarButton (Page 2414)

Programming scripts
10.2 WinCC Unified object model

2416 System Manual, 11/2022

ControlBarButton.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the button of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarButton.Authorization

See also
ControlBarButton (Page 2414)

ControlBarButton.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BackColor

See also
ControlBarButton (Page 2414)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2417

ControlBarButton.Badge

Description
The "Badge" property specifies the label of the button.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarButton.Badge

See also
ControlBarButton (Page 2414)

ControlBarButton.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BorderColor

See also
ControlBarButton (Page 2414)

Programming scripts
10.2 WinCC Unified object model

2418 System Manual, 11/2022

ControlBarButton.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarButton.BorderWidth

See also
ControlBarButton (Page 2414)

ControlBarButton.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarButton.Content

See also
ControlBarButton (Page 2414)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2419

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarButton.Content (Page 2419)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.

Programming scripts
10.2 WinCC Unified object model

2420 System Manual, 11/2022

• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect
ratio is not changed.

• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarButton.Content (Page 2419)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarButton.Content (Page 2419)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2421

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarButton.Content (Page 2419)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarButton.Content (Page 2419)

Programming scripts
10.2 WinCC Unified object model

2422 System Manual, 11/2022

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarButton.Content (Page 2419)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2423

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarButton.Content (Page 2419)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarButton.Content (Page 2419)

Programming scripts
10.2 WinCC Unified object model

2424 System Manual, 11/2022

ControlBarButton.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarButton.CustomID

See also
ControlBarButton (Page 2414)

ControlBarButton.Enabled

Description
The "Enabled" property specifies whether the button can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Enabled

See also
ControlBarButton (Page 2414)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2425

ControlBarButton.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.ForeColor

See also
ControlBarButton (Page 2414)

ControlBarButton.Graphic

Description
The "Graphic" property specifies the graphic of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Graphic

See also
ControlBarButton (Page 2414)

Programming scripts
10.2 WinCC Unified object model

2426 System Manual, 11/2022

ControlBarButton.Height

Description
The "Height" property specifies the height of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Height

See also
ControlBarButton (Page 2414)

ControlBarButton.HotKey

Description
The "HotKey" property returns the hotkey specified for the button. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
ControlBarButton.HotKey

See also
ControlBarButton (Page 2414)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2427

ControlBarButton.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page

Programming scripts
10.2 WinCC Unified object model

2428 System Manual, 11/2022

• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2429

Syntax
ControlBarButton.Mapping

See also
ControlBarButton (Page 2414)

ControlBarButton.Margin

Description
The "Margin" property specifies the surrounded outer distance of the button.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarButton.Margin

See also
ControlBarButton (Page 2414)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2430 System Manual, 11/2022

Syntax
Margin.Bottom

See also
ControlBarButton.Margin (Page 2430)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarButton.Margin (Page 2430)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2431

Syntax
Margin.Right

See also
ControlBarButton.Margin (Page 2430)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarButton.Margin (Page 2430)

ControlBarButton.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2432 System Manual, 11/2022

Syntax
ControlBarButton.MaximumHeight

See also
ControlBarButton (Page 2414)

ControlBarButton.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumWidth

See also
ControlBarButton (Page 2414)

ControlBarButton.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2433

Syntax
ControlBarButton.MinimumHeight

See also
ControlBarButton (Page 2414)

ControlBarButton.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumWidth

See also
ControlBarButton (Page 2414)

ControlBarButton.Operability

Description
The "Operability" property returns whether the button is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Programming scripts
10.2 WinCC Unified object model

2434 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarButton.Operability

See also
ControlBarButton (Page 2414)

ControlBarButton.Padding

Description
The "Padding" property specifies the distance of the content from the border of the button.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarButton.Padding

See also
ControlBarButton (Page 2414)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2435

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarButton.Padding (Page 2435)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarButton.Padding (Page 2435)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

2436 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Right

See also
ControlBarButton.Padding (Page 2435)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarButton.Padding (Page 2435)

ControlBarButton.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the button can only be operated while the
associated button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2437

Access
Read-only

Syntax
ControlBarButton.RequireExplicitUnlock

See also
ControlBarButton (Page 2414)

ControlBarButton.Text

Description
The "Text" property specifies the label of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Text

See also
ControlBarButton (Page 2414)

ControlBarButton.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the button.

Type
String

Programming scripts
10.2 WinCC Unified object model

2438 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.ToolTipText

See also
ControlBarButton (Page 2414)

ControlBarButton.Visible

Description
The "Visible" property specifies whether the button is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Visible

See also
ControlBarButton (Page 2414)

ControlBarButton.Width

Description
The "Width" property specifies the width of the button in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2439

Access
Read-write

Syntax
ControlBarButton.Width

See also
ControlBarButton (Page 2414)

ControlBarDisplay

Description
The "ControlBarDisplay" object represents a display area for text and graphics of an information
bar or toolbar.
You can reference the "ControlBarDisplay" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarDisplayPart

Properties
The "ControlBarDisplay" object has the following properties:
• Authorization

Returns the operator authorization.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the display area is enabled in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• Mapping

Returns the function of the display area.

Programming scripts
10.2 WinCC Unified object model

2440 System Manual, 11/2022

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the display area is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the display area is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the display area is visible.

• Width
Specifies the width.

Methods
--

ControlBarDisplay.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the display.

Type
Object, HmiFunctionRight

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2441

Syntax
ControlBarDislay.Authorization

See also
ControlBarDisplay (Page 2440)

ControlBarDisplay.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarDislay.Content

See also
ControlBarDisplay (Page 2440)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Programming scripts
10.2 WinCC Unified object model

2442 System Manual, 11/2022

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarDisplay.Content (Page 2442)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarDisplay.Content (Page 2442)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2443

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarDisplay.Content (Page 2442)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

Programming scripts
10.2 WinCC Unified object model

2444 System Manual, 11/2022

See also
ControlBarDisplay.Content (Page 2442)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarDisplay.Content (Page 2442)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2445

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarDisplay.Content (Page 2442)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarDisplay.Content (Page 2442)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Programming scripts
10.2 WinCC Unified object model

2446 System Manual, 11/2022

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarDisplay.Content (Page 2442)

ControlBarDisplay.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarDislay.CustomID

See also
ControlBarDisplay (Page 2440)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2447

ControlBarDisplay.Enabled

Description
The "Enabled" property specifies whether the display is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Enabled

See also
ControlBarDisplay (Page 2440)

ControlBarDisplay.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.ForeColor

See also
ControlBarDisplay (Page 2440)

Programming scripts
10.2 WinCC Unified object model

2448 System Manual, 11/2022

ControlBarDisplay.Graphic

Description
The "Graphic" property specifies the graphic of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Graphic

See also
ControlBarDisplay (Page 2440)

ControlBarDisplay.Height

Description
The "Height" property specifies the height of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Height

See also
ControlBarDisplay (Page 2440)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2449

ControlBarDisplay.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page

Programming scripts
10.2 WinCC Unified object model

2450 System Manual, 11/2022

• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2451

Syntax
ControlBarDislay.Mapping

See also
ControlBarDisplay (Page 2440)

ControlBarDisplay.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the display.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarDislay.Margin

See also
ControlBarDisplay (Page 2440)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2452 System Manual, 11/2022

Syntax
Margin.Bottom

See also
ControlBarDisplay.Margin (Page 2452)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarDisplay.Margin (Page 2452)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2453

Syntax
Margin.Right

See also
ControlBarDisplay.Margin (Page 2452)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarDisplay.Margin (Page 2452)

ControlBarDisplay.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2454 System Manual, 11/2022

Syntax
ControlBarDislay.MaximumHeight

See also
ControlBarDisplay (Page 2440)

ControlBarDisplay.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MaximumWidth

See also
ControlBarDisplay (Page 2440)

ControlBarDisplay.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2455

Syntax
ControlBarDislay.MinimumHeight

See also
ControlBarDisplay (Page 2440)

ControlBarDisplay.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MinimumWidth

See also
ControlBarDisplay (Page 2440)

ControlBarDisplay.Operability

Description
The "Operability" property returns whether the display is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Programming scripts
10.2 WinCC Unified object model

2456 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarDislay.Operability

See also
ControlBarDisplay (Page 2440)

ControlBarDisplay.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the display.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarDislay.Padding

See also
ControlBarDisplay (Page 2440)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2457

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarDisplay.Padding (Page 2457)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarDisplay.Padding (Page 2457)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

2458 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Right

See also
ControlBarDisplay.Padding (Page 2457)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarDisplay.Padding (Page 2457)

ControlBarDisplay.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the display can only be operated while the
associated button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2459

Access
Read-only

Syntax
ControlBarDislay.RequireExplicitUnlock

See also
ControlBarDisplay (Page 2440)

ControlBarDisplay.Text

Description
The "Text" property specifies the label of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Text

See also
ControlBarDisplay (Page 2440)

ControlBarDisplay.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the display.

Type
String

Programming scripts
10.2 WinCC Unified object model

2460 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.ToolTipText

See also
ControlBarDisplay (Page 2440)

ControlBarDisplay.Visible

Description
The "Visible" property specifies whether the display is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Visible

See also
ControlBarDisplay (Page 2440)

ControlBarDisplay.Width

Description
The "Width" property specifies the width of the display in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2461

Access
Read-write

Syntax
ControlBarDislay.Width

See also
ControlBarDisplay (Page 2440)

ControlBarLabel

Description
The "ControlBarLabel" object represents an identifier of an information bar or toolbar.
You can reference the "ControlBarLabel" object via the "HmiControlBarElementCollection" list.

Object type
HmiControlBarLabelPart

Properties
The "ControlBarLabel" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the identifier can be operated in runtime.
• ForeColor

Specifies the font color.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Height

Specifies the height.
• Mapping

Returns the function of the identifier.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.

Programming scripts
10.2 WinCC Unified object model

2462 System Manual, 11/2022

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the identifier is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the identifier is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the identifier is visible.

• Width
Specifies the width.

Methods
--

ControlBarLabel.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the identifier.

Type
Object, HmiFunctionRight

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2463

Syntax
ControlBarLabel.Authorization

See also
ControlBarLabel (Page 2462)

ControlBarLabel.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarLabel.CustomID

See also
ControlBarLabel (Page 2462)

ControlBarLabel.Enabled

Description
The "Enabled" property specifies whether the identifier is active in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2464 System Manual, 11/2022

Syntax
ControlBarLabel.Enabled

See also
ControlBarLabel (Page 2462)

ControlBarLabel.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.ForeColor

See also
ControlBarLabel (Page 2462)

ControlBarLabel.Height

Description
The "Height" property specifies the height of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2465

Syntax
ControlBarLabel.Height

See also
ControlBarLabel (Page 2462)

ControlBarLabel.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.HorizontalTextAlignment

See also
ControlBarLabel (Page 2462)

ControlBarLabel.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID

Programming scripts
10.2 WinCC Unified object model

2466 System Manual, 11/2022

Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2467

• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarLabel.Mapping

See also
ControlBarLabel (Page 2462)

Programming scripts
10.2 WinCC Unified object model

2468 System Manual, 11/2022

ControlBarLabel.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the identifier.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarLabel.Margin

See also
ControlBarLabel (Page 2462)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarLabel.Margin (Page 2469)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2469

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarLabel.Margin (Page 2469)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarLabel.Margin (Page 2469)

Programming scripts
10.2 WinCC Unified object model

2470 System Manual, 11/2022

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarLabel.Margin (Page 2469)

ControlBarLabel.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumHeight

See also
ControlBarLabel (Page 2462)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2471

ControlBarLabel.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumWidth

See also
ControlBarLabel (Page 2462)

ControlBarLabel.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumHeight

See also
ControlBarLabel (Page 2462)

Programming scripts
10.2 WinCC Unified object model

2472 System Manual, 11/2022

ControlBarLabel.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumWidth

See also
ControlBarLabel (Page 2462)

ControlBarLabel.Operability

Description
The "Operability" property returns whether the identifier is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarLabel.Operability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2473

See also
ControlBarLabel (Page 2462)

ControlBarLabel.Padding

Description
The "Padding" property specifies the spacing of the content from the frame of the identifier.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarLabel.Padding

See also
ControlBarLabel (Page 2462)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

Programming scripts
10.2 WinCC Unified object model

2474 System Manual, 11/2022

See also
ControlBarLabel.Padding (Page 2474)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarLabel.Padding (Page 2474)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2475

See also
ControlBarLabel.Padding (Page 2474)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarLabel.Padding (Page 2474)

ControlBarLabel.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the identifier can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarLabel.RequireExplicitUnlock

Programming scripts
10.2 WinCC Unified object model

2476 System Manual, 11/2022

See also
ControlBarLabel (Page 2462)

ControlBarLabel.Text

Description
The "Text" property specifies the label of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.Text

See also
ControlBarLabel (Page 2462)

ControlBarLabel.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.ToolTipText

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2477

See also
ControlBarLabel (Page 2462)

ControlBarLabel.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.VerticalTextAlignment

See also
ControlBarLabel (Page 2462)

ControlBarLabel.Visible

Description
The "Visible" property specifies whether the identifier is visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2478 System Manual, 11/2022

Syntax
ControlBarLabel.Visible

See also
ControlBarLabel (Page 2462)

ControlBarLabel.Width

Description
The "Width" property specifies the width of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Width

See also
ControlBarLabel (Page 2462)

ControlBarSeparator

Description
The "ControlBarSeparator" object represents a separator of an information bar or toolbar.
You can reference the "ControlBarSeparator" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarSeparatorPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2479

Properties
The "ControlBarSeparator" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the disconnector can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• Mapping

Returns the function of the separator.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the separator is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the disconnector is only operable while the associated button is being
pressed.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the disconnector is visible.

• Width
Specifies the width.

Methods
--

Programming scripts
10.2 WinCC Unified object model

2480 System Manual, 11/2022

ControlBarSeparator.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the separator.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarSeparator.Authorization

See also
ControlBarSeparator (Page 2479)

ControlBarSeparator.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarSeparator.CustomID

See also
ControlBarSeparator (Page 2479)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2481

ControlBarSeparator.Enabled

Description
The "Enabled" property specifies whether the separator is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Enabled

See also
ControlBarSeparator (Page 2479)

ControlBarSeparator.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.ForeColor

See also
ControlBarSeparator (Page 2479)

Programming scripts
10.2 WinCC Unified object model

2482 System Manual, 11/2022

ControlBarSeparator.Height

Description
The "Height" property specifies the height of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Height

See also
ControlBarSeparator (Page 2479)

ControlBarSeparator.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2483

• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms

Programming scripts
10.2 WinCC Unified object model

2484 System Manual, 11/2022

• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarSeparator.Mapping

See also
ControlBarSeparator (Page 2479)

ControlBarSeparator.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the separator.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2485

Syntax
ControlBarSeparator.Margin

See also
ControlBarSeparator (Page 2479)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarSeparator.Margin (Page 2485)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2486 System Manual, 11/2022

Syntax
Margin.Left

See also
ControlBarSeparator.Margin (Page 2485)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarSeparator.Margin (Page 2485)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2487

Syntax
Margin.Top

See also
ControlBarSeparator.Margin (Page 2485)

ControlBarSeparator.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MaximumHeight

See also
ControlBarSeparator (Page 2479)

ControlBarSeparator.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2488 System Manual, 11/2022

Syntax
ControlBarSeparator.MaximumWidth

See also
ControlBarSeparator (Page 2479)

ControlBarSeparator.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MinimumHeight

See also
ControlBarSeparator (Page 2479)

ControlBarSeparator.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2489

Syntax
ControlBarSeparator.MinimumWidth

See also
ControlBarSeparator (Page 2479)

ControlBarSeparator.Operability

Description
The "Operability" property returns whether the separator is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarSeparator.Operability

See also
ControlBarSeparator (Page 2479)

ControlBarSeparator.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the separator.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

2490 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarSeparator.Padding

See also
ControlBarSeparator (Page 2479)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarSeparator.Padding (Page 2490)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2491

Access
Read-write

Syntax
Padding.Left

See also
ControlBarSeparator.Padding (Page 2490)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarSeparator.Padding (Page 2490)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

2492 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Top

See also
ControlBarSeparator.Padding (Page 2490)

ControlBarSeparator.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the disconnector can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarSeparator.RequireExplicitUnlock

See also
ControlBarSeparator (Page 2479)

ControlBarSeparator.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the separator.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2493

Access
Read-write

Syntax
ControlBarSeparator.ToolTipText

See also
ControlBarSeparator (Page 2479)

ControlBarSeparator.Visible

Description
The "Visible" property specifies whether the separator is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Visible

See also
ControlBarSeparator (Page 2479)

ControlBarSeparator.Width

Description
The "Width" property specifies the width of the separator in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

2494 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarSeparator.Width

See also
ControlBarSeparator (Page 2479)

ControlBarTextBox

Description
The "ControlBarTextBox" object represents a text box of an information bar or toolbar.
You can reference the "ControlBarTextBox" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarTextBoxPart

Properties
The "ControlBarTextBox" object has the following properties:
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the text box can be operated in runtime.
• ForeColor

Specifies the font color.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2495

• Height
Specifies the height.

• HorizontalTextAlignment
Specifies the horizontal alignment of the text.

• Mapping
Returns the function of the text box.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the text box is operable.

• Padding
Specifies the distance of the content from the border.

• Readonly
Specifies whether the text box is write-protected.

• RequireExplicitUnlock
Returns whether the text box is only operable while the associated button is being pressed.

• Text
Specifies the labeling.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the text box is visible.

• Width
Specifies the width.

Methods
--

Programming scripts
10.2 WinCC Unified object model

2496 System Manual, 11/2022

ControlBarTextBox.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.AlternateBorderColor

See also
ControlBarTextBox (Page 2495)

ControlBarTextBox.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the text box of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarTextBox.Authorization

See also
ControlBarTextBox (Page 2495)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2497

ControlBarTextBox.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BackColor

See also
ControlBarTextBox (Page 2495)

ControlBarTextBox.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BorderColor

See also
ControlBarTextBox (Page 2495)

Programming scripts
10.2 WinCC Unified object model

2498 System Manual, 11/2022

ControlBarTextBox.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarTextBox.BorderWidth

See also
ControlBarTextBox (Page 2495)

ControlBarTextBox.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarTextBox.CustomID

See also
ControlBarTextBox (Page 2495)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2499

ControlBarTextBox.Enabled

Description
The "Enabled" property specifies whether the text box can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Enabled

See also
ControlBarTextBox (Page 2495)

ControlBarTextBox.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.ForeColor

See also
ControlBarTextBox (Page 2495)

Programming scripts
10.2 WinCC Unified object model

2500 System Manual, 11/2022

ControlBarTextBox.Height

Description
The "Height" property specifies the height of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Height

See also
ControlBarTextBox (Page 2495)

ControlBarTextBox.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.HorizontalTextAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2501

See also
ControlBarTextBox (Page 2495)

ControlBarTextBox.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

2502 System Manual, 11/2022

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2503

Access
Read-only

Syntax
ControlBarTextBox.Mapping

See also
ControlBarTextBox (Page 2495)

ControlBarTextBox.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the text box.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarTextBox.Margin

See also
ControlBarTextBox (Page 2495)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

2504 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarTextBox.Margin (Page 2504)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarTextBox.Margin (Page 2504)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2505

Access
Read-write

Syntax
Margin.Right

See also
ControlBarTextBox.Margin (Page 2504)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarTextBox.Margin (Page 2504)

ControlBarTextBox.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

2506 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarTextBox.MaximumHeight

See also
ControlBarTextBox (Page 2495)

ControlBarTextBox.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumWidth

See also
ControlBarTextBox (Page 2495)

ControlBarTextBox.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2507

Access
Read-write

Syntax
ControlBarTextBox.MinimumHeight

See also
ControlBarTextBox (Page 2495)

ControlBarTextBox.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumWidth

See also
ControlBarTextBox (Page 2495)

ControlBarTextBox.Operability

Description
The "Operability" property returns whether the text box is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

2508 System Manual, 11/2022

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarTextBox.Operability

See also
ControlBarTextBox (Page 2495)

ControlBarTextBox.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the text box.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarTextBox.Padding

See also
ControlBarTextBox (Page 2495)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2509

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarTextBox.Padding (Page 2509)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarTextBox.Padding (Page 2509)

Programming scripts
10.2 WinCC Unified object model

2510 System Manual, 11/2022

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarTextBox.Padding (Page 2509)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarTextBox.Padding (Page 2509)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2511

ControlBarTextBox.ReadOnly

Description
The "ReadOnly" property specifies whether the text box is read-only.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.ReadOnly

See also
ControlBarTextBox (Page 2495)

ControlBarTextBox.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the text box can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarTextBox.RequireExplicitUnlock

See also
ControlBarTextBox (Page 2495)

Programming scripts
10.2 WinCC Unified object model

2512 System Manual, 11/2022

ControlBarTextBox.Text

Description
The "Text" property specifies the label of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.Text

See also
ControlBarTextBox (Page 2495)

ControlBarTextBox.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.ToolTipText

See also
ControlBarTextBox (Page 2495)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2513

ControlBarTextBox.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.VerticalTextAlignment

See also
ControlBarTextBox (Page 2495)

ControlBarTextBox.Visible

Description
The "Visible" property specifies whether the text box is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Visible

Programming scripts
10.2 WinCC Unified object model

2514 System Manual, 11/2022

See also
ControlBarTextBox (Page 2495)

ControlBarTextBox.Width

Description
The "Width" property specifies the width of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Width

See also
ControlBarTextBox (Page 2495)

ControlBarToggleSwitch

Description
The "ControlBarToggleSwitch" object represents a switch of an information bar or toolbar.
You can reference the "ControlBarToggleSwitch" object via the
"HmiControlBarElementCollection" list.

Object type
HmiControlBarToggleSwitchPart

Properties
The "ControlBarToggleSwitch" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2515

• AlternateGraphic
Specifies the graphic for the "pressed" state.

• AlternateText
Specifies the text for the "pressed" state.

• Authorization
Returns the operator authorization.

• BackColor
Specifies the background color.

• Badge
Specifies the identifier of the switch.

• BorderColor
Specifies the line color.

• BorderWidth
Specifies the line thickness.

• Content
Specifies display options for text and graphics.

• CustomID
Returns the custom ID.

• Enabled
Specifies whether the switch can be operated in runtime.

• ForeColor
Specifies the font color.

• Graphic
Specifies the graphic.

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the switch.

• IsAlternateState
Specifies the current state of the switch.

• Mapping
Returns the function of the switch.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

2516 System Manual, 11/2022

• Operability
Returns whether the switch is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the switch is only operable while the associated button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the switch is visible.

• Width
Specifies the width.

Methods
--

ControlBarToggleSwitch.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBackColor

See also
ControlBarToggleSwitch (Page 2515)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2517

ControlBarToggleSwitch.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBorderColor

See also
ControlBarToggleSwitch (Page 2515)

ControlBarToggleSwitch.AlternateGraphic

Description
The "AlternateGraphic" property specifies the graphic of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateGraphic

See also
ControlBarToggleSwitch (Page 2515)

Programming scripts
10.2 WinCC Unified object model

2518 System Manual, 11/2022

ControlBarToggleSwitch.AlternateText

Description
The "AlternateText" property specifies the text of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateText

See also
ControlBarToggleSwitch (Page 2515)

ControlBarToggleSwitch.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the switch of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarToggleSwitch.Authorization

See also
ControlBarToggleSwitch (Page 2515)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2519

ControlBarToggleSwitch.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BackColor

See also
ControlBarToggleSwitch (Page 2515)

ControlBarToggleSwitch.Badge

Description
The "Badge" property specifies the identifier of the switch.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarToggleSwitch.Badge

See also
ControlBarToggleSwitch (Page 2515)

Programming scripts
10.2 WinCC Unified object model

2520 System Manual, 11/2022

ControlBarToggleSwitch.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderColor

See also
ControlBarToggleSwitch (Page 2515)

ControlBarToggleSwitch.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderWidth

See also
ControlBarToggleSwitch (Page 2515)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2521

ControlBarToggleSwitch.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Content

See also
ControlBarToggleSwitch (Page 2515)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

2522 System Manual, 11/2022

See also
ControlBarToggleSwitch.Content (Page 2522)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarToggleSwitch.Content (Page 2522)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2523

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 2522)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarToggleSwitch.Content (Page 2522)

Programming scripts
10.2 WinCC Unified object model

2524 System Manual, 11/2022

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarToggleSwitch.Content (Page 2522)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2525

Syntax
Content.TextPosition

See also
ControlBarToggleSwitch.Content (Page 2522)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarToggleSwitch.Content (Page 2522)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

2526 System Manual, 11/2022

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 2522)

ControlBarToggleSwitch.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarToggleSwitch.CustomID

See also
ControlBarToggleSwitch (Page 2515)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2527

ControlBarToggleSwitch.Enabled

Description
The "Enabled" property specifies whether the switch can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Enabled

See also
ControlBarToggleSwitch (Page 2515)

ControlBarToggleSwitch.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.ForeColor

See also
ControlBarToggleSwitch (Page 2515)

Programming scripts
10.2 WinCC Unified object model

2528 System Manual, 11/2022

ControlBarToggleSwitch.Graphic

Description
The "Graphic" property specifies the graphic of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Graphic

See also
ControlBarToggleSwitch (Page 2515)

ControlBarToggleSwitch.Height

Description
The "Height" property specifies the height of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Height

See also
ControlBarToggleSwitch (Page 2515)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2529

ControlBarToggleSwitch.HotKey

Description
The "HotKey" property returns the hotkey specified for the switch. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
Button.HotKey

See also
ControlBarToggleSwitch (Page 2515)

ControlBarToggleSwitch.IsAlternateState

Description
The "IsAlternateState" property specifies the current state of the switch.
• True: Switch is in "On" state.
• False: Switch is in "Off" state.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.IsAlternateState

Programming scripts
10.2 WinCC Unified object model

2530 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 2515)

ControlBarToggleSwitch.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2531

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

2532 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarToggleSwitch.Mapping

See also
ControlBarToggleSwitch (Page 2515)

ControlBarToggleSwitch.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the switch.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Margin

See also
ControlBarToggleSwitch (Page 2515)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2533

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarToggleSwitch.Margin (Page 2533)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarToggleSwitch.Margin (Page 2533)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

2534 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Right

See also
ControlBarToggleSwitch.Margin (Page 2533)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarToggleSwitch.Margin (Page 2533)

ControlBarToggleSwitch.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2535

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumHeight

See also
ControlBarToggleSwitch (Page 2515)

ControlBarToggleSwitch.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumWidth

See also
ControlBarToggleSwitch (Page 2515)

ControlBarToggleSwitch.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

2536 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumHeight

See also
ControlBarToggleSwitch (Page 2515)

ControlBarToggleSwitch.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumWidth

See also
ControlBarToggleSwitch (Page 2515)

ControlBarToggleSwitch.Operability

Description
The property "Operability" returns whether the switch is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2537

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarToggleSwitch.Operability

See also
ControlBarToggleSwitch (Page 2515)

ControlBarToggleSwitch.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the switch.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Padding

See also
ControlBarToggleSwitch (Page 2515)

Programming scripts
10.2 WinCC Unified object model

2538 System Manual, 11/2022

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarToggleSwitch.Padding (Page 2538)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarToggleSwitch.Padding (Page 2538)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2539

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarToggleSwitch.Padding (Page 2538)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarToggleSwitch.Padding (Page 2538)

Programming scripts
10.2 WinCC Unified object model

2540 System Manual, 11/2022

ControlBarToggleSwitch.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the switch can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarToggleSwitch.RequireExplicitUnlock

See also
ControlBarToggleSwitch (Page 2515)

ControlBarToggleSwitch.Text

Description
The "Text" property specifies the label of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Text

See also
ControlBarToggleSwitch (Page 2515)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2541

ControlBarToggleSwitch.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.ToolTipText

See also
ControlBarToggleSwitch (Page 2515)

ControlBarToggleSwitch.Visible

Description
The "Visible" property specifies whether the switch is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Visible

See also
ControlBarToggleSwitch (Page 2515)

Programming scripts
10.2 WinCC Unified object model

2542 System Manual, 11/2022

ControlBarToggleSwitch.Width

Description
The "Width" property specifies the width of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Width

See also
ControlBarToggleSwitch (Page 2515)

ToolBar.Enabled

Description
The "Enabled" property specifies whether the toolbar can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ToolBar.Enabled

See also
DataGridControl.ToolBar (Page 2410)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2543

ToolBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ToolBar.Font

See also
DataGridControl.ToolBar (Page 2410)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
ToolBar.Font (Page 2544)

Programming scripts
10.2 WinCC Unified object model

2544 System Manual, 11/2022

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
ToolBar.Font (Page 2544)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
ToolBar.Font (Page 2544)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2545

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ToolBar.Font (Page 2544)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

2546 System Manual, 11/2022

See also
ToolBar.Font (Page 2544)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
ToolBar.Font (Page 2544)

ToolBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the toolbar.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2547

Access
Read-write

Syntax
ToolBar.Margin

See also
DataGridControl.ToolBar (Page 2410)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ToolBar.Margin (Page 2547)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

2548 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Left

See also
ToolBar.Margin (Page 2547)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ToolBar.Margin (Page 2547)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2549

Access
Read-write

Syntax
Margin.Top

See also
ToolBar.Margin (Page 2547)

ToolBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the toolbar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ToolBar.Padding

See also
DataGridControl.ToolBar (Page 2410)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

2550 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Bottom

See also
ToolBar.Padding (Page 2550)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ToolBar.Padding (Page 2550)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2551

Access
Read-write

Syntax
Padding.Right

See also
ToolBar.Padding (Page 2550)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ToolBar.Padding (Page 2550)

ToolBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

2552 System Manual, 11/2022

Access
Read-write

Syntax
ToolBar.ShowToolTips

See also
DataGridControl.ToolBar (Page 2410)

ToolBar.UseHotKeys

Description
The "UseHotKeys" property specifies whether the shortcut keys for the buttons in the toolbar are
activated.

Type
Bool

Access
Read-write

Syntax
ToolBar.UseHotKeys

See also
DataGridControl.ToolBar (Page 2410)

ToolBar.Visible

Description
The "Visible" property specifies whether the toolbar is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2553

Access
Read-write

Syntax
ToolBar.Visible

See also
DataGridControl.ToolBar (Page 2410)

DataGridControl.Top

Description
The "Top" property sets the value of the Y coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
DataGridControl.Top

See also
DataGridControl (Page 2327)

DataGridControl.Visible

Description
The "Visible" property specifies whether the data table display is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

2554 System Manual, 11/2022

Access
Read-write

Syntax
DataGridControl.Visible

See also
DataGridControl (Page 2327)

DataGridControl.Width

Description
The "Width" property specifies the width in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
DataGridControl.Width

See also
DataGridControl (Page 2327)

DataGridControl.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the data table display.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2555

• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be moved
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
You can enable multiple properties by adding integer values or bit operators.

Access
Read-write

Syntax
DataGridControl.WindowFlags

Example
Adapting the "windowFlags" tag depending on the window configuration:

Copy code
var windowFlags = HmiWindowFlag.ShowCaption | HmiWindowFlag.ShowBorder;
if (CanClose){
 windowFlags |= HmiWindowFlag.CanClose;
} else {
 windowFlags &= HmiWindowFlag.CanClose;
}

See also
DataGridControl (Page 2327)

DataGridControl.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
data table display.

Programming scripts
10.2 WinCC Unified object model

2556 System Manual, 11/2022

Syntax
DataGridControl.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
DataGridControl (Page 2327)

DataGridControl.FireCommand()

Description
The "FireCommand" method executes the command of an element in the toolbar or information
bar (control bar element, e.g. a button) of the data table display.

Syntax
DataGridControl.FireCommand(commandId, custom)

Parameters
commandId
Type: Int32
ID of the element of the toolbar or information bar

custom
Type: Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2557

Type of element ID:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

Return value
--

See also
DataGridControl (Page 2327)

DataGridControl.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
DataGridControl.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate

Programming scripts
10.2 WinCC Unified object model

2558 System Manual, 11/2022

Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
DataGridControl (Page 2327)

DataGridControl_OnActivated()

Description
The "OnActivated" event occurs when a data table display receives focus:
• A data table display is selected via the configured tab sequence.
• A data table display that had no focus is clicked/tapped.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
DataGridControl_OnActivated(item)

Context
item
Type: Object
Data table display where the event occurs.

See also
DataGridControl (Page 2327)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2559

DataGridControl_OnCommandFired()

Description
The "OnCommandFired" event occurs when the operator has operated an element in the toolbar
or information bar (control bar element, e.g. a button) of the data table display.

Syntax
DataGridControl_OnCommandFired(item, commandId, custom)

Context
item
Type: Object
Data table display where the event occurs.

commandId
Type: DInt
ID of the element of the toolbar or information bar that was operated.

custom
Type: Bool
Specifies the type of the ID of the operated element:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

See also
DataGridControl (Page 2327)

DataGridControl_OnDeactivated()

Description
The "OnDeactivated" event occurs when the data table display loses focus because the operator
has pressed the <TAB> key or executed another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Programming scripts
10.2 WinCC Unified object model

2560 System Manual, 11/2022

Syntax
DataGridControl_OnDeactivated(item)

Context
item
Type: Object
Data table display where the event occurs.

See also
DataGridControl (Page 2327)

DataGridControl_OnInitialized()

Description
The "OnInitialized" event occurs when a data table display has been successfully initialized and
the data connection to the PLC has been established.

Syntax
DataGridControl_OnInitialized(item)

Context
item
Type: Object
Data table display where the event occurs.

See also
DataGridControl (Page 2327)

DcsFaceplateContainer

Description
The "DcsFaceplateContainer" object represents a container for faceplate instances that can only
be used by DCS+ products.

Object type
HmiDcsFaceplateContainer

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2561

Properties
The "DcsFaceplateContainer" object has the following properties:
• Caption

Specifies the text that is displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.
• ContainedType

Returns the type of the contained objects.
• CurrentQuality

Returns the poorest quality code of all tags which influence the faceplate container.
• DomainSubTypeGUID

Returns the unique designation for the subtype of the displayed faceplate container.
• DomainTypeGUID

Returns the unique designation for the type of displayed faceplate container.
• Enabled

Specifies whether the faceplate container can be operated in runtime.
• Height

Specifies the height.
• Icon

Specifies the icon.
• Layer

Returns the layer of the screen in which the faceplate container is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the faceplate container.
• Parent

Returns the higher-level screen object.
• RenderingTemplate

Returns the name of the template from which the faceplate container was created.
• ShowFocusVisual

Specifies whether the faceplate container is highlighted when in focus.
• StyleItemClass

Returns the style which is applied to the faceplate container.
• TabIndex

Returns the position of the faceplate container in the tab sequence.
• Top

Specifies the value of the Y coordinate.
• Visible

Specifies whether the faceplate container is visible.

Programming scripts
10.2 WinCC Unified object model

2562 System Manual, 11/2022

• Width
Specifies the width.

• WindowFlags
Specifies the window configuration of the faceplate container.

Methods
The "DcsFaceplateContainer" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the faceplate container.
• PropertyFlashing()

Configures flashing of a property.

Events
The "DcsFaceplateContainer" object has the following events:
• OnActivated()

Occurs when a faceplate container receives focus.
• OnDeactivated()

Occurs when a faceplate container loses focus.

DcsFaceplateContainer.Caption

Description
The "Caption" property specifies the text that is displayed in the title bar.

Type
Object, HmiTextPart

Access
Read-write

Syntax
DcsFaceplateContainer.Caption

See also
DcsFaceplateContainer (Page 2561)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2563

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
DcsFaceplateContainer.Caption (Page 2563)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 2564)

Programming scripts
10.2 WinCC Unified object model

2564 System Manual, 11/2022

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 2564)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 2564)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2565

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 2564)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

2566 System Manual, 11/2022

See also
Text.Font (Page 2564)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 2564)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2567

Access
Read-write

Syntax
Text.ForeColor

See also
DcsFaceplateContainer.Caption (Page 2563)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
DcsFaceplateContainer.Caption (Page 2563)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

2568 System Manual, 11/2022

Access
Read-write

Syntax
Text.Visible

See also
DcsFaceplateContainer.Caption (Page 2563)

DcsFaceplateContainer.CaptionColor

Description
The "CaptionColor" property specifies the background color of the title bar.

Type
UInt32

Access
Read-write

Syntax
DcsFaceplateContainer.CaptionColor

See also
DcsFaceplateContainer (Page 2561)

DcsFaceplateContainer.ContainedType

Description
The "ContainedType" property returns the type of the contained objects.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2569

Access
Read-only

Syntax
DcsFaceplateContainer.ContainedType

See also
DcsFaceplateContainer (Page 2561)

DcsFaceplateContainer.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
faceplate container.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
DcsFaceplateContainer.CurrentQuality

See also
DcsFaceplateContainer (Page 2561)

Programming scripts
10.2 WinCC Unified object model

2570 System Manual, 11/2022

DcsFaceplateContainer.DomainSubTypeGUID

Description
The "DomainSubTypeGUID" property returns the unique designation for the subtype of the
displayed faceplate container.

Type
String

Access
Read-only

Syntax
DcsFaceplateContainer.DomainSubTypeGUID

See also
DcsFaceplateContainer (Page 2561)

DcsFaceplateContainer.DomainTypeGUID

Description
The "DomainTypeGUID" property returns the unique designation for the type of the displayed
faceplate container.

Type
String

Access
Read-only

Syntax
DcsFaceplateContainer.DomainTypeGUID

See also
DcsFaceplateContainer (Page 2561)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2571

DcsFaceplateContainer.Enabled

Description
The "Enabled" property specifies whether the faceplate container can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
DcsFaceplateContainer.Enabled

See also
DcsFaceplateContainer (Page 2561)

DcsFaceplateContainer.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
DcsFaceplateContainer.Height

See also
DcsFaceplateContainer (Page 2561)

Programming scripts
10.2 WinCC Unified object model

2572 System Manual, 11/2022

DcsFaceplateContainer.Icon

Description
The "Icon" property specifies the icon.

Type
String

Access
Read-write

Syntax
DcsFaceplateContainer.Icon

See also
DcsFaceplateContainer (Page 2561)

DcsFaceplateContainer.Layer

Description
The "Layer" property returns the layer of the screen in which the faceplate container is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
DcsFaceplateContainer.Layer

See also
DcsFaceplateContainer (Page 2561)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2573

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
DcsFaceplateContainer.Layer (Page 2573)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
DcsFaceplateContainer.Layer (Page 2573)

Programming scripts
10.2 WinCC Unified object model

2574 System Manual, 11/2022

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
DcsFaceplateContainer.Layer (Page 2573)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
DcsFaceplateContainer.Layer (Page 2573)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2575

DcsFaceplateContainer.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
DcsFaceplateContainer.Left

See also
DcsFaceplateContainer (Page 2561)

DcsFaceplateContainer.Margin

Description
The Margin property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
DcsFaceplateContainer.Margin

See also
DcsFaceplateContainer (Page 2561)

Programming scripts
10.2 WinCC Unified object model

2576 System Manual, 11/2022

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
DcsFaceplateContainer.Margin (Page 2576)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
DcsFaceplateContainer.Margin (Page 2576)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2577

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
DcsFaceplateContainer.Margin (Page 2576)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
DcsFaceplateContainer.Margin (Page 2576)

Programming scripts
10.2 WinCC Unified object model

2578 System Manual, 11/2022

DcsFaceplateContainer.Name

Description
The "Name" property returns the name of the faceplate container.

Type
String

Access
Read-only

Syntax
DcsFaceplateContainer.Name

See also
DcsFaceplateContainer (Page 2561)

DcsFaceplateContainer.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
DcsFaceplateContainer.Parent

See also
DcsFaceplateContainer (Page 2561)
Screen Items (Page 1571)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2579

Screen Items

Description
Screen Items (Page 1571)

DcsFaceplateContainer.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the faceplate
container was created.

Type
String

Access
Read-only

Syntax
DcsFaceplateContainer.RenderingTemplate

See also
DcsFaceplateContainer (Page 2561)

DcsFaceplateContainer.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the faceplate container is highlighted when
in focus.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2580 System Manual, 11/2022

Syntax
DcsFaceplateContainer.ShowFocusVisual

See also
DcsFaceplateContainer (Page 2561)

DcsFaceplateContainer.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the faceplate container.

Type
String

Access
Read-only

Syntax
DcsFaceplateContainer.StyleItemClass

See also
DcsFaceplateContainer (Page 2561)

DcsFaceplateContainer.TabIndex

Description
The "TabIndex" property returns the position of the faceplate container in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
DcsFaceplateContainer.TabIndex

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2581

See also
DcsFaceplateContainer (Page 2561)

DcsFaceplateContainer.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
DcsFaceplateContainer.Top

See also
DcsFaceplateContainer (Page 2561)

DcsFaceplateContainer.Visible

Description
The "Visible" property specifies whether the faceplate container is visible.

Type
Bool

Access
Read-write

Syntax
DcsFaceplateContainer.Visible

See also
DcsFaceplateContainer (Page 2561)

Programming scripts
10.2 WinCC Unified object model

2582 System Manual, 11/2022

DcsFaceplateContainer.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
DcsFaceplateContainer.Width

See also
DcsFaceplateContainer (Page 2561)

DcsFaceplateContainer.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the faceplate container.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title
• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be positioned
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2583

Note
Enable multiple properties by adding the integer values or bit operators.

Access
Read-write

Syntax
DcsFaceplateContainer.WindowFlags

Example
Adapt the "windowFlags" tag depending on the window configuration:

Copy code
var windowFlags = HmiWindowFlag.ShowCaption | HmiWindowFlag.ShowBorder;
if (CanClose){
 windowFlags |= HmiWindowFlag.CanClose;
} else {
 windowFlags &= HmiWindowFlag.CanClose;
}

See also
DcsFaceplateContainer (Page 2561)

DcsFaceplateContainer.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
faceplate container.

Syntax
DcsFaceplateContainer.CheckAuthorization()

Parameters
--

Return value
Bool

Programming scripts
10.2 WinCC Unified object model

2584 System Manual, 11/2022

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
DcsFaceplateContainer (Page 2561)

DcsFaceplateContainer.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
DcsFaceplateContainer.PropertyFlashing(propertyName, enable[, value]
[, alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2585

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
DcsFaceplateContainer (Page 2561)

DcsFaceplateContainer_OnActivated()

Description
The "OnActivated" event occurs when a faceplate container receives focus:
• A faceplate container is selected via the configured tab sequence.
• A faceplate container that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
DcsFaceplateContainer_OnActivated(item)

Context
item
Type: Object
Faceplate container where the event occurs.

Programming scripts
10.2 WinCC Unified object model

2586 System Manual, 11/2022

See also
DcsFaceplateContainer (Page 2561)

DcsFaceplateContainer_OnDeactivated()

Description
The "OnDeactivated" event occurs when a faceplate container loses focus because the operator
presses the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
DcsFaceplateContainer_OnDeactivated(item)

Context
item
Type: Object
Faceplate container where the event occurs.

See also
DcsFaceplateContainer (Page 2561)

DetailedParameterControl

Description
The "DetailedParameterControl" object represents a parameter set display of tag values from the
current process or the archive in runtime.

Object type
HmiDetailedParameterControl

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2587

Properties
The "DetailedParameterControl" object has the following properties:
• BackColor

Specifies the background color.
• Caption

Specifies the text that is displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.
• CurrentParameterSetID

Specifies the current parameter set ID.
• CurrentParameterSetTypeID

Specifies the current parameter set type ID.
• CurrentQuality

Returns the poorest quality code of all tags which influence the parameter set display.
• EditMode

Specifies the editing mode for values in runtime.
• Enabled

Specifies whether the parameter set display can be operated in runtime.
• Font

Specifies the font of the text.
• ForeColor

Specifies the font color of the text.
• Height

Specifies the height.
• HideDetails

Specifies whether the table for value display is hidden.
• Icon

Specifies the icon of the parameter set display.
• Layer

Returns the screen layer in which the parameter set display is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the parameter set display.
• ParameterSetTypeFixed

Specifies a parameter set type which cannot be changed in runtime.
• ParameterView

Defines the appearance of the parameter table.
• Parent

Returns the higher-level screen object.

Programming scripts
10.2 WinCC Unified object model

2588 System Manual, 11/2022

• RenderingTemplate
Returns the name of the template from which the parameter set display was created.

• SelectionBackColor
Specifies the background color of the selected cells.

• SelectionForeColor
Specifies the foreground color of the selected cells.

• ShowFocusVisual
Specifies whether the parameter set display is highlighted when in focus.

• StatusBar
Sets the information bar of the parameter set display.

• StyleItemClass
Returns the style which is applied to the parameter set display.

• TabIndex
Returns the position of the parameter set display in the tab sequence.

• TimeZone
Specifies the time zone.

• ToolBar
Sets the toolbar of the parameter set display.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the parameter set display is visible.

• Width
Specifies the width.

• WindowFlags
Specifies the window configuration of the parameter set display.

Methods
The "DetailedParameterControl" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the parameter set display.
• FireCommand()

Configures the occurrence of an event for an element.
• PropertyFlashing()

Configures flashing of a property.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2589

Events
The "DetailedParameterControl" object has the following events:
• OnActivated()

Occurs when a parameter set display receives focus.
• OnCommandFired()

Occurs when the operator has operated an element in the toolbar or information bar of the
parameter set display.

• OnDeactivated()
Occurs when a parameter set display loses focus.

• OnInitialized()
Occurs when a parameter set display has been successfully initialized and the data
connection to the PLC has been established.

DetailedParameterControl.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
DetailedParameterControl.BackColor

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.Caption

Description
The "Caption" property specifies the text that is displayed in the title bar.

Type
Object, HmiTextPart

Programming scripts
10.2 WinCC Unified object model

2590 System Manual, 11/2022

Access
Read-write

Syntax
DetailedParameterControl.Caption

See also
DetailedParameterControl (Page 2587)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
DetailedParameterControl.Caption (Page 2590)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2591

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 2591)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 2591)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Programming scripts
10.2 WinCC Unified object model

2592 System Manual, 11/2022

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 2591)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 2591)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2593

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 2591)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 2591)

Programming scripts
10.2 WinCC Unified object model

2594 System Manual, 11/2022

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
DetailedParameterControl.Caption (Page 2590)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
DetailedParameterControl.Caption (Page 2590)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2595

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
DetailedParameterControl.Caption (Page 2590)

DetailedParameterControl.CaptionColor

Description
The "CaptionColor" property specifies the color of the title bar.

Type
UInt32

Access
Read-write

Syntax
DetailedParameterControl.CaptionColor

See also
DetailedParameterControl (Page 2587)

Programming scripts
10.2 WinCC Unified object model

2596 System Manual, 11/2022

DetailedParameterControl.CurrentParameterSetID

Description
The "CurrentParameterSetID" property specifies the current parameter set ID.

Type
UInt32

Access
Read-write

Syntax
DetailedParameterControl.CurrentParameterSetID

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.CurrentParameterSetTypeID

Description
The "CurrentParameterSetTypeID" property specifies the current parameter set ID.

Type
UInt32

Access
Read-write

Syntax
DetailedParameterControl.CurrentParameterSetTypeID

See also
DetailedParameterControl (Page 2587)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2597

DetailedParameterControl.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
parameter set display.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
DetailedParameterControl.CurrentQuality

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.EditMode

Description
The "EditMode" property specifies the editing mode for values in runtime.

Type
Int32, HmiEditMode
Specifies the editing mode:
• None (0): No access
• Update (1): Update values

Programming scripts
10.2 WinCC Unified object model

2598 System Manual, 11/2022

• Create (2): Create values
• Delete (4): Delete values

Access
Read-write

Syntax
DetailedParameterControl.EditMode

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.Enabled

Description
The "Enabled" property specifies whether the parameter set display can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
DetailedParameterControl.Enabled

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2599

Access
Read-write

Syntax
DetailedParameterControl.Font

See also
DetailedParameterControl (Page 2587)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
DetailedParameterControl.Font (Page 2599)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Programming scripts
10.2 WinCC Unified object model

2600 System Manual, 11/2022

Access
Read-write

Syntax
Font.Name

See also
DetailedParameterControl.Font (Page 2599)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
DetailedParameterControl.Font (Page 2599)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2601

Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
DetailedParameterControl.Font (Page 2599)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
DetailedParameterControl.Font (Page 2599)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Programming scripts
10.2 WinCC Unified object model

2602 System Manual, 11/2022

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
DetailedParameterControl.Font (Page 2599)

DetailedParameterControl.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
DetailedParameterControl.ForeColor

See also
DetailedParameterControl (Page 2587)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2603

DetailedParameterControl.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
DetailedParameterControl.Height

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.HideDetails

Description
The "HideDetails" property specifies whether the table is hidden for the value display.

Type
Bool

Access
Read-write

Syntax
DetailedParameterControl.HideDetails

See also
DetailedParameterControl (Page 2587)

Programming scripts
10.2 WinCC Unified object model

2604 System Manual, 11/2022

DetailedParameterControl.Icon

Description
The "Icon" property specifies the icon of the parameter set display.

Type
String

Access
Read-write

Syntax
DetailedParameterControl.Icon

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.Layer

Description
The "Layer" property returns the layer of the screen in which the parameter set display is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
DetailedParameterControl.Layer

See also
DetailedParameterControl (Page 2587)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2605

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
DetailedParameterControl.Layer (Page 2605)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
DetailedParameterControl.Layer (Page 2605)

Programming scripts
10.2 WinCC Unified object model

2606 System Manual, 11/2022

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
DetailedParameterControl.Layer (Page 2605)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
DetailedParameterControl.Layer (Page 2605)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2607

DetailedParameterControl.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
DetailedParameterControl.Left

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
DetailedParameterControl.Margin

See also
DetailedParameterControl (Page 2587)

Programming scripts
10.2 WinCC Unified object model

2608 System Manual, 11/2022

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
DetailedParameterControl.Margin (Page 2608)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
DetailedParameterControl.Margin (Page 2608)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2609

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
DetailedParameterControl.Margin (Page 2608)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
DetailedParameterControl.Margin (Page 2608)

Programming scripts
10.2 WinCC Unified object model

2610 System Manual, 11/2022

DetailedParameterControl.Name

Description
The "Name" property returns the parameter set display of the column.

Type
String

Access
Read-only

Syntax
DetailedParameterControl.Name

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.ParameterSetTypeFixed

Description
The "ParameterSetTypeFixed" property specifies a parameter set type which cannot be changed
in runtime.

Type
String, HmiParameterSetType (Page 1234)

Access
Read-write

Syntax
DetailedParameterControl.ParameterSetTypeFixed

See also
DetailedParameterControl (Page 2587)
ParameterSetType (Page 1234)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2611

ParameterSetType

Description
ParameterSetType (Page 1234)

DetailedParameterControl.ParameterView

Description
The "ParameterView" property defines the appearance of the parameter table.

Type
Object, HmiDataGridViewPart (Page 2612)

Access
Read-write

Syntax
DetailedParameterControl.ParameterView

See also
DetailedParameterControl (Page 2587)
DataGridView (Page 2612)

DataGridView

DataGridView.AllowFilter

Description
The "AllowFilter" property specifies whether filtering of columns is permitted.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2612 System Manual, 11/2022

Syntax
DataGridView.AllowFilter

See also
DetailedParameterControl.ParameterView (Page 2612)

DataGridView.AllowSort

Description
The "AllowSort" property specifies whether the sorting of columns is permitted.
• True: Activates the sorting and sets the "AllowSort" property of all columns to "true".
• False: Disables the sorting for all columns. The individual column properties remain

unchanged.

Type
Bool

Access
Read-write

Syntax
DataGridView.AllowSort

See also
DetailedParameterControl.ParameterView (Page 2612)

DataGridView.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2613

Access
Read-write

Syntax
DataGridView.AlternateBackColor

See also
DetailedParameterControl.ParameterView (Page 2612)

DataGridView.AlternateForeColor

Description
The "AlternateForeColor" property specifies the flashing color for the text.

Type
UInt32

Access
Read-write

Syntax
DataGridView.AlternateForeColor

See also
DetailedParameterControl.ParameterView (Page 2612)

DataGridView.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

2614 System Manual, 11/2022

Access
Read-write

Syntax
DataGridView.BackColor

See also
DetailedParameterControl.ParameterView (Page 2612)

DataGridView.CellPadding

Description
The "CellPadding" property specifies the inner spacing of the content from the cell border.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
DataGridView.CellPadding

See also
DetailedParameterControl.ParameterView (Page 2612)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2615

Access
Read-write

Syntax
Padding.Bottom

See also
DataGridView.CellPadding (Page 2615)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
DataGridView.CellPadding (Page 2615)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

2616 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Right

See also
DataGridView.CellPadding (Page 2615)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
DataGridView.CellPadding (Page 2615)

DataGridView.ColoringMode

Description
The "ColoringMode" property specifies whether alternate coloring of every other row or column
is enabled.

Type
Int32, HmiGridColoringMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2617

Specifies the type of the coloring:
• None (0): None
• Columns (1): Color the columns alternately.
• Rows (2): Color the rows alternately.

Access
Read-write

Syntax
DataGridView.ColoringMode

See also
DetailedParameterControl.ParameterView (Page 2612)

DataGridView.Columns

Description
The "Columns" property represents the quantity of columns.

Type
Object, HmiDataGridColumnCollection (Page 2619)

Access
Read-only

Syntax
DataGridView.Columns

See also
DetailedParameterControl.ParameterView (Page 2612)
HmiDataGridColumnCollection (Page 2619)

Programming scripts
10.2 WinCC Unified object model

2618 System Manual, 11/2022

HmiDataGridColumnCollection

Description
The "HmiDataGridColumnCollection" object is a list of all columns ("DataGridColumn" objects) of
the table.
You reference a "HmiDataGridColumnCollection" object via the DataGridView.Columns
property.

Use
The "HmiDataGridColumnCollection" object is a list and can be counted and enumerated. You
can access the "HmiDataGridColumnCollection" list using the index or the tag name.

Object type
HmiDataGridColumnCollection

Properties
The "HmiDataGridColumnCollection" object has the following properties:
• Count

Returns the number of columns in the "HmiDataGridColumnCollection" list.

Methods
The "HmiDataGridColumnCollection" object has the following methods:
• Item()

Returns a column of the "HmiDataGridColumnCollection" list.

See also
DataGridView.Columns (Page 2618)

HmiDataGridColumnCollection.Count

Description
The "Count" property returns the number of columns in the "HmiDataGridColumnCollection" list.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2619

Access
Read-only

Syntax
HmiDataGridColumnCollection.Count

See also
HmiDataGridColumnCollection (Page 2619)

HmiDataGridColumnCollection.Item()

Description
The "Item" method returns a column of the "HmiDataGridColumnCollection" list.

Syntax
HmiDataGridColumnCollection[.Item](HmiDataGridColumnName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiDataGridColumnCollection" object.

Parameters
HmiDataGridColumnName
Type: String
Name of the column

Return value
Object, HmiDataGridColumnPartBase (Page 2621)

See also
HmiDataGridColumnCollection (Page 2619)
DetailedParameterControlColumn (Page 2621)

Programming scripts
10.2 WinCC Unified object model

2620 System Manual, 11/2022

DetailedParameterControlColumn

Description
The "DetailedParameterControlColumn" object represents a value column.

Object type
HmiDetailedParameterControlColumnPart

Properties
The "DetailedParameterControlColumn" object has the following properties:
• AllowSort

Specifies whether column sorting is allowed.
• BackColor

Specifies the background color.
• Content

Specifies the display options for text and graphics.
• DetailedParameterControlBlock

Specifies the information blocks.
• Enabled

Specifies whether the column can be operated in runtime.
• ForeColor

Specifies the font color of the text.
• Header

Specifies the properties of the column header.
• Key

Corresponds to the column definition from the "ConsideredColumns" property of the
connected source.

• MaximumWidth
Specifies the maximum width.

• MinimumWidth
Specifies the minimum width.

• Name
Returns the name of the column.

• OutputFormat
Specifies the format for displaying values.

• SortDirection
Specifies the sorting direction.

• SortOrder
Specifies the sorting order.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2621

• Visible
Specifies whether the column is visible.

• Width
Specifies the width.

Methods
--

See also
HmiDataGridColumnCollection (Page 2619)

DetailedParameterControlColumn.AllowSort

Description
The "AllowSort" property specifies whether column sorting is permitted.
This property is ignored if the parent object has the "AllowSort" property set to "False".

Type
Bool

Access
Read-write

Syntax
DetailedParameterControlColumn.AllowSort

See also
DetailedParameterControlColumn (Page 2621)

DetailedParameterControlColumn.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

2622 System Manual, 11/2022

Access
Read-write

Syntax
DetailedParameterControlColumn.BackColor

See also
DetailedParameterControlColumn (Page 2621)

DetailedParameterControlColumn.Content

Description
The "Content" property specifies the display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
DetailedParameterControlColumn.Content

See also
DetailedParameterControlColumn (Page 2621)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2623

• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
DetailedParameterControlColumn.Content (Page 2623)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
DetailedParameterControlColumn.Content (Page 2623)

Programming scripts
10.2 WinCC Unified object model

2624 System Manual, 11/2022

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
DetailedParameterControlColumn.Content (Page 2623)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2625

See also
DetailedParameterControlColumn.Content (Page 2623)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
DetailedParameterControlColumn.Content (Page 2623)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Programming scripts
10.2 WinCC Unified object model

2626 System Manual, 11/2022

Access
Read-write

Syntax
Content.TextPosition

See also
DetailedParameterControlColumn.Content (Page 2623)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
DetailedParameterControlColumn.Content (Page 2623)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2627

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
DetailedParameterControlColumn.Content (Page 2623)

DetailedParameterControlColumn.DetailedParameterControlBlock

Description
The "DetailedParameterControlBlock" property specifies the information blocks.

Type
Int32, HmiDetailedParameterControlBlock
Specifies the information blocks:
• None (0): None
• ParameterSetElementName (1): Unit name, for example "kilogram", must always be set
• ParameterSetValue (2): Value, must always be set
• ParameterSetElementUnit (3): Unit, for example "kg"

Access
Read-write

Syntax
DetailedParameterControlColumn.DetailedParameterControlBlock

Programming scripts
10.2 WinCC Unified object model

2628 System Manual, 11/2022

See also
DetailedParameterControlColumn (Page 2621)

DetailedParameterControlColumn.Enabled

Description
The "Enabled" property specifies whether the column can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
DetailedParameterControlColumn.Enabled

See also
DetailedParameterControlColumn (Page 2621)

DetailedParameterControlColumn.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
DetailedParameterControlColumn.ForeColor

See also
DetailedParameterControlColumn (Page 2621)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2629

DetailedParameterControlColumn.Header

Description
The "Header" property specifies the properties of the column header.

Type
Object, HmiDataGridColumnHeaderPart

Access
Read-write

Syntax
DetailedParameterControlColumn.Header

See also
DetailedParameterControlColumn (Page 2621)

DataGridColumnHeader.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
DataGridColumnHeader.Content

See also
DetailedParameterControlColumn.Header (Page 2630)

Programming scripts
10.2 WinCC Unified object model

2630 System Manual, 11/2022

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
DataGridColumnHeader.Content (Page 2630)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2631

• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect
ratio is not changed.

• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
DataGridColumnHeader.Content (Page 2630)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
DataGridColumnHeader.Content (Page 2630)

Programming scripts
10.2 WinCC Unified object model

2632 System Manual, 11/2022

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
DataGridColumnHeader.Content (Page 2630)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
DataGridColumnHeader.Content (Page 2630)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2633

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
DataGridColumnHeader.Content (Page 2630)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

2634 System Manual, 11/2022

Access
Read-write

Syntax
Content.TextTrimming

See also
DataGridColumnHeader.Content (Page 2630)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
DataGridColumnHeader.Content (Page 2630)

DataGridColumnHeader.Graphic

Description
The "Graphic" property specifies the graphic of the column header.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2635

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Graphic

See also
DetailedParameterControlColumn.Header (Page 2630)

DataGridColumnHeader.Text

Description
The "Text" property specifies the label of the column header.

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Text

See also
DetailedParameterControlColumn.Header (Page 2630)

DetailedParameterControlColumn.Key

Description
The "Key" property corresponds to the column definition from the "ConsideredColumns"
property of the connected source.

Programming scripts
10.2 WinCC Unified object model

2636 System Manual, 11/2022

Type
String

Access
Read-only

Syntax
DetailedParameterControlColumn.Key

See also
DetailedParameterControlColumn (Page 2621)

DetailedParameterControlColumn.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
DetailedParameterControlColumn.MaximumWidth

See also
DetailedParameterControlColumn (Page 2621)

DetailedParameterControlColumn.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2637

Access
Read-write

Syntax
DetailedParameterControlColumn.MinimumWidth

See also
DetailedParameterControlColumn (Page 2621)

DetailedParameterControlColumn.Name

Description
The "Name" property returns the name of the column.

Type
String

Access
Read-only

Syntax
DetailedParameterControlColumn.Name

See also
DetailedParameterControlColumn (Page 2621)

DetailedParameterControlColumn.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying values.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2638 System Manual, 11/2022

Syntax
DetailedParameterControlColumn.OutputFormat

See also
DetailedParameterControlColumn (Page 2621)

DetailedParameterControlColumn.SortDirection

Description
The "SortDirection" property specifies the sorting direction.

Type
Int32, HmiSortDirection
Specifies the sorting order:
• None (0): None
• Ascending (1): Ascending
• Descending (2): Descending

Access
Read-write

Syntax
DetailedParameterControlColumn.SortDirection

See also
DetailedParameterControlColumn (Page 2621)

DetailedParameterControlColumn.SortOrder

Description
The "SortOrder" property specifies the sorting order.
The sorting index starts at "1" (highest priority) in ascending order. Zero is ignored.

Type
UInt16

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2639

Access
Read-write

Syntax
DetailedParameterControlColumn.SortOrder

See also
DetailedParameterControlColumn (Page 2621)

DetailedParameterControlColumn.Visible

Description
The "Visible" property specifies whether the column is visible.

Type
Bool

Access
Read-write

Syntax
DetailedParameterControlColumn.Visible

See also
DetailedParameterControlColumn (Page 2621)

DetailedParameterControlColumn.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2640 System Manual, 11/2022

Syntax
DetailedParameterControlColumn.Width

See also
DetailedParameterControlColumn (Page 2621)

DataGridView.Font

Description
The "Font" property specifies the font of the cells.

Type
Object, HmiFontPart

Access
Read-write

Syntax
DataGridView.Font

See also
DetailedParameterControl.ParameterView (Page 2612)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2641

Syntax
Font.Italic

See also
DataGridView.Font (Page 2641)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
DataGridView.Font (Page 2641)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2642 System Manual, 11/2022

Syntax
Font.Size

See also
DataGridView.Font (Page 2641)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
DataGridView.Font (Page 2641)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2643

Access
Read-write

Syntax
Font.Underline

See also
DataGridView.Font (Page 2641)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
DataGridView.Font (Page 2641)

Programming scripts
10.2 WinCC Unified object model

2644 System Manual, 11/2022

DataGridView.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
DataGridView.ForeColor

See also
DetailedParameterControl.ParameterView (Page 2612)

DataGridView.GridLineColor

Description
The "GridLineColor" property specifies the color of grid lines.

Type
UInt32

Access
Read-write

Syntax
DataGridView.GridLineColor

See also
DetailedParameterControl.ParameterView (Page 2612)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2645

DataGridView.GridLineVisibility

Description
The "GridLineVisibility" property specifies the visibility of the grid lines.

Type
Int32, HmiSimpleGridLine
Specifies the grid lines:
• None (0): None
• Vertikal (1): Vertical
• Horizontal (2): Horizontal

Access
Read-write

Syntax
DataGridView.GridLineVisibility

See also
DetailedParameterControl.ParameterView (Page 2612)

DataGridView.GridLineWidth

Description
The "GridLineWidth" property specifies the thickness of the grid lines in pixels.

Type
UInt8

Access
Read-write

Syntax
DataGridView.GridLineWidth

Programming scripts
10.2 WinCC Unified object model

2646 System Manual, 11/2022

See also
DetailedParameterControl.ParameterView (Page 2612)

DataGridView.GridSelectionMode

Description
The "GridSelectionMode" property specifies whether multiple selection is enabled in the table
content.

Type
Int32, HmiGridSelectionMode
Specifies the type of the selection:
• None (0): None
• Single (1): Only single selection
• Multi (2): Multiple selection

Access
Read-write

Syntax
DataGridView.GridSelectionMode

See also
DetailedParameterControl.ParameterView (Page 2612)

DataGridView.HeaderSettings

Description
The "HeaderSettings" property specifies the settings for all column headers in the table.

Type
Object, HmiDataGridHeaderSettingsPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2647

Syntax
DataGridView.HeaderSettings

See also
DetailedParameterControl.ParameterView (Page 2612)

DataGridHeaderSettings.AllowColumnReorder

Description
The "AllowColumnReorder" property specifies whether the order of the columns can be changed.

Type
Bool

Access
Read-write

Syntax
DataGridHeaderSettings.AllowColumnReorder

See also
DataGridView.HeaderSettings (Page 2647)

DataGridHeaderSettings.AllowColumnResize

Description
The "AllowColumnResize" property specifies whether the width of the columns can be changed.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2648 System Manual, 11/2022

Syntax
DataGridHeaderSettings.AllowColumnResize

See also
DataGridView.HeaderSettings (Page 2647)

DataGridHeaderSettings.ColumnHeaderType

Description
The "ColumnHeaderType" property specifies the type of content of a column header.

Type
Int32, HmiDataGridHeaderType
Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Access
Read-write

Syntax
DataGridHeaderSettings.ColumnHeaderType

See also
DataGridView.HeaderSettings (Page 2647)

DataGridHeaderSettings.Font

Description
The "Font" property specifies the font of the headers.

Type
Object, HmiFontPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2649

Access
Read-write

Syntax
DataGridHeaderSettings.Font

See also
DataGridView.HeaderSettings (Page 2647)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
DataGridHeaderSettings.Font (Page 2649)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Programming scripts
10.2 WinCC Unified object model

2650 System Manual, 11/2022

Access
Read-write

Syntax
Font.Name

See also
DataGridHeaderSettings.Font (Page 2649)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
DataGridHeaderSettings.Font (Page 2649)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2651

Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
DataGridHeaderSettings.Font (Page 2649)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
DataGridHeaderSettings.Font (Page 2649)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Programming scripts
10.2 WinCC Unified object model

2652 System Manual, 11/2022

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
DataGridHeaderSettings.Font (Page 2649)

DataGridHeaderSettings.HeaderBackColor

Description
The "HeaderBackColor" property specifies the background color of the header.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderBackColor

See also
DataGridView.HeaderSettings (Page 2647)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2653

DataGridHeaderSettings.HeaderForeColor

Description
The "HeaderForeColor" property specifies the font color of the headers.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderForeColor

See also
DataGridView.HeaderSettings (Page 2647)

DataGridHeaderSettings.HeaderGridLineColor

Description
The "HeaderGridLineColor" property specifies the color of the separation line between column
headers.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderGridLineColor

See also
DataGridView.HeaderSettings (Page 2647)

Programming scripts
10.2 WinCC Unified object model

2654 System Manual, 11/2022

DataGridHeaderSettings.HeaderSelectionBackColor

Description
The "HeaderSelectionBackColor" property specifies the background color of the header of a
selected line or column.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderSelectionBackColor

See also
DataGridView.HeaderSettings (Page 2647)

DataGridHeaderSettings.HeaderSelectionForeColor

Description
The "HeaderSelectionForeColor" property specifies the font color of the header of a selected line
or column.

Type
UInt32

Access
Read-write

Syntax
Object.HeaderSelectionForeColor

Object
Required. An object from the "Availability" section.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2655

See also
DataGridView.HeaderSettings (Page 2647)

DataGridHeaderSettings.RowHeaderType

Description
The "RowHeaderType" property specifies the type of content of a row header.

Type
Int32, HmiDataGridHeaderType
Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Access
Read-write

Syntax
DataGridHeaderSettings.RowHeaderType

See also
DataGridView.HeaderSettings (Page 2647)

DataGridView.HorizontalScrollBarVisibility

Description
The "HorizontalScrollBarVisibility" property specifies the visibility of the horizontal scroll bar of
the display.

Type
Int32, HmiScrollBarVisibility

Programming scripts
10.2 WinCC Unified object model

2656 System Manual, 11/2022

Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
DataGridView.HorizontalScrollBarVisibility

See also
DetailedParameterControl.ParameterView (Page 2612)

DataGridView.RowHeight

Description
The "RowHeight" property specifies the height of all rows in the table in DIU (Device Independent
Unit).
"0" corresponds to a automatic mechanism, which adjusts the height of each line according
to the font size and number of paragraphs.

Type
UInt8

Access
Read-write

Syntax
DataGridView.RowHeight

See also
DetailedParameterControl.ParameterView (Page 2612)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2657

DataGridView.SelectFullRow

Description
The "SelectFullRow" property specifies whether only the cell or the entire row is included in the
selection.

Type
Bool

Access
Read-write

Syntax
DataGridView.SelectFullRow

See also
DetailedParameterControl.ParameterView (Page 2612)

DataGridView.SelectionBackColor

Description
The "SelectionBackColor" property specifies the background color of the selected cells.

Type
UInt32

Access
Read-write

Syntax
DataGridView.SelectionBackColor

See also
DetailedParameterControl.ParameterView (Page 2612)

Programming scripts
10.2 WinCC Unified object model

2658 System Manual, 11/2022

DataGridView.SelectionBorderColor

Description
The "SelectionBorderColor" property specifies the border color of the selected cells.

Type
UInt8

Access
Read-write

Syntax
DataGridView.SelectionBorderColor

See also
DetailedParameterControl.ParameterView (Page 2612)

DataGridView.SelectionForeColor

Description
The "SelectionForeColor" property specifies the font color of the selected cells.

Type
UInt32

Access
Read-write

Syntax
DataGridView.SelectionForeColor

See also
DetailedParameterControl.ParameterView (Page 2612)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2659

DataGridView.VerticalScrollBarVisibility

Description
The "VerticalScrollBarVisibility" property specifies the visibility of the vertical scroll bar of the
display.

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
DataGridView.VerticalScrollBarVisibility

See also
DetailedParameterControl.ParameterView (Page 2612)

DetailedParameterControl.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
DetailedParameterControl.Parent

Programming scripts
10.2 WinCC Unified object model

2660 System Manual, 11/2022

See also
DetailedParameterControl (Page 2587)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

DetailedParameterControl.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the parameter
set display was created.

Type
String

Access
Read-only

Syntax
DetailedParameterControl.RenderingTemplate

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.SelectionBackColor

Description
The "SelectionBackColor" property specifies the background color of the selected cells.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2661

Access
Read-write

Syntax
DetailedParameterControl.SelectionBackColor

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.SelectionForeColor

Description
The "SelectionForeColor" property specifies the foreground color of the selected cells.

Type
UInt32

Access
Read-write

Syntax
DetailedParameterControl.SelectionForeColor

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the parameter set display is highlighted
when in focus.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

2662 System Manual, 11/2022

Access
Read-write

Syntax
DetailedParameterControl.ShowFocusVisual

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.StatusBar

Description
The "StatusBar" property specifies the information bar of the parameter set display.

Type
Object, HmiStatusBarPart

Access
Read-write

Syntax
DetailedParameterControl.StatusBar

See also
DetailedParameterControl (Page 2587)

StatusBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2663

Syntax
StatusBar.BackColor

See also
DetailedParameterControl.StatusBar (Page 2663)

StatusBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
information bar.

Type
Object, HmiControlBarElementCollection (Page 2664)

Access
Read-only

Syntax
StatusBar.Elements

See also
DetailedParameterControl.StatusBar (Page 2663)
HmiControlBarElementCollection (Page 2664)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Programming scripts
10.2 WinCC Unified object model

2664 System Manual, 11/2022

Object type
HmiControlBarElementCollection

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
StatusBar.Elements (Page 2664)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 2664)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2665

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 2682)

See also
HmiControlBarElementCollection (Page 2664)
Control Bar Elements (Page 2682)

Control Bar Elements

Description
Control Bar Elements (Page 2682)

StatusBar.Enabled

Description
The "Enabled" property specifies whether the information bar can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

2666 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
StatusBar.Enabled

See also
DetailedParameterControl.StatusBar (Page 2663)

StatusBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
StatusBar.Font

See also
DetailedParameterControl.StatusBar (Page 2663)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2667

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
StatusBar.Font (Page 2667)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
StatusBar.Font (Page 2667)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

2668 System Manual, 11/2022

Type
Float

Access
Read-write

Syntax
Font.Size

See also
StatusBar.Font (Page 2667)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
StatusBar.Font (Page 2667)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2669

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
StatusBar.Font (Page 2667)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2670 System Manual, 11/2022

Syntax
Font.Weight

See also
StatusBar.Font (Page 2667)

StatusBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the information bar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
StatusBar.Margin

See also
DetailedParameterControl.StatusBar (Page 2663)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2671

Syntax
Margin.Bottom

See also
StatusBar.Margin (Page 2671)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
StatusBar.Margin (Page 2671)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2672 System Manual, 11/2022

Syntax
Margin.Right

See also
StatusBar.Margin (Page 2671)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
StatusBar.Margin (Page 2671)

StatusBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the information
bar.

Type
Object, HmiPaddingPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2673

Syntax
StatusBar.Padding

See also
DetailedParameterControl.StatusBar (Page 2663)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
StatusBar.Padding (Page 2673)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2674 System Manual, 11/2022

Syntax
Padding.Left

See also
StatusBar.Padding (Page 2673)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
StatusBar.Padding (Page 2673)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2675

Syntax
Padding.Top

See also
StatusBar.Padding (Page 2673)

StatusBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
StatusBar.ShowToolTips

See also
DetailedParameterControl.StatusBar (Page 2663)

StatusBar.Visible

Description
The "Visible" property specifies whether the information bar is visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2676 System Manual, 11/2022

Syntax
StatusBar.Visible

See also
DetailedParameterControl.StatusBar (Page 2663)

DetailedParameterControl.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the parameter set display.

Type
String

Access
Read-only

Syntax
DetailedParameterControl.StyleItemClass

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.TabIndex

Description
The "TabIndex" property returns the position of the parameter set display in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
DetailedParameterControl.TabIndex

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2677

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.TimeZone

Description
The "TimeZone" property specifies the time zone.

Type
Int32, HmiTimeZone

Access
Read-write

Syntax
DetailedParameterControl.TimeZone

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.ToolBar

Description
The "ToolBar" property specifies the toolbar of the parameter set display.

Type
Object, HmiToolBarPart

Access
Read-write

Syntax
DetailedParameterControl.ToolBar

See also
DetailedParameterControl (Page 2587)

Programming scripts
10.2 WinCC Unified object model

2678 System Manual, 11/2022

ToolBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ToolBar.BackColor

See also
DetailedParameterControl.ToolBar (Page 2678)

ToolBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
toolbar.

Type
Object, HmiControlBarElementCollection (Page 2680)

Access
Read-only

Syntax
ToolBar.Elements

See also
DetailedParameterControl.ToolBar (Page 2678)
HmiControlBarElementCollection (Page 2680)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2679

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
ToolBar.Elements (Page 2679)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

2680 System Manual, 11/2022

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 2680)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 2682)

See also
HmiControlBarElementCollection (Page 2680)
Control Bar Elements (Page 2682)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2681

Control Bar Elements

ControlBarButton

Description
The "ControlBarButton" object represents a button of an information bar or toolbar.
You can reference the "ControlBarButton" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarButtonPart

Properties
The "ControlBarButton" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the label of the button.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the button can be operated in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.

Programming scripts
10.2 WinCC Unified object model

2682 System Manual, 11/2022

• HotKey
Returns the hotkey specified for the button.

• Mapping
Returns the function of the button.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the button is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the button is only operable while the corresponding button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the button is visible.

• Width
Specifies the width.

Methods
--

ControlBarButton.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2683

Access
Read-write

Syntax
ControlBarButton.AlternateBackColor

See also
ControlBarButton (Page 2682)

ControlBarButton.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBorderColor

See also
ControlBarButton (Page 2682)

ControlBarButton.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the button of an information bar or toolbar.

Type
Object, HmiFunctionRight

Programming scripts
10.2 WinCC Unified object model

2684 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarButton.Authorization

See also
ControlBarButton (Page 2682)

ControlBarButton.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BackColor

See also
ControlBarButton (Page 2682)

ControlBarButton.Badge

Description
The "Badge" property specifies the label of the button.

Type
Object, HmiBadgePart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2685

Access
Read-write

Syntax
ControlBarButton.Badge

See also
ControlBarButton (Page 2682)

ControlBarButton.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BorderColor

See also
ControlBarButton (Page 2682)

ControlBarButton.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Programming scripts
10.2 WinCC Unified object model

2686 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.BorderWidth

See also
ControlBarButton (Page 2682)

ControlBarButton.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarButton.Content

See also
ControlBarButton (Page 2682)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2687

Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarButton.Content (Page 2687)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

Programming scripts
10.2 WinCC Unified object model

2688 System Manual, 11/2022

See also
ControlBarButton.Content (Page 2687)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarButton.Content (Page 2687)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2689

Syntax
Content.Spacing

See also
ControlBarButton.Content (Page 2687)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarButton.Content (Page 2687)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above

Programming scripts
10.2 WinCC Unified object model

2690 System Manual, 11/2022

• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarButton.Content (Page 2687)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarButton.Content (Page 2687)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2691

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarButton.Content (Page 2687)

ControlBarButton.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

2692 System Manual, 11/2022

Syntax
ControlBarButton.CustomID

See also
ControlBarButton (Page 2682)

ControlBarButton.Enabled

Description
The "Enabled" property specifies whether the button can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Enabled

See also
ControlBarButton (Page 2682)

ControlBarButton.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2693

Syntax
ControlBarButton.ForeColor

See also
ControlBarButton (Page 2682)

ControlBarButton.Graphic

Description
The "Graphic" property specifies the graphic of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Graphic

See also
ControlBarButton (Page 2682)

ControlBarButton.Height

Description
The "Height" property specifies the height of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2694 System Manual, 11/2022

Syntax
ControlBarButton.Height

See also
ControlBarButton (Page 2682)

ControlBarButton.HotKey

Description
The "HotKey" property returns the hotkey specified for the button. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
ControlBarButton.HotKey

See also
ControlBarButton (Page 2682)

ControlBarButton.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2695

• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled

Programming scripts
10.2 WinCC Unified object model

2696 System Manual, 11/2022

• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarButton.Mapping

See also
ControlBarButton (Page 2682)

ControlBarButton.Margin

Description
The "Margin" property specifies the surrounded outer distance of the button.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2697

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarButton.Margin

See also
ControlBarButton (Page 2682)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarButton.Margin (Page 2697)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Programming scripts
10.2 WinCC Unified object model

2698 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarButton.Margin (Page 2697)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarButton.Margin (Page 2697)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2699

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarButton.Margin (Page 2697)

ControlBarButton.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumHeight

See also
ControlBarButton (Page 2682)

ControlBarButton.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Programming scripts
10.2 WinCC Unified object model

2700 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumWidth

See also
ControlBarButton (Page 2682)

ControlBarButton.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumHeight

See also
ControlBarButton (Page 2682)

ControlBarButton.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2701

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumWidth

See also
ControlBarButton (Page 2682)

ControlBarButton.Operability

Description
The "Operability" property returns whether the button is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarButton.Operability

See also
ControlBarButton (Page 2682)

Programming scripts
10.2 WinCC Unified object model

2702 System Manual, 11/2022

ControlBarButton.Padding

Description
The "Padding" property specifies the distance of the content from the border of the button.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarButton.Padding

See also
ControlBarButton (Page 2682)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarButton.Padding (Page 2703)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2703

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarButton.Padding (Page 2703)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarButton.Padding (Page 2703)

Programming scripts
10.2 WinCC Unified object model

2704 System Manual, 11/2022

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarButton.Padding (Page 2703)

ControlBarButton.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the button can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarButton.RequireExplicitUnlock

See also
ControlBarButton (Page 2682)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2705

ControlBarButton.Text

Description
The "Text" property specifies the label of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Text

See also
ControlBarButton (Page 2682)

ControlBarButton.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.ToolTipText

See also
ControlBarButton (Page 2682)

Programming scripts
10.2 WinCC Unified object model

2706 System Manual, 11/2022

ControlBarButton.Visible

Description
The "Visible" property specifies whether the button is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Visible

See also
ControlBarButton (Page 2682)

ControlBarButton.Width

Description
The "Width" property specifies the width of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Width

See also
ControlBarButton (Page 2682)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2707

ControlBarDisplay

Description
The "ControlBarDisplay" object represents a display area for text and graphics of an information
bar or toolbar.
You can reference the "ControlBarDisplay" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarDisplayPart

Properties
The "ControlBarDisplay" object has the following properties:
• Authorization

Returns the operator authorization.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the display area is enabled in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• Mapping

Returns the function of the display area.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

2708 System Manual, 11/2022

• Operability
Returns whether the display area is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the display area is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the display area is visible.

• Width
Specifies the width.

Methods
--

ControlBarDisplay.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the display.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarDislay.Authorization

See also
ControlBarDisplay (Page 2708)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2709

ControlBarDisplay.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarDislay.Content

See also
ControlBarDisplay (Page 2708)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

2710 System Manual, 11/2022

See also
ControlBarDisplay.Content (Page 2710)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarDisplay.Content (Page 2710)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2711

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarDisplay.Content (Page 2710)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarDisplay.Content (Page 2710)

Programming scripts
10.2 WinCC Unified object model

2712 System Manual, 11/2022

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarDisplay.Content (Page 2710)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2713

Syntax
Content.TextPosition

See also
ControlBarDisplay.Content (Page 2710)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarDisplay.Content (Page 2710)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

2714 System Manual, 11/2022

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarDisplay.Content (Page 2710)

ControlBarDisplay.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarDislay.CustomID

See also
ControlBarDisplay (Page 2708)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2715

ControlBarDisplay.Enabled

Description
The "Enabled" property specifies whether the display is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Enabled

See also
ControlBarDisplay (Page 2708)

ControlBarDisplay.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.ForeColor

See also
ControlBarDisplay (Page 2708)

Programming scripts
10.2 WinCC Unified object model

2716 System Manual, 11/2022

ControlBarDisplay.Graphic

Description
The "Graphic" property specifies the graphic of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Graphic

See also
ControlBarDisplay (Page 2708)

ControlBarDisplay.Height

Description
The "Height" property specifies the height of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Height

See also
ControlBarDisplay (Page 2708)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2717

ControlBarDisplay.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page

Programming scripts
10.2 WinCC Unified object model

2718 System Manual, 11/2022

• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2719

Syntax
ControlBarDislay.Mapping

See also
ControlBarDisplay (Page 2708)

ControlBarDisplay.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the display.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarDislay.Margin

See also
ControlBarDisplay (Page 2708)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2720 System Manual, 11/2022

Syntax
Margin.Bottom

See also
ControlBarDisplay.Margin (Page 2720)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarDisplay.Margin (Page 2720)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2721

Syntax
Margin.Right

See also
ControlBarDisplay.Margin (Page 2720)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarDisplay.Margin (Page 2720)

ControlBarDisplay.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2722 System Manual, 11/2022

Syntax
ControlBarDislay.MaximumHeight

See also
ControlBarDisplay (Page 2708)

ControlBarDisplay.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MaximumWidth

See also
ControlBarDisplay (Page 2708)

ControlBarDisplay.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2723

Syntax
ControlBarDislay.MinimumHeight

See also
ControlBarDisplay (Page 2708)

ControlBarDisplay.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MinimumWidth

See also
ControlBarDisplay (Page 2708)

ControlBarDisplay.Operability

Description
The "Operability" property returns whether the display is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Programming scripts
10.2 WinCC Unified object model

2724 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarDislay.Operability

See also
ControlBarDisplay (Page 2708)

ControlBarDisplay.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the display.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarDislay.Padding

See also
ControlBarDisplay (Page 2708)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2725

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarDisplay.Padding (Page 2725)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarDisplay.Padding (Page 2725)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

2726 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Right

See also
ControlBarDisplay.Padding (Page 2725)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarDisplay.Padding (Page 2725)

ControlBarDisplay.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the display can only be operated while the
associated button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2727

Access
Read-only

Syntax
ControlBarDislay.RequireExplicitUnlock

See also
ControlBarDisplay (Page 2708)

ControlBarDisplay.Text

Description
The "Text" property specifies the label of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Text

See also
ControlBarDisplay (Page 2708)

ControlBarDisplay.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the display.

Type
String

Programming scripts
10.2 WinCC Unified object model

2728 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.ToolTipText

See also
ControlBarDisplay (Page 2708)

ControlBarDisplay.Visible

Description
The "Visible" property specifies whether the display is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Visible

See also
ControlBarDisplay (Page 2708)

ControlBarDisplay.Width

Description
The "Width" property specifies the width of the display in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2729

Access
Read-write

Syntax
ControlBarDislay.Width

See also
ControlBarDisplay (Page 2708)

ControlBarLabel

Description
The "ControlBarLabel" object represents an identifier of an information bar or toolbar.
You can reference the "ControlBarLabel" object via the "HmiControlBarElementCollection" list.

Object type
HmiControlBarLabelPart

Properties
The "ControlBarLabel" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the identifier can be operated in runtime.
• ForeColor

Specifies the font color.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Height

Specifies the height.
• Mapping

Returns the function of the identifier.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.

Programming scripts
10.2 WinCC Unified object model

2730 System Manual, 11/2022

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the identifier is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the identifier is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the identifier is visible.

• Width
Specifies the width.

Methods
--

ControlBarLabel.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the identifier.

Type
Object, HmiFunctionRight

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2731

Syntax
ControlBarLabel.Authorization

See also
ControlBarLabel (Page 2730)

ControlBarLabel.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarLabel.CustomID

See also
ControlBarLabel (Page 2730)

ControlBarLabel.Enabled

Description
The "Enabled" property specifies whether the identifier is active in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2732 System Manual, 11/2022

Syntax
ControlBarLabel.Enabled

See also
ControlBarLabel (Page 2730)

ControlBarLabel.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.ForeColor

See also
ControlBarLabel (Page 2730)

ControlBarLabel.Height

Description
The "Height" property specifies the height of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2733

Syntax
ControlBarLabel.Height

See also
ControlBarLabel (Page 2730)

ControlBarLabel.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.HorizontalTextAlignment

See also
ControlBarLabel (Page 2730)

ControlBarLabel.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID

Programming scripts
10.2 WinCC Unified object model

2734 System Manual, 11/2022

Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2735

• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarLabel.Mapping

See also
ControlBarLabel (Page 2730)

Programming scripts
10.2 WinCC Unified object model

2736 System Manual, 11/2022

ControlBarLabel.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the identifier.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarLabel.Margin

See also
ControlBarLabel (Page 2730)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarLabel.Margin (Page 2737)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2737

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarLabel.Margin (Page 2737)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarLabel.Margin (Page 2737)

Programming scripts
10.2 WinCC Unified object model

2738 System Manual, 11/2022

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarLabel.Margin (Page 2737)

ControlBarLabel.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumHeight

See also
ControlBarLabel (Page 2730)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2739

ControlBarLabel.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumWidth

See also
ControlBarLabel (Page 2730)

ControlBarLabel.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumHeight

See also
ControlBarLabel (Page 2730)

Programming scripts
10.2 WinCC Unified object model

2740 System Manual, 11/2022

ControlBarLabel.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumWidth

See also
ControlBarLabel (Page 2730)

ControlBarLabel.Operability

Description
The "Operability" property returns whether the identifier is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarLabel.Operability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2741

See also
ControlBarLabel (Page 2730)

ControlBarLabel.Padding

Description
The "Padding" property specifies the spacing of the content from the frame of the identifier.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarLabel.Padding

See also
ControlBarLabel (Page 2730)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

Programming scripts
10.2 WinCC Unified object model

2742 System Manual, 11/2022

See also
ControlBarLabel.Padding (Page 2742)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarLabel.Padding (Page 2742)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2743

See also
ControlBarLabel.Padding (Page 2742)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarLabel.Padding (Page 2742)

ControlBarLabel.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the identifier can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarLabel.RequireExplicitUnlock

Programming scripts
10.2 WinCC Unified object model

2744 System Manual, 11/2022

See also
ControlBarLabel (Page 2730)

ControlBarLabel.Text

Description
The "Text" property specifies the label of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.Text

See also
ControlBarLabel (Page 2730)

ControlBarLabel.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.ToolTipText

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2745

See also
ControlBarLabel (Page 2730)

ControlBarLabel.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.VerticalTextAlignment

See also
ControlBarLabel (Page 2730)

ControlBarLabel.Visible

Description
The "Visible" property specifies whether the identifier is visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2746 System Manual, 11/2022

Syntax
ControlBarLabel.Visible

See also
ControlBarLabel (Page 2730)

ControlBarLabel.Width

Description
The "Width" property specifies the width of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Width

See also
ControlBarLabel (Page 2730)

ControlBarSeparator

Description
The "ControlBarSeparator" object represents a separator of an information bar or toolbar.
You can reference the "ControlBarSeparator" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarSeparatorPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2747

Properties
The "ControlBarSeparator" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the disconnector can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• Mapping

Returns the function of the separator.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the separator is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the disconnector is only operable while the associated button is being
pressed.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the disconnector is visible.

• Width
Specifies the width.

Methods
--

Programming scripts
10.2 WinCC Unified object model

2748 System Manual, 11/2022

ControlBarSeparator.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the separator.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarSeparator.Authorization

See also
ControlBarSeparator (Page 2747)

ControlBarSeparator.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarSeparator.CustomID

See also
ControlBarSeparator (Page 2747)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2749

ControlBarSeparator.Enabled

Description
The "Enabled" property specifies whether the separator is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Enabled

See also
ControlBarSeparator (Page 2747)

ControlBarSeparator.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.ForeColor

See also
ControlBarSeparator (Page 2747)

Programming scripts
10.2 WinCC Unified object model

2750 System Manual, 11/2022

ControlBarSeparator.Height

Description
The "Height" property specifies the height of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Height

See also
ControlBarSeparator (Page 2747)

ControlBarSeparator.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2751

• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms

Programming scripts
10.2 WinCC Unified object model

2752 System Manual, 11/2022

• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarSeparator.Mapping

See also
ControlBarSeparator (Page 2747)

ControlBarSeparator.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the separator.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2753

Syntax
ControlBarSeparator.Margin

See also
ControlBarSeparator (Page 2747)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarSeparator.Margin (Page 2753)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2754 System Manual, 11/2022

Syntax
Margin.Left

See also
ControlBarSeparator.Margin (Page 2753)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarSeparator.Margin (Page 2753)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2755

Syntax
Margin.Top

See also
ControlBarSeparator.Margin (Page 2753)

ControlBarSeparator.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MaximumHeight

See also
ControlBarSeparator (Page 2747)

ControlBarSeparator.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2756 System Manual, 11/2022

Syntax
ControlBarSeparator.MaximumWidth

See also
ControlBarSeparator (Page 2747)

ControlBarSeparator.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MinimumHeight

See also
ControlBarSeparator (Page 2747)

ControlBarSeparator.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2757

Syntax
ControlBarSeparator.MinimumWidth

See also
ControlBarSeparator (Page 2747)

ControlBarSeparator.Operability

Description
The "Operability" property returns whether the separator is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarSeparator.Operability

See also
ControlBarSeparator (Page 2747)

ControlBarSeparator.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the separator.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

2758 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarSeparator.Padding

See also
ControlBarSeparator (Page 2747)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarSeparator.Padding (Page 2758)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2759

Access
Read-write

Syntax
Padding.Left

See also
ControlBarSeparator.Padding (Page 2758)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarSeparator.Padding (Page 2758)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

2760 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Top

See also
ControlBarSeparator.Padding (Page 2758)

ControlBarSeparator.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the disconnector can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarSeparator.RequireExplicitUnlock

See also
ControlBarSeparator (Page 2747)

ControlBarSeparator.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the separator.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2761

Access
Read-write

Syntax
ControlBarSeparator.ToolTipText

See also
ControlBarSeparator (Page 2747)

ControlBarSeparator.Visible

Description
The "Visible" property specifies whether the separator is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Visible

See also
ControlBarSeparator (Page 2747)

ControlBarSeparator.Width

Description
The "Width" property specifies the width of the separator in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

2762 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarSeparator.Width

See also
ControlBarSeparator (Page 2747)

ControlBarTextBox

Description
The "ControlBarTextBox" object represents a text box of an information bar or toolbar.
You can reference the "ControlBarTextBox" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarTextBoxPart

Properties
The "ControlBarTextBox" object has the following properties:
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the text box can be operated in runtime.
• ForeColor

Specifies the font color.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2763

• Height
Specifies the height.

• HorizontalTextAlignment
Specifies the horizontal alignment of the text.

• Mapping
Returns the function of the text box.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the text box is operable.

• Padding
Specifies the distance of the content from the border.

• Readonly
Specifies whether the text box is write-protected.

• RequireExplicitUnlock
Returns whether the text box is only operable while the associated button is being pressed.

• Text
Specifies the labeling.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the text box is visible.

• Width
Specifies the width.

Methods
--

Programming scripts
10.2 WinCC Unified object model

2764 System Manual, 11/2022

ControlBarTextBox.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.AlternateBorderColor

See also
ControlBarTextBox (Page 2763)

ControlBarTextBox.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the text box of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarTextBox.Authorization

See also
ControlBarTextBox (Page 2763)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2765

ControlBarTextBox.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BackColor

See also
ControlBarTextBox (Page 2763)

ControlBarTextBox.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BorderColor

See also
ControlBarTextBox (Page 2763)

Programming scripts
10.2 WinCC Unified object model

2766 System Manual, 11/2022

ControlBarTextBox.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarTextBox.BorderWidth

See also
ControlBarTextBox (Page 2763)

ControlBarTextBox.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarTextBox.CustomID

See also
ControlBarTextBox (Page 2763)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2767

ControlBarTextBox.Enabled

Description
The "Enabled" property specifies whether the text box can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Enabled

See also
ControlBarTextBox (Page 2763)

ControlBarTextBox.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.ForeColor

See also
ControlBarTextBox (Page 2763)

Programming scripts
10.2 WinCC Unified object model

2768 System Manual, 11/2022

ControlBarTextBox.Height

Description
The "Height" property specifies the height of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Height

See also
ControlBarTextBox (Page 2763)

ControlBarTextBox.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.HorizontalTextAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2769

See also
ControlBarTextBox (Page 2763)

ControlBarTextBox.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

2770 System Manual, 11/2022

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2771

Access
Read-only

Syntax
ControlBarTextBox.Mapping

See also
ControlBarTextBox (Page 2763)

ControlBarTextBox.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the text box.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarTextBox.Margin

See also
ControlBarTextBox (Page 2763)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

2772 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarTextBox.Margin (Page 2772)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarTextBox.Margin (Page 2772)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2773

Access
Read-write

Syntax
Margin.Right

See also
ControlBarTextBox.Margin (Page 2772)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarTextBox.Margin (Page 2772)

ControlBarTextBox.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

2774 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarTextBox.MaximumHeight

See also
ControlBarTextBox (Page 2763)

ControlBarTextBox.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumWidth

See also
ControlBarTextBox (Page 2763)

ControlBarTextBox.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2775

Access
Read-write

Syntax
ControlBarTextBox.MinimumHeight

See also
ControlBarTextBox (Page 2763)

ControlBarTextBox.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumWidth

See also
ControlBarTextBox (Page 2763)

ControlBarTextBox.Operability

Description
The "Operability" property returns whether the text box is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

2776 System Manual, 11/2022

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarTextBox.Operability

See also
ControlBarTextBox (Page 2763)

ControlBarTextBox.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the text box.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarTextBox.Padding

See also
ControlBarTextBox (Page 2763)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2777

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarTextBox.Padding (Page 2777)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarTextBox.Padding (Page 2777)

Programming scripts
10.2 WinCC Unified object model

2778 System Manual, 11/2022

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarTextBox.Padding (Page 2777)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarTextBox.Padding (Page 2777)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2779

ControlBarTextBox.ReadOnly

Description
The "ReadOnly" property specifies whether the text box is read-only.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.ReadOnly

See also
ControlBarTextBox (Page 2763)

ControlBarTextBox.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the text box can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarTextBox.RequireExplicitUnlock

See also
ControlBarTextBox (Page 2763)

Programming scripts
10.2 WinCC Unified object model

2780 System Manual, 11/2022

ControlBarTextBox.Text

Description
The "Text" property specifies the label of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.Text

See also
ControlBarTextBox (Page 2763)

ControlBarTextBox.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.ToolTipText

See also
ControlBarTextBox (Page 2763)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2781

ControlBarTextBox.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.VerticalTextAlignment

See also
ControlBarTextBox (Page 2763)

ControlBarTextBox.Visible

Description
The "Visible" property specifies whether the text box is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Visible

Programming scripts
10.2 WinCC Unified object model

2782 System Manual, 11/2022

See also
ControlBarTextBox (Page 2763)

ControlBarTextBox.Width

Description
The "Width" property specifies the width of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Width

See also
ControlBarTextBox (Page 2763)

ControlBarToggleSwitch

Description
The "ControlBarToggleSwitch" object represents a switch of an information bar or toolbar.
You can reference the "ControlBarToggleSwitch" object via the
"HmiControlBarElementCollection" list.

Object type
HmiControlBarToggleSwitchPart

Properties
The "ControlBarToggleSwitch" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2783

• AlternateGraphic
Specifies the graphic for the "pressed" state.

• AlternateText
Specifies the text for the "pressed" state.

• Authorization
Returns the operator authorization.

• BackColor
Specifies the background color.

• Badge
Specifies the identifier of the switch.

• BorderColor
Specifies the line color.

• BorderWidth
Specifies the line thickness.

• Content
Specifies display options for text and graphics.

• CustomID
Returns the custom ID.

• Enabled
Specifies whether the switch can be operated in runtime.

• ForeColor
Specifies the font color.

• Graphic
Specifies the graphic.

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the switch.

• IsAlternateState
Specifies the current state of the switch.

• Mapping
Returns the function of the switch.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

2784 System Manual, 11/2022

• Operability
Returns whether the switch is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the switch is only operable while the associated button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the switch is visible.

• Width
Specifies the width.

Methods
--

ControlBarToggleSwitch.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBackColor

See also
ControlBarToggleSwitch (Page 2783)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2785

ControlBarToggleSwitch.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBorderColor

See also
ControlBarToggleSwitch (Page 2783)

ControlBarToggleSwitch.AlternateGraphic

Description
The "AlternateGraphic" property specifies the graphic of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateGraphic

See also
ControlBarToggleSwitch (Page 2783)

Programming scripts
10.2 WinCC Unified object model

2786 System Manual, 11/2022

ControlBarToggleSwitch.AlternateText

Description
The "AlternateText" property specifies the text of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateText

See also
ControlBarToggleSwitch (Page 2783)

ControlBarToggleSwitch.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the switch of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarToggleSwitch.Authorization

See also
ControlBarToggleSwitch (Page 2783)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2787

ControlBarToggleSwitch.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BackColor

See also
ControlBarToggleSwitch (Page 2783)

ControlBarToggleSwitch.Badge

Description
The "Badge" property specifies the identifier of the switch.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarToggleSwitch.Badge

See also
ControlBarToggleSwitch (Page 2783)

Programming scripts
10.2 WinCC Unified object model

2788 System Manual, 11/2022

ControlBarToggleSwitch.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderColor

See also
ControlBarToggleSwitch (Page 2783)

ControlBarToggleSwitch.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderWidth

See also
ControlBarToggleSwitch (Page 2783)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2789

ControlBarToggleSwitch.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Content

See also
ControlBarToggleSwitch (Page 2783)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

2790 System Manual, 11/2022

See also
ControlBarToggleSwitch.Content (Page 2790)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarToggleSwitch.Content (Page 2790)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2791

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 2790)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarToggleSwitch.Content (Page 2790)

Programming scripts
10.2 WinCC Unified object model

2792 System Manual, 11/2022

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarToggleSwitch.Content (Page 2790)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2793

Syntax
Content.TextPosition

See also
ControlBarToggleSwitch.Content (Page 2790)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarToggleSwitch.Content (Page 2790)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

2794 System Manual, 11/2022

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 2790)

ControlBarToggleSwitch.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarToggleSwitch.CustomID

See also
ControlBarToggleSwitch (Page 2783)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2795

ControlBarToggleSwitch.Enabled

Description
The "Enabled" property specifies whether the switch can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Enabled

See also
ControlBarToggleSwitch (Page 2783)

ControlBarToggleSwitch.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.ForeColor

See also
ControlBarToggleSwitch (Page 2783)

Programming scripts
10.2 WinCC Unified object model

2796 System Manual, 11/2022

ControlBarToggleSwitch.Graphic

Description
The "Graphic" property specifies the graphic of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Graphic

See also
ControlBarToggleSwitch (Page 2783)

ControlBarToggleSwitch.Height

Description
The "Height" property specifies the height of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Height

See also
ControlBarToggleSwitch (Page 2783)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2797

ControlBarToggleSwitch.HotKey

Description
The "HotKey" property returns the hotkey specified for the switch. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
Button.HotKey

See also
ControlBarToggleSwitch (Page 2783)

ControlBarToggleSwitch.IsAlternateState

Description
The "IsAlternateState" property specifies the current state of the switch.
• True: Switch is in "On" state.
• False: Switch is in "Off" state.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.IsAlternateState

Programming scripts
10.2 WinCC Unified object model

2798 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 2783)

ControlBarToggleSwitch.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2799

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

2800 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarToggleSwitch.Mapping

See also
ControlBarToggleSwitch (Page 2783)

ControlBarToggleSwitch.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the switch.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Margin

See also
ControlBarToggleSwitch (Page 2783)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2801

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarToggleSwitch.Margin (Page 2801)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarToggleSwitch.Margin (Page 2801)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

2802 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Right

See also
ControlBarToggleSwitch.Margin (Page 2801)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarToggleSwitch.Margin (Page 2801)

ControlBarToggleSwitch.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2803

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumHeight

See also
ControlBarToggleSwitch (Page 2783)

ControlBarToggleSwitch.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumWidth

See also
ControlBarToggleSwitch (Page 2783)

ControlBarToggleSwitch.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

2804 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumHeight

See also
ControlBarToggleSwitch (Page 2783)

ControlBarToggleSwitch.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumWidth

See also
ControlBarToggleSwitch (Page 2783)

ControlBarToggleSwitch.Operability

Description
The property "Operability" returns whether the switch is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2805

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarToggleSwitch.Operability

See also
ControlBarToggleSwitch (Page 2783)

ControlBarToggleSwitch.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the switch.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Padding

See also
ControlBarToggleSwitch (Page 2783)

Programming scripts
10.2 WinCC Unified object model

2806 System Manual, 11/2022

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarToggleSwitch.Padding (Page 2806)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarToggleSwitch.Padding (Page 2806)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2807

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarToggleSwitch.Padding (Page 2806)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarToggleSwitch.Padding (Page 2806)

Programming scripts
10.2 WinCC Unified object model

2808 System Manual, 11/2022

ControlBarToggleSwitch.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the switch can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarToggleSwitch.RequireExplicitUnlock

See also
ControlBarToggleSwitch (Page 2783)

ControlBarToggleSwitch.Text

Description
The "Text" property specifies the label of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Text

See also
ControlBarToggleSwitch (Page 2783)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2809

ControlBarToggleSwitch.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.ToolTipText

See also
ControlBarToggleSwitch (Page 2783)

ControlBarToggleSwitch.Visible

Description
The "Visible" property specifies whether the switch is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Visible

See also
ControlBarToggleSwitch (Page 2783)

Programming scripts
10.2 WinCC Unified object model

2810 System Manual, 11/2022

ControlBarToggleSwitch.Width

Description
The "Width" property specifies the width of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Width

See also
ControlBarToggleSwitch (Page 2783)

ToolBar.Enabled

Description
The "Enabled" property specifies whether the toolbar can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ToolBar.Enabled

See also
DetailedParameterControl.ToolBar (Page 2678)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2811

ToolBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ToolBar.Font

See also
DetailedParameterControl.ToolBar (Page 2678)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
ToolBar.Font (Page 2812)

Programming scripts
10.2 WinCC Unified object model

2812 System Manual, 11/2022

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
ToolBar.Font (Page 2812)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
ToolBar.Font (Page 2812)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2813

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ToolBar.Font (Page 2812)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

2814 System Manual, 11/2022

See also
ToolBar.Font (Page 2812)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
ToolBar.Font (Page 2812)

ToolBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the toolbar.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2815

Access
Read-write

Syntax
ToolBar.Margin

See also
DetailedParameterControl.ToolBar (Page 2678)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ToolBar.Margin (Page 2815)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

2816 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Left

See also
ToolBar.Margin (Page 2815)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ToolBar.Margin (Page 2815)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2817

Access
Read-write

Syntax
Margin.Top

See also
ToolBar.Margin (Page 2815)

ToolBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the toolbar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ToolBar.Padding

See also
DetailedParameterControl.ToolBar (Page 2678)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

2818 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Bottom

See also
ToolBar.Padding (Page 2818)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ToolBar.Padding (Page 2818)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2819

Access
Read-write

Syntax
Padding.Right

See also
ToolBar.Padding (Page 2818)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ToolBar.Padding (Page 2818)

ToolBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

2820 System Manual, 11/2022

Access
Read-write

Syntax
ToolBar.ShowToolTips

See also
DetailedParameterControl.ToolBar (Page 2678)

ToolBar.UseHotKeys

Description
The "UseHotKeys" property specifies whether the shortcut keys for the buttons in the toolbar are
activated.

Type
Bool

Access
Read-write

Syntax
ToolBar.UseHotKeys

See also
DetailedParameterControl.ToolBar (Page 2678)

ToolBar.Visible

Description
The "Visible" property specifies whether the toolbar is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2821

Access
Read-write

Syntax
ToolBar.Visible

See also
DetailedParameterControl.ToolBar (Page 2678)

DetailedParameterControl.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
DetailedParameterControl.Top

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.Visible

Description
The "Visible" property specifies whether the parameter set display is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

2822 System Manual, 11/2022

Access
Read-write

Syntax
DetailedParameterControl.Visible

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
DetailedParameterControl.Width

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the parameter set display.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2823

• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be moved
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
Enable multiple properties by adding the integer values or bit operators.

Access
Read-write

Syntax
DetailedParameterControl.WindowFlags

Example
Adapting the "windowFlags" tag depending on the window configuration:

Copy code
var windowFlags = HmiWindowFlag.ShowCaption | HmiWindowFlag.ShowBorder;
if (CanClose){
 windowFlags |= HmiWindowFlag.CanClose;
} else {
 windowFlags &= HmiWindowFlag.CanClose;
}

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
parameter set display.

Programming scripts
10.2 WinCC Unified object model

2824 System Manual, 11/2022

Syntax
DetailedParameterControl.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.FireCommand()

Description
The "FireCommand" method executes the command of an element in the toolbar or information
bar (control bar element, e.g. a button) of the parameter set control.

Syntax
DetailedParameterControl.FireCommand(commandId, custom)

Parameters
commandId
Type: Int32
ID of the element of the toolbar or information bar

custom
Type: Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2825

Type of element ID:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

Return value
--

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
DetailedParameterControl.PropertyFlashing(propertyName, enable[,
value][, alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate

Programming scripts
10.2 WinCC Unified object model

2826 System Manual, 11/2022

Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl_OnActivated()

Description
The "OnActivated" event occurs when a parameter set display receives focus:
• A parameter set display is selected via the configured tab sequence.
• A parameter set display that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
DetailedParameterControl_OnActivated(item)

Context
item
Type: Object
Parameter set display where the event occurs.

See also
DetailedParameterControl (Page 2587)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2827

DetailedParameterControl_OnCommandFired()

Description
The "OnCommandFired" event occurs when the operator has operated an element in the toolbar
or information bar (control bar element, e.g. a button) of the parameter set display.

Syntax
DetailedParameterControl_OnCommandFired(item, commandId, custom)

Context
item
Type: Object
Parameter set display where the event occurs.

commandId
Type: DInt
ID of the element of the toolbar or information bar that was operated.

custom
Type: Bool
Specifies the type of the ID of the operated element:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl_OnDeactivated()

Description
The "OnDeactivated" event occurs when the parameter set display loses focus because the
operator presses the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Programming scripts
10.2 WinCC Unified object model

2828 System Manual, 11/2022

Syntax
DetailedParameterControl_OnDeactivated(item)

Context
item
Type: Object
Parameter set display where the event occurs.

See also
DetailedParameterControl (Page 2587)

DetailedParameterControl_OnInitialized()

Description
The "OnInitialized" event occurs when a parameter set display has been successfully initialized
and the data connection to the PLC has been established.

Syntax
DetailedParameterControl_OnInitialized(item)

Context
item
Type: Object
Parameter set display where the event occurs.

See also
DetailedParameterControl (Page 2587)

DotNetControlContainer

Description
The "DotNetControlContainer" object represents a container for the display of WPF and
WinForms control elements in runtime.

Object type
HmiDotNetControlContainer

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2829

Properties
The "DotNetControlContainer" object has the following properties:
• Authorization

Returns the operator authorization.
• Caption

Specifies the text that is displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.
• ContainedType

Returns the type of the contained objects.
• CurrentQuality

Returns the poorest quality code of all tags which influence the display.
• Enabled

Specifies whether the display can be operated in runtime.
• Height

Specifies the height.
• Icon

Specifies the icon of the display.
• Layer

Returns the screen layer in which the display is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the display.
• Operability

Returns whether the display is operable.
• Parent

Returns the higher-level screen object.
• Properties

allows access to the dynamic properties of the control elements in the display.
• RenderingTemplate

Returns the name of the template from which the display was created.
• RequireExplicitUnlock

Returns whether the display is only operable while the associated button is being pressed.
• ShowFocusVisual

Specifies whether the display is highlighted when in focus.
• StyleItemClass

Returns the style which is applied to the display.
• TabIndex

Returns the position of the display in the tab sequence.

Programming scripts
10.2 WinCC Unified object model

2830 System Manual, 11/2022

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the display is visible.

• Width
Specifies the width.

• WindowFlags
Specifies the window configuration of the display.

Methods
The "DotNetControlContainer" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the display.
• PropertyFlashing()

Configures flashing of a property.

DotNetControlContainer.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
DotNetControlContainer.Authorization

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.Caption

Description
The "Caption" property specifies the text that is displayed in the title bar.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2831

Type
Object, HmiTextPart

Access
Read-write

Syntax
DotNetControlContainer.Caption

See also
DotNetControlContainer (Page 2829)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
DotNetControlContainer.Caption (Page 2831)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Programming scripts
10.2 WinCC Unified object model

2832 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 2832)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 2832)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2833

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 2832)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 2832)

Programming scripts
10.2 WinCC Unified object model

2834 System Manual, 11/2022

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 2832)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2835

Syntax
Font.Weight

See also
Text.Font (Page 2832)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
DotNetControlContainer.Caption (Page 2831)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2836 System Manual, 11/2022

Syntax
Text.Text

See also
DotNetControlContainer.Caption (Page 2831)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
DotNetControlContainer.Caption (Page 2831)

DotNetControlContainer.CaptionColor

Description
The "CaptionColor" property specifies the color of the title bar.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2837

Syntax
DotNetControlContainer.CaptionColor

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.ContainedType

Description
The "ContainedType" property returns the type of the contained objects (CustomControl,
SwacComponent, or WidgetType).

Type
String

Access
Read-only

Syntax
DotNetControlContainer.ContainedType

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
control.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.

Programming scripts
10.2 WinCC Unified object model

2838 System Manual, 11/2022

• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
DotNetControlContainer.CurrentQuality

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.Enabled

Description
The "Enabled" property specifies whether the display can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
DotNetControlContainer.Enabled

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.Height

Description
The "Height" property specifies the height in the DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2839

Type
UInt32

Access
Read-write

Syntax
DotNetControlContainer.Height

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.Icon

Description
The "Icon" property specifies the icon of the display.

Type
String

Access
Read-write

Syntax
DotNetControlContainer.Icon

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.Layer

Description
The "Layer" property returns the screen layer in which the control is located.

Type
Object, HmiLayerPart

Programming scripts
10.2 WinCC Unified object model

2840 System Manual, 11/2022

Access
Read-only

Syntax
DotNetControlContainer.Layer

See also
DotNetControlContainer (Page 2829)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
DotNetControlContainer.Layer (Page 2840)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2841

Access
Read-write

Syntax
Layer.MinimumZoom

See also
DotNetControlContainer.Layer (Page 2840)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
DotNetControlContainer.Layer (Page 2840)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

2842 System Manual, 11/2022

Access
Read-write

Syntax
Layer.Visible

See also
DotNetControlContainer.Layer (Page 2840)

DotNetControlContainer.Left

Description
The "Left" property sets the value of the X coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
DotNetControlContainer.Left

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2843

Access
Read-write

Syntax
DotNetControlContainer.Margin

See also
DotNetControlContainer (Page 2829)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
DotNetControlContainer.Margin (Page 2843)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

2844 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Left

See also
DotNetControlContainer.Margin (Page 2843)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
DotNetControlContainer.Margin (Page 2843)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2845

Access
Read-write

Syntax
Margin.Top

See also
DotNetControlContainer.Margin (Page 2843)

DotNetControlContainer.Name

Description
The "Name" property returns the name of the control.

Type
String

Access
Read-only

Syntax
DotNetControlContainer.Name

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.Operability

Description
The "Operability" property returns whether the display is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

2846 System Manual, 11/2022

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
DotNetControlContainer.Operability

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
DotNetControlContainer.Parent

See also
DotNetControlContainer (Page 2829)
Screen Items (Page 1571)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2847

Screen Items

Description
Screen Items (Page 1571)

DotNetControlContainer.Properties

Description
The "Properties" property allows access to the dynamic properties of the control elements in the
display.

Type
Object, HmiDynamicPropertyPart

Access
Read-write

Syntax
DotNetControlContainer.Properties

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the control was
created.

Type
String

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

2848 System Manual, 11/2022

Syntax
DotNetControlContainer.RenderingTemplate

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the display can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
DotNetControlContainer.RequireExplicitUnlock

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the display is highlighted when in focus.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2849

Syntax
DotNetControlContainer.ShowFocusVisual

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the display.

Type
String

Access
Read-only

Syntax
DotNetControlContainer.StyleItemClass

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.TabIndex

Description
The "TabIndex" property returns the position of the display in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
DotNetControlContainer.TabIndex

Programming scripts
10.2 WinCC Unified object model

2850 System Manual, 11/2022

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.Top

Description
The "Top" property sets the value of the Y coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
DotNetControlContainer.Top

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.Visible

Description
The "Visible" property specifies whether the display is visible.

Type
Bool

Access
Read-write

Syntax
DotNetControlContainer.Visible

See also
DotNetControlContainer (Page 2829)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2851

DotNetControlContainer.Width

Description
The "Width" property specifies the width in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
DotNetControlContainer.Width

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the display.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title
• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be moved
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Programming scripts
10.2 WinCC Unified object model

2852 System Manual, 11/2022

Note
You can enable multiple properties by adding integer values or bit operators.

Access
Read-write

Syntax
DotNetControlContainer.WindowFlags

Example
Adapting the "windowFlags" tag depending on the window configuration:

Copy code
var windowFlags = HmiWindowFlag.ShowCaption | HmiWindowFlag.ShowBorder;
if (CanClose){
 windowFlags |= HmiWindowFlag.CanClose;
} else {
 windowFlags &= HmiWindowFlag.CanClose;
}

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
display.

Syntax
DotNetControlContainer.CheckAuthorization()

Parameters
--

Return value
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2853

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
DotNetControlContainer (Page 2829)

DotNetControlContainer.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
DotNetControlContainer.PropertyFlashing(propertyName, enable[,
value][, alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

Programming scripts
10.2 WinCC Unified object model

2854 System Manual, 11/2022

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
DotNetControlContainer (Page 2829)

Ellipse

Description
The "Ellipse" object represents an ellipse in runtime.

Object type
HmiEllipse

Properties
The "Ellipse" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BackFillPattern

Specifies the pattern of the background or the fill.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2855

• BorderColor
Specifies the border color.

• BorderWidth
Specifies the border thickness.

• CenterX
Specifies the X coordinate of the center.

• CenterY
Sets the Y coordinate of the center.

• CurrentQuality
Returns the poorest quality code of all tags which influence the ellipse.

• DashType
Specifies the stroke style of the border or line.

• Enabled
Specifies whether the ellipse can be operated in runtime.

• FillDirection
Specifies the direction from which the ellipse is filled.

• FillLevel
Specifies the fill of the ellipse in percent.

• Layer
Returns the layer of the screen in which the ellipse is located.

• Margin
Specifies the margin.

• Name
Returns the name of the ellipse.

• Opacity
Specifies the opacity.

• Operability
Returns whether the ellipse is operable.

• Parent
Returns the higher-level screen object.

• RadiusX
Specifies the X radius.

• RadiusY
Specifies the Y radius.

• RequireExplicitUnlock
Returns whether the ellipse is only operable while the associated button is being pressed.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the ellipse rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

Programming scripts
10.2 WinCC Unified object model

2856 System Manual, 11/2022

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFillLevel
Specifies whether the fill level is displayed.

• ShowFocusVisual
Specifies whether the ellipse is highlighted when in focus.

• StyleItemClass
Returns the style which is applied to the ellipse.

• TabIndex
Returns the position of the ellipse in the tab sequence.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the ellipse is visible.

Methods
The "Ellipse" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the ellipse.
• PropertyFlashing()

Configures flashing of a property.

Events
The "Ellipse" object has the following events:
• OnActivated()

Occurs when an ellipse receives focus.
• OnContextTapped()

Occurs when an ellipse is right-clicked or long-touched.
• OnDeactivated()

Occurs when an ellipse loses focus.
• OnKeyDown()

Occurs when a key is pressed while the ellipse is in focus.
• OnKeyUp()

Occurs when a key is released while the ellipse is in focus.
• OnTapped()

Occurs when an ellipse is left-clicked or short-touched.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2857

Ellipse.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
Ellipse.AlternateBackColor

See also
Ellipse (Page 2855)

Ellipse.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color which is displayed for line
styles such as "Dash".

Type
UInt32

Access
Read-write

Syntax
Ellipse.AlternateBorderColor

See also
Ellipse (Page 2855)

Programming scripts
10.2 WinCC Unified object model

2858 System Manual, 11/2022

Ellipse.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
Ellipse.Authorization

See also
Ellipse (Page 2855)

Ellipse.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
Ellipse.BackColor

See also
Ellipse (Page 2855)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2859

Ellipse.BackFillPattern

Description
The "BackFillPattern" property specifies the pattern of the background or the fill.

Type
Int32, HmiFillPattern
Specifies the filling:
• Solid (0): Solid
• Transparent (65536): Transparent
• Horizontal (131072): Horizontal
• Vertical (131073): Vertical
• ForwardDiagonal (131074): Forward diagonal stripe
• BackwardDiagonal (131075): Backward diagonal stripe
• Cross (131076): Cross
• DiagonalCross (131077): Diagonal cross
• GradientHorizontal (1048576): Horizontal gradient
• GradientVertical (1048577): Vertical gradient
• GradientForwardDiagonal (1048578): Gradient forward diagonal
• GradientBackwardDiagonal (1048579): Gradient backward diagonal
• GradientHorizontalTricolor (1048832): Horizontal tricolor gradient
• GradientVerticalTricolor (1048833): Vertical tricolor gradient
• GradientForwardDiagonalTricolor (1048834): Forward diagonal tricolor gradient
• GradientBackwardDiagonalTricolor (1048835): Backward diagonal tricolor gradient

Access
Read-write

Syntax
Ellipse.BackFillPattern

See also
Ellipse (Page 2855)

Programming scripts
10.2 WinCC Unified object model

2860 System Manual, 11/2022

Ellipse.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
Ellipse.BorderColor

See also
Ellipse (Page 2855)

Ellipse.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
Ellipse.BorderWidth

See also
Ellipse (Page 2855)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2861

Ellipse.CenterX

Description
The "CenterX" property specifies the X coordinate of the center.

Type
Int32

Access
Read-write

Syntax
Ellipse.CenterX

See also
Ellipse (Page 2855)
Ellipse.CenterY (Page 2862)

Ellipse.CenterY

Description
The "CenterY" property specifies the Y coordinate of the center.

Type
Int32

Access
Read-write

Syntax
Ellipse.CenterY

See also
Ellipse (Page 2855)
Ellipse.CenterX (Page 2862)

Programming scripts
10.2 WinCC Unified object model

2862 System Manual, 11/2022

Ellipse.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
ellipse.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
Ellipse.CurrentQuality

See also
Ellipse (Page 2855)

Ellipse.DashType

Description
The "DashType" property specifies the stroke type of the border or line.

Type
Int32, HmiDashType
Specifies the stroke style:
• Solid (0): Solid
• Dash(1): Dashed
• Dot (2): Dotted

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2863

• DashDot (3): Dash-dotted
• DashDotDot (4): Dash-dot-dot

Access
Read-write

Syntax
Ellipse.DashType

See also
Ellipse (Page 2855)

Ellipse.Enabled

Description
The "Enabled" property specifies whether the ellipse can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
Ellipse.Enabled

See also
Ellipse (Page 2855)

Ellipse.FillDirection

Description
The "FillDirection" property specifies the direction from which the ellipse is filled.

Type
Int32, HmiFillDirection

Programming scripts
10.2 WinCC Unified object model

2864 System Manual, 11/2022

Specifies the filling direction:
• BottomToTop (0): From bottom to top
• TopToBottom (1): From top to bottom
• LeftToRight (2): From left to right
• RightToLeft (3): From right to left

Access
Read-write

Syntax
Ellipse.FillDirection

See also
Ellipse (Page 2855)

Ellipse.FillLevel

Description
The "FillLevel" property specifies the fill level of the ellipse in percent.

Type
UInt8

Access
Read-write

Syntax
Ellipse.FillLevel

See also
Ellipse (Page 2855)

Ellipse.Layer

Description
The "Layer" property returns the layer of the screen in which the ellipse is located.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2865

Type
Object, HmiLayerPart

Access
Read-only

Syntax
Ellipse.Layer

See also
Ellipse (Page 2855)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
Ellipse.Layer (Page 2865)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Programming scripts
10.2 WinCC Unified object model

2866 System Manual, 11/2022

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
Ellipse.Layer (Page 2865)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
Ellipse.Layer (Page 2865)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2867

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
Ellipse.Layer (Page 2865)

Ellipse.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
Ellipse.Margin

See also
Ellipse (Page 2855)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Programming scripts
10.2 WinCC Unified object model

2868 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
Ellipse.Margin (Page 2868)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
Ellipse.Margin (Page 2868)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2869

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
Ellipse.Margin (Page 2868)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
Ellipse.Margin (Page 2868)

Ellipse.Name

Description
The "Name" property returns the name of the ellipse.

Programming scripts
10.2 WinCC Unified object model

2870 System Manual, 11/2022

Type
String

Access
Read-only

Syntax
Ellipse.Name

See also
Ellipse (Page 2855)

Ellipse.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" indicates completely transparent.

Type
Float

Access
Read-write

Syntax
Ellipse.Opacity

See also
Ellipse (Page 2855)

Ellipse.Operability

Description
The "Operability" property returns whether the ellipse is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2871

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
Ellipse.Operability

See also
Ellipse (Page 2855)

Ellipse.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
Ellipse.Parent

See also
Ellipse (Page 2855)
Screen Items (Page 1571)

Programming scripts
10.2 WinCC Unified object model

2872 System Manual, 11/2022

Screen Items

Description
Screen Items (Page 1571)

Ellipse.RadiusX

Description
The "RadiusX" property specifies the X radius.

Type
UInt32

Access
Read-write

Syntax
Ellipse.RadiusX

See also
Ellipse (Page 2855)
Ellipse.RadiusY (Page 2873)

Ellipse.RadiusY

Description
The "RadiusY" property specifies the Y radius.

Type
UInt32

Access
Read-write

Syntax
Ellipse.RadiusY

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2873

See also
Ellipse (Page 2855)
Ellipse.RadiusX (Page 2873)

Ellipse.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the ellipse can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
Ellipse.RequireExplicitUnlock

See also
Ellipse (Page 2855)

Ellipse.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
Ellipse.RotationAngle

Programming scripts
10.2 WinCC Unified object model

2874 System Manual, 11/2022

See also
Ellipse (Page 2855)
Ellipse.RotationCenterPlacement (Page 2875)
Ellipse.RotationCenterX (Page 2876)
Ellipse.RotationCenterY (Page 2876)

Ellipse.RotationCenterPlacement

Description
The "RotationCenterPlacement" property specifies the reference point around which the ellipse
rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
Ellipse.RotationCenterPlacement

See also
Ellipse (Page 2855)
Ellipse.RotationAngle (Page 2874)
Ellipse.RotationCenterX (Page 2876)
Ellipse.RotationCenterY (Page 2876)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2875

Ellipse.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
Ellipse.RotationCenterX

See also
Ellipse (Page 2855)
Ellipse.RotationAngle (Page 2874)
Ellipse.RotationCenterPlacement (Page 2875)
Ellipse.RotationCenterY (Page 2876)

Ellipse.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
Ellipse.RotationCenterY

Programming scripts
10.2 WinCC Unified object model

2876 System Manual, 11/2022

See also
Ellipse (Page 2855)
Ellipse.RotationAngle (Page 2874)
Ellipse.RotationCenterPlacement (Page 2875)
Ellipse.RotationCenterX (Page 2876)

Ellipse.ShowFillLevel

Description
The "ShowFillLevel" property specifies whether the fill level is displayed.

Type
Bool

Access
Read-write

Syntax
Ellipse.ShowFillLevel

See also
Ellipse (Page 2855)

Ellipse.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the ellipse is highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
Ellipse.ShowFocusVisual

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2877

See also
Ellipse (Page 2855)

Ellipse.StyleItemClass

Description
The "StyleItemClass" property returns the style is applied to the ellipse.

Type
String

Access
Read-only

Syntax
Ellipse.StyleItemClass

See also
Ellipse (Page 2855)

Ellipse.TabIndex

Description
The "TabIndex" property returns the position of the ellipse in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
Ellipse.TabIndex

See also
Ellipse (Page 2855)

Programming scripts
10.2 WinCC Unified object model

2878 System Manual, 11/2022

Ellipse.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
Ellipse.ToolTipText

See also
Ellipse (Page 2855)

Ellipse.Visible

Description
The "Visible" property specifies whether the ellipse is visible.

Type
Bool

Access
Read-write

Syntax
Ellipse.Visible

See also
Ellipse (Page 2855)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2879

Ellipse.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
ellipse.

Syntax
Ellipse.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
Ellipse (Page 2855)

Ellipse.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
Ellipse.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Programming scripts
10.2 WinCC Unified object model

2880 System Manual, 11/2022

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
Ellipse (Page 2855)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2881

Ellipse_OnActivated()

Description
The "OnActivated" event occurs when an ellipse receives focus:
• An ellipse is selected via the configured tab sequence.
• An ellipse that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
Ellipse_OnActivated(item)

Context
item
Type: Object
Ellipse where the event occurs.

See also
Ellipse (Page 2855)

Ellipse_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• An ellipse is right-clicked.
• An ellipse is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
Ellipse_OnContextTapped(item, x, y, modifiers, trigger)

Programming scripts
10.2 WinCC Unified object model

2882 System Manual, 11/2022

Context
item
Type: Object
Ellipse where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2883

See also
Ellipse (Page 2855)

Ellipse_OnDeactivated()

Description
The "OnDeactivated" event occurs when the ellipse loses focus because the operator presses the
<TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
Ellipse_OnDeactivated(item)

Context
item
Type: Object
Ellipse where the event occurs.

See also
Ellipse (Page 2855)

Ellipse_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the ellipse is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

2884 System Manual, 11/2022

Syntax
Ellipse_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Ellipse where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Ellipse (Page 2855)

Ellipse_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the ellipse is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2885

Syntax
Ellipse_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Ellipse where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Ellipse (Page 2855)

Programming scripts
10.2 WinCC Unified object model

2886 System Manual, 11/2022

Ellipse_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• An ellipse is left-clicked.
• The <RETURN> or <SPACE> key is pressed when an ellipse has the focus.
• An ellipse is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
Ellipse_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Ellipse where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2887

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Ellipse (Page 2855)

EllipseSegment

Description
The "EllipseSegment" object represents an ellipse segment in runtime.

Object type
HmiEllipseSegment

Programming scripts
10.2 WinCC Unified object model

2888 System Manual, 11/2022

Properties
The "EllipseSegment" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• AngleRange

Specifies the arc angle.
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BackFillPattern

Specifies the pattern of the background or the fill.
• BorderColor

Specifies the border color.
• BorderWidth

Specifies the border thickness.
• CenterX

Specifies the X coordinate of the rotation point.
• CenterY

Specifies the Y coordinate of the rotation point.
• CurrentQuality

Returns the poorest quality code of all tags which influence the ellipse segment.
• DashType

Specifies the stroke style of the border or line.
• Enabled

Specifies whether the ellipse segment can be operated in runtime.
• FillDirection

Specifies the direction from which the ellipse segment is filled.
• FillLevel

Specifies the fill of the ellipse segment in percent.
• Layer

Returns the layer of the screen in which the ellipse segment is located.
• Margin

Specifies the margin.
• Name

Returns the name of the ellipse segment.
• Opacity

Specifies the opacity.
• Operability

Returns whether the ellipse segment is operable.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2889

• Parent
Returns the higher-level screen object.

• RadiusX
Specifies the X radius.

• RadiusY
Specifies the Y radius.

• RequireExplicitUnlock
Returns whether the ellipse segment is only operable while the associated button is being
pressed.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the ellipse segment rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFillLevel
Specifies whether the fill level is displayed.

• ShowFocusVisual
Specifies whether the ellipse segment is highlighted when in focus.

• StartAngle
Specifies the angle by which the start point deviates from the zero position (0°).

• StyleItemClass
Returns the style which is applied to the ellipse segment.

• TabIndex
Returns the position of the ellipse segment in the tab sequence.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the ellipse segment is visible.

Methods
The "EllipseSegment" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the ellipse segment.
• PropertyFlashing()

Configures flashing of a property.

Programming scripts
10.2 WinCC Unified object model

2890 System Manual, 11/2022

Events
The "EllipseSegment" object has the following events:
• OnActivated()

Occurs when an ellipse segment receives focus.
• OnContextTapped()

Occurs when an ellipse segment is right-clicked or long-touched.
• OnDeactivated()

Occurs when an ellipse segment loses the focus.
• OnKeyDown()

Occurs when a key is pressed while the ellipse segment is in focus.
• OnKeyUp()

Occurs when a key is released while the ellipse segment is in focus.
• OnTapped()

Occurs when an ellipse segment is left-clicked or short-touched.

EllipseSegment.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
EllipseSegment.AlternateBackColor

See also
EllipseSegment (Page 2888)

EllipseSegment.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color which is displayed for line
styles such as "Dash".

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2891

Type
UInt32

Access
Read-write

Syntax
EllipseSegment.AlternateBorderColor

See also
EllipseSegment (Page 2888)

EllipseSegment.AngleRange

Description
The "AngleRange" property specifies the arc angle clockwise.

Type
Int32

Access
Read-write

Syntax
EllipseSegment.AngleRange

See also
EllipseSegment (Page 2888)

EllipseSegment.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Programming scripts
10.2 WinCC Unified object model

2892 System Manual, 11/2022

Access
Read-only

Syntax
EllipseSegment.Authorization

See also
EllipseSegment (Page 2888)

EllipseSegment.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
EllipseSegment.BackColor

See also
EllipseSegment (Page 2888)

EllipseSegment.BackFillPattern

Description
The "BackFillPattern" property specifies the pattern of the background or the fill.

Type
Int32, HmiFillPattern
Specifies the filling:
• Solid (0): Solid
• Transparent (65536): Transparent

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2893

• Horizontal (131072): Horizontal
• Vertical (131073): Vertical
• ForwardDiagonal (131074): Forward diagonal stripe
• BackwardDiagonal (131075): Backward diagonal stripe
• Cross (131076): Cross
• DiagonalCross (131077): Diagonal cross
• GradientHorizontal (1048576): Horizontal gradient
• GradientVertical (1048577): Vertical gradient
• GradientForwardDiagonal (1048578): Gradient forward diagonal
• GradientBackwardDiagonal (1048579): Gradient backward diagonal
• GradientHorizontalTricolor (1048832): Horizontal tricolor gradient
• GradientVerticalTricolor (1048833): Vertical tricolor gradient
• GradientForwardDiagonalTricolor (1048834): Forward diagonal tricolor gradient
• GradientBackwardDiagonalTricolor (1048835): Backward diagonal tricolor gradient

Access
Read-write

Syntax
EllipseSegment.BackFillPattern

See also
EllipseSegment (Page 2888)

EllipseSegment.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2894 System Manual, 11/2022

Syntax
EllipseSegment.BorderColor

See also
EllipseSegment (Page 2888)

EllipseSegment.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
EllipseSegment.BorderWidth

See also
EllipseSegment (Page 2888)

EllipseSegment.CenterX

Description
The "CenterX" property specifies the X coordinate of the rotation point.

Type
Int32

Access
Read-write

Syntax
EllipseSegment.CenterX

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2895

See also
EllipseSegment (Page 2888)

EllipseSegment.CenterY

Description
The "CenterY" property specifies the Y coordinate of the rotation point.

Type
Int32

Access
Read-write

Syntax
EllipseSegment.CenterY

See also
EllipseSegment (Page 2888)

EllipseSegment.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
ellipse segment.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Programming scripts
10.2 WinCC Unified object model

2896 System Manual, 11/2022

Access
Read-only

Syntax
EllipseSegment.CurrentQuality

See also
EllipseSegment (Page 2888)

EllipseSegment.DashType

Description
The "DashType" property specifies the stroke type of the border or line.

Type
Int32, HmiDashType
Specifies the stroke style:
• Solid (0): Solid
• Dash(1): Dashed
• Dot (2): Dotted
• DashDot (3): Dash-dotted
• DashDotDot (4): Dash-dot-dot

Access
Read-write

Syntax
EllipseSegment.DashType

See also
EllipseSegment (Page 2888)

EllipseSegment.Enabled

Description
The "Enabled" property specifies whether the ellipse segment can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2897

Type
Bool

Access
Read-write

Syntax
EllipseSegment.Enabled

See also
EllipseSegment (Page 2888)

EllipseSegment.FillDirection

Description
The "FillDirection" property specifies the direction from which the ellipse segment is filled.

Type
Int32, HmiFillDirection
Specifies the filling direction:
• BottomToTop (0): From bottom to top
• TopToBottom (1): From top to bottom
• LeftToRight (2): From left to right
• RightToLeft (3): From right to left

Access
Read-write

Syntax
EllipseSegment.FillDirection

See also
EllipseSegment (Page 2888)

Programming scripts
10.2 WinCC Unified object model

2898 System Manual, 11/2022

EllipseSegment.FillLevel

Description
The "FillLevel" property specifies the fill level of the ellipse segment in percent.

Type
UInt8

Access
Read-write

Syntax
EllipseSegment.FillLevel

See also
EllipseSegment (Page 2888)

EllipseSegment.Layer

Description
The "Layer" property returns the layer of the screen in which the ellipse segment is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
EllipseSegment.Layer

See also
EllipseSegment (Page 2888)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2899

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
EllipseSegment.Layer (Page 2899)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
EllipseSegment.Layer (Page 2899)

Programming scripts
10.2 WinCC Unified object model

2900 System Manual, 11/2022

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
EllipseSegment.Layer (Page 2899)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
EllipseSegment.Layer (Page 2899)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2901

EllipseSegment.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
EllipseSegment.Margin

See also
EllipseSegment (Page 2888)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
EllipseSegment.Margin (Page 2902)

Programming scripts
10.2 WinCC Unified object model

2902 System Manual, 11/2022

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
EllipseSegment.Margin (Page 2902)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
EllipseSegment.Margin (Page 2902)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2903

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
EllipseSegment.Margin (Page 2902)

EllipseSegment.Name

Description
The "Name" property returns the name of the ellipse segment.

Type
String

Access
Read-only

Syntax
EllipseSegment.Name

See also
EllipseSegment (Page 2888)

Programming scripts
10.2 WinCC Unified object model

2904 System Manual, 11/2022

EllipseSegment.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" indicates completely transparent.

Type
Float

Access
Read-write

Syntax
EllipseSegment.Opacity

See also
EllipseSegment (Page 2888)

EllipseSegment.Operability

Description
The "Operability" property returns whether the ellipse segment is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
EllipseSegment.Operability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2905

See also
EllipseSegment (Page 2888)

EllipseSegment.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
EllipseSegment.Parent

See also
EllipseSegment (Page 2888)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

EllipseSegment.RadiusX

Description
The "RadiusX" property specifies the X radius.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

2906 System Manual, 11/2022

Access
Read-write

Syntax
EllipseSegment.RadiusX

See also
EllipseSegment (Page 2888)

EllipseSegment.RadiusY

Description
The "RadiusY" property specifies the Y radius.

Type
UInt32

Access
Read-write

Syntax
EllipseSegment.RadiusY

See also
EllipseSegment (Page 2888)

EllipseSegment.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the ellipse segment can only be operated
while the associated button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2907

Access
Read-only

Syntax
EllipseSegment.RequireExplicitUnlock

See also
EllipseSegment (Page 2888)

EllipseSegment.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
EllipseSegment.RotationAngle

See also
EllipseSegment (Page 2888)
EllipseSegment.RotationCenterPlacement (Page 2908)
EllipseSegment.RotationCenterX (Page 2909)
EllipseSegment.RotationCenterY (Page 2910)

EllipseSegment.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the ellipse
segment rotates.

Programming scripts
10.2 WinCC Unified object model

2908 System Manual, 11/2022

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
EllipseSegment.RotationCenterPlacement

See also
EllipseSegment (Page 2888)
EllipseSegment.RotationAngle (Page 2908)
EllipseSegment.RotationCenterX (Page 2909)
EllipseSegment.RotationCenterY (Page 2910)

EllipseSegment.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
EllipseSegment.RotationCenterX

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2909

See also
EllipseSegment (Page 2888)
EllipseSegment.RotationAngle (Page 2908)
EllipseSegment.RotationCenterPlacement (Page 2908)
EllipseSegment.RotationCenterY (Page 2910)

EllipseSegment.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
EllipseSegment.RotationCenterY

See also
EllipseSegment (Page 2888)
EllipseSegment.RotationAngle (Page 2908)
EllipseSegment.RotationCenterPlacement (Page 2908)
EllipseSegment.RotationCenterX (Page 2909)

EllipseSegment.ShowFillLevel

Description
The "ShowFillLevel" property specifies whether the fill level is displayed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

2910 System Manual, 11/2022

Access
Read-write

Syntax
EllipseSegment.ShowFillLevel

See also
EllipseSegment (Page 2888)

EllipseSegment.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the ellipse segment is highlighted when in
focus.

Type
Bool

Access
Read-write

Syntax
EllipseSegment.ShowFocusVisual

See also
EllipseSegment (Page 2888)

EllipseSegment.StartAngle

Description
The "StartAngle" specifies the angle by which the start point deviates from the zero position (0°
corresponds to 3 o'clock).

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2911

Access
Read-write

Syntax
EllipseSegment.StartAngle

See also
EllipseSegment (Page 2888)

EllipseSegment.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the ellipse segment.

Type
String

Access
Read-only

Syntax
EllipseSegment.StyleItemClass

See also
EllipseSegment (Page 2888)

EllipseSegment.TabIndex

Description
The "TabIndex" property returns the position of the ellipse segment in the tab sequence.

Type
UInt16

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

2912 System Manual, 11/2022

Syntax
EllipseSegment.TabIndex

See also
EllipseSegment (Page 2888)

EllipseSegment.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
EllipseSegment.ToolTipText

See also
EllipseSegment (Page 2888)

EllipseSegment.Visible

Description
The "Visible" property specifies whether the ellipse segment is visible.

Type
Bool

Access
Read-write

Syntax
EllipseSegment.Visible

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2913

See also
EllipseSegment (Page 2888)

EllipseSegment.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
ellipse segment.

Syntax
EllipseSegment.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
EllipseSegment (Page 2888)

EllipseSegment.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Programming scripts
10.2 WinCC Unified object model

2914 System Manual, 11/2022

Syntax
EllipseSegment.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
EllipseSegment (Page 2888)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2915

EllipseSegment_OnActivated()

Description
The "OnActivated" event occurs when an ellipse segment receives focus:
• An ellipse segment is selected via the configured tab sequence.
• An ellipse segment that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
EllipseSegment_OnActivated(item)

Context
item
Type: Object
Ellipse segment where the event occurs.

See also
EllipseSegment (Page 2888)

EllipseSegment_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• An ellipse segment is right-clicked.
• An ellipse segment is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
EllipseSegment_OnContextTapped(item, x, y, modifiers, trigger)

Programming scripts
10.2 WinCC Unified object model

2916 System Manual, 11/2022

Context
item
Type: Object
Ellipse segment where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2917

See also
EllipseSegment (Page 2888)

EllipseSegment_OnDeactivated()

Description
The "OnDeactivated" event occurs when an ellipse segment loses focus because the operator
presses the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
EllipseSegment_OnDeactivated(item)

Context
item
Type: Object
Ellipse segment where the event occurs.

See also
EllipseSegment (Page 2888)

EllipseSegment_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the ellipse segment is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

2918 System Manual, 11/2022

Syntax
EllipseSegment_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Ellipse segment where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
EllipseSegment (Page 2888)

EllipseSegment_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the ellipse segment is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2919

Syntax
EllipseSegment_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Ellipse segment where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
EllipseSegment (Page 2888)

Programming scripts
10.2 WinCC Unified object model

2920 System Manual, 11/2022

EllipseSegment_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• An ellipse segment is left-clicked.
• The <RETURN> or <SPACE> key is pressed when an ellipse segment has the focus.
• An ellipse segment is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
EllipseSegment_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Ellipse segment where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2921

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
EllipseSegment (Page 2888)

EllipticalArc

Description
The "EllipticalArc" object represents an elliptical arc in runtime.

Object type
HmiEllipticalArc

Programming scripts
10.2 WinCC Unified object model

2922 System Manual, 11/2022

Properties
The "EllipticalArc" object has the following properties:
• AlternateLineColor

Specifies the second line color which is displayed for line styles such as "Dash".
• AngleRange

Specifies the arc angle.
• Authorization

Returns the operator authorization.
• CapType

Specifies the shape of the line ends.
• CenterX

Specifies the X coordinate of the rotation point.
• CenterY

Specifies the Y coordinate of the rotation point.
• CurrentQuality

Returns the poorest quality code of all tags which influence the elliptical arc.
• DashType

Specifies the stroke style of the border or line.
• Enabled

Specifies whether the elliptical arc can be operated in runtime.
• EndType

Specifies the type of line end.
• Layer

Returns the layer of the screen in which the elliptical arc is located.
• LineColor

Specifies the line color.
• LineWidth

Specifies the line thickness.
• Margin

Specifies the margin.
• Name

Returns the name of the elliptical arc.
• Opacity

Specifies the opacity.
• Operability

Returns whether the elliptical arc is operable.
• Parent

Returns the higher-level screen object.
• RadiusX

Specifies the X radius.
• RadiusY

Specifies the Y radius.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2923

• RequireExplicitUnlock
Returns whether the elliptical arc is only operable while the associated button is being
pressed.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the elliptical arc rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFocusVisual
Specifies whether the elliptical arc is highlighted when in focus.

• StartAngle
Specifies the angle by which the start point deviates from the zero position (0°).

• StartType
Specifies the type of line start.

• StyleItemClass
Returns the style which is applied to the elliptical arc.

• TabIndex
Returns the position of the elliptical arc in the tab sequence.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the elliptical arc is visible.

Methods
The "EllipticalArc" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the elliptical arc.
• PropertyFlashing()

Configures flashing of a property.

Events
The "EllipticalArc" object has the following events:
• OnActivated()

Occurs when an elliptical arc receives focus.
• OnContextTapped()

Occurs when an elliptical arc is right-clicked or long-touched.
• OnDeactivated()

Occurs when an elliptical arc loses focus.

Programming scripts
10.2 WinCC Unified object model

2924 System Manual, 11/2022

• OnKeyDown()
Occurs when a key is pressed while the elliptical arc is in focus.

• OnKeyUp()
Occurs when a key is released while the elliptical arc is in focus.

• OnTapped()
Occurs when an elliptical arc is left-clicked or short-touched.

EllipticalArc.AlternateLineColor

Description
The "AlternateLineColor" property specifies the second line color which is displayed for line styles
such as "Dash".

Type
UInt32

Access
Read-write

Syntax
EllipticalArc.AlternateLineColor

See also
EllipticalArc (Page 2922)

EllipticalArc.AngleRange

Description
The "AngleRange" property specifies the arc angle clockwise.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2925

Syntax
EllipticalArc.AngleRange

See also
EllipticalArc (Page 2922)

EllipticalArc.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
EllipticalArc.Authorization

See also
EllipticalArc (Page 2922)

EllipticalArc.CapType

Description
The "CapType" property specifies the shape of the line ends.

Type
Int32, HmiCapType
Specifies the line ends:
• Round (0): Round (line extends beyond the line end point with half the line thickness)
• Square (256): Square (line extends beyond the line end point with half the line thickness)
• Flat (512): Justified (line ends at the line end point)

Programming scripts
10.2 WinCC Unified object model

2926 System Manual, 11/2022

Access
Read-write

Syntax
EllipticalArc.CapType

See also
EllipticalArc (Page 2922)

EllipticalArc.CenterX

Description
The "CenterX" property specifies the X coordinate of the rotation point.

Type
Int32

Access
Read-write

Syntax
EllipticalArc.CenterX

See also
EllipticalArc (Page 2922)

EllipticalArc.CenterY

Description
The "CenterY" property specifies the Y coordinate of the rotation point.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2927

Syntax
EllipticalArc.CenterY

See also
EllipticalArc (Page 2922)

EllipticalArc.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
elliptical arc.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
EllipticalArc.CurrentQuality

See also
EllipticalArc (Page 2922)

EllipticalArc.DashType

Description
The "DashType" property specifies the stroke type of the border or line.

Programming scripts
10.2 WinCC Unified object model

2928 System Manual, 11/2022

Type
Int32, HmiDashType
Specifies the stroke style:
• Solid (0): Solid
• Dash(1): Dashed
• Dot (2): Dotted
• DashDot (3): Dash-dotted
• DashDotDot (4): Dash-dot-dot

Access
Read-write

Syntax
EllipticalArc.DashType

See also
EllipticalArc (Page 2922)

EllipticalArc.Enabled

Description
The "Enabled" property specifies whether the elliptical arc can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
EllipticalArc.Enabled

See also
EllipticalArc (Page 2922)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2929

EllipticalArc.EndType

Description
The "EndType" property specifies the line end type.

Type
Int32, HmiLineEndType
Specifies the line end type:
• Line (0): Line
• EmptyArrow (1): Empty arrow
• Arrow (2): Arrow
• ReversedArrow (3): Reverse arrow
• EmptyCircle (5): Empty circle
• Circle (6): Circle

Access
Read-write

Syntax
EllipticalArc.EndType

See also
EllipticalArc (Page 2922)

EllipticalArc.Layer

Description
The "Layer" property returns the layer of the screen in which the elliptical arc is located.

Type
Object, HmiLayerPart

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

2930 System Manual, 11/2022

Syntax
EllipticalArc.Layer

See also
EllipticalArc (Page 2922)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
EllipticalArc.Layer (Page 2930)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2931

Syntax
Layer.MinimumZoom

See also
EllipticalArc.Layer (Page 2930)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
EllipticalArc.Layer (Page 2930)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2932 System Manual, 11/2022

Syntax
Layer.Visible

See also
EllipticalArc.Layer (Page 2930)

EllipticalArc.LineColor

Description
The "LineColor" property specifies the line color.

Type
UInt32

Access
Read-write

Syntax
EllipticalArc.LineColor

See also
EllipticalArc (Page 2922)

EllipticalArc.LineWidth

Description
The "LineWidth" property specifies the line thickness.

Type
UInt8

Access
Read-write

Syntax
EllipticalArc.LineWidth

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2933

See also
EllipticalArc (Page 2922)

EllipticalArc.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
EllipticalArc.Margin

See also
EllipticalArc (Page 2922)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

Programming scripts
10.2 WinCC Unified object model

2934 System Manual, 11/2022

See also
EllipticalArc.Margin (Page 2934)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
EllipticalArc.Margin (Page 2934)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2935

See also
EllipticalArc.Margin (Page 2934)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
EllipticalArc.Margin (Page 2934)

EllipticalArc.Name

Description
The "Name" property returns the name of the elliptical arc.

Type
String

Access
Read-only

Syntax
EllipticalArc.Name

Programming scripts
10.2 WinCC Unified object model

2936 System Manual, 11/2022

See also
EllipticalArc (Page 2922)

EllipticalArc.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" indicates completely transparent.

Type
Float

Access
Read-write

Syntax
EllipticalArc.Opacity

See also
EllipticalArc (Page 2922)

EllipticalArc.Operability

Description
The "Operability" property returns whether the elliptical arc is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2937

Syntax
EllipticalArc.Operability

See also
EllipticalArc (Page 2922)

EllipticalArc.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
EllipticalArc.Parent

See also
EllipticalArc (Page 2922)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

EllipticalArc.RadiusX

Description
The "RadiusX" property specifies the X radius.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

2938 System Manual, 11/2022

Access
Read-write

Syntax
EllipticalArc.RadiusX

See also
EllipticalArc (Page 2922)

EllipticalArc.RadiusY

Description
The "RadiusY" property specifies the Y radius.

Type
UInt32

Access
Read-write

Syntax
EllipticalArc.RadiusY

See also
EllipticalArc (Page 2922)

EllipticalArc.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the elliptical arc can only be operated
while the associated button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2939

Access
Read-only

Syntax
EllipticalArc.RequireExplicitUnlock

See also
EllipticalArc (Page 2922)

EllipticalArc.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
EllipticalArc.RotationAngle

See also
EllipticalArc (Page 2922)
EllipticalArc.RotationCenterPlacement (Page 2940)
EllipticalArc.RotationCenterX (Page 2941)
EllipticalArc.RotationCenterY (Page 2942)

EllipticalArc.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the elliptical arc
rotates.

Programming scripts
10.2 WinCC Unified object model

2940 System Manual, 11/2022

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
EllipticalArc.RotationCenterPlacement

See also
EllipticalArc (Page 2922)
EllipticalArc.RotationAngle (Page 2940)
EllipticalArc.RotationCenterX (Page 2941)
EllipticalArc.RotationCenterY (Page 2942)

EllipticalArc.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
EllipticalArc.RotationCenterX

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2941

See also
EllipticalArc (Page 2922)
EllipticalArc.RotationAngle (Page 2940)
EllipticalArc.RotationCenterPlacement (Page 2940)
EllipticalArc.RotationCenterY (Page 2942)

EllipticalArc.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
EllipticalArc.RotationCenterY

See also
EllipticalArc (Page 2922)
EllipticalArc.RotationAngle (Page 2940)
EllipticalArc.RotationCenterPlacement (Page 2940)
EllipticalArc.RotationCenterX (Page 2941)

EllipticalArc.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the elliptical arc is highlighted when in focus.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

2942 System Manual, 11/2022

Access
Read-write

Syntax
EllipticalArc.ShowFocusVisual

See also
EllipticalArc (Page 2922)

EllipticalArc.StartAngle

Description
The "StartAngle" specifies the angle by which the start point deviates from the zero position (0°
corresponds to 3 o'clock).

Type
Int32

Access
Read-write

Syntax
EllipticalArc.StartAngle

See also
EllipticalArc (Page 2922)

EllipticalArc.StartType

Description
The "StartType" property specifies the type of line start.

Type
Int32, HmiLineEndType

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2943

Specifies the start of the line:
• Line (0): Line
• EmptyArrow (1): Empty arrow
• Arrow (2): Arrow
• ReversedArrow (3): Reverse arrow
• EmptyCircle (5): Empty circle
• Circle (6): Circle

Access
Read-write

Syntax
EllipticalArc.StartType

See also
EllipticalArc (Page 2922)

EllipticalArc.StyleItemClass

Description
The "StyleItemClass" property returns the style which applied to the elliptical arc.

Type
String

Access
Read-only

Syntax
EllipticalArc.StyleItemClass

See also
EllipticalArc (Page 2922)

Programming scripts
10.2 WinCC Unified object model

2944 System Manual, 11/2022

EllipticalArc.TabIndex

Description
The "TabIndex" property returns the position of the elliptical arc in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
EllipticalArc.TabIndex

See also
EllipticalArc (Page 2922)

EllipticalArc.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
EllipticalArc.ToolTipText

See also
EllipticalArc (Page 2922)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2945

EllipticalArc.Visible

Description
The "Visible" property specifies whether the elliptical arc is visible.

Type
Bool

Access
Read-write

Syntax
EllipticalArc.Visible

See also
EllipticalArc (Page 2922)

EllipticalArc.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
elliptical arc.

Syntax
EllipticalArc.CheckAuthorization()

Parameters
--

Return value
Bool

Programming scripts
10.2 WinCC Unified object model

2946 System Manual, 11/2022

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
EllipticalArc (Page 2922)

EllipticalArc.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
EllipticalArc.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2947

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
EllipticalArc (Page 2922)

EllipticalArc_OnActivated()

Description
The "OnActivated" event occurs when an elliptical arc receives focus:
• An elliptical arc is selected via the configured tab sequence.
• An elliptical arc that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
EllipticalArc_OnActivated(item)

Context
item
Type: Object
Elliptical arc where the event occurs.

Programming scripts
10.2 WinCC Unified object model

2948 System Manual, 11/2022

See also
EllipticalArc (Page 2922)

EllipticalArc_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• An elliptical arc is right-clicked.
• An elliptical arc is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
EllipticalArc_OnContextTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Elliptical arc where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2949

• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
EllipticalArc (Page 2922)

EllipticalArc_OnDeactivated()

Description
The "OnDeactivated" event occurs when an elliptical arc loses focus because the operator
presses the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
EllipticalArc_OnDeactivated(item)

Context
item
Type: Object

Programming scripts
10.2 WinCC Unified object model

2950 System Manual, 11/2022

Elliptical arc where the event occurs.

See also
EllipticalArc (Page 2922)

EllipticalArc_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the elliptical arc is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
EllipticalArc_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Elliptical arc where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2951

• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
EllipticalArc (Page 2922)

EllipticalArc_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the elliptical arc is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
EllipticalArc_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Elliptical arc where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key

Programming scripts
10.2 WinCC Unified object model

2952 System Manual, 11/2022

• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
EllipticalArc (Page 2922)

EllipticalArc_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• An elliptical arc is left-clicked.
• The <RETURN> or <SPACE> key is pressed when an elliptical arc has the focus.
• An elliptical arc is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
EllipticalArc_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Elliptical arc where the event occurs.

x
Type: DInt
X-coordinate of the input point

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2953

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
EllipticalArc (Page 2922)

FaceplateContainer

Description
The "FaceplateContainer" object represents a container for faceplate instances in runtime.

Programming scripts
10.2 WinCC Unified object model

2954 System Manual, 11/2022

Object type
HmiFaceplateContainer

Properties
The "FaceplateContainer" object has the following properties:
• Adaption

Specifies whether the faceplate container adapts its size.
• Caption

Specifies the text that is displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.
• ContainedType

Returns the type of the contained objects.
• CurrentQuality

Returns the poorest quality code of all tags which influence the faceplate container.
• Enabled

Specifies whether the faceplate container can be operated in runtime.
• Height

Specifies the height.
• Icon

Specifies the icon.
• Layer

Returns the layer of the screen in which the faceplate container is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the faceplate container.
• Parent

Returns the higher-level screen object.
• Properties

Enables access to the interface data of the faceplate container.
• RenderingTemplate

Returns the name of the template from which the faceplate container was created.
• RotationAngle

Specifies the angle of rotation in degrees.
• RotationCenterPlacement

Specifies the reference point around which the faceplate container rotates.
• RotationCenterX

Specifies the X coordinate of the rotation point.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2955

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFocusVisual
Specifies whether the faceplate container is highlighted when in focus.

• StyleItemClass
Returns the style which is applied to the faceplate container.

• TabIndex
Returns the position of the faceplate container in the tab sequence.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the faceplate container is visible.

• Width
Specifies the width.

• WindowFlags
Specifies the window configuration of the faceplate container.

Methods
The "FaceplateContainer" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the faceplate container.
• PropertyFlashing()

Configures flashing of a property.

Events
The "FaceplateContainer" object has the following events:
• OnActivated()

Occurs when a faceplate container receives focus.
• OnDeactivated()

Occurs when a faceplate container loses focus.

FaceplateContainer.Adaption

Description
The "Adaption" property specifies whether the faceplate container adapts its size.

Type
Int32, HmiScreenWindowAdaption

Programming scripts
10.2 WinCC Unified object model

2956 System Manual, 11/2022

Specifies the adaptation:
• None (0): No adaptation.
• WindowToScreen (1): Window size corresponds to screen size.
• ScreenToWindow (2): Screen size is adapted to window size.

Access
Read-write

Syntax
FaceplateContainer.Adaption

See also
FaceplateContainer (Page 2954)

FaceplateContainer.Caption

Description
The "Caption" property specifies the text that is displayed in the title bar.

Type
Object, HmiTextPart

Access
Read-write

Syntax
FaceplateContainer.Caption

See also
FaceplateContainer (Page 2954)

Text.Font

Description
The "Font" property specifies the font of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2957

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
FaceplateContainer.Caption (Page 2957)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 2957)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Programming scripts
10.2 WinCC Unified object model

2958 System Manual, 11/2022

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 2957)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 2957)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2959

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 2957)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 2957)

Programming scripts
10.2 WinCC Unified object model

2960 System Manual, 11/2022

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 2957)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2961

Syntax
Text.ForeColor

See also
FaceplateContainer.Caption (Page 2957)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
FaceplateContainer.Caption (Page 2957)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

2962 System Manual, 11/2022

Syntax
Text.Visible

See also
FaceplateContainer.Caption (Page 2957)

FaceplateContainer.CaptionColor

Description
The "CaptionColor" property specifies the background color of the title bar.

Type
UInt32

Access
Read-write

Syntax
FaceplateContainer.CaptionColor

See also
FaceplateContainer (Page 2954)

FaceplateContainer.ContainedType

Description
The "ContainedType" property returns the type of the contained objects.

Type
String

Access
Read-only

Syntax
FaceplateContainer.ContainedType

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2963

See also
FaceplateContainer (Page 2954)

FaceplateContainer.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
faceplate container.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
FaceplateContainer.CurrentQuality

See also
FaceplateContainer (Page 2954)

FaceplateContainer.Enabled

Description
The "Enabled" property specifies whether the faceplate container can be operated in runtime.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

2964 System Manual, 11/2022

Access
Read-write

Syntax
FaceplateContainer.Enabled

See also
FaceplateContainer (Page 2954)

FaceplateContainer.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
FaceplateContainer.Height

See also
FaceplateContainer (Page 2954)

FaceplateContainer.Icon

Description
The "Icon" property specifies the icon.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2965

Syntax
FaceplateContainer.Icon

See also
FaceplateContainer (Page 2954)

FaceplateContainer.Layer

Description
The "Layer" property returns the layer of the screen in which the faceplate container is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
FaceplateContainer.Layer

See also
FaceplateContainer (Page 2954)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

Programming scripts
10.2 WinCC Unified object model

2966 System Manual, 11/2022

See also
FaceplateContainer.Layer (Page 2966)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
FaceplateContainer.Layer (Page 2966)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2967

See also
FaceplateContainer.Layer (Page 2966)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
FaceplateContainer.Layer (Page 2966)

FaceplateContainer.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
FaceplateContainer.Left

Programming scripts
10.2 WinCC Unified object model

2968 System Manual, 11/2022

See also
FaceplateContainer (Page 2954)

FaceplateContainer.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
FaceplateContainer.Margin

See also
FaceplateContainer (Page 2954)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2969

See also
FaceplateContainer.Margin (Page 2969)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
FaceplateContainer.Margin (Page 2969)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

Programming scripts
10.2 WinCC Unified object model

2970 System Manual, 11/2022

See also
FaceplateContainer.Margin (Page 2969)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
FaceplateContainer.Margin (Page 2969)

FaceplateContainer.Name

Description
The "Name" property returns the name of the faceplate container.

Type
String

Access
Read-only

Syntax
FaceplateContainer.Name

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2971

See also
FaceplateContainer (Page 2954)

FaceplateContainer.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
FaceplateContainer.Parent

See also
FaceplateContainer (Page 2954)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

FaceplateContainer.Properties

Description
The "Properties" property enables access to the interface data (interface tags and interface
properties) of the faceplate container.

Type
Object, HmiDynamicPropertyPart

Programming scripts
10.2 WinCC Unified object model

2972 System Manual, 11/2022

Access
Read-write

Syntax
FaceplateContainer.Properties

Example
Outputting the name of the connected project tag to the "Tag_1" interface tag:

Copy code
let TagName;
TagName = Faceplate.Parent.Properties.Tag_1.Tag;
HMIRuntime.Trace("System Tag Name: " + TagName);

Outputting the value of the "CustomProperty_1" interface property:

Copy code
let PropertyValue;
PropertyValue = Faceplate.Parent.Properties.CustomProperty_1;
HMIRuntime.Trace("Value of CustomProperty_1: " + PropertyValue);

See also
FaceplateContainer (Page 2954)

FaceplateContainer.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the faceplate
container was created.

Type
String

Access
Read-only

Syntax
FaceplateContainer.RenderingTemplate

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2973

See also
FaceplateContainer (Page 2954)

FaceplateContainer.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
FaceplateContainer.RotationAngle

See also
FaceplateContainer (Page 2954)
FaceplateContainer.RotationCenterPlacement (Page 2974)
FaceplateContainer.RotationCenterX (Page 2975)
FaceplateContainer.RotationCenterY (Page 2976)

FaceplateContainer.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the faceplate
container rotates.

Type
Int32, HmiRotationCenterPlacement

Programming scripts
10.2 WinCC Unified object model

2974 System Manual, 11/2022

Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
FaceplateContainer.RotationCenterPlacement

See also
FaceplateContainer (Page 2954)
FaceplateContainer.RotationAngle (Page 2974)
FaceplateContainer.RotationCenterX (Page 2975)
FaceplateContainer.RotationCenterY (Page 2976)

FaceplateContainer.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
FaceplateContainer.RotationCenterX

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2975

See also
FaceplateContainer (Page 2954)
FaceplateContainer.RotationAngle (Page 2974)
FaceplateContainer.RotationCenterPlacement (Page 2974)
FaceplateContainer.RotationCenterY (Page 2976)

FaceplateContainer.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
FaceplateContainer.RotationCenterY

See also
FaceplateContainer (Page 2954)
FaceplateContainer.RotationAngle (Page 2974)
FaceplateContainer.RotationCenterPlacement (Page 2974)
FaceplateContainer.RotationCenterX (Page 2975)

FaceplateContainer.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the faceplate container is highlighted when
in focus.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

2976 System Manual, 11/2022

Access
Read-write

Syntax
FaceplateContainer.ShowFocusVisual

See also
FaceplateContainer (Page 2954)

FaceplateContainer.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the faceplate container.

Type
String

Access
Read-only

Syntax
FaceplateContainer.StyleItemClass

See also
FaceplateContainer (Page 2954)

FaceplateContainer.TabIndex

Description
The "TabIndex" property returns the position of the faceplate container in the tab sequence.

Type
UInt16

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2977

Syntax
FaceplateContainer.TabIndex

See also
FaceplateContainer (Page 2954)

FaceplateContainer.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
FaceplateContainer.Top

See also
FaceplateContainer (Page 2954)

FaceplateContainer.Visible

Description
The "Visible" property specifies whether the faceplate container is visible.

Type
Bool

Access
Read-write

Syntax
FaceplateContainer.Visible

Programming scripts
10.2 WinCC Unified object model

2978 System Manual, 11/2022

See also
FaceplateContainer (Page 2954)

FaceplateContainer.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
FaceplateContainer.Width

See also
FaceplateContainer (Page 2954)

FaceplateContainer.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the faceplate container.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title
• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be moved
• CanMaximize (32): Can be maximized

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2979

• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
Enable multiple properties by adding the integer values or bit operators.

Access
Read-write

Syntax
FaceplateContainer.WindowFlags

Example
Adapting the "windowFlags" tag depending on the window configuration:

Copy code
var windowFlags = HmiWindowFlag.ShowCaption | HmiWindowFlag.ShowBorder;
if (CanClose){
 windowFlags |= HmiWindowFlag.CanClose;
} else {
 windowFlags &= HmiWindowFlag.CanClose;
}

See also
FaceplateContainer (Page 2954)

FaceplateContainer.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
faceplate container.

Syntax
FaceplateContainer.CheckAuthorization()

Parameters
--

Programming scripts
10.2 WinCC Unified object model

2980 System Manual, 11/2022

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
FaceplateContainer (Page 2954)

FaceplateContainer.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
FaceplateContainer.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2981

Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
FaceplateContainer (Page 2954)

FaceplateContainer_OnActivated()

Description
The "OnActivated" event occurs when a faceplate container receives focus:
• A faceplate container is selected via the configured tab sequence.
• A faceplate container that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
FaceplateContainer_OnActivated(item)

Context
item
Type: Object
Faceplate container where the event occurs.

Programming scripts
10.2 WinCC Unified object model

2982 System Manual, 11/2022

See also
FaceplateContainer (Page 2954)

FaceplateContainer_OnDeactivated()

Description
The "OnDeactivated" event occurs when a faceplate container loses focus because the operator
presses the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
FaceplateContainer_OnDeactivated(item)

Context
item
Type: Object
Faceplate container where the event occurs.

See also
FaceplateContainer (Page 2954)

FaceplateContainer_OnInterface_Event()

Description
The "OnInterface_Event" event stands for user-defined interface events of a faceplate type. In
the "Faceplate types" editor you can add any number of interface events with parameters to the
faceplate type.
A user-defined interface event can only be triggered via the
FaceplateType.RaiseEvent() method.

Syntax
FaceplateContainer_OnInterface_Event(item[, Parameter_1][,...
Parameter_n])

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2983

Context
item
Type: Object
Faceplate container where the event occurs.

Parameter_1
Type: Bool | Byte | Char | Color | DateTime | DInt | DWord | HmiEventTrigger | HmiGesture |
HmiKeyboardModifier | Int | LInt | LReal | LString | LWord | Real | SInt | String | Time | UDInt |
UInt | ULInt | USInt | Word
Parameters of the event. Any number of parameters can be added to a user-defined interface
event.

See also
FaceplateContainer (Page 2954)
FaceplateType.RaiseEvent() (Page 3008)

FaceplateType

Description
The "FaceplateType" object represents a faceplate type in runtime.

Object type
HmiFaceplateType

Properties
The "FaceplateType" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• BackColor

Specifies the background color.
• BackFillPattern

Specifies the pattern of the background or the fill.
• BackGraphic

Specifies the background graphic of the faceplate type.
• BackGraphicStretchMode

Specifies the type of scaling of the background graphic of the faceplate type.
• BackgroundFillMode

Specifies the fill area of the background fill.

Programming scripts
10.2 WinCC Unified object model

2984 System Manual, 11/2022

• DisplayName
Specifies the display name of the faceplate type.

• Enabled
Specifies whether the faceplate type can be operated in runtime.

• EnableExplicitUnlock
Returns which button must be pressed for the faceplate type to be operable.

• Height
Specifies the height.

• HorizontalAlignment
Specifies the horizontal alignment.

• HotKeys
Returns the hotkeys specified for the faceplate type.

• Items
Returns a list of all screen objects of the faceplate type.

• Layers
Returns the list of all layers of the faceplate type.

• Name
Returns the name of the faceplate type.

• Parent
Returns the faceplate container which contains the current faceplate instance as a child.

• Properties
Enables access to the interface data of the faceplate type.

• VerticalAlignment
Specifies the vertical alignment.

• Width
Specifies the width.

Methods
The "FaceplateType" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the faceplate type.
• Close()

Hides a faceplate container or closes a faceplate popup window.
• FindItem()

Searches for and references screen windows or screen items through their object path.
• OpenFaceplateInPopup()

Opens a faceplate from a faceplate type in a popup window.
• PropertyFlashing()

Configures flashing of a property.
• RaiseEvent()

Triggers a user-defined interface event of a faceplate type.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2985

Events
The "FaceplateType" object has the following events:
• OnContextTapped()

Occurs when a faceplate type is right-clicked or long-touched.
• OnHotKey()

Occurs when a hotkey is pressed.
• OnLoaded()

Occurs after the faceplate has been built.
• OnTapped()

Occurs when a faceplate type is left-clicked or short-touched.
• OnUnloaded()

Occurs after the faceplate has been cleared.

FaceplateType.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
Faceplate.AlternateBackColor

See also
FaceplateType (Page 2984)

FaceplateType.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

2986 System Manual, 11/2022

Access
Read-write

Syntax
Faceplate.BackColor

See also
FaceplateType (Page 2984)

FaceplateType.BackFillPattern

Description
The "BackFillPattern" property specifies the pattern of the background or the fill.

Type
Int32, HmiFillPattern
Specifies the filling:
• Solid (0): Solid
• Transparent (65536): Transparent. Depending on the runtime settings, visible objects in the

background can be selected.
• Horizontal (131072): Horizontal
• Vertical (131073): Vertical
• ForwardDiagonal (131074): Forward diagonal stripe
• BackwardDiagonal (131075): Backward diagonal stripe
• Cross (131076): Cross
• DiagonalCross (131077): Diagonal cross
• GradientHorizontal (1048576): Horizontal gradient
• GradientVertical (1048577): Vertical gradient
• GradientForwardDiagonal (1048578): Gradient forward diagonal
• GradientBackwardDiagonal (1048579): Gradient backward diagonal
• GradientHorizontalTricolor (1048832): Horizontal tricolor gradient
• GradientVerticalTricolor (1048833): Vertical tricolor gradient
• GradientForwardDiagonalTricolor (1048834): Forward diagonal tricolor gradient
• GradientBackwardDiagonalTricolor (1048835): Backward diagonal tricolor gradient

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2987

Access
Read-write

Syntax
Faceplate.BackFillPattern

See also
FaceplateType (Page 2984)

FaceplateType.BackGraphic

Description
The "BackGraphic" property specifies the background graphic of the faceplate type.

Type
String

Access
Read-write

Syntax
Faceplate.BackGraphic

See also
FaceplateType (Page 2984)

FaceplateType.BackGraphicStretchMode

Description
The "BackGraphicStretchMode" property specifies the type of scaling of the background graphic
of the faceplate type.

Type
Int32, HmiGraphicStretchMode

Programming scripts
10.2 WinCC Unified object model

2988 System Manual, 11/2022

Specifies the scaling:
• None (0): The graphic is shown in its original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Faceplate.BackGraphicStretchMode

See also
FaceplateType (Page 2984)

FaceplateType.BackgroundFillMode

Description
The "BackgroundFillMode" property specifies the fill area of the background fill.

Type
Int32, HmiBackgroundFillMode
Specifies the fill area:
• Window (0): The filling is adapted to the size of the window.
• Screen (1): The filling is adapted to the size of the screen.

Access
Read-write

Syntax
Faceplate.BackgroundFillMode

See also
FaceplateType (Page 2984)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2989

FaceplateType.DisplayName

Description
The "DisplayName" property specifies the display name of the faceplate type.

Type
String

Access
Read-write

Syntax
Faceplate.DisplayName

See also
FaceplateType (Page 2984)

FaceplateType.Enabled

Description
The "Enabled" property specifies whether the faceplate type can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
Faceplate.Enabled

See also
FaceplateType (Page 2984)

Programming scripts
10.2 WinCC Unified object model

2990 System Manual, 11/2022

FaceplateType.EnableExplicitUnlock

Description
The "EnableExplicitUnlock" property returns which button must be pressed for the faceplate type
to be operable.

Type
Object, HmiButton (Page 1961)

Access
Read-only

Syntax
Faceplate.EnableExplicitUnlock

See also
FaceplateType (Page 2984)
Button (Page 1961)

Button

Description
Button (Page 1961)

FaceplateType.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2991

Syntax
Faceplate.Height

See also
FaceplateType (Page 2984)

FaceplateType.HorizontalAlignment

Description
The "HorizontalAlignment" property specifies the horizontal alignment.

Type
Int32, HmiHorizontalAlignment
Specifies the alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched. Can only be used with layout containers, Fallback behaves like Center

Access
Read-write

Syntax
Faceplate.HorizontalAlignment

See also
FaceplateType (Page 2984)

FaceplateType.Items

Description
The "Items" property returns a list of all the screen objects of the faceplate type.

Type
Object, HMIScreenItems (Page 2993)

Programming scripts
10.2 WinCC Unified object model

2992 System Manual, 11/2022

Access
Read-only

Syntax
Faceplate.Items

See also
FaceplateType (Page 2984)
ScreenItems (Page 2993)

ScreenItems

Description
The "ScreenItems" object is a list of all screen objects ("HmiScreenItemBase" objects) of the
screen.
You reference a "ScreenItems" object via the Screen.Items property.

Use
The "ScreenItems" object is a list and can be enumerated. You can access the "ScreenItems" list
using the index or the tag name.

Object type
HMIScreenItems

Properties
--

Methods
The "ScreenItems" object has the following methods:
• Item()

Returns a screen object of the "ScreenItems" list.

See also
FaceplateType.Items (Page 2992)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2993

ScreenItems.Item()

Description
The "Item" method returns a screen object of a screen window via the "ScreenItems" list.

Syntax
ScreenItems[.Item](ScreenItemName);

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "ScreenItems" object.

Parameters
ScreenItemName
Type: String, HmiScreenItemBase
Name of the screen object

Return value
Object, HmiScreenItemBase (Page 1571)

See also
ScreenItems (Page 2993)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

FaceplateType.Layers

Description
The "Layers" property returns the list of all layers ("HmiLayerPart" objects) of the faceplate type.

Programming scripts
10.2 WinCC Unified object model

2994 System Manual, 11/2022

Type
Object, HmiLayerCollection (Page 2995)

Access
Read-only

Syntax
Faceplate.Layers

See also
FaceplateType (Page 2984)
HmiLayerCollection (Page 2995)

HmiLayerCollection

Description
The "HmiLayerCollection" object is a list of all layers ("Layer" objects) of the screen.
You reference a "HmiLayerCollection" object via the Screen.Layers property.

Use
The "HmiLayerCollection" object is a list and can be counted and enumerated. You can access the
"HmiLayerCollection" list using the index or the tag name.

Object type
HmiLayerCollection

Properties
The "HmiLayerCollection" object has the following properties:
• Count

Returns the number of layers of the "HmiLayerCollection" list.

Methods
The "HmiLayerCollection" object has the following methods:
• Item()

Returns a level of the "HmiLayerCollection" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2995

See also
FaceplateType.Layers (Page 2994)

HmiLayerCollection.Count

Description
The "Count" property returns the number of screen layers of the "HmiLayerCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiLayerCollection.Count

See also
HmiLayerCollection (Page 2995)

HmiLayerCollection.Item()

Description
The "Item" method returns a screen layer of the "HmiLayerCollection" list.

Syntax
HmiLayerCollection[.Item](HmiLayerName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiLayerCollection" object.

Parameters
HmiLayerName
Type: String, HmiLayerPart

Programming scripts
10.2 WinCC Unified object model

2996 System Manual, 11/2022

Name of the screen layer

Return value
Object, HmiLayerPart (Page 2997)

See also
HmiLayerCollection (Page 2995)
Layer (Page 2997)

Layer

Description
The "Layer" object represents the layers of an object (e.g. screen).

Object type
HmiLayerPart

Properties
The "Layer" object has the following properties:
• MaximumZoom

Specifies the maximum zoom of the screen up to which the level is to be seen.
• MinimumZoom

Specifies the minimum zoom of the screen up to which the level is to be seen.
• Name

Returns the name of the screen layer.
• Visible

Specifies whether the screen layer and contained objects are visible.

Methods
--

See also
FaceplateType.Layers (Page 2994)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2997

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
Layer (Page 2997)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
Layer (Page 2997)

Programming scripts
10.2 WinCC Unified object model

2998 System Manual, 11/2022

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
Layer (Page 2997)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
Layer (Page 2997)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 2999

FaceplateType.Name

Description
The "Name" property returns the name of the faceplate type.

Type
String

Access
Read-only

Syntax
Faceplate.Name

See also
FaceplateType (Page 2984)

FaceplateType.Parent

Description
The "Parent" property returns the faceplate container which contains the current faceplate
instance as a child.

Type
Object, HmiFaceplateContainer (Page 2954)

Access
Read-only

Syntax
Faceplate.Parent

See also
FaceplateType (Page 2984)
FaceplateContainer (Page 2954)

Programming scripts
10.2 WinCC Unified object model

3000 System Manual, 11/2022

FaceplateContainer

Description
FaceplateContainer (Page 2954)

FaceplateType.Properties

Description
The "Properties" property enables access to the interface data (interface tags and interface
properties) of the faceplate type.

Type
Object, HmiDynamicPropertyPart

Access
Read-write

Syntax
Faceplate.Properties

Example
Outputting the name of the connected project tag to the "Tag_1" interface tag:

Copy code
let TagName;
TagName = Faceplate.Properties.Tag_1.Tag;
HMIRuntime.Trace("System Tag Name: " + TagName);

Outputting the value of the "CustomProperty_1" interface property:

Copy code
let PropertyValue;
PropertyValue = Faceplate.Properties.CustomProperty_1;
HMIRuntime.Trace("Value of CustomProperty_1: " + PropertyValue);

See also
FaceplateType (Page 2984)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3001

FaceplateType.VerticalAlignment

Description
The "VerticalAlignment" property specifies the vertical alignment.

Type
Int32, HmiVerticalAlignment
Specifies the alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched. Can only be used with layout containers, Fallback behaves like Center

Access
Read-write

Syntax
Faceplate.VerticalAlignment

See also
FaceplateType (Page 2984)

FaceplateType.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Faceplate.Width

Programming scripts
10.2 WinCC Unified object model

3002 System Manual, 11/2022

See also
FaceplateType (Page 2984)

FaceplateType.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
faceplate type.

Syntax
Faceplate.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
FaceplateType (Page 2984)

FaceplateType.Close()

Description
The "Close" method hides a faceplate container or closes a faceplate popup window.

Syntax
Faceplate.Close()

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3003

Parameters
--

Return value
Bool

See also
FaceplateType (Page 2984)

FaceplateType.FindItem()

Description
The "FindItem" method searches for and references screen windows or screen objects through
their object path.

Syntax
Faceplate.FindItem(screenItemPath)

Parameters
ScreenItemPath
Type: String
Object path of the screen window or screen object you are looking for.

Note
The "Faceplate.FindItem" method has the faceplate in which the script is running as the search
context and can also use relative object paths.

Formulation of the object path
The syntax of the object path orients itself to the notation of the file system paths. The
object path consists of the names of the screen windows (Screen Windows) and screen
objects (Screen Items). The names are connected via a slash ("/") according to the hierarchical
positioning. Screens (Screens) and their names are not used in the formulation.

Programming scripts
10.2 WinCC Unified object model

3004 System Manual, 11/2022

Relative and absolute object paths are distinguished by the prefix of the object path. The
following prefixes can be used:
• Relative object path

– "..": References the higher-level screen window (parent) in the context of the current
screen window.

– ".": References own screen window (self).
– "": Without a prefix, a screen object of the current screen window is referenced.

• Absolute object paths
– "/": References a screen window on the highest level, whose name must follow.
– "~": References the screen window on the highest level in own screen hierarchy.

Additional rules for formulating an object path:
• The ".." string may be used multiple times in the object path, but only together at the

beginning of the object path, for example, "../../Window5".
• If the object path does not end with a screen object name, a screen window is referenced.
• A search is performed for screen objects of the object path in the screens of the referenced

screen window. It is not permitted to specify a screen name.

Examples of object paths
The following window-screen object hierarchy is adopted for the examples:

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3005

This results in the following object paths for addressing the objects:
• Relative addressing:

– "Button_2" changes the label of "Button_1":
// Navigate one level up and find "Button_1" inside the
"ScreenWindowHeader"
Screen.FindItem("../ScreenWindowHeader/Button_1").Text =
"Changed by Button_2"

– "Button_3" changes the label of "Button_5":
// Navigate two levels up and find "Button 2" inside the
"ScreenWindowNavigation"
Screen.FindItem("../../ScreenWindowNavigation/Button_5").Text =
"Changed by Button_3"

– "Button_3" changes the label of "Button_4":
// Find "Button_4" in same screen ("ScreenContent_2")
Screen.FindItem("Button_4").Text = "Changed by Button_3"
Screen.FindItem("./Button_4").Text = "Changed by Button_3"

• Absolute addressing:
– "Button_4" changes the label of "Button_6":

// Navigate to the root screen and find "Button_6" inside the
"ScreenWindowNavigation"
Screen.FindItem("~/ScreenWindowNavigation/Button_6").Text =
"Changed by Button_4"

Return value
Object, HmiScreenObjectBase (Page 1571)

See also
FaceplateType (Page 2984)
Screen Items (Page 1571)

FaceplateType.OpenFaceplateInPopup()

Description
The "OpenFaceplateInPopup" method opens a faceplate from a faceplate type in a popup
window.

Syntax
Faceplate.OpenFaceplateInPopup(faceplateType, title[,
independentWindow][, invisible])

Programming scripts
10.2 WinCC Unified object model

3006 System Manual, 11/2022

Parameters
faceplateType
Type: String, HmiFaceplateType
Name of the faceplate type

title
Type: String
Title of the popup window

independentWindow
Optional, type: Bool
Specifies the dependency of the popup window on the calling faceplate:
• True: The popup window remains open until either the popup window is closed manually or

runtime is exited.
• False: The popup window is closed when the faceplate or the screen is exited.

invisible
Optional, type: Bool
Causes the faceplate to be configured so that it is invisible to the operator.
To then display the faceplate, set the property visible=true.

Return value
Object, HmiPopupScreenWindow (Page 4288)

See also
FaceplateType (Page 2984)
PopupScreenWindow (Page 4288)

FaceplateType.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
Faceplate.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3007

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
FaceplateType (Page 2984)

FaceplateType.RaiseEvent()

Description
The "RaiseEvent" method triggers a user-defined interface event of a faceplate type.

Programming scripts
10.2 WinCC Unified object model

3008 System Manual, 11/2022

Syntax
Faceplate.RaiseEvent(name, parameters)

Parameters
name
Type: String
Name of the interface event

parameters
Type: Object
Parameter of the interface event

Return value
Bool

See also
FaceplateType (Page 2984)
FaceplateContainer_OnInterface_Event() (Page 2983)

FaceplateType_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A faceplate type is right-clicked.
• A faceplate type is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
FaceplateType_OnContextTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Faceplate type where the event occurs.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3009

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
FaceplateType (Page 2984)

Programming scripts
10.2 WinCC Unified object model

3010 System Manual, 11/2022

FaceplateType_OnHotKey()

Description
The "OnHotKey" event occurs when the operator presses a hotkey:
Hotkeys are unique within a screen. The hotkeys are activated from the active (local) screen
window down to the top level screen window.

Syntax
FaceplateType_OnHotKey(item,keyCode,modifiers)

Context
item
Type: Object
Faceplate type where the event occurs.

keyCode
Type: DInt
Numeric identifier of the pressed hotkey

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
FaceplateType (Page 2984)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3011

FaceplateType_OnLoaded()

Description
The "OnLoaded" event occurs after the faceplate type has been built.

Syntax
FaceplateType_OnLoaded(item)

Context
item
Type: Object
Faceplate type where the event occurs.

See also
FaceplateType (Page 2984)

FaceplateType_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A faceplate type is left-clicked.
• The <RETURN> or <SPACE> key is pressed when a faceplate type has the focus.
• A faceplate type is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
FaceplateType_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Faceplate type where the event occurs.

Programming scripts
10.2 WinCC Unified object model

3012 System Manual, 11/2022

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
FaceplateType (Page 2984)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3013

FaceplateType_OnUnloaded()

Description
The "OnUnloaded" event occurs after the faceplate type has been cleared.

Syntax
FaceplateType_OnUnloaded(item)

Context
item
Type: Object
Faceplate type where the event occurs.

See also
FaceplateType (Page 2984)

PopupScreenWindow

Description
PopupScreenWindow (Page 4288)

FunctionTrendControl

Description
The "FunctionTrendControl" object represents an f(x) trend view of tag values as a function of a
different tag in runtime.

Object type
HmiFunctionTrendControl

Properties
The "FunctionTrendControl" object has the following properties:
• AreaSpacing

Specifies the distance between function trend areas.
• BackColor

Specifies the background color.

Programming scripts
10.2 WinCC Unified object model

3014 System Manual, 11/2022

• Caption
Specifies the text to be displayed in the title bar.

• CaptionColor
Specifies the color of the title bar.

• CurrentQuality
Returns the poorest quality code of all tags which influence the f(x) trend view.

• Enabled
Specifies whether the f(x) trend view can be operated in runtime.

• ExtendRulerToAxis
Specifies whether the ruler is extended into the axis.

• FunctionTrendAreas
Returns the function trend areas of the f(x) trend view.

• Height
Specifies the height.

• Icon
Specifies the icon of the f(x) trend view.

• Layer
Returns the screen layer in which the f(x) trend view is located.

• Left
Specifies the value of the X coordinate.

• Legend
Specifies the appearance of the legend.

• Margin
Specifies the margin.

• Name
Returns the name of the f(x) trend view.

• Online
Specifies the start and stop of the update of the f(x) trend view.

• Parent
Returns the higher-level screen object.

• RenderingTemplate
Returns the name of the template from which the f(x) trend view.was created.

• ShiftAxis
Specifies whether to swap the X axis and Y axis of the f(x) trend view.

• ShowFocusVisual
Specifies whether the f(x) trend view is highlighted when in focus.

• ShowRuler
Specifies whether the ruler is displayed for determining a function trend value.

• ShowStatisticRulers
Specifies whether to display the two rulers for specifying the statistics area.

• StatusBar
Specifies the information bar of the f(x) trend view.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3015

• StyleItemClass
Returns the style which is applied to the f(x) trend view.

• TabIndex
Returns the position of the f(x) trend view in the tab sequence.

• TimeZone
Specifies the time zone.

• ToolBar
Specifies the toolbar of the f(x) trend view.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the f(x) trend view is visible.

• Width
Specifies the width.

• WindowFlags
Specifies the window configuration of the f(x) trend view.

Methods
The "FunctionTrendControl" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the f(x) trend view.
• FireCommand()

Executes the command of an element of the toolbar or information bar of the f(x) trend view.
• PropertyFlashing()

Configures flashing of a property.

Events
The "FunctionTrendControl" object has the following events:
• OnActivated()

Occurs when a f(x) trend view receives focus.
• OnCommandFired()

Occurs when the operator has operated an element in the toolbar or information bar of the
f(x) trend view.

• OnDeactivated()
Occurs when a f(x) trend view loses focus.

• OnInitialized()
Occurs when a f(x) trend view has been successfully initialized and the data connection to
the PLC has been established.

Programming scripts
10.2 WinCC Unified object model

3016 System Manual, 11/2022

FunctionTrendControl.AreaSpacing

Description
The "AreaSpacing" property specifies the spacing between function trend areas.

Type
UInt16

Access
Read-write

Syntax
FunctionTrendControl.AreaSpacing

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
FunctionTrendControl.BackColor

See also
FunctionTrendControl (Page 3014)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3017

FunctionTrendControl.Caption

Description
The "Caption" property specifies the text to be displayed in the title bar.

Type
Object, HmiTextPart

Access
Read-write

Syntax
FunctionTrendControl.Caption

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
FunctionTrendControl.Caption (Page 3018)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Programming scripts
10.2 WinCC Unified object model

3018 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 3018)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 3018)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3019

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 3018)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 3018)

Programming scripts
10.2 WinCC Unified object model

3020 System Manual, 11/2022

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 3018)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3021

Syntax
Font.Weight

See also
Text.Font (Page 3018)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
FunctionTrendControl.Caption (Page 3018)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3022 System Manual, 11/2022

Syntax
Text.Text

See also
FunctionTrendControl.Caption (Page 3018)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
FunctionTrendControl.Caption (Page 3018)

FunctionTrendControl.CaptionColor

Description
The "CaptionColor" property specifies the color of the title bar.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3023

Syntax
FunctionTrendControl.CaptionColor

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
f(x) trend view.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
FunctionTrendControl.CurrentQuality

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl.Enabled

Description
The "Enabled" property specifies whether the f(x) trend view can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

3024 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
FunctionTrendControl.Enabled

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl.ExtendRulerToAxis

Description
The "ExtendRulerToAxis" property specifies whether the ruler is extended to the axis.

Type
Bool

Access
Read-write

Syntax
FunctionTrendControl.ExtendRulerToAxis

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl.FunctionTrendAreas

Description
The "FunctionTrendAreas" property returns the function trend areas ("FunctionTrendArea"
objects) of the f(x) trend view.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3025

Type
Object, HmiFunctionTrendAreaCollection (Page 3026)

Access
Read-only

Syntax
FunctionTrendControl.TrendAreas

See also
FunctionTrendControl (Page 3014)
HmiFunctionTrendAreaCollection (Page 3026)

HmiFunctionTrendAreaCollection

Description
The "HmiFunctionTrendAreaCollection" object is a list of all function trend areas
("FunctionTrendArea" objects) of the f(x) trend view.

Use
The "HmiFunctionTrendAreaCollection" object is a list and can be counted and enumerated. You
can access the "HmiFunctionTrendAreaCollection" list using the index or the tag names.

Object type
HmiFunctionTrendAreaCollection

Properties
The "HmiFunctionTrendAreaCollection" object has the following properties:
• Count

Returns the number of function trend areas of the "HmiFunctionTrendAreaCollection" list.

Methods
The "HmiFunctionTrendAreaCollection" object has the following methods:
• Item()

Returns a function trend area of the "HmiFunctionTrendAreaCollection" list.

Programming scripts
10.2 WinCC Unified object model

3026 System Manual, 11/2022

See also
FunctionTrendControl.FunctionTrendAreas (Page 3025)

HmiFunctionTrendAreaCollection.Count

Description
The "Count" property returns the number of trend areas in the
"HmiFunctionTrendAreaCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiFunctionTrendAreaCollection.Count

See also
HmiFunctionTrendAreaCollection (Page 3026)

HmiFunctionTrendAreaCollection.Item()

Description
The "Item" method returns a function trend area of the "HmiFunctionTrendAreaCollection" list.

Syntax
HmiFunctionTrendAreaCollection[.Item](HmiFunctionTrendAreaName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiFunctionTrendAreaCollection" object.

Parameters
HmiFunctionTrendAreaName
Type: String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3027

Name of the function trend area

Return value
Object, HmiFunctionTrendAreaPart (Page 3026)

See also
HmiFunctionTrendAreaCollection (Page 3026)
FunctionTrendArea (Page 3028)

FunctionTrendArea

Description
The "TrendArea" object represents a function trend area of the f(x) trend view.

Object type
HmiFunctionTrendAreaPart

Properties
The "FunctionTrendArea" object has the following properties:
• BackColor

Specifies the background color.
• BottomValueAxes

Returns the lower value axes of the function trend area.
• FunctionTrends

Returns the function trends of the function trend area.
• GridLines

Specifies the grid lines of the function trend area.
• LeftValueAxes

Returns the left value axes of the function trend area.
• MajorGridLinesColor

Specifies the color of the main grid lines.
• MinorGridLinesColor

Specifies the color of the auxiliary grid lines.
• Name

Returns the name of the function trend area.
• RightValueAxes

Returns the right value axes of the function trend area.

Programming scripts
10.2 WinCC Unified object model

3028 System Manual, 11/2022

• Ruler
Specifies the appearance of the ruler to determine the function trend value.

• SelectedFunctionTrend
Specifies the selected trend of the function trend area.

• SizeFactor
Specifies the scaling factor of the function trend area relative to its height.

• TopValueAxes
Returns the upper value axes of the function trend area.

• Visible
Specifies whether the function trend area is visible.

Methods
--

See also
HmiFunctionTrendAreaCollection (Page 3026)
HmiFunctionTrendAreaCollection.Item() (Page 3027)

FunctionTrendArea.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
FunctionTrendArea.BackColor

See also
FunctionTrendArea (Page 3028)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3029

FunctionTrendArea.BottomValueAxes

Description
The "BottomValueAxes" property returns the lower value axes of the function trend area.

Type
Object, HmiXValueAxisCollection (Page 3030)

Access
Read-only

Syntax
FunctionTrendArea.BottomValueAxes

See also
FunctionTrendArea (Page 3028)
HmiXValueAxisCollection (Page 3030)

HmiXValueAxisCollection

Description
The "HmiXValueAxisCollection" object is a list of all value axes ("XValueAxis" objects) of the
function trend area.

Use
The "HmiXValueAxisCollection" object is a list and can be counted and enumerated. You can
access the "HmiXValueAxisCollection" list using the index or the tag names.

Object type
HmiXValueAxisCollection

Properties
The "HmiXValueAxisCollection" object has the following properties:
• Count

Returns the number of value axes in the "HmiXValueAxisCollection" list.

Programming scripts
10.2 WinCC Unified object model

3030 System Manual, 11/2022

Methods
The "HmiXValueAxisCollection" object has the following methods:
• Item()

Returns a value axis of the "HmiXValueAxisCollection" list.

See also
FunctionTrendArea.BottomValueAxes (Page 3030)

HmiXValueAxisCollection.Count

Description
The "Count" property returns the number of value axes in the "HmiXValueAxisCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiXValueAxisCollection.Count

See also
HmiXValueAxisCollection (Page 3030)

HmiXValueAxisCollection.Item()

Description
The "Item" method returns a value axis of the "HmiXValueAxisCollection" list.

Syntax
HmiXValueAxisCollection[.Item](HmiXValueAxisName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiXValueAxisCollection" object.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3031

Parameters
HmiXValueAxisName
Type: String
Name of the value axis

Return value
Object, HmiXValueAxisPart (Page 3032)

See also
HmiXValueAxisCollection (Page 3030)
XValueAxis (Page 3032)

XValueAxis

Description
The "XValueAxis" object represents a value axis of the function trend area.

Object type
HmiXValueAxisPart

Properties
The "XValueAxis" object has the following properties:
• ApplyScalingEntries

Specifies whether the user scaling of the axis section is applied.
• AutoRange

Specifies whether automatic determination of the value range is activated by the minimum
and maximum value of the function trend.

• AutoScaling
Specifies whether the automatic scaling is activated.

• AxisColor
Specifies the color of the value axis.

• BeginValue
Specifies the start of a value range or value range section.

• DisplayName
Specifies the display name of the value axis.

• DivisionCount
Specifies the number of main units with subdivisions.

Programming scripts
10.2 WinCC Unified object model

3032 System Manual, 11/2022

• EndValue
Specifies the end of a value range or value range section.

• HelpLines
Returns the appearance of the help lines.

• LabelColor
Specifies the color of the axis labeling.

• LabelFont
Specifies the font of the axis labeling.

• LargeTickLabelingStep
Specifies the interval at which scale sections are labeled.

• MeasurementUnit
Returns the displayed unit.

• MeasurementUnitType
Specifies the display format of the unit.

• OutputFormat
Specifies the format for displaying the axis values.

• ScalingEntries
Returns the specification of the user scaling of the axis sections.

• ScaleMode
Specifies the scale mode:

• ScalingType
Specifies the scaling.

• ShowScalingDisplayNames
Specifies whether the display names of the user scaling are used.

• SubDivisionCount
Specifies the number of divisions of the main units.

• TickColor
Specifies the color of the tick marks.

• Visible
Specifies whether the value axis is visible.

Methods
--

See also
HmiXValueAxisCollection (Page 3030)
HmiXValueAxisCollection.Item() (Page 3031)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3033

XValueAxis.ApplyScalingEntries

Description
The "ApplyScalingEntries" property specifies whether the user scaling of the axis sections is
applied.

Type
Bool

Access
Read-write

Syntax
XValueAxis.ApplyScalingEntries

See also
XValueAxis (Page 3032)

XValueAxis.AutoRange

Description
The "AutoRange" property specifies whether automatic determination of the value range is
activated by the minimum and maximum value of the function trend.

Type
Bool

Access
Read-write

Syntax
XValueAxis.AutoRange

See also
XValueAxis (Page 3032)

Programming scripts
10.2 WinCC Unified object model

3034 System Manual, 11/2022

XValueAxis.AutoScaling

Description
The "AutoScaling" property specifies whether automatic scaling is activated.

Type
Bool

Access
Read-write

Syntax
XValueAxis.AutoScaling

See also
XValueAxis (Page 3032)

XValueAxis.AxisColor

Description
The "AxisColor" property specifies the color of the value axis.

Type
UInt32

Access
Read-write

Syntax
XValueAxis.BackColor

See also
XValueAxis (Page 3032)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3035

XValueAxis.BeginValue

Description
The "BeginValue" property specifies the start of a value range or value range section.

Type
Float

Access
Read-write

Syntax
XValueAxis.BeginValue

See also
XValueAxis (Page 3032)

XValueAxis.DisplayName

Description
The "DisplayName" property specifies the display name of the value axis.

Type
String

Access
Read-write

Syntax
XValueAxis.DisplayName

See also
XValueAxis (Page 3032)

Programming scripts
10.2 WinCC Unified object model

3036 System Manual, 11/2022

XValueAxis.DivisionCount

Description
The "DivisionCount" property specifies the number of main units with subdivisions. To this
purpose the automatic scaling must be switched off.

Type
Int32

Access
Read-write

Syntax
XValueAxis.DivisionCount

See also
XValueAxis (Page 3032)

XValueAxis.EndValue

Description
The "EndValue" property specifies the end of a value range or value range section.

Type
Float

Access
Read-write

Syntax
XValueAxis.EndValue

See also
XValueAxis (Page 3032)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3037

XValueAxis.HelpLines

Description
The "HelpLines" property returns the appearance of the help lines.

Type
Object, HmiHelpLineCollection (Page 3038)

Access
Read-only

Syntax
XValueAxis.HelpLines

See also
XValueAxis (Page 3032)
HmiHelpLineCollection (Page 3038)

HmiHelpLineCollection

Description
The "HmiHelpLineCollection" object is a list of all help lines ("HelpLine" objects).

Use
The "HmiHelpLineCollection" object is a list and can be counted and enumerated. You can access
the "HmiHelpLineCollection" list using the index or the tag name.

Object type
HmiHelpLineCollection

Properties
The "HmiHelpLineCollection" object has the following properties:
• Count

Returns the number of help lines of the "HmiHelpLineCollection" list.

Programming scripts
10.2 WinCC Unified object model

3038 System Manual, 11/2022

Methods
The "HmiHelpLineCollection" object has the following methods:
• Item()

Returns a help line of the "HmiHelpLineCollection" list.

See also
XValueAxis.HelpLines (Page 3038)

HmiHelpLineCollection.Count

Description
The "Count" property returns the number of help lines in the "HmiHelpLineCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiHelpLineCollection.Count

See also
HmiHelpLineCollection (Page 3038)

HmiHelpLineCollection.Item()

Description
The "Item" method returns help line of the "HmiHelpLineCollection" list.

Syntax
HmiHelpLineCollection[.Item](HmiHelpLineName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiHelpLineCollection" object.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3039

Parameters
HmiHelpLineName
Type: String
Name of the help line

Return value
Object, HmiHelpLinePart (Page 3040)

See also
HmiHelpLineCollection (Page 3038)
HelpLine (Page 3040)

HelpLine

Description
The "HelpLine" object represents a help line of the value axis.

Object type
HmiHelpLinePart

Properties
The "HelpLine" object has the following properties:
• Value

Specifies the value of the help line.
• Visible

Specifies whether the help line is visible.

Methods
--

See also
HmiHelpLineCollection (Page 3038)
HmiHelpLineCollection.Item() (Page 3039)

Programming scripts
10.2 WinCC Unified object model

3040 System Manual, 11/2022

HelpLine.Value

Description
The "Value" property sets the value of the help line.

Type
Float

Access
Read-write

Syntax
HelpLine.Value

See also
HelpLine (Page 3040)

HelpLine.Visible

Description
The "Visible" property specifies whether the help line is visible.

Type
Bool

Access
Read-write

Syntax
HelpLine.Visible

See also
HelpLine (Page 3040)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3041

XValueAxis.LabelColor

Description
The "LabelColor" property specifies the color of the axis labeling.

Type
UInt32

Access
Read-write

Syntax
XValueAxis.LabelColor

See also
XValueAxis (Page 3032)

XValueAxis.LabelFont

Description
The "LabelFont" property specifies the font of the axis labeling.

Type
Object, HmiFontPart

Access
Read-write

Syntax
XValueAxis.LabelFont

See also
XValueAxis (Page 3032)

Programming scripts
10.2 WinCC Unified object model

3042 System Manual, 11/2022

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
XValueAxis.LabelFont (Page 3042)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
XValueAxis.LabelFont (Page 3042)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3043

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
XValueAxis.LabelFont (Page 3042)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

Programming scripts
10.2 WinCC Unified object model

3044 System Manual, 11/2022

See also
XValueAxis.LabelFont (Page 3042)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
XValueAxis.LabelFont (Page 3042)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3045

Access
Read-write

Syntax
Font.Weight

See also
XValueAxis.LabelFont (Page 3042)

XValueAxis.LargeTickLabelingStep

Description
The "LargeTickLabelingStep" property specifies the interval at which scale sections are labeled.

Type
UInt8

Access
Read-write

Syntax
XValueAxis.LargeTickLabelingStep

See also
XValueAxis (Page 3032)

XValueAxis.MeasurementUnit

Description
The "MeasurementUnit" property returns the displayed unit.

Type
String

Programming scripts
10.2 WinCC Unified object model

3046 System Manual, 11/2022

Access
Read-only

Syntax
XValueAxis.MeasurementUnit

See also
XValueAxis (Page 3032)

XValueAxis.MeasurementUnitType

Description
The "MeasurementUnitType" property specifies the display format of the unit.

Type
Int32, HmiMeasurementUnit
Specifies the display format:
• None (0): No unit
• Name (1): Unit name, for example "kilogram"
• Symbol (2): Unit, for example "kg"

Access
Read-write

Syntax
XValueAxis.MeasurementUnitType

See also
XValueAxis (Page 3032)

XValueAxis.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying the axis values, e.g. "{0000}" for
a 4-digit integer with leading zeros.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3047

Type
String

Access
Read-write

Syntax
XValueAxis.OutputFormat

See also
XValueAxis (Page 3032)

XValueAxis.ScalingEntries

Description
The "ScalingEntries" property returns the user scaling of the axes sections.

Type
Object, HmiScalingEntryCollection (Page 3048)

Access
Read-only

Syntax
XValueAxis.ScalingEntries

See also
XValueAxis (Page 3032)
HmiScalingEntryCollection (Page 3048)

HmiScalingEntryCollection

Description
The "HmiScalingEntryCollection" object is a list of all user-defined axis sections ("ScalingEntry"
objects).

Programming scripts
10.2 WinCC Unified object model

3048 System Manual, 11/2022

Use
The "HmiScalingEntryCollection" object is a list and can be counted and enumerated. You can
access the "HmiScalingEntryCollection" list using the index or the tag name.

Object type
HmiHelpLineCollection

Properties
The "HmiScalingEntryCollection" object has the following properties:
• Count

Returns the number of user-defined axis sections of the "HmiScalingEntryCollection" list.

Methods
The "HmiScalingEntryCollection" object has the following methods:
• Item()

Returns a user-defined axis section of the "HmiScalingEntryCollection" list.

See also
XValueAxis.ScalingEntries (Page 3048)

HmiScalingEntryCollection.Count

Description
The "Count" property returns the number of the user-defined axis sections in the
"HmiScalingEntryCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiScalingEntryCollection.Count

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3049

See also
HmiScalingEntryCollection (Page 3048)

HmiScalingEntryCollection.Item()

Description
The "Item" method returns a user-defined axis section of the "HmiScalingEntryCollection" list.

Syntax
HmiScalingEntryCollection[.Item](HmiScalingEntryName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiScalingEntryCollection" object.

Parameters
HmiScalingEntryName
Type: String
Name of the user-defined axis section

Return value
Object, HmiScalingEntryPart (Page 3050)

See also
HmiScalingEntryCollection (Page 3048)
Scaling Entry (Page 3050)

Scaling Entry

Description
The "ScalingEntry" object represents a user-defined axis section of the value axis.

Object type
HmiScalingEntryPart

Programming scripts
10.2 WinCC Unified object model

3050 System Manual, 11/2022

Properties
The "YValueAxis" object has the following properties:
• BeginValue

Specifies the start of a value range section.
• BeginValueTarget

Specifies the scaled value for the start of a value range section.
• DisplayName

Specifies the display name of an axis section.
• EndValue

Specifies the end of a value range section.
• EndValueTarget

Specifies the scaled value for the end of a value range section.

Methods
--

See also
HmiScalingEntryCollection (Page 3048)
HmiScalingEntryCollection.Item() (Page 3050)

ScalingEntry.BeginValue

Description
The "BeginValue" property specifies the start of a value range section.

Type
Float

Access
Read-write

Syntax
ScalingEntry.BeginValue

See also
Scaling Entry (Page 3050)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3051

ScalingEntry.BeginValueTarget

Description
The"BeginValueTarget" property specifies the scaled value for the start of a value range section.

Type
Float

Access
Read-write

Syntax
ScalingEntry.BeginValueTarget

See also
Scaling Entry (Page 3050)

ScalingEntry.DisplayName

Description
The "DisplayName" property specifies the display name of an axis section.

Type
String

Access
Read-write

Syntax
ScalingEntry.DisplayName

See also
Scaling Entry (Page 3050)

Programming scripts
10.2 WinCC Unified object model

3052 System Manual, 11/2022

ScalingEntry.EndValue

Description
The "EndValue" property specifies the end of a value range section.

Type
Float

Access
Read-write

Syntax
ScalingEntry.EndValue

See also
Scaling Entry (Page 3050)

ScalingEntry.EndValueTarget

Description
The"EndValueTarget" property specifies the scaled value for the end of a value range section.

Type
Float

Access
Read-write

Syntax
ScalingEntry.EndValueTarget

See also
Scaling Entry (Page 3050)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3053

XValueAxis.ScaleMode

Description
The "ScaleMode" property specifies the scale mode.

Type
Int32, HmiScaleMode
Specifies the scale mode:
• None (0): None
• Labels (1): Labels
• Ticks (2): Tick marks

Access
Read-write

Syntax
XValueAxis.ScaleMode

See also
XValueAxis (Page 3032)

XValueAxis.ScalingType

Description
The "ScalingType" property specifies the scaling.

Type
Int32, HmiScalingType
Specifies the scaling:
• Linear (0): Linear
• Logarithmic (1): Logarithmic
• NegativeLogarithmic (2): Negative logarithmic
• Tangent (4): Tangential
• Quadratic (5): Square
• Cubic (6): Cubic

Programming scripts
10.2 WinCC Unified object model

3054 System Manual, 11/2022

Access
Read-write

Syntax
XValueAxis.ScalingType

See also
XValueAxis (Page 3032)

XValueAxis.ShowScalingDisplayNames

Description
The "ShowScalingDisplayNames" property specifies whether the display names of the user
scaling are used.

Type
Bool

Access
Read-write

Syntax
XValueAxis.ShowScalingDisplayNames

See also
XValueAxis (Page 3032)

XValueAxis.SubDivisionCount

Description
The "SubDivisionCount" property specifies the number of subdivisions of the main units.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3055

Access
Read-write

Syntax
XValueAxis.SubDivisionCount

See also
XValueAxis (Page 3032)

XValueAxis.TickColor

Description
The "TickColor" property specifies the color of the tick marks.

Type
UInt32

Access
Read-write

Syntax
XValueAxis.TickColor

See also
XValueAxis (Page 3032)

XValueAxis.Visible

Description
The "Visible" property specifies whether the value axis is visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3056 System Manual, 11/2022

Syntax
XValueAxis.Visible

See also
XValueAxis (Page 3032)

FunctionTrendArea.FunctionTrends

Description
The "Trends" property returns the function trends ("FunctionTrend" objects) of the function trend
area.

Type
Object, HmiFunctionTrendCollection (Page 3057)

Access
Read-only

Syntax
FunctionTrendArea.FunctionTrends

See also
FunctionTrendArea (Page 3028)
HmiFunctionTrendCollection (Page 3057)

HmiFunctionTrendCollection

Description
The "HmiFunctionTrendCollection" object is a list of all function trends ("FunctionTrend" objects)
of the f(x) trend view.

Use
The "HmiFunctionTrendCollection" object is a list and can be counted and enumerated. You can
access the "HmiFunctionTrendCollection" list using the index or the tag names.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3057

Object type
HmiFunctionTrendCollection

Properties
The "HmiFunctionTrendCollection" object has the following properties:
• Count

Returns the number of function trends of the "HmiFunctionTrendCollection" list.

Methods
The "HmiFunctionTrendCollection" object has the following methods:
• Item()

Returns a function trend of the "HmiFunctionTrendCollection" list.

See also
FunctionTrendArea.FunctionTrends (Page 3057)

HmiFunctionTrendCollection.Count

Description
The "Count" property returns the number of function trends in the
"HmiFunctionTrendCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiFunctionTrendCollection.Count

See also
HmiFunctionTrendCollection (Page 3057)

Programming scripts
10.2 WinCC Unified object model

3058 System Manual, 11/2022

HmiFunctionTrendCollection.Item()

Description
The "Item" method returns a function trend of the "HmiFunctionTrendCollection" list.

Syntax
HmiFunctionTrendCollection[.Item](HmiFunctionTrendName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiFunctionTrendCollection" object.

Parameters
HmiFunctionTrendName
Type: String
Name of the function trend.

Return value
Object, HmiFunctionTrendPart (Page 3059)

See also
HmiFunctionTrendCollection (Page 3057)
FunctionTrend (Page 3059)

FunctionTrend

Description
The "FunctionTrend" object represents a trend of the trend area.

Object type
HmiFunctionTrendPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3059

Properties
The "FunctionTrend" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• BackColor

Specifies the background color.
• BackFillPattern

Specifies the pattern of the background or the fill.
• BeginTime

Specifies the date and time for the start time of the time range.
• DashType

Specifies the stroke style of the function trend.
• DataSourceX

Specifies the tag for the data source of the x value axis.
• DataSourceY

Specifies the tag for the data source of the y value axis.
• DisplayName

Specifies the display name of the function trend.
• EndTime

Specifies the date and time for the end time of the time range.
• LineColor

Specifies the function trend color.
• LineWidth

Specifies the function trend width.
• MarkerColor

Specifies the color of the function trend points.
• MarkerDimension

Specifies the width of the function trend points.
• MarkerGraphic

Specifies a graphic element as a function trend point.
• MarkerType

Specifies the type of the function trend points.
• PointCount

Specifies the number of measurement points from the start time.
• QualityVisualization

Specifies the colors for values of a specific quality.
• RangeType

Specifies the type of time range.
• ShowLoggedDataImmediately

Specifies which logged values are displayed.
• Thresholds

Returns the list of all limit values of the function trend.

Programming scripts
10.2 WinCC Unified object model

3060 System Manual, 11/2022

• TimeRangeBase
Specifies the base of the time range.

• TimeRangeFactor
Specifies the factor of the time base for defining the time range.

• TrendMode
Specifies the type of function trend display.

• Visible
Specifies whether the function trend is visible.

• XValueAxis
References an x value axis of the function trend.

• YValueAxis
References a y value axis of the function trend.

Methods
--

See also
HmiFunctionTrendCollection (Page 3057)
HmiFunctionTrendCollection.Item() (Page 3059)

FunctionTrend.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
FunctionTrend.AlternateBackColor

See also
FunctionTrend (Page 3059)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3061

FunctionTrend.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
FunctionTrend.BackColor

See also
FunctionTrend (Page 3059)

FunctionTrend.BackFillPattern

Description
The "BackFillPattern" property specifies the pattern of the background or the fill.

Type
Int32, HmiFillPattern
Specifies the filling:
• Solid (0): Solid
• Transparent (65536): Transparent
• Horizontal (131072): Horizontal
• Vertical (131073): Vertical
• ForwardDiagonal (131074): Forward diagonal stripe
• BackwardDiagonal (131075): Backward diagonal stripe
• Cross (131076): Cross
• DiagonalCross (131077): Diagonal cross
• GradientHorizontal (1048576): Horizontal gradient
• GradientVertical (1048577): Vertical gradient

Programming scripts
10.2 WinCC Unified object model

3062 System Manual, 11/2022

• GradientForwardDiagonal (1048578): Gradient forward diagonal
• GradientBackwardDiagonal (1048579): Gradient backward diagonal
• GradientHorizontalTricolor (1048832): Horizontal tricolor gradient
• GradientVerticalTricolor (1048833): Vertical tricolor gradient
• GradientForwardDiagonalTricolor (1048834): Forward diagonal tricolor gradient
• GradientBackwardDiagonalTricolor (1048835): Backward diagonal tricolor gradient

Access
Read-write

Syntax
FunctionTrend.BackFillPattern

See also
FunctionTrend (Page 3059)

FunctionTrend.BeginTime

Description
The "BeginTime" property specifies the date and time for the start time of the time range.

Type
DateTime

Access
Read-write

Syntax
FunctionTrend.BeginValue

See also
FunctionTrend (Page 3059)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3063

FunctionTrend.DashType

Description
The "DashType" property specifies the stroke style of the function trend.

Type
Int32, HmiDashType
Specifies the stroke style:
• Solid (0): Solid
• Dash(1): Dashed
• Dot (2): Dotted
• DashDot (3): Dash-dot
• DashDotDot (4): Dash-dot-dot

Access
Read-write

Syntax
FunctionTrend.DashType

See also
FunctionTrend (Page 3059)

FunctionTrend.DataSourceX

Description
The "DataSourceX" property specifies the tag for the data source of the x value axis.

Type
Object, HmiDataSourcePart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3064 System Manual, 11/2022

Syntax
FunctionTrend.DataSourceX

See also
FunctionTrend (Page 3059)

DataSource.Source

Description
The "Source" property specifies the data source, e.g. a tag or logging tag.

Type
String

Access
Read-write

Syntax
DataSource.Source

See also
FunctionTrend.DataSourceX (Page 3064)

DataSource.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3065

Syntax
DataSource.VisualizeQuality

See also
FunctionTrend.DataSourceX (Page 3064)

FunctionTrend.DataSourceY

Description
The "DataSourceY" property specifies the tag for the data source of the y value axis.

Type
Object, HmiDataSourcePart

Access
Read-write

Syntax
FunctionTrend.DataSourceX

See also
FunctionTrend (Page 3059)

DataSource.Source

Description
The "Source" property specifies the data source, e.g. a tag or logging tag.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3066 System Manual, 11/2022

Syntax
DataSource.Source

See also
FunctionTrend.DataSourceY (Page 3066)

DataSource.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Access
Read-write

Syntax
DataSource.VisualizeQuality

See also
FunctionTrend.DataSourceY (Page 3066)

FunctionTrend.DisplayName

Description
The "DisplayName" property specifies the display name of the function trend.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3067

Syntax
FunctionTrend.DisplayName

See also
FunctionTrend (Page 3059)

FunctionTrend.EndTime

Description
The "EndTime" property specifies the date and time for the end time of the time range.

Type
DateTime

Access
Read-write

Syntax
FunctionTrend.EndValue

See also
FunctionTrend (Page 3059)

FunctionTrend.LineColor

Description
The "LineColor" property specifies the function trend color.

Type
UInt32

Access
Read-write

Syntax
FunctionTrend.LineColor

Programming scripts
10.2 WinCC Unified object model

3068 System Manual, 11/2022

See also
FunctionTrend (Page 3059)

FunctionTrend.LineWidth

Description
The "LineWidth" property specifies the function trend width.

Type
UInt8

Access
Read-write

Syntax
FunctionTrend.LineWidth

See also
FunctionTrend (Page 3059)

FunctionTrend.MarkerColor

Description
The "MarkerColor" property specifies the color of the function trend points.

Type
UInt32

Access
Read-write

Syntax
FunctionTrend.MarkerColor

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3069

See also
FunctionTrend (Page 3059)

FunctionTrend.MarkerDimension

Description
The "MarkerDimension" property specifies the width of the function trend points.

Type
UInt32

Access
Read-write

Syntax
FunctionTrend.MarkerDimension

See also
FunctionTrend (Page 3059)

FunctionTrend.MarkerGraphic

Description
The "MarkerGraphic" property specifies a graphic element as a function trend point.

Type
String

Access
Read-write

Syntax
FunctionTrend.MarkerGraphic

Programming scripts
10.2 WinCC Unified object model

3070 System Manual, 11/2022

See also
FunctionTrend (Page 3059)

FunctionTrend.MarkerType

Description
The "MarkerType" property specifies the type of function trend points.

Type
Int32, HmiMarkerType
Specifies the type of the trend points:
• None (0): None
• Points (1): Dots
• Square (2): Square
• Circle (3): Circles
• Graphic (4): Graphic

Access
Read-write

Syntax
FunctionTrend.MarkerType

See also
FunctionTrend (Page 3059)

FunctionTrend.PointCount

Description
The "PointCount" property specifies the number of measurement points from the start time.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3071

Access
Read-write

Syntax
FunctionTrend.PointCount

See also
FunctionTrend (Page 3059)

FunctionTrend.QualityVisualization

Description
The "QualityVisualization" property specifies the colors for values of a specific quality.

Type
Object, HmiQualityPart

Access
Read-write

Syntax
FunctionTrend.QualityVisualization

See also
FunctionTrend (Page 3059)

Quality.BadColor

Description
The "BadColor" property specifies the color for values of the quality "Bad". Values of this quality
cannot be used.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

3072 System Manual, 11/2022

Access
Read-write

Syntax
Quality.BadColor

See also
FunctionTrend.QualityVisualization (Page 3072)

Quality.UncertainColor

Description
The "UncertainColor" property specifies the color for values of the quality "Uncertain". The
quality of this level's values is worse than usual. It might still be possible to use the values,
however.

Type
UInt32

Access
Read-write

Syntax
Quality.UncertainColor

See also
FunctionTrend.QualityVisualization (Page 3072)

Quality.Visible

Description
The "Visible" property specifies whether the colors are visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3073

Access
Read-write

Syntax
Quality.Visible

See also
FunctionTrend.QualityVisualization (Page 3072)

FunctionTrend.RangeType

Description
The "RangeType" property specifies the type of time range.

Type
Int32, HmiTimeRangeType
Specifies the time range:
• TimeRange (0): Any time range
• FromBeginToEnd (1): Total time range
• PointCount (2): Number of measurement points

Access
Read-write

Syntax
FunctionTrend.RangeType

See also
FunctionTrend (Page 3059)

Programming scripts
10.2 WinCC Unified object model

3074 System Manual, 11/2022

FunctionTrend.ShowLoggedDataImmediately

Description
The "ShowLoggedDataImmediately" property specifies which logged values are displayed:
• True: Entire visible range
• False: Only from current time

Type
Bool

Access
Read-write

Syntax
Trend.ShowLoggedDataImmediately

See also
FunctionTrend (Page 3059)

FunctionTrend.Thresholds

Description
The "Thresholds" property returns the list of all limit values ("Threshold" objects) of the function
trend.

Type
Object, HmiThresholdCollection (Page 3076)

Access
Read-only

Syntax
FunctionTrend.Thresholds

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3075

See also
FunctionTrend (Page 3059)
HmiThresholdCollection (Page 3076)

HmiThresholdCollection

Description
The "HmiThresholdCollection" object is a list of all limit values ("Threshold" objects).

Use
The "HmiThresholdCollection" object is a list and can be counted and enumerated. You can
access the "HmiThresholdCollection" list using the index or the tag name.

Object type
HmiThresholdCollection

Properties
The "HmiThresholdCollection" object has the following properties:
• Count

Returns the number of limit values of the "HmiThresholdCollection" list.

Methods
The "HmiThresholdCollection" object has the following methods:
• Item()

Returns a limit value of the "HmiThresholdCollection" list.

See also
FunctionTrend.Thresholds (Page 3075)

HmiThresholdCollection.Count

Description
The "Count" property returns the number of limit values in the "HmiThresholdCollection" list.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

3076 System Manual, 11/2022

Access
Read-only

Syntax
HmiThresholdCollection.Count

See also
HmiThresholdCollection (Page 3076)

HmiThresholdCollection.Item()

Description
The "Item" method returns a limit value of the "HmiThresholdCollection" list.

Syntax
HmiThresholdCollection[.Item](HmiThresholdName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiThresholdCollection" object.

Parameters
HmiThresholdName
Type: String
Name of the limit value

Return value
Object, HmiThresholdPart (Page 3078)

See also
HmiThresholdCollection (Page 3076)
Threshold (Page 3078)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3077

Threshold

Description
The "Threshold" object represents a limit value.

Object type
HmiThresholdPart

Properties
The "Threshold" object has the following properties:
• Color

Specifies the color of the limit value.
• DisplayName

Specifies the display name of the limit value.
• Name

Specifies the name of the limit value.
• ThresholdMode

Specifies the type of limit value.
• Value

Returns the limit value.

Methods
--

See also
HmiThresholdCollection (Page 3076)
HmiThresholdCollection.Item() (Page 3077)

Threshold.Color

Description
The "Color" property specifies the color of the limit value.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

3078 System Manual, 11/2022

Access
Read-write

Syntax
Threshold.Color

See also
Threshold (Page 3078)

Threshold.DisplayName

Description
The "DisplayName" property specifies the display name of the limit value.

Type
String

Access
Read-write

Syntax
Threshold.DisplayName

See also
Threshold (Page 3078)

Threshold.Name

Description
The "Name" property specifies the name of the limit value.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3079

Syntax
Threshold.Name

See also
Threshold (Page 3078)

Threshold.ThresholdMode

Description
The "ThresholdMode" property specifies the type of limit value.

Type
Int32, HmiThresholdMode
Specifies the threshold value:
• Undefined (0): Undefined
• Upper (1): Upper threshold
• Lower (2): Lower threshold
• Normal (3): Normal threshold
• Minimum (4): Minimum threshold
• Maximum (5): Maximum threshold

Access
Read-write

Syntax
Threshold.ThresholdMode

See also
Threshold (Page 3078)

Threshold.Value

Description
The "Value" property returns the limit value of the tag.

Programming scripts
10.2 WinCC Unified object model

3080 System Manual, 11/2022

Type
Float

Access
Read-only

Syntax
Threshold.Value

See also
Threshold (Page 3078)

FunctionTrend.TimeRangeBase

Description
The "TimeRangeBase" property specifies the base of the time range.

Type
Int32, HmiTimeRangeBase
Specifies a time range:
• Undefined (0): Not defined
• Millisecond (1): Millisecond
• Second (2): Second
• Minute (3): Minute
• Hour (4): Hour
• Day (5): Day
• Month (6): Month
• Year (7): Year

Access
Read-write

Syntax
FunctionTrend.TimeRangeBase

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3081

See also
FunctionTrend (Page 3059)

FunctionTrend.TimeRangeFactor

Description
The "TimeRangeFactor" property specifies the factor of the time base for defining the time range.

Type
Int32

Access
Read-write

Syntax
FunctionTrend.TimeRangeFactor

See also
FunctionTrend (Page 3059)

FunctionTrend.TrendMode

Description
The "TrendMode" property specifies the type of function trend display.

Type
Int32, HmiTrendMode
Specifies the trend type:
• Points (0): Dots
• Interpolated (1): Interpolated
• Stepped (2): Levels
• Bar (3): Bar
• Value (4): Values

Programming scripts
10.2 WinCC Unified object model

3082 System Manual, 11/2022

Access
Read-write

Syntax
FunctionTrend.TrendMode

See also
FunctionTrend (Page 3059)

FunctionTrend.Visible

Description
The "Visible" property specifies whether the function trend is visible.

Type
Bool

Access
Read-write

Syntax
FunctionTrend.Visible

See also
FunctionTrend (Page 3059)

FunctionTrend.XValueAxis

Description
The "XValueAxis" property references an x value axis of the function trend.

Type
Object, HmiXValueAxisPart (Page 3032)

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3083

Syntax
FunctionTrend.XValueAxis

See also
FunctionTrend (Page 3059)
XValueAxis (Page 3032)

XValueAxis

Description
XValueAxis (Page 3032)

FunctionTrend.YValueAxis

Description
The "YValueAxis" property references a y value axis of the function trend.

Type
Object, HmiYValueAxisPart (Page 3088)

Access
Read-write

Syntax
FunctionTrend.YValueAxis

See also
FunctionTrend (Page 3059)
YValueAxis (Page 3088)

YValueAxis

Description
YValueAxis (Page 3088)

Programming scripts
10.2 WinCC Unified object model

3084 System Manual, 11/2022

FunctionTrendArea.GridLines

Description
The "GridLines" property specifies the grid lines of the function trend area.

Type
Int32, HmiGridLine
Specifies the display of the grid lines:
• None (0): None
• VerticalMajor (1): Vertical, coarse
• HorizontalMajor (2): Horizontal, coarse
• VerticalMinor (4): Vertical, fine
• HorizontalMinor (8): Horizontal, fine

Access
Read-write

Syntax
FunctionTrendArea.GridLines

See also
FunctionTrendArea (Page 3028)

FunctionTrendArea.LeftValueAxes

Description
The "LeftValueAxes" property returns the left value axes of the function trend area.

Type
Object, HmiYValueAxisCollection (Page 3086)

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3085

Syntax
TrendArea.LeftValueAxes

See also
FunctionTrendArea (Page 3028)
HmiYValueAxisCollection (Page 3086)

HmiYValueAxisCollection

Description
The "HmiYValueAxisCollection" object is a list of all value axes ("YValueAxis" objects) of the trend
area.

Use
The "HmiYValueAxisCollection" object is a list and can be counted and enumerated. You can
access the "HmiYValueAxisCollection" list using the index or the tag name.

Object type
HmiYValueAxisCollection

Properties
The "HmiYValueAxisCollection" object has the following properties:
• Count

Returns the number of value axes in the "HmiYValueAxisCollection" list.

Methods
The "HmiYValueAxisCollection" object has the following methods:
• Item()

Returns a value axis of the "HmiYValueAxisCollection" list.

See also
TrendArea.LeftValueAxes (Page 6581)
HmiYValueAxisCollection (Page 3086)

Programming scripts
10.2 WinCC Unified object model

3086 System Manual, 11/2022

HmiYValueAxisCollection.Count

Description
The "Count" property returns the number of value axes in the "HmiYValueAxisCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiYValueAxisCollection.Count

See also
HmiYValueAxisCollection (Page 3086)

HmiYValueAxisCollection.Item()

Description
The "Item" method returns a value axis of the "HmiYValueAxisCollection" list.

Syntax
HmiYValueAxisCollection[.Item](HmiYValueAxisName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiYValueAxisCollection" object.

Parameters
HmiYValueAxisName
Type: String
Name of the value axis

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3087

Return value
Object, HmiYValueAxisPart (Page 3088)

See also
HmiYValueAxisCollection (Page 3086)
YValueAxis (Page 3088)

YValueAxis

Description
The "YValueAxis" object represents a value axis of the trend area.

Object type
HmiYValueAxisPart

Properties
The "YValueAxis" object has the following properties:
• ApplyScalingEntries

Specifies whether the user scaling of the axis section is applied.
• AutoRange

Specifies whether automatic determination of the value range is activated by the minimum
and maximum value of the trend.

• AutoScaling
Specifies whether the automatic scaling is activated.

• AxisColor
Specifies the color of the value axis.

• BeginValue
Specifies the start of a value range or value range section.

• DisplayName
Specifies the display name of the value axis.

• DivisionCount
Specifies the number of main units with subdivisions.

• EndValue
Specifies the end of a value range or value range section.

• HelpLines
Returns the appearance of the help lines.

• LabelColor
Specifies the color of the axis labeling.

Programming scripts
10.2 WinCC Unified object model

3088 System Manual, 11/2022

• LabelFont
Specifies the font of the axis labeling.

• LargeTickLabelingStep
Specifies the interval at which scale sections are labeled.

• MeasurementUnit
Returns the displayed unit.

• MeasurementUnitType
Specifies the display format of the unit.

• OutputFormat
Specifies the format for displaying the axis values.

• ScalingEntries
Returns the specification of the user scaling of the axis sections.

• ScaleMode
Specifies the scale mode:

• ScalingType
Specifies the scaling.

• ShowScalingDisplayNames
Specifies whether the display names of the user scaling are used.

• SubDivisionCount
Specifies the number of divisions of the main units.

• TickColor
Specifies the color of the tick marks.

• Visible
Specifies whether the value axis is visible.

Methods
--

See also
HmiYValueAxisCollection (Page 3086)
HmiYValueAxisCollection.Item() (Page 3087)

YValueAxis.ApplyScalingEntries

Description
The "ApplyScalingEntries" property specifies whether the user scaling of the axis sections is
applied.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3089

Type
Bool

Access
Read-write

Syntax
YValueAxis.ApplyScalingEntries

See also
YValueAxis (Page 3088)

YValueAxis.AutoRange

Description
The "AutoRange" property specifies whether automatic determination of the value range is
activated by the minimum and maximum value of the trend.

Type
Bool

Access
Read-write

Syntax
YValueAxis.AutoRange

See also
YValueAxis (Page 3088)

YValueAxis.AutoScaling

Description
The "AutoScaling" property specifies whether automatic scaling is activated.

Programming scripts
10.2 WinCC Unified object model

3090 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
YValueAxis.AutoScaling

See also
YValueAxis (Page 3088)

YValueAxis.AxisColor

Description
The "AxisColor" property specifies the color of the value axis.

Type
UInt32

Access
Read-write

Syntax
YValueAxis.BackColor

See also
YValueAxis (Page 3088)

YValueAxis.BeginValue

Description
The "BeginValue" property specifies the start of a value range or value range section.

Type
Float

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3091

Access
Read-write

Syntax
YValueAxis.BeginValue

See also
YValueAxis (Page 3088)

YValueAxis.DisplayName

Description
The "DisplayName" property specifies the display name of the value axis.

Type
String

Access
Read-write

Syntax
YValueAxis.DisplayName

See also
YValueAxis (Page 3088)

YValueAxis.DivisionCount

Description
The "DivisionCount" property specifies the number of main units with subdivisions. To this
purpose the automatic scaling must be switched off.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

3092 System Manual, 11/2022

Access
Read-write

Syntax
YValueAxis.DivisionCount

See also
YValueAxis (Page 3088)

YValueAxis.EndValue

Description
The "EndValue" property specifies the end of a value range or value range section.

Type
Float

Access
Read-write

Syntax
YValueAxis.EndValue

See also
YValueAxis (Page 3088)

YValueAxis.HelpLines

Description
The "HelpLines" property returns the appearance of the help lines.

Type
Object, HmiHelpLineCollection (Page 3094)

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3093

Syntax
YValueAxis.HelpLines

See also
YValueAxis (Page 3088)
HmiHelpLineCollection (Page 3094)

HmiHelpLineCollection

Description
The "HmiHelpLineCollection" object is a list of all help lines ("HelpLine" objects).

Use
The "HmiHelpLineCollection" object is a list and can be counted and enumerated. You can access
the "HmiHelpLineCollection" list using the index or the tag name.

Object type
HmiHelpLineCollection

Properties
The "HmiHelpLineCollection" object has the following properties:
• Count

Returns the number of help lines of the "HmiHelpLineCollection" list.

Methods
The "HmiHelpLineCollection" object has the following methods:
• Item()

Returns a help line of the "HmiHelpLineCollection" list.

See also
YValueAxis.HelpLines (Page 3093)

HmiHelpLineCollection.Count

Description
The "Count" property returns the number of help lines in the "HmiHelpLineCollection" list.

Programming scripts
10.2 WinCC Unified object model

3094 System Manual, 11/2022

Type
UInt32

Access
Read-only

Syntax
HmiHelpLineCollection.Count

See also
HmiHelpLineCollection (Page 3094)

HmiHelpLineCollection.Item()

Description
The "Item" method returns help line of the "HmiHelpLineCollection" list.

Syntax
HmiHelpLineCollection[.Item](HmiHelpLineName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiHelpLineCollection" object.

Parameters
HmiHelpLineName
Type: String
Name of the help line

Return value
Object, HmiHelpLinePart (Page 3096)

See also
HmiHelpLineCollection (Page 3094)
HelpLine (Page 3096)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3095

HelpLine

Description
The "HelpLine" object represents a help line of the value axis.

Object type
HmiHelpLinePart

Properties
The "HelpLine" object has the following properties:
• Value

Specifies the value of the help line.
• Visible

Specifies whether the help line is visible.

Methods
--

See also
HmiHelpLineCollection (Page 3094)
HmiHelpLineCollection.Item() (Page 3095)

HelpLine.Value

Description
The "Value" property sets the value of the help line.

Type
Float

Access
Read-write

Syntax
HelpLine.Value

Programming scripts
10.2 WinCC Unified object model

3096 System Manual, 11/2022

See also
HelpLine (Page 3096)

HelpLine.Visible

Description
The "Visible" property specifies whether the help line is visible.

Type
Bool

Access
Read-write

Syntax
HelpLine.Visible

See also
HelpLine (Page 3096)

YValueAxis.LabelColor

Description
The "LabelColor" property specifies the color of the axis labeling.

Type
UInt32

Access
Read-write

Syntax
YValueAxis.LabelColor

See also
YValueAxis (Page 3088)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3097

YValueAxis.LabelFont

Description
The "LabelFont" property specifies the font of the axis labeling.

Type
Object, HmiFontPart

Access
Read-write

Syntax
YValueAxis.LabelFont

See also
YValueAxis (Page 3088)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
YValueAxis.LabelFont (Page 3098)

Programming scripts
10.2 WinCC Unified object model

3098 System Manual, 11/2022

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
YValueAxis.LabelFont (Page 3098)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
YValueAxis.LabelFont (Page 3098)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3099

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
YValueAxis.LabelFont (Page 3098)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

3100 System Manual, 11/2022

See also
YValueAxis.LabelFont (Page 3098)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
YValueAxis.LabelFont (Page 3098)

YValueAxis.LargeTickLabelingStep

Description
The "LargeTickLabelingStep" property specifies the interval at which scale sections are labeled.

Type
UInt8

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3101

Access
Read-write

Syntax
YValueAxis.LargeTickLabelingStep

See also
YValueAxis (Page 3088)

YValueAxis.MeasurementUnit

Description
The "MeasurementUnit" property returns the displayed unit.

Type
String

Access
Read-only

Syntax
YValueAxis.MeasurementUnit

See also
YValueAxis (Page 3088)

YValueAxis.MeasurementUnitType

Description
The "MeasurementUnitType" property specifies the display format of the unit.

Type
Int32, HmiMeasurementUnit

Programming scripts
10.2 WinCC Unified object model

3102 System Manual, 11/2022

Specifies the display format:
• None (0): No unit
• Name (1): Unit name, for example "kilogram"
• Symbol (2): Unit, for example "kg"

Access
Read-write

Syntax
YValueAxis.MeasurementUnitType

See also
YValueAxis (Page 3088)

YValueAxis.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying the axis values, e.g. "{0000}" for
a 4-digit integer with leading zeros.

Type
String

Access
Read-write

Syntax
YValueAxis.OutputFormat

See also
YValueAxis (Page 3088)

YValueAxis.ScalingEntries

Description
The "ScalingEntries" property returns the user scaling of the axes sections.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3103

Type
Object, HmiScalingEntryCollection (Page 3104)

Access
Read-only

Syntax
YValueAxis.ScalingEntries

See also
YValueAxis (Page 3088)
HmiScalingEntryCollection (Page 3104)

HmiScalingEntryCollection

Description
The "HmiScalingEntryCollection" object is a list of all user-defined axis sections ("ScalingEntry"
objects).

Use
The "HmiScalingEntryCollection" object is a list and can be counted and enumerated. You can
access the "HmiScalingEntryCollection" list using the index or the tag name.

Object type
HmiHelpLineCollection

Properties
The "HmiScalingEntryCollection" object has the following properties:
• Count

Returns the number of user-defined axis sections of the "HmiScalingEntryCollection" list.

Methods
The "HmiScalingEntryCollection" object has the following methods:
• Item()

Returns a user-defined axis section of the "HmiScalingEntryCollection" list.

Programming scripts
10.2 WinCC Unified object model

3104 System Manual, 11/2022

See also
YValueAxis.ScalingEntries (Page 3103)

HmiScalingEntryCollection.Count

Description
The "Count" property returns the number of the user-defined axis sections in the
"HmiScalingEntryCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiScalingEntryCollection.Count

See also
HmiScalingEntryCollection (Page 3104)

HmiScalingEntryCollection.Item()

Description
The "Item" method returns a user-defined axis section of the "HmiScalingEntryCollection" list.

Syntax
HmiScalingEntryCollection[.Item](HmiScalingEntryName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiScalingEntryCollection" object.

Parameters
HmiScalingEntryName
Type: String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3105

Name of the user-defined axis section

Return value
Object, HmiScalingEntryPart (Page 3106)

See also
HmiScalingEntryCollection (Page 3104)
Scaling Entry (Page 3106)

Scaling Entry

Description
The "ScalingEntry" object represents a user-defined axis section of the value axis.

Object type
HmiScalingEntryPart

Properties
The "YValueAxis" object has the following properties:
• BeginValue

Specifies the start of a value range section.
• BeginValueTarget

Specifies the scaled value for the start of a value range section.
• DisplayName

Specifies the display name of an axis section.
• EndValue

Specifies the end of a value range section.
• EndValueTarget

Specifies the scaled value for the end of a value range section.

Methods
--

See also
HmiScalingEntryCollection (Page 3104)
HmiScalingEntryCollection.Item() (Page 3105)

Programming scripts
10.2 WinCC Unified object model

3106 System Manual, 11/2022

ScalingEntry.BeginValue

Description
The "BeginValue" property specifies the start of a value range section.

Type
Float

Access
Read-write

Syntax
ScalingEntry.BeginValue

See also
Scaling Entry (Page 3106)

ScalingEntry.BeginValueTarget

Description
The"BeginValueTarget" property specifies the scaled value for the start of a value range section.

Type
Float

Access
Read-write

Syntax
ScalingEntry.BeginValueTarget

See also
Scaling Entry (Page 3106)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3107

ScalingEntry.DisplayName

Description
The "DisplayName" property specifies the display name of an axis section.

Type
String

Access
Read-write

Syntax
ScalingEntry.DisplayName

See also
Scaling Entry (Page 3106)

ScalingEntry.EndValue

Description
The "EndValue" property specifies the end of a value range section.

Type
Float

Access
Read-write

Syntax
ScalingEntry.EndValue

See also
Scaling Entry (Page 3106)

Programming scripts
10.2 WinCC Unified object model

3108 System Manual, 11/2022

ScalingEntry.EndValueTarget

Description
The"EndValueTarget" property specifies the scaled value for the end of a value range section.

Type
Float

Access
Read-write

Syntax
ScalingEntry.EndValueTarget

See also
Scaling Entry (Page 3106)

YValueAxis.ScaleMode

Description
The "ScaleMode" property specifies the scale mode.

Type
Int32, HmiScaleMode
Specifies the scale mode:
• None (0): None
• Labels (1): Labels
• Ticks (2): Tick marks

Access
Read-write

Syntax
YValueAxis.ScaleMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3109

See also
YValueAxis (Page 3088)

YValueAxis.ScalingType

Description
The "ScalingType" property specifies the scaling.

Type
Int32, HmiScalingType
Specifies the scaling:
• Linear (0): Linear
• Logarithmic (1): Logarithmic
• NegativeLogarithmic (2): Negative logarithmic
• Tangent (4): Tangential
• Quadratic (5): Square
• Cubic (6): Cubic

Access
Read-write

Syntax
YValueAxis.ScalingType

See also
YValueAxis (Page 3088)

YValueAxis.ShowScalingDisplayNames

Description
The "ShowScalingDisplayNames" property specifies whether the display names of the user
scaling are used.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

3110 System Manual, 11/2022

Access
Read-write

Syntax
YValueAxis.ShowScalingDisplayNames

See also
YValueAxis (Page 3088)

YValueAxis.SubDivisionCount

Description
The "SubDivisionCount" property specifies the number of subdivisions of the main units.

Type
Int32

Access
Read-write

Syntax
YValueAxis.SubDivisionCount

See also
YValueAxis (Page 3088)

YValueAxis.TickColor

Description
The "TickColor" property specifies the color of the tick marks.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3111

Access
Read-write

Syntax
YValueAxis.TickColor

See also
YValueAxis (Page 3088)

YValueAxis.Visible

Description
The "Visible" property specifies whether the value axis is visible.

Type
Bool

Access
Read-write

Syntax
YValueAxis.Visible

See also
YValueAxis (Page 3088)

FunctionTrendArea.MajorGridLinesColor

Description
The "MajorGridLinesColor" property specifies the color of the main grid lines.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3112 System Manual, 11/2022

Syntax
FunctionTrendArea.MajorGridLinesColor

See also
FunctionTrendArea (Page 3028)

FunctionTrendArea.MinorGridLinesColor

Description
The "MinorGridLinesColor" specifies the color of the auxiliary grid lines.

Type
UInt32

Access
Read-write

Syntax
FunctionTrendArea.MinorGridLinesColor

See also
FunctionTrendArea (Page 3028)

FunctionTrendArea.Name

Description
The "Name" property returns the name of the function trend area.

Type
String

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3113

Syntax
FunctionTrendArea.Name

See also
FunctionTrendArea (Page 3028)

FunctionTrendArea.RightValueAxes

Description
The "RightValueAxes" property returns the right value axes of the function trend area.

Type
Object, HmiYValueAxisCollection (Page 3086)

Access
Read-only

Syntax
FunctionTrendArea.RightValueAxes

See also
FunctionTrendArea (Page 3028)
HmiYValueAxisCollection (Page 3086)

YValueAxisCollection

Description
YValueAxisCollection (Page 3086)

FunctionTrendArea.Ruler

Description
The "Ruler" property specifies the appearance of the ruler to determine the function trend value.

Programming scripts
10.2 WinCC Unified object model

3114 System Manual, 11/2022

Type
Object, HmiRulerPart

Access
Read-write

Syntax
FunctionTrendArea.Ruler

See also
FunctionTrendArea (Page 3028)

Ruler.Color

Description
The "Color" property specifies the color of the ruler.

Type
UInt32

Access
Read-write

Syntax
Ruler.Color

See also
FunctionTrendArea.Ruler (Page 3114)

Ruler.Width

Description
The "Width" property specifies the width of the ruler.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3115

Type
UInt32

Access
Read-write

Syntax
Ruler.Width

See also
FunctionTrendArea.Ruler (Page 3114)

FunctionTrendArea.SelectedFunctionTrend

Description
The "SelectedFunctionTrend" property specifies the selected function trend of the function trend
area.

Type
Object, HmiFunctionTrendPart (Page 3059)

Access
Read-write

Syntax
FunctionTrendArea.SelectedFunctionTrend

See also
FunctionTrendArea (Page 3028)
FunctionTrend (Page 3059)

FunctionTrend

Description
FunctionTrend (Page 3059)

Programming scripts
10.2 WinCC Unified object model

3116 System Manual, 11/2022

FunctionTrendArea.SizeFactor

Description
The "SizeFactor" property specifies the scaling factor of the function trend area relative to its
height.

Type
UInt16

Access
Read-write

Syntax
FunctionTrendArea.SizeFactor

See also
FunctionTrendArea (Page 3028)

FunctionTrendArea.TopValueAxes

Description
The "TopValueAxes" property returns the upper value axes of the function trend area.

Type
Object, HmiXValueAxisCollection (Page 3030)

Access
Read-only

Syntax
FunctionTrendArea.TopValueAxes

See also
FunctionTrendArea (Page 3028)
HmiXValueAxisCollection (Page 3030)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3117

XValueAxisCollection

Description
XValueAxisCollection (Page 3030)

FunctionTrendArea.Visible

Description
The "Visible" property specifies whether the function trend area is visible.

Type
Bool

Access
Read-write

Syntax
FunctionTrendArea.Visible

See also
FunctionTrendArea (Page 3028)

FunctionTrendControl.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
FunctionTrendControl.Height

Programming scripts
10.2 WinCC Unified object model

3118 System Manual, 11/2022

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl.Icon

Description
The "Icon" property specifies the icon of the f(x) trend view.

Type
String

Access
Read-write

Syntax
FunctionTrendControl.Icon

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl.Layer

Description
The "Layer" property returns the layer of the screen in which the f(x) trend view is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
FunctionTrendControl.Layer

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3119

See also
FunctionTrendControl (Page 3014)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
FunctionTrendControl.Layer (Page 3119)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

Programming scripts
10.2 WinCC Unified object model

3120 System Manual, 11/2022

See also
FunctionTrendControl.Layer (Page 3119)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
FunctionTrendControl.Layer (Page 3119)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3121

See also
FunctionTrendControl.Layer (Page 3119)

FunctionTrendControl.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
FunctionTrendControl.Left

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl.Legend

Description
The "Legend" property specifies the appearance of the legend ("Legend" object).

Type
Object, HmiLegendPart

Access
Read-write

Syntax
FunctionTrendControl.Legend

Programming scripts
10.2 WinCC Unified object model

3122 System Manual, 11/2022

See also
FunctionTrendControl (Page 3014)

Legend.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Legend.ForeColor

See also
FunctionTrendControl.Legend (Page 3122)

Legend.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Legend.Font

See also
FunctionTrendControl.Legend (Page 3122)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3123

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Legend.Font (Page 3123)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Legend.Font (Page 3123)

Programming scripts
10.2 WinCC Unified object model

3124 System Manual, 11/2022

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Legend.Font (Page 3123)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3125

See also
Legend.Font (Page 3123)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Legend.Font (Page 3123)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Programming scripts
10.2 WinCC Unified object model

3126 System Manual, 11/2022

Access
Read-write

Syntax
Font.Weight

See also
Legend.Font (Page 3123)

Legend.Visible

Description
The "Visible" property specifies whether the legend is visible.

Type
Bool

Access
Read-write

Syntax
Legend.Visible

See also
FunctionTrendControl.Legend (Page 3122)

FunctionTrendControl.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3127

Access
Read-write

Syntax
FunctionTrendControl.Margin

See also
FunctionTrendControl (Page 3014)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
FunctionTrendControl.Margin (Page 3127)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

3128 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Left

See also
FunctionTrendControl.Margin (Page 3127)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
FunctionTrendControl.Margin (Page 3127)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3129

Access
Read-write

Syntax
Margin.Top

See also
FunctionTrendControl.Margin (Page 3127)

FunctionTrendControl.Name

Description
The "Name" property returns the name of the f(x) trend view.

Type
String

Access
Read-only

Syntax
FunctionTrendControl.Name

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl.Online

Description
The "Online" property specifies the start and stop of the update of the f(x) trend view.
• True: Online. The f(x) trend view is updated with new values.
• False: Offline. No new values are added to the f(x) trend view.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

3130 System Manual, 11/2022

Access
Read-write

Syntax
FunctionTrendControl.Online

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
FunctionTrendControl.Parent

See also
FunctionTrendControl (Page 3014)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3131

FunctionTrendControl.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the f(x) trend
view was created.

Type
String

Access
Read-only

Syntax
FunctionTrendControl.RenderingTemplate

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl.ShiftAxis

Description
The "ShiftAxis" property specifies whether to swap the x axis and y axis of the f(x) trend view.

Type
Bool

Access
Read-write

Syntax
FunctionTrendControl.ShiftAxis

See also
FunctionTrendControl (Page 3014)

Programming scripts
10.2 WinCC Unified object model

3132 System Manual, 11/2022

FunctionTrendControl.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the f(x) trend view is highlighted when in
focus.

Type
Bool

Access
Read-write

Syntax
FunctionTrendControl.ShowFocusVisual

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl.ShowRuler

Description
The "ShowRuler" property specifies whether the ruler is displayed for determining a function
trend value.

Type
Bool

Access
Read-write

Syntax
FunctionTrendControl.ShowRuler

See also
FunctionTrendControl (Page 3014)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3133

FunctionTrendControl.StatusBar

Description
The "StatusBar" property specifies the information bar of the f(x) trend view.

Type
Object, HmiStatusBarPart

Access
Read-write

Syntax
FunctionTrendControl.StatusBar

See also
FunctionTrendControl (Page 3014)

StatusBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
StatusBar.BackColor

See also
FunctionTrendControl.StatusBar (Page 3134)

Programming scripts
10.2 WinCC Unified object model

3134 System Manual, 11/2022

StatusBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
information bar.

Type
Object, HmiControlBarElementCollection (Page 3135)

Access
Read-only

Syntax
StatusBar.Elements

See also
HmiControlBarElementCollection (Page 3135)
FunctionTrendControl.StatusBar (Page 3134)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3135

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
StatusBar.Elements (Page 3135)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 3135)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

3136 System Manual, 11/2022

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 6421)

See also
HmiControlBarElementCollection (Page 3135)
Control Bar Elements (Page 6421)

Control Bar Elements

Description
Control Bar Elements (Page 3152)

StatusBar.Enabled

Description
The "Enabled" property specifies whether the information bar can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3137

Syntax
StatusBar.Enabled

See also
FunctionTrendControl.StatusBar (Page 3134)

StatusBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
StatusBar.Font

See also
FunctionTrendControl.StatusBar (Page 3134)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3138 System Manual, 11/2022

Syntax
Font.Italic

See also
StatusBar.Font (Page 3138)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
StatusBar.Font (Page 3138)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3139

Syntax
Font.Size

See also
StatusBar.Font (Page 3138)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
StatusBar.Font (Page 3138)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

3140 System Manual, 11/2022

Access
Read-write

Syntax
Font.Underline

See also
StatusBar.Font (Page 3138)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
StatusBar.Font (Page 3138)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3141

StatusBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the information bar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
StatusBar.Margin

See also
FunctionTrendControl.StatusBar (Page 3134)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
StatusBar.Margin (Page 3142)

Programming scripts
10.2 WinCC Unified object model

3142 System Manual, 11/2022

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
StatusBar.Margin (Page 3142)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
StatusBar.Margin (Page 3142)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3143

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
StatusBar.Margin (Page 3142)

StatusBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the information
bar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
StatusBar.Padding

See also
FunctionTrendControl.StatusBar (Page 3134)

Programming scripts
10.2 WinCC Unified object model

3144 System Manual, 11/2022

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
StatusBar.Padding (Page 3144)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
StatusBar.Padding (Page 3144)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3145

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
StatusBar.Padding (Page 3144)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
StatusBar.Padding (Page 3144)

Programming scripts
10.2 WinCC Unified object model

3146 System Manual, 11/2022

StatusBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
StatusBar.ShowToolTips

See also
FunctionTrendControl.StatusBar (Page 3134)

StatusBar.Visible

Description
The "Visible" property specifies whether the information bar is visible.

Type
Bool

Access
Read-write

Syntax
StatusBar.Visible

See also
FunctionTrendControl.StatusBar (Page 3134)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3147

FunctionTrendControl.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the f(x) trend view.

Type
String

Access
Read-only

Syntax
FunctionTrendControl.StyleItemClass

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl.TabIndex

Description
The "TabIndex" property returns the position of the f(x) trend view in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
FunctionTrendControl.TabIndex

See also
FunctionTrendControl (Page 3014)

Programming scripts
10.2 WinCC Unified object model

3148 System Manual, 11/2022

FunctionTrendControl.ToolBar

Description
The "ToolBar" property specifies the toolbar of the f(x) trend view.

Type
Object, HmiToolBarPart

Access
Read-write

Syntax
FunctionTrendControl.ToolBar

See also
FunctionTrendControl (Page 3014)

ToolBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ToolBar.BackColor

See also
FunctionTrendControl.ToolBar (Page 3149)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3149

ToolBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
toolbar.

Type
Object, HmiControlBarElementCollection (Page 3150)

Access
Read-only

Syntax
ToolBar.Elements

See also
HmiControlBarElementCollection (Page 3150)
FunctionTrendControl.ToolBar (Page 3149)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Programming scripts
10.2 WinCC Unified object model

3150 System Manual, 11/2022

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
ToolBar.Elements (Page 3150)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 3150)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3151

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 3152)

See also
HmiControlBarElementCollection (Page 3150)
Control Bar Elements (Page 3152)

Control Bar Elements

ControlBarButton

Description
The "ControlBarButton" object represents a button of an information bar or toolbar.
You can reference the "ControlBarButton" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarButtonPart

Programming scripts
10.2 WinCC Unified object model

3152 System Manual, 11/2022

Properties
The "ControlBarButton" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the label of the button.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the button can be operated in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• HotKey

Returns the hotkey specified for the button.
• Mapping

Returns the function of the button.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3153

• Operability
Returns whether the button is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the button is only operable while the corresponding button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the button is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 3150)
HmiControlBarElementCollection.Item() (Page 3151)

ControlBarButton.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBackColor

Programming scripts
10.2 WinCC Unified object model

3154 System Manual, 11/2022

See also
ControlBarButton (Page 3152)

ControlBarButton.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBorderColor

See also
ControlBarButton (Page 3152)

ControlBarButton.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the button of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarButton.Authorization

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3155

See also
ControlBarButton (Page 3152)

ControlBarButton.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BackColor

See also
ControlBarButton (Page 3152)

ControlBarButton.Badge

Description
The "Badge" property specifies the label of the button.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarButton.Badge

Programming scripts
10.2 WinCC Unified object model

3156 System Manual, 11/2022

See also
ControlBarButton (Page 3152)

ControlBarButton.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BorderColor

See also
ControlBarButton (Page 3152)

ControlBarButton.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarButton.BorderWidth

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3157

See also
ControlBarButton (Page 3152)

ControlBarButton.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarButton.Content

See also
ControlBarButton (Page 3152)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3158 System Manual, 11/2022

Syntax
Content.ContentMode

See also
ControlBarButton.Content (Page 3158)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarButton.Content (Page 3158)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3159

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarButton.Content (Page 3158)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarButton.Content (Page 3158)

Programming scripts
10.2 WinCC Unified object model

3160 System Manual, 11/2022

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarButton.Content (Page 3158)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3161

Syntax
Content.TextPosition

See also
ControlBarButton.Content (Page 3158)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarButton.Content (Page 3158)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

3162 System Manual, 11/2022

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarButton.Content (Page 3158)

ControlBarButton.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarButton.CustomID

See also
ControlBarButton (Page 3152)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3163

ControlBarButton.Enabled

Description
The "Enabled" property specifies whether the button can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Enabled

See also
ControlBarButton (Page 3152)

ControlBarButton.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.ForeColor

See also
ControlBarButton (Page 3152)

Programming scripts
10.2 WinCC Unified object model

3164 System Manual, 11/2022

ControlBarButton.Graphic

Description
The "Graphic" property specifies the graphic of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Graphic

See also
ControlBarButton (Page 3152)

ControlBarButton.Height

Description
The "Height" property specifies the height of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Height

See also
ControlBarButton (Page 3152)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3165

ControlBarButton.HotKey

Description
The "HotKey" property returns the hotkey specified for the button. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
ControlBarButton.HotKey

See also
ControlBarButton (Page 3152)

ControlBarButton.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent

Programming scripts
10.2 WinCC Unified object model

3166 System Manual, 11/2022

• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3167

• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarButton.Mapping

See also
ControlBarButton (Page 3152)

ControlBarButton.Margin

Description
The "Margin" property specifies the surrounded outer distance of the button.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3168 System Manual, 11/2022

Syntax
ControlBarButton.Margin

See also
ControlBarButton (Page 3152)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarButton.Margin (Page 3168)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3169

Syntax
Margin.Left

See also
ControlBarButton.Margin (Page 3168)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarButton.Margin (Page 3168)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3170 System Manual, 11/2022

Syntax
Margin.Top

See also
ControlBarButton.Margin (Page 3168)

ControlBarButton.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumHeight

See also
ControlBarButton (Page 3152)

ControlBarButton.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3171

Syntax
ControlBarButton.MaximumWidth

See also
ControlBarButton (Page 3152)

ControlBarButton.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumHeight

See also
ControlBarButton (Page 3152)

ControlBarButton.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3172 System Manual, 11/2022

Syntax
ControlBarButton.MinimumWidth

See also
ControlBarButton (Page 3152)

ControlBarButton.Operability

Description
The "Operability" property returns whether the button is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarButton.Operability

See also
ControlBarButton (Page 3152)

ControlBarButton.Padding

Description
The "Padding" property specifies the distance of the content from the border of the button.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3173

Access
Read-write

Syntax
ControlBarButton.Padding

See also
ControlBarButton (Page 3152)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarButton.Padding (Page 3173)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

3174 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Left

See also
ControlBarButton.Padding (Page 3173)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarButton.Padding (Page 3173)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3175

Access
Read-write

Syntax
Padding.Top

See also
ControlBarButton.Padding (Page 3173)

ControlBarButton.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the button can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarButton.RequireExplicitUnlock

See also
ControlBarButton (Page 3152)

ControlBarButton.Text

Description
The "Text" property specifies the label of the button.

Type
String

Programming scripts
10.2 WinCC Unified object model

3176 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.Text

See also
ControlBarButton (Page 3152)

ControlBarButton.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.ToolTipText

See also
ControlBarButton (Page 3152)

ControlBarButton.Visible

Description
The "Visible" property specifies whether the button is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3177

Access
Read-write

Syntax
ControlBarButton.Visible

See also
ControlBarButton (Page 3152)

ControlBarButton.Width

Description
The "Width" property specifies the width of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Width

See also
ControlBarButton (Page 3152)

ControlBarDisplay

Description
The "ControlBarDisplay" object represents a display area for text and graphics of an information
bar or toolbar.
You can reference the "ControlBarDisplay" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarDisplayPart

Programming scripts
10.2 WinCC Unified object model

3178 System Manual, 11/2022

Properties
The "ControlBarDisplay" object has the following properties:
• Authorization

Returns the operator authorization.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the display area is enabled in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• Mapping

Returns the function of the display area.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the display area is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the display area is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3179

• Visible
Specifies whether the display area is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 3150)
HmiControlBarElementCollection.Item() (Page 3151)

ControlBarDisplay.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the display.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarDislay.Authorization

See also
ControlBarDisplay (Page 3178)

ControlBarButton.Content

Description
The "Content" property specifies display options for text and graphics.

Programming scripts
10.2 WinCC Unified object model

3180 System Manual, 11/2022

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarDislay.Content

See also
ControlBarDisplay (Page 3178)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarButton.Content (Page 3180)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3181

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarButton.Content (Page 3180)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered

Programming scripts
10.2 WinCC Unified object model

3182 System Manual, 11/2022

• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarButton.Content (Page 3180)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarButton.Content (Page 3180)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3183

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarButton.Content (Page 3180)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarButton.Content (Page 3180)

Programming scripts
10.2 WinCC Unified object model

3184 System Manual, 11/2022

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarButton.Content (Page 3180)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3185

Syntax
Content.VerticalTextAlignment

See also
ControlBarButton.Content (Page 3180)

ControlBarDisplay.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarDislay.CustomID

See also
ControlBarDisplay (Page 3178)

ControlBarDisplay.Enabled

Description
The "Enabled" property specifies whether the display is active in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3186 System Manual, 11/2022

Syntax
ControlBarDislay.Enabled

See also
ControlBarDisplay (Page 3178)

ControlBarDisplay.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.ForeColor

See also
ControlBarDisplay (Page 3178)

ControlBarDisplay.Graphic

Description
The "Graphic" property specifies the graphic of the display.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3187

Syntax
ControlBarDislay.Graphic

See also
ControlBarDisplay (Page 3178)

ControlBarDisplay.Height

Description
The "Height" property specifies the height of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Height

See also
ControlBarDisplay (Page 3178)

ControlBarDisplay.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control

Programming scripts
10.2 WinCC Unified object model

3188 System Manual, 11/2022

• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3189

• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarDislay.Mapping

See also
ControlBarDisplay (Page 3178)

ControlBarButton.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the display.

Programming scripts
10.2 WinCC Unified object model

3190 System Manual, 11/2022

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarDislay.Margin

See also
ControlBarDisplay (Page 3178)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarButton.Margin (Page 3190)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3191

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarButton.Margin (Page 3190)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarButton.Margin (Page 3190)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Programming scripts
10.2 WinCC Unified object model

3192 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarButton.Margin (Page 3190)

ControlBarDisplay.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MaximumHeight

See also
ControlBarDisplay (Page 3178)

ControlBarDisplay.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3193

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MaximumWidth

See also
ControlBarDisplay (Page 3178)

ControlBarDisplay.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MinimumHeight

See also
ControlBarDisplay (Page 3178)

ControlBarDisplay.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

3194 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MinimumWidth

See also
ControlBarDisplay (Page 3178)

ControlBarDisplay.Operability

Description
The "Operability" property returns whether the display is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarDislay.Operability

See also
ControlBarDisplay (Page 3178)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3195

ControlBarButton.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the display.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarDislay.Padding

See also
ControlBarDisplay (Page 3178)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarButton.Padding (Page 3196)

Programming scripts
10.2 WinCC Unified object model

3196 System Manual, 11/2022

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarButton.Padding (Page 3196)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarButton.Padding (Page 3196)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3197

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarButton.Padding (Page 3196)

ControlBarDisplay.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the display can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarDislay.RequireExplicitUnlock

See also
ControlBarDisplay (Page 3178)

Programming scripts
10.2 WinCC Unified object model

3198 System Manual, 11/2022

ControlBarDisplay.Text

Description
The "Text" property specifies the label of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Text

See also
ControlBarDisplay (Page 3178)

ControlBarDisplay.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.ToolTipText

See also
ControlBarDisplay (Page 3178)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3199

ControlBarDisplay.Visible

Description
The "Visible" property specifies whether the display is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Visible

See also
ControlBarDisplay (Page 3178)

ControlBarDisplay.Width

Description
The "Width" property specifies the width of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Width

See also
ControlBarDisplay (Page 3178)

Programming scripts
10.2 WinCC Unified object model

3200 System Manual, 11/2022

ControlBarLabel

Description
The "ControlBarLabel" object represents an identifier of an information bar or toolbar.
You can reference the "ControlBarLabel" object via the "HmiControlBarElementCollection" list.

Object type
HmiControlBarLabelPart

Properties
The "ControlBarLabel" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the identifier can be operated in runtime.
• ForeColor

Specifies the font color.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Height

Specifies the height.
• Mapping

Returns the function of the identifier.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the identifier is operable.
• Padding

Specifies the distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3201

• RequireExplicitUnlock
Returns whether the identifier is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the identifier is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 3150)
HmiControlBarElementCollection.Item() (Page 3151)

ControlBarLabel.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the identifier.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarLabel.Authorization

See also
ControlBarLabel (Page 3201)

Programming scripts
10.2 WinCC Unified object model

3202 System Manual, 11/2022

ControlBarLabel.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarLabel.CustomID

See also
ControlBarLabel (Page 3201)

ControlBarLabel.Enabled

Description
The "Enabled" property specifies whether the identifier is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarLabel.Enabled

See also
ControlBarLabel (Page 3201)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3203

ControlBarLabel.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.ForeColor

See also
ControlBarLabel (Page 3201)

ControlBarLabel.Height

Description
The "Height" property specifies the height of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Height

See also
ControlBarLabel (Page 3201)

Programming scripts
10.2 WinCC Unified object model

3204 System Manual, 11/2022

ControlBarLabel.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.HorizontalTextAlignment

See also
ControlBarLabel (Page 3201)

ControlBarLabel.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3205

• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status

Programming scripts
10.2 WinCC Unified object model

3206 System Manual, 11/2022

• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarLabel.Mapping

See also
ControlBarLabel (Page 3201)

ControlBarLabel.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the identifier.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3207

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarLabel.Margin

See also
ControlBarLabel (Page 3201)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarLabel.Margin (Page 3207)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Programming scripts
10.2 WinCC Unified object model

3208 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarLabel.Margin (Page 3207)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarLabel.Margin (Page 3207)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3209

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarLabel.Margin (Page 3207)

ControlBarLabel.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumHeight

See also
ControlBarLabel (Page 3201)

ControlBarLabel.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Programming scripts
10.2 WinCC Unified object model

3210 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumWidth

See also
ControlBarLabel (Page 3201)

ControlBarLabel.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumHeight

See also
ControlBarLabel (Page 3201)

ControlBarLabel.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3211

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumWidth

See also
ControlBarLabel (Page 3201)

ControlBarLabel.Operability

Description
The "Operability" property returns whether the identifier is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarLabel.Operability

See also
ControlBarLabel (Page 3201)

Programming scripts
10.2 WinCC Unified object model

3212 System Manual, 11/2022

ControlBarLabel.Padding

Description
The "Padding" property specifies the spacing of the content from the frame of the identifier.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarLabel.Padding

See also
ControlBarLabel (Page 3201)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarLabel.Padding (Page 3213)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3213

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarLabel.Padding (Page 3213)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarLabel.Padding (Page 3213)

Programming scripts
10.2 WinCC Unified object model

3214 System Manual, 11/2022

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarLabel.Padding (Page 3213)

ControlBarLabel.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the identifier can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarLabel.RequireExplicitUnlock

See also
ControlBarLabel (Page 3201)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3215

ControlBarLabel.Text

Description
The "Text" property specifies the label of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.Text

See also
ControlBarLabel (Page 3201)

ControlBarLabel.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.ToolTipText

See also
ControlBarLabel (Page 3201)

Programming scripts
10.2 WinCC Unified object model

3216 System Manual, 11/2022

ControlBarLabel.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.VerticalTextAlignment

See also
ControlBarLabel (Page 3201)

ControlBarLabel.Visible

Description
The "Visible" property specifies whether the identifier is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarLabel.Visible

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3217

See also
ControlBarLabel (Page 3201)

ControlBarLabel.Width

Description
The "Width" property specifies the width of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Width

See also
ControlBarLabel (Page 3201)

ControlBarSeparator

Description
The "ControlBarSeparator" object represents a separator of an information bar or toolbar.
You can reference the "ControlBarSeparator" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarSeparatorPart

Properties
The "ControlBarSeparator" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.

Programming scripts
10.2 WinCC Unified object model

3218 System Manual, 11/2022

• Enabled
Specifies whether the disconnector can be operated in runtime.

• ForeColor
Specifies the font color.

• Height
Specifies the height.

• Mapping
Returns the function of the separator.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the separator is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the disconnector is only operable while the associated button is being
pressed.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the disconnector is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 3150)
HmiControlBarElementCollection.Item() (Page 3151)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3219

ControlBarSeparator.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the separator.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarSeparator.Authorization

See also
ControlBarSeparator (Page 3218)

ControlBarSeparator.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarSeparator.CustomID

See also
ControlBarSeparator (Page 3218)

Programming scripts
10.2 WinCC Unified object model

3220 System Manual, 11/2022

ControlBarSeparator.Enabled

Description
The "Enabled" property specifies whether the separator is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Enabled

See also
ControlBarSeparator (Page 3218)

ControlBarSeparator.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.ForeColor

See also
ControlBarSeparator (Page 3218)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3221

ControlBarSeparator.Height

Description
The "Height" property specifies the height of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Height

See also
ControlBarSeparator (Page 3218)

ControlBarSeparator.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display

Programming scripts
10.2 WinCC Unified object model

3222 System Manual, 11/2022

• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3223

• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarSeparator.Mapping

See also
ControlBarSeparator (Page 3218)

ControlBarSeparator.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the separator.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3224 System Manual, 11/2022

Syntax
ControlBarSeparator.Margin

See also
ControlBarSeparator (Page 3218)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarSeparator.Margin (Page 3224)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3225

Syntax
Margin.Left

See also
ControlBarSeparator.Margin (Page 3224)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarSeparator.Margin (Page 3224)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3226 System Manual, 11/2022

Syntax
Margin.Top

See also
ControlBarSeparator.Margin (Page 3224)

ControlBarSeparator.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MaximumHeight

See also
ControlBarSeparator (Page 3218)

ControlBarSeparator.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3227

Syntax
ControlBarSeparator.MaximumWidth

See also
ControlBarSeparator (Page 3218)

ControlBarSeparator.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MinimumHeight

See also
ControlBarSeparator (Page 3218)

ControlBarSeparator.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3228 System Manual, 11/2022

Syntax
ControlBarSeparator.MinimumWidth

See also
ControlBarSeparator (Page 3218)

ControlBarSeparator.Operability

Description
The "Operability" property returns whether the separator is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarSeparator.Operability

See also
ControlBarSeparator (Page 3218)

ControlBarSeparator.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the separator.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3229

Access
Read-write

Syntax
ControlBarSeparator.Padding

See also
ControlBarSeparator (Page 3218)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarSeparator.Padding (Page 3229)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

3230 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Left

See also
ControlBarSeparator.Padding (Page 3229)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarSeparator.Padding (Page 3229)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3231

Access
Read-write

Syntax
Padding.Top

See also
ControlBarSeparator.Padding (Page 3229)

ControlBarSeparator.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the disconnector can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarSeparator.RequireExplicitUnlock

See also
ControlBarSeparator (Page 3218)

ControlBarSeparator.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the separator.

Type
String

Programming scripts
10.2 WinCC Unified object model

3232 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarSeparator.ToolTipText

See also
ControlBarSeparator (Page 3218)

ControlBarSeparator.Visible

Description
The "Visible" property specifies whether the separator is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Visible

See also
ControlBarSeparator (Page 3218)

ControlBarSeparator.Width

Description
The "Width" property specifies the width of the separator in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3233

Access
Read-write

Syntax
ControlBarSeparator.Width

See also
ControlBarSeparator (Page 3218)

ControlBarTextBox

Description
The "ControlBarTextBox" object represents a text box of an information bar or toolbar.
You can reference the "ControlBarTextBox" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarTextBoxPart

Properties
The "ControlBarTextBox" object has the following properties:
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the text box can be operated in runtime.
• ForeColor

Specifies the font color.

Programming scripts
10.2 WinCC Unified object model

3234 System Manual, 11/2022

• Height
Specifies the height.

• HorizontalTextAlignment
Specifies the horizontal alignment of the text.

• Mapping
Returns the function of the text box.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the text box is operable.

• Padding
Specifies the distance of the content from the border.

• Readonly
Specifies whether the text box is write-protected.

• RequireExplicitUnlock
Returns whether the text box is only operable while the associated button is being pressed.

• Text
Specifies the labeling.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the text box is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 3150)
HmiControlBarElementCollection.Item() (Page 3151)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3235

ControlBarTextBox.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.AlternateBorderColor

See also
ControlBarTextBox (Page 3234)

ControlBarTextBox.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the text box of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarTextBox.Authorization

See also
ControlBarTextBox (Page 3234)

Programming scripts
10.2 WinCC Unified object model

3236 System Manual, 11/2022

ControlBarTextBox.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BackColor

See also
ControlBarTextBox (Page 3234)

ControlBarTextBox.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BorderColor

See also
ControlBarTextBox (Page 3234)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3237

ControlBarTextBox.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarTextBox.BorderWidth

See also
ControlBarTextBox (Page 3234)

ControlBarTextBox.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarTextBox.CustomID

See also
ControlBarTextBox (Page 3234)

Programming scripts
10.2 WinCC Unified object model

3238 System Manual, 11/2022

ControlBarTextBox.Enabled

Description
The "Enabled" property specifies whether the text box can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Enabled

See also
ControlBarTextBox (Page 3234)

ControlBarTextBox.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.ForeColor

See also
ControlBarTextBox (Page 3234)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3239

ControlBarTextBox.Height

Description
The "Height" property specifies the height of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Height

See also
ControlBarTextBox (Page 3234)

ControlBarTextBox.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.HorizontalTextAlignment

Programming scripts
10.2 WinCC Unified object model

3240 System Manual, 11/2022

See also
ControlBarTextBox (Page 3234)

ControlBarTextBox.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3241

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

3242 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarTextBox.Mapping

See also
ControlBarTextBox (Page 3234)

ControlBarTextBox.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the text box.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarTextBox.Margin

See also
ControlBarTextBox (Page 3234)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3243

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarTextBox.Margin (Page 3243)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarTextBox.Margin (Page 3243)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

3244 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Right

See also
ControlBarTextBox.Margin (Page 3243)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarTextBox.Margin (Page 3243)

ControlBarTextBox.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3245

Access
Read-write

Syntax
ControlBarTextBox.MaximumHeight

See also
ControlBarTextBox (Page 3234)

ControlBarTextBox.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumWidth

See also
ControlBarTextBox (Page 3234)

ControlBarTextBox.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

3246 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarTextBox.MinimumHeight

See also
ControlBarTextBox (Page 3234)

ControlBarTextBox.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumWidth

See also
ControlBarTextBox (Page 3234)

ControlBarTextBox.Operability

Description
The "Operability" property returns whether the text box is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3247

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarTextBox.Operability

See also
ControlBarTextBox (Page 3234)

ControlBarTextBox.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the text box.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarTextBox.Padding

See also
ControlBarTextBox (Page 3234)

Programming scripts
10.2 WinCC Unified object model

3248 System Manual, 11/2022

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarTextBox.Padding (Page 3248)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarTextBox.Padding (Page 3248)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3249

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarTextBox.Padding (Page 3248)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarTextBox.Padding (Page 3248)

Programming scripts
10.2 WinCC Unified object model

3250 System Manual, 11/2022

ControlBarTextBox.ReadOnly

Description
The "ReadOnly" property specifies whether the text box is read-only.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.ReadOnly

See also
ControlBarTextBox (Page 3234)

ControlBarTextBox.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the text box can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarTextBox.RequireExplicitUnlock

See also
ControlBarTextBox (Page 3234)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3251

ControlBarTextBox.Text

Description
The "Text" property specifies the label of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.Text

See also
ControlBarTextBox (Page 3234)

ControlBarTextBox.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.ToolTipText

See also
ControlBarTextBox (Page 3234)

Programming scripts
10.2 WinCC Unified object model

3252 System Manual, 11/2022

ControlBarTextBox.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.VerticalTextAlignment

See also
ControlBarTextBox (Page 3234)

ControlBarTextBox.Visible

Description
The "Visible" property specifies whether the text box is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Visible

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3253

See also
ControlBarTextBox (Page 3234)

ControlBarTextBox.Width

Description
The "Width" property specifies the width of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Width

See also
ControlBarTextBox (Page 3234)

ControlBarToggleSwitch

Description
The "ControlBarToggleSwitch" object represents a switch of an information bar or toolbar.
You can reference the "ControlBarToggleSwitch" object via the
"HmiControlBarElementCollection" list.

Object type
HmiControlBarToggleSwitchPart

Properties
The "ControlBarToggleSwitch" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".

Programming scripts
10.2 WinCC Unified object model

3254 System Manual, 11/2022

• AlternateGraphic
Specifies the graphic for the "pressed" state.

• AlternateText
Specifies the text for the "pressed" state.

• Authorization
Returns the operator authorization.

• BackColor
Specifies the background color.

• Badge
Specifies the identifier of the switch.

• BorderColor
Specifies the line color.

• BorderWidth
Specifies the line thickness.

• Content
Specifies display options for text and graphics.

• CustomID
Returns the custom ID.

• Enabled
Specifies whether the switch can be operated in runtime.

• ForeColor
Specifies the font color.

• Graphic
Specifies the graphic.

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the switch.

• IsAlternateState
Specifies the current state of the switch.

• Mapping
Returns the function of the switch.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3255

• Operability
Returns whether the switch is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the switch is only operable while the associated button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the switch is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 3150)
HmiControlBarElementCollection.Item() (Page 3151)

ControlBarToggleSwitch.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBackColor

Programming scripts
10.2 WinCC Unified object model

3256 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBorderColor

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.AlternateGraphic

Description
The "AlternateGraphic" property specifies the graphic of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateGraphic

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3257

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.AlternateText

Description
The "AlternateText" property specifies the text of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateText

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the switch of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarToggleSwitch.Authorization

Programming scripts
10.2 WinCC Unified object model

3258 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BackColor

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.Badge

Description
The "Badge" property specifies the identifier of the switch.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarToggleSwitch.Badge

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3259

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderColor

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderWidth

Programming scripts
10.2 WinCC Unified object model

3260 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Content

See also
ControlBarToggleSwitch (Page 3254)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3261

Syntax
Content.ContentMode

See also
ControlBarToggleSwitch.Content (Page 3261)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarToggleSwitch.Content (Page 3261)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Programming scripts
10.2 WinCC Unified object model

3262 System Manual, 11/2022

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 3261)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarToggleSwitch.Content (Page 3261)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3263

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarToggleSwitch.Content (Page 3261)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3264 System Manual, 11/2022

Syntax
Content.TextPosition

See also
ControlBarToggleSwitch.Content (Page 3261)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarToggleSwitch.Content (Page 3261)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3265

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 3261)

ControlBarToggleSwitch.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarToggleSwitch.CustomID

See also
ControlBarToggleSwitch (Page 3254)

Programming scripts
10.2 WinCC Unified object model

3266 System Manual, 11/2022

ControlBarToggleSwitch.Enabled

Description
The "Enabled" property specifies whether the switch can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Enabled

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.ForeColor

See also
ControlBarToggleSwitch (Page 3254)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3267

ControlBarToggleSwitch.Graphic

Description
The "Graphic" property specifies the graphic of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Graphic

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.Height

Description
The "Height" property specifies the height of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Height

See also
ControlBarToggleSwitch (Page 3254)

Programming scripts
10.2 WinCC Unified object model

3268 System Manual, 11/2022

ControlBarToggleSwitch.HotKey

Description
The "HotKey" property returns the hotkey specified for the switch. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
Button.HotKey

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.IsAlternateState

Description
The "IsAlternateState" property specifies the current state of the switch.
• True: Switch is in "On" state.
• False: Switch is in "Off" state.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.IsAlternateState

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3269

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

3270 System Manual, 11/2022

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3271

Access
Read-only

Syntax
ControlBarToggleSwitch.Mapping

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the switch.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Margin

See also
ControlBarToggleSwitch (Page 3254)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

3272 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarToggleSwitch.Margin (Page 3272)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarToggleSwitch.Margin (Page 3272)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3273

Access
Read-write

Syntax
Margin.Right

See also
ControlBarToggleSwitch.Margin (Page 3272)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarToggleSwitch.Margin (Page 3272)

ControlBarToggleSwitch.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

3274 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumHeight

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumWidth

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3275

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumHeight

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumWidth

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.Operability

Description
The property "Operability" returns whether the switch is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

3276 System Manual, 11/2022

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarToggleSwitch.Operability

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the switch.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Padding

See also
ControlBarToggleSwitch (Page 3254)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3277

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarToggleSwitch.Padding (Page 3277)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarToggleSwitch.Padding (Page 3277)

Programming scripts
10.2 WinCC Unified object model

3278 System Manual, 11/2022

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarToggleSwitch.Padding (Page 3277)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarToggleSwitch.Padding (Page 3277)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3279

ControlBarToggleSwitch.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the switch can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarToggleSwitch.RequireExplicitUnlock

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.Text

Description
The "Text" property specifies the label of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Text

See also
ControlBarToggleSwitch (Page 3254)

Programming scripts
10.2 WinCC Unified object model

3280 System Manual, 11/2022

ControlBarToggleSwitch.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.ToolTipText

See also
ControlBarToggleSwitch (Page 3254)

ControlBarToggleSwitch.Visible

Description
The "Visible" property specifies whether the switch is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Visible

See also
ControlBarToggleSwitch (Page 3254)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3281

ControlBarToggleSwitch.Width

Description
The "Width" property specifies the width of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Width

See also
ControlBarToggleSwitch (Page 3254)

ToolBar.Enabled

Description
The "Enabled" property specifies whether the toolbar can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ToolBar.Enabled

See also
FunctionTrendControl.ToolBar (Page 3149)

Programming scripts
10.2 WinCC Unified object model

3282 System Manual, 11/2022

ToolBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ToolBar.Font

See also
FunctionTrendControl.ToolBar (Page 3149)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
ToolBar.Font (Page 3283)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3283

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
ToolBar.Font (Page 3283)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
ToolBar.Font (Page 3283)

Programming scripts
10.2 WinCC Unified object model

3284 System Manual, 11/2022

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ToolBar.Font (Page 3283)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3285

See also
ToolBar.Font (Page 3283)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
ToolBar.Font (Page 3283)

ToolBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the toolbar.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

3286 System Manual, 11/2022

Access
Read-write

Syntax
ToolBar.Margin

See also
FunctionTrendControl.ToolBar (Page 3149)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ToolBar.Margin (Page 3286)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3287

Access
Read-write

Syntax
Margin.Left

See also
ToolBar.Margin (Page 3286)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ToolBar.Margin (Page 3286)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

3288 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Top

See also
ToolBar.Margin (Page 3286)

ToolBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the toolbar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ToolBar.Padding

See also
FunctionTrendControl.ToolBar (Page 3149)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3289

Access
Read-write

Syntax
Padding.Bottom

See also
ToolBar.Padding (Page 3289)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ToolBar.Padding (Page 3289)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

3290 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Right

See also
ToolBar.Padding (Page 3289)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ToolBar.Padding (Page 3289)

ToolBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3291

Access
Read-write

Syntax
ToolBar.ShowToolTips

See also
FunctionTrendControl.ToolBar (Page 3149)

ToolBar.UseHotKeys

Description
The "UseHotKeys" property specifies whether the shortcut keys for the buttons in the toolbar are
activated.

Type
Bool

Access
Read-write

Syntax
ToolBar.UseHotKeys

See also
FunctionTrendControl.ToolBar (Page 3149)

ToolBar.Visible

Description
The "Visible" property specifies whether the toolbar is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

3292 System Manual, 11/2022

Access
Read-write

Syntax
ToolBar.Visible

See also
FunctionTrendControl.ToolBar (Page 3149)

FunctionTrendControl.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
FunctionTrendControl.Top

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl.Visible

Description
The "Visible" property specifies whether the f(x) trend view is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3293

Access
Read-write

Syntax
FunctionTrendControl.Visible

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
FunctionTrendControl.Width

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the f(x) trend view.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title

Programming scripts
10.2 WinCC Unified object model

3294 System Manual, 11/2022

• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be positioned
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
Enable multiple properties by adding the integer values or bit operators.

Access
Read-write

Syntax
FunctionTrendControl.WindowFlags

Example
Adapt the "windowFlags" tag depending on the window configuration:

Copy code
var windowFlags = HmiWindowFlag.ShowCaption | HmiWindowFlag.ShowBorder;
if (CanClose){
 windowFlags |= HmiWindowFlag.CanClose;
} else {
 windowFlags &= HmiWindowFlag.CanClose;
}

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
f(x) trend view.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3295

Syntax
FunctionTrendControl.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl.FireCommand()

Description
The "FireCommand" method executes the command of an element in the toolbar or information
bar (control bar element, e.g. a button) of the f(x) trend view.

Syntax
FunctionTrendControl.FireCommand(commandId, custom)

Parameters
commandId
Type: Int32
ID of the element of the toolbar or information bar

custom
Type: Bool

Programming scripts
10.2 WinCC Unified object model

3296 System Manual, 11/2022

Type of element ID:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

Return value
--

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
FunctionTrendControl.PropertyFlashing(propertyName, enable[, value]
[, alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3297

Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl_OnActivated()

Description
The "OnActivated" event occurs when a f(x) trend view receives focus:
• An f(x) trend view is selected via the configured tab sequence.
• An f(x) trend view that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
FunctionTrendControl_OnActivated(item)

Context
item
Type: Object
f(x) trend view where the event occurs.

See also
FunctionTrendControl (Page 3014)

Programming scripts
10.2 WinCC Unified object model

3298 System Manual, 11/2022

FunctionTrendControl_OnCommandFired()

Description
The "OnCommandFired" event occurs when the operator has operated an element in the toolbar
or information bar (control bar element, e.g. a button) of the f(x) trend view.

Syntax
FunctionTrendControl_OnCommandFired(item, commandId, custom)

Context
item
Type: Object
f(x) trend view where the event occurs.

commandId
Type: DInt
ID of the element of the toolbar or information bar that was operated.

custom
Type: Bool
Specifies the type of the ID of the operated element:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl_OnDeactivated()

Description
The "OnDeactivated" event occurs when an f(x) trend view loses focus because the operator
presses the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3299

Syntax
FunctionTrendControl_OnDeactivated(item)

Context
item
Type: Object
f(x) trend view where the event occurs.

See also
FunctionTrendControl (Page 3014)

FunctionTrendControl_OnInitialized()

Description
The "OnInitialized" event occurs when an f(x) trend view has been successfully initialized and the
data connection to the PLC has been established.

Syntax
FunctionTrendControl_OnInitialized(item)

Context
item
Type: Object
f(x) trend view where the event occurs.

See also
FunctionTrendControl (Page 3014)

Gauge

Description
The "Gauge" object represents a pointer instrument as an analog dial gauge for monitoring
process values in runtime.

Programming scripts
10.2 WinCC Unified object model

3300 System Manual, 11/2022

Object type
HmiGauge

Properties
The "Gauge" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the border color.
• BorderWidth

Specifies the border thickness.
• ComputedMaxPeakValue

 Returns the highest process value that occurred.
• ComputedMinPeakValue

Returns the lowest process value that occurred.
• ComputedValueTendency

Returns the change of the process value.
• CurrentQuality

Returns the poorest quality code of all tags which influence the gauge.
• CurvedScale

Specifies the scale of the gauge.
• Enabled

Specifies whether the gauge can be operated in runtime.
• Font

Specifies the font of the text.
• Height

Specifies the height.
• Label

Specifies the labeling of the gauge.
• Layer

Returns the layer of the screen in which the gauge is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3301

• Name
Returns the name of the gauge.

• NormalRangeColor
Specifies the color of the normal range.

• Opacity
Specifies the opacity.

• Operability
Returns whether the gauge is operable.

• OriginValue
Specifies the output value of the normal range that is visualized.

• OutputFormat
Specifies the format for displaying the process values.

• Parent
Returns the higher-level screen object.

• PeakIndicators
Specifies whether the highest and lowest process value up to this time are displayed.

• ProcessValue
Specifies the process value.

• ProcessValueIndicatorBackColor
Specifies the background color for the process value.

• ProcessValueIndicatorForeColor
Specifies the foreground color for the process value.

• ProcessValueIndicatorMode
Specifies the type of display of the current process value.

• RelativeToOrigin
Specifies whether the output value is an absolute or a percentage value between the
minimum and maximum value.

• RenderingTemplate
Returns the name of the template from which the gauge was created.

• RequireExplicitUnlock
Returns whether the gauge is only operable while the associated button is being pressed.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the gauge rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ScaleBackColor
Specifies the background color of the scale.

Programming scripts
10.2 WinCC Unified object model

3302 System Manual, 11/2022

• ScaleForeColor
Specifies the foreground color of the scale.

• ShowFocusVisual
Specifies whether the gauge is highlighted when in focus.

• ShowTrendIndicator
Specifies whether the tendency (rising or falling) of the process value to be monitored is
indicated by means of a small arrow.

• StyleItemClass
Returns the style which is applied to the gauge.

• TabIndex
Returns the position of the gauge in the tab sequence.

• ThresholdIndicators
Specifies how parameterized limit values are visualized.

• Thresholds
Returns the list of all limit values of the gauge.

• Title
Specifies the caption which appears as the title.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• TrendIndicatorColor
Specifies the color of the trend indicator.

• Visible
Specifies whether the gauge is visible.

• VisualizeQuality
Specifies whether the connection quality of the process value is displayed.

• Width
Specifies the width.

Methods
The "Gauge" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the gauge.
• PropertyFlashing()

Configures flashing of a property.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3303

Events
The "Gauge" object has the following events:
• OnActivated()

Occurs when a gauge receives focus.
• OnContextTapped()

Occurs when a gauge is right-clicked or long-touched.
• OnDeactivated()

Occurs when a gauge loses focus.
• OnKeyDown()

Occurs when a key is pressed while the gauge is in focus.
• OnKeyUp()

Occurs when a key is released while the gauge is in focus.
• OnTapped()

Occurs when a gauge is left-clicked or short-touched.

Gauge.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
Gauge.AlternateBackColor

See also
Gauge (Page 3300)

Gauge.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color which is displayed for line
styles such as "Dash".

Programming scripts
10.2 WinCC Unified object model

3304 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
Gauge.AlternateBorderColor

See also
Gauge (Page 3300)

Gauge.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
Gauge.Authorization

See also
Gauge (Page 3300)

Gauge.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3305

Access
Read-write

Syntax
Gauge.BackColor

See also
Gauge (Page 3300)

Gauge.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
Gauge.BorderColor

See also
Gauge (Page 3300)

Gauge.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3306 System Manual, 11/2022

Syntax
Gauge.BorderWidth

See also
Gauge (Page 3300)

Gauge.ComputedMaxPeakValue

Description
The "ComputedMaxPeakValue" property returns the highest process value that occurred.

Type
Variant

Access
Read-only

Syntax
Gauge.ComputedMaxPeakValue

See also
Gauge (Page 3300)
Gauge.ComputedMinPeakValue (Page 3307)

Gauge.ComputedMinPeakValue

Description
The "ComputedMinPeakValue" property returns the lowest process value which occurred.

Type
Variant

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3307

Syntax
Gauge.ComputedMinPeakValue

See also
Gauge (Page 3300)
Gauge.ComputedMaxPeakValue (Page 3307)

Gauge.ComputedValueTendency

Description
The "ComputedValueTendency" property returns the change in the process value.

Type
Int32, HmiValueTendency
Returns the modification:
• Steady (0): No change
• Upwards (1): Change upwards
• Downwards (2): Change downwards

Access
Read-only

Syntax
Gauge.ComputedValueTendency

See also
Gauge (Page 3300)

Gauge.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
gauge.

Type
Int32, HmiQuality

Programming scripts
10.2 WinCC Unified object model

3308 System Manual, 11/2022

Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
Gauge.CurrentQuality

See also
Gauge (Page 3300)

Gauge.CurvedScale

Description
The "CurvedScale" property specifies the scale of the gauge.

Type
Object, HmiCurvedScalePart

Access
Read-write

Syntax
Gauge.CurvedScale

See also
Gauge (Page 3300)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3309

CurvedScale.AngleRange

Description
The "AngleRange" property specifies the arc angle of the displayed scale clockwise.

Type
Int32

Access
Read-write

Syntax
CurvedScale.AngleRange

See also
Gauge.CurvedScale (Page 3309)

CurvedScale.AutoScaling

Description
The "AutoScaling" property specifies whether automatic scaling is activated.

Type
Bool

Access
Read-write

Syntax
CurvedScale.AutoScaling

See also
Gauge.CurvedScale (Page 3309)

Programming scripts
10.2 WinCC Unified object model

3310 System Manual, 11/2022

CurvedScale.BeginValue

Description
The "BeginValue" property specifies the start of a value range or value range section.

Type
Float

Access
Read-write

Syntax
CurvedScale.BeginValue

See also
Gauge.CurvedScale (Page 3309)

CurvedScale.DivisionCount

Description
The "DivisionCount" property specifies the number of main units with subdivisions. To this
purpose the automatic scaling must be switched off.

Type
Int32

Access
Read-write

Syntax
CurvedScale.DivisionCount

See also
Gauge.CurvedScale (Page 3309)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3311

CurvedScale.EndValue

Description
The "EndValue" property specifies the end of a value range or value range section.

Type
Float

Access
Read-write

Syntax
CurvedScale.EndValue

See also
Gauge.CurvedScale (Page 3309)

CurvedScale.LabelColor

Description
The "LabelColor" property specifies the color of the labeling.

Type
UInt32

Access
Read-write

Syntax
CurvedScale.LabelColor

See also
Gauge.CurvedScale (Page 3309)

Programming scripts
10.2 WinCC Unified object model

3312 System Manual, 11/2022

CurvedScale.LabelFont

Description
The "LabelFont" property specifies the font of the labeling.

Type
Object, HmiFontPart

Access
Read-write

Syntax
CurvedScale.LabelFont

See also
Gauge.CurvedScale (Page 3309)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
CurvedScale.LabelFont (Page 3313)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3313

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
CurvedScale.LabelFont (Page 3313)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
CurvedScale.LabelFont (Page 3313)

Programming scripts
10.2 WinCC Unified object model

3314 System Manual, 11/2022

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
CurvedScale.LabelFont (Page 3313)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3315

See also
CurvedScale.LabelFont (Page 3313)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
CurvedScale.LabelFont (Page 3313)

CurvedScale.LargeTickLabelingStep

Description
The "LargeTickLabelingStep" property specifies the interval at which scale sections are labeled.

Type
UInt8

Programming scripts
10.2 WinCC Unified object model

3316 System Manual, 11/2022

Access
Read-write

Syntax
CurvedScale.LargeTickLabelingStep

See also
Gauge.CurvedScale (Page 3309)

CurvedScale.MeasurementUnit

Description
The "MeasurementUnit" property returns the displayed unit.

Type
String

Access
Read-only

Syntax
CurvedScale.MeasurementUnit

See also
Gauge.CurvedScale (Page 3309)

CurvedScale.MeasurementUnitType

Description
The "MeasurementUnitType" property specifies the display format of the unit.

Type
Int32, HmiMeasurementUnit

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3317

Specifies the display format:
• None (0): No unit
• Name (1): Unit name, for example "kilogram"
• Symbol (2): Unit, for example "kg"

Access
Read-write

Syntax
CurvedScale.MeasurementUnitType

See also
Gauge.CurvedScale (Page 3309)

CurvedScale.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying the process values, e.g. "{0000}"
for a 4-digit integer with leading zeros.

Type
String

Access
Read-write

Syntax
CurvedScale.OutputFormat

See also
Gauge.CurvedScale (Page 3309)

CurvedScale.ScaleMode

Description
The "ScaleMode" property specifies the type of scaling.

Programming scripts
10.2 WinCC Unified object model

3318 System Manual, 11/2022

Type
Int32, HmiScaleMode
Specifies the scaling:
• None (0): None
• Labels (1): Labels
• Ticks (2): Tick marks

Access
Read-write

Syntax
CurvedScale.ScaleMode

See also
Gauge.CurvedScale (Page 3309)

CurvedScale.ScalingType

Description
The "ScalingType" property specifies the scaling.

Type
Int32, HmiScalingType
Specifies the scaling:
• Linear (0): Linear
• Logarithmic (1): Logarithmic
• NegativeLogarithmic (2): Negative logarithmic
• Tangent (4): Tangential
• Quadratic (5): Square
• Cubic (6): Cubic

Access
Read-write

Syntax
CurvedScale.ScalingType

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3319

See also
Gauge.CurvedScale (Page 3309)

CurvedScale.StartAngle

Description
The "StartAngle" specifies the angle by which the start point deviates from the zero position (0°
corresponds to 3 o'clock).

Type
Int32

Access
Read-write

Syntax
CurvedScale.StartAngle

See also
Gauge.CurvedScale (Page 3309)

CurvedScale.SubDivisionCount

Description
The "SubDivisionCount" property specifies the number of subdivisions of the main units.

Type
Int32

Access
Read-write

Syntax
CurvedScale.SubDivisionCount

Programming scripts
10.2 WinCC Unified object model

3320 System Manual, 11/2022

See also
Gauge.CurvedScale (Page 3309)

CurvedScale.TickColor

Description
The "TickColor" property specifies the color of the tick marks.

Type
UInt32

Access
Read-write

Syntax
CurvedScale.TickColor

See also
Gauge.CurvedScale (Page 3309)

Gauge.Enabled

Description
The "Enabled" property specifies whether the gauge can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
Gauge.Enabled

See also
Gauge (Page 3300)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3321

Gauge.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Gauge.Font

See also
Gauge (Page 3300)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Gauge.Font (Page 3322)

Programming scripts
10.2 WinCC Unified object model

3322 System Manual, 11/2022

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Gauge.Font (Page 3322)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Gauge.Font (Page 3322)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3323

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Gauge.Font (Page 3322)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

3324 System Manual, 11/2022

See also
Gauge.Font (Page 3322)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Gauge.Font (Page 3322)

Gauge.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3325

Access
Read-write

Syntax
Gauge.Height

See also
Gauge (Page 3300)

Gauge.Label

Description
The "Label" property specifies the labeling of the gauge.

Type
Object, HmiTextPart

Access
Read-write

Syntax
Gauge.Label

See also
Gauge (Page 3300)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3326 System Manual, 11/2022

Syntax
Text.Font

See also
Gauge.Label (Page 3326)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 3326)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3327

Syntax
Font.Name

See also
Text.Font (Page 3326)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 3326)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Programming scripts
10.2 WinCC Unified object model

3328 System Manual, 11/2022

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 3326)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 3326)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3329

Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 3326)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
Gauge.Label (Page 3326)

Programming scripts
10.2 WinCC Unified object model

3330 System Manual, 11/2022

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
Gauge.Label (Page 3326)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
Gauge.Label (Page 3326)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3331

Gauge.Layer

Description
The "Layer" property returns the layer of the screen in which the gauge is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
Gauge.Layer

See also
Gauge (Page 3300)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
Gauge.Layer (Page 3332)

Programming scripts
10.2 WinCC Unified object model

3332 System Manual, 11/2022

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
Gauge.Layer (Page 3332)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
Gauge.Layer (Page 3332)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3333

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
Gauge.Layer (Page 3332)

Gauge.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Gauge.Left

See also
Gauge (Page 3300)

Programming scripts
10.2 WinCC Unified object model

3334 System Manual, 11/2022

Gauge.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
Gauge.Margin

See also
Gauge (Page 3300)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
Gauge.Margin (Page 3335)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3335

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
Gauge.Margin (Page 3335)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
Gauge.Margin (Page 3335)

Programming scripts
10.2 WinCC Unified object model

3336 System Manual, 11/2022

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
Gauge.Margin (Page 3335)

Gauge.Name

Description
The "Name" property returns the name of the gauge.

Type
String

Access
Read-only

Syntax
Gauge.Name

See also
Gauge (Page 3300)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3337

Gauge.NormalRangeColor

Description
The "NormalRangeColor" property specifies the color of the normal range.

Type
UInt32

Access
Read-write

Syntax
Gauge.NormalRangeColor

See also
Gauge (Page 3300)

Gauge.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" indicates completely transparent.

Type
Float

Access
Read-write

Syntax
Gauge.Opacity

See also
Gauge (Page 3300)

Programming scripts
10.2 WinCC Unified object model

3338 System Manual, 11/2022

Gauge.Operability

Description
The "Operability" property returns whether the gauge is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
Gauge.Operability

See also
Gauge (Page 3300)

Gauge.OriginValue

Description
The "OriginValue" property specifies the output value of the normal range to be visualized.

Type
Float

Access
Read-write

Syntax
Gauge.OriginValue

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3339

See also
Gauge (Page 3300)

Gauge.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying the process values, e.g. "{0000}"
for a 4-digit integer with leading zeros.

Type
String

Access
Read-write

Syntax
Gauge.OutputFormat

See also
Gauge (Page 3300)

Gauge.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
Gauge.Parent

Programming scripts
10.2 WinCC Unified object model

3340 System Manual, 11/2022

See also
Gauge (Page 3300)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Gauge.PeakIndicators

Description
The "PeakIndicators" property specifies whether the highest and lowest process value up to this
time are displayed.

Type
Int32, HmiPeakIndicator
Specifies the display of the peak indicator:
• None (0): No display
• Low (1): Only the lowest process value
• High (2): Only the highest process value

Access
Read-write

Syntax
Gauge.PeakIndicators

See also
Gauge (Page 3300)

Gauge.ProcessValue

Description
The "ProcessValue" property specifies the process value.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3341

Type
Variant

Access
Read-write

Syntax
Gauge.ProcessValue

See also
Gauge (Page 3300)

Gauge.ProcessValueIndicatorBackColor

Description
The "ProcessValueIndicatorBackColor" property specifies the background color for the process
value indicator.

Type
UInt32

Access
Read-write

Syntax
Gauge.ProcessValueIndicatorBackColor

See also
Gauge (Page 3300)
Gauge.ProcessValueIndicatorForeColor (Page 3342)

Gauge.ProcessValueIndicatorForeColor

Description
The "ProcessValueIndicatorForeColor" property specifies the foreground color for the process
value indicator.

Programming scripts
10.2 WinCC Unified object model

3342 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
Gauge.ProcessValueIndicatorForeColor

See also
Gauge (Page 3300)
Gauge.ProcessValueIndicatorBackColor (Page 3342)

Gauge.ProcessValueIndicatorMode

Description
The "ProcessValueIndicatorMode" property specifies the type of display of the current process
value.

Type
Int32, HmiProcessIndicatorMode
Specifies the type of display:
• Bar (0): Bar only
• Indicator (1): Hair line or needle, no numerical display of the process value.
• DetailedIndicator (2): Detailed display with numerical value
• BarWithDetailedIndicator (3): Bar with numerical value

Access
Read-write

Syntax
Gauge.ProcessValueIndicatorMode

See also
Gauge (Page 3300)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3343

Gauge.RelativeToOrigin

Description
The "RelativeToOrigin" property specifies whether the output value is an absolute or a
percentage value between minimum and maximum value.

Type
Bool

Access
Read-write

Syntax
Gauge.RelativeToOrigin

See also
Gauge (Page 3300)

Gauge.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the gauge was
created.

Type
String

Access
Read-only

Syntax
Gauge.RenderingTemplate

See also
Gauge (Page 3300)

Programming scripts
10.2 WinCC Unified object model

3344 System Manual, 11/2022

Gauge.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the gauge can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
Gauge.RequireExplicitUnlock

See also
Gauge (Page 3300)

Gauge.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
Gauge.RotationAngle

See also
Gauge (Page 3300)
Gauge.RotationCenterPlacement (Page 3346)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3345

Gauge.RotationCenterX (Page 3346)
Gauge.RotationCenterY (Page 3347)

Gauge.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the gauge
rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
Gauge.RotationCenterPlacement

See also
Gauge (Page 3300)
Gauge.RotationAngle (Page 3345)
Gauge.RotationCenterX (Page 3346)
Gauge.RotationCenterY (Page 3347)

Gauge.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Programming scripts
10.2 WinCC Unified object model

3346 System Manual, 11/2022

Type
Float

Access
Read-write

Syntax
Gauge.RotationCenterX

See also
Gauge (Page 3300)
Gauge.RotationAngle (Page 3345)
Gauge.RotationCenterPlacement (Page 3346)
Gauge.RotationCenterY (Page 3347)

Gauge.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
Gauge.RotationCenterY

See also
Gauge (Page 3300)
Gauge.RotationAngle (Page 3345)
Gauge.RotationCenterPlacement (Page 3346)
Gauge.RotationCenterX (Page 3346)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3347

Gauge.ScaleBackColor

Description
The "ScaleBackColor" property specifies the background color of the scale.

Type
UInt32

Access
Read-write

Syntax
Gauge.ScaleBackColor

See also
Gauge (Page 3300)
Gauge.ScaleForeColor (Page 3348)

Gauge.ScaleForeColor

Description
The "ScaleForeColor" property specifies the foreground color of the scale.

Type
UInt32

Access
Read-write

Syntax
Gauge.ScaleForeColor

See also
Gauge (Page 3300)
Gauge.ScaleBackColor (Page 3348)

Programming scripts
10.2 WinCC Unified object model

3348 System Manual, 11/2022

Gauge.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the gauge is highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
Gauge.ShowFocusVisual

See also
Gauge (Page 3300)

Gauge.ShowTrendIndicator

Description
The "ShowTrendIndicator" property specifies whether the tendency (rising or falling) of the
process value to be monitored is indicated by means of a small arrow.

Type
Bool

Access
Read-write

Syntax
Gauge.ShowTrendIndicator

See also
Gauge (Page 3300)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3349

Gauge.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the gauge.

Type
String

Access
Read-only

Syntax
Gauge.StyleItemClass

See also
Gauge (Page 3300)

Gauge.TabIndex

Description
The "TabIndex" property returns the position of the gauge in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
Gauge.TabIndex

See also
Gauge (Page 3300)

Programming scripts
10.2 WinCC Unified object model

3350 System Manual, 11/2022

Gauge.ThresholdIndicators

Description
The "ThresholdIndicators" property specifies how parameterized limit values are visualized.

Type
Int32, HmiThresholdIndicator
Specifies the visualization:
• None (0): None
• Lines (1): Lines
• Markers (2): Markers

Access
Read-write

Syntax
Gauge.ThresholdIndicators

See also
Gauge (Page 3300)

Gauge.Thresholds

Description
The "Thresholds" property returns the list of all limit values ("Threshold" objects) of the gauge.

Type
Object, HmiThresholdCollection (Page 3352)

Access
Read-only

Syntax
Gauge.Thresholds

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3351

See also
Gauge (Page 3300)
HmiThresholdCollection (Page 3352)

HmiThresholdCollection

Description
The "HmiThresholdCollection" object is a list of all limit values ("Threshold" objects).

Use
The "HmiThresholdCollection" object is a list and can be counted and enumerated. You can
access the "HmiThresholdCollection" list using the index or the tag name.

Object type
HmiThresholdCollection

Properties
The "HmiThresholdCollection" object has the following properties:
• Count

Returns the number of limit values of the "HmiThresholdCollection" list.

Methods
The "HmiThresholdCollection" object has the following methods:
• Item()

Returns a limit value of the "HmiThresholdCollection" list.

See also
Gauge.Thresholds (Page 3351)

HmiThresholdCollection.Count

Description
The "Count" property returns the number of limit values in the "HmiThresholdCollection" list.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

3352 System Manual, 11/2022

Access
Read-only

Syntax
HmiThresholdCollection.Count

See also
HmiThresholdCollection (Page 3352)

HmiThresholdCollection.Item()

Description
The "Item" method returns a limit value of the "HmiThresholdCollection" list.

Syntax
HmiThresholdCollection[.Item](HmiThresholdName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiThresholdCollection" object.

Parameters
HmiThresholdName
Type: String
Name of the limit value

Return value
Object, HmiThresholdPart (Page 3354)

See also
Threshold (Page 3354)
HmiThresholdCollection (Page 3352)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3353

Threshold

Description
The "Threshold" object represents a limit value.

Object type
HmiThresholdPart

Properties
The "Threshold" object has the following properties:
• Color

Specifies the color of the limit value.
• DisplayName

Specifies the display name of the limit value.
• Name

Specifies the name of the limit value.
• ThresholdMode

Specifies the type of limit value.
• Value

Returns the limit value.

Methods
--

See also
HmiThresholdCollection (Page 3352)

Threshold.Color

Description
The "Color" property specifies the color of the limit value.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3354 System Manual, 11/2022

Syntax
Threshold.Color

See also
Threshold (Page 3354)

Threshold.DisplayName

Description
The "DisplayName" property specifies the display name of the limit value.

Type
String

Access
Read-write

Syntax
Threshold.DisplayName

See also
Threshold (Page 3354)

Threshold.Name

Description
The "Name" property specifies the name of the limit value.

Type
String

Access
Read-write

Syntax
Threshold.Name

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3355

See also
Threshold (Page 3354)

Threshold.ThresholdMode

Description
The "ThresholdMode" property specifies the type of limit value.

Type
Int32, HmiThresholdMode
Specifies the threshold value:
• Undefined (0): Undefined
• Upper (1): Upper threshold
• Lower (2): Lower threshold
• Normal (3): Normal threshold
• Minimum (4): Minimum threshold
• Maximum (5): Maximum threshold

Access
Read-write

Syntax
Threshold.ThresholdMode

See also
Threshold (Page 3354)

Threshold.Value

Description
The "Value" property returns the limit value of the tag.

Type
Float

Programming scripts
10.2 WinCC Unified object model

3356 System Manual, 11/2022

Access
Read-only

Syntax
Threshold.Value

See also
Threshold (Page 3354)

Gauge.Title

Description
The "Title" property specifies the caption that appears as the title.

Type
Object, HmiTextPart

Access
Read-write

Syntax
Gauge.Title

See also
Gauge (Page 3300)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3357

Syntax
Text.Font

See also
Gauge.Title (Page 3357)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 3357)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3358 System Manual, 11/2022

Syntax
Font.Name

See also
Text.Font (Page 3357)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 3357)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3359

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 3357)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 3357)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight

Programming scripts
10.2 WinCC Unified object model

3360 System Manual, 11/2022

Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 3357)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
Gauge.Title (Page 3357)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3361

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
Gauge.Title (Page 3357)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
Gauge.Title (Page 3357)

Programming scripts
10.2 WinCC Unified object model

3362 System Manual, 11/2022

Gauge.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
Gauge.ToolTipText

See also
Gauge (Page 3300)

Gauge.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Gauge.Top

See also
Gauge (Page 3300)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3363

Gauge.TrendIndicatorColor

Description
The "TrendIndicatorColor" property specifies the color of the trend indicator. The trend indicator
uses a small arrow to represent the tendency (rising or falling) of the process value to be
monitored. To activate the trend indicator, the "ShowTrendIndicator" property must be activated.

Type
UInt32

Access
Read-write

Syntax
Gauge.TrendIndicatorColor

See also
Gauge (Page 3300)

Gauge.Visible

Description
The "Visible" property specifies whether the gauge is visible.

Type
Bool

Access
Read-write

Syntax
Gauge.Visible

See also
Gauge (Page 3300)

Programming scripts
10.2 WinCC Unified object model

3364 System Manual, 11/2022

Gauge.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Access
Read-write

Syntax
Gauge.VisualizeQuality

See also
Gauge (Page 3300)

Gauge.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Gauge.Width

See also
Gauge (Page 3300)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3365

Gauge.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
gauge.

Syntax
Gauge.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
Gauge (Page 3300)

Gauge.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
Gauge.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Programming scripts
10.2 WinCC Unified object model

3366 System Manual, 11/2022

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
Gauge (Page 3300)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3367

Gauge_OnActivated()

Description
The "OnActivated" event occurs when a gauge receives focus:
• A gauge is selected via the configured tab sequence.
• A gauge that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
Gauge_OnActivated(item)

Context
item
Type: Object
Gauge where the event occurs.

See also
Gauge (Page 3300)

Gauge_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A gauge is right-clicked.
• A gauge is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
Gauge_OnContextTapped(item, x, y, modifiers, trigger)

Programming scripts
10.2 WinCC Unified object model

3368 System Manual, 11/2022

Context
item
Type: Object
Gauge where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3369

See also
Gauge (Page 3300)

Gauge_OnDeactivated()

Description
The "OnDeactivated" event occurs when the gauge loses focus because the operator presses the
<TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
Gauge_OnDeactivated(item)

Context
item
Type: Object
Gauge where the event occurs.

See also
Gauge (Page 3300)

Gauge_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the gauge is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

3370 System Manual, 11/2022

Syntax
Gauge_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Gauge where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Gauge (Page 3300)

Gauge_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the gauge is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3371

Syntax
Gauge_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Gauge where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Gauge (Page 3300)

Programming scripts
10.2 WinCC Unified object model

3372 System Manual, 11/2022

Gauge_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A gauge is left-clicked.
• The <RETURN> or <SPACE> key is pressed when a gauge has the focus.
• A gauge is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
Gauge_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Gauge where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3373

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Gauge (Page 3300)

GraphicView

Description
The "GraphicView" object represents a graphic display in runtime.

Object type
HmiGraphicView

Programming scripts
10.2 WinCC Unified object model

3374 System Manual, 11/2022

Properties
The "GraphicView" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BackFillPattern

Specifies the pattern of the background or the fill.
• CurrentQuality

Returns the poorest quality code of all tags which influence the graphic display.
• Enabled

Specifies whether the graphic display can be operated in runtime.
• FillDirection

Specifies the direction from which the graphic display is filled.
• FillLevel

Specifies the fill of the graphic display in percent.
• Graphic

Specifies the graphic.
• GraphicStretchMode

Specifies the type of scaling of the graphic in the screen.
• Height

Specifies the height.
• Layer

Returns the layer of the screen in which the graphic display is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the graphic display.
• Opacity

Specifies the opacity.
• Operability

Returns whether the graphic display is operable.
• Padding

Specifies the distance of the graphic from the frame of the graphic display.
• Parent

Returns the higher-level screen object.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3375

• RequireExplicitUnlock
Returns whether the graphic display is only operable while the associated button is being
pressed.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the graphic display rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFillLevel
Specifies whether the fill level is displayed.

• ShowFocusVisual
Specifies whether the graphic display is highlighted when in focus.

• StyleItemClass
Returns the style which is applied to the graphic display.

• TabIndex
Returns the position of the graphic display in the tab sequence.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the graphic display is visible.

• Width
Specifies the width.

Methods
The "GraphicView" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the graphic display.
• PropertyFlashing()

Configures flashing of a property.

Events
The "GraphicView" object has the following events:
• OnActivated()

Occurs when a graphic display receives focus.
• OnContextTapped()

Occurs when a graphic display is right-clicked or long-touched.

Programming scripts
10.2 WinCC Unified object model

3376 System Manual, 11/2022

• OnDeactivated()
Occurs when a graphic display loses focus.

• OnKeyDown()
Occurs when a key is pressed while the graphic display is in focus.

• OnKeyUp()
Occurs when a key is released while the graphic display is in focus.

• OnTapped()
Occurs when a graphic display is left-clicked or short-touched.

GraphicView.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
GraphicView.AlternateBackColor

See also
GraphicView (Page 3374)

GraphicView.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3377

Syntax
GraphicView.Authorization

See also
GraphicView (Page 3374)

GraphicView.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
GraphicView.BackColor

See also
GraphicView (Page 3374)

GraphicView.BackFillPattern

Description
The "BackFillPattern" property specifies the pattern of the background or the fill.

Type
Int32, HmiFillPattern
Specifies the filling:
• Solid (0): Solid
• Transparent (65536): Transparent
• Horizontal (131072): Horizontal
• Vertical (131073): Vertical
• ForwardDiagonal (131074): Forward diagonal stripe

Programming scripts
10.2 WinCC Unified object model

3378 System Manual, 11/2022

• BackwardDiagonal (131075): Backward diagonal stripe
• Cross (131076): Cross
• DiagonalCross (131077): Diagonal cross
• GradientHorizontal (1048576): Horizontal gradient
• GradientVertical (1048577): Vertical gradient
• GradientForwardDiagonal (1048578): Gradient forward diagonal
• GradientBackwardDiagonal (1048579): Gradient backward diagonal
• GradientHorizontalTricolor (1048832): Horizontal tricolor gradient
• GradientVerticalTricolor (1048833): Vertical tricolor gradient
• GradientForwardDiagonalTricolor (1048834): Forward diagonal tricolor gradient
• GradientBackwardDiagonalTricolor (1048835): Backward diagonal tricolor gradient

Access
Read-write

Syntax
GraphicView.BackFillPattern

See also
GraphicView (Page 3374)

GraphicView.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
graphic display.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3379

Access
Read-only

Syntax
GraphicView.CurrentQuality

See also
GraphicView (Page 3374)

GraphicView.Enabled

Description
The "Enabled" property specifies whether the graphic display can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
GraphicView.Enabled

See also
GraphicView (Page 3374)

GraphicView.FillDirection

Description
The "FillDirection" property specifies the direction from which the graphic display is filled.

Type
Int32, HmiFillDirection
Specifies the filling direction:
• BottomToTop (0): From bottom to top
• TopToBottom (1): From top to bottom

Programming scripts
10.2 WinCC Unified object model

3380 System Manual, 11/2022

• LeftToRight (2): From left to right
• RightToLeft (3): From right to left

Access
Read-write

Syntax
GraphicView.FillDirection

See also
GraphicView (Page 3374)

GraphicView.FillLevel

Description
The "FillLevel" property specifies the fill level of the graphic display in percent.

Type
UInt8

Access
Read-write

Syntax
GraphicView.FillLevel

See also
GraphicView (Page 3374)

GraphicView.Graphic

Description
The "Graphic" property specifies the graphic.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3381

Access
Read-write

Syntax
GraphicView.Graphic

See also
GraphicView (Page 3374)

GraphicView.GraphicStretchMode

Description
The "GraphicStretchMode" property specifies the type of scaling of the graphic in the screen.

Type
Int32, HmiGraphicStretchMode
Specifies the graphic scaling:
• None (0): The graphic is shown in its original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
GraphicView.GraphicStretchMode

See also
GraphicView (Page 3374)

Programming scripts
10.2 WinCC Unified object model

3382 System Manual, 11/2022

GraphicView.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
GraphicView.Height

See also
GraphicView (Page 3374)

GraphicView.Layer

Description
The "Layer" property returns the layer of the screen in which the graphic display is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
GraphicView.Layer

See also
GraphicView (Page 3374)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3383

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
GraphicView.Layer (Page 3383)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
GraphicView.Layer (Page 3383)

Programming scripts
10.2 WinCC Unified object model

3384 System Manual, 11/2022

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
GraphicView.Layer (Page 3383)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
GraphicView.Layer (Page 3383)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3385

GraphicView.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
GraphicView.Left

See also
GraphicView (Page 3374)

GraphicView.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
GraphicView.Margin

See also
GraphicView (Page 3374)

Programming scripts
10.2 WinCC Unified object model

3386 System Manual, 11/2022

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
GraphicView.Margin (Page 3386)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
GraphicView.Margin (Page 3386)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3387

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
GraphicView.Margin (Page 3386)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
GraphicView.Margin (Page 3386)

Programming scripts
10.2 WinCC Unified object model

3388 System Manual, 11/2022

GraphicView.Name

Description
The "Name" property returns the name of the graphic display.

Type
String

Access
Read-only

Syntax
GraphicView.Name

See also
GraphicView (Page 3374)

GraphicView.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" indicates completely transparent.

Type
Float

Access
Read-write

Syntax
GraphicView.Opacity

See also
GraphicView (Page 3374)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3389

GraphicView.Operability

Description
The "Operability" property returns whether the graphic display is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
GraphicView.Operability

See also
GraphicView (Page 3374)

GraphicView.Padding

Description
The "Padding" property specifies the distance of the graphic from the frame of the graphic
display.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
GraphicView.Padding

Programming scripts
10.2 WinCC Unified object model

3390 System Manual, 11/2022

See also
GraphicView (Page 3374)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
GraphicView.Padding (Page 3390)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3391

See also
GraphicView.Padding (Page 3390)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
GraphicView.Padding (Page 3390)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

Programming scripts
10.2 WinCC Unified object model

3392 System Manual, 11/2022

See also
GraphicView.Padding (Page 3390)

GraphicView.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
GraphicView.Parent

See also
GraphicView (Page 3374)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

GraphicView.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the graphic display can only be operated
while the associated button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3393

Access
Read-only

Syntax
GraphicView.RequireExplicitUnlock

See also
GraphicView (Page 3374)

GraphicView.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
GraphicView.RotationAngle

See also
GraphicView.RotationCenterX (Page 3395)
GraphicView.RotationCenterY (Page 3396)
GraphicView.RotationCenterPlacement (Page 3394)
GraphicView (Page 3374)

GraphicView.RotationCenterPlacement

Description
The "RotationCenterPlacement" property specifies the reference point around which the graphic
display rotates.

Programming scripts
10.2 WinCC Unified object model

3394 System Manual, 11/2022

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
GraphicView.RotationCenterPlacement

See also
GraphicView.RotationAngle (Page 3394)
GraphicView.RotationCenterX (Page 3395)
GraphicView.RotationCenterY (Page 3396)
GraphicView (Page 3374)

GraphicView.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
GraphicView.RotationCenterX

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3395

See also
GraphicView.RotationAngle (Page 3394)
GraphicView.RotationCenterY (Page 3396)
GraphicView.RotationCenterPlacement (Page 3394)
GraphicView (Page 3374)

GraphicView.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
GraphicView.RotationCenterY

See also
GraphicView.RotationAngle (Page 3394)
GraphicView.RotationCenterX (Page 3395)
GraphicView.RotationCenterPlacement (Page 3394)
GraphicView (Page 3374)

GraphicView.ShowFillLevel

Description
The "ShowFillLevel" property specifies whether the fill level is displayed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

3396 System Manual, 11/2022

Access
Read-write

Syntax
GraphicView.ShowFillLevel

See also
GraphicView (Page 3374)

GraphicView.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the graphic display is highlighted when in
focus.

Type
Bool

Access
Read-write

Syntax
GraphicView.ShowFocusVisual

See also
GraphicView (Page 3374)

GraphicView.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the graphic display.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3397

Access
Read-only

Syntax
GraphicView.StyleItemClass

See also
GraphicView (Page 3374)

GraphicView.TabIndex

Description
The "TabIndex" property returns the position of the graphic display in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
GraphicView.TabIndex

See also
GraphicView (Page 3374)

GraphicView.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3398 System Manual, 11/2022

Syntax
GraphicView.ToolTipText

See also
GraphicView (Page 3374)

GraphicView.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
GraphicView.Top

See also
GraphicView (Page 3374)

GraphicView.Visible

Description
The "Visible" property specifies whether the graphic display is visible.

Type
Bool

Access
Read-write

Syntax
GraphicView.Visible

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3399

See also
GraphicView (Page 3374)

GraphicView.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
GraphicView.Width

See also
GraphicView (Page 3374)

GraphicView.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
graphic display.

Syntax
GraphicView.CheckAuthorization()

Parameters
--

Return value
Bool

Programming scripts
10.2 WinCC Unified object model

3400 System Manual, 11/2022

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
GraphicView (Page 3374)

GraphicView.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
GraphicView.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3401

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
GraphicView (Page 3374)

GraphicView_OnActivated()

Description
The "OnActivated" event occurs when a graphic display receives focus:
• A graphic display is selected via the configured tab sequence.
• A graphic display that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
GraphicView_OnActivated(item)

Context
item
Type: Object
Graphic display at which the event occurs.

Programming scripts
10.2 WinCC Unified object model

3402 System Manual, 11/2022

See also
GraphicView (Page 3374)

GraphicView_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A graphic display is right-clicked.
• A graphic display is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
GraphicView_OnContextTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Graphic display at which the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3403

• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
GraphicView (Page 3374)

GraphicView_OnDeactivated()

Description
The "OnDeactivated" event occurs when the graphic display loses focus because the operator
presses the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
GraphicView_OnDeactivated(item)

Context
item
Type: Object

Programming scripts
10.2 WinCC Unified object model

3404 System Manual, 11/2022

Graphic display at which the event occurs.

See also
GraphicView (Page 3374)

GraphicView_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the graphic display is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
GraphicView_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Graphic display at which the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3405

• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
GraphicView (Page 3374)

GraphicView_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the graphic display is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
GraphicView_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Graphic display at which the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key

Programming scripts
10.2 WinCC Unified object model

3406 System Manual, 11/2022

• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
GraphicView (Page 3374)

GraphicView_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A graphic display is left-clicked.
• The <RETURN> or <SPACE> key is pressed when a graphic display has the focus.
• A graphic display is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
GraphicView_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Graphic display at which the event occurs.

x
Type: DInt
X-coordinate of the input point

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3407

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
GraphicView (Page 3374)

Group

Description
The "Group" object represents grouped objects in runtime.

Programming scripts
10.2 WinCC Unified object model

3408 System Manual, 11/2022

Object type
HmiGroup

Properties
The "Group" object has the following properties:
• ContainedItems

Returns an array with the references of the contained objects.
• CurrentQuality

Returns the poorest quality code of all tags which influence the group.
• Enabled

Specifies whether the group can be operated in runtime.
• Height

Specifies the height.
• Layer

Returns the screen layer in which the group is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the group.
• Parent

Returns the higher-level screen object.
• Properties

Allows access to the dynamic properties of the objects of the group.
• RotationAngle

Specifies the rotation angle in degrees.
• RotationCenterPlacement

Specifies the reference point around which the group rotates.
• RotationCenterX

Specifies the X coordinate of the rotation point.
• RotationCenterY

Specifies the Y coordinate of the rotation point.
• ShowFocusVisual

Specifies whether the group is highlighted when in focus.
• StyleItemClass

Returns the style which is applied to the group.
• TabIndex

Returns the position of the group in the tab sequence.
• Top

Specifies the value of the Y coordinate.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3409

• Visible
Specifies whether the group is visible.

• Width
Specifies the width.

Methods
The "Group" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the group.
• PropertyFlashing()

Configures flashing of a property.

Group.ContainedItems

Description
The "ContainedItems" property returns an array with the references of the grouped objects.

Type
ArrayOfSomRef

Access
Read-only

Syntax
Group.ContainedItems

See also
Group (Page 3408)

Group.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
group.

Type
Int32, HmiQuality

Programming scripts
10.2 WinCC Unified object model

3410 System Manual, 11/2022

Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.
• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
Group.CurrentQuality

See also
Group (Page 3408)

Group.Enabled

Description
The "Enabled" property specifies whether the group can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
Group.Enabled

See also
Group (Page 3408)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3411

Group.Height

Description
The "Height" property specifies the height in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Group.Height

See also
Group (Page 3408)

Group.Layer

Description
The "Layer" property returns the screen layer in which the group is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
Group.Layer

See also
Group (Page 3408)

Programming scripts
10.2 WinCC Unified object model

3412 System Manual, 11/2022

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
Group.Layer (Page 3412)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
Group.Layer (Page 3412)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3413

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
Group.Layer (Page 3412)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
Group.Layer (Page 3412)

Programming scripts
10.2 WinCC Unified object model

3414 System Manual, 11/2022

Group.Left

Description
The "Left" property sets the value of the X coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Group.Left

See also
Group (Page 3408)

Group.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
Group.Margin

See also
Group (Page 3408)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3415

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
Group.Margin (Page 3415)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
Group.Margin (Page 3415)

Programming scripts
10.2 WinCC Unified object model

3416 System Manual, 11/2022

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
Group.Margin (Page 3415)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
Group.Margin (Page 3415)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3417

Group.Name

Description
The "Name" property returns the name of the group.

Type
String

Access
Read-only

Syntax
Group.Name

See also
Group (Page 3408)

Group.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
Group.Parent

See also
Group (Page 3408)
Screen Items (Page 1571)

Programming scripts
10.2 WinCC Unified object model

3418 System Manual, 11/2022

Screen Items

Description
Screen Items (Page 1571)

Group.Properties

Description
The "Properties" property allows access to the dynamic properties of the objects of the group.

Type
Object, HmiDynamicPropertyPart

Access
Read-write

Syntax
Group.Properties

See also
Group (Page 3408)

Group.RotationAngle

Description
The "RotationAngle" property specifies the rotation angle in degrees.

Type
Int16

Access
Read-write

Syntax
Group.RotationAngle

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3419

See also
Group (Page 3408)
Group.RotationCenterPlacement (Page 3420)
Group.RotationCenterX (Page 3421)
Group.RotationCenterY (Page 3421)

Group.RotationCenterPlacement

Description
The "RotationCenterPlacement" property specifies the reference point around which the group
rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in the DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
Group.RotationCenterPlacement

See also
Group (Page 3408)
Group.RotationAngle (Page 3419)
Group.RotationCenterX (Page 3421)
Group.RotationCenterY (Page 3421)

Programming scripts
10.2 WinCC Unified object model

3420 System Manual, 11/2022

Group.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
Group.RotationCenterX

See also
Group (Page 3408)
Group.RotationAngle (Page 3419)
Group.RotationCenterPlacement (Page 3420)
Group.RotationCenterY (Page 3421)

Group.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
Group.RotationCenterY

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3421

See also
Group (Page 3408)
Group.RotationAngle (Page 3419)
Group.RotationCenterPlacement (Page 3420)
Group.RotationCenterX (Page 3421)

Group.ShowFocusVisual

Description
The property "ShowFocusVisual" specifies whether the group is highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
Group.ShowFocusVisual

See also
Group (Page 3408)

Group.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the group.

Type
String

Access
Read-only

Syntax
Group.StyleItemClass

Programming scripts
10.2 WinCC Unified object model

3422 System Manual, 11/2022

See also
Group (Page 3408)

Group.TabIndex

Description
The "TabIndex" property returns the position of the group in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
Group.TabIndex

See also
Group (Page 3408)

Group.Top

Description
The "Top" property sets the value of the Y coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Group.Top

See also
Group (Page 3408)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3423

Group.Visible

Description
The "Visible" property specifies whether the group is visible.

Type
Bool

Access
Read-write

Syntax
Group.Visible

See also
Group (Page 3408)

Group.Width

Description
The "Width" property specifies the width in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Group.Width

See also
Group (Page 3408)

Programming scripts
10.2 WinCC Unified object model

3424 System Manual, 11/2022

Group.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
group.

Syntax
Group.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
Group (Page 3408)

Group.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
Group.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3425

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
Group (Page 3408)

IOField

Description
The "IOField" object represents an I/O field for the entry and display of process values in runtime.

Programming scripts
10.2 WinCC Unified object model

3426 System Manual, 11/2022

Object type
HmiIOField

Properties
The "IOField" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the border color.
• BorderWidth

Specifies the border thickness.
• CurrentQuality

Returns the poorest quality code of all tags which influence the I/O field.
• Enabled

Specifies whether the I/O field can be operated in runtime.
• Font

Specifies the font of the text.
• ForeColor

Specifies the font color of the text.
• Height

Specifies the height.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• InputBehavior

Specifies the input behavior.
• IOFieldType

Specifies the mode of the I/O field.
• Layer

Returns the layer of the screen in which the I/O field is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• MeasurementUnit

Returns the displayed unit.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3427

• MeasurementUnitType
Specifies the display format of the unit.

• Name
Returns the name of the I/O field.

• Opacity
Specifies the opacity.

• Operability
Returns whether the I/O field is operable.

• OutputFormat
Specifies the format for displaying the process values.

• Padding
Specifies the distance of the content from the border of the I/O field.

• Parent
Returns the higher-level screen object.

• ProcessValue
Specifies the process value.

• RenderingTemplate
Returns the name of the template from which the I/O field was created.

• RequireExplicitUnlock
Returns whether the I/O field is only operable while the associated button is being pressed.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the I/O field rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFocusVisual
Specifies whether the I/O field is highlighted when in focus.

• StyleItemClass
Returns the style which is applied to the I/O field.

• TabIndex
Returns the position of the I/O field in the tab sequence.

• TextTrimming
Specifies the type of text trimming if space is not sufficient.

• Thresholds
Returns the list of all limit values of the I/O field.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

Programming scripts
10.2 WinCC Unified object model

3428 System Manual, 11/2022

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the I/O field is visible.

• VisualizeQuality
Specifies whether the connection quality of the process value is displayed.

• Width
Specifies the width.

Methods
The "IOField" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the I/O field.
• PropertyFlashing()

Configures flashing of a property.

Events
The "IOField" object has the following events:
• OnActivated()

Occurs when an I/O field receives focus.
• OnContextTapped()

Occurs when an I/O field is right-clicked or long-touched.
• OnDeactivated()

Occurs when an I/O field loses focus.
• OnKeyDown()

Occurs when a key is pressed while the I/O field is in focus.
• OnKeyUp()

Occurs when a key is released while the I/O field is in focus.
• OnTapped()

Occurs when an I/O field is left-clicked or short-touched.

IOField.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3429

Access
Read-write

Syntax
IOField.AlternateBackColor

See also
IOField (Page 3426)

IOField.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color which is displayed for line
styles such as "Dash".

Type
UInt32

Access
Read-write

Syntax
IOField.AlternateBorderColor

See also
IOField (Page 3426)

IOField.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Programming scripts
10.2 WinCC Unified object model

3430 System Manual, 11/2022

Access
Read-only

Syntax
IOField.Authorization

See also
IOField (Page 3426)

IOField.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
IOField.BackColor

See also
IOField (Page 3426)

IOField.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3431

Syntax
IOField.BorderColor

See also
IOField (Page 3426)

IOField.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
IOField.BorderWidth

See also
IOField (Page 3426)

IOField.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the I/O
field.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.

Programming scripts
10.2 WinCC Unified object model

3432 System Manual, 11/2022

• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
IOField.CurrentQuality

See also
IOField (Page 3426)

IOField.Enabled

Description
The "Enabled" property specifies whether the I/O field can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
IOField.Enabled

See also
IOField (Page 3426)

IOField.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3433

Access
Read-write

Syntax
IOField.Font

See also
IOField (Page 3426)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
IOField.Font (Page 3433)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Programming scripts
10.2 WinCC Unified object model

3434 System Manual, 11/2022

Access
Read-write

Syntax
Font.Name

See also
IOField.Font (Page 3433)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
IOField.Font (Page 3433)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3435

Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
IOField.Font (Page 3433)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
IOField.Font (Page 3433)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Programming scripts
10.2 WinCC Unified object model

3436 System Manual, 11/2022

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
IOField.Font (Page 3433)

IOField.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
IOField.ForeColor

See also
IOField (Page 3426)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3437

IOField.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
IOField.Height

See also
IOField (Page 3426)

IOField.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the text alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched. Can only be used with layout containers, Fallback behaves like Center

Access
Read-write

Syntax
IOField.HorizontalTextAlignment

Programming scripts
10.2 WinCC Unified object model

3438 System Manual, 11/2022

See also
IOField (Page 3426)

IOField.InputBehavior

Description
The "InputBehavior" property specifies the input behavior.

Type
Object, HmiInputBehaviorPart

Access
Read-write

Syntax
IOField.InputBehavior

See also
IOField (Page 3426)

InputBehavior.AcceptOnDeactivated

Description
The "AcceptOnDeactivated" property specifies whether the process value is written when the
object loses the input focus.

Type
Bool

Access
Read-write

Syntax
InputBehavior.AcceptOnDeactivated

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3439

See also
IOField.InputBehavior (Page 3439)

InputBehavior.ClearOnActivate

Description
The "ClearOnActivate" property specifies whether the last value is deleted during input focus.

Type
Bool

Access
Read-write

Syntax
InputBehavior.ClearOnActivate

See also
IOField.InputBehavior (Page 3439)

InputBehavior.HiddenInput

Description
The "HiddenInput" property specifies whether the input value or an * is shown for each character
during the input.

Type
Bool

Access
Read-write

Syntax
InputBehavior.HiddenInput

Programming scripts
10.2 WinCC Unified object model

3440 System Manual, 11/2022

See also
IOField.InputBehavior (Page 3439)

InputBehavior.InputOnActivate

Description
The "InputOnActivate" property determines whether the input field accepts input when it
receives focus.

Type
Bool

Access
Read-write

Syntax
InputBehavior.InputOnActivate

See also
IOField.InputBehavior (Page 3439)

IOField.IOFieldType

Description
The "IOFieldType" property specifies the mode of the I/O field.

Type
Int32, HmiIOFieldType
Specifies the type:
• Output (0): Output only
• InputOutput (2): Input and output

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3441

Syntax
IOField.IOFieldType

See also
IOField (Page 3426)

IOField.Layer

Description
The "Layer" property returns the layer of the screen in which the I/O field is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
IOField.Layer

See also
IOField (Page 3426)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

Programming scripts
10.2 WinCC Unified object model

3442 System Manual, 11/2022

See also
IOField.Layer (Page 3442)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
IOField.Layer (Page 3442)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3443

See also
IOField.Layer (Page 3442)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
IOField.Layer (Page 3442)

IOField.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
IOField.Left

Programming scripts
10.2 WinCC Unified object model

3444 System Manual, 11/2022

See also
IOField (Page 3426)

IOField.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
IOField.Margin

See also
IOField (Page 3426)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3445

See also
IOField.Margin (Page 3445)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
IOField.Margin (Page 3445)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

Programming scripts
10.2 WinCC Unified object model

3446 System Manual, 11/2022

See also
IOField.Margin (Page 3445)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
IOField.Margin (Page 3445)

IOField.MeasurementUnit

Description
The "MeasurementUnit" property returns the displayed unit.

Type
String

Access
Read-only

Syntax
IOField.MeasurementUnit

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3447

See also
IOField (Page 3426)

IOField.MeasurementUnitType

Description
The "MeasurementUnitType" property specifies the display format of the unit.

Type
Int32, HmiMeasurementUnit
Specifies the display format:
• None (0): No unit
• Name (1): Unit name, for example "kilogram"
• Symbol (2): Unit, for example "kg"

Access
Read-write

Syntax
IOField.MeasurementUnitType

See also
IOField (Page 3426)

IOField.Name

Description
The "Name" property returns the name of the I/O field.

Type
String

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

3448 System Manual, 11/2022

Syntax
IOField.Name

See also
IOField (Page 3426)

IOField.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" indicates completely transparent.

Type
Float

Access
Read-write

Syntax
IOField.Opacity

See also
IOField (Page 3426)

IOField.Operability

Description
The "Operability" property returns whether the I/O field is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3449

Access
Read-only

Syntax
IOField.Operability

See also
IOField (Page 3426)

IOField.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying the process values, e.g. "{0000}"
for a 4-digit integer with leading zeros.

Type
String

Access
Read-write

Syntax
IOField.OutputFormat

See also
IOField (Page 3426)

IOField.Padding

Description
The "Padding" property specifies the distance of the content from the border of the I/O field.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

3450 System Manual, 11/2022

Access
Read-write

Syntax
IOField.Padding

See also
IOField (Page 3426)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
IOField.Padding (Page 3450)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3451

Access
Read-write

Syntax
Padding.Left

See also
IOField.Padding (Page 3450)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
IOField.Padding (Page 3450)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

3452 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Top

See also
IOField.Padding (Page 3450)

IOField.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
IOField.Parent

See also
IOField (Page 3426)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3453

IOField.ProcessValue

Description
The "ProcessValue" property specifies the process value.

Type
Variant

Access
Read-write

Syntax
IOField.ProcessValue

See also
IOField (Page 3426)

IOField.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the I/O field was
created.

Type
String

Access
Read-only

Syntax
IOField.RenderingTemplate

See also
IOField (Page 3426)

Programming scripts
10.2 WinCC Unified object model

3454 System Manual, 11/2022

IOField.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the I/O field can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
IOField.RequireExplicitUnlock

See also
IOField (Page 3426)

IOField.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
IOField.RotationAngle

See also
IOField (Page 3426)
IOField.RotationCenterX (Page 3456)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3455

IOField.RotationCenterY (Page 3457)
IOField.RotationCenterPlacement (Page 3456)

IOField.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the I/O field
rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
IOField.RotationCenterPlacement

See also
IOField (Page 3426)
IOField.RotationAngle (Page 3455)
IOField.RotationCenterX (Page 3456)
IOField.RotationCenterY (Page 3457)

IOField.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Programming scripts
10.2 WinCC Unified object model

3456 System Manual, 11/2022

Type
Float

Access
Read-write

Syntax
IOField.RotationCenterX

See also
IOField (Page 3426)
IOField.RotationAngle (Page 3455)
IOField.RotationCenterY (Page 3457)
IOField.RotationCenterPlacement (Page 3456)

IOField.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
IOField.RotationCenterY

See also
IOField (Page 3426)
IOField.RotationAngle (Page 3455)
IOField.RotationCenterX (Page 3456)
IOField.RotationCenterPlacement (Page 3456)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3457

IOField.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the I/O field is highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
IOField.ShowFocusVisual

See also
IOField (Page 3426)

IOField.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the I/O field.

Type
String

Access
Read-only

Syntax
IOField.StyleItemClass

See also
IOField (Page 3426)

Programming scripts
10.2 WinCC Unified object model

3458 System Manual, 11/2022

IOField.TabIndex

Description
The "TabIndex" property returns the position of the I/O field in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
IOField.TabIndex

See also
IOField (Page 3426)

IOField.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
IOField.TextTrimming

See also
IOField (Page 3426)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3459

IOField.Thresholds

Description
The "Thresholds" property returns the list of all limit values ("Threshold" objects) of the I/O field.

Type
Object, HmiThresholdCollection (Page 3460)

Access
Read-only

Syntax
IOField.Thresholds

See also
IOField (Page 3426)
HmiThresholdCollection (Page 3460)

HmiThresholdCollection

Description
The "HmiThresholdCollection" object is a list of all limit values ("Threshold" objects).

Use
The "HmiThresholdCollection" object is a list and can be counted and enumerated. You can
access the "HmiThresholdCollection" list using the index or the tag name.

Object type
HmiThresholdCollection

Properties
The "HmiThresholdCollection" object has the following properties:
• Count

Returns the number of limit values of the "HmiThresholdCollection" list.

Programming scripts
10.2 WinCC Unified object model

3460 System Manual, 11/2022

Methods
The "HmiThresholdCollection" object has the following methods:
• Item()

Returns a limit value of the "HmiThresholdCollection" list.

See also
IOField.Thresholds (Page 3460)

HmiThresholdCollection.Count

Description
The "Count" property returns the number of limit values in the "HmiThresholdCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiThresholdCollection.Count

See also
HmiThresholdCollection (Page 3460)

HmiThresholdCollection.Item()

Description
The "Item" method returns a limit value of the "HmiThresholdCollection" list.

Syntax
HmiThresholdCollection[.Item](HmiThresholdName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiThresholdCollection" object.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3461

Parameters
HmiThresholdName
Type: String
Name of the limit value

Return value
Object, HmiThresholdPart (Page 3462)

See also
HmiThresholdCollection (Page 3460)
Threshold (Page 3462)

Threshold

Description
The "Threshold" object represents a limit value.

Object type
HmiThresholdPart

Properties
The "Threshold" object has the following properties:
• Color

Specifies the color of the limit value.
• DisplayName

Specifies the display name of the limit value.
• Name

Specifies the name of the limit value.
• ThresholdMode

Specifies the type of limit value.
• Value

Returns the limit value.

Methods
--

Programming scripts
10.2 WinCC Unified object model

3462 System Manual, 11/2022

See also
HmiThresholdCollection (Page 3460)

Threshold.Color

Description
The "Color" property specifies the color of the limit value.

Type
UInt32

Access
Read-write

Syntax
Threshold.Color

See also
Threshold (Page 3462)

Threshold.DisplayName

Description
The "DisplayName" property specifies the display name of the limit value.

Type
String

Access
Read-write

Syntax
Threshold.DisplayName

See also
Threshold (Page 3462)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3463

Threshold.Name

Description
The "Name" property specifies the name of the limit value.

Type
String

Access
Read-write

Syntax
Threshold.Name

See also
Threshold (Page 3462)

Threshold.ThresholdMode

Description
The "ThresholdMode" property specifies the type of limit value.

Type
Int32, HmiThresholdMode
Specifies the threshold value:
• Undefined (0): Undefined
• Upper (1): Upper threshold
• Lower (2): Lower threshold
• Normal (3): Normal threshold
• Minimum (4): Minimum threshold
• Maximum (5): Maximum threshold

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3464 System Manual, 11/2022

Syntax
Threshold.ThresholdMode

See also
Threshold (Page 3462)

Threshold.Value

Description
The "Value" property returns the limit value of the tag.

Type
Float

Access
Read-only

Syntax
Threshold.Value

See also
Threshold (Page 3462)

IOField.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
IOField.ToolTipText

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3465

See also
IOField (Page 3426)

IOField.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
IOField.Top

See also
IOField (Page 3426)

IOField.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the text alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched. Can only be used with layout containers, Fallback behaves like Center

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3466 System Manual, 11/2022

Syntax
IOField.VerticalTextAlignment

See also
IOField (Page 3426)

IOField.Visible

Description
The "Visible" property specifies whether the I/O field is visible.

Type
Bool

Access
Read-write

Syntax
IOField.Visible

See also
IOField (Page 3426)

IOField.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3467

Syntax
IOField.VisualizeQuality

See also
IOField (Page 3426)

IOField.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
IOField.Width

See also
IOField (Page 3426)

IOField.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
I/O field.

Syntax
IOField.CheckAuthorization()

Parameters
--

Programming scripts
10.2 WinCC Unified object model

3468 System Manual, 11/2022

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
IOField (Page 3426)

IOField.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
IOField.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3469

Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
IOField (Page 3426)

IOField_OnActivated()

Description
The "OnActivated" event occurs when an I/O field receives focus:
• An I/O field is selected via the configured tab sequence.
• An I/O field that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
IOField_OnActivated(item)

Context
item
Type: Object
I/O field where the event occurs.

Programming scripts
10.2 WinCC Unified object model

3470 System Manual, 11/2022

See also
IOField (Page 3426)

IOField_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• An I/O field is right-clicked.
• An I/O field is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
IOField_OnContextTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
I/O field where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3471

• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
IOField (Page 3426)

IOField_OnDeactivated()

Description
The "OnDeactivated" event occurs when the I/O field loses focus when because the operator
presses the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
IOField_OnDeactivated(item)

Context
item
Type: Object

Programming scripts
10.2 WinCC Unified object model

3472 System Manual, 11/2022

I/O field where the event occurs.

See also
IOField (Page 3426)

IOField_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the I/O field is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
IOField_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
I/O field where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3473

• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
IOField (Page 3426)

IOField_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the I/O field is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
IOField_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
I/O field where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key

Programming scripts
10.2 WinCC Unified object model

3474 System Manual, 11/2022

• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
IOField (Page 3426)

IOField_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• An I/O field is left-clicked.
• The <RETURN> or <SPACE> key is pressed when a I/O field has the focus.
• An I/O field is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
IOField_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
I/O field where the event occurs.

x
Type: DInt
X-coordinate of the input point

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3475

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
IOField (Page 3426)

Label

Description
The "Label" object represents an editable text box.

Programming scripts
10.2 WinCC Unified object model

3476 System Manual, 11/2022

Object type
HmiLabel

Properties
The "Label" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the border color.
• BorderWidth

Specifies the border width.
• CurrentQuality

Returns the poorest quality code of all tags which influence the editable text box.
• Enabled

Specifies whether the editable text box can be operated in runtime.
• Font

Specifies the font of the text.
• ForeColor

Specifies the font color of the text.
• Height

Specifies the height in the (Device Independent Unit).
• HorizontalTextAlignment

Specifies the horizontal alignment of a text.
• Layer

Returns the screen layer in which the editable text box is located.
• Left

Specifies the value of the X coordinate in the (Device Independent Unit).
• Margin

Specifies the margin.
• Name

Returns the name of the editable text box.
• Opacity

Specifies the opacity.
• Operability

Returns whether the editable text box is operable.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3477

• Padding
Specifies the distance of the content from the border of the editable text box.

• Parent
Returns the higher-level screen object (Parent container).

• RenderingTemplate
Returns the name of the template from which the editable text box was created.

• RequireExplicitUnlock
Returns whether the editable text box can only be operated while the associated button is
being pressed.

• RotationAngle
Specifies the rotation angle of the editable text box in degrees.

• RotationCenterPlacement
Specifies the reference point around which the editable text box rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFocusVisual
Specifies whether the editable text box is highlighted when in focus.

• StyleItemClass
Specifies the style which is applied to the editable text box.

• TabIndex
Returns the position of the editable text box in the tab sequence.

• Text
Specifies the label.

• TextTrimming
Specifies the type of text trimming if space is insufficient.

• TextWrapping
Specifies how text is wrapped if space is insufficient.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• VerticalTextAlignment
Specifies the vertical alignment of a text.

• Visible
Specifies whether the editable text box is visible.

• VisualizeQuality
Specifies whether the connection quality of the process value is displayed.

• Width
Specifies the width in (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

3478 System Manual, 11/2022

Methods
The "Label" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the editable text box.
• PropertyFlashing()

Configures flashing of a property.

Events
The "Label" object has the following events:
• OnActivated()

Occurs when the editable text box receives focus.
• OnContextTapped()

Occurs when the editable text box is right-clicked or long-touched.
• OnDeactivated()

Occurs when the editable text box loses focus.
• OnKeyDown()

Occurs when a key is pressed while the text box is in focus.
• OnKeyUp()

Occurs when a key is released while the text box is in focus.
• OnTapped()

Occurs when the editable text box is left-clicked or short-touched.

Label.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
Label.AlternateBackColor

See also
Label (Page 3476)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3479

Label.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color which is displayed for line
styles such as "Dash".

Type
UInt32

Access
Read-write

Syntax
Label.AlternateBorderColor

See also
Label (Page 3476)

Label.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
Label.Authorization

See also
Label (Page 3476)

Programming scripts
10.2 WinCC Unified object model

3480 System Manual, 11/2022

Label.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
Label.BackColor

See also
Label (Page 3476)

Label.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
Label.BorderColor

See also
Label (Page 3476)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3481

Label.BorderWidth

Description
The "BorderWidth" property specifies the border width.

Type
UInt32

Access
Read-write

Syntax
Label.BorderWidth

See also
Label (Page 3476)

Label.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
editable text box.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.
• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

3482 System Manual, 11/2022

Syntax
Label.CurrentQuality

See also
Label (Page 3476)

Label.Enabled

Description
The "Enabled" property specifies whether the editable text box can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
Label.Enabled

See also
Label (Page 3476)

Label.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Label.Font

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3483

See also
Label (Page 3476)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Label.Font (Page 3483)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

Programming scripts
10.2 WinCC Unified object model

3484 System Manual, 11/2022

See also
Label.Font (Page 3483)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Label.Font (Page 3483)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3485

Syntax
Font.StrikeOut

See also
Label.Font (Page 3483)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Label.Font (Page 3483)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal

Programming scripts
10.2 WinCC Unified object model

3486 System Manual, 11/2022

• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Label.Font (Page 3483)

Label.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Label.ForeColor

See also
Label (Page 3476)

Label.Height

Description
The "Height" property specifies the height in the (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3487

Type
UInt32

Access
Read-write

Syntax
Label.Height

See also
Label (Page 3476)

Label.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of a text.

Type
Int32, HmiHorizontalAlignment
Specifies the text alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Label.HorizontalTextAlignment

See also
Label (Page 3476)

Programming scripts
10.2 WinCC Unified object model

3488 System Manual, 11/2022

Label.Layer

Description
The "Layer" property returns the screen layer in which the editable text box is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
Label.Layer

See also
Label (Page 3476)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
Label.Layer (Page 3489)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3489

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
Label.Layer (Page 3489)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
Label.Layer (Page 3489)

Programming scripts
10.2 WinCC Unified object model

3490 System Manual, 11/2022

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
Label.Layer (Page 3489)

Label.Left

Description
The "Left" property sets the value of the X coordinate in the (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Label.Left

See also
Label (Page 3476)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3491

Label.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
Label.Margin

See also
Label (Page 3476)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
Label.Margin (Page 3492)

Programming scripts
10.2 WinCC Unified object model

3492 System Manual, 11/2022

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
Label.Margin (Page 3492)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
Label.Margin (Page 3492)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3493

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
Label.Margin (Page 3492)

Label.Name

Description
The "Name" property returns the name of the editable text box.

Type
String

Access
Read-only

Syntax
Label.Name

See also
Label (Page 3476)

Programming scripts
10.2 WinCC Unified object model

3494 System Manual, 11/2022

Label.Opacity

Description
The "Opacity" property specifies the opacity. The "0" value indicates completely transparency.

Type
Float

Access
Read-write

Syntax
Label.Opacity

See also
Label (Page 3476)

Label.Operability

Description
The "Operability" property returns whether the editable text box is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
Label.Operability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3495

See also
Label (Page 3476)

Label.Padding

Description
The "Padding" property specifies the distance of the content from the border of the editable text
box.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
Label.Padding

See also
Label (Page 3476)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

Programming scripts
10.2 WinCC Unified object model

3496 System Manual, 11/2022

See also
Label.Padding (Page 3496)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
Label.Padding (Page 3496)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3497

See also
Label.Padding (Page 3496)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
Label.Padding (Page 3496)

Label.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
Label.Parent

Programming scripts
10.2 WinCC Unified object model

3498 System Manual, 11/2022

See also
Label (Page 3476)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Label.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the editable
text box was created.

Type
String

Access
Read-only

Syntax
Label.RenderingTemplate

See also
Label (Page 3476)

Label.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the editable text box can only be operated
while the associated button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3499

Access
Read-only

Syntax
Label.RequireExplicitUnlock

See also
Label (Page 3476)

Label.RotationAngle

Description
The "RotationAngle" property specifies the rotation angle of the editable text box in degrees.

Type
Int16

Access
Read-write

Syntax
Label.RotationAngle

See also
Label (Page 3476)
Label.RotationCenterPlacement (Page 3500)
Label.RotationCenterX (Page 3501)
Label.RotationCenterY (Page 3502)

Label.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the editable text
box rotates.

Programming scripts
10.2 WinCC Unified object model

3500 System Manual, 11/2022

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in the DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
Label.RotationCenterPlacement

See also
Label (Page 3476)
Label.RotationAngle (Page 3500)
Label.RotationCenterX (Page 3501)
Label.RotationCenterY (Page 3502)

Label.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point.

Type
Float

Access
Read-write

Syntax
Label.RotationCenterX

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3501

See also
Label (Page 3476)
Label.RotationAngle (Page 3500)
Label.RotationCenterPlacement (Page 3500)
Label.RotationCenterY (Page 3502)

Label.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point.

Type
Float

Access
Read-write

Syntax
Label.RotationCenterY

See also
Label (Page 3476)
Label.RotationAngle (Page 3500)
Label.RotationCenterPlacement (Page 3500)
Label.RotationCenterX (Page 3501)

Label.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the editable text box is highlighted when in
focus.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

3502 System Manual, 11/2022

Access
Read-write

Syntax
Label.ShowFocusVisual

See also
Label (Page 3476)

Label.StyleItemClass

Description
The "StyleItemClass" property specifies the style which is applied to the editable text box.

Type
String

Access
Read-only

Syntax
Label.StyleItemClass

See also
Label (Page 3476)

Label.TabIndex

Description
The "TabIndex" property returns the position of the editable text box in the tab sequence.

Type
UInt16

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3503

Syntax
Label.TabIndex

See also
Label (Page 3476)

Label.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Label.Text

See also
Label (Page 3476)

Label.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3504 System Manual, 11/2022

Syntax
Label.TextTrimming

See also
Label (Page 3476)

Label.TextWrapping

Description
The "TextWrapping" property specifies how text is wrapped if there is insufficient space.

Type
Int32, HmiTextWrapping
Specifies the text break:
• NoWrap (0): No text break
• WordWrap (1): Text break at the end of the line

Access
Read-write

Syntax
Label.TextWrapping

See also
Label (Page 3476)

Label.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3505

Syntax
Label.ToolTipText

See also
Label (Page 3476)

Label.Top

Description
The "Top" property specifies the value of the Y coordinate.

Type
Int32

Access
Read-write

Syntax
Label.Top

See also
Label (Page 3476)

Label.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of a text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Programming scripts
10.2 WinCC Unified object model

3506 System Manual, 11/2022

Access
Read-write

Syntax
Label.VerticalTextAlignment

See also
Label (Page 3476)

Label.Visible

Description
The "Visible" property specifies whether the editable text box is visible.

Type
Bool

Access
Read-write

Syntax
Label.Visible

See also
Label (Page 3476)

Label.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3507

Access
Read-write

Syntax
Label.VisualizeQuality

See also
Label (Page 3476)

Label.Width

Description
The "Width" property specifies the width in the (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Label.Width

See also
Label (Page 3476)

Label.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
editable text box.

Syntax
Label.CheckAuthorization()

Programming scripts
10.2 WinCC Unified object model

3508 System Manual, 11/2022

Parameters
-

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
Label (Page 3476)

Label.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
Label.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3509

Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
Label (Page 3476)

Label_OnActivated()

Description
The "OnActivated" event occurs when an editable text box receives focus:
• A text box is selected via the configured tab sequence.
• A text box that had no focus is clicked/tapped.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
Label_OnActivated(item)

Programming scripts
10.2 WinCC Unified object model

3510 System Manual, 11/2022

Context
item
Type: Object
Text box where the event occurs.

See also
Label (Page 3476)

Label_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A text box is right-clicked.
• A text box is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
Label_OnContextTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Text box where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3511

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Label (Page 3476)

Label_OnDeactivated()

Description
The "OnDeactivated" event occurs when the text box loses focus because the operator has
pressed the <TAB> key or executed another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Programming scripts
10.2 WinCC Unified object model

3512 System Manual, 11/2022

Syntax
Label_OnDeactivated(item)

Context
item
Type: Object
Text box where the event occurs.

See also
Label (Page 3476)

Label_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the text box is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
Label_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Text box where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3513

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Label (Page 3476)

Label_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the text box is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
Label_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Text box where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

3514 System Manual, 11/2022

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Label (Page 3476)

Label_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A text box is left-clicked.
• The <RETURN> or <SPACE> key is pressed when a text box has the focus.
• A text box is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
Label_OnTapped(item, x, y, modifiers, trigger)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3515

Context
item
Type: Object
Text box where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

Programming scripts
10.2 WinCC Unified object model

3516 System Manual, 11/2022

See also
Label (Page 3476)

Line

Description
The "Line" object represents a line in runtime.

Object type
HmiLine

Properties
The "Line" object has the following properties:
• AlternateLineColor

Specifies the second line color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• CapType

Specifies the shape of the line ends.
• CurrentQuality

Returns the poorest quality code of all tags which influence the line.
• DashType

Specifies the stroke style of the line.
• Enabled

Specifies whether the line can be operated in runtime.
• EndType

Specifies the type of line end.
• Height

Specifies the height.
• Layer

Returns the layer of the screen in which the line is located.
• Left

Specifies the value of the X coordinate.
• LineColor

Specifies the line color.
• LineWidth

Specifies the line thickness.
• Margin

Specifies the margin.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3517

• Name
Returns the name of the line.

• Opacity
Specifies the opacity.

• Operability
Returns whether the line is operable.

• Parent
Returns the higher-level screen object.

• RequireExplicitUnlock
Returns whether the line is only operable while the associated button is being pressed.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the line rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFocusVisual
Specifies whether the line is highlighted when in focus.

• StartType
Specifies the type of line start.

• StyleItemClass
Returns the style which is applied to the line.

• TabIndex
Returns the position of the line in the tab sequence.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the line is visible.

• Width
Specifies the width.

• X1
Specifies the X coordinate of the starting point of the line.

• X2
Specifies the X coordinate of the end point of the line.

• Y1
Specifies the Y coordinate of the starting point of the line.

• Y2
Specifies the Y coordinate of the end point of the line.

Programming scripts
10.2 WinCC Unified object model

3518 System Manual, 11/2022

Methods
The "Line" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the line.
• PropertyFlashing()

Configures flashing of a property.

Events
The "Line" object has the following events:
• OnActivated()

Occurs when a line receives focus.
• OnContextTapped()

Occurs when a line is right-clicked or long-touched.
• OnDeactivated()

Occurs when a line loses focus.
• OnKeyDown()

Occurs when a key is pressed while the line is in focus.
• OnKeyUp()

Occurs when a key is released while the line is in focus.
• OnTapped()

Occurs when a line is left-clicked or short-touched.

Line.AlternateLineColor

Description
The "AlternateLineColor" property specifies the second line color which is displayed for line styles
such as "Dash".

Type
UInt32

Access
Read-write

Syntax
Line.AlternateLineColor

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3519

See also
Line (Page 3517)

Line.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
Line.Authorization

See also
Line (Page 3517)

Line.CapType

Description
The "CapType" property specifies the shape of the line ends.

Type
Int32, HmiCapType
Specifies the line ends:
• Round (0): Round (line extends beyond the line end point with half the line thickness)
• Square (256): Square (line extends beyond the line end point with half the line thickness)
• Flat (512): Justified (line ends at the line end point)

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3520 System Manual, 11/2022

Syntax
Line.CapType

See also
Line (Page 3517)

Line.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
line.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
Line.CurrentQuality

See also
Line (Page 3517)

Line.DashType

Description
The "DashType" property specifies the stroke style of the line.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3521

Type
Int32, HmiDashType
Specifies the stroke style:
• Solid (0): Solid
• Dash(1): Dashed
• Dot (2): Dotted
• DashDot (3): Dash-dotted
• DashDotDot (4): Dash-dot-dot

Access
Read-write

Syntax
Line.DashType

See also
Line (Page 3517)

Line.Enabled

Description
The "Enabled" property specifies whether the line can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
Line.Enabled

See also
Line (Page 3517)

Programming scripts
10.2 WinCC Unified object model

3522 System Manual, 11/2022

Line.EndType

Description
The "EndType" property specifies the line end type.

Type
Int32, HmiLineEndType
Specifies the line end type:
• Line (0): Line
• EmptyArrow (1): Empty arrow
• Arrow (2): Arrow
• ReversedArrow (3): Reverse arrow
• EmptyCircle (5): Empty circle
• Circle (6): Circle

Access
Read-write

Syntax
Line.EndType

See also
Line (Page 3517)

Line.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3523

Syntax
Line.Height

See also
Line (Page 3517)

Line.Layer

Description
The "Layer" property returns the layer of the screen in which the line is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
Line.Layer

See also
Line (Page 3517)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

Programming scripts
10.2 WinCC Unified object model

3524 System Manual, 11/2022

See also
Line.Layer (Page 3524)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
Line.Layer (Page 3524)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3525

See also
Line.Layer (Page 3524)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
Line.Layer (Page 3524)

Line.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Line.Left

Programming scripts
10.2 WinCC Unified object model

3526 System Manual, 11/2022

See also
Line (Page 3517)

Line.LineColor

Description
The "LineColor" property specifies the line color.

Type
UInt32

Access
Read-write

Syntax
Line.LineColor

See also
Line (Page 3517)

Line.LineWidth

Description
The "LineWidth" property specifies the line thickness.

Type
UInt8

Access
Read-write

Syntax
Line.LineWidth

See also
Line (Page 3517)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3527

Line.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
Line.Margin

See also
Line (Page 3517)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
Line.Margin (Page 3528)

Programming scripts
10.2 WinCC Unified object model

3528 System Manual, 11/2022

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
Line.Margin (Page 3528)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
Line.Margin (Page 3528)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3529

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
Line.Margin (Page 3528)

Line.Name

Description
The "Name" property returns the name of the line.

Type
String

Access
Read-only

Syntax
Line.Name

See also
Line (Page 3517)

Programming scripts
10.2 WinCC Unified object model

3530 System Manual, 11/2022

Line.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" indicates completely transparent.

Type
Float

Access
Read-write

Syntax
Line.Opacity

See also
Line (Page 3517)

Line.Operability

Description
The "Operability" property returns whether the line is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
Line.Operability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3531

See also
Line (Page 3517)

Line.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
Line.Parent

See also
Line (Page 3517)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Line.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the line can only be operated while the
associated button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

3532 System Manual, 11/2022

Access
Read-only

Syntax
Line.RequireExplicitUnlock

See also
Line (Page 3517)

Line.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
Line.RotationAngle

See also
Line (Page 3517)
Line.RotationCenterPlacement (Page 3533)
Line.RotationCenterX (Page 3534)
Line.RotationCenterY (Page 3535)

Line.RotationCenterPlacement

Description
The "RotationCenterPlacement" property specifies the reference point around which the line
rotates.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3533

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
Line.RotationCenterPlacement

See also
Line (Page 3517)
Line.RotationAngle (Page 3533)
Line.RotationCenterX (Page 3534)
Line.RotationCenterY (Page 3535)

Line.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
Line.RotationCenterX

Programming scripts
10.2 WinCC Unified object model

3534 System Manual, 11/2022

See also
Line (Page 3517)
Line.RotationAngle (Page 3533)
Line.RotationCenterPlacement (Page 3533)
Line.RotationCenterY (Page 3535)

Line.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
Line.RotationCenterY

See also
Line (Page 3517)
Line.RotationAngle (Page 3533)
Line.RotationCenterPlacement (Page 3533)
Line.RotationCenterX (Page 3534)

Line.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the line is highlighted when in focus.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3535

Access
Read-write

Syntax
Line.ShowFocusVisual

See also
Line (Page 3517)

Line.StartType

Description
The "StartType" property specifies the type of line start.

Type
Int32, HmiLineEndType
Specifies the start of the line:
• Line (0): Line
• EmptyArrow (1): Empty arrow
• Arrow (2): Arrow
• ReversedArrow (3): Reverse arrow
• EmptyCircle (5): Empty circle
• Circle (6): Circle

Access
Read-write

Syntax
Line.StartType

See also
Line (Page 3517)

Programming scripts
10.2 WinCC Unified object model

3536 System Manual, 11/2022

Line.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the line.

Type
String

Access
Read-only

Syntax
Line.StyleItemClass

See also
Line (Page 3517)

Line.TabIndex

Description
The "TabIndex" property returns the position of the line in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
Line.TabIndex

See also
Line (Page 3517)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3537

Line.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
Line.ToolTipText

See also
Line (Page 3517)

Line.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Line.Top

See also
Line (Page 3517)

Programming scripts
10.2 WinCC Unified object model

3538 System Manual, 11/2022

Line.Visible

Description
The "Visible" property specifies whether the line is visible.

Type
Bool

Access
Read-write

Syntax
Line.Visible

See also
Line (Page 3517)

Line.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Line.Width

See also
Line (Page 3517)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3539

Line.X1

Description
The "X1" property specifies the X coordinate of the starting point of the line.

Type
Int32

Access
Read-write

Syntax
Line.X1

See also
Line (Page 3517)
Line.X2 (Page 3540)
Line.Y1 (Page 3541)

Line.X2

Description
The "X2" property specifies the X coordinate of the end point of the line.

Type
Int32

Access
Read-write

Syntax
Line.X2

Programming scripts
10.2 WinCC Unified object model

3540 System Manual, 11/2022

See also
Line (Page 3517)
Line.X1 (Page 3540)
Line.Y2 (Page 3541)

Line.Y1

Description
The "Y1" property specifies the Y coordinate of the starting point of the line.

Type
Int32

Access
Read-write

Syntax
Line.Y1

See also
Line (Page 3517)
Line.X1 (Page 3540)
Line.Y2 (Page 3541)

Line.Y2

Description
The "Y2" property specifies the Y coordinate of the end point of the line.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3541

Syntax
Line.Y2

See also
Line (Page 3517)
Line.X2 (Page 3540)
Line.Y1 (Page 3541)

Line.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
line.

Syntax
Line.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
Line (Page 3517)

Programming scripts
10.2 WinCC Unified object model

3542 System Manual, 11/2022

Line.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
Line.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3543

Return value
Bool

See also
Line (Page 3517)

Line_OnActivated()

Description
The "OnActivated" event occurs when a line receives focus:
• A line is selected via the configured tab sequence.
• A line that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
Line_OnActivated(item)

Context
item
Type: Object
Line where the event occurs.

See also
Line (Page 3517)

Programming scripts
10.2 WinCC Unified object model

3544 System Manual, 11/2022

Line_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A line is right-clicked.
• A line is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
Line_OnContextTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Line where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3545

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Line (Page 3517)

Line_OnDeactivated()

Description
The "OnDeactivated" event occurs when the line loses focus because the operator presses the
<TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
Line_OnDeactivated(item)

Context
item
Type: Object
Line where the event occurs.

See also
Line (Page 3517)

Programming scripts
10.2 WinCC Unified object model

3546 System Manual, 11/2022

Line_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the line is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
Line_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Line where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Line (Page 3517)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3547

Line_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while a line is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
Line_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Line where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Line (Page 3517)

Programming scripts
10.2 WinCC Unified object model

3548 System Manual, 11/2022

Line_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A line is left-clicked.
• The <RETURN> or <SPACE> key is pressed when a line has the focus.
• A line is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
Line_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Line where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3549

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Line (Page 3517)

ListBox

Description
The "ListBox" object represents a list box in runtime.

Object type
HmiListBox

Programming scripts
10.2 WinCC Unified object model

3550 System Manual, 11/2022

Properties
The "ListBox" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the border color.
• BorderWidth

Specifies the border thickness.
• Content

Specifies the display options for text and graphics.
• CurrentQuality

Returns the poorest quality code of all tags which influence the list box.
• Enabled

Specifies whether the list box can be operated in runtime.
• Font

Specifies the font of the text.
• ForeColor

Specifies the font color of the text.
• Height

Specifies the height.
• Layer

Returns the layer of the screen in which the list box is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the list box.
• Opacity

Specifies the opacity.
• Operability

Returns whether the list box is operable.
• Padding

Specifies the distance of the content from the border of the list box.
• Parent

Returns the higher-level screen object.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3551

• ProcessValue
Specifies the process value.

• RenderingTemplate
Returns the name of the template from which the list box was created.

• RequireExplicitUnlock
Returns whether the list box is only operable while the associated button is being pressed.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the list box rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• SelectionItemHeight
Specifies the height of the list entries.

• SelectionItems
Returns the list of all list entries of the list box.

• SelectionMode
Specifies whether one or more list entries can be selected from the list box.

• SelectorPosition
Specifies the horizontal alignment of the list entries.

• ShowFocusVisual
Specifies whether the list box is highlighted when in focus.

• StyleItemClass
Returns the style which is applied to the list box.

• TabIndex
Returns the position of the list box in the tab sequence.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the list box is visible.

• VisualizeQuality
Specifies whether the connection quality of the process value is displayed.

• Width
Specifies the width.

Programming scripts
10.2 WinCC Unified object model

3552 System Manual, 11/2022

Methods
The "ListBox" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the list box.
• PropertyFlashing()

Configures flashing of a property.

Events
The "ListBox" object has the following events:
• OnActivated()

Occurs when a list box receives focus.
• OnContextTapped()

Occurs when a list box is right-clicked or long-touched.
• OnDeactivated()

Occurs when a list box loses focus.
• OnKeyDown()

Occurs when a key is pressed while the list box is in focus.
• OnKeyUp()

Occurs when a key is released while the list box is in focus.
• OnTapped()

Occurs when a list box is left-clicked or short-touched.

ListBox.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ListBox.AlternateBackColor

See also
ListBox (Page 3550)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3553

ListBox.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color which is displayed for line
styles such as "Dash".

Type
UInt32

Access
Read-write

Syntax
ListBox.AlternateBorderColor

See also
ListBox (Page 3550)

ListBox.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ListBox.Authorization

See also
ListBox (Page 3550)

Programming scripts
10.2 WinCC Unified object model

3554 System Manual, 11/2022

ListBox.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ListBox.BackColor

See also
ListBox (Page 3550)

ListBox.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ListBox.BorderColor

See also
ListBox (Page 3550)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3555

ListBox.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ListBox.BorderWidth

See also
ListBox (Page 3550)

ListBox.Content

Description
The "Content" property specifies the display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ListBox.Content

See also
ListBox (Page 3550)

Programming scripts
10.2 WinCC Unified object model

3556 System Manual, 11/2022

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ListBox.Content (Page 3556)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3557

• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect
ratio is not changed.

• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ListBox.Content (Page 3556)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ListBox.Content (Page 3556)

Programming scripts
10.2 WinCC Unified object model

3558 System Manual, 11/2022

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ListBox.Content (Page 3556)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ListBox.Content (Page 3556)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3559

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ListBox.Content (Page 3556)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

3560 System Manual, 11/2022

Access
Read-write

Syntax
Content.TextTrimming

See also
ListBox.Content (Page 3556)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ListBox.Content (Page 3556)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3561

ListBox.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the list
box.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
ListBox.CurrentQuality

See also
ListBox (Page 3550)

ListBox.Enabled

Description
The "Enabled" property specifies whether the list box can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3562 System Manual, 11/2022

Syntax
ListBox.Enabled

See also
ListBox (Page 3550)

ListBox.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ListBox.Font

See also
ListBox (Page 3550)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3563

See also
ListBox.Font (Page 3563)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
ListBox.Font (Page 3563)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

Programming scripts
10.2 WinCC Unified object model

3564 System Manual, 11/2022

See also
ListBox.Font (Page 3563)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ListBox.Font (Page 3563)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3565

Syntax
Font.Underline

See also
ListBox.Font (Page 3563)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
ListBox.Font (Page 3563)

ListBox.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Programming scripts
10.2 WinCC Unified object model

3566 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
ListBox.ForeColor

See also
ListBox (Page 3550)

ListBox.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ListBox.Height

See also
ListBox (Page 3550)

ListBox.Layer

Description
The "Layer" property returns the layer of the screen in which the list box is located.

Type
Object, HmiLayerPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3567

Access
Read-only

Syntax
ListBox.Layer

See also
ListBox (Page 3550)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
ListBox.Layer (Page 3567)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Programming scripts
10.2 WinCC Unified object model

3568 System Manual, 11/2022

Access
Read-write

Syntax
Layer.MinimumZoom

See also
ListBox.Layer (Page 3567)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
ListBox.Layer (Page 3567)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3569

Access
Read-write

Syntax
Layer.Visible

See also
ListBox.Layer (Page 3567)

ListBox.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
ListBox.Left

See also
ListBox (Page 3550)

ListBox.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

3570 System Manual, 11/2022

Access
Read-write

Syntax
ListBox.Margin

See also
ListBox (Page 3550)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ListBox.Margin (Page 3570)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3571

Access
Read-write

Syntax
Margin.Left

See also
ListBox.Margin (Page 3570)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ListBox.Margin (Page 3570)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

3572 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Top

See also
ListBox.Margin (Page 3570)

ListBox.Name

Description
The "Name" property returns the name of the list box.

Type
String

Access
Read-only

Syntax
ListBox.Name

See also
ListBox (Page 3550)

ListBox.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" indicates completely transparent.

Type
Float

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3573

Access
Read-write

Syntax
ListBox.Opacity

See also
ListBox (Page 3550)

ListBox.Operability

Description
The "Operability" property returns whether the list box is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ListBox.Operability

See also
ListBox (Page 3550)

ListBox.Padding

Description
The "Padding" property specifies the distance of the content from the border of the list box.

Programming scripts
10.2 WinCC Unified object model

3574 System Manual, 11/2022

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ListBox.Padding

See also
ListBox (Page 3550)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ListBox.Padding (Page 3574)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3575

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ListBox.Padding (Page 3574)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ListBox.Padding (Page 3574)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

3576 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ListBox.Padding (Page 3574)

ListBox.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
ListBox.Parent

See also
ListBox (Page 3550)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3577

ListBox.ProcessValue

Description
The "ProcessValue" property specifies the process value.

Type
Variant

Access
Read-write

Syntax
ListBox.ProcessValue

See also
ListBox (Page 3550)

ListBox.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the list box was
created.

Type
String

Access
Read-only

Syntax
ListBox.RenderingTemplate

See also
ListBox (Page 3550)

Programming scripts
10.2 WinCC Unified object model

3578 System Manual, 11/2022

ListBox.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the list box can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ListBox.RequireExplicitUnlock

See also
ListBox (Page 3550)

ListBox.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
ListBox.RotationAngle

See also
ListBox (Page 3550)
ListBox.RotationCenterPlacement (Page 3580)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3579

ListBox.RotationCenterX (Page 3580)
ListBox.RotationCenterY (Page 3581)

ListBox.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the list box
rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
ListBox.RotationCenterPlacement

See also
ListBox (Page 3550)
ListBox.RotationAngle (Page 3579)
ListBox.RotationCenterX (Page 3580)
ListBox.RotationCenterY (Page 3581)

ListBox.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Programming scripts
10.2 WinCC Unified object model

3580 System Manual, 11/2022

Type
Float

Access
Read-write

Syntax
ListBox.RotationCenterX

See also
ListBox (Page 3550)
ListBox.RotationAngle (Page 3579)
ListBox.RotationCenterPlacement (Page 3580)
ListBox.RotationCenterY (Page 3581)

ListBox.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
ListBox.RotationCenterY

See also
ListBox (Page 3550)
ListBox.RotationAngle (Page 3579)
ListBox.RotationCenterPlacement (Page 3580)
ListBox.RotationCenterX (Page 3580)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3581

ListBox.SelectionItemHeight

Description
The "SelectionItemHeight" property specifies the height of the list entries. The value "0" indicates
that the height is calculated automatically.

Type
UInt16

Access
Read-write

Syntax
ListBox.SelectionItemHeight

See also
ListBox (Page 3550)

ListBox.SelectionItems

Description
The "SelectionItems" property returns the list of all list entries ("SelectionItem" objects) of the list
box.

Type
Object, HmiSelectionItemCollection (Page 3583)

Access
Read-only

Syntax
ListBox.SelectionItems

See also
ListBox (Page 3550)
HmiSelectionItemCollection (Page 3583)

Programming scripts
10.2 WinCC Unified object model

3582 System Manual, 11/2022

HmiSelectionItemCollection

Description
The "HmiSelectionItemCollection" object is a list of all entries ("SelectionItem" objects) of a list
object.

Use
The "HmiSelectionItemCollection" object is a list and can be counted and enumerated. You can
access the "HmiSelectionItemCollection" list using the index or the tag name.

Object type
HmiSelectionItemCollection

Properties
The "HmiSelectionItemCollection" object has the following properties:
• Count

Returns the number of list entries of the "HmiSelectionItemCollection" list.

Methods
The "HmiSelectionItemCollection" object has the following methods:
• Item()

Returns a list entry of the "HmiSelectionItemCollection" list.

See also
ListBox.SelectionItems (Page 3582)

HmiSelectionItemCollection.Count

Description
The "Count" property returns the number of list entries in the "HmiSelectionItemCollection" list.

Type
UInt32

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3583

Syntax
HmiSelectionItemCollection.Count

See also
HmiSelectionItemCollection (Page 3583)

HmiSelectionItemCollection.Item()

Description
The "Item" method returns a list entry of the "HmiSelectionItemCollection" list.

Syntax
HmiSelectionItemCollection[.Item](HmiSelectionItemName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiSelectionItemCollection" object.

Parameters
HmiSelectionItemName
Type: String
Name of the list entry

Return value
Object, HmiSelectionItemPart (Page 3584)

See also
HmiSelectionItemCollection (Page 3583)
SelectionItem (Page 3584)

SelectionItem

Description
The "SelectionItem" object represents a list entry.

Programming scripts
10.2 WinCC Unified object model

3584 System Manual, 11/2022

Object type
HmiSelectionItemPart

Properties
The "SelectionItem" object has the following properties:
• Graphic

Specifies the graphic of the list entry.
• IsSelected

Specifies whether the list entry is selected.
• Text

Specifies the list entry text.

Methods
--

See also
HmiSelectionItemCollection (Page 3583)

SelectionItem.Graphic

Description
The "Graphic" property specifies the graphic of the list entry.

Type
String

Access
Read-write

Syntax
SelectionItem.Graphic

See also
SelectionItem (Page 3584)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3585

SelectionItem.IsSelected

Description
The "IsSelected" property specifies whether the list entry is selected.

Type
Bool

Access
Read-write

Syntax
SelectionItem.IsSelected

See also
SelectionItem (Page 3584)

SelectionItem.Text

Description
The "Text" property specifies the text of the list entry.

Type
String

Access
Read-write

Syntax
SelectionItem.Text

See also
SelectionItem (Page 3584)

Programming scripts
10.2 WinCC Unified object model

3586 System Manual, 11/2022

ListBox.SelectionMode

Description
The "SelectionMode" property specifies whether one or more list entries can be selected in a list
box.

Type
Int32, HmiSelectionMode
Specifies the selection type:
• NonExclusive (0): Selection of multiple list entries possible
• Exclusive (1): Selection of only one list entry possible

Access
Read-write

Syntax
ListBox.SelectionMode

See also
ListBox (Page 3550)

ListBox.SelectorPosition

Description
The "SelectorPosition" property specifies the horizontal alignment of the list entries.

Type
Int32, HmiHorizontalAlignment
Specifies the text alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched. Can only be used with layout containers, Fallback behaves like Center

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3587

Syntax
ListBox.SelectorPosition

See also
ListBox (Page 3550)

ListBox.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the list box is highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
ListBox.ShowFocusVisual

See also
ListBox (Page 3550)

ListBox.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the list box.

Type
String

Access
Read-only

Syntax
ListBox.StyleItemClass

Programming scripts
10.2 WinCC Unified object model

3588 System Manual, 11/2022

See also
ListBox (Page 3550)

ListBox.TabIndex

Description
The "TabIndex" property returns the position of the list box in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
ListBox.TabIndex

See also
ListBox (Page 3550)

ListBox.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
ListBox.ToolTipText

See also
ListBox (Page 3550)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3589

ListBox.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
ListBox.Top

See also
ListBox (Page 3550)

ListBox.Visible

Description
The "Visible" property specifies whether the list box is visible.

Type
Bool

Access
Read-write

Syntax
ListBox.Visible

See also
ListBox (Page 3550)

Programming scripts
10.2 WinCC Unified object model

3590 System Manual, 11/2022

ListBox.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Access
Read-write

Syntax
ListBox.VisualizeQuality

See also
ListBox (Page 3550)

ListBox.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ListBox.Width

See also
ListBox (Page 3550)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3591

ListBox.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
list box.

Syntax
ListBox.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
ListBox (Page 3550)

ListBox.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
ListBox.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Programming scripts
10.2 WinCC Unified object model

3592 System Manual, 11/2022

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
ListBox (Page 3550)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3593

ListBox_OnActivated()

Description
The "OnActivated" event occurs when a list box receives focus:
• A list box is selected via the configured tab sequence.
• A list box that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
ListBox_OnActivated(item)

Context
item
Type: Object
List box where the event occurs.

See also
ListBox (Page 3550)

ListBox_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A list box is right-clicked.
• A list box is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
ListBox_OnContextTapped(item, x, y, modifiers, trigger)

Programming scripts
10.2 WinCC Unified object model

3594 System Manual, 11/2022

Context
item
Type: Object
List box where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3595

See also
ListBox (Page 3550)

ListBox_OnDeactivated()

Description
The "OnDeactivated" event occurs when the list box loses focus because the operator presses the
<TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
ListBox_OnDeactivated(item)

Context
item
Type: Object
List box where the event occurs.

See also
ListBox (Page 3550)

ListBox_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the list box is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

3596 System Manual, 11/2022

Syntax
ListBox_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
List box where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
ListBox (Page 3550)

ListBox_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the list box is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3597

Syntax
ListBox_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
List box where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
ListBox (Page 3550)

Programming scripts
10.2 WinCC Unified object model

3598 System Manual, 11/2022

ListBox_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A list box is left-clicked.
• The <RETURN> or <SPACE> key is pressed when a list box has the focus.
• A list box is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
ListBox_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
List box where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3599

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
ListBox (Page 3550)

MediaControl

Description
The "MediaControl" object represents a Media Player for playback in runtime.

Object type
HmiMediaControl

Programming scripts
10.2 WinCC Unified object model

3600 System Manual, 11/2022

Properties
The "MediaControl" object has the following properties:
• AutoPlay

Specifies whether Autoplay is activated.
• BackColor

Specifies the background color.
• Caption

Specifies the text that is displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.
• CurrentQuality

Returns the poorest quality code of all tags which influence the Media Player.
• Enabled

Specifies whether the Media Player can be operated in runtime.
• Height

Specifies the height.
• Icon

Specifies the icon of the Media Player.
• Layer

Returns the screen layer in which the Media Player is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the Media Player.
• Parent

Returns the higher-level screen object.
• RenderingTemplate

Returns the name of the template from which the Media Player was created.
• ShowFocusVisual

Specifies whether the Media Player is highlighted when in focus.
• StatusBar

Specifies the information bar of the Media Player.
• StyleItemClass

Specifies the information bar of the Media Player.
• TabIndex

Returns the position of the Media Player in the tab sequence.
• ToolBar

Specifies the toolbar of the Media Player.
• Top

Specifies the value of the Y coordinate.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3601

• Url
Specifies the URL played by the Media Player.

• VideoOutput
Specifies the scaling of the video output.

• Visible
Specifies whether the Media Player is visible.

• Width
Specifies the width.

• WindowFlags
Specifies the window configuration of the Media Player.

Methods
The "MediaControl" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the Media Player.
• FireCommand()

Configures the occurrence of an event for an element.
• Pause()

Pauses playback.
• Play()

Starts or resumes playback.
• PropertyFlashing()

Configures flashing of a property.
• Stop()

Stops playback.

Events
The "MediaControl" object has the following events:
• OnActivated()

Occurs when a Media Player receives focus.
• OnCommandFired()

Occurs when the operator has operated an element in the toolbar or information bar of the
Media Player.

• OnDeactivated()
Occurs when a Media Player loses focus.

• OnInitialized()
Occurs when a Media Player has been successfully initialized and the data connection to the
PLC has been established.

• OnPaused()
Occurs when playback is paused in the Media Player.

Programming scripts
10.2 WinCC Unified object model

3602 System Manual, 11/2022

• OnPlaying()
Occurs when playback is started or resumed in the Media Player.

• OnStopped()
Occurs when playback is stopped in the Media Player.

MediaControl.AutoPlay

Description
The "AutoPlay" property specifies whether Autoplay is activated.

Type
Bool

Access
Read-write

Syntax
MediaControl.AutoPlay

See also
MediaControl (Page 3600)

MediaControl.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
MediaControl.BackColor

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3603

See also
MediaControl (Page 3600)

MediaControl.Caption

Description
The "Caption" property specifies the text that is displayed in the title bar.

Type
Object, HmiTextPart

Access
Read-write

Syntax
MediaControl.Caption

See also
MediaControl (Page 3600)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

Programming scripts
10.2 WinCC Unified object model

3604 System Manual, 11/2022

See also
MediaControl.Caption (Page 3604)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 3604)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3605

See also
Text.Font (Page 3604)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 3604)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3606 System Manual, 11/2022

Syntax
Font.StrikeOut

See also
Text.Font (Page 3604)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 3604)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3607

• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 3604)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
MediaControl.Caption (Page 3604)

Text.Text

Description
The "Text" property specifies the label.

Programming scripts
10.2 WinCC Unified object model

3608 System Manual, 11/2022

Type
String

Access
Read-write

Syntax
Text.Text

See also
MediaControl.Caption (Page 3604)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
MediaControl.Caption (Page 3604)

MediaControl.CaptionColor

Description
The "CaptionColor" property specifies the color of the title bar.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3609

Type
UInt32

Access
Read-write

Syntax
MediaControl.CaptionColor

See also
MediaControl (Page 3600)

MediaControl.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
Media Player.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.
• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
MediaControl.CurrentQuality

See also
MediaControl (Page 3600)

Programming scripts
10.2 WinCC Unified object model

3610 System Manual, 11/2022

MediaControl.Enabled

Description
The "Enabled" property specifies whether the Media Player can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
MediaControl.Enabled

See also
MediaControl (Page 3600)

MediaControl.Height

Description
The "Height" property specifies the height in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
MediaControl.Height

See also
MediaControl (Page 3600)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3611

MediaControl.Icon

Description
The "Icon" property specifies the icon of the Media Player.

Type
String

Access
Read-write

Syntax
MediaControl.Icon

See also
MediaControl (Page 3600)

MediaControl.Layer

Description
The "Layer" property returns the screen layer in which the Media Player is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
MediaControl.Layer

See also
MediaControl (Page 3600)

Programming scripts
10.2 WinCC Unified object model

3612 System Manual, 11/2022

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
MediaControl.Layer (Page 3612)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
MediaControl.Layer (Page 3612)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3613

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
MediaControl.Layer (Page 3612)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
MediaControl.Layer (Page 3612)

Programming scripts
10.2 WinCC Unified object model

3614 System Manual, 11/2022

MediaControl.Left

Description
The "Left" property sets the value of the X coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
MediaControl.Left

See also
MediaControl (Page 3600)

MediaControl.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
MediaControl.Margin

See also
MediaControl (Page 3600)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3615

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
MediaControl.Margin (Page 3615)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
MediaControl.Margin (Page 3615)

Programming scripts
10.2 WinCC Unified object model

3616 System Manual, 11/2022

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
MediaControl.Margin (Page 3615)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
MediaControl.Margin (Page 3615)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3617

MediaControl.Name

Description
The "Name" property returns the name of the Media Player.

Type
String

Access
Read-only

Syntax
MediaControl.Name

See also
MediaControl (Page 3600)

MediaControl.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
MediaControl.Parent

See also
MediaControl (Page 3600)
Screen Items (Page 1571)

Programming scripts
10.2 WinCC Unified object model

3618 System Manual, 11/2022

Screen Items

Description
Screen Items (Page 1571)

MediaControl.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the Media
Player was created.

Type
String

Access
Read-only

Syntax
MediaControl.RenderingTemplate

See also
MediaControl (Page 3600)

MediaControl.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the Media Player is highlighted when in
focus.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3619

Syntax
MediaControl.ShowFocusVisual

See also
MediaControl (Page 3600)

MediaControl.StatusBar

Description
The "StatusBar" property specifies the information bar of the Media Player.

Type
Object, HmiStatusBarPart

Access
Read-write

Syntax
MediaControl.StatusBar

See also
MediaControl (Page 3600)

StatusBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
StatusBar.BackColor

Programming scripts
10.2 WinCC Unified object model

3620 System Manual, 11/2022

See also
MediaControl.StatusBar (Page 3620)

StatusBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
information bar.

Type
Object, HmiControlBarElementCollection (Page 3621)

Access
Read-only

Syntax
StatusBar.Elements

See also
MediaControl.StatusBar (Page 3620)
HmiControlBarElementCollection (Page 3621)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3621

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
StatusBar.Elements (Page 3621)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 3621)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

3622 System Manual, 11/2022

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 3638)

See also
HmiControlBarElementCollection (Page 3621)
Control Bar Elements (Page 3638)

Control Bar Elements

Description
Control Bar Elements (Page 3638)

StatusBar.Enabled

Description
The "Enabled" property specifies whether the information bar can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3623

Syntax
StatusBar.Enabled

See also
MediaControl.StatusBar (Page 3620)

StatusBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
StatusBar.Font

See also
MediaControl.StatusBar (Page 3620)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3624 System Manual, 11/2022

Syntax
Font.Italic

See also
StatusBar.Font (Page 3624)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
StatusBar.Font (Page 3624)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3625

Syntax
Font.Size

See also
StatusBar.Font (Page 3624)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
StatusBar.Font (Page 3624)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

3626 System Manual, 11/2022

Access
Read-write

Syntax
Font.Underline

See also
StatusBar.Font (Page 3624)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
StatusBar.Font (Page 3624)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3627

StatusBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the information bar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
StatusBar.Margin

See also
MediaControl.StatusBar (Page 3620)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
StatusBar.Margin (Page 3628)

Programming scripts
10.2 WinCC Unified object model

3628 System Manual, 11/2022

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
StatusBar.Margin (Page 3628)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
StatusBar.Margin (Page 3628)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3629

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
StatusBar.Margin (Page 3628)

StatusBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the information
bar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
StatusBar.Padding

See also
MediaControl.StatusBar (Page 3620)

Programming scripts
10.2 WinCC Unified object model

3630 System Manual, 11/2022

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
StatusBar.Padding (Page 3630)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
StatusBar.Padding (Page 3630)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3631

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
StatusBar.Padding (Page 3630)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
StatusBar.Padding (Page 3630)

Programming scripts
10.2 WinCC Unified object model

3632 System Manual, 11/2022

StatusBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
StatusBar.ShowToolTips

See also
MediaControl.StatusBar (Page 3620)

StatusBar.Visible

Description
The "Visible" property specifies whether the information bar is visible.

Type
Bool

Access
Read-write

Syntax
StatusBar.Visible

See also
MediaControl.StatusBar (Page 3620)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3633

MediaControl.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the Media Player.

Type
String

Access
Read-only

Syntax
MediaControl.StyleItemClass

See also
MediaControl (Page 3600)

MediaControl.ToolBar

Description
The "ToolBar" property specifies the toolbar of the Media Player.

Type
Object, HmiToolBarPart

Access
Read-write

Syntax
MediaControl.ToolBar

See also
MediaControl (Page 3600)

Programming scripts
10.2 WinCC Unified object model

3634 System Manual, 11/2022

ToolBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ToolBar.BackColor

See also
MediaControl.ToolBar (Page 3634)

ToolBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
toolbar.

Type
Object, HmiControlBarElementCollection (Page 3636)

Access
Read-only

Syntax
ToolBar.Elements

See also
MediaControl.ToolBar (Page 3634)
HmiControlBarElementCollection (Page 3636)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3635

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
ToolBar.Elements (Page 3635)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

3636 System Manual, 11/2022

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 3636)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 3638)

See also
HmiControlBarElementCollection (Page 3636)
Control Bar Elements (Page 3638)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3637

Control Bar Elements

ControlBarButton

Description
The "ControlBarButton" object represents a button of an information bar or toolbar.
You can reference the "ControlBarButton" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarButtonPart

Properties
The "ControlBarButton" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the label of the button.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the button can be operated in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.

Programming scripts
10.2 WinCC Unified object model

3638 System Manual, 11/2022

• HotKey
Returns the hotkey specified for the button.

• Mapping
Returns the function of the button.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the button is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the button is only operable while the corresponding button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the button is visible.

• Width
Specifies the width.

Methods
--

ControlBarButton.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3639

Access
Read-write

Syntax
ControlBarButton.AlternateBackColor

See also
ControlBarButton (Page 3638)

ControlBarButton.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBorderColor

See also
ControlBarButton (Page 3638)

ControlBarButton.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the button of an information bar or toolbar.

Type
Object, HmiFunctionRight

Programming scripts
10.2 WinCC Unified object model

3640 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarButton.Authorization

See also
ControlBarButton (Page 3638)

ControlBarButton.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BackColor

See also
ControlBarButton (Page 3638)

ControlBarButton.Badge

Description
The "Badge" property specifies the label of the button.

Type
Object, HmiBadgePart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3641

Access
Read-write

Syntax
ControlBarButton.Badge

See also
ControlBarButton (Page 3638)

ControlBarButton.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BorderColor

See also
ControlBarButton (Page 3638)

ControlBarButton.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Programming scripts
10.2 WinCC Unified object model

3642 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.BorderWidth

See also
ControlBarButton (Page 3638)

ControlBarButton.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarButton.Content

See also
ControlBarButton (Page 3638)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3643

Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarButton.Content (Page 3643)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

Programming scripts
10.2 WinCC Unified object model

3644 System Manual, 11/2022

See also
ControlBarButton.Content (Page 3643)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarButton.Content (Page 3643)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3645

Syntax
Content.Spacing

See also
ControlBarButton.Content (Page 3643)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarButton.Content (Page 3643)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above

Programming scripts
10.2 WinCC Unified object model

3646 System Manual, 11/2022

• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarButton.Content (Page 3643)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarButton.Content (Page 3643)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3647

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarButton.Content (Page 3643)

ControlBarButton.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

3648 System Manual, 11/2022

Syntax
ControlBarButton.CustomID

See also
ControlBarButton (Page 3638)

ControlBarButton.Enabled

Description
The "Enabled" property specifies whether the button can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Enabled

See also
ControlBarButton (Page 3638)

ControlBarButton.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3649

Syntax
ControlBarButton.ForeColor

See also
ControlBarButton (Page 3638)

ControlBarButton.Graphic

Description
The "Graphic" property specifies the graphic of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Graphic

See also
ControlBarButton (Page 3638)

ControlBarButton.Height

Description
The "Height" property specifies the height of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3650 System Manual, 11/2022

Syntax
ControlBarButton.Height

See also
ControlBarButton (Page 3638)

ControlBarButton.HotKey

Description
The "HotKey" property returns the hotkey specified for the button. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
ControlBarButton.HotKey

See also
ControlBarButton (Page 3638)

ControlBarButton.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3651

• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled

Programming scripts
10.2 WinCC Unified object model

3652 System Manual, 11/2022

• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarButton.Mapping

See also
ControlBarButton (Page 3638)

ControlBarButton.Margin

Description
The "Margin" property specifies the surrounded outer distance of the button.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3653

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarButton.Margin

See also
ControlBarButton (Page 3638)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarButton.Margin (Page 3653)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Programming scripts
10.2 WinCC Unified object model

3654 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarButton.Margin (Page 3653)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarButton.Margin (Page 3653)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3655

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarButton.Margin (Page 3653)

ControlBarButton.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumHeight

See also
ControlBarButton (Page 3638)

ControlBarButton.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Programming scripts
10.2 WinCC Unified object model

3656 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumWidth

See also
ControlBarButton (Page 3638)

ControlBarButton.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumHeight

See also
ControlBarButton (Page 3638)

ControlBarButton.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3657

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumWidth

See also
ControlBarButton (Page 3638)

ControlBarButton.Operability

Description
The "Operability" property returns whether the button is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarButton.Operability

See also
ControlBarButton (Page 3638)

Programming scripts
10.2 WinCC Unified object model

3658 System Manual, 11/2022

ControlBarButton.Padding

Description
The "Padding" property specifies the distance of the content from the border of the button.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarButton.Padding

See also
ControlBarButton (Page 3638)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarButton.Padding (Page 3659)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3659

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarButton.Padding (Page 3659)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarButton.Padding (Page 3659)

Programming scripts
10.2 WinCC Unified object model

3660 System Manual, 11/2022

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarButton.Padding (Page 3659)

ControlBarButton.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the button can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarButton.RequireExplicitUnlock

See also
ControlBarButton (Page 3638)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3661

ControlBarButton.Text

Description
The "Text" property specifies the label of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Text

See also
ControlBarButton (Page 3638)

ControlBarButton.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.ToolTipText

See also
ControlBarButton (Page 3638)

Programming scripts
10.2 WinCC Unified object model

3662 System Manual, 11/2022

ControlBarButton.Visible

Description
The "Visible" property specifies whether the button is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Visible

See also
ControlBarButton (Page 3638)

ControlBarButton.Width

Description
The "Width" property specifies the width of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Width

See also
ControlBarButton (Page 3638)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3663

ControlBarDisplay

Description
The "ControlBarDisplay" object represents a display area for text and graphics of an information
bar or toolbar.
You can reference the "ControlBarDisplay" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarDisplayPart

Properties
The "ControlBarDisplay" object has the following properties:
• Authorization

Returns the operator authorization.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the display area is enabled in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• Mapping

Returns the function of the display area.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

3664 System Manual, 11/2022

• Operability
Returns whether the display area is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the display area is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the display area is visible.

• Width
Specifies the width.

Methods
--

ControlBarDisplay.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the display.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarDislay.Authorization

See also
ControlBarDisplay (Page 3664)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3665

ControlBarDisplay.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarDislay.Content

See also
ControlBarDisplay (Page 3664)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

3666 System Manual, 11/2022

See also
ControlBarDisplay.Content (Page 3666)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarDisplay.Content (Page 3666)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3667

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarDisplay.Content (Page 3666)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarDisplay.Content (Page 3666)

Programming scripts
10.2 WinCC Unified object model

3668 System Manual, 11/2022

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarDisplay.Content (Page 3666)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3669

Syntax
Content.TextPosition

See also
ControlBarDisplay.Content (Page 3666)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarDisplay.Content (Page 3666)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

3670 System Manual, 11/2022

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarDisplay.Content (Page 3666)

ControlBarDisplay.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarDislay.CustomID

See also
ControlBarDisplay (Page 3664)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3671

ControlBarDisplay.Enabled

Description
The "Enabled" property specifies whether the display is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Enabled

See also
ControlBarDisplay (Page 3664)

ControlBarDisplay.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.ForeColor

See also
ControlBarDisplay (Page 3664)

Programming scripts
10.2 WinCC Unified object model

3672 System Manual, 11/2022

ControlBarDisplay.Graphic

Description
The "Graphic" property specifies the graphic of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Graphic

See also
ControlBarDisplay (Page 3664)

ControlBarDisplay.Height

Description
The "Height" property specifies the height of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Height

See also
ControlBarDisplay (Page 3664)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3673

ControlBarDisplay.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page

Programming scripts
10.2 WinCC Unified object model

3674 System Manual, 11/2022

• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3675

Syntax
ControlBarDislay.Mapping

See also
ControlBarDisplay (Page 3664)

ControlBarDisplay.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the display.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarDislay.Margin

See also
ControlBarDisplay (Page 3664)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3676 System Manual, 11/2022

Syntax
Margin.Bottom

See also
ControlBarDisplay.Margin (Page 3676)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarDisplay.Margin (Page 3676)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3677

Syntax
Margin.Right

See also
ControlBarDisplay.Margin (Page 3676)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarDisplay.Margin (Page 3676)

ControlBarDisplay.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3678 System Manual, 11/2022

Syntax
ControlBarDislay.MaximumHeight

See also
ControlBarDisplay (Page 3664)

ControlBarDisplay.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MaximumWidth

See also
ControlBarDisplay (Page 3664)

ControlBarDisplay.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3679

Syntax
ControlBarDislay.MinimumHeight

See also
ControlBarDisplay (Page 3664)

ControlBarDisplay.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MinimumWidth

See also
ControlBarDisplay (Page 3664)

ControlBarDisplay.Operability

Description
The "Operability" property returns whether the display is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Programming scripts
10.2 WinCC Unified object model

3680 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarDislay.Operability

See also
ControlBarDisplay (Page 3664)

ControlBarDisplay.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the display.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarDislay.Padding

See also
ControlBarDisplay (Page 3664)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3681

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarDisplay.Padding (Page 3681)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarDisplay.Padding (Page 3681)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

3682 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Right

See also
ControlBarDisplay.Padding (Page 3681)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarDisplay.Padding (Page 3681)

ControlBarDisplay.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the display can only be operated while the
associated button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3683

Access
Read-only

Syntax
ControlBarDislay.RequireExplicitUnlock

See also
ControlBarDisplay (Page 3664)

ControlBarDisplay.Text

Description
The "Text" property specifies the label of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Text

See also
ControlBarDisplay (Page 3664)

ControlBarDisplay.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the display.

Type
String

Programming scripts
10.2 WinCC Unified object model

3684 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.ToolTipText

See also
ControlBarDisplay (Page 3664)

ControlBarDisplay.Visible

Description
The "Visible" property specifies whether the display is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Visible

See also
ControlBarDisplay (Page 3664)

ControlBarDisplay.Width

Description
The "Width" property specifies the width of the display in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3685

Access
Read-write

Syntax
ControlBarDislay.Width

See also
ControlBarDisplay (Page 3664)

ControlBarLabel

Description
The "ControlBarLabel" object represents an identifier of an information bar or toolbar.
You can reference the "ControlBarLabel" object via the "HmiControlBarElementCollection" list.

Object type
HmiControlBarLabelPart

Properties
The "ControlBarLabel" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the identifier can be operated in runtime.
• ForeColor

Specifies the font color.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Height

Specifies the height.
• Mapping

Returns the function of the identifier.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.

Programming scripts
10.2 WinCC Unified object model

3686 System Manual, 11/2022

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the identifier is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the identifier is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the identifier is visible.

• Width
Specifies the width.

Methods
--

ControlBarLabel.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the identifier.

Type
Object, HmiFunctionRight

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3687

Syntax
ControlBarLabel.Authorization

See also
ControlBarLabel (Page 3686)

ControlBarLabel.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarLabel.CustomID

See also
ControlBarLabel (Page 3686)

ControlBarLabel.Enabled

Description
The "Enabled" property specifies whether the identifier is active in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3688 System Manual, 11/2022

Syntax
ControlBarLabel.Enabled

See also
ControlBarLabel (Page 3686)

ControlBarLabel.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.ForeColor

See also
ControlBarLabel (Page 3686)

ControlBarLabel.Height

Description
The "Height" property specifies the height of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3689

Syntax
ControlBarLabel.Height

See also
ControlBarLabel (Page 3686)

ControlBarLabel.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.HorizontalTextAlignment

See also
ControlBarLabel (Page 3686)

ControlBarLabel.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID

Programming scripts
10.2 WinCC Unified object model

3690 System Manual, 11/2022

Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3691

• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarLabel.Mapping

See also
ControlBarLabel (Page 3686)

Programming scripts
10.2 WinCC Unified object model

3692 System Manual, 11/2022

ControlBarLabel.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the identifier.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarLabel.Margin

See also
ControlBarLabel (Page 3686)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarLabel.Margin (Page 3693)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3693

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarLabel.Margin (Page 3693)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarLabel.Margin (Page 3693)

Programming scripts
10.2 WinCC Unified object model

3694 System Manual, 11/2022

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarLabel.Margin (Page 3693)

ControlBarLabel.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumHeight

See also
ControlBarLabel (Page 3686)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3695

ControlBarLabel.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumWidth

See also
ControlBarLabel (Page 3686)

ControlBarLabel.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumHeight

See also
ControlBarLabel (Page 3686)

Programming scripts
10.2 WinCC Unified object model

3696 System Manual, 11/2022

ControlBarLabel.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumWidth

See also
ControlBarLabel (Page 3686)

ControlBarLabel.Operability

Description
The "Operability" property returns whether the identifier is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarLabel.Operability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3697

See also
ControlBarLabel (Page 3686)

ControlBarLabel.Padding

Description
The "Padding" property specifies the spacing of the content from the frame of the identifier.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarLabel.Padding

See also
ControlBarLabel (Page 3686)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

Programming scripts
10.2 WinCC Unified object model

3698 System Manual, 11/2022

See also
ControlBarLabel.Padding (Page 3698)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarLabel.Padding (Page 3698)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3699

See also
ControlBarLabel.Padding (Page 3698)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarLabel.Padding (Page 3698)

ControlBarLabel.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the identifier can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarLabel.RequireExplicitUnlock

Programming scripts
10.2 WinCC Unified object model

3700 System Manual, 11/2022

See also
ControlBarLabel (Page 3686)

ControlBarLabel.Text

Description
The "Text" property specifies the label of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.Text

See also
ControlBarLabel (Page 3686)

ControlBarLabel.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.ToolTipText

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3701

See also
ControlBarLabel (Page 3686)

ControlBarLabel.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.VerticalTextAlignment

See also
ControlBarLabel (Page 3686)

ControlBarLabel.Visible

Description
The "Visible" property specifies whether the identifier is visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3702 System Manual, 11/2022

Syntax
ControlBarLabel.Visible

See also
ControlBarLabel (Page 3686)

ControlBarLabel.Width

Description
The "Width" property specifies the width of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Width

See also
ControlBarLabel (Page 3686)

ControlBarSeparator

Description
The "ControlBarSeparator" object represents a separator of an information bar or toolbar.
You can reference the "ControlBarSeparator" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarSeparatorPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3703

Properties
The "ControlBarSeparator" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the disconnector can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• Mapping

Returns the function of the separator.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the separator is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the disconnector is only operable while the associated button is being
pressed.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the disconnector is visible.

• Width
Specifies the width.

Methods
--

Programming scripts
10.2 WinCC Unified object model

3704 System Manual, 11/2022

ControlBarSeparator.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the separator.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarSeparator.Authorization

See also
ControlBarSeparator (Page 3703)

ControlBarSeparator.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarSeparator.CustomID

See also
ControlBarSeparator (Page 3703)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3705

ControlBarSeparator.Enabled

Description
The "Enabled" property specifies whether the separator is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Enabled

See also
ControlBarSeparator (Page 3703)

ControlBarSeparator.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.ForeColor

See also
ControlBarSeparator (Page 3703)

Programming scripts
10.2 WinCC Unified object model

3706 System Manual, 11/2022

ControlBarSeparator.Height

Description
The "Height" property specifies the height of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Height

See also
ControlBarSeparator (Page 3703)

ControlBarSeparator.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3707

• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms

Programming scripts
10.2 WinCC Unified object model

3708 System Manual, 11/2022

• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarSeparator.Mapping

See also
ControlBarSeparator (Page 3703)

ControlBarSeparator.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the separator.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3709

Syntax
ControlBarSeparator.Margin

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarSeparator.Margin (Page 3709)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

Programming scripts
10.2 WinCC Unified object model

3710 System Manual, 11/2022

See also
ControlBarSeparator.Margin (Page 3709)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarSeparator.Margin (Page 3709)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3711

See also
ControlBarSeparator.Margin (Page 3709)

ControlBarSeparator.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MaximumHeight

See also
ControlBarSeparator (Page 3703)

ControlBarSeparator.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MaximumWidth

Programming scripts
10.2 WinCC Unified object model

3712 System Manual, 11/2022

See also
ControlBarSeparator (Page 3703)

ControlBarSeparator.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MinimumHeight

See also
ControlBarSeparator (Page 3703)

ControlBarSeparator.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MinimumWidth

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3713

See also
ControlBarSeparator (Page 3703)

ControlBarSeparator.Operability

Description
The "Operability" property returns whether the separator is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarSeparator.Operability

See also
ControlBarSeparator (Page 3703)

ControlBarSeparator.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the separator.

Type
Object, HmiPaddingPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3714 System Manual, 11/2022

Syntax
ControlBarSeparator.Padding

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarSeparator.Padding (Page 3714)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3715

See also
ControlBarSeparator.Padding (Page 3714)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarSeparator.Padding (Page 3714)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

Programming scripts
10.2 WinCC Unified object model

3716 System Manual, 11/2022

See also
ControlBarSeparator.Padding (Page 3714)

ControlBarSeparator.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the disconnector can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarSeparator.RequireExplicitUnlock

See also
ControlBarSeparator (Page 3703)

ControlBarSeparator.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the separator.

Type
String

Access
Read-write

Syntax
ControlBarSeparator.ToolTipText

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3717

See also
ControlBarSeparator (Page 3703)

ControlBarSeparator.Visible

Description
The "Visible" property specifies whether the separator is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Visible

See also
ControlBarSeparator (Page 3703)

ControlBarSeparator.Width

Description
The "Width" property specifies the width of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Width

Programming scripts
10.2 WinCC Unified object model

3718 System Manual, 11/2022

See also
ControlBarSeparator (Page 3703)

ControlBarTextBox

Description
The "ControlBarTextBox" object represents a text box of an information bar or toolbar.
You can reference the "ControlBarTextBox" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarTextBoxPart

Properties
The "ControlBarTextBox" object has the following properties:
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the text box can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Mapping

Returns the function of the text box.
• Margin

Specifies the margin.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3719

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the text box is operable.

• Padding
Specifies the distance of the content from the border.

• Readonly
Specifies whether the text box is write-protected.

• RequireExplicitUnlock
Returns whether the text box is only operable while the associated button is being pressed.

• Text
Specifies the labeling.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the text box is visible.

• Width
Specifies the width.

Methods
--

ControlBarTextBox.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

3720 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarTextBox.AlternateBorderColor

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the text box of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarTextBox.Authorization

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3721

Access
Read-write

Syntax
ControlBarTextBox.BackColor

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BorderColor

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Programming scripts
10.2 WinCC Unified object model

3722 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarTextBox.BorderWidth

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarTextBox.CustomID

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.Enabled

Description
The "Enabled" property specifies whether the text box can be operated in runtime.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3723

Access
Read-write

Syntax
ControlBarTextBox.Enabled

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.ForeColor

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.Height

Description
The "Height" property specifies the height of the text box in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

3724 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarTextBox.Height

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.HorizontalTextAlignment

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3725

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms

Programming scripts
10.2 WinCC Unified object model

3726 System Manual, 11/2022

• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarTextBox.Mapping

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3727

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the text box.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarTextBox.Margin

See also
ControlBarTextBox (Page 3719)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

Programming scripts
10.2 WinCC Unified object model

3728 System Manual, 11/2022

See also
ControlBarTextBox.Margin (Page 3728)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarTextBox.Margin (Page 3728)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3729

See also
ControlBarTextBox.Margin (Page 3728)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarTextBox.Margin (Page 3728)

ControlBarTextBox.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumHeight

Programming scripts
10.2 WinCC Unified object model

3730 System Manual, 11/2022

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumWidth

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumHeight

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3731

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumWidth

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.Operability

Description
The "Operability" property returns whether the text box is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

3732 System Manual, 11/2022

Syntax
ControlBarTextBox.Operability

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the text box.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarTextBox.Padding

See also
ControlBarTextBox (Page 3719)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3733

Syntax
Padding.Bottom

See also
ControlBarTextBox.Padding (Page 3733)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarTextBox.Padding (Page 3733)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3734 System Manual, 11/2022

Syntax
Padding.Right

See also
ControlBarTextBox.Padding (Page 3733)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarTextBox.Padding (Page 3733)

ControlBarTextBox.ReadOnly

Description
The "ReadOnly" property specifies whether the text box is read-only.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3735

Syntax
ControlBarTextBox.ReadOnly

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the text box can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarTextBox.RequireExplicitUnlock

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.Text

Description
The "Text" property specifies the label of the text box.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3736 System Manual, 11/2022

Syntax
ControlBarTextBox.Text

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.ToolTipText

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3737

Access
Read-write

Syntax
ControlBarTextBox.VerticalTextAlignment

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.Visible

Description
The "Visible" property specifies whether the text box is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Visible

See also
ControlBarTextBox (Page 3719)

ControlBarTextBox.Width

Description
The "Width" property specifies the width of the text box in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

3738 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarTextBox.Width

See also
ControlBarTextBox (Page 3719)

ControlBarToggleSwitch

Description
The "ControlBarToggleSwitch" object represents a switch of an information bar or toolbar.
You can reference the "ControlBarToggleSwitch" object via the
"HmiControlBarElementCollection" list.

Object type
HmiControlBarToggleSwitchPart

Properties
The "ControlBarToggleSwitch" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• AlternateGraphic

Specifies the graphic for the "pressed" state.
• AlternateText

Specifies the text for the "pressed" state.
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the identifier of the switch.
• BorderColor

Specifies the line color.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3739

• BorderWidth
Specifies the line thickness.

• Content
Specifies display options for text and graphics.

• CustomID
Returns the custom ID.

• Enabled
Specifies whether the switch can be operated in runtime.

• ForeColor
Specifies the font color.

• Graphic
Specifies the graphic.

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the switch.

• IsAlternateState
Specifies the current state of the switch.

• Mapping
Returns the function of the switch.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the switch is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the switch is only operable while the associated button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

Programming scripts
10.2 WinCC Unified object model

3740 System Manual, 11/2022

• Visible
Specifies whether the switch is visible.

• Width
Specifies the width.

Methods
--

ControlBarToggleSwitch.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBackColor

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3741

Syntax
ControlBarToggleSwitch.AlternateBorderColor

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.AlternateGraphic

Description
The "AlternateGraphic" property specifies the graphic of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateGraphic

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.AlternateText

Description
The "AlternateText" property specifies the text of the switch for the "On" state.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3742 System Manual, 11/2022

Syntax
ControlBarToggleSwitch.AlternateText

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the switch of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarToggleSwitch.Authorization

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3743

Syntax
ControlBarToggleSwitch.BackColor

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.Badge

Description
The "Badge" property specifies the identifier of the switch.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarToggleSwitch.Badge

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3744 System Manual, 11/2022

Syntax
ControlBarToggleSwitch.BorderColor

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderWidth

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3745

Syntax
ControlBarToggleSwitch.Content

See also
ControlBarToggleSwitch (Page 3739)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarToggleSwitch.Content (Page 3745)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode

Programming scripts
10.2 WinCC Unified object model

3746 System Manual, 11/2022

Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarToggleSwitch.Content (Page 3745)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3747

See also
ControlBarToggleSwitch.Content (Page 3745)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarToggleSwitch.Content (Page 3745)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

Programming scripts
10.2 WinCC Unified object model

3748 System Manual, 11/2022

See also
ControlBarToggleSwitch.Content (Page 3745)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarToggleSwitch.Content (Page 3745)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3749

Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarToggleSwitch.Content (Page 3745)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 3745)

Programming scripts
10.2 WinCC Unified object model

3750 System Manual, 11/2022

ControlBarToggleSwitch.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarToggleSwitch.CustomID

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.Enabled

Description
The "Enabled" property specifies whether the switch can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Enabled

See also
ControlBarToggleSwitch (Page 3739)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3751

ControlBarToggleSwitch.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.ForeColor

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.Graphic

Description
The "Graphic" property specifies the graphic of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Graphic

See also
ControlBarToggleSwitch (Page 3739)

Programming scripts
10.2 WinCC Unified object model

3752 System Manual, 11/2022

ControlBarToggleSwitch.Height

Description
The "Height" property specifies the height of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Height

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.HotKey

Description
The "HotKey" property returns the hotkey specified for the switch. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
Button.HotKey

See also
ControlBarToggleSwitch (Page 3739)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3753

ControlBarToggleSwitch.IsAlternateState

Description
The "IsAlternateState" property specifies the current state of the switch.
• True: Switch is in "On" state.
• False: Switch is in "Off" state.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.IsAlternateState

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment

Programming scripts
10.2 WinCC Unified object model

3754 System Manual, 11/2022

• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3755

• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarToggleSwitch.Mapping

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the switch.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

3756 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.Margin

See also
ControlBarToggleSwitch (Page 3739)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarToggleSwitch.Margin (Page 3756)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3757

Access
Read-write

Syntax
Margin.Left

See also
ControlBarToggleSwitch.Margin (Page 3756)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarToggleSwitch.Margin (Page 3756)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

3758 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Top

See also
ControlBarToggleSwitch.Margin (Page 3756)

ControlBarToggleSwitch.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumHeight

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3759

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumWidth

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumHeight

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

3760 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumWidth

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.Operability

Description
The property "Operability" returns whether the switch is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarToggleSwitch.Operability

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the switch.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3761

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Padding

See also
ControlBarToggleSwitch (Page 3739)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarToggleSwitch.Padding (Page 3761)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

3762 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarToggleSwitch.Padding (Page 3761)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarToggleSwitch.Padding (Page 3761)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3763

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarToggleSwitch.Padding (Page 3761)

ControlBarToggleSwitch.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the switch can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarToggleSwitch.RequireExplicitUnlock

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.Text

Description
The "Text" property specifies the label of the switch.

Programming scripts
10.2 WinCC Unified object model

3764 System Manual, 11/2022

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Text

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.ToolTipText

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.Visible

Description
The "Visible" property specifies whether the switch is visible.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3765

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Visible

See also
ControlBarToggleSwitch (Page 3739)

ControlBarToggleSwitch.Width

Description
The "Width" property specifies the width of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Width

See also
ControlBarToggleSwitch (Page 3739)

ToolBar.Enabled

Description
The "Enabled" property specifies whether the toolbar can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

3766 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
ToolBar.Enabled

See also
MediaControl.ToolBar (Page 3634)

ToolBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ToolBar.Font

See also
MediaControl.ToolBar (Page 3634)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3767

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
ToolBar.Font (Page 3767)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
ToolBar.Font (Page 3767)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

3768 System Manual, 11/2022

Type
Float

Access
Read-write

Syntax
Font.Size

See also
ToolBar.Font (Page 3767)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ToolBar.Font (Page 3767)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3769

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
ToolBar.Font (Page 3767)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3770 System Manual, 11/2022

Syntax
Font.Weight

See also
ToolBar.Font (Page 3767)

ToolBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the toolbar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ToolBar.Margin

See also
MediaControl.ToolBar (Page 3634)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3771

Syntax
Margin.Bottom

See also
ToolBar.Margin (Page 3771)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ToolBar.Margin (Page 3771)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3772 System Manual, 11/2022

Syntax
Margin.Right

See also
ToolBar.Margin (Page 3771)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ToolBar.Margin (Page 3771)

ToolBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the toolbar.

Type
Object, HmiPaddingPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3773

Syntax
ToolBar.Padding

See also
MediaControl.ToolBar (Page 3634)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ToolBar.Padding (Page 3773)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3774 System Manual, 11/2022

Syntax
Padding.Left

See also
ToolBar.Padding (Page 3773)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ToolBar.Padding (Page 3773)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3775

Syntax
Padding.Top

See also
ToolBar.Padding (Page 3773)

ToolBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
ToolBar.ShowToolTips

See also
MediaControl.ToolBar (Page 3634)

ToolBar.UseHotKeys

Description
The "UseHotKeys" property specifies whether the shortcut keys for the buttons in the toolbar are
activated.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3776 System Manual, 11/2022

Syntax
ToolBar.UseHotKeys

See also
MediaControl.ToolBar (Page 3634)

ToolBar.Visible

Description
The "Visible" property specifies whether the toolbar is visible.

Type
Bool

Access
Read-write

Syntax
ToolBar.Visible

See also
MediaControl.ToolBar (Page 3634)

MediaControl.TabIndex

Description
The "TabIndex" property returns the position of the Media Player in the tab sequence.

Type
UInt16

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3777

Syntax
MediaControl.TabIndex

See also
MediaControl (Page 3600)

MediaControl.Top

Description
The "Top" property sets the value of the Y coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
MediaControl.Top

See also
MediaControl (Page 3600)

MediaControl.Url

Description
The "Url" property specifies the URL played by the Media Player.

Type
String

Access
Read-write

Syntax
MediaControl.Url

Programming scripts
10.2 WinCC Unified object model

3778 System Manual, 11/2022

See also
MediaControl (Page 3600)

MediaControl.VideoOutput

Description
The "VideoOutput" property specifies the scaling of the video output.

Type
Int32, HmiVideoOutput
Specifies the scaling:
• Undefined (0): Not defined.
• Stretch (1): The video is scaled to match.
• PreserveAspectFit (2): The video is scaled uniformly so that it fits without being cropped.
• PreserveAspectCrop (3): The video is scaled uniformly so that it fits, with cropping if required.

Access
Read-write

Syntax
MediaControl.VideoOutput

See also
MediaControl (Page 3600)

MediaControl.Visible

Description
The "Visible" property specifies whether the Media Player is visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3779

Syntax
MediaControl.Visible

See also
MediaControl (Page 3600)

MediaControl.Width

Description
The "Width" property specifies the width in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
MediaControl.Width

See also
MediaControl (Page 3600)

MediaControl.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the Media Player.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title
• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized

Programming scripts
10.2 WinCC Unified object model

3780 System Manual, 11/2022

• CanMove (16): Can be moved
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
You can enable multiple properties by adding integer values or bit operators.

Access
Read-write

Syntax
MediaControl.WindowFlags

See also
MediaControl (Page 3600)

MediaControl.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
Media Player.

Syntax
MediaControl.CheckAuthorization()

Parameters
--

Return value
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3781

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
MediaControl (Page 3600)

MediaControl.FireCommand()

Description
The "FireCommand" method executes the command of an element in the toolbar or information
bar (control bar element, e.g. a button) of the Media Player.

Syntax
MediaControl.FireCommand(commandId, custom)

Parameters
commandId
Type: Int32
ID of the element of the toolbar or information bar

custom
Type: Bool
Type of element ID:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

Return value
--

See also
MediaControl (Page 3600)

Programming scripts
10.2 WinCC Unified object model

3782 System Manual, 11/2022

MediaControl.Pause()

Description
The "Pause" method pauses the playback.

Syntax
MediaControl.Pause()

Parameters
--

Return value
--

See also
MediaControl (Page 3600)

MediaControl.Play()

Description
The "Play" method starts or resumes playback.

Syntax
MediaControl.Play()

Parameters
--

Return value

See also
MediaControl (Page 3600)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3783

MediaControl.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
MediaControl.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Programming scripts
10.2 WinCC Unified object model

3784 System Manual, 11/2022

Return value
Bool

See also
MediaControl (Page 3600)

MediaControl.Stop()

Description
The "Stop" method stops playback.

Syntax
MediaControl.Stop()

Parameters
--

Return value
--

See also
MediaControl (Page 3600)

MediaControl_OnActivated()

Description
The "OnActivated" event occurs when a Media Player receives focus:
• A Media Player is selected via the configured tab sequence.
• A Media Player that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
MediaControl_OnActivated(item)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3785

Context
item
Type: Object
Media Player where the event occurs.

See also
MediaControl (Page 3600)

MediaControl_OnCommandFired()

Description
The "OnCommandFired" event occurs when the operator has operated an element in the toolbar
or information bar (control bar element, e.g. a button) of the Media Player.

Syntax
MediaControl_OnCommandFired(item, commandId, custom)

Context
item
Type: Object
Media Player where the event occurs.

commandId
Type: DInt
ID of the element of the toolbar or information bar that was operated.

custom
Type: Bool
Specifies the type of the ID of the operated element:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

See also
MediaControl (Page 3600)

Programming scripts
10.2 WinCC Unified object model

3786 System Manual, 11/2022

MediaControl_OnDeactivated()

Description
The "OnDeactivated" event occurs when a Media Player loses focus because the operator presses
the <TAB> key or executes a different action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
MediaControl_OnDeactivated(item)

Context
item
Type: Object
Media Player where the event occurs.

See also
MediaControl (Page 3600)

MediaControl_OnInitialized()

Description
The "OnInitialized" event occurs when a Media Player has been successfully initialized and the
data connection to the PLC has been established.

Syntax
MediaControl_OnInitialized(item)

Context
item
Type: Object
Media Player where the event occurs.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3787

See also
MediaControl (Page 3600)

MediaControl_OnPaused()

Description
The "OnPaused" event occurs when playback is paused in the Media Player.

Syntax
MediaControl_OnPaused(item)

Context
item
Type: Object
Media Player where the event occurs.

See also
MediaControl (Page 3600)

MediaControl_OnPlaying()

Description
The "OnPlaying" event occurs when playback is started or resumed in the Media Player.

Syntax
MediaControl_OnPlaying(item)

Context
item
Type: Object
Media Player where the event occurs.

See also
MediaControl (Page 3600)

Programming scripts
10.2 WinCC Unified object model

3788 System Manual, 11/2022

MediaControl_OnStopped()

Description
The "OnStopped" event occurs when playback is stopped in the Media Player.

Syntax
MediaControl_OnStopped(item)

Context
item
Type: Object
Media Player where the event occurs.

See also
MediaControl (Page 3600)

ObjectExplorerControl

Description
The "ObjectExplorerControl" object specifies the properties of the display for building objects.

Object type
HmiObjectExplorerControl

Properties
The "ObjectExplorerControl" object has the following properties:
• BackColor

Specifies the background color.
• Caption

Specifies the text that is displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.
• CurrentQuality

Returns the poorest quality code of all tags which influence the display.
• DisplayViewType

Specifies the display type.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3789

• Enabled
Specifies whether the display can be operated in runtime.

• Height
Specifies the height.

• Icon
Specifies the icon of the display.

• Layer
Returns the screen layer in which the display is located.

• Left
Specifies the value of the X coordinate.

• LinkedItem
Specifies the referenced object.

• Margin
Specifies the margin.

• Name
Returns the name of the display.

• Parent
Returns the higher-level screen object.

• RenderingTemplate
Returns the name of the template from which the display was created.

• ShowFocusVisual
Specifies whether the display is highlighted when in focus.

• StatusBar
Specifies the information bar of the display.

• StyleItemClass
Returns the style which is applied to the display.

• TabIndex
Returns the position of the display in the tab sequence.

• TargetObjectType
Specifies the object that will be displayed.

• ToolBar
Specifies the toolbar of the display.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the display is visible.

• Width
Specifies the width.

• WindowFlags
Specifies the window configuration of the display.

Programming scripts
10.2 WinCC Unified object model

3790 System Manual, 11/2022

Methods
The "ObjectExplorerControl" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the display.
• FireCommand()

Configures the occurrence of an event for an element.
• PropertyFlashing()

Configures flashing of a property.

ObjectExplorerControl.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ObjectExplorerControl.BackColor

See also
ObjectExplorerControl (Page 3789)

ObjectExplorerControl.Caption

Description
The "Caption" property specifies the text that is displayed in the title bar.

Type
Object, HmiTextPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3791

Syntax
ObjectExplorerControl.Caption

See also
ObjectExplorerControl (Page 3789)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
ObjectExplorerControl.Caption (Page 3791)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3792 System Manual, 11/2022

Syntax
Font.Italic

See also
Text.Font (Page 3792)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 3792)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3793

Syntax
Font.Size

See also
Text.Font (Page 3792)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 3792)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

3794 System Manual, 11/2022

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 3792)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 3792)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3795

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
ObjectExplorerControl.Caption (Page 3791)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
ObjectExplorerControl.Caption (Page 3791)

Programming scripts
10.2 WinCC Unified object model

3796 System Manual, 11/2022

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
ObjectExplorerControl.Caption (Page 3791)

ObjectExplorerControl.CaptionColor

Description
The "CaptionColor" property specifies the color of the title bar.

Type
UInt32

Access
Read-write

Syntax
ObjectExplorerControl.CaptionColor

See also
ObjectExplorerControl (Page 3789)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3797

ObjectExplorerControl.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
control.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.
• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
ObjectExplorerControl.CurrentQuality

See also
ObjectExplorerControl (Page 3789)

ObjectExplorerControl.DisplayViewType

Description
The "DisplayViewType" property specifies the display type.

Type
Int32, HmiDisplayViewType
Specifies the display type.
• Standard (0): Default setting; usually list display
• List (1): List display without details
• Details (2): List display with details

Programming scripts
10.2 WinCC Unified object model

3798 System Manual, 11/2022

• SmallIcons (3): Small icons
• MediumIcons (4): Medium icons
• LargeIcons (5): Large icons

Access
Read-write

Syntax
ObjectExplorerControl.DisplayViewType

See also
ObjectExplorerControl (Page 3789)

ObjectExplorerControl.Enabled

Description
The "Enabled" property specifies whether the display can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ObjectExplorerControl.Enabled

See also
ObjectExplorerControl (Page 3789)

ObjectExplorerControl.Height

Description
The "Height" property specifies the height in the DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3799

Type
UInt32

Access
Read-write

Syntax
ObjectExplorerControl.Height

See also
ObjectExplorerControl (Page 3789)

ObjectExplorerControl.Icon

Description
The "Icon" property specifies the icon of the display.

Type
String

Access
Read-write

Syntax
ObjectExplorerControl.Icon

See also
ObjectExplorerControl (Page 3789)

ObjectExplorerControl.Layer

Description
The "Layer" property returns the screen layer in which the control is located.

Type
Object, HmiLayerPart

Programming scripts
10.2 WinCC Unified object model

3800 System Manual, 11/2022

Access
Read-only

Syntax
ObjectExplorerControl.Layer

See also
ObjectExplorerControl (Page 3789)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
ObjectExplorerControl.Layer (Page 3800)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3801

Access
Read-write

Syntax
Layer.MinimumZoom

See also
ObjectExplorerControl.Layer (Page 3800)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
ObjectExplorerControl.Layer (Page 3800)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

3802 System Manual, 11/2022

Access
Read-write

Syntax
Layer.Visible

See also
ObjectExplorerControl.Layer (Page 3800)

ObjectExplorerControl.Left

Description
The "Left" property sets the value of the X coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
ObjectExplorerControl.Left

See also
ObjectExplorerControl (Page 3789)

ObjectExplorerControl.LinkedItem

Description
The "LinkedItem" property specifies the referenced object.

Type
Object, HmiControlWindowBase (Page 1571)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3803

Access
Read-write

Syntax
ObjectExplorerControl.LinkedItem

See also
ObjectExplorerControl (Page 3789)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

ObjectExplorerControl.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ObjectExplorerControl.Margin

See also
ObjectExplorerControl (Page 3789)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Programming scripts
10.2 WinCC Unified object model

3804 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ObjectExplorerControl.Margin (Page 3804)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ObjectExplorerControl.Margin (Page 3804)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3805

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ObjectExplorerControl.Margin (Page 3804)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ObjectExplorerControl.Margin (Page 3804)

ObjectExplorerControl.Name

Description
The "Name" property returns the name of the control.

Programming scripts
10.2 WinCC Unified object model

3806 System Manual, 11/2022

Type
String

Access
Read-only

Syntax
ObjectExplorerControl.Name

See also
ObjectExplorerControl (Page 3789)

ObjectExplorerControl.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
ObjectExplorerControl.Parent

See also
ObjectExplorerControl (Page 3789)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3807

ObjectExplorerControl.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the control was
created.

Type
String

Access
Read-only

Syntax
ObjectExplorerControl.RenderingTemplate

See also
ObjectExplorerControl (Page 3789)

ObjectExplorerControl.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the display is highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
ObjectExplorerControl.ShowFocusVisual

See also
ObjectExplorerControl (Page 3789)

Programming scripts
10.2 WinCC Unified object model

3808 System Manual, 11/2022

ObjectExplorerControl.StatusBar

Description
The "StatusBar" property specifies the information bar of the display.

Type
Object, HmiStatusBarPart

Access
Read-write

Syntax
ObjectExplorerControl.StatusBar

See also
ObjectExplorerControl (Page 3789)

StatusBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
StatusBar.BackColor

See also
ObjectExplorerControl.StatusBar (Page 3809)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3809

StatusBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
information bar.

Type
Object, HmiControlBarElementCollection (Page 3810)

Access
Read-only

Syntax
StatusBar.Elements

See also
ObjectExplorerControl.StatusBar (Page 3809)
HmiControlBarElementCollection (Page 3810)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Programming scripts
10.2 WinCC Unified object model

3810 System Manual, 11/2022

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
StatusBar.Elements (Page 3810)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 3810)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3811

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 3828)

See also
HmiControlBarElementCollection (Page 3810)
Control Bar Elements (Page 3828)

Control Bar Elements

Description
Control Bar Elements (Page 3828)

StatusBar.Enabled

Description
The "Enabled" property specifies whether the information bar can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3812 System Manual, 11/2022

Syntax
StatusBar.Enabled

See also
ObjectExplorerControl.StatusBar (Page 3809)

StatusBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
StatusBar.Font

See also
ObjectExplorerControl.StatusBar (Page 3809)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3813

Syntax
Font.Italic

See also
StatusBar.Font (Page 3813)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
StatusBar.Font (Page 3813)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3814 System Manual, 11/2022

Syntax
Font.Size

See also
StatusBar.Font (Page 3813)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
StatusBar.Font (Page 3813)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3815

Access
Read-write

Syntax
Font.Underline

See also
StatusBar.Font (Page 3813)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
StatusBar.Font (Page 3813)

Programming scripts
10.2 WinCC Unified object model

3816 System Manual, 11/2022

StatusBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the information bar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
StatusBar.Margin

See also
ObjectExplorerControl.StatusBar (Page 3809)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
StatusBar.Margin (Page 3817)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3817

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
StatusBar.Margin (Page 3817)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
StatusBar.Margin (Page 3817)

Programming scripts
10.2 WinCC Unified object model

3818 System Manual, 11/2022

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
StatusBar.Margin (Page 3817)

StatusBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the information
bar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
StatusBar.Padding

See also
ObjectExplorerControl.StatusBar (Page 3809)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3819

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
StatusBar.Padding (Page 3819)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
StatusBar.Padding (Page 3819)

Programming scripts
10.2 WinCC Unified object model

3820 System Manual, 11/2022

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
StatusBar.Padding (Page 3819)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
StatusBar.Padding (Page 3819)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3821

StatusBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
StatusBar.ShowToolTips

See also
ObjectExplorerControl.StatusBar (Page 3809)

StatusBar.Visible

Description
The "Visible" property specifies whether the information bar is visible.

Type
Bool

Access
Read-write

Syntax
StatusBar.Visible

See also
ObjectExplorerControl.StatusBar (Page 3809)

Programming scripts
10.2 WinCC Unified object model

3822 System Manual, 11/2022

ObjectExplorerControl.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the display.

Type
String

Access
Read-only

Syntax
ObjectExplorerControl.StyleItemClass

See also
ObjectExplorerControl (Page 3789)

ObjectExplorerControl.TabIndex

Description
The "TabIndex" property returns the position of the display in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
ObjectExplorerControl.TabIndex

See also
ObjectExplorerControl (Page 3789)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3823

ObjectExplorerControl.TargetObjectType

Description
The "TargetObjectType" property specifies the object that will be displayed.

Type
UInt32

Access
Read-write

Syntax
ObjectExplorerControl.TargetObjectType

See also
ObjectExplorerControl (Page 3789)

ObjectExplorerControl.ToolBar

Description
The "ToolBar" property specifies the toolbar of the display.

Type
Object, HmiToolBarPart

Access
Read-write

Syntax
ObjectExplorerControl.ToolBar

See also
ObjectExplorerControl (Page 3789)

Programming scripts
10.2 WinCC Unified object model

3824 System Manual, 11/2022

ToolBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ToolBar.BackColor

See also
ObjectExplorerControl.ToolBar (Page 3824)

ToolBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
toolbar.

Type
Object, HmiControlBarElementCollection (Page 3826)

Access
Read-only

Syntax
ToolBar.Elements

See also
ObjectExplorerControl.ToolBar (Page 3824)
HmiControlBarElementCollection (Page 3826)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3825

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
ToolBar.Elements (Page 3825)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

3826 System Manual, 11/2022

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 3826)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 3828)

See also
HmiControlBarElementCollection (Page 3826)
Control Bar Elements (Page 3828)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3827

Control Bar Elements

ControlBarButton

Description
The "ControlBarButton" object represents a button of an information bar or toolbar.
You can reference the "ControlBarButton" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarButtonPart

Properties
The "ControlBarButton" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the label of the button.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the button can be operated in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.

Programming scripts
10.2 WinCC Unified object model

3828 System Manual, 11/2022

• HotKey
Returns the hotkey specified for the button.

• Mapping
Returns the function of the button.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the button is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the button is only operable while the corresponding button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the button is visible.

• Width
Specifies the width.

Methods
--

ControlBarButton.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3829

Access
Read-write

Syntax
ControlBarButton.AlternateBackColor

See also
ControlBarButton (Page 3828)

ControlBarButton.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBorderColor

See also
ControlBarButton (Page 3828)

ControlBarButton.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the button of an information bar or toolbar.

Type
Object, HmiFunctionRight

Programming scripts
10.2 WinCC Unified object model

3830 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarButton.Authorization

See also
ControlBarButton (Page 3828)

ControlBarButton.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BackColor

See also
ControlBarButton (Page 3828)

ControlBarButton.Badge

Description
The "Badge" property specifies the label of the button.

Type
Object, HmiBadgePart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3831

Access
Read-write

Syntax
ControlBarButton.Badge

See also
ControlBarButton (Page 3828)

ControlBarButton.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BorderColor

See also
ControlBarButton (Page 3828)

ControlBarButton.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Programming scripts
10.2 WinCC Unified object model

3832 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.BorderWidth

See also
ControlBarButton (Page 3828)

ControlBarButton.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarButton.Content

See also
ControlBarButton (Page 3828)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3833

Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarButton.Content (Page 3833)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

Programming scripts
10.2 WinCC Unified object model

3834 System Manual, 11/2022

See also
ControlBarButton.Content (Page 3833)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarButton.Content (Page 3833)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3835

Syntax
Content.Spacing

See also
ControlBarButton.Content (Page 3833)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarButton.Content (Page 3833)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above

Programming scripts
10.2 WinCC Unified object model

3836 System Manual, 11/2022

• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarButton.Content (Page 3833)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarButton.Content (Page 3833)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3837

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarButton.Content (Page 3833)

ControlBarButton.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

3838 System Manual, 11/2022

Syntax
ControlBarButton.CustomID

See also
ControlBarButton (Page 3828)

ControlBarButton.Enabled

Description
The "Enabled" property specifies whether the button can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Enabled

See also
ControlBarButton (Page 3828)

ControlBarButton.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3839

Syntax
ControlBarButton.ForeColor

See also
ControlBarButton (Page 3828)

ControlBarButton.Graphic

Description
The "Graphic" property specifies the graphic of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Graphic

See also
ControlBarButton (Page 3828)

ControlBarButton.Height

Description
The "Height" property specifies the height of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3840 System Manual, 11/2022

Syntax
ControlBarButton.Height

See also
ControlBarButton (Page 3828)

ControlBarButton.HotKey

Description
The "HotKey" property returns the hotkey specified for the button. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
ControlBarButton.HotKey

See also
ControlBarButton (Page 3828)

ControlBarButton.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3841

• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled

Programming scripts
10.2 WinCC Unified object model

3842 System Manual, 11/2022

• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarButton.Mapping

See also
ControlBarButton (Page 3828)

ControlBarButton.Margin

Description
The "Margin" property specifies the surrounded outer distance of the button.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3843

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarButton.Margin

See also
ControlBarButton (Page 3828)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarButton.Margin (Page 3843)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Programming scripts
10.2 WinCC Unified object model

3844 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarButton.Margin (Page 3843)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarButton.Margin (Page 3843)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3845

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarButton.Margin (Page 3843)

ControlBarButton.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumHeight

See also
ControlBarButton (Page 3828)

ControlBarButton.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Programming scripts
10.2 WinCC Unified object model

3846 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumWidth

See also
ControlBarButton (Page 3828)

ControlBarButton.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumHeight

See also
ControlBarButton (Page 3828)

ControlBarButton.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3847

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumWidth

See also
ControlBarButton (Page 3828)

ControlBarButton.Operability

Description
The "Operability" property returns whether the button is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarButton.Operability

See also
ControlBarButton (Page 3828)

Programming scripts
10.2 WinCC Unified object model

3848 System Manual, 11/2022

ControlBarButton.Padding

Description
The "Padding" property specifies the distance of the content from the border of the button.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarButton.Padding

See also
ControlBarButton (Page 3828)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarButton.Padding (Page 3849)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3849

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarButton.Padding (Page 3849)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarButton.Padding (Page 3849)

Programming scripts
10.2 WinCC Unified object model

3850 System Manual, 11/2022

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarButton.Padding (Page 3849)

ControlBarButton.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the button can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarButton.RequireExplicitUnlock

See also
ControlBarButton (Page 3828)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3851

ControlBarButton.Text

Description
The "Text" property specifies the label of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Text

See also
ControlBarButton (Page 3828)

ControlBarButton.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.ToolTipText

See also
ControlBarButton (Page 3828)

Programming scripts
10.2 WinCC Unified object model

3852 System Manual, 11/2022

ControlBarButton.Visible

Description
The "Visible" property specifies whether the button is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Visible

See also
ControlBarButton (Page 3828)

ControlBarButton.Width

Description
The "Width" property specifies the width of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Width

See also
ControlBarButton (Page 3828)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3853

ControlBarDisplay

Description
The "ControlBarDisplay" object represents a display area for text and graphics of an information
bar or toolbar.
You can reference the "ControlBarDisplay" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarDisplayPart

Properties
The "ControlBarDisplay" object has the following properties:
• Authorization

Returns the operator authorization.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the display area is enabled in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• Mapping

Returns the function of the display area.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

3854 System Manual, 11/2022

• Operability
Returns whether the display area is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the display area is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the display area is visible.

• Width
Specifies the width.

Methods
--

ControlBarDisplay.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the display.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarDislay.Authorization

See also
ControlBarDisplay (Page 3854)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3855

ControlBarDisplay.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarDislay.Content

See also
ControlBarDisplay (Page 3854)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

3856 System Manual, 11/2022

See also
ControlBarDisplay.Content (Page 3856)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarDisplay.Content (Page 3856)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3857

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarDisplay.Content (Page 3856)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarDisplay.Content (Page 3856)

Programming scripts
10.2 WinCC Unified object model

3858 System Manual, 11/2022

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarDisplay.Content (Page 3856)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3859

Syntax
Content.TextPosition

See also
ControlBarDisplay.Content (Page 3856)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarDisplay.Content (Page 3856)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

3860 System Manual, 11/2022

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarDisplay.Content (Page 3856)

ControlBarDisplay.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarDislay.CustomID

See also
ControlBarDisplay (Page 3854)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3861

ControlBarDisplay.Enabled

Description
The "Enabled" property specifies whether the display is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Enabled

See also
ControlBarDisplay (Page 3854)

ControlBarDisplay.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.ForeColor

See also
ControlBarDisplay (Page 3854)

Programming scripts
10.2 WinCC Unified object model

3862 System Manual, 11/2022

ControlBarDisplay.Graphic

Description
The "Graphic" property specifies the graphic of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Graphic

See also
ControlBarDisplay (Page 3854)

ControlBarDisplay.Height

Description
The "Height" property specifies the height of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Height

See also
ControlBarDisplay (Page 3854)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3863

ControlBarDisplay.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page

Programming scripts
10.2 WinCC Unified object model

3864 System Manual, 11/2022

• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3865

Syntax
ControlBarDislay.Mapping

See also
ControlBarDisplay (Page 3854)

ControlBarDisplay.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the display.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarDislay.Margin

See also
ControlBarDisplay (Page 3854)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3866 System Manual, 11/2022

Syntax
Margin.Bottom

See also
ControlBarDisplay.Margin (Page 3866)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarDisplay.Margin (Page 3866)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3867

Syntax
Margin.Right

See also
ControlBarDisplay.Margin (Page 3866)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarDisplay.Margin (Page 3866)

ControlBarDisplay.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3868 System Manual, 11/2022

Syntax
ControlBarDislay.MaximumHeight

See also
ControlBarDisplay (Page 3854)

ControlBarDisplay.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MaximumWidth

See also
ControlBarDisplay (Page 3854)

ControlBarDisplay.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3869

Syntax
ControlBarDislay.MinimumHeight

See also
ControlBarDisplay (Page 3854)

ControlBarDisplay.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MinimumWidth

See also
ControlBarDisplay (Page 3854)

ControlBarDisplay.Operability

Description
The "Operability" property returns whether the display is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Programming scripts
10.2 WinCC Unified object model

3870 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarDislay.Operability

See also
ControlBarDisplay (Page 3854)

ControlBarDisplay.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the display.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarDislay.Padding

See also
ControlBarDisplay (Page 3854)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3871

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarDisplay.Padding (Page 3871)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarDisplay.Padding (Page 3871)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

3872 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Right

See also
ControlBarDisplay.Padding (Page 3871)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarDisplay.Padding (Page 3871)

ControlBarDisplay.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the display can only be operated while the
associated button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3873

Access
Read-only

Syntax
ControlBarDislay.RequireExplicitUnlock

See also
ControlBarDisplay (Page 3854)

ControlBarDisplay.Text

Description
The "Text" property specifies the label of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Text

See also
ControlBarDisplay (Page 3854)

ControlBarDisplay.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the display.

Type
String

Programming scripts
10.2 WinCC Unified object model

3874 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.ToolTipText

See also
ControlBarDisplay (Page 3854)

ControlBarDisplay.Visible

Description
The "Visible" property specifies whether the display is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Visible

See also
ControlBarDisplay (Page 3854)

ControlBarDisplay.Width

Description
The "Width" property specifies the width of the display in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3875

Access
Read-write

Syntax
ControlBarDislay.Width

See also
ControlBarDisplay (Page 3854)

ControlBarLabel

Description
The "ControlBarLabel" object represents an identifier of an information bar or toolbar.
You can reference the "ControlBarLabel" object via the "HmiControlBarElementCollection" list.

Object type
HmiControlBarLabelPart

Properties
The "ControlBarLabel" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the identifier can be operated in runtime.
• ForeColor

Specifies the font color.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Height

Specifies the height.
• Mapping

Returns the function of the identifier.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.

Programming scripts
10.2 WinCC Unified object model

3876 System Manual, 11/2022

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the identifier is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the identifier is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the identifier is visible.

• Width
Specifies the width.

Methods
--

ControlBarLabel.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the identifier.

Type
Object, HmiFunctionRight

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3877

Syntax
ControlBarLabel.Authorization

See also
ControlBarLabel (Page 3876)

ControlBarLabel.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarLabel.CustomID

See also
ControlBarLabel (Page 3876)

ControlBarLabel.Enabled

Description
The "Enabled" property specifies whether the identifier is active in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3878 System Manual, 11/2022

Syntax
ControlBarLabel.Enabled

See also
ControlBarLabel (Page 3876)

ControlBarLabel.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.ForeColor

See also
ControlBarLabel (Page 3876)

ControlBarLabel.Height

Description
The "Height" property specifies the height of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3879

Syntax
ControlBarLabel.Height

See also
ControlBarLabel (Page 3876)

ControlBarLabel.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.HorizontalTextAlignment

See also
ControlBarLabel (Page 3876)

ControlBarLabel.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID

Programming scripts
10.2 WinCC Unified object model

3880 System Manual, 11/2022

Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3881

• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarLabel.Mapping

See also
ControlBarLabel (Page 3876)

Programming scripts
10.2 WinCC Unified object model

3882 System Manual, 11/2022

ControlBarLabel.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the identifier.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarLabel.Margin

See also
ControlBarLabel (Page 3876)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarLabel.Margin (Page 3883)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3883

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarLabel.Margin (Page 3883)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarLabel.Margin (Page 3883)

Programming scripts
10.2 WinCC Unified object model

3884 System Manual, 11/2022

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarLabel.Margin (Page 3883)

ControlBarLabel.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumHeight

See also
ControlBarLabel (Page 3876)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3885

ControlBarLabel.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumWidth

See also
ControlBarLabel (Page 3876)

ControlBarLabel.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumHeight

See also
ControlBarLabel (Page 3876)

Programming scripts
10.2 WinCC Unified object model

3886 System Manual, 11/2022

ControlBarLabel.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumWidth

See also
ControlBarLabel (Page 3876)

ControlBarLabel.Operability

Description
The "Operability" property returns whether the identifier is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarLabel.Operability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3887

See also
ControlBarLabel (Page 3876)

ControlBarLabel.Padding

Description
The "Padding" property specifies the spacing of the content from the frame of the identifier.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarLabel.Padding

See also
ControlBarLabel (Page 3876)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

Programming scripts
10.2 WinCC Unified object model

3888 System Manual, 11/2022

See also
ControlBarLabel.Padding (Page 3888)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarLabel.Padding (Page 3888)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3889

See also
ControlBarLabel.Padding (Page 3888)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarLabel.Padding (Page 3888)

ControlBarLabel.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the identifier can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarLabel.RequireExplicitUnlock

Programming scripts
10.2 WinCC Unified object model

3890 System Manual, 11/2022

See also
ControlBarLabel (Page 3876)

ControlBarLabel.Text

Description
The "Text" property specifies the label of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.Text

See also
ControlBarLabel (Page 3876)

ControlBarLabel.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.ToolTipText

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3891

See also
ControlBarLabel (Page 3876)

ControlBarLabel.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.VerticalTextAlignment

See also
ControlBarLabel (Page 3876)

ControlBarLabel.Visible

Description
The "Visible" property specifies whether the identifier is visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3892 System Manual, 11/2022

Syntax
ControlBarLabel.Visible

See also
ControlBarLabel (Page 3876)

ControlBarLabel.Width

Description
The "Width" property specifies the width of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Width

See also
ControlBarLabel (Page 3876)

ControlBarSeparator

Description
The "ControlBarSeparator" object represents a separator of an information bar or toolbar.
You can reference the "ControlBarSeparator" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarSeparatorPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3893

Properties
The "ControlBarSeparator" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the disconnector can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• Mapping

Returns the function of the separator.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the separator is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the disconnector is only operable while the associated button is being
pressed.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the disconnector is visible.

• Width
Specifies the width.

Methods
--

Programming scripts
10.2 WinCC Unified object model

3894 System Manual, 11/2022

ControlBarSeparator.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the separator.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarSeparator.Authorization

See also
ControlBarSeparator (Page 3893)

ControlBarSeparator.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarSeparator.CustomID

See also
ControlBarSeparator (Page 3893)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3895

ControlBarSeparator.Enabled

Description
The "Enabled" property specifies whether the separator is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Enabled

See also
ControlBarSeparator (Page 3893)

ControlBarSeparator.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.ForeColor

See also
ControlBarSeparator (Page 3893)

Programming scripts
10.2 WinCC Unified object model

3896 System Manual, 11/2022

ControlBarSeparator.Height

Description
The "Height" property specifies the height of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Height

See also
ControlBarSeparator (Page 3893)

ControlBarSeparator.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3897

• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms

Programming scripts
10.2 WinCC Unified object model

3898 System Manual, 11/2022

• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarSeparator.Mapping

See also
ControlBarSeparator (Page 3893)

ControlBarSeparator.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the separator.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3899

Syntax
ControlBarSeparator.Margin

See also
ControlBarSeparator (Page 3893)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarSeparator.Margin (Page 3899)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3900 System Manual, 11/2022

Syntax
Margin.Left

See also
ControlBarSeparator.Margin (Page 3899)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarSeparator.Margin (Page 3899)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3901

Syntax
Margin.Top

See also
ControlBarSeparator.Margin (Page 3899)

ControlBarSeparator.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MaximumHeight

See also
ControlBarSeparator (Page 3893)

ControlBarSeparator.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

3902 System Manual, 11/2022

Syntax
ControlBarSeparator.MaximumWidth

See also
ControlBarSeparator (Page 3893)

ControlBarSeparator.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MinimumHeight

See also
ControlBarSeparator (Page 3893)

ControlBarSeparator.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3903

Syntax
ControlBarSeparator.MinimumWidth

See also
ControlBarSeparator (Page 3893)

ControlBarSeparator.Operability

Description
The "Operability" property returns whether the separator is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarSeparator.Operability

See also
ControlBarSeparator (Page 3893)

ControlBarSeparator.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the separator.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

3904 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarSeparator.Padding

See also
ControlBarSeparator (Page 3893)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarSeparator.Padding (Page 3904)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3905

Access
Read-write

Syntax
Padding.Left

See also
ControlBarSeparator.Padding (Page 3904)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarSeparator.Padding (Page 3904)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

3906 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Top

See also
ControlBarSeparator.Padding (Page 3904)

ControlBarSeparator.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the disconnector can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarSeparator.RequireExplicitUnlock

See also
ControlBarSeparator (Page 3893)

ControlBarSeparator.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the separator.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3907

Access
Read-write

Syntax
ControlBarSeparator.ToolTipText

See also
ControlBarSeparator (Page 3893)

ControlBarSeparator.Visible

Description
The "Visible" property specifies whether the separator is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Visible

See also
ControlBarSeparator (Page 3893)

ControlBarSeparator.Width

Description
The "Width" property specifies the width of the separator in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

3908 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarSeparator.Width

See also
ControlBarSeparator (Page 3893)

ControlBarTextBox

Description
The "ControlBarTextBox" object represents a text box of an information bar or toolbar.
You can reference the "ControlBarTextBox" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarTextBoxPart

Properties
The "ControlBarTextBox" object has the following properties:
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the text box can be operated in runtime.
• ForeColor

Specifies the font color.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3909

• Height
Specifies the height.

• HorizontalTextAlignment
Specifies the horizontal alignment of the text.

• Mapping
Returns the function of the text box.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the text box is operable.

• Padding
Specifies the distance of the content from the border.

• Readonly
Specifies whether the text box is write-protected.

• RequireExplicitUnlock
Returns whether the text box is only operable while the associated button is being pressed.

• Text
Specifies the labeling.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the text box is visible.

• Width
Specifies the width.

Methods
--

Programming scripts
10.2 WinCC Unified object model

3910 System Manual, 11/2022

ControlBarTextBox.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.AlternateBorderColor

See also
ControlBarTextBox (Page 3909)

ControlBarTextBox.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the text box of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarTextBox.Authorization

See also
ControlBarTextBox (Page 3909)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3911

ControlBarTextBox.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BackColor

See also
ControlBarTextBox (Page 3909)

ControlBarTextBox.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BorderColor

See also
ControlBarTextBox (Page 3909)

Programming scripts
10.2 WinCC Unified object model

3912 System Manual, 11/2022

ControlBarTextBox.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarTextBox.BorderWidth

See also
ControlBarTextBox (Page 3909)

ControlBarTextBox.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarTextBox.CustomID

See also
ControlBarTextBox (Page 3909)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3913

ControlBarTextBox.Enabled

Description
The "Enabled" property specifies whether the text box can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Enabled

See also
ControlBarTextBox (Page 3909)

ControlBarTextBox.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.ForeColor

See also
ControlBarTextBox (Page 3909)

Programming scripts
10.2 WinCC Unified object model

3914 System Manual, 11/2022

ControlBarTextBox.Height

Description
The "Height" property specifies the height of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Height

See also
ControlBarTextBox (Page 3909)

ControlBarTextBox.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.HorizontalTextAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3915

See also
ControlBarTextBox (Page 3909)

ControlBarTextBox.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

3916 System Manual, 11/2022

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3917

Access
Read-only

Syntax
ControlBarTextBox.Mapping

See also
ControlBarTextBox (Page 3909)

ControlBarTextBox.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the text box.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarTextBox.Margin

See also
ControlBarTextBox (Page 3909)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

3918 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarTextBox.Margin (Page 3918)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarTextBox.Margin (Page 3918)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3919

Access
Read-write

Syntax
Margin.Right

See also
ControlBarTextBox.Margin (Page 3918)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarTextBox.Margin (Page 3918)

ControlBarTextBox.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

3920 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarTextBox.MaximumHeight

See also
ControlBarTextBox (Page 3909)

ControlBarTextBox.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumWidth

See also
ControlBarTextBox (Page 3909)

ControlBarTextBox.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3921

Access
Read-write

Syntax
ControlBarTextBox.MinimumHeight

See also
ControlBarTextBox (Page 3909)

ControlBarTextBox.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumWidth

See also
ControlBarTextBox (Page 3909)

ControlBarTextBox.Operability

Description
The "Operability" property returns whether the text box is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

3922 System Manual, 11/2022

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarTextBox.Operability

See also
ControlBarTextBox (Page 3909)

ControlBarTextBox.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the text box.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarTextBox.Padding

See also
ControlBarTextBox (Page 3909)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3923

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarTextBox.Padding (Page 3923)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarTextBox.Padding (Page 3923)

Programming scripts
10.2 WinCC Unified object model

3924 System Manual, 11/2022

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarTextBox.Padding (Page 3923)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarTextBox.Padding (Page 3923)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3925

ControlBarTextBox.ReadOnly

Description
The "ReadOnly" property specifies whether the text box is read-only.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.ReadOnly

See also
ControlBarTextBox (Page 3909)

ControlBarTextBox.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the text box can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarTextBox.RequireExplicitUnlock

See also
ControlBarTextBox (Page 3909)

Programming scripts
10.2 WinCC Unified object model

3926 System Manual, 11/2022

ControlBarTextBox.Text

Description
The "Text" property specifies the label of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.Text

See also
ControlBarTextBox (Page 3909)

ControlBarTextBox.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.ToolTipText

See also
ControlBarTextBox (Page 3909)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3927

ControlBarTextBox.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.VerticalTextAlignment

See also
ControlBarTextBox (Page 3909)

ControlBarTextBox.Visible

Description
The "Visible" property specifies whether the text box is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Visible

Programming scripts
10.2 WinCC Unified object model

3928 System Manual, 11/2022

See also
ControlBarTextBox (Page 3909)

ControlBarTextBox.Width

Description
The "Width" property specifies the width of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Width

See also
ControlBarTextBox (Page 3909)

ControlBarToggleSwitch

Description
The "ControlBarToggleSwitch" object represents a switch of an information bar or toolbar.
You can reference the "ControlBarToggleSwitch" object via the
"HmiControlBarElementCollection" list.

Object type
HmiControlBarToggleSwitchPart

Properties
The "ControlBarToggleSwitch" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3929

• AlternateGraphic
Specifies the graphic for the "pressed" state.

• AlternateText
Specifies the text for the "pressed" state.

• Authorization
Returns the operator authorization.

• BackColor
Specifies the background color.

• Badge
Specifies the identifier of the switch.

• BorderColor
Specifies the line color.

• BorderWidth
Specifies the line thickness.

• Content
Specifies display options for text and graphics.

• CustomID
Returns the custom ID.

• Enabled
Specifies whether the switch can be operated in runtime.

• ForeColor
Specifies the font color.

• Graphic
Specifies the graphic.

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the switch.

• IsAlternateState
Specifies the current state of the switch.

• Mapping
Returns the function of the switch.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

3930 System Manual, 11/2022

• Operability
Returns whether the switch is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the switch is only operable while the associated button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the switch is visible.

• Width
Specifies the width.

Methods
--

ControlBarToggleSwitch.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBackColor

See also
ControlBarToggleSwitch (Page 3929)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3931

ControlBarToggleSwitch.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBorderColor

See also
ControlBarToggleSwitch (Page 3929)

ControlBarToggleSwitch.AlternateGraphic

Description
The "AlternateGraphic" property specifies the graphic of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateGraphic

See also
ControlBarToggleSwitch (Page 3929)

Programming scripts
10.2 WinCC Unified object model

3932 System Manual, 11/2022

ControlBarToggleSwitch.AlternateText

Description
The "AlternateText" property specifies the text of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateText

See also
ControlBarToggleSwitch (Page 3929)

ControlBarToggleSwitch.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the switch of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarToggleSwitch.Authorization

See also
ControlBarToggleSwitch (Page 3929)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3933

ControlBarToggleSwitch.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BackColor

See also
ControlBarToggleSwitch (Page 3929)

ControlBarToggleSwitch.Badge

Description
The "Badge" property specifies the identifier of the switch.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarToggleSwitch.Badge

See also
ControlBarToggleSwitch (Page 3929)

Programming scripts
10.2 WinCC Unified object model

3934 System Manual, 11/2022

ControlBarToggleSwitch.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderColor

See also
ControlBarToggleSwitch (Page 3929)

ControlBarToggleSwitch.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderWidth

See also
ControlBarToggleSwitch (Page 3929)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3935

ControlBarToggleSwitch.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Content

See also
ControlBarToggleSwitch (Page 3929)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

3936 System Manual, 11/2022

See also
ControlBarToggleSwitch.Content (Page 3936)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarToggleSwitch.Content (Page 3936)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3937

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 3936)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarToggleSwitch.Content (Page 3936)

Programming scripts
10.2 WinCC Unified object model

3938 System Manual, 11/2022

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarToggleSwitch.Content (Page 3936)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3939

Syntax
Content.TextPosition

See also
ControlBarToggleSwitch.Content (Page 3936)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarToggleSwitch.Content (Page 3936)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

3940 System Manual, 11/2022

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 3936)

ControlBarToggleSwitch.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarToggleSwitch.CustomID

See also
ControlBarToggleSwitch (Page 3929)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3941

ControlBarToggleSwitch.Enabled

Description
The "Enabled" property specifies whether the switch can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Enabled

See also
ControlBarToggleSwitch (Page 3929)

ControlBarToggleSwitch.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.ForeColor

See also
ControlBarToggleSwitch (Page 3929)

Programming scripts
10.2 WinCC Unified object model

3942 System Manual, 11/2022

ControlBarToggleSwitch.Graphic

Description
The "Graphic" property specifies the graphic of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Graphic

See also
ControlBarToggleSwitch (Page 3929)

ControlBarToggleSwitch.Height

Description
The "Height" property specifies the height of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Height

See also
ControlBarToggleSwitch (Page 3929)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3943

ControlBarToggleSwitch.HotKey

Description
The "HotKey" property returns the hotkey specified for the switch. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
Button.HotKey

See also
ControlBarToggleSwitch (Page 3929)

ControlBarToggleSwitch.IsAlternateState

Description
The "IsAlternateState" property specifies the current state of the switch.
• True: Switch is in "On" state.
• False: Switch is in "Off" state.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.IsAlternateState

Programming scripts
10.2 WinCC Unified object model

3944 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 3929)

ControlBarToggleSwitch.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3945

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

3946 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarToggleSwitch.Mapping

See also
ControlBarToggleSwitch (Page 3929)

ControlBarToggleSwitch.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the switch.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Margin

See also
ControlBarToggleSwitch (Page 3929)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3947

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarToggleSwitch.Margin (Page 3947)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarToggleSwitch.Margin (Page 3947)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

3948 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Right

See also
ControlBarToggleSwitch.Margin (Page 3947)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarToggleSwitch.Margin (Page 3947)

ControlBarToggleSwitch.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3949

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumHeight

See also
ControlBarToggleSwitch (Page 3929)

ControlBarToggleSwitch.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumWidth

See also
ControlBarToggleSwitch (Page 3929)

ControlBarToggleSwitch.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

3950 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumHeight

See also
ControlBarToggleSwitch (Page 3929)

ControlBarToggleSwitch.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumWidth

See also
ControlBarToggleSwitch (Page 3929)

ControlBarToggleSwitch.Operability

Description
The property "Operability" returns whether the switch is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3951

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarToggleSwitch.Operability

See also
ControlBarToggleSwitch (Page 3929)

ControlBarToggleSwitch.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the switch.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Padding

See also
ControlBarToggleSwitch (Page 3929)

Programming scripts
10.2 WinCC Unified object model

3952 System Manual, 11/2022

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarToggleSwitch.Padding (Page 3952)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarToggleSwitch.Padding (Page 3952)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3953

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarToggleSwitch.Padding (Page 3952)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarToggleSwitch.Padding (Page 3952)

Programming scripts
10.2 WinCC Unified object model

3954 System Manual, 11/2022

ControlBarToggleSwitch.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the switch can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarToggleSwitch.RequireExplicitUnlock

See also
ControlBarToggleSwitch (Page 3929)

ControlBarToggleSwitch.Text

Description
The "Text" property specifies the label of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Text

See also
ControlBarToggleSwitch (Page 3929)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3955

ControlBarToggleSwitch.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.ToolTipText

See also
ControlBarToggleSwitch (Page 3929)

ControlBarToggleSwitch.Visible

Description
The "Visible" property specifies whether the switch is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Visible

See also
ControlBarToggleSwitch (Page 3929)

Programming scripts
10.2 WinCC Unified object model

3956 System Manual, 11/2022

ControlBarToggleSwitch.Width

Description
The "Width" property specifies the width of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Width

See also
ControlBarToggleSwitch (Page 3929)

ToolBar.Enabled

Description
The "Enabled" property specifies whether the toolbar can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ToolBar.Enabled

See also
ObjectExplorerControl.ToolBar (Page 3824)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3957

ToolBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ToolBar.Font

See also
ObjectExplorerControl.ToolBar (Page 3824)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
ToolBar.Font (Page 3958)

Programming scripts
10.2 WinCC Unified object model

3958 System Manual, 11/2022

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
ToolBar.Font (Page 3958)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
ToolBar.Font (Page 3958)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3959

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ToolBar.Font (Page 3958)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

3960 System Manual, 11/2022

See also
ToolBar.Font (Page 3958)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
ToolBar.Font (Page 3958)

ToolBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the toolbar.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3961

Access
Read-write

Syntax
ToolBar.Margin

See also
ObjectExplorerControl.ToolBar (Page 3824)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ToolBar.Margin (Page 3961)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

3962 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Left

See also
ToolBar.Margin (Page 3961)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ToolBar.Margin (Page 3961)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3963

Access
Read-write

Syntax
Margin.Top

See also
ToolBar.Margin (Page 3961)

ToolBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the toolbar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ToolBar.Padding

See also
ObjectExplorerControl.ToolBar (Page 3824)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

3964 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Bottom

See also
ToolBar.Padding (Page 3964)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ToolBar.Padding (Page 3964)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3965

Access
Read-write

Syntax
Padding.Right

See also
ToolBar.Padding (Page 3964)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ToolBar.Padding (Page 3964)

ToolBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

3966 System Manual, 11/2022

Access
Read-write

Syntax
ToolBar.ShowToolTips

See also
ObjectExplorerControl.ToolBar (Page 3824)

ToolBar.UseHotKeys

Description
The "UseHotKeys" property specifies whether the shortcut keys for the buttons in the toolbar are
activated.

Type
Bool

Access
Read-write

Syntax
ToolBar.UseHotKeys

See also
ObjectExplorerControl.ToolBar (Page 3824)

ToolBar.Visible

Description
The "Visible" property specifies whether the toolbar is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3967

Access
Read-write

Syntax
ToolBar.Visible

See also
ObjectExplorerControl.ToolBar (Page 3824)

ObjectExplorerControl.Top

Description
The "Top" property sets the value of the Y coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
ObjectExplorerControl.Top

See also
ObjectExplorerControl (Page 3789)

ObjectExplorerControl.Visible

Description
The "Visible" property specifies whether the display is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

3968 System Manual, 11/2022

Access
Read-write

Syntax
ObjectExplorerControl.Visible

See also
ObjectExplorerControl (Page 3789)

ObjectExplorerControl.Width

Description
The "Width" property specifies the width in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ObjectExplorerControl.Width

See also
ObjectExplorerControl (Page 3789)

ObjectExplorerControl.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the display.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3969

• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be positioned
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
You can enable multiple properties by adding integer values or bit operators.

Access
Read-write

Syntax
ObjectExplorerControl.WindowFlags

See also
ObjectExplorerControl (Page 3789)

ObjectExplorerControl.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
display.

Syntax
ObjectExplorerControl.CheckAuthorization()

Parameters
--

Return value
Bool

Programming scripts
10.2 WinCC Unified object model

3970 System Manual, 11/2022

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
ObjectExplorerControl (Page 3789)

ObjectExplorerControl.FireCommand()

Description
The "FireCommand" method executes the command of an element in the toolbar or information
bar (control bar element, e.g. a button) of the display.

Syntax
ObjectExplorerControl.FireCommand(commandId, custom)

Parameters
commandId
Type: Int32
ID of the element of the toolbar or information bar

custom
Type: Bool
Type of element ID:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

Return value
--

See also
ObjectExplorerControl (Page 3789)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3971

ObjectExplorerControl.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
ObjectExplorerControl.PropertyFlashing(propertyName, enable[, value]
[, alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Programming scripts
10.2 WinCC Unified object model

3972 System Manual, 11/2022

Return value
Bool

See also
ObjectExplorerControl (Page 3789)

OpenLinkElement

Description
The "OpenLinkElement" object displays the connection to a database.

Object type
HmiOpenLinkElement

Properties
The "OpenLinkElement" object has the following properties:
• ActiveOnStartup

Returns whether the connection is active on startup.
• Application

Specifies the application.
• ContainedType

Returns the type of the contained properties.
• OpenLinkMode

Returns the connection.
• Parent

Returns the higher-level screen object.
• Pipe

Specifies the data stream.
• Properties

Enables access to the properties of the connected object.

Methods
The "OpenLinkElement" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the connection.
• PropertyFlashing()

Configures flashing of a property.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3973

• Start()
Starts the connection.

• Stop()
Terminates the connection.

OpenLinkElement.ActiveOnStartup

Description
The "ActiveOnStartup" property returns whether the connection is active on startup.

Type
Bool

Access
Read-only

Syntax
OpenLinkElement.ActiveOnStartup

See also
OpenLinkElement (Page 3973)

OpenLinkElement.Application

Description
The "Application" property specifies the application.

Type
Object, HmiApplicationPart

Access
Read-write

Syntax
OpenLinkElement.Application

Programming scripts
10.2 WinCC Unified object model

3974 System Manual, 11/2022

See also
OpenLinkElement (Page 3973)

Application.ApplicationExitCode

Description
The "ApplicationExitCode" property returns the exit code of the application.

Type
UInt32

Access
Read-only

Syntax
Application.ApplicationExitCode

See also
OpenLinkElement.Application (Page 3974)

Application.ApplicationName

Description
The "ApplicationName" property returns the name of the application.

Type
String

Access
Read-only

Syntax
Application.ApplicationName

See also
OpenLinkElement.Application (Page 3974)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3975

Application.ApplicationState

Description
The "ApplicationState" property returns the status of the application.

Type
Int32, HmiApplicationState
Returns the status.
• None (0): None
• Running (1): Running
• Terminated (2): Completed
• Crashed (3): Crashed
• CreateFailed (4): Create failed

Access
Read-only

Syntax
Application.ApplicationState

See also
OpenLinkElement.Application (Page 3974)

Application.Arguments

Description
The "Arguments" property returns the parameters of the application.

Type
String

Access
Read-only

Syntax
Application.Arguments

Programming scripts
10.2 WinCC Unified object model

3976 System Manual, 11/2022

See also
OpenLinkElement.Application (Page 3974)

Application.Environment

Description
The "Environment" property returns the environment of the application.

Type
String

Access
Read-only

Syntax
Application.Environment

See also
OpenLinkElement.Application (Page 3974)

Application.TerminateApplicationOnLeave

Description
The "TerminateApplicationOnLeave" property returns whether the application is terminated on
exit.

Type
Bool

Access
Read-only

Syntax
Application.TerminateApplicationOnLeave

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3977

See also
OpenLinkElement.Application (Page 3974)

Application.WorkingDirectory

Description
The "WorkingDirectory" property returns the working directory of the application.

Type
String

Access
Read-only

Syntax
Application.WorkingDirectory

See also
OpenLinkElement.Application (Page 3974)

OpenLinkElement.ContainedType

Description
The "ContainedType" property returns the type of the contained properties (CustomControl,
SwacComponent, or WidgetType).

Type
String

Access
Read-only

Syntax
OpenLinkElement.ContainedType

Programming scripts
10.2 WinCC Unified object model

3978 System Manual, 11/2022

See also
OpenLinkElement (Page 3973)

OpenLinkElement.OpenLinkMode

Description
The "OpenLinkMode" property returns the type of connection.

Type
Int32, HmiOpenLinkMode
Returns the type of connection.
• None (0): None
• Create (1): Create or end external process.
• CreateAndConnect (2): Create data stream and end data stream.
• Connect (3): Use a named data stream that already exists (connect and disconnect).

Access
Read-only

Syntax
OpenLinkElement.OpenLinkMode

See also
OpenLinkElement (Page 3973)

OpenLinkElement.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3979

Syntax
OpenLinkElement.Parent

See also
OpenLinkElement (Page 3973)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

OpenLinkElement.Pipe

Description
The "Pipe" property specifies the data stream.

Type
Object, HmiPipePart

Access
Read-write

Syntax
OpenLinkElement.Pipe

See also
OpenLinkElement (Page 3973)

Pipe.CharSet

Description
The "CharSet" property specifies the character set of the data stream.

Type
Int32, HmiCharSet

Programming scripts
10.2 WinCC Unified object model

3980 System Manual, 11/2022

Specifies the character set:
• Console (0): Depending on the setting of the operating system during runtime
• UTF8 (1): UTF-8
• UTF16 (2): UTF 16

Access
Read-write

Syntax
Pipe.CharSet

See also
OpenLinkElement.Pipe (Page 3980)

Pipe.LastPropertyRequestResult

Description
The "LastPropertyRequestResult" property returns the result of the last read or write operation
of a property of the data stream.

Type
Int32, HmiRequestResult
Returns the result:
• None (0): None
• Success (1): Success
• AccessDenied (2): Access denied
• InvalidName (3): Invalid name

Access
Read-only

Syntax
Pipe.LastPropertyRequestResult

See also
OpenLinkElement.Pipe (Page 3980)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3981

Pipe.PipeName

Description
The "PipeName" property returns the name of the data stream.

Type
String

Access
Read-only

Syntax
Pipe.PipeName

See also
OpenLinkElement.Pipe (Page 3980)

Pipe.PipeState

Description
The "PipeState" property returns the connection status of the data stream.

Type
Int32, HmiPipeConnectionState
Returns the connection status:
• Unavailable (0): Initial state or closed
• Connected (1): Connected
• Disconnected (2): Disconnected

Access
Read-only

Syntax
Pipe.PipeState

Programming scripts
10.2 WinCC Unified object model

3982 System Manual, 11/2022

See also
OpenLinkElement.Pipe (Page 3980)

Pipe.ReconnectAutomatically

Description
The "ReconnectAutomatically" property returns whether the data stream is automatically
reconnected.

Type
Bool

Access
Read-only

Syntax
Pipe.ReconnectAutomatically

See also
OpenLinkElement.Pipe (Page 3980)

OpenLinkElement.Properties

Description
The "Properties" property enables access to dynamic properties of the connected object (e.g.
interface tags and interface properties of a faceplate type).

Type
Object, HmiDynamicPropertyPart

Access
Read-write

Syntax
OpenLinkElement.Properties

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3983

See also
OpenLinkElement (Page 3973)

OpenLinkElement.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
connection.

Syntax
OpenLinkElement.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
OpenLinkElement (Page 3973)

OpenLinkElement.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Programming scripts
10.2 WinCC Unified object model

3984 System Manual, 11/2022

Syntax
OpenLinkElement.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
OpenLinkElement (Page 3973)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3985

OpenLinkElement.Start()

Description
The "Start" method starts the connection.

Syntax
OpenLinkElement.Start()

Parameters
--

Return value
--

See also
OpenLinkElement (Page 3973)

OpenLinkElement.Stop()

Description
The "Stop" method terminates the connection.

Syntax
OpenLinkElement.Stop()

Parameters
--

Return value
--

See also
OpenLinkElement (Page 3973)

Programming scripts
10.2 WinCC Unified object model

3986 System Manual, 11/2022

OverviewParameterControl

Description
The "OverviewParameterControl" object represents a parameter overview in runtime.

Object type
HmiOverviewParameterControl

Properties
The "OverviewParameterControl" object has the following properties:
• BackColor

Specifies the background color.
• Caption

Specifies the text that is displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.
• CurrentQuality

Returns the poorest quality code of all tags which influence the parameter overview.
• DetailedParameterControl

Specifies the parameter set control of tag values.
• EditMode

Specifies the editing mode for values in runtime.
• Enabled

Specifies whether the parameter overview can be operated in runtime.
• Filter

Specifies a string for filtering parameters.
• Height

Specifies the height.
• Icon

Specifies the icon of the parameter overview.
• Layer

Returns the screen layer in which the parameter overview is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the parameter overview.
• ParameterSetTypeDefault

Specifies the standard parameter set type.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3987

• ParameterView
Defines the appearance of the parameter table.

• Parent
Returns the higher-level screen object.

• RenderingTemplate
Returns the name of the template from which the parameter overview was created.

• ShowFocusVisual
Specifies whether the parameter overview is highlighted when in focus.

• StatusBar
Specifies the information bar of the parameter overview.

• StyleItemClass
Returns the style which is applied to the parameter overview.

• TabIndex
Returns the position of the parameter overview in the tab sequence.

• TimeZone
Specifies the time zone.

• ToolBar
Specifies the toolbar of the parameter overview.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the parameter overview is visible.

• Width
Specifies the width.

• WindowFlags
Specifies the window configuration of the parameter overview.

Methods
The "OverviewParameterControl" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the parameter overview.
• FireCommand()

Configures the occurrence of an event for an element.
• PropertyFlashing()

Configures flashing of a property.

OverviewParameterControl.BackColor

Description
The "BackColor" property specifies the background color.

Programming scripts
10.2 WinCC Unified object model

3988 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
OverviewParameterControl.BackColor

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.Caption

Description
The "Caption" property specifies the text that is displayed in the title bar.

Type
Object, HmiTextPart

Access
Read-write

Syntax
OverviewParameterControl.Caption

See also
OverviewParameterControl (Page 3987)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3989

Access
Read-write

Syntax
Text.Font

See also
OverviewParameterControl.Caption (Page 3989)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 3989)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Programming scripts
10.2 WinCC Unified object model

3990 System Manual, 11/2022

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 3989)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 3989)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3991

Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 3989)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 3989)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Programming scripts
10.2 WinCC Unified object model

3992 System Manual, 11/2022

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 3989)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
OverviewParameterControl.Caption (Page 3989)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3993

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
OverviewParameterControl.Caption (Page 3989)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
OverviewParameterControl.Caption (Page 3989)

Programming scripts
10.2 WinCC Unified object model

3994 System Manual, 11/2022

OverviewParameterControl.CaptionColor

Description
The "CaptionColor" property specifies the color of the title bar.

Type
UInt32

Access
Read-write

Syntax
OverviewParameterControl.CaptionColor

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
parameter overview.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.
• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3995

Syntax
OverviewParameterControl.CurrentQuality

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.DetailedParameterControl

Description
The "DetailedParameterControl" property specifies the parameter set control of tag values.

Type
Object, HmiDetailedParameterControl (Page 2587)

Access
Read-write

Syntax
OverviewParameterControl.DetailedParameterControl

See also
OverviewParameterControl (Page 3987)
DetailedParameterControl (Page 2587)

DetailedParameterControl

Description
DetailedParameterControl (Page 2587)

OverviewParameterControl.EditMode

Description
The "EditMode" property specifies the editing mode for values in runtime.

Type
Int32, HmiEditMode

Programming scripts
10.2 WinCC Unified object model

3996 System Manual, 11/2022

Specifies the editing mode:
• None (0): No access
• Update (1): Update values
• Create (2): Create values
• Delete (4): Delete values

Access
Read-write

Syntax
OverviewParameterControl.EditMode

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.Enabled

Description
The "Enabled" property specifies whether the parameter overview can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
OverviewParameterControl.Enabled

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.Filter

Description
The "Filter" property specifies a string for filtering parameters.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3997

The syntax of the filter string corresponds to the WHERE clause of an SQL command.

Type
String

Access
Read-write

Syntax
OverviewParameterControl.Filter

Operators
The following operators can be used in the filter string:

Operator Description Example
= equal to AlarmClassName = 'demo'
IS NOT string is not equal to the string string AlarmText4 IS NOT

'Text5'
<> not equal Value <> 0.0
> greater than ModificationTime >

'11.08.2016'
< less than Value < 75.0
>= greater than or equal to Value >= 25.0
<= less than or equal to Value <= 75.0
OR, || logical OR State = 1 OR State = 3
AND, && logical AND EventText = 'Text1' AND

Origin = 'Motor'
BETWEEN within a range Value BETWEEN 25.0 AND

75.0
NOT BETWEEN outside a range Value NOT BETWEEN 25.0

AND 75.0
LIKE string corresponds to the string string Name LIKE 'Motor*'
NOT LIKE string does not correspond to the string string Name NOT LIKE 'Valve*'
IN (v1, v2, …) corresponds to one or more values State IN (1, 4, 7)
NOT IN (v1, v2, …) does not correspond to one or more values State NOT IN (0, 2, 3,

5, 6)
IS NULL compares to zero (missing data) Context IS NULL
IS NOT NULL compares to zero (unknown data) Context IS NOT NULL

Programming scripts
10.2 WinCC Unified object model

3998 System Manual, 11/2022

Wildcards
The following wildcards can be used for characters of filter strings:

Wildcard Description Example
* replaces 0, 1 or more characters Name LIKE 'Motor*'
? replaces exactly 1 character Name = 'Recipe?'

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.Height

Description
The "Height" property specifies the height in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
OverviewParameterControl.Height

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.Icon

Description
The "Icon" property specifies the icon of the parameter overview.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 3999

Access
Read-write

Syntax
OverviewParameterControl.Icon

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.Layer

Description
The "Layer" property returns the screen layer in which the parameter overview is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
OverviewParameterControl.Layer

See also
OverviewParameterControl (Page 3987)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4000 System Manual, 11/2022

Syntax
Layer.MaximumZoom

See also
OverviewParameterControl.Layer (Page 4000)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
OverviewParameterControl.Layer (Page 4000)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4001

Syntax
Layer.Name

See also
OverviewParameterControl.Layer (Page 4000)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
OverviewParameterControl.Layer (Page 4000)

OverviewParameterControl.Left

Description
The "Left" property sets the value of the X coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4002 System Manual, 11/2022

Syntax
OverviewParameterControl.Left

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
OverviewParameterControl.Margin

See also
OverviewParameterControl (Page 3987)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4003

See also
OverviewParameterControl.Margin (Page 4003)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
OverviewParameterControl.Margin (Page 4003)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

Programming scripts
10.2 WinCC Unified object model

4004 System Manual, 11/2022

See also
OverviewParameterControl.Margin (Page 4003)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
OverviewParameterControl.Margin (Page 4003)

OverviewParameterControl.Name

Description
The "Name" property returns the name of the parameter overview.

Type
String

Access
Read-only

Syntax
OverviewParameterControl.Name

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4005

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.ParameterSetTypeDefault

Description
The "ParameterSetTypeDefault" property specifies the standard parameter set type.

Type
Object, HmiParameterSetType (Page 1234)

Access
Read-write

Syntax
OverviewParameterControl.ParameterSetTypeDefault

See also
OverviewParameterControl (Page 3987)
ParameterSetType (Page 1234)

ParameterSetType

Description
ParameterSetType (Page 1234)

OverviewParameterControl.ParameterView

Description
The "ParameterView" property defines the appearance of the parameter table.

Type
Object, HmiDataGridViewPart (Page 4007)

Programming scripts
10.2 WinCC Unified object model

4006 System Manual, 11/2022

Access
Read-write

Syntax
OverviewParameterControl.ParameterView

See also
DataGridView (Page 4007)

DataGridView

DataGridView.AllowFilter

Description
The "AllowFilter" property specifies whether filtering of columns is permitted.

Type
Bool

Access
Read-write

Syntax
DataGridView.AllowFilter

See also
OverviewParameterControl.ParameterView (Page 4006)

DataGridView.AllowSort

Description
The "AllowSort" property specifies whether the sorting of columns is permitted.
• True: Activates the sorting and sets the "AllowSort" property of all columns to "true".
• False: Disables the sorting for all columns. The individual column properties remain

unchanged.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4007

Type
Bool

Access
Read-write

Syntax
DataGridView.AllowSort

See also
OverviewParameterControl.ParameterView (Page 4006)

DataGridView.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
DataGridView.AlternateBackColor

See also
OverviewParameterControl.ParameterView (Page 4006)

DataGridView.AlternateForeColor

Description
The "AlternateForeColor" property specifies the flashing color for the text.

Programming scripts
10.2 WinCC Unified object model

4008 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
DataGridView.AlternateForeColor

See also
OverviewParameterControl.ParameterView (Page 4006)

DataGridView.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
DataGridView.BackColor

See also
OverviewParameterControl.ParameterView (Page 4006)

DataGridView.CellPadding

Description
The "CellPadding" property specifies the inner spacing of the content from the cell border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4009

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
DataGridView.CellPadding

See also
OverviewParameterControl.ParameterView (Page 4006)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
DataGridView.CellPadding (Page 4009)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

4010 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
DataGridView.CellPadding (Page 4009)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
DataGridView.CellPadding (Page 4009)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4011

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
DataGridView.CellPadding (Page 4009)

DataGridView.ColoringMode

Description
The "ColoringMode" property specifies whether alternate coloring of every other row or column
is enabled.

Type
Int32, HmiGridColoringMode
Specifies the type of the coloring:
• None (0): None
• Columns (1): Color the columns alternately.
• Rows (2): Color the rows alternately.

Access
Read-write

Syntax
DataGridView.ColoringMode

See also
OverviewParameterControl.ParameterView (Page 4006)

Programming scripts
10.2 WinCC Unified object model

4012 System Manual, 11/2022

DataGridView.Columns

Description
The "Columns" property represents the quantity of columns.

Type
Object, HmiDataGridColumnCollection (Page 4013)

Access
Read-only

Syntax
DataGridView.Columns

See also
OverviewParameterControl.ParameterView (Page 4006)
HmiDataGridColumnCollection (Page 4013)

HmiDataGridColumnCollection

Description
The "HmiDataGridColumnCollection" object is a list of all columns ("DataGridColumn" objects) of
the table.
You reference a "HmiDataGridColumnCollection" object via the DataGridView.Columns
property.

Use
The "HmiDataGridColumnCollection" object is a list and can be counted and enumerated. You
can access the "HmiDataGridColumnCollection" list using the index or the tag name.

Object type
HmiDataGridColumnCollection

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4013

Properties
The "HmiDataGridColumnCollection" object has the following properties:
• Count

Returns the number of columns in the "HmiDataGridColumnCollection" list.

Methods
The "HmiDataGridColumnCollection" object has the following methods:
• Item()

Returns a column of the "HmiDataGridColumnCollection" list.

See also
DataGridView.Columns (Page 4013)

HmiDataGridColumnCollection.Count

Description
The "Count" property returns the number of columns in the "HmiDataGridColumnCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiDataGridColumnCollection.Count

See also
HmiDataGridColumnCollection (Page 4013)

HmiDataGridColumnCollection.Item()

Description
The "Item" method returns a column of the "HmiDataGridColumnCollection" list.

Programming scripts
10.2 WinCC Unified object model

4014 System Manual, 11/2022

Syntax
HmiDataGridColumnCollection[.Item](HmiDataGridColumnName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiDataGridColumnCollection" object.

Parameters
HmiDataGridColumnName
Type: String
Name of the column

Return value
Object, HmiDataGridColumnPartBase (Page 4015)

See also
HmiDataGridColumnCollection (Page 4013)
OverviewParameterControlColumn (Page 4015)

OverviewParameterControlColumn

Description
The "OverviewParameterControlColumn" object represents a value column.

Object type
HmiOverviewParameterControlColumnPart

Properties
The "OverviewParameterControlColumn" object has the following properties:
• AllowSort

Specifies whether column sorting is allowed.
• BackColor

Specifies the background color.
• Content

Specifies display options for text and graphics.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4015

• Enabled
Specifies whether the column can be operated in runtime.

• ForeColor
Specifies the font color of the text.

• Header
Specifies the properties of the column header.

• Key
Corresponds to the column definition from the "ConsideredColumns" property of the
connected source.

• MaximumWidth
Specifies the maximum width.

• MinimumWidth
Specifies the minimum width.

• Name
Returns the name of the column.

• OutputFormat
Specifies the format for displaying values.

• OverviewParameterControlBlock
Specifies the information blocks.

• SortDirection
Specifies the sorting direction.

• SortOrder
Specifies the sorting order.

• Visible
Specifies whether the column is visible.

• Width
Specifies the width.

Methods
--

See also
HmiDataGridColumnCollection (Page 4013)

OverviewParameterControlColumn.AllowSort

Description
The "AllowSort" property specifies whether column sorting is permitted.
This property is ignored if the parent object has the "AllowSort" property set to "False".

Programming scripts
10.2 WinCC Unified object model

4016 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
OverviewParameterControlColumn.AllowSort

See also
OverviewParameterControlColumn (Page 4015)

OverviewParameterControlColumn.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
OverviewParameterControlColumn.BackColor

See also
OverviewParameterControlColumn (Page 4015)

OverviewParameterControlColumn.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4017

Access
Read-write

Syntax
OverviewParameterControlColumn.Content

See also
OverviewParameterControlColumn (Page 4015)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
OverviewParameterControlColumn.Content (Page 4017)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Programming scripts
10.2 WinCC Unified object model

4018 System Manual, 11/2022

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
OverviewParameterControlColumn.Content (Page 4017)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4019

Syntax
Content.HorizontalTextAlignment

See also
OverviewParameterControlColumn.Content (Page 4017)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
OverviewParameterControlColumn.Content (Page 4017)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4020 System Manual, 11/2022

Syntax
Content.SplitRatio

See also
OverviewParameterControlColumn.Content (Page 4017)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
OverviewParameterControlColumn.Content (Page 4017)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4021

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
OverviewParameterControlColumn.Content (Page 4017)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

Programming scripts
10.2 WinCC Unified object model

4022 System Manual, 11/2022

See also
OverviewParameterControlColumn.Content (Page 4017)

OverviewParameterControlColumn.Enabled

Description
The "Enabled" property specifies whether the column can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
OverviewParameterControlColumn.Enabled

See also
OverviewParameterControlColumn (Page 4015)

OverviewParameterControlColumn.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
OverviewParameterControlColumn.ForeColor

See also
OverviewParameterControlColumn (Page 4015)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4023

OverviewParameterControlColumn.Header

Description
The "Header" property specifies the properties of the column header.

Type
Object, HmiDataGridColumnHeaderPart

Access
Read-write

Syntax
OverviewParameterControlColumn.Header

See also
OverviewParameterControlColumn (Page 4015)

DataGridColumnHeader.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
DataGridColumnHeader.Content

See also
OverviewParameterControlColumn.Header (Page 4024)

Programming scripts
10.2 WinCC Unified object model

4024 System Manual, 11/2022

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
DataGridColumnHeader.Content (Page 4024)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4025

• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect
ratio is not changed.

• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
DataGridColumnHeader.Content (Page 4024)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
DataGridColumnHeader.Content (Page 4024)

Programming scripts
10.2 WinCC Unified object model

4026 System Manual, 11/2022

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
DataGridColumnHeader.Content (Page 4024)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
DataGridColumnHeader.Content (Page 4024)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4027

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
DataGridColumnHeader.Content (Page 4024)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

4028 System Manual, 11/2022

Access
Read-write

Syntax
Content.TextTrimming

See also
DataGridColumnHeader.Content (Page 4024)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
DataGridColumnHeader.Content (Page 4024)

DataGridColumnHeader.Graphic

Description
The "Graphic" property specifies the graphic of the column header.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4029

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Graphic

See also
OverviewParameterControlColumn.Header (Page 4024)

DataGridColumnHeader.Text

Description
The "Text" property specifies the label of the column header.

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Text

See also
OverviewParameterControlColumn.Header (Page 4024)

OverviewParameterControlColumn.Key

Description
The "Key" property corresponds to the column definition from the "ConsideredColumns"
property of the connected source.

Programming scripts
10.2 WinCC Unified object model

4030 System Manual, 11/2022

Type
String

Access
Read-only

Syntax
OverviewParameterControlColumn.Key

See also
OverviewParameterControlColumn (Page 4015)

OverviewParameterControlColumn.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
OverviewParameterControlColumn.MaximumWidth

See also
OverviewParameterControlColumn (Page 4015)

OverviewParameterControlColumn.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4031

Access
Read-write

Syntax
OverviewParameterControlColumn.MinimumWidth

See also
OverviewParameterControlColumn (Page 4015)

OverviewParameterControlColumn.Name

Description
The "Name" property returns the name of the column.

Type
String

Access
Read-only

Syntax
OverviewParameterControlColumn.Name

See also
OverviewParameterControlColumn (Page 4015)

OverviewParameterControlColumn.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying values.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4032 System Manual, 11/2022

Syntax
OverviewParameterControlColumn.OutputFormat

See also
OverviewParameterControlColumn (Page 4015)

OverviewParameterControlColumn.OverviewParameterControlBlock

Description
The "OverviewParameterControlBlock" property specifies the information blocks.

Type
Int32, HmiOverviewParameterControlBlock
Specifies the information blocks:
• None (0): None
• ParameterSetID (1): ID
• LastUser (2): Last user
• LastAccess (3): Last access
• ParameterSetElementOdd (4): Generic columns (odd numbering)
• ParameterSetElementEven (5): Generic columns (even numbering)

Access
Read-write

Syntax
OverviewParameterControlColumn.OverviewParameterControlBlock

See also
OverviewParameterControlColumn (Page 4015)

OverviewParameterControlColumn.SortDirection

Description
The "SortDirection" property specifies the sorting direction.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4033

Type
Int32, HmiSortDirection
Specifies the sorting order:
• None (0): None
• Ascending (1): Ascending
• Descending (2): Descending

Access
Read-write

Syntax
OverviewParameterControlColumn.SortDirection

See also
OverviewParameterControlColumn (Page 4015)

OverviewParameterControlColumn.SortOrder

Description
The "SortOrder" property specifies the order of the sorting.
The sorting index starts at "1" (highest priority) in ascending order. Zero is ignored.

Type
UInt16

Access
Read-write

Syntax
OverviewParameterControlColumn.SortOrder

See also
OverviewParameterControlColumn (Page 4015)

Programming scripts
10.2 WinCC Unified object model

4034 System Manual, 11/2022

OverviewParameterControlColumn.Visible

Description
The "Visible" property specifies whether the column is visible.

Type
Bool

Access
Read-write

Syntax
OverviewParameterControlColumn.Visible

See also
OverviewParameterControlColumn (Page 4015)

OverviewParameterControlColumn.Width

Description
The "Width" property specifies the width in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
OverviewParameterControlColumn.Width

See also
OverviewParameterControlColumn (Page 4015)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4035

DataGridView.Font

Description
The "Font" property specifies the font of the cells.

Type
Object, HmiFontPart

Access
Read-write

Syntax
DataGridView.Font

See also
OverviewParameterControl.ParameterView (Page 4006)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
DataGridView.Font (Page 4036)

Programming scripts
10.2 WinCC Unified object model

4036 System Manual, 11/2022

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
DataGridView.Font (Page 4036)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
DataGridView.Font (Page 4036)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4037

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
DataGridView.Font (Page 4036)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

4038 System Manual, 11/2022

See also
DataGridView.Font (Page 4036)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
DataGridView.Font (Page 4036)

DataGridView.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4039

Access
Read-write

Syntax
DataGridView.ForeColor

See also
OverviewParameterControl.ParameterView (Page 4006)

DataGridView.GridLineColor

Description
The "GridLineColor" property specifies the color of grid lines.

Type
UInt32

Access
Read-write

Syntax
DataGridView.GridLineColor

See also
OverviewParameterControl.ParameterView (Page 4006)

DataGridView.GridLineVisibility

Description
The "GridLineVisibility" property specifies the visibility of the grid lines.

Type
Int32, HmiSimpleGridLine

Programming scripts
10.2 WinCC Unified object model

4040 System Manual, 11/2022

Specifies the grid lines:
• None (0): None
• Vertikal (1): Vertical
• Horizontal (2): Horizontal

Access
Read-write

Syntax
DataGridView.GridLineVisibility

See also
OverviewParameterControl.ParameterView (Page 4006)

DataGridView.GridLineWidth

Description
The "GridLineWidth" property specifies the thickness of the grid lines in pixels.

Type
UInt8

Access
Read-write

Syntax
DataGridView.GridLineWidth

See also
OverviewParameterControl.ParameterView (Page 4006)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4041

DataGridView.GridSelectionMode

Description
The "GridSelectionMode" property specifies whether multiple selection is enabled in the table
content.

Type
Int32, HmiGridSelectionMode
Specifies the type of the selection:
• None (0): None
• Single (1): Only single selection
• Multi (2): Multiple selection

Access
Read-write

Syntax
DataGridView.GridSelectionMode

See also
OverviewParameterControl.ParameterView (Page 4006)

DataGridView.HeaderSettings

Description
The "HeaderSettings" property specifies the settings for all column headers in the table.

Type
Object, HmiDataGridHeaderSettingsPart

Access
Read-write

Syntax
DataGridView.HeaderSettings

Programming scripts
10.2 WinCC Unified object model

4042 System Manual, 11/2022

See also
OverviewParameterControl.ParameterView (Page 4006)

DataGridHeaderSettings.AllowColumnReorder

Description
The "AllowColumnReorder" property specifies whether the order of the columns can be changed.

Type
Bool

Access
Read-write

Syntax
DataGridHeaderSettings.AllowColumnReorder

See also
DataGridView.HeaderSettings (Page 4042)

DataGridHeaderSettings.AllowColumnResize

Description
The "AllowColumnResize" property specifies whether the width of the columns can be changed.

Type
Bool

Access
Read-write

Syntax
DataGridHeaderSettings.AllowColumnResize

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4043

See also
DataGridView.HeaderSettings (Page 4042)

DataGridHeaderSettings.ColumnHeaderType

Description
The "ColumnHeaderType" property specifies the type of content of a column header.

Type
Int32, HmiDataGridHeaderType
Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Access
Read-write

Syntax
DataGridHeaderSettings.ColumnHeaderType

See also
DataGridView.HeaderSettings (Page 4042)

DataGridHeaderSettings.Font

Description
The "Font" property specifies the font of the headers.

Type
Object, HmiFontPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4044 System Manual, 11/2022

Syntax
DataGridHeaderSettings.Font

See also
DataGridView.HeaderSettings (Page 4042)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
DataGridHeaderSettings.Font (Page 4044)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4045

Syntax
Font.Name

See also
DataGridHeaderSettings.Font (Page 4044)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
DataGridHeaderSettings.Font (Page 4044)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Programming scripts
10.2 WinCC Unified object model

4046 System Manual, 11/2022

Access
Read-write

Syntax
Font.StrikeOut

See also
DataGridHeaderSettings.Font (Page 4044)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
DataGridHeaderSettings.Font (Page 4044)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4047

Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
DataGridHeaderSettings.Font (Page 4044)

DataGridHeaderSettings.HeaderBackColor

Description
The "HeaderBackColor" property specifies the background color of the header.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderBackColor

See also
DataGridView.HeaderSettings (Page 4042)

Programming scripts
10.2 WinCC Unified object model

4048 System Manual, 11/2022

DataGridHeaderSettings.HeaderForeColor

Description
The "HeaderForeColor" property specifies the font color of the headers.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderForeColor

See also
DataGridView.HeaderSettings (Page 4042)

DataGridHeaderSettings.HeaderGridLineColor

Description
The "HeaderGridLineColor" property specifies the color of the separation line between column
headers.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderGridLineColor

See also
DataGridView.HeaderSettings (Page 4042)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4049

DataGridHeaderSettings.HeaderSelectionBackColor

Description
The "HeaderSelectionBackColor" property specifies the background color of the header of a
selected line or column.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderSelectionBackColor

See also
DataGridView.HeaderSettings (Page 4042)

DataGridHeaderSettings.HeaderSelectionForeColor

Description
The "HeaderSelectionForeColor" property specifies the font color of the header of a selected line
or column.

Type
UInt32

Access
Read-write

Syntax
Object.HeaderSelectionForeColor

Object
Required. An object from the "Availability" section.

Programming scripts
10.2 WinCC Unified object model

4050 System Manual, 11/2022

See also
DataGridView.HeaderSettings (Page 4042)

DataGridHeaderSettings.RowHeaderType

Description
The "RowHeaderType" property specifies the type of content of a row header.

Type
Int32, HmiDataGridHeaderType
Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Access
Read-write

Syntax
DataGridHeaderSettings.RowHeaderType

See also
DataGridView.HeaderSettings (Page 4042)

DataGridView.HorizontalScrollBarVisibility

Description
The "HorizontalScrollBarVisibility" property specifies the visibility of the horizontal scroll bar of
the display.

Type
Int32, HmiScrollBarVisibility

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4051

Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
DataGridView.HorizontalScrollBarVisibility

See also
OverviewParameterControl.ParameterView (Page 4006)

DataGridView.RowHeight

Description
The "RowHeight" property specifies the height of all rows in the table in DIU (Device Independent
Unit).
"0" corresponds to a automatic mechanism, which adjusts the height of each line according
to the font size and number of paragraphs.

Type
UInt8

Access
Read-write

Syntax
DataGridView.RowHeight

See also
OverviewParameterControl.ParameterView (Page 4006)

Programming scripts
10.2 WinCC Unified object model

4052 System Manual, 11/2022

DataGridView.SelectFullRow

Description
The "SelectFullRow" property specifies whether only the cell or the entire row is included in the
selection.

Type
Bool

Access
Read-write

Syntax
DataGridView.SelectFullRow

See also
OverviewParameterControl.ParameterView (Page 4006)

DataGridView.SelectionBackColor

Description
The "SelectionBackColor" property specifies the background color of the selected cells.

Type
UInt32

Access
Read-write

Syntax
DataGridView.SelectionBackColor

See also
OverviewParameterControl.ParameterView (Page 4006)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4053

DataGridView.SelectionBorderColor

Description
The "SelectionBorderColor" property specifies the border color of the selected cells.

Type
UInt8

Access
Read-write

Syntax
DataGridView.SelectionBorderColor

See also
OverviewParameterControl.ParameterView (Page 4006)

DataGridView.SelectionBorderWidth

Description
The "SelectionBorderWidth" property specifies the border width of the selected cells.

Type
UInt8

Access
Read-write

Syntax
DataGridView.SelectionBorderWidth

See also
OverviewParameterControl.ParameterView (Page 4006)

Programming scripts
10.2 WinCC Unified object model

4054 System Manual, 11/2022

DataGridView.SelectionForeColor

Description
The "SelectionForeColor" property specifies the font color of the selected cells.

Type
UInt32

Access
Read-write

Syntax
DataGridView.SelectionForeColor

See also
OverviewParameterControl.ParameterView (Page 4006)

DataGridView.VerticalScrollBarVisibility

Description
The "VerticalScrollBarVisibility" property specifies the visibility of the vertical scroll bar of the
display.

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
DataGridView.VerticalScrollBarVisibility

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4055

See also
OverviewParameterControl.ParameterView (Page 4006)

OverviewParameterControl.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
OverviewParameterControl.Parent

See also
OverviewParameterControl (Page 3987)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

OverviewParameterControl.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the parameter
overview was created.

Type
String

Programming scripts
10.2 WinCC Unified object model

4056 System Manual, 11/2022

Access
Read-only

Syntax
OverviewParameterControl.RenderingTemplate

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the parameter overview is highlighted when
in focus.

Type
Bool

Access
Read-write

Syntax
OverviewParameterControl.ShowFocusVisual

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.StatusBar

Description
The "StatusBar" property specifies the information bar of the parameter overview.

Type
Object, HmiStatusBarPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4057

Access
Read-write

Syntax
OverviewParameterControl.StatusBar

See also
OverviewParameterControl (Page 3987)

StatusBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
StatusBar.BackColor

See also
OverviewParameterControl.StatusBar (Page 4057)

StatusBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
information bar.

Type
Object, HmiControlBarElementCollection (Page 4059)

Programming scripts
10.2 WinCC Unified object model

4058 System Manual, 11/2022

Access
Read-only

Syntax
StatusBar.Elements

See also
OverviewParameterControl.StatusBar (Page 4057)
HmiControlBarElementCollection (Page 4059)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
StatusBar.Elements (Page 4058)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4059

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 4059)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Programming scripts
10.2 WinCC Unified object model

4060 System Manual, 11/2022

Return value
Object, HmiControlBarElementPartBase (Page 4076)

See also
HmiControlBarElementCollection (Page 4059)
Control Bar Elements (Page 4076)

Control Bar Elements

Description
Control Bar Elements (Page 4076)

StatusBar.Enabled

Description
The "Enabled" property specifies whether the information bar can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
StatusBar.Enabled

See also
OverviewParameterControl.StatusBar (Page 4057)

StatusBar.Font

Description
The "Font" property specifies the font of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4061

Type
Object, HmiFontPart

Access
Read-write

Syntax
StatusBar.Font

See also
OverviewParameterControl.StatusBar (Page 4057)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
StatusBar.Font (Page 4061)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Programming scripts
10.2 WinCC Unified object model

4062 System Manual, 11/2022

Type
String

Access
Read-write

Syntax
Font.Name

See also
StatusBar.Font (Page 4061)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
StatusBar.Font (Page 4061)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4063

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
StatusBar.Font (Page 4061)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
StatusBar.Font (Page 4061)

Programming scripts
10.2 WinCC Unified object model

4064 System Manual, 11/2022

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
StatusBar.Font (Page 4061)

StatusBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the information bar.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4065

Syntax
StatusBar.Margin

See also
OverviewParameterControl.StatusBar (Page 4057)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
StatusBar.Margin (Page 4065)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4066 System Manual, 11/2022

Syntax
Margin.Left

See also
StatusBar.Margin (Page 4065)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
StatusBar.Margin (Page 4065)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4067

Syntax
Margin.Top

See also
StatusBar.Margin (Page 4065)

StatusBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the information
bar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
StatusBar.Padding

See also
OverviewParameterControl.StatusBar (Page 4057)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4068 System Manual, 11/2022

Syntax
Padding.Bottom

See also
StatusBar.Padding (Page 4068)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
StatusBar.Padding (Page 4068)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4069

Syntax
Padding.Right

See also
StatusBar.Padding (Page 4068)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
StatusBar.Padding (Page 4068)

StatusBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4070 System Manual, 11/2022

Syntax
StatusBar.ShowToolTips

See also
OverviewParameterControl.StatusBar (Page 4057)

StatusBar.Visible

Description
The "Visible" property specifies whether the information bar is visible.

Type
Bool

Access
Read-write

Syntax
StatusBar.Visible

See also
OverviewParameterControl.StatusBar (Page 4057)

OverviewParameterControl.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the parameter overview.

Type
String

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4071

Syntax
OverviewParameterControl.StyleItemClass

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.TabIndex

Description
The "TabIndex" property returns the position of the parameter overview in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
OverviewParameterControl.TabIndex

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.TimeZone

Description
The "TimeZone" property specifies the time zone.

Type
Int32, HmiTimeZone

Access
Read-write

Syntax
OverviewParameterControl.TimeZone

Programming scripts
10.2 WinCC Unified object model

4072 System Manual, 11/2022

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.ToolBar

Description
The "ToolBar" property specifies the toolbar of the parameter overview.

Type
Object, HmiToolBarPart

Access
Read-write

Syntax
OverviewParameterControl.ToolBar

See also
OverviewParameterControl (Page 3987)

ToolBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ToolBar.BackColor

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4073

See also
OverviewParameterControl.ToolBar (Page 4073)

ToolBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
toolbar.

Type
Object, HmiControlBarElementCollection (Page 4074)

Access
Read-only

Syntax
ToolBar.Elements

See also
OverviewParameterControl.ToolBar (Page 4073)
HmiControlBarElementCollection (Page 4074)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Programming scripts
10.2 WinCC Unified object model

4074 System Manual, 11/2022

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
ToolBar.Elements (Page 4074)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 4074)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4075

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 4076)

See also
HmiControlBarElementCollection (Page 4074)
Control Bar Elements (Page 4076)

Control Bar Elements

ControlBarButton

Description
The "ControlBarButton" object represents a button of an information bar or toolbar.
You can reference the "ControlBarButton" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarButtonPart

Programming scripts
10.2 WinCC Unified object model

4076 System Manual, 11/2022

Properties
The "ControlBarButton" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the label of the button.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the button can be operated in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• HotKey

Returns the hotkey specified for the button.
• Mapping

Returns the function of the button.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4077

• Operability
Returns whether the button is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the button is only operable while the corresponding button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the button is visible.

• Width
Specifies the width.

Methods
--

ControlBarButton.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBackColor

See also
ControlBarButton (Page 4076)

Programming scripts
10.2 WinCC Unified object model

4078 System Manual, 11/2022

ControlBarButton.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBorderColor

See also
ControlBarButton (Page 4076)

ControlBarButton.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the button of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarButton.Authorization

See also
ControlBarButton (Page 4076)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4079

ControlBarButton.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BackColor

See also
ControlBarButton (Page 4076)

ControlBarButton.Badge

Description
The "Badge" property specifies the label of the button.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarButton.Badge

See also
ControlBarButton (Page 4076)

Programming scripts
10.2 WinCC Unified object model

4080 System Manual, 11/2022

ControlBarButton.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BorderColor

See also
ControlBarButton (Page 4076)

ControlBarButton.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarButton.BorderWidth

See also
ControlBarButton (Page 4076)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4081

ControlBarButton.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarButton.Content

See also
ControlBarButton (Page 4076)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

4082 System Manual, 11/2022

See also
ControlBarButton.Content (Page 4082)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarButton.Content (Page 4082)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4083

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarButton.Content (Page 4082)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarButton.Content (Page 4082)

Programming scripts
10.2 WinCC Unified object model

4084 System Manual, 11/2022

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarButton.Content (Page 4082)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4085

Syntax
Content.TextPosition

See also
ControlBarButton.Content (Page 4082)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarButton.Content (Page 4082)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

4086 System Manual, 11/2022

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarButton.Content (Page 4082)

ControlBarButton.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarButton.CustomID

See also
ControlBarButton (Page 4076)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4087

ControlBarButton.Enabled

Description
The "Enabled" property specifies whether the button can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Enabled

See also
ControlBarButton (Page 4076)

ControlBarButton.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.ForeColor

See also
ControlBarButton (Page 4076)

Programming scripts
10.2 WinCC Unified object model

4088 System Manual, 11/2022

ControlBarButton.Graphic

Description
The "Graphic" property specifies the graphic of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Graphic

See also
ControlBarButton (Page 4076)

ControlBarButton.Height

Description
The "Height" property specifies the height of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Height

See also
ControlBarButton (Page 4076)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4089

ControlBarButton.HotKey

Description
The "HotKey" property returns the hotkey specified for the button. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
ControlBarButton.HotKey

See also
ControlBarButton (Page 4076)

ControlBarButton.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent

Programming scripts
10.2 WinCC Unified object model

4090 System Manual, 11/2022

• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4091

• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarButton.Mapping

See also
ControlBarButton (Page 4076)

ControlBarButton.Margin

Description
The "Margin" property specifies the surrounded outer distance of the button.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4092 System Manual, 11/2022

Syntax
ControlBarButton.Margin

See also
ControlBarButton (Page 4076)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarButton.Margin (Page 4092)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4093

Syntax
Margin.Left

See also
ControlBarButton.Margin (Page 4092)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarButton.Margin (Page 4092)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4094 System Manual, 11/2022

Syntax
Margin.Top

See also
ControlBarButton.Margin (Page 4092)

ControlBarButton.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumHeight

See also
ControlBarButton (Page 4076)

ControlBarButton.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4095

Syntax
ControlBarButton.MaximumWidth

See also
ControlBarButton (Page 4076)

ControlBarButton.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumHeight

See also
ControlBarButton (Page 4076)

ControlBarButton.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4096 System Manual, 11/2022

Syntax
ControlBarButton.MinimumWidth

See also
ControlBarButton (Page 4076)

ControlBarButton.Operability

Description
The "Operability" property returns whether the button is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarButton.Operability

See also
ControlBarButton (Page 4076)

ControlBarButton.Padding

Description
The "Padding" property specifies the distance of the content from the border of the button.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4097

Access
Read-write

Syntax
ControlBarButton.Padding

See also
ControlBarButton (Page 4076)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarButton.Padding (Page 4097)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4098 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Left

See also
ControlBarButton.Padding (Page 4097)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarButton.Padding (Page 4097)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4099

Access
Read-write

Syntax
Padding.Top

See also
ControlBarButton.Padding (Page 4097)

ControlBarButton.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the button can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarButton.RequireExplicitUnlock

See also
ControlBarButton (Page 4076)

ControlBarButton.Text

Description
The "Text" property specifies the label of the button.

Type
String

Programming scripts
10.2 WinCC Unified object model

4100 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.Text

See also
ControlBarButton (Page 4076)

ControlBarButton.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.ToolTipText

See also
ControlBarButton (Page 4076)

ControlBarButton.Visible

Description
The "Visible" property specifies whether the button is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4101

Access
Read-write

Syntax
ControlBarButton.Visible

See also
ControlBarButton (Page 4076)

ControlBarButton.Width

Description
The "Width" property specifies the width of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Width

See also
ControlBarButton (Page 4076)

ControlBarDisplay

Description
The "ControlBarDisplay" object represents a display area for text and graphics of an information
bar or toolbar.
You can reference the "ControlBarDisplay" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarDisplayPart

Programming scripts
10.2 WinCC Unified object model

4102 System Manual, 11/2022

Properties
The "ControlBarDisplay" object has the following properties:
• Authorization

Returns the operator authorization.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the display area is enabled in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• Mapping

Returns the function of the display area.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the display area is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the display area is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4103

• Visible
Specifies whether the display area is visible.

• Width
Specifies the width.

Methods
--

ControlBarDisplay.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the display.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarDislay.Authorization

See also
ControlBarDisplay (Page 4102)

ControlBarDisplay.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4104 System Manual, 11/2022

Syntax
ControlBarDislay.Content

See also
ControlBarDisplay (Page 4102)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarDisplay.Content (Page 4104)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4105

Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarDisplay.Content (Page 4104)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

Programming scripts
10.2 WinCC Unified object model

4106 System Manual, 11/2022

See also
ControlBarDisplay.Content (Page 4104)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarDisplay.Content (Page 4104)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4107

See also
ControlBarDisplay.Content (Page 4104)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarDisplay.Content (Page 4104)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming

Programming scripts
10.2 WinCC Unified object model

4108 System Manual, 11/2022

Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarDisplay.Content (Page 4104)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarDisplay.Content (Page 4104)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4109

ControlBarDisplay.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarDislay.CustomID

See also
ControlBarDisplay (Page 4102)

ControlBarDisplay.Enabled

Description
The "Enabled" property specifies whether the display is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Enabled

See also
ControlBarDisplay (Page 4102)

Programming scripts
10.2 WinCC Unified object model

4110 System Manual, 11/2022

ControlBarDisplay.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.ForeColor

See also
ControlBarDisplay (Page 4102)

ControlBarDisplay.Graphic

Description
The "Graphic" property specifies the graphic of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Graphic

See also
ControlBarDisplay (Page 4102)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4111

ControlBarDisplay.Height

Description
The "Height" property specifies the height of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Height

See also
ControlBarDisplay (Page 4102)

ControlBarDisplay.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display

Programming scripts
10.2 WinCC Unified object model

4112 System Manual, 11/2022

• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4113

• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarDislay.Mapping

See also
ControlBarDisplay (Page 4102)

ControlBarDisplay.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the display.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4114 System Manual, 11/2022

Syntax
ControlBarDislay.Margin

See also
ControlBarDisplay (Page 4102)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarDisplay.Margin (Page 4114)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4115

Syntax
Margin.Left

See also
ControlBarDisplay.Margin (Page 4114)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarDisplay.Margin (Page 4114)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4116 System Manual, 11/2022

Syntax
Margin.Top

See also
ControlBarDisplay.Margin (Page 4114)

ControlBarDisplay.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MaximumHeight

See also
ControlBarDisplay (Page 4102)

ControlBarDisplay.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4117

Syntax
ControlBarDislay.MaximumWidth

See also
ControlBarDisplay (Page 4102)

ControlBarDisplay.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MinimumHeight

See also
ControlBarDisplay (Page 4102)

ControlBarDisplay.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4118 System Manual, 11/2022

Syntax
ControlBarDislay.MinimumWidth

See also
ControlBarDisplay (Page 4102)

ControlBarDisplay.Operability

Description
The "Operability" property returns whether the display is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarDislay.Operability

See also
ControlBarDisplay (Page 4102)

ControlBarDisplay.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the display.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4119

Access
Read-write

Syntax
ControlBarDislay.Padding

See also
ControlBarDisplay (Page 4102)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarDisplay.Padding (Page 4119)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4120 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Left

See also
ControlBarDisplay.Padding (Page 4119)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarDisplay.Padding (Page 4119)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4121

Access
Read-write

Syntax
Padding.Top

See also
ControlBarDisplay.Padding (Page 4119)

ControlBarDisplay.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the display can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarDislay.RequireExplicitUnlock

See also
ControlBarDisplay (Page 4102)

ControlBarDisplay.Text

Description
The "Text" property specifies the label of the display.

Type
String

Programming scripts
10.2 WinCC Unified object model

4122 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.Text

See also
ControlBarDisplay (Page 4102)

ControlBarDisplay.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.ToolTipText

See also
ControlBarDisplay (Page 4102)

ControlBarDisplay.Visible

Description
The "Visible" property specifies whether the display is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4123

Access
Read-write

Syntax
ControlBarDislay.Visible

See also
ControlBarDisplay (Page 4102)

ControlBarDisplay.Width

Description
The "Width" property specifies the width of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Width

See also
ControlBarDisplay (Page 4102)

ControlBarLabel

Description
The "ControlBarLabel" object represents an identifier of an information bar or toolbar.
You can reference the "ControlBarLabel" object via the "HmiControlBarElementCollection" list.

Object type
HmiControlBarLabelPart

Programming scripts
10.2 WinCC Unified object model

4124 System Manual, 11/2022

Properties
The "ControlBarLabel" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the identifier can be operated in runtime.
• ForeColor

Specifies the font color.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Height

Specifies the height.
• Mapping

Returns the function of the identifier.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the identifier is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the identifier is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4125

• Visible
Specifies whether the identifier is visible.

• Width
Specifies the width.

Methods
--

ControlBarLabel.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the identifier.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarLabel.Authorization

See also
ControlBarLabel (Page 4124)

ControlBarLabel.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4126 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarLabel.CustomID

See also
ControlBarLabel (Page 4124)

ControlBarLabel.Enabled

Description
The "Enabled" property specifies whether the identifier is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarLabel.Enabled

See also
ControlBarLabel (Page 4124)

ControlBarLabel.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4127

Access
Read-write

Syntax
ControlBarLabel.ForeColor

See also
ControlBarLabel (Page 4124)

ControlBarLabel.Height

Description
The "Height" property specifies the height of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Height

See also
ControlBarLabel (Page 4124)

ControlBarLabel.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

4128 System Manual, 11/2022

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.HorizontalTextAlignment

See also
ControlBarLabel (Page 4124)

ControlBarLabel.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4129

• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export

Programming scripts
10.2 WinCC Unified object model

4130 System Manual, 11/2022

• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires
acknowledgment

• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarLabel.Mapping

See also
ControlBarLabel (Page 4124)

ControlBarLabel.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the identifier.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarLabel.Margin

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4131

See also
ControlBarLabel (Page 4124)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarLabel.Margin (Page 4131)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

Programming scripts
10.2 WinCC Unified object model

4132 System Manual, 11/2022

See also
ControlBarLabel.Margin (Page 4131)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarLabel.Margin (Page 4131)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4133

See also
ControlBarLabel.Margin (Page 4131)

ControlBarLabel.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumHeight

See also
ControlBarLabel (Page 4124)

ControlBarLabel.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumWidth

Programming scripts
10.2 WinCC Unified object model

4134 System Manual, 11/2022

See also
ControlBarLabel (Page 4124)

ControlBarLabel.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumHeight

See also
ControlBarLabel (Page 4124)

ControlBarLabel.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumWidth

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4135

See also
ControlBarLabel (Page 4124)

ControlBarLabel.Operability

Description
The "Operability" property returns whether the identifier is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarLabel.Operability

See also
ControlBarLabel (Page 4124)

ControlBarLabel.Padding

Description
The "Padding" property specifies the spacing of the content from the frame of the identifier.

Type
Object, HmiPaddingPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4136 System Manual, 11/2022

Syntax
ControlBarLabel.Padding

See also
ControlBarLabel (Page 4124)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarLabel.Padding (Page 4136)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4137

Syntax
Padding.Left

See also
ControlBarLabel.Padding (Page 4136)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarLabel.Padding (Page 4136)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4138 System Manual, 11/2022

Syntax
Padding.Top

See also
ControlBarLabel.Padding (Page 4136)

ControlBarLabel.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the identifier can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarLabel.RequireExplicitUnlock

See also
ControlBarLabel (Page 4124)

ControlBarLabel.Text

Description
The "Text" property specifies the label of the identifier.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4139

Syntax
ControlBarLabel.Text

See also
ControlBarLabel (Page 4124)

ControlBarLabel.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.ToolTipText

See also
ControlBarLabel (Page 4124)

ControlBarLabel.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Programming scripts
10.2 WinCC Unified object model

4140 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarLabel.VerticalTextAlignment

See also
ControlBarLabel (Page 4124)

ControlBarLabel.Visible

Description
The "Visible" property specifies whether the identifier is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarLabel.Visible

See also
ControlBarLabel (Page 4124)

ControlBarLabel.Width

Description
The "Width" property specifies the width of the identifier in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4141

Access
Read-write

Syntax
ControlBarLabel.Width

See also
ControlBarLabel (Page 4124)

ControlBarSeparator

Description
The "ControlBarSeparator" object represents a separator of an information bar or toolbar.
You can reference the "ControlBarSeparator" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarSeparatorPart

Properties
The "ControlBarSeparator" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the disconnector can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• Mapping

Returns the function of the separator.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.

Programming scripts
10.2 WinCC Unified object model

4142 System Manual, 11/2022

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the separator is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the disconnector is only operable while the associated button is being
pressed.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the disconnector is visible.

• Width
Specifies the width.

Methods
--

ControlBarSeparator.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the separator.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarSeparator.Authorization

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4143

See also
ControlBarSeparator (Page 4142)

ControlBarSeparator.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarSeparator.CustomID

See also
ControlBarSeparator (Page 4142)

ControlBarSeparator.Enabled

Description
The "Enabled" property specifies whether the separator is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Enabled

Programming scripts
10.2 WinCC Unified object model

4144 System Manual, 11/2022

See also
ControlBarSeparator (Page 4142)

ControlBarSeparator.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.ForeColor

See also
ControlBarSeparator (Page 4142)

ControlBarSeparator.Height

Description
The "Height" property specifies the height of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Height

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4145

See also
ControlBarSeparator (Page 4142)

ControlBarSeparator.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

4146 System Manual, 11/2022

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4147

Access
Read-only

Syntax
ControlBarSeparator.Mapping

See also
ControlBarSeparator (Page 4142)

ControlBarSeparator.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the separator.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarSeparator.Margin

See also
ControlBarSeparator (Page 4142)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4148 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarSeparator.Margin (Page 4148)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarSeparator.Margin (Page 4148)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4149

Access
Read-write

Syntax
Margin.Right

See also
ControlBarSeparator.Margin (Page 4148)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarSeparator.Margin (Page 4148)

ControlBarSeparator.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

4150 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarSeparator.MaximumHeight

See also
ControlBarSeparator (Page 4142)

ControlBarSeparator.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MaximumWidth

See also
ControlBarSeparator (Page 4142)

ControlBarSeparator.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4151

Access
Read-write

Syntax
ControlBarSeparator.MinimumHeight

See also
ControlBarSeparator (Page 4142)

ControlBarSeparator.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MinimumWidth

See also
ControlBarSeparator (Page 4142)

ControlBarSeparator.Operability

Description
The "Operability" property returns whether the separator is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

4152 System Manual, 11/2022

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarSeparator.Operability

See also
ControlBarSeparator (Page 4142)

ControlBarSeparator.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the separator.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarSeparator.Padding

See also
ControlBarSeparator (Page 4142)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4153

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarSeparator.Padding (Page 4153)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarSeparator.Padding (Page 4153)

Programming scripts
10.2 WinCC Unified object model

4154 System Manual, 11/2022

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarSeparator.Padding (Page 4153)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarSeparator.Padding (Page 4153)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4155

ControlBarSeparator.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the disconnector can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarSeparator.RequireExplicitUnlock

See also
ControlBarSeparator (Page 4142)

ControlBarSeparator.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the separator.

Type
String

Access
Read-write

Syntax
ControlBarSeparator.ToolTipText

See also
ControlBarSeparator (Page 4142)

Programming scripts
10.2 WinCC Unified object model

4156 System Manual, 11/2022

ControlBarSeparator.Visible

Description
The "Visible" property specifies whether the separator is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Visible

See also
ControlBarSeparator (Page 4142)

ControlBarSeparator.Width

Description
The "Width" property specifies the width of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Width

See also
ControlBarSeparator (Page 4142)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4157

ControlBarTextBox

Description
The "ControlBarTextBox" object represents a text box of an information bar or toolbar.
You can reference the "ControlBarTextBox" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarTextBoxPart

Properties
The "ControlBarTextBox" object has the following properties:
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the text box can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Mapping

Returns the function of the text box.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.

Programming scripts
10.2 WinCC Unified object model

4158 System Manual, 11/2022

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the text box is operable.

• Padding
Specifies the distance of the content from the border.

• Readonly
Specifies whether the text box is write-protected.

• RequireExplicitUnlock
Returns whether the text box is only operable while the associated button is being pressed.

• Text
Specifies the labeling.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the text box is visible.

• Width
Specifies the width.

Methods
--

ControlBarTextBox.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4159

Syntax
ControlBarTextBox.AlternateBorderColor

See also
ControlBarTextBox (Page 4158)

ControlBarTextBox.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the text box of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarTextBox.Authorization

See also
ControlBarTextBox (Page 4158)

ControlBarTextBox.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4160 System Manual, 11/2022

Syntax
ControlBarTextBox.BackColor

See also
ControlBarTextBox (Page 4158)

ControlBarTextBox.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BorderColor

See also
ControlBarTextBox (Page 4158)

ControlBarTextBox.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4161

Syntax
ControlBarTextBox.BorderWidth

See also
ControlBarTextBox (Page 4158)

ControlBarTextBox.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarTextBox.CustomID

See also
ControlBarTextBox (Page 4158)

ControlBarTextBox.Enabled

Description
The "Enabled" property specifies whether the text box can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4162 System Manual, 11/2022

Syntax
ControlBarTextBox.Enabled

See also
ControlBarTextBox (Page 4158)

ControlBarTextBox.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.ForeColor

See also
ControlBarTextBox (Page 4158)

ControlBarTextBox.Height

Description
The "Height" property specifies the height of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4163

Syntax
ControlBarTextBox.Height

See also
ControlBarTextBox (Page 4158)

ControlBarTextBox.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.HorizontalTextAlignment

See also
ControlBarTextBox (Page 4158)

ControlBarTextBox.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID

Programming scripts
10.2 WinCC Unified object model

4164 System Manual, 11/2022

Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4165

• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarTextBox.Mapping

See also
ControlBarTextBox (Page 4158)

Programming scripts
10.2 WinCC Unified object model

4166 System Manual, 11/2022

ControlBarTextBox.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the text box.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarTextBox.Margin

See also
ControlBarTextBox (Page 4158)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarTextBox.Margin (Page 4167)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4167

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarTextBox.Margin (Page 4167)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarTextBox.Margin (Page 4167)

Programming scripts
10.2 WinCC Unified object model

4168 System Manual, 11/2022

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarTextBox.Margin (Page 4167)

ControlBarTextBox.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumHeight

See also
ControlBarTextBox (Page 4158)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4169

ControlBarTextBox.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumWidth

See also
ControlBarTextBox (Page 4158)

ControlBarTextBox.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumHeight

See also
ControlBarTextBox (Page 4158)

Programming scripts
10.2 WinCC Unified object model

4170 System Manual, 11/2022

ControlBarTextBox.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumWidth

See also
ControlBarTextBox (Page 4158)

ControlBarTextBox.Operability

Description
The "Operability" property returns whether the text box is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarTextBox.Operability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4171

See also
ControlBarTextBox (Page 4158)

ControlBarTextBox.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the text box.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarTextBox.Padding

See also
ControlBarTextBox (Page 4158)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

Programming scripts
10.2 WinCC Unified object model

4172 System Manual, 11/2022

See also
ControlBarTextBox.Padding (Page 4172)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarTextBox.Padding (Page 4172)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4173

See also
ControlBarTextBox.Padding (Page 4172)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarTextBox.Padding (Page 4172)

ControlBarTextBox.ReadOnly

Description
The "ReadOnly" property specifies whether the text box is read-only.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.ReadOnly

Programming scripts
10.2 WinCC Unified object model

4174 System Manual, 11/2022

See also
ControlBarTextBox (Page 4158)

ControlBarTextBox.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the text box can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarTextBox.RequireExplicitUnlock

See also
ControlBarTextBox (Page 4158)

ControlBarTextBox.Text

Description
The "Text" property specifies the label of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.Text

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4175

See also
ControlBarTextBox (Page 4158)

ControlBarTextBox.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.ToolTipText

See also
ControlBarTextBox (Page 4158)

ControlBarTextBox.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4176 System Manual, 11/2022

Syntax
ControlBarTextBox.VerticalTextAlignment

See also
ControlBarTextBox (Page 4158)

ControlBarTextBox.Visible

Description
The "Visible" property specifies whether the text box is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Visible

See also
ControlBarTextBox (Page 4158)

ControlBarTextBox.Width

Description
The "Width" property specifies the width of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4177

Syntax
ControlBarTextBox.Width

See also
ControlBarTextBox (Page 4158)

ControlBarToggleSwitch

Description
The "ControlBarToggleSwitch" object represents a switch of an information bar or toolbar.
You can reference the "ControlBarToggleSwitch" object via the
"HmiControlBarElementCollection" list.

Object type
HmiControlBarToggleSwitchPart

Properties
The "ControlBarToggleSwitch" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• AlternateGraphic

Specifies the graphic for the "pressed" state.
• AlternateText

Specifies the text for the "pressed" state.
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the identifier of the switch.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.

Programming scripts
10.2 WinCC Unified object model

4178 System Manual, 11/2022

• CustomID
Returns the custom ID.

• Enabled
Specifies whether the switch can be operated in runtime.

• ForeColor
Specifies the font color.

• Graphic
Specifies the graphic.

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the switch.

• IsAlternateState
Specifies the current state of the switch.

• Mapping
Returns the function of the switch.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the switch is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the switch is only operable while the associated button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the switch is visible.

• Width
Specifies the width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4179

Methods
--

ControlBarToggleSwitch.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBackColor

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBorderColor

Programming scripts
10.2 WinCC Unified object model

4180 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.AlternateGraphic

Description
The "AlternateGraphic" property specifies the graphic of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateGraphic

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.AlternateText

Description
The "AlternateText" property specifies the text of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateText

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4181

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the switch of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarToggleSwitch.Authorization

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BackColor

Programming scripts
10.2 WinCC Unified object model

4182 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.Badge

Description
The "Badge" property specifies the identifier of the switch.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarToggleSwitch.Badge

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderColor

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4183

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderWidth

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Content

Programming scripts
10.2 WinCC Unified object model

4184 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 4178)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarToggleSwitch.Content (Page 4184)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4185

• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarToggleSwitch.Content (Page 4184)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 4184)

Programming scripts
10.2 WinCC Unified object model

4186 System Manual, 11/2022

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarToggleSwitch.Content (Page 4184)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarToggleSwitch.Content (Page 4184)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4187

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarToggleSwitch.Content (Page 4184)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

4188 System Manual, 11/2022

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarToggleSwitch.Content (Page 4184)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 4184)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4189

ControlBarToggleSwitch.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarToggleSwitch.CustomID

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.Enabled

Description
The "Enabled" property specifies whether the switch can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Enabled

See also
ControlBarToggleSwitch (Page 4178)

Programming scripts
10.2 WinCC Unified object model

4190 System Manual, 11/2022

ControlBarToggleSwitch.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.ForeColor

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.Graphic

Description
The "Graphic" property specifies the graphic of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Graphic

See also
ControlBarToggleSwitch (Page 4178)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4191

ControlBarToggleSwitch.Height

Description
The "Height" property specifies the height of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Height

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.HotKey

Description
The "HotKey" property returns the hotkey specified for the switch. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
Button.HotKey

See also
ControlBarToggleSwitch (Page 4178)

Programming scripts
10.2 WinCC Unified object model

4192 System Manual, 11/2022

ControlBarToggleSwitch.IsAlternateState

Description
The "IsAlternateState" property specifies the current state of the switch.
• True: Switch is in "On" state.
• False: Switch is in "Off" state.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.IsAlternateState

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4193

• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms

Programming scripts
10.2 WinCC Unified object model

4194 System Manual, 11/2022

• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarToggleSwitch.Mapping

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the switch.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4195

Access
Read-write

Syntax
ControlBarToggleSwitch.Margin

See also
ControlBarToggleSwitch (Page 4178)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarToggleSwitch.Margin (Page 4195)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4196 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Left

See also
ControlBarToggleSwitch.Margin (Page 4195)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarToggleSwitch.Margin (Page 4195)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4197

Access
Read-write

Syntax
Margin.Top

See also
ControlBarToggleSwitch.Margin (Page 4195)

ControlBarToggleSwitch.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumHeight

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

4198 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumWidth

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumHeight

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4199

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumWidth

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.Operability

Description
The property "Operability" returns whether the switch is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarToggleSwitch.Operability

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the switch.

Programming scripts
10.2 WinCC Unified object model

4200 System Manual, 11/2022

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Padding

See also
ControlBarToggleSwitch (Page 4178)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarToggleSwitch.Padding (Page 4200)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4201

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarToggleSwitch.Padding (Page 4200)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarToggleSwitch.Padding (Page 4200)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

4202 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarToggleSwitch.Padding (Page 4200)

ControlBarToggleSwitch.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the switch can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarToggleSwitch.RequireExplicitUnlock

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.Text

Description
The "Text" property specifies the label of the switch.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4203

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Text

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.ToolTipText

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.Visible

Description
The "Visible" property specifies whether the switch is visible.

Programming scripts
10.2 WinCC Unified object model

4204 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Visible

See also
ControlBarToggleSwitch (Page 4178)

ControlBarToggleSwitch.Width

Description
The "Width" property specifies the width of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Width

See also
ControlBarToggleSwitch (Page 4178)

ToolBar.Enabled

Description
The "Enabled" property specifies whether the toolbar can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4205

Type
Bool

Access
Read-write

Syntax
ToolBar.Enabled

See also
OverviewParameterControl.ToolBar (Page 4073)

ToolBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ToolBar.Font

See also
OverviewParameterControl.ToolBar (Page 4073)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Programming scripts
10.2 WinCC Unified object model

4206 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
ToolBar.Font (Page 4206)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
ToolBar.Font (Page 4206)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4207

Type
Float

Access
Read-write

Syntax
Font.Size

See also
ToolBar.Font (Page 4206)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ToolBar.Font (Page 4206)

Programming scripts
10.2 WinCC Unified object model

4208 System Manual, 11/2022

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
ToolBar.Font (Page 4206)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4209

Syntax
Font.Weight

See also
ToolBar.Font (Page 4206)

ToolBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the toolbar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ToolBar.Margin

See also
OverviewParameterControl.ToolBar (Page 4073)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4210 System Manual, 11/2022

Syntax
Margin.Bottom

See also
ToolBar.Margin (Page 4210)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ToolBar.Margin (Page 4210)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4211

Syntax
Margin.Right

See also
ToolBar.Margin (Page 4210)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ToolBar.Margin (Page 4210)

ToolBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the toolbar.

Type
Object, HmiPaddingPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4212 System Manual, 11/2022

Syntax
ToolBar.Padding

See also
OverviewParameterControl.ToolBar (Page 4073)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ToolBar.Padding (Page 4212)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4213

Syntax
Padding.Left

See also
ToolBar.Padding (Page 4212)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ToolBar.Padding (Page 4212)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4214 System Manual, 11/2022

Syntax
Padding.Top

See also
ToolBar.Padding (Page 4212)

ToolBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
ToolBar.ShowToolTips

See also
OverviewParameterControl.ToolBar (Page 4073)

ToolBar.UseHotKeys

Description
The "UseHotKeys" property specifies whether the shortcut keys for the buttons in the toolbar are
activated.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4215

Syntax
ToolBar.UseHotKeys

See also
OverviewParameterControl.ToolBar (Page 4073)

ToolBar.Visible

Description
The "Visible" property specifies whether the toolbar is visible.

Type
Bool

Access
Read-write

Syntax
ToolBar.Visible

See also
OverviewParameterControl.ToolBar (Page 4073)

OverviewParameterControl.Top

Description
The "Top" property sets the value of the Y coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4216 System Manual, 11/2022

Syntax
OverviewParameterControl.Top

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.Visible

Description
The "Visible" property specifies whether the parameter overview is visible.

Type
Bool

Access
Read-write

Syntax
OverviewParameterControl.Visible

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.Width

Description
The "Width" property specifies the width in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
OverviewParameterControl.Width

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4217

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the parameter overview.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title
• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be positioned
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
You can enable multiple properties by adding integer values or bit operators.

Access
Read-write

Syntax
OverviewParameterControl.WindowFlags

Programming scripts
10.2 WinCC Unified object model

4218 System Manual, 11/2022

Example
Adapting the "windowFlags" tag depending on the window configuration:

Copy code
var windowFlags = HmiWindowFlag.ShowCaption | HmiWindowFlag.ShowBorder;
if (CanClose){
 windowFlags |= HmiWindowFlag.CanClose;
} else {
 windowFlags &= HmiWindowFlag.CanClose;
}

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
parameter overview.

Syntax
OverviewParameterControl.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
OverviewParameterControl (Page 3987)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4219

OverviewParameterControl.FireCommand()

Description
The "FireCommand" method executes the command of an element in the toolbar or information
bar (control bar element, e.g. a button) of the parameter overview.

Syntax
OverviewParameterControl.FireCommand(commandId, custom)

Parameters
commandId
Type: Int32
ID of the element of the toolbar or information bar

custom
Type: Bool
Type of element ID:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

Return value
--

See also
OverviewParameterControl (Page 3987)

OverviewParameterControl.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
OverviewParameterControl.PropertyFlashing(propertyName, enable[,
value][, alternateValue][, rate])

Programming scripts
10.2 WinCC Unified object model

4220 System Manual, 11/2022

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
OverviewParameterControl (Page 3987)

Polygon

Description
The "Polygon" object represents a polygon in runtime.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4221

Object type
HmiPolygon

Properties
The "Polygon" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BackFillPattern

Specifies the pattern of the background or the fill.
• BorderColor

Specifies the border color.
• BorderWidth

Specifies the border thickness.
• CurrentQuality

Returns the poorest quality code of all tags which influence the polygon.
• DashType

Specifies the stroke style of the border or line.
• Enabled

Specifies whether the polygon can be operated in runtime.
• FillDirection

Specifies the direction from which the polygon is filled.
• FillLevel

Specifies the fill of the polygon in percent.
• Height

Specifies the height.
• JoinType

Specifies the corner style of the polygon
• Layer

Returns the layer of the screen in which the polygon is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the polygon.

Programming scripts
10.2 WinCC Unified object model

4222 System Manual, 11/2022

• Opacity
Specifies the opacity.

• Operability
Returns whether the polygon is operable.

• Parent
Returns the higher-level screen object.

• Points
Specifies the coordinates of the polygon points.

• RequireExplicitUnlock
Returns whether the polygon is only operable while the associated button is being pressed.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the polygon rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFillLevel
Specifies whether the fill level is displayed.

• ShowFocusVisual
Specifies whether the polygon is highlighted when in focus.

• StyleItemClass
Returns the style which is applied to the polygon.

• TabIndex
Returns the position of the polygon in the tab sequence.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the polygon is visible.

• Width
Specifies the width.

Methods
The "Polygon" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the polygon.
• PropertyFlashing()

Configures flashing of a property.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4223

Events
The "Polygon" object has the following events:
• OnActivated()

Occurs when a polygon receives focus.
• OnContextTapped()

Occurs when a polygon is right-clicked or long-touched.
• OnDeactivated()

Occurs when a polygon loses focus.
• OnKeyDown()

Occurs when a key is pressed while the polygon is in focus.
• OnKeyUp()

Occurs when a key is released while the polygon is in focus.
• OnTapped()

Occurs when a polygon is left-clicked or short-touched.

Polygon.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
Polygon.AlternateBackColor

See also
Polygon (Page 4221)

Polygon.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color which is displayed for line
styles such as "Dash".

Programming scripts
10.2 WinCC Unified object model

4224 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
Polygon.AlternateBorderColor

See also
Polygon (Page 4221)

Polygon.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
Polygon.Authorization

See also
Polygon (Page 4221)

Polygon.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4225

Access
Read-write

Syntax
Polygon.BackColor

See also
Polygon (Page 4221)

Polygon.BackFillPattern

Description
The "BackFillPattern" property specifies the pattern of the background or the fill.

Type
Int32, HmiFillPattern
Specifies the filling:
• Solid (0): Solid
• Transparent (65536): Transparent
• Horizontal (131072): Horizontal
• Vertical (131073): Vertical
• ForwardDiagonal (131074): Forward diagonal stripe
• BackwardDiagonal (131075): Backward diagonal stripe
• Cross (131076): Cross
• DiagonalCross (131077): Diagonal cross
• GradientHorizontal (1048576): Horizontal gradient
• GradientVertical (1048577): Vertical gradient
• GradientForwardDiagonal (1048578): Gradient forward diagonal
• GradientBackwardDiagonal (1048579): Gradient backward diagonal
• GradientHorizontalTricolor (1048832): Horizontal tricolor gradient
• GradientVerticalTricolor (1048833): Vertical tricolor gradient
• GradientForwardDiagonalTricolor (1048834): Forward diagonal tricolor gradient
• GradientBackwardDiagonalTricolor (1048835): Backward diagonal tricolor gradient

Programming scripts
10.2 WinCC Unified object model

4226 System Manual, 11/2022

Access
Read-write

Syntax
Polygon.BackFillPattern

See also
Polygon (Page 4221)

Polygon.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
Polygon.BorderColor

See also
Polygon (Page 4221)

Polygon.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4227

Syntax
Polygon.BorderWidth

See also
Polygon (Page 4221)

Polygon.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
polygon.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
Polygon.CurrentQuality

See also
Polygon (Page 4221)

Polygon.DashType

Description
The "DashType" property specifies the stroke type of the border or line.

Programming scripts
10.2 WinCC Unified object model

4228 System Manual, 11/2022

Type
Int32, HmiDashType
Specifies the stroke style:
• Solid (0): Solid
• Dash(1): Dashed
• Dot (2): Dotted
• DashDot (3): Dash-dotted
• DashDotDot (4): Dash-dot-dot

Access
Read-write

Syntax
Polygon.DashType

See also
Polygon (Page 4221)

Polygon.Enabled

Description
The "Enabled" property specifies whether the polygon can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
Polygon.Enabled

See also
Polygon (Page 4221)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4229

Polygon.FillDirection

Description
The "FillDirection" property specifies the direction from which the polygon is filled.

Type
Int32, HmiFillDirection
Specifies the filling direction:
• BottomToTop (0): From bottom to top
• TopToBottom (1): From top to bottom
• LeftToRight (2): From left to right
• RightToLeft (3): From right to left

Access
Read-write

Syntax
Polygon.FillDirection

See also
Polygon (Page 4221)

Polygon.FillLevel

Description
The "FillLevel" property specifies the fill level of the polygons in percent.

Type
UInt8

Access
Read-write

Syntax
Polygon.FillLevel

Programming scripts
10.2 WinCC Unified object model

4230 System Manual, 11/2022

See also
Polygon (Page 4221)

Polygon.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Polygon.Height

See also
Polygon (Page 4221)

Polygon.JoinType

Description
The "JoinType" property specifies the corner style of the polygon.

Type
Int32, HmiLineJoinType
Specifies the corner style:
• Round (0): Round
• Bevel (4096): Smooth
• Miter (8192): Miter

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4231

Syntax
Polygon.JoinType

See also
Polygon (Page 4221)

Polygon.Layer

Description
The "Layer" property returns the layer of the screen in which the polygon is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
Polygon.Layer

See also
Polygon (Page 4221)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

Programming scripts
10.2 WinCC Unified object model

4232 System Manual, 11/2022

See also
Polygon.Layer (Page 4232)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
Polygon.Layer (Page 4232)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4233

See also
Polygon.Layer (Page 4232)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
Polygon.Layer (Page 4232)

Polygon.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Polygon.Left

Programming scripts
10.2 WinCC Unified object model

4234 System Manual, 11/2022

See also
Polygon (Page 4221)

Polygon.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
Polygon.Margin

See also
Polygon (Page 4221)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4235

See also
Polygon.Margin (Page 4235)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
Polygon.Margin (Page 4235)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

Programming scripts
10.2 WinCC Unified object model

4236 System Manual, 11/2022

See also
Polygon.Margin (Page 4235)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
Polygon.Margin (Page 4235)

Polygon.Name

Description
The "Name" property returns the name of the polygon.

Type
String

Access
Read-only

Syntax
Polygon.Name

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4237

See also
Polygon (Page 4221)

Polygon.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" indicates completely transparent.

Type
Float

Access
Read-write

Syntax
Polygon.Opacity

See also
Polygon (Page 4221)

Polygon.Operability

Description
The "Operability" property returns whether the polygon is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

4238 System Manual, 11/2022

Syntax
Polygon.Operability

See also
Polygon (Page 4221)

Polygon.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
Polygon.Parent

See also
Polygon (Page 4221)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Polygon.Points

Description
The "Points" property specifies the coordinates of the polygon points.

Type
Variant

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4239

Access
Read-write

Syntax
Polygon.Points

Example
Output the coordinates of the polygon "Polygon_1" with 3 points via debug output in runtime:

Copy code
const p = Screen.Items('Polygon_1').Points;
HMIRuntime.Trace("x1=" + p[0] + ", y1=" + p[1] + ", x2=" + p[2] + ", y2=" + p[3] + ", x3="
+ p[4] + ", y3=" + p[5]);

See also
Polygon (Page 4221)

Polygon.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the polygon can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
Polygon.RequireExplicitUnlock

See also
Polygon (Page 4221)

Programming scripts
10.2 WinCC Unified object model

4240 System Manual, 11/2022

Polygon.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
Polygon.RotationAngle

See also
Polygon (Page 4221)
Polygon.RotationCenterPlacement (Page 4241)
Polygon.RotationCenterX (Page 4242)
Polygon.RotationCenterY (Page 4243)

Polygon.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the polygon
rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4241

Access
Read-write

Syntax
Polygon.RotationCenterPlacement

See also
Polygon (Page 4221)
Polygon.RotationAngle (Page 4241)
Polygon.RotationCenterX (Page 4242)
Polygon.RotationCenterY (Page 4243)

Polygon.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
Polygon.RotationCenterX

See also
Polygon (Page 4221)
Polygon.RotationAngle (Page 4241)
Polygon.RotationCenterPlacement (Page 4241)
Polygon.RotationCenterY (Page 4243)

Programming scripts
10.2 WinCC Unified object model

4242 System Manual, 11/2022

Polygon.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
Polygon.RotationCenterY

See also
Polygon (Page 4221)
Polygon.RotationAngle (Page 4241)
Polygon.RotationCenterPlacement (Page 4241)
Polygon.RotationCenterX (Page 4242)

Polygon.ShowFillLevel

Description
The "ShowFillLevel" property specifies whether the fill level is displayed.

Type
Bool

Access
Read-write

Syntax
Polygon.ShowFillLevel

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4243

See also
Polygon (Page 4221)

Polygon.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the polygon is highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
Polygon.ShowFocusVisual

See also
Polygon (Page 4221)

Polygon.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the polygon.

Type
String

Access
Read-only

Syntax
Polygon.StyleItemClass

See also
Polygon (Page 4221)

Programming scripts
10.2 WinCC Unified object model

4244 System Manual, 11/2022

Polygon.TabIndex

Description
The "TabIndex" property returns the position of the polygon in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
Polygon.TabIndex

See also
Polygon (Page 4221)

Polygon.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
Polygon.ToolTipText

See also
Polygon (Page 4221)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4245

Polygon.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Polygon.Top

See also
Polygon (Page 4221)

Polygon.Visible

Description
The "Visible" property specifies whether the polygon is visible.

Type
Bool

Access
Read-write

Syntax
Polygon.Visible

See also
Polygon (Page 4221)

Programming scripts
10.2 WinCC Unified object model

4246 System Manual, 11/2022

Polygon.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Polygon.Width

See also
Polygon (Page 4221)

Polygon.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
polygon.

Syntax
Polygon.CheckAuthorization()

Parameters
--

Return value
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4247

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
Polygon (Page 4221)

Polygon.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
Polygon.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

Programming scripts
10.2 WinCC Unified object model

4248 System Manual, 11/2022

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
Polygon (Page 4221)

Polygon_OnActivated()

Description
The "OnActivated" event occurs when a polygon receives focus:
• A polygon is selected via the configured tab sequence.
• A polygon that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
Polygon_OnActivated(item)

Context
item
Type: Object
Polygon where the event occurs.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4249

See also
Polygon (Page 4221)

Polygon_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A polygon is right-clicked.
• A polygon is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
Polygon_OnContextTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Polygon where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key

Programming scripts
10.2 WinCC Unified object model

4250 System Manual, 11/2022

• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Polygon (Page 4221)

Polygon_OnDeactivated()

Description
The "OnDeactivated" event occurs when the polygon loses focus because the operator presses
the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
Polygon_OnDeactivated(item)

Context
item
Type: Object

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4251

Polygon where the event occurs.

See also
Polygon (Page 4221)

Polygon_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the polygon is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
Polygon_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Polygon where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key

Programming scripts
10.2 WinCC Unified object model

4252 System Manual, 11/2022

• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Polygon (Page 4221)

Polygon_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the polygon is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
Polygon_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Polygon where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4253

• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Polygon (Page 4221)

Polygon_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A polygon is left-clicked.
• The <RETURN> or <SPACE> key is pressed when a polygon has the focus.
• A polygon is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
Polygon_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Polygon where the event occurs.

x
Type: DInt
X-coordinate of the input point

Programming scripts
10.2 WinCC Unified object model

4254 System Manual, 11/2022

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Polygon (Page 4221)

Polyline

Description
The "Polyline" object represents a polyline in runtime.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4255

Object type
HmiPolyline

Properties
The "Polyline" object has the following properties:
• AlternateLineColor

Specifies the second line color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• CapType

Specifies the shape of the line ends.
• CurrentQuality

Returns the poorest quality code of all tags which influence the polyline.
• DashType

Specifies the stroke style of the polyline.
• Enabled

Specifies whether the polyline can be operated in runtime.
• EndType

Specifies the type of line end.
• Height

Specifies the height.
• JoinType

Specifies the corner style of the polyline.
• Layer

Returns the layer of the screen in which the polyline is located.
• Left

Specifies the value of the X coordinate.
• LineColor

Specifies the line color.
• LineWidth

Specifies the line thickness.
• Margin

Specifies the margin.
• Name

Returns the name of the polyline.
• Opacity

Specifies the opacity.
• Operability

Returns whether the polyline is operable.
• Parent

Returns the higher-level screen object.

Programming scripts
10.2 WinCC Unified object model

4256 System Manual, 11/2022

• Points
Specifies the coordinates of the polyline points.

• RequireExplicitUnlock
Returns whether the polyline is only operable while the associated button is being pressed.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the polyline rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFocusVisual
Specifies whether the polyline is highlighted when in focus.

• StartType
Specifies the type of line start.

• StyleItemClass
Returns the style which is applied to the polyline.

• TabIndex
Returns the position of the polyline in the tab sequence.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the polyline is visible.

• Width
Specifies the width.

Methods
The "Polyline" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the polyline.
• PropertyFlashing()

Configures flashing of a property.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4257

Events
The "Polyline" object has the following events:
• OnActivated()

Occurs when a polyline receives focus.
• OnContextTapped()

Occurs when a polyline is right-clicked or long-touched.
• OnDeactivated()

Occurs when a polyline loses focus.
• OnKeyDown()

Occurs when a key is pressed while the polyline is in focus.
• OnKeyUp()

Occurs when a key is released while the polyline is in focus.
• OnTapped()

Occurs when a polyline is left-clicked or short-touched.

Polyline.AlternateLineColor

Description
The "AlternateLineColor" property specifies the second line color which is displayed for line styles
such as "Dash".

Type
UInt32

Access
Read-write

Syntax
Polyline.AlternateLineColor

See also
Polyline (Page 4255)

Polyline.Authorization

Description
The "Authorization" property returns the operator authorization.

Programming scripts
10.2 WinCC Unified object model

4258 System Manual, 11/2022

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
Polyline.Authorization

See also
Polyline (Page 4255)

Polyline.CapType

Description
The "CapType" property specifies the shape of the line ends.

Type
Int32, HmiCapType
Specifies the line ends:
• Round (0): Round (line extends beyond the line end point with half the line thickness)
• Square (256): Square (line extends beyond the line end point with half the line thickness)
• Flat (512): Justified (line ends at the line end point)

Access
Read-write

Syntax
Polyline.CapType

See also
Polyline (Page 4255)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4259

Polyline.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
polyline.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
Polyline.CurrentQuality

See also
Polyline (Page 4255)

Polyline.DashType

Description
The "DashType" property specifies the stroke style of the polyline.

Type
Int32, HmiDashType
Specifies the stroke style:
• Solid (0): Solid
• Dash(1): Dashed
• Dot (2): Dotted

Programming scripts
10.2 WinCC Unified object model

4260 System Manual, 11/2022

• DashDot (3): Dash-dotted
• DashDotDot (4): Dash-dot-dot

Access
Read-write

Syntax
Polyline.DashType

See also
Polyline (Page 4255)

Polyline.Enabled

Description
The "Enabled" property specifies whether the polyline can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
Polyline.Enabled

See also
Polyline (Page 4255)

Polyline.EndType

Description
The "EndType" property specifies the line end type.

Type
Int32, HmiLineEndType

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4261

Specifies the line end type:
• Line (0): Line
• EmptyArrow (1): Empty arrow
• Arrow (2): Arrow
• ReversedArrow (3): Reverse arrow
• EmptyCircle (5): Empty circle
• Circle (6): Circle

Access
Read-write

Syntax
Polyline.EndType

See also
Polyline (Page 4255)

Polyline.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Polyline.Height

See also
Polyline (Page 4255)

Programming scripts
10.2 WinCC Unified object model

4262 System Manual, 11/2022

Polyline.JoinType

Description
The "JoinType" property specifies the corner style of the polyline.

Type
Int32, HmiLineJoinType
Specifies the corner style:
• Round (0): Round
• Bevel (4096): Smooth
• Miter (8192): Miter

Access
Read-write

Syntax
Polyline.JoinType

See also
Polyline (Page 4255)

Polyline.Layer

Description
The "Layer" property returns the layer of the screen in which the polyline is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
Polyline.Layer

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4263

See also
Polyline (Page 4255)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
Polyline.Layer (Page 4263)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

Programming scripts
10.2 WinCC Unified object model

4264 System Manual, 11/2022

See also
Polyline.Layer (Page 4263)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
Polyline.Layer (Page 4263)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4265

See also
Polyline.Layer (Page 4263)

Polyline.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Polyline.Left

See also
Polyline (Page 4255)

Polyline.LineColor

Description
The "LineColor" property specifies the line color.

Type
UInt32

Access
Read-write

Syntax
Polyline.LineColor

See also
Polyline (Page 4255)

Programming scripts
10.2 WinCC Unified object model

4266 System Manual, 11/2022

Polyline.LineWidth

Description
The "LineWidth" property specifies the line thickness.

Type
UInt8

Access
Read-write

Syntax
Polyline.LineWidth

See also
Polyline (Page 4255)

Polyline.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
Polyline.Margin

See also
Polyline (Page 4255)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4267

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
Polyline.Margin (Page 4267)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
Polyline.Margin (Page 4267)

Programming scripts
10.2 WinCC Unified object model

4268 System Manual, 11/2022

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
Polyline.Margin (Page 4267)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
Polyline.Margin (Page 4267)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4269

Polyline.Name

Description
The "Name" property returns the name of the polyline.

Type
String

Access
Read-only

Syntax
Polyline.Name

See also
Polyline (Page 4255)

Polyline.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" indicates completely transparent.

Type
Float

Access
Read-write

Syntax
Polyline.Opacity

See also
Polyline (Page 4255)

Programming scripts
10.2 WinCC Unified object model

4270 System Manual, 11/2022

Polyline.Operability

Description
The property "Operability" returns whether the polyline is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
Polyline.Operability

See also
Polyline (Page 4255)

Polyline.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
Polyline.Parent

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4271

See also
Polyline (Page 4255)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Polyline.Points

Description
The "Points" polyline specifies the coordinates of the points of the polyline.

Type
Variant

Access
Read-write

Syntax
Polyline.Points

Example
Output the coordinates of the polyline "Polyline_1" with 3 points via debug output in runtime:

Copy code
const p = Screen.Items('Polyline_1').Points;
HMIRuntime.Trace("x1=" + p[0] + ", y1=" + p[1] + ", x2=" + p[2] + ", y2=" + p[3] + ", x3="
+ p[4] + ", y3=" + p[5]);

See also
Polyline (Page 4255)

Programming scripts
10.2 WinCC Unified object model

4272 System Manual, 11/2022

Polyline.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the polyline can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
Polyline.RequireExplicitUnlock

See also
Polyline (Page 4255)

Polyline.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
Polyline.RotationAngle

See also
Polyline (Page 4255)
Polyline.RotationCenterPlacement (Page 4274)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4273

Polyline.RotationCenterX (Page 4274)
Polyline.RotationCenterY (Page 4275)

Polyline.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the polyline
rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
Polyline.RotationCenterPlacement

See also
Polyline (Page 4255)
Polyline.RotationAngle (Page 4273)
Polyline.RotationCenterX (Page 4274)
Polyline.RotationCenterY (Page 4275)

Polyline.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Programming scripts
10.2 WinCC Unified object model

4274 System Manual, 11/2022

Type
Float

Access
Read-write

Syntax
Polyline.RotationCenterX

See also
Polyline (Page 4255)
Polyline.RotationAngle (Page 4273)
Polyline.RotationCenterPlacement (Page 4274)
Polyline.RotationCenterY (Page 4275)

Polyline.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
Polyline.RotationCenterY

See also
Polyline (Page 4255)
Polyline.RotationAngle (Page 4273)
Polyline.RotationCenterPlacement (Page 4274)
Polyline.RotationCenterX (Page 4274)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4275

Polyline.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the polyline is highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
Polyline.ShowFocusVisual

See also
Polyline (Page 4255)

Polyline.StartType

Description
The "StartType" property specifies the type of line start.

Type
Int32, HmiLineEndType
Specifies the start of the line:
• Line (0): Line
• EmptyArrow (1): Empty arrow
• Arrow (2): Arrow
• ReversedArrow (3): Reverse arrow
• EmptyCircle (5): Empty circle
• Circle (6): Circle

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4276 System Manual, 11/2022

Syntax
Polyline.StartType

See also
Polyline (Page 4255)

Polyline.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the polyline.

Type
String

Access
Read-only

Syntax
Polyline.StyleItemClass

See also
Polyline (Page 4255)

Polyline.TabIndex

Description
The "TabIndex" property returns the position of the polyline in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
Polyline.TabIndex

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4277

See also
Polyline (Page 4255)

Polyline.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
Polyline.ToolTipText

See also
Polyline (Page 4255)

Polyline.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Polyline.Top

See also
Polyline (Page 4255)

Programming scripts
10.2 WinCC Unified object model

4278 System Manual, 11/2022

Polyline.Visible

Description
The "Visible" property specifies whether the polyline is visible.

Type
Bool

Access
Read-write

Syntax
Polyline.Visible

See also
Polyline (Page 4255)

Polyline.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Polyline.Width

See also
Polyline (Page 4255)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4279

Polyline.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
polyline.

Syntax
Polyline.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
Polyline (Page 4255)

Polyline.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
Polyline.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Programming scripts
10.2 WinCC Unified object model

4280 System Manual, 11/2022

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
Polyline (Page 4255)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4281

Polyline_OnActivated()

Description
The "OnActivated" event occurs when a polyline receives focus:
• A polyline is selected via the configured tab sequence.
• A polyline that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
Polyline_OnActivated(item)

Context
item
Type: Object
Polyline where the event occurs.

See also
Polyline (Page 4255)

Polyline_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A polyline is right-clicked.
• A polyline is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
Polyline_OnContextTapped(item, x, y, modifiers, trigger)

Programming scripts
10.2 WinCC Unified object model

4282 System Manual, 11/2022

Context
item
Type: Object
Polyline where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4283

See also
Polyline (Page 4255)

Polyline_OnDeactivated()

Description
The "OnDeactivated" event occurs when a polyline loses focus because the operator presses the
<TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
Polyline_OnDeactivated(item)

Context
item
Type: Object
Polyline where the event occurs.

See also
Polyline (Page 4255)

Polyline_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the polyline is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

4284 System Manual, 11/2022

Syntax
Polyline_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Polyline where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Polyline (Page 4255)

Polyline_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the polyline is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4285

Syntax
Polyline_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Polyline where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Polyline (Page 4255)

Programming scripts
10.2 WinCC Unified object model

4286 System Manual, 11/2022

Polyline_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A polyline is left-clicked.
• The <RETURN> or <SPACE> key is pressed when a polyline has the focus.
• A polyline is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
Polyline_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Polyline where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4287

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Polyline (Page 4255)

PopupScreenWindow

Description
The "PopupScreenWindow" object represents a popup screen window.

Object type
HMIPopupScreenWindow

Programming scripts
10.2 WinCC Unified object model

4288 System Manual, 11/2022

Properties
The "PopupScreenWindow" object has the following properties:
• Adaption

Specifies how the window size adapts.
• Caption

Specifies the text to be displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.
• CurrentQuality

Returns the poorest quality code of all tags which influence the popup screen window.
• CurrentScreen

Returns the screen of the current popup screen window.
• CurrentZoomFactor

Specifies the zoom factor which is applied to the displayed screen.
• Enabled

Specifies whether the popup screen window can be operated in runtime.
• Height

Specifies the height.
• HorizontalScrollBarPosition

Specifies the horizontal alignment for the scroll bar.
• HorizontalScrollBarVisibility

Specifies the setting for the horizontal scroll bar of the window.
• Icon

Specifies the icon.
• IsModal

Returns whether the popup screen window is modal.
• InteractiveZooming

Specifies whether zooming is supported.
• Layer

Returns the layer of the screen where the popup screen window is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin of the popup screen window.
• Monitor

Returns the monitor on which the popup screen window is displayed.
• Name

Returns the name of the popup screen window .
• Parent

Returns the parent screen object (Parent container).
• Path

Returns the absolute object path of the popup screen window.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4289

• RenderingTemplate
Returns the name of the template from which the object was created.

• Screen
Specifies the name of the screen contained in the pop-up screen window.

• ScreenName
Returns the screen name.

• ScreenNumber
Returns the screen number.

• ShowFocusVisual
Specifies whether the popup screen window is highlighted when in focus.

• StartupPosition
Specifies the position of the popup screen window at runtime start.

• StyleItemClass
Returns the style applied to the popup screen window.

• System
Specifies the server prefix.

• TabIndex
Returns the position of the screen window in the tab sequence.

• TabIntoWindow
Specifies that the configured tab sequence of the displayed screen is resumed on activation
via the tab sequence.

• Top
Specifies the value of the Y coordinate.

• VerticalScrollBarPosition
Specifies the vertical alignment for the scroll bar.

• VerticalScrollBarVisibility
Specifies the setting for the vertical scroll bar of the window.

• Visible
Specifies whether the popup screen window is visible.

• Width
Specifies the width.

• WindowFlags
Specifies the screen window configuration.

Methods
The "PopupScreenWindow" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the screen window.
• Close()

Closes the screen window.
• PropertyFlashing()

Configures flashing of a property.

Programming scripts
10.2 WinCC Unified object model

4290 System Manual, 11/2022

PopupScreenWindow.Adaption

Description
The "Adaption" property specifies how the window size adapts.

Type
Int32, HmiScreenWindowAdaption
Specifies how the window size adapts:
• None (0): No adaptation
• WindowToScreen (1): Window size corresponds to screen size
• ScreenToWindow (2): Screen is scaled to window size.

Access
Read-write

Syntax
PopupScreenWindow.Adaption

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.Caption

Description
The "Caption" property specifies the text to be displayed in the title bar.

Type
Object, HmiTextPart

Access
Read-write

Syntax
PopupScreenWindow.Caption

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4291

See also
PopupScreenWindow (Page 4288)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
PopupScreenWindow.Caption (Page 4291)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

Programming scripts
10.2 WinCC Unified object model

4292 System Manual, 11/2022

See also
Text.Font (Page 4292)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 4292)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4293

See also
Text.Font (Page 4292)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 4292)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4294 System Manual, 11/2022

Syntax
Font.Underline

See also
Text.Font (Page 4292)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 4292)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4295

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
PopupScreenWindow.Caption (Page 4291)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
PopupScreenWindow.Caption (Page 4291)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Programming scripts
10.2 WinCC Unified object model

4296 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
PopupScreenWindow.Caption (Page 4291)

PopupScreenWindow.CaptionColor

Description
The "CaptionColor" property specifies the color of the title bar.

Type
UInt32

Access
Read-write

Syntax
PopupScreenWindow.CaptionColor

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.CurrentQuality

Description
The "CurrentQuality" property returns the current worst quality code of all tags which influence
the specified popup screen window.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4297

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable. Quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
PopupScreenWindow.CurrentQuality

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.CurrentScreen

Description
The "CurrentScreen" property returns the screen of the current popup screen window.

Type
Object, HmiScreen (Page 1397)

Access
Read-only

Syntax
PopupScreenWindow.CurrentScreen

Programming scripts
10.2 WinCC Unified object model

4298 System Manual, 11/2022

See also
PopupScreenWindow (Page 4288)
Screen (Page 1397)

Screen

Description
Screen (Page 1397)

PopupScreenWindow.CurrentZoomFactor

Description
The "CurrentZoomFactor" property specifies the zoom factor of the popup screen window. The
zoom factor may differ from the containing screen. The value 1.0 corresponds to a zoom factor
of 100%.

Type
Float

Access
Read-write

Syntax
PopupScreenWindow.CurrentZoomFactor

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.Enabled

Description
The "Enabled" property specifies whether the popup screen window can be operated in runtime.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4299

Access
Read-write

Syntax
PopupScreenWindow.Enabled

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.Height

Description
The "Height" property specifies the height of the popup screen window in DIU (Device
Independent Unit).

Type
UInt32

Access
Read-write

Syntax
PopupScreenWindow.Height

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.HorizontalScrollBarPosition

Description
The "HorizontalScrollBarPosition" property specifies the horizontal alignment for the scroll bar.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4300 System Manual, 11/2022

Access
Read-write

Syntax
PopupScreenWindow.HorizontalScrollBarPosition

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.HorizontalScrollBarVisibility

Description
The "HorizontalScrollBarVisibility" property specifies the visibility of the horizontal scroll bar.

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
PopupScreenWindow.HorizontalScrollBarVisibility

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.Icon

Description
The "Icon" property specifies the icon of the popup screen window.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4301

Type
String

Access
Read-write

Syntax
PopupScreenWindow.Icon

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.InteractiveZooming

Description
The "InteractiveZooming" property specifies whether zooming is supported.

Type
Bool

Access
Read-write

Syntax
PopupScreenWindow.InteractiveZooming

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.IsModal

Description
The "IsModal" property returns whether the popup screen window is modal.

Programming scripts
10.2 WinCC Unified object model

4302 System Manual, 11/2022

Type
Bool

Access
Read-only

Syntax
PopupScreenWindow.IsModal

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.Layer

Description
The "Layer" property returns the layer of the screen where the popup screen window is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
PopupScreenWindow.Layer

See also
PopupScreenWindow (Page 4288)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4303

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
PopupScreenWindow.Layer (Page 4303)
Layer.MinimumZoom (Page 4304)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
PopupScreenWindow.Layer (Page 4303)
Layer.MaximumZoom (Page 4303)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Programming scripts
10.2 WinCC Unified object model

4304 System Manual, 11/2022

Type
String

Access
Read-only

Syntax
Layer.Name

See also
PopupScreenWindow.Layer (Page 4303)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
PopupScreenWindow.Layer (Page 4303)

PopupScreenWindow.Left

Description
The "Left" property specifies the value of the X coordinate in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4305

Type
Int32

Access
Read-write

Syntax
PopupScreenWindow.Left

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.Margin

Description
The "Margin" property specifies the surrounded outer distance of the popup screen window.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
PopupScreenWindow.Margin

See also
PopupScreenWindow (Page 4288)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Programming scripts
10.2 WinCC Unified object model

4306 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
PopupScreenWindow.Margin (Page 4306)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
PopupScreenWindow.Margin (Page 4306)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4307

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
PopupScreenWindow.Margin (Page 4306)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
PopupScreenWindow.Margin (Page 4306)

PopupScreenWindow.Monitor

Description
The "Monitor" property returns the monitor on which the window is displayed.

Programming scripts
10.2 WinCC Unified object model

4308 System Manual, 11/2022

Type
UInt8

Access
Read-only

Syntax
PopupScreenWindow.Monitor

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.Name

Description
The "Name" property returns the name of the pop- up screen window.

Type
String

Access
Read-only

Syntax
PopupScreenWindow.Name

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.Parent

Description
The "Parent" property returns the parent screen object (Parent container).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4309

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
PopupScreenWindow.Parent

See also
PopupScreenWindow (Page 4288)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

PopupScreenWindow.Path

Description
The "Path" property returns the absolute object path of the popup screen window in runtime,
starting from the top-level screen window.

Note
For the syntax of an object path, see the "FindItem" method (Page 1549).

Type
String

Access
Read-only

Syntax
PopupScreenWindow.Path

Programming scripts
10.2 WinCC Unified object model

4310 System Manual, 11/2022

See also
UI.FindItem() (Page 1549)
PopupScreenWindow (Page 4288)

PopupScreenWindow.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the object has
been created.

Type
String

Access
Read-only

Syntax
PopupScreenWindow.RenderingTemplate

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.Screen

Description
The "Screen" property specifies the name of the screen ("HMIScreen" type) contained in the pop-
up screen window. Loads a new screen via its name into the popup screen window.
The "Screen" property returns a different value than the "CurrentScreen" when the referenced
screen is not yet loaded completely or does not exist.

Type
String, HmiStoredScreen

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4311

Syntax
PopupScreenWindow.Screen

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.ScreenName

Description
The "ScreenName" property returns the screen name.

Type
String

Access
Read-only

Syntax
PopupScreenWindow.ScreenName

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.ScreenNumber

Description
The "ScreenNumber" property returns the screen number.

Type
UInt16

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

4312 System Manual, 11/2022

Syntax
PopupScreenWindow.ScreenNumber

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the popup screen window is highlighted
when in focus.

Type
Bool

Access
Read-write

Syntax
PopupScreenWindow.ShowFocusVisual

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.StartupPosition

Description
The "StartupPosition" property specifies the position of the popup screen window at runtime
start.

Type
Int32, HmiWindowStartupPosition
Specifies the position of the screen window:
• None (0): Relative placement on the configured monitor via "Left" and "Top".
• CenteredMonitor (1): Centered on the configured monitor.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4313

• Maximized (2): Maximized on the configured monitor.
• CenteredOwner (3): Centered on the displayed screen.

Access
Read-write

Syntax
PopupScreenWindow.StartupPosition

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.StyleItemClass

Description
The "StyleItemClass" property returns the style applied to the popup screen window.

Type
String

Access
Read-only

Syntax
PopupScreenWindow.StyleItemClass

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.System

Description
The "System" property specifies the server prefix.

Programming scripts
10.2 WinCC Unified object model

4314 System Manual, 11/2022

Type
String, HmiSystem

Access
Read-write

Syntax
PopupScreenWindow.System

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.TabIndex

Description
The "TabIndex" property returns the position of the popup screen window in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
PopupScreenWindow.TabIndex

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.TabIntoWindow

Description
The "TabIntoWindow" property specifies that the configured tab sequence of the displayed
screen is resumed on activation via the configured tab sequence.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4315

Type
Bool

Access
Read-write

Syntax
PopupScreenWindow.TabIntoWindow

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.Top

Description
The "Top" property specifies the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
PopupScreenWindow.Top

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.VerticalScrollBarPosition

Description
The "VerticalScrollBarPosition" property specifies the vertical position for the scroll bar.

Programming scripts
10.2 WinCC Unified object model

4316 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
PopupScreenWindow.VerticalScrollBarPosition

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.VerticalScrollBarVisibility

Description
The "VerticalScrollBarVisibility" property specifies the visibility of the vertical scroll bar of the
window.

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
PopupScreenWindow.VerticalScrollBarVisibility

See also
PopupScreenWindow (Page 4288)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4317

PopupScreenWindow.Visible

Description
The "Visible" property specifies whether the popup screen window is visible.

Type
Bool

Access
Read-write

Syntax
PopupScreenWindow.Visible

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.Width

Description
The "Width" property specifies the width of the popup screen window in DIU (Device
Independent Unit).

Type
UInt32

Access
Read-write

Syntax
PopupScreenWindow.Width

See also
PopupScreenWindow (Page 4288)

Programming scripts
10.2 WinCC Unified object model

4318 System Manual, 11/2022

PopupScreenWindow.WindowFlags

Description
The "WindowFlags" property specifies the screen window configuration.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title
• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be positioned
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
Enable multiple properties by adding the integer values or bit operators.

Access
Read-write

Syntax
PopupScreenWindow.WindowFlags

Example
Adapt the "windowFlags" tag depending on the window configuration:

Copy code
var windowFlags = HmiWindowFlag.ShowCaption | HmiWindowFlag.ShowBorder;
if (CanClose){
 windowFlags |= HmiWindowFlag.CanClose;
} else {
 windowFlags &= HmiWindowFlag.CanClose;
}

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4319

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
popup screen window.

Syntax
PopupScreenWindow.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.Close()

Description
The "Close" method closes the popup screen window.

Syntax
PopupScreenWindow.Close()

Programming scripts
10.2 WinCC Unified object model

4320 System Manual, 11/2022

Parameters
--

Return value
Bool

See also
PopupScreenWindow (Page 4288)

PopupScreenWindow.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing means the
change between two values of a property.

Syntax
PopupScreenWindow.PropertyFlashing(propertyName,enable[,value]
[,alternateValue][,rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4321

Specifies the flashing frequency:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
PopupScreenWindow (Page 4288)

ProcessControl

Description
The "ProcessControl" object shows a process control of tag values from the current process or the
log in runtime.

Object type
HmiProcessControl

Properties
The "ProcessControl" object has the following properties:
• BackColor

Specifies the background color.
• Caption

Specifies the text that is displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.
• CurrentQuality

Returns the poorest quality code of all tags which influence the process control.
• EditMode

Specifies the editing mode for values in runtime.
• Enabled

Specifies whether the process control can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

4322 System Manual, 11/2022

• Height
Specifies the height.

• Icon
Specifies the icon of the process control.

• Layer
Returns the screen layer in which the process control is located.

• Left
Specifies the value of the X coordinate.

• Margin
Specifies the margin.

• Name
Returns the name of the process control.

• Online
Specifies the start and stop of updating the process control.

• Parent
Returns the higher-level screen object.

• ProcessView
Specifies the appearance of the process control.

• RenderingTemplate
Returns the name of the template from which the process control was created.

• ShowFocusVisual
Specifies whether the process control is highlighted when in focus.

• StatusBar
Specifies the information bar of the process control.

• StyleItemClass
Returns the style which is applied to the process control.

• TabIndex
Returns the position of the process control in the tab sequence.

• TimeStepSmoothingBase
Specifies the base of the time range for the smoothing the values/times.

• TimeStepSmoothingFactor
Specifies the time base factor for smoothing.

• TimeZone
Specifies the time zone.

• ToolBar
Specifies the toolbar of the process control.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the process control is visible.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4323

• Width
Specifies the width.

• WindowFlags
Specifies the window configuration of the process control.

Methods
The "ProcessControl" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the process control.
• FireCommand()

Configures the occurrence of an event for an element.
• PropertyFlashing()

Configures flashing of a property.

Events
The "ProcessControl" object has the following events:
• OnActivated()

Occurs when a process control receives focus.
• OnCommandFired()

Occurs when the operator has operated an element in the toolbar or information bar of the
process control.

• OnDeactivated()
Occurs when a process control loses focus.

• OnInitialized()
Occurs when a process control has been successfully initialized and the data connection to
the PLC has been established.

ProcessControl.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4324 System Manual, 11/2022

Syntax
ProcessControl.BackColor

See also
ProcessControl (Page 4322)

ProcessControl.Caption

Description
The "Caption" property specifies the text that is displayed in the title bar.

Type
Object, HmiTextPart

Access
Read-write

Syntax
ProcessControl.Caption

See also
ProcessControl (Page 4322)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4325

See also
ProcessControl.Caption (Page 4325)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 4325)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

Programming scripts
10.2 WinCC Unified object model

4326 System Manual, 11/2022

See also
Text.Font (Page 4325)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 4325)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4327

Syntax
Font.StrikeOut

See also
Text.Font (Page 4325)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 4325)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal

Programming scripts
10.2 WinCC Unified object model

4328 System Manual, 11/2022

• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 4325)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
ProcessControl.Caption (Page 4325)

Text.Text

Description
The "Text" property specifies the label.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4329

Type
String

Access
Read-write

Syntax
Text.Text

See also
ProcessControl.Caption (Page 4325)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
ProcessControl.Caption (Page 4325)

ProcessControl.CaptionColor

Description
The "CaptionColor" property specifies the color of the title bar.

Programming scripts
10.2 WinCC Unified object model

4330 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
ProcessControl.CaptionColor

See also
ProcessControl (Page 4322)

ProcessControl.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
process control.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.
• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
ProcessControl.CurrentQuality

See also
ProcessControl (Page 4322)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4331

ProcessControl.EditMode

Description
The "EditMode" property specifies the editing mode for values in runtime.

Type
Int32, HmiEditMode
Specifies the editing mode:
• None (0): No access
• Update (1): Update values
• Create (2): Create values
• Delete (4): Delete values

Access
Read-write

Syntax
ProcessControl.EditMode

See also
ProcessControl (Page 4322)

ProcessControl.Enabled

Description
The "Enabled" property specifies whether the process control can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ProcessControl.Enabled

Programming scripts
10.2 WinCC Unified object model

4332 System Manual, 11/2022

See also
ProcessControl (Page 4322)

ProcessControl.Height

Description
The "Height" property specifies the height in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ProcessControl.Height

See also
ProcessControl (Page 4322)

ProcessControl.Icon

Description
The "Icon" property specifies the icon of the process control.

Type
String

Access
Read-write

Syntax
ProcessControl.Icon

See also
ProcessControl (Page 4322)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4333

ProcessControl.Layer

Description
The "Layer" property returns the screen layer in which the process control is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
ProcessControl.Layer

See also
ProcessControl (Page 4322)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
ProcessControl.Layer (Page 4334)

Programming scripts
10.2 WinCC Unified object model

4334 System Manual, 11/2022

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
ProcessControl.Layer (Page 4334)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
ProcessControl.Layer (Page 4334)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4335

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
ProcessControl.Layer (Page 4334)

ProcessControl.Left

Description
The "Left" property sets the value of the X coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
ProcessControl.Left

See also
ProcessControl (Page 4322)

Programming scripts
10.2 WinCC Unified object model

4336 System Manual, 11/2022

ProcessControl.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ProcessControl.Margin

See also
ProcessControl (Page 4322)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ProcessControl.Margin (Page 4337)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4337

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ProcessControl.Margin (Page 4337)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ProcessControl.Margin (Page 4337)

Programming scripts
10.2 WinCC Unified object model

4338 System Manual, 11/2022

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ProcessControl.Margin (Page 4337)

ProcessControl.Name

Description
The "Name" property returns the name of the process control.

Type
String

Access
Read-only

Syntax
ProcessControl.Name

See also
ProcessControl (Page 4322)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4339

ProcessControl.Online

Description
The "Online" property specifies the start and stop of the table view updating.
• True: Online. The table view is updated with new values.
• False: Offline. No new values are added to the table view.

Type
Bool

Access
Read-write

Syntax
ProcessControl.Online

See also
ProcessControl (Page 4322)

ProcessControl.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
ProcessControl.Parent

See also
ProcessControl (Page 4322)
Screen Items (Page 1571)

Programming scripts
10.2 WinCC Unified object model

4340 System Manual, 11/2022

Screen Items

Description
Screen Items (Page 1571)

ProcessControl.ProcessView

Description
 The "ProcessView" specifies the appearance of the table display.

Type
Object, HmiDataGridViewPart (Page 4341)

Access
Read-write

Syntax
ProcessControl.ProcessView

See also
ProcessControl (Page 4322)
DataGridView (Page 4341)

DataGridView

DataGridView.AllowFilter

Description
The "AllowFilter" property specifies whether filtering of columns is permitted.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4341

Syntax
DataGridView.AllowFilter

See also
ProcessControl.ProcessView (Page 4341)

DataGridView.AllowSort

Description
The "AllowSort" property specifies whether the sorting of columns is permitted.
• True: Activates the sorting and sets the "AllowSort" property of all columns to "true".
• False: Disables the sorting for all columns. The individual column properties remain

unchanged.

Type
Bool

Access
Read-write

Syntax
DataGridView.AllowSort

See also
ProcessControl.ProcessView (Page 4341)

DataGridView.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

4342 System Manual, 11/2022

Access
Read-write

Syntax
DataGridView.AlternateBackColor

See also
ProcessControl.ProcessView (Page 4341)

DataGridView.AlternateForeColor

Description
The "AlternateForeColor" property specifies the flashing color for the text.

Type
UInt32

Access
Read-write

Syntax
DataGridView.AlternateForeColor

See also
ProcessControl.ProcessView (Page 4341)

DataGridView.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4343

Access
Read-write

Syntax
DataGridView.BackColor

See also
ProcessControl.ProcessView (Page 4341)

DataGridView.CellPadding

Description
The "CellPadding" property specifies the inner spacing of the content from the cell border.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
DataGridView.CellPadding

See also
ProcessControl.ProcessView (Page 4341)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4344 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Bottom

See also
DataGridView.CellPadding (Page 4344)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
DataGridView.CellPadding (Page 4344)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4345

Access
Read-write

Syntax
Padding.Right

See also
DataGridView.CellPadding (Page 4344)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
DataGridView.CellPadding (Page 4344)

DataGridView.ColoringMode

Description
The "ColoringMode" property specifies whether alternate coloring of every other row or column
is enabled.

Type
Int32, HmiGridColoringMode

Programming scripts
10.2 WinCC Unified object model

4346 System Manual, 11/2022

Specifies the type of the coloring:
• None (0): None
• Columns (1): Color the columns alternately.
• Rows (2): Color the rows alternately.

Access
Read-write

Syntax
DataGridView.ColoringMode

See also
ProcessControl.ProcessView (Page 4341)

DataGridView.Columns

Description
The "Columns" property represents the quantity of columns.

Type
Object, HmiDataGridColumnCollection (Page 4348)

Access
Read-only

Syntax
DataGridView.Columns

See also
ProcessControl.ProcessView (Page 4341)
HmiDataGridColumnCollection (Page 4348)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4347

HmiDataGridColumnCollection

Description
The "HmiDataGridColumnCollection" object is a list of all columns ("DataGridColumn" objects) of
the table.
You reference a "HmiDataGridColumnCollection" object via the DataGridView.Columns
property.

Use
The "HmiDataGridColumnCollection" object is a list and can be counted and enumerated. You
can access the "HmiDataGridColumnCollection" list using the index or the tag name.

Object type
HmiDataGridColumnCollection

Properties
The "HmiDataGridColumnCollection" object has the following properties:
• Count

Returns the number of columns in the "HmiDataGridColumnCollection" list.

Methods
The "HmiDataGridColumnCollection" object has the following methods:
• Item()

Returns a column of the "HmiDataGridColumnCollection" list.

See also
DataGridView.Columns (Page 4347)

HmiDataGridColumnCollection.Count

Description
The "Count" property returns the number of columns in the "HmiDataGridColumnCollection" list.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

4348 System Manual, 11/2022

Access
Read-only

Syntax
HmiDataGridColumnCollection.Count

See also
HmiDataGridColumnCollection (Page 4348)

HmiDataGridColumnCollection.Item()

Description
The "Item" method returns a column of the "HmiDataGridColumnCollection" list.

Syntax
HmiDataGridColumnCollection[.Item](HmiDataGridColumnName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiDataGridColumnCollection" object.

Parameters
HmiDataGridColumnName
Type: String
Name of the column

Return value
Object, HmiDataGridColumnPartBase (Page 4350)

See also
HmiDataGridColumnCollection (Page 4348)
Process View Columns (Page 4350)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4349

Process View Columns

ProcessColumn

Description
The "ProcessColumn" object represents a value column.

Object type
HmiProcessColumnPart

Properties
The "ProcessColumn" object has the following properties:
• AllowSort

Specifies whether column sorting is allowed.
• BackColor

Specifies the background color.
• Content

Specifies the display options for text and graphics.
• DataSource

Specifies the data source.
• Enabled

Specifies whether the column can be operated in runtime.
• ForeColor

Specifies the font color of the text.
• Header

Specifies the properties of the column header.
• MaximumWidth

Specifies the maximum width.
• MinimumWidth

Specifies the minimum width.
• Name

Returns the name of the column.
• OutputFormat

Specifies the format for displaying values.
• SortDirection

Specifies the sorting direction.
• SortOrder

Specifies the sorting order.

Programming scripts
10.2 WinCC Unified object model

4350 System Manual, 11/2022

• Visible
Specifies whether the column is visible.

• Width
Specifies the width.

Methods
--

See also
HmiDataGridColumnCollection (Page 4348)

ProcessColumn.AllowSort

Description
The "AllowSort" property specifies whether column sorting is permitted.
This property is ignored if the parent object has the "AllowSort" property set to "False".

Type
Bool

Access
Read-write

Syntax
ProcessColumn.AllowSort

See also
ProcessColumn (Page 4350)

ProcessColumn.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4351

Access
Read-write

Syntax
ProcessColumn.BackColor

See also
ProcessColumn (Page 4350)

ProcessColumn.Content

Description
The "Content" property specifies the display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ProcessColumn.Content

See also
ProcessColumn (Page 4350)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics

Programming scripts
10.2 WinCC Unified object model

4352 System Manual, 11/2022

• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ProcessColumn.Content (Page 4352)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ProcessColumn.Content (Page 4352)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4353

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ProcessColumn.Content (Page 4352)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

Programming scripts
10.2 WinCC Unified object model

4354 System Manual, 11/2022

See also
ProcessColumn.Content (Page 4352)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ProcessColumn.Content (Page 4352)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4355

Access
Read-write

Syntax
Content.TextPosition

See also
ProcessColumn.Content (Page 4352)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ProcessColumn.Content (Page 4352)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Programming scripts
10.2 WinCC Unified object model

4356 System Manual, 11/2022

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ProcessColumn.Content (Page 4352)

ProcessColumn.DataSource

Description
The "DataSource" property specifies the data source.

Type
Object, HmiDataSourcePart

Access
Read-write

Syntax
ProcessColumn.DataSource

See also
ProcessColumn (Page 4350)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4357

DataSource.Source

Description
The "Source" property specifies the data source, e.g. a tag or logging tag.

Type
String

Access
Read-write

Syntax
DataSource.Source

See also
ProcessColumn.DataSource (Page 4357)

DataSource.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Access
Read-write

Syntax
DataSource.VisualizeQuality

See also
ProcessColumn.DataSource (Page 4357)

Programming scripts
10.2 WinCC Unified object model

4358 System Manual, 11/2022

ProcessColumn.Enabled

Description
The "Enabled" property specifies whether the column can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ProcessColumn.Enabled

See also
ProcessColumn (Page 4350)

ProcessColumn.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ProcessColumn.ForeColor

See also
ProcessColumn (Page 4350)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4359

ProcessColumn.Header

Description
The "Header" property specifies the properties of the column header.

Type
Object, HmiDataGridColumnHeaderPart

Access
Read-write

Syntax
ProcessColumn.Header

See also
ProcessColumn (Page 4350)

DataGridColumnHeader.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
DataGridColumnHeader.Content

See also
ProcessColumn.Header (Page 4360)

Programming scripts
10.2 WinCC Unified object model

4360 System Manual, 11/2022

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
DataGridColumnHeader.Content (Page 4360)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4361

• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect
ratio is not changed.

• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
DataGridColumnHeader.Content (Page 4360)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
DataGridColumnHeader.Content (Page 4360)

Programming scripts
10.2 WinCC Unified object model

4362 System Manual, 11/2022

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
DataGridColumnHeader.Content (Page 4360)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
DataGridColumnHeader.Content (Page 4360)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4363

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
DataGridColumnHeader.Content (Page 4360)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

4364 System Manual, 11/2022

Access
Read-write

Syntax
Content.TextTrimming

See also
DataGridColumnHeader.Content (Page 4360)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
DataGridColumnHeader.Content (Page 4360)

DataGridColumnHeader.Graphic

Description
The "Graphic" property specifies the graphic of the column header.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4365

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Graphic

See also
ProcessColumn.Header (Page 4360)

DataGridColumnHeader.Text

Description
The "Text" property specifies the label of the column header.

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Text

See also
ProcessColumn.Header (Page 4360)

ProcessColumn.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Programming scripts
10.2 WinCC Unified object model

4366 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
ProcessColumn.MaximumWidth

See also
ProcessColumn (Page 4350)

ProcessColumn.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ProcessColumn.MinimumWidth

See also
ProcessColumn (Page 4350)

ProcessColumn.Name

Description
The "Name" property returns the name of the column.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4367

Access
Read-only

Syntax
ProcessColumn.Name

See also
ProcessColumn (Page 4350)

ProcessColumn.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying values.

Type
String

Access
Read-write

Syntax
ProcessColumn.OutputFormat

See also
ProcessColumn (Page 4350)

ProcessColumn.SortDirection

Description
The "SortDirection" property specifies the sorting direction.

Type
Int32, HmiSortDirection

Programming scripts
10.2 WinCC Unified object model

4368 System Manual, 11/2022

Specifies the sorting order:
• None (0): None
• Ascending (1): Ascending
• Descending (2): Descending

Access
Read-write

Syntax
ProcessColumn.SortDirection

See also
ProcessColumn (Page 4350)

ProcessColumn.SortOrder

Description
The "SortOrder" property specifies the sorting order.
The sorting index starts at "1" (highest priority) in ascending order. Zero is ignored.

Type
UInt16

Access
Read-write

Syntax
ProcessColumn.SortOrder

See also
ProcessColumn (Page 4350)

ProcessColumn.Visible

Description
The "Visible" property specifies whether the column is visible.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4369

Type
Bool

Access
Read-write

Syntax
ProcessColumn.Visible

See also
ProcessColumn (Page 4350)

ProcessColumn.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ProcessColumn.Width

See also
ProcessColumn (Page 4350)

TimeRangeColumn

Description
The "TimeRangeColumn" object represents a value column.

Object type
HmiTimeRangeColumnPart

Programming scripts
10.2 WinCC Unified object model

4370 System Manual, 11/2022

Properties
The "TimeRangeColumn" object has the following properties:
• AllowSort

Specifies whether column sorting is allowed.
• BackColor

Specifies the background color.
• BeginTime

Specifies the date and time for the start time of the time range.
• Content

Specifies the display options for text and graphics.
• Enabled

Specifies whether the column can be operated in runtime.
• EndTime

Specifies the date and time for the end time of the time range.
• ForeColor

Specifies the font color of the text.
• Header

Specifies the properties of the column header.
• MaximumWidth

Specifies the maximum width.
• MinimumWidth

Specifies the minimum width.
• Name

Returns the name of the column.
• OutputFormat

Specifies the format for displaying values.
• PointCount

Specifies the number of measurement points from the start time.
• RangeType

Specifies the type of time range.
• SortDirection

Specifies the sorting direction.
• SortOrder

Specifies the sorting order.
• TimeRangeBase

Specifies the basis of the time range.
• TimeRangeFactor

Specifies the factor of the time base for defining the time range.
• Visible

Specifies whether the column is visible.
• Width

Specifies the width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4371

Methods
--

See also
HmiDataGridColumnCollection (Page 4348)

TimeRangeColumn.AllowSort

Description
The "AllowSort" property specifies whether column sorting is permitted.
This property is ignored if the parent object has the "AllowSort" property set to "False".

Type
Bool

Access
Read-write

Syntax
TimeRangeColumn.AllowSort

See also
TimeRangeColumn (Page 4370)

TimeRangeColumn.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4372 System Manual, 11/2022

Syntax
TimeRangeColumn.BackColor

See also
TimeRangeColumn (Page 4370)

TimeRangeColumn.BeginTime

Description
The "BeginTime" property specifies the date and time for the start time of the time range.

Type
DateTime

Access
Read-write

Syntax
TimeRangeColumn.BeginTime

See also
TimeRangeColumn (Page 4370)

TimeRangeColumn.Content

Description
The "Content" property specifies the display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
TimeRangeColumn.Content

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4373

See also
TimeRangeColumn (Page 4370)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
TimeRangeColumn.Content (Page 4373)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.

Programming scripts
10.2 WinCC Unified object model

4374 System Manual, 11/2022

• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
TimeRangeColumn.Content (Page 4373)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
TimeRangeColumn.Content (Page 4373)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4375

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
TimeRangeColumn.Content (Page 4373)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
TimeRangeColumn.Content (Page 4373)

Programming scripts
10.2 WinCC Unified object model

4376 System Manual, 11/2022

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
TimeRangeColumn.Content (Page 4373)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4377

Access
Read-write

Syntax
Content.TextTrimming

See also
TimeRangeColumn.Content (Page 4373)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
TimeRangeColumn.Content (Page 4373)

TimeRangeColumn.Enabled

Description
The "Enabled" property specifies whether the column can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

4378 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
TimeRangeColumn.Enabled

See also
TimeRangeColumn (Page 4370)

TimeRangeColumn.EndTime

Description
The "EndTime" property specifies the date and time for the end time of the time range.

Type
DateTime

Access
Read-write

Syntax
TimeRangeColumn.EndTime

See also
TimeRangeColumn (Page 4370)

TimeRangeColumn.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4379

Access
Read-write

Syntax
TimeRangeColumn.ForeColor

See also
TimeRangeColumn (Page 4370)

TimeRangeColumn.Header

Description
The "Header" property specifies the properties of the column header.

Type
Object, HmiDataGridColumnHeaderPart

Access
Read-write

Syntax
TimeRangeColumn.Header

See also
TimeRangeColumn (Page 4370)

DataGridColumnHeader.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4380 System Manual, 11/2022

Syntax
DataGridColumnHeader.Content

See also
TimeRangeColumn.Header (Page 4380)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
DataGridColumnHeader.Content (Page 4380)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4381

Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
DataGridColumnHeader.Content (Page 4380)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

Programming scripts
10.2 WinCC Unified object model

4382 System Manual, 11/2022

See also
DataGridColumnHeader.Content (Page 4380)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
DataGridColumnHeader.Content (Page 4380)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4383

See also
DataGridColumnHeader.Content (Page 4380)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
DataGridColumnHeader.Content (Page 4380)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming

Programming scripts
10.2 WinCC Unified object model

4384 System Manual, 11/2022

Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
DataGridColumnHeader.Content (Page 4380)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
DataGridColumnHeader.Content (Page 4380)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4385

DataGridColumnHeader.Graphic

Description
The "Graphic" property specifies the graphic of the column header.

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Graphic

See also
TimeRangeColumn.Header (Page 4380)

DataGridColumnHeader.Text

Description
The "Text" property specifies the label of the column header.

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Text

See also
TimeRangeColumn.Header (Page 4380)

Programming scripts
10.2 WinCC Unified object model

4386 System Manual, 11/2022

TimeRangeColumn.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
TimeRangeColumn.MaximumWidth

See also
TimeRangeColumn (Page 4370)

TimeRangeColumn.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
TimeRangeColumn.MinimumWidth

See also
TimeRangeColumn (Page 4370)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4387

TimeRangeColumn.Name

Description
The "Name" property returns the name of the column.

Type
String

Access
Read-only

Syntax
TimeRangeColumn.Name

See also
TimeRangeColumn (Page 4370)

TimeRangeColumn.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying values.

Type
String

Access
Read-write

Syntax
TimeRangeColumn.OutputFormat

See also
TimeRangeColumn (Page 4370)

Programming scripts
10.2 WinCC Unified object model

4388 System Manual, 11/2022

TimeRangeColumn.PointCount

Description
The "PointCount" property specifies the number of measurement points from the start time.

Type
Int32

Access
Read-write

Syntax
TimeRangeColumn.PointCount

See also
TimeRangeColumn (Page 4370)

TimeRangeColumn.RangeType

Description
The "RangeType" property specifies the type of time range.

Type
Int32, HmiTimeRangeType
Specifies the time range:
• TimeRange (0): Any time range
• FromBeginToEnd (1): Total time range
• PointCount (2): Number of measurement points

Access
Read-write

Syntax
TimeRangeColumn.RangeType

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4389

See also
TimeRangeColumn (Page 4370)

TimeRangeColumn.SortDirection

Description
The "SortDirection" property specifies the sorting direction.

Type
Int32, HmiSortDirection
Specifies the sorting order:
• None (0): None
• Ascending (1): Ascending
• Descending (2): Descending

Access
Read-write

Syntax
TimeRangeColumn.SortDirection

See also
TimeRangeColumn (Page 4370)

TimeRangeColumn.SortOrder

Description
The "SortOrder" property specifies the sorting order.
The sorting index starts at "1" (highest priority) in ascending order. Zero is ignored.

Type
UInt16

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4390 System Manual, 11/2022

Syntax
TimeRangeColumn.SortOrder

See also
TimeRangeColumn (Page 4370)

TimeRangeColumn.TimeRangeBase

Description
The "TimeRangeBase" property specifies the base of the time range.

Type
Int32, HmiTimeRangeBase
Specifies the time range:
• Undefined (0): Not defined
• Millisecond (1): Millisecond
• Second (2): Second
• Minute (3): Minute
• Hour (4): Hour
• Day (5): Day
• Month (6): Month
• Year (7): Year

Access
Read-write

Syntax
TimeRangeColumn.TimeRangeBase

See also
TimeRangeColumn (Page 4370)

TimeRangeColumn.TimeRangeFactor

Description
The "TimeRangeFactor" property specifies the factor of the time base for defining the time range.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4391

Type
Int32

Access
Read-write

Syntax
TimeRangeColumn.TimeRangeFactor

See also
TimeRangeColumn (Page 4370)

TimeRangeColumn.Visible

Description
The "Visible" property specifies whether the column is visible.

Type
Bool

Access
Read-write

Syntax
TimeRangeColumn.Visible

See also
TimeRangeColumn (Page 4370)

TimeRangeColumn.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

4392 System Manual, 11/2022

Access
Read-write

Syntax
TimeRangeColumn.Width

See also
TimeRangeColumn (Page 4370)

DataGridView.Font

Description
The "Font" property specifies the font of the cells.

Type
Object, HmiFontPart

Access
Read-write

Syntax
DataGridView.Font

See also
ProcessControl.ProcessView (Page 4341)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4393

Access
Read-write

Syntax
Font.Italic

See also
DataGridView.Font (Page 4393)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
DataGridView.Font (Page 4393)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Programming scripts
10.2 WinCC Unified object model

4394 System Manual, 11/2022

Access
Read-write

Syntax
Font.Size

See also
DataGridView.Font (Page 4393)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
DataGridView.Font (Page 4393)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4395

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
DataGridView.Font (Page 4393)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
DataGridView.Font (Page 4393)

Programming scripts
10.2 WinCC Unified object model

4396 System Manual, 11/2022

DataGridView.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
DataGridView.ForeColor

See also
ProcessControl.ProcessView (Page 4341)

DataGridView.GridLineColor

Description
The "GridLineColor" property specifies the color of grid lines.

Type
UInt32

Access
Read-write

Syntax
DataGridView.GridLineColor

See also
ProcessControl.ProcessView (Page 4341)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4397

DataGridView.GridLineVisibility

Description
The "GridLineVisibility" property specifies the visibility of the grid lines.

Type
Int32, HmiSimpleGridLine
Specifies the grid lines:
• None (0): None
• Vertikal (1): Vertical
• Horizontal (2): Horizontal

Access
Read-write

Syntax
DataGridView.GridLineVisibility

See also
ProcessControl.ProcessView (Page 4341)

DataGridView.GridLineWidth

Description
The "GridLineWidth" property specifies the thickness of the grid lines in pixels.

Type
UInt8

Access
Read-write

Syntax
DataGridView.GridLineWidth

Programming scripts
10.2 WinCC Unified object model

4398 System Manual, 11/2022

See also
ProcessControl.ProcessView (Page 4341)

DataGridView.GridSelectionMode

Description
The "GridSelectionMode" property specifies whether multiple selection is enabled in the table
content.

Type
Int32, HmiGridSelectionMode
Specifies the type of the selection:
• None (0): None
• Single (1): Only single selection
• Multi (2): Multiple selection

Access
Read-write

Syntax
DataGridView.GridSelectionMode

See also
ProcessControl.ProcessView (Page 4341)

DataGridView.HeaderSettings

Description
The "HeaderSettings" property specifies the settings for all column headers in the table.

Type
Object, HmiDataGridHeaderSettingsPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4399

Syntax
DataGridView.HeaderSettings

See also
ProcessControl.ProcessView (Page 4341)

DataGridHeaderSettings.AllowColumnReorder

Description
The "AllowColumnReorder" property specifies whether the order of the columns can be changed.

Type
Bool

Access
Read-write

Syntax
DataGridHeaderSettings.AllowColumnReorder

See also
DataGridView.HeaderSettings (Page 4399)

DataGridHeaderSettings.AllowColumnResize

Description
The "AllowColumnResize" property specifies whether the width of the columns can be changed.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4400 System Manual, 11/2022

Syntax
DataGridHeaderSettings.AllowColumnResize

See also
DataGridView.HeaderSettings (Page 4399)

DataGridHeaderSettings.ColumnHeaderType

Description
The "ColumnHeaderType" property specifies the type of content of a column header.

Type
Int32, HmiDataGridHeaderType
Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Access
Read-write

Syntax
DataGridHeaderSettings.ColumnHeaderType

See also
DataGridView.HeaderSettings (Page 4399)

DataGridHeaderSettings.Font

Description
The "Font" property specifies the font of the headers.

Type
Object, HmiFontPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4401

Access
Read-write

Syntax
DataGridHeaderSettings.Font

See also
DataGridView.HeaderSettings (Page 4399)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
DataGridHeaderSettings.Font (Page 4401)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Programming scripts
10.2 WinCC Unified object model

4402 System Manual, 11/2022

Access
Read-write

Syntax
Font.Name

See also
DataGridHeaderSettings.Font (Page 4401)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
DataGridHeaderSettings.Font (Page 4401)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4403

Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
DataGridHeaderSettings.Font (Page 4401)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
DataGridHeaderSettings.Font (Page 4401)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Programming scripts
10.2 WinCC Unified object model

4404 System Manual, 11/2022

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
DataGridHeaderSettings.Font (Page 4401)

DataGridHeaderSettings.HeaderBackColor

Description
The "HeaderBackColor" property specifies the background color of the header.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderBackColor

See also
DataGridView.HeaderSettings (Page 4399)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4405

DataGridHeaderSettings.HeaderForeColor

Description
The "HeaderForeColor" property specifies the font color of the headers.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderForeColor

See also
DataGridView.HeaderSettings (Page 4399)

DataGridHeaderSettings.HeaderGridLineColor

Description
The "HeaderGridLineColor" property specifies the color of the separation line between column
headers.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderGridLineColor

See also
DataGridView.HeaderSettings (Page 4399)

Programming scripts
10.2 WinCC Unified object model

4406 System Manual, 11/2022

DataGridHeaderSettings.HeaderSelectionBackColor

Description
The "HeaderSelectionBackColor" property specifies the background color of the header of a
selected line or column.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderSelectionBackColor

See also
DataGridView.HeaderSettings (Page 4399)

DataGridHeaderSettings.HeaderSelectionForeColor

Description
The "HeaderSelectionForeColor" property specifies the font color of the header of a selected line
or column.

Type
UInt32

Access
Read-write

Syntax
Object.HeaderSelectionForeColor

Object
Required. An object from the "Availability" section.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4407

See also
DataGridView.HeaderSettings (Page 4399)

DataGridHeaderSettings.RowHeaderType

Description
The "RowHeaderType" property specifies the type of content of a row header.

Type
Int32, HmiDataGridHeaderType
Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Access
Read-write

Syntax
DataGridHeaderSettings.RowHeaderType

See also
DataGridView.HeaderSettings (Page 4399)

DataGridView.HorizontalScrollBarVisibility

Description
The "HorizontalScrollBarVisibility" property specifies the visibility of the horizontal scroll bar of
the display.

Type
Int32, HmiScrollBarVisibility

Programming scripts
10.2 WinCC Unified object model

4408 System Manual, 11/2022

Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
DataGridView.HorizontalScrollBarVisibility

See also
ProcessControl.ProcessView (Page 4341)

DataGridView.RowHeight

Description
The "RowHeight" property specifies the height of all rows in the table in DIU (Device Independent
Unit).
"0" corresponds to a automatic mechanism, which adjusts the height of each line according
to the font size and number of paragraphs.

Type
UInt8

Access
Read-write

Syntax
DataGridView.RowHeight

See also
ProcessControl.ProcessView (Page 4341)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4409

DataGridView.SelectFullRow

Description
The "SelectFullRow" property specifies whether only the cell or the entire row is included in the
selection.

Type
Bool

Access
Read-write

Syntax
DataGridView.SelectFullRow

See also
ProcessControl.ProcessView (Page 4341)

DataGridView.SelectionBackColor

Description
The "SelectionBackColor" property specifies the background color of the selected cells.

Type
UInt32

Access
Read-write

Syntax
DataGridView.SelectionBackColor

See also
ProcessControl.ProcessView (Page 4341)

Programming scripts
10.2 WinCC Unified object model

4410 System Manual, 11/2022

DataGridView.SelectionBorderColor

Description
The "SelectionBorderColor" property specifies the border color of the selected cells.

Type
UInt8

Access
Read-write

Syntax
DataGridView.SelectionBorderColor

See also
ProcessControl.ProcessView (Page 4341)

DataGridView.SelectionForeColor

Description
The "SelectionForeColor" property specifies the font color of the selected cells.

Type
UInt32

Access
Read-write

Syntax
DataGridView.SelectionForeColor

See also
ProcessControl.ProcessView (Page 4341)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4411

DataGridView.VerticalScrollBarVisibility

Description
The "VerticalScrollBarVisibility" property specifies the visibility of the vertical scroll bar of the
display.

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
DataGridView.VerticalScrollBarVisibility

See also
ProcessControl.ProcessView (Page 4341)

ProcessControl.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the process
control was created.

Type
String

Access
Read-only

Syntax
ProcessControl.RenderingTemplate

Programming scripts
10.2 WinCC Unified object model

4412 System Manual, 11/2022

See also
ProcessControl (Page 4322)

ProcessControl.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the process control is highlighted when in
focus.

Type
Bool

Access
Read-write

Syntax
ProcessControl.ShowFocusVisual

See also
ProcessControl (Page 4322)

ProcessControl.StatusBar

Description
The "StatusBar" property specifies the information bar of the process control.

Type
Object, HmiStatusBarPart

Access
Read-write

Syntax
ProcessControl.StatusBar

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4413

See also
ProcessControl (Page 4322)

StatusBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
StatusBar.BackColor

See also
ProcessControl.StatusBar (Page 4413)

StatusBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
information bar.

Type
Object, HmiControlBarElementCollection (Page 4415)

Access
Read-only

Syntax
StatusBar.Elements

Programming scripts
10.2 WinCC Unified object model

4414 System Manual, 11/2022

See also
ProcessControl.StatusBar (Page 4413)
HmiControlBarElementCollection (Page 4415)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
StatusBar.Elements (Page 4414)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4415

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 4415)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 4433)

Programming scripts
10.2 WinCC Unified object model

4416 System Manual, 11/2022

See also
HmiControlBarElementCollection (Page 4415)
Control Bar Elements (Page 4433)

Control Bar Elements

Description
Control Bar Elements (Page 4433)

StatusBar.Enabled

Description
The "Enabled" property specifies whether the information bar can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
StatusBar.Enabled

See also
ProcessControl.StatusBar (Page 4413)

StatusBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4417

Access
Read-write

Syntax
StatusBar.Font

See also
ProcessControl.StatusBar (Page 4413)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
StatusBar.Font (Page 4417)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Programming scripts
10.2 WinCC Unified object model

4418 System Manual, 11/2022

Access
Read-write

Syntax
Font.Name

See also
StatusBar.Font (Page 4417)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
StatusBar.Font (Page 4417)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4419

Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
StatusBar.Font (Page 4417)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
StatusBar.Font (Page 4417)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Programming scripts
10.2 WinCC Unified object model

4420 System Manual, 11/2022

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
StatusBar.Font (Page 4417)

StatusBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the information bar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
StatusBar.Margin

See also
ProcessControl.StatusBar (Page 4413)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4421

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
StatusBar.Margin (Page 4421)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
StatusBar.Margin (Page 4421)

Programming scripts
10.2 WinCC Unified object model

4422 System Manual, 11/2022

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
StatusBar.Margin (Page 4421)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
StatusBar.Margin (Page 4421)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4423

StatusBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the information
bar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
StatusBar.Padding

See also
ProcessControl.StatusBar (Page 4413)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
StatusBar.Padding (Page 4424)

Programming scripts
10.2 WinCC Unified object model

4424 System Manual, 11/2022

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
StatusBar.Padding (Page 4424)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
StatusBar.Padding (Page 4424)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4425

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
StatusBar.Padding (Page 4424)

StatusBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
StatusBar.ShowToolTips

See also
ProcessControl.StatusBar (Page 4413)

Programming scripts
10.2 WinCC Unified object model

4426 System Manual, 11/2022

StatusBar.Visible

Description
The "Visible" property specifies whether the information bar is visible.

Type
Bool

Access
Read-write

Syntax
StatusBar.Visible

See also
ProcessControl.StatusBar (Page 4413)

ProcessControl.StyleItemClass

Description
The "StyleItemClass" property returns the style that is applied to the process control.

Type
String

Access
Read-only

Syntax
ProcessControl.StyleItemClass

See also
ProcessControl (Page 4322)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4427

ProcessControl.TabIndex

Description
The "TabIndex" property returns the position of the process control in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
ProcessControl.TabIndex

See also
ProcessControl (Page 4322)

ProcessControl.TimeStepSmoothingBase

Description
The "TimeStepSmoothingBase" property specifies the base of the time range for smoothing the
values/times.

Type
Int32, HmiTimeRangeBase
Specifies the time range:
• Undefined (0): Not defined
• Millisecond (1): Millisecond
• Second (2): Second
• Minute (3): Minute
• Hour (4): Hour
• Day (5): Day
• Month (6): Month
• Year (7): Year

Programming scripts
10.2 WinCC Unified object model

4428 System Manual, 11/2022

Access
Read-write

Syntax
ProcessControl.TimeStepSmoothingBase

See also
ProcessControl (Page 4322)

ProcessControl.TimeStepSmoothingFactor

Description
The "TimeStepSmoothingFactor" property specifies the factor for smoothing the time base.

Type
Int32

Access
Read-write

Syntax
ProcessControl.TimeStepSmoothingFactor

See also
ProcessControl (Page 4322)

ProcessControl.TimeZone

Description
The "TimeZone" property specifies the time zone.

Type
Int32, HmiTimeZone

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4429

Syntax
ProcessControl.TimeZone

See also
ProcessControl (Page 4322)

ProcessControl.ToolBar

Description
The "ToolBar" property specifies the toolbar of the table display.

Type
Object, HmiToolBarPart

Access
Read-write

Syntax
ProcessControl.ToolBar

See also
ProcessControl (Page 4322)

ToolBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ToolBar.BackColor

Programming scripts
10.2 WinCC Unified object model

4430 System Manual, 11/2022

See also
ProcessControl.ToolBar (Page 4430)

ToolBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
toolbar.

Type
Object, HmiControlBarElementCollection (Page 4431)

Access
Read-only

Syntax
ToolBar.Elements

See also
HmiControlBarElementCollection (Page 4431)
ProcessControl.ToolBar (Page 4430)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4431

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
ToolBar.Elements (Page 4431)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 4431)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

4432 System Manual, 11/2022

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 4433)

See also
HmiControlBarElementCollection (Page 4431)
Control Bar Elements (Page 4433)

Control Bar Elements

ControlBarButton

Description
The "ControlBarButton" object represents a button of an information bar or toolbar.
You can reference the "ControlBarButton" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarButtonPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4433

Properties
The "ControlBarButton" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the label of the button.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the button can be operated in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• HotKey

Returns the hotkey specified for the button.
• Mapping

Returns the function of the button.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

4434 System Manual, 11/2022

• Operability
Returns whether the button is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the button is only operable while the corresponding button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the button is visible.

• Width
Specifies the width.

Methods
--

ControlBarButton.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBackColor

See also
ControlBarButton (Page 4433)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4435

ControlBarButton.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBorderColor

See also
ControlBarButton (Page 4433)

ControlBarButton.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the button of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarButton.Authorization

See also
ControlBarButton (Page 4433)

Programming scripts
10.2 WinCC Unified object model

4436 System Manual, 11/2022

ControlBarButton.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BackColor

See also
ControlBarButton (Page 4433)

ControlBarButton.Badge

Description
The "Badge" property specifies the label of the button.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarButton.Badge

See also
ControlBarButton (Page 4433)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4437

ControlBarButton.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BorderColor

See also
ControlBarButton (Page 4433)

ControlBarButton.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarButton.BorderWidth

See also
ControlBarButton (Page 4433)

Programming scripts
10.2 WinCC Unified object model

4438 System Manual, 11/2022

ControlBarButton.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarButton.Content

See also
ControlBarButton (Page 4433)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4439

See also
ControlBarButton.Content (Page 4439)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarButton.Content (Page 4439)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

4440 System Manual, 11/2022

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarButton.Content (Page 4439)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarButton.Content (Page 4439)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4441

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarButton.Content (Page 4439)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4442 System Manual, 11/2022

Syntax
Content.TextPosition

See also
ControlBarButton.Content (Page 4439)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarButton.Content (Page 4439)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4443

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarButton.Content (Page 4439)

ControlBarButton.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarButton.CustomID

See also
ControlBarButton (Page 4433)

Programming scripts
10.2 WinCC Unified object model

4444 System Manual, 11/2022

ControlBarButton.Enabled

Description
The "Enabled" property specifies whether the button can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Enabled

See also
ControlBarButton (Page 4433)

ControlBarButton.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.ForeColor

See also
ControlBarButton (Page 4433)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4445

ControlBarButton.Graphic

Description
The "Graphic" property specifies the graphic of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Graphic

See also
ControlBarButton (Page 4433)

ControlBarButton.Height

Description
The "Height" property specifies the height of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Height

See also
ControlBarButton (Page 4433)

Programming scripts
10.2 WinCC Unified object model

4446 System Manual, 11/2022

ControlBarButton.HotKey

Description
The "HotKey" property returns the hotkey specified for the button. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
ControlBarButton.HotKey

See also
ControlBarButton (Page 4433)

ControlBarButton.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4447

• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms

Programming scripts
10.2 WinCC Unified object model

4448 System Manual, 11/2022

• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarButton.Mapping

See also
ControlBarButton (Page 4433)

ControlBarButton.Margin

Description
The "Margin" property specifies the surrounded outer distance of the button.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4449

Syntax
ControlBarButton.Margin

See also
ControlBarButton (Page 4433)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarButton.Margin (Page 4449)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4450 System Manual, 11/2022

Syntax
Margin.Left

See also
ControlBarButton.Margin (Page 4449)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarButton.Margin (Page 4449)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4451

Syntax
Margin.Top

See also
ControlBarButton.Margin (Page 4449)

ControlBarButton.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumHeight

See also
ControlBarButton (Page 4433)

ControlBarButton.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4452 System Manual, 11/2022

Syntax
ControlBarButton.MaximumWidth

See also
ControlBarButton (Page 4433)

ControlBarButton.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumHeight

See also
ControlBarButton (Page 4433)

ControlBarButton.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4453

Syntax
ControlBarButton.MinimumWidth

See also
ControlBarButton (Page 4433)

ControlBarButton.Operability

Description
The "Operability" property returns whether the button is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarButton.Operability

See also
ControlBarButton (Page 4433)

ControlBarButton.Padding

Description
The "Padding" property specifies the distance of the content from the border of the button.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

4454 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.Padding

See also
ControlBarButton (Page 4433)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarButton.Padding (Page 4454)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4455

Access
Read-write

Syntax
Padding.Left

See also
ControlBarButton.Padding (Page 4454)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarButton.Padding (Page 4454)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4456 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Top

See also
ControlBarButton.Padding (Page 4454)

ControlBarButton.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the button can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarButton.RequireExplicitUnlock

See also
ControlBarButton (Page 4433)

ControlBarButton.Text

Description
The "Text" property specifies the label of the button.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4457

Access
Read-write

Syntax
ControlBarButton.Text

See also
ControlBarButton (Page 4433)

ControlBarButton.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.ToolTipText

See also
ControlBarButton (Page 4433)

ControlBarButton.Visible

Description
The "Visible" property specifies whether the button is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

4458 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.Visible

See also
ControlBarButton (Page 4433)

ControlBarButton.Width

Description
The "Width" property specifies the width of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Width

See also
ControlBarButton (Page 4433)

ControlBarDisplay

Description
The "ControlBarDisplay" object represents a display area for text and graphics of an information
bar or toolbar.
You can reference the "ControlBarDisplay" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarDisplayPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4459

Properties
The "ControlBarDisplay" object has the following properties:
• Authorization

Returns the operator authorization.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the display area is enabled in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• Mapping

Returns the function of the display area.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the display area is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the display area is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

Programming scripts
10.2 WinCC Unified object model

4460 System Manual, 11/2022

• Visible
Specifies whether the display area is visible.

• Width
Specifies the width.

Methods
--

ControlBarDisplay.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the display.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarDislay.Authorization

See also
ControlBarDisplay (Page 4459)

ControlBarDisplay.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4461

Syntax
ControlBarDislay.Content

See also
ControlBarDisplay (Page 4459)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarDisplay.Content (Page 4461)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode

Programming scripts
10.2 WinCC Unified object model

4462 System Manual, 11/2022

Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarDisplay.Content (Page 4461)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4463

See also
ControlBarDisplay.Content (Page 4461)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarDisplay.Content (Page 4461)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

Programming scripts
10.2 WinCC Unified object model

4464 System Manual, 11/2022

See also
ControlBarDisplay.Content (Page 4461)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarDisplay.Content (Page 4461)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4465

Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarDisplay.Content (Page 4461)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarDisplay.Content (Page 4461)

Programming scripts
10.2 WinCC Unified object model

4466 System Manual, 11/2022

ControlBarDisplay.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarDislay.CustomID

See also
ControlBarDisplay (Page 4459)

ControlBarDisplay.Enabled

Description
The "Enabled" property specifies whether the display is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Enabled

See also
ControlBarDisplay (Page 4459)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4467

ControlBarDisplay.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.ForeColor

See also
ControlBarDisplay (Page 4459)

ControlBarDisplay.Graphic

Description
The "Graphic" property specifies the graphic of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Graphic

See also
ControlBarDisplay (Page 4459)

Programming scripts
10.2 WinCC Unified object model

4468 System Manual, 11/2022

ControlBarDisplay.Height

Description
The "Height" property specifies the height of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Height

See also
ControlBarDisplay (Page 4459)

ControlBarDisplay.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4469

• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms

Programming scripts
10.2 WinCC Unified object model

4470 System Manual, 11/2022

• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarDislay.Mapping

See also
ControlBarDisplay (Page 4459)

ControlBarDisplay.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the display.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4471

Syntax
ControlBarDislay.Margin

See also
ControlBarDisplay (Page 4459)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarDisplay.Margin (Page 4471)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4472 System Manual, 11/2022

Syntax
Margin.Left

See also
ControlBarDisplay.Margin (Page 4471)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarDisplay.Margin (Page 4471)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4473

Syntax
Margin.Top

See also
ControlBarDisplay.Margin (Page 4471)

ControlBarDisplay.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MaximumHeight

See also
ControlBarDisplay (Page 4459)

ControlBarDisplay.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4474 System Manual, 11/2022

Syntax
ControlBarDislay.MaximumWidth

See also
ControlBarDisplay (Page 4459)

ControlBarDisplay.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MinimumHeight

See also
ControlBarDisplay (Page 4459)

ControlBarDisplay.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4475

Syntax
ControlBarDislay.MinimumWidth

See also
ControlBarDisplay (Page 4459)

ControlBarDisplay.Operability

Description
The "Operability" property returns whether the display is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarDislay.Operability

See also
ControlBarDisplay (Page 4459)

ControlBarDisplay.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the display.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

4476 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.Padding

See also
ControlBarDisplay (Page 4459)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarDisplay.Padding (Page 4476)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4477

Access
Read-write

Syntax
Padding.Left

See also
ControlBarDisplay.Padding (Page 4476)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarDisplay.Padding (Page 4476)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4478 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Top

See also
ControlBarDisplay.Padding (Page 4476)

ControlBarDisplay.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the display can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarDislay.RequireExplicitUnlock

See also
ControlBarDisplay (Page 4459)

ControlBarDisplay.Text

Description
The "Text" property specifies the label of the display.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4479

Access
Read-write

Syntax
ControlBarDislay.Text

See also
ControlBarDisplay (Page 4459)

ControlBarDisplay.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.ToolTipText

See also
ControlBarDisplay (Page 4459)

ControlBarDisplay.Visible

Description
The "Visible" property specifies whether the display is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

4480 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.Visible

See also
ControlBarDisplay (Page 4459)

ControlBarDisplay.Width

Description
The "Width" property specifies the width of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Width

See also
ControlBarDisplay (Page 4459)

ControlBarLabel

Description
The "ControlBarLabel" object represents an identifier of an information bar or toolbar.
You can reference the "ControlBarLabel" object via the "HmiControlBarElementCollection" list.

Object type
HmiControlBarLabelPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4481

Properties
The "ControlBarLabel" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the identifier can be operated in runtime.
• ForeColor

Specifies the font color.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Height

Specifies the height.
• Mapping

Returns the function of the identifier.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the identifier is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the identifier is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

Programming scripts
10.2 WinCC Unified object model

4482 System Manual, 11/2022

• Visible
Specifies whether the identifier is visible.

• Width
Specifies the width.

Methods
--

ControlBarLabel.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the identifier.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarLabel.Authorization

See also
ControlBarLabel (Page 4481)

ControlBarLabel.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4483

Access
Read-only

Syntax
ControlBarLabel.CustomID

See also
ControlBarLabel (Page 4481)

ControlBarLabel.Enabled

Description
The "Enabled" property specifies whether the identifier is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarLabel.Enabled

See also
ControlBarLabel (Page 4481)

ControlBarLabel.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

4484 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarLabel.ForeColor

See also
ControlBarLabel (Page 4481)

ControlBarLabel.Height

Description
The "Height" property specifies the height of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Height

See also
ControlBarLabel (Page 4481)

ControlBarLabel.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4485

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.HorizontalTextAlignment

See also
ControlBarLabel (Page 4481)

ControlBarLabel.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms

Programming scripts
10.2 WinCC Unified object model

4486 System Manual, 11/2022

• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4487

• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires
acknowledgment

• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarLabel.Mapping

See also
ControlBarLabel (Page 4481)

ControlBarLabel.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the identifier.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarLabel.Margin

Programming scripts
10.2 WinCC Unified object model

4488 System Manual, 11/2022

See also
ControlBarLabel (Page 4481)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarLabel.Margin (Page 4488)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4489

See also
ControlBarLabel.Margin (Page 4488)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarLabel.Margin (Page 4488)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

Programming scripts
10.2 WinCC Unified object model

4490 System Manual, 11/2022

See also
ControlBarLabel.Margin (Page 4488)

ControlBarLabel.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumHeight

See also
ControlBarLabel (Page 4481)

ControlBarLabel.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumWidth

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4491

See also
ControlBarLabel (Page 4481)

ControlBarLabel.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumHeight

See also
ControlBarLabel (Page 4481)

ControlBarLabel.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumWidth

Programming scripts
10.2 WinCC Unified object model

4492 System Manual, 11/2022

See also
ControlBarLabel (Page 4481)

ControlBarLabel.Operability

Description
The "Operability" property returns whether the identifier is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarLabel.Operability

See also
ControlBarLabel (Page 4481)

ControlBarLabel.Padding

Description
The "Padding" property specifies the spacing of the content from the frame of the identifier.

Type
Object, HmiPaddingPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4493

Syntax
ControlBarLabel.Padding

See also
ControlBarLabel (Page 4481)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarLabel.Padding (Page 4493)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4494 System Manual, 11/2022

Syntax
Padding.Left

See also
ControlBarLabel.Padding (Page 4493)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarLabel.Padding (Page 4493)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4495

Syntax
Padding.Top

See also
ControlBarLabel.Padding (Page 4493)

ControlBarLabel.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the identifier can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarLabel.RequireExplicitUnlock

See also
ControlBarLabel (Page 4481)

ControlBarLabel.Text

Description
The "Text" property specifies the label of the identifier.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4496 System Manual, 11/2022

Syntax
ControlBarLabel.Text

See also
ControlBarLabel (Page 4481)

ControlBarLabel.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.ToolTipText

See also
ControlBarLabel (Page 4481)

ControlBarLabel.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4497

Access
Read-write

Syntax
ControlBarLabel.VerticalTextAlignment

See also
ControlBarLabel (Page 4481)

ControlBarLabel.Visible

Description
The "Visible" property specifies whether the identifier is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarLabel.Visible

See also
ControlBarLabel (Page 4481)

ControlBarLabel.Width

Description
The "Width" property specifies the width of the identifier in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

4498 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarLabel.Width

See also
ControlBarLabel (Page 4481)

ControlBarSeparator

Description
The "ControlBarSeparator" object represents a separator of an information bar or toolbar.
You can reference the "ControlBarSeparator" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarSeparatorPart

Properties
The "ControlBarSeparator" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the disconnector can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• Mapping

Returns the function of the separator.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4499

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the separator is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the disconnector is only operable while the associated button is being
pressed.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the disconnector is visible.

• Width
Specifies the width.

Methods
--

ControlBarSeparator.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the separator.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarSeparator.Authorization

Programming scripts
10.2 WinCC Unified object model

4500 System Manual, 11/2022

See also
ControlBarSeparator (Page 4499)

ControlBarSeparator.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarSeparator.CustomID

See also
ControlBarSeparator (Page 4499)

ControlBarSeparator.Enabled

Description
The "Enabled" property specifies whether the separator is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Enabled

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4501

See also
ControlBarSeparator (Page 4499)

ControlBarSeparator.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.ForeColor

See also
ControlBarSeparator (Page 4499)

ControlBarSeparator.Height

Description
The "Height" property specifies the height of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Height

Programming scripts
10.2 WinCC Unified object model

4502 System Manual, 11/2022

See also
ControlBarSeparator (Page 4499)

ControlBarSeparator.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4503

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

4504 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarSeparator.Mapping

See also
ControlBarSeparator (Page 4499)

ControlBarSeparator.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the separator.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarSeparator.Margin

See also
ControlBarSeparator (Page 4499)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4505

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarSeparator.Margin (Page 4505)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarSeparator.Margin (Page 4505)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4506 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Right

See also
ControlBarSeparator.Margin (Page 4505)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarSeparator.Margin (Page 4505)

ControlBarSeparator.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4507

Access
Read-write

Syntax
ControlBarSeparator.MaximumHeight

See also
ControlBarSeparator (Page 4499)

ControlBarSeparator.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MaximumWidth

See also
ControlBarSeparator (Page 4499)

ControlBarSeparator.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

4508 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarSeparator.MinimumHeight

See also
ControlBarSeparator (Page 4499)

ControlBarSeparator.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MinimumWidth

See also
ControlBarSeparator (Page 4499)

ControlBarSeparator.Operability

Description
The "Operability" property returns whether the separator is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4509

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarSeparator.Operability

See also
ControlBarSeparator (Page 4499)

ControlBarSeparator.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the separator.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarSeparator.Padding

See also
ControlBarSeparator (Page 4499)

Programming scripts
10.2 WinCC Unified object model

4510 System Manual, 11/2022

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarSeparator.Padding (Page 4510)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarSeparator.Padding (Page 4510)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4511

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarSeparator.Padding (Page 4510)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarSeparator.Padding (Page 4510)

Programming scripts
10.2 WinCC Unified object model

4512 System Manual, 11/2022

ControlBarSeparator.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the disconnector can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarSeparator.RequireExplicitUnlock

See also
ControlBarSeparator (Page 4499)

ControlBarSeparator.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the separator.

Type
String

Access
Read-write

Syntax
ControlBarSeparator.ToolTipText

See also
ControlBarSeparator (Page 4499)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4513

ControlBarSeparator.Visible

Description
The "Visible" property specifies whether the separator is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Visible

See also
ControlBarSeparator (Page 4499)

ControlBarSeparator.Width

Description
The "Width" property specifies the width of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Width

See also
ControlBarSeparator (Page 4499)

Programming scripts
10.2 WinCC Unified object model

4514 System Manual, 11/2022

ControlBarTextBox

Description
The "ControlBarTextBox" object represents a text box of an information bar or toolbar.
You can reference the "ControlBarTextBox" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarTextBoxPart

Properties
The "ControlBarTextBox" object has the following properties:
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the text box can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Mapping

Returns the function of the text box.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4515

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the text box is operable.

• Padding
Specifies the distance of the content from the border.

• Readonly
Specifies whether the text box is write-protected.

• RequireExplicitUnlock
Returns whether the text box is only operable while the associated button is being pressed.

• Text
Specifies the labeling.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the text box is visible.

• Width
Specifies the width.

Methods
--

ControlBarTextBox.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4516 System Manual, 11/2022

Syntax
ControlBarTextBox.AlternateBorderColor

See also
ControlBarTextBox (Page 4515)

ControlBarTextBox.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the text box of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarTextBox.Authorization

See also
ControlBarTextBox (Page 4515)

ControlBarTextBox.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4517

Syntax
ControlBarTextBox.BackColor

See also
ControlBarTextBox (Page 4515)

ControlBarTextBox.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BorderColor

See also
ControlBarTextBox (Page 4515)

ControlBarTextBox.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4518 System Manual, 11/2022

Syntax
ControlBarTextBox.BorderWidth

See also
ControlBarTextBox (Page 4515)

ControlBarTextBox.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarTextBox.CustomID

See also
ControlBarTextBox (Page 4515)

ControlBarTextBox.Enabled

Description
The "Enabled" property specifies whether the text box can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4519

Syntax
ControlBarTextBox.Enabled

See also
ControlBarTextBox (Page 4515)

ControlBarTextBox.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.ForeColor

See also
ControlBarTextBox (Page 4515)

ControlBarTextBox.Height

Description
The "Height" property specifies the height of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4520 System Manual, 11/2022

Syntax
ControlBarTextBox.Height

See also
ControlBarTextBox (Page 4515)

ControlBarTextBox.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.HorizontalTextAlignment

See also
ControlBarTextBox (Page 4515)

ControlBarTextBox.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4521

Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms

Programming scripts
10.2 WinCC Unified object model

4522 System Manual, 11/2022

• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarTextBox.Mapping

See also
ControlBarTextBox (Page 4515)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4523

ControlBarTextBox.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the text box.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarTextBox.Margin

See also
ControlBarTextBox (Page 4515)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarTextBox.Margin (Page 4524)

Programming scripts
10.2 WinCC Unified object model

4524 System Manual, 11/2022

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarTextBox.Margin (Page 4524)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarTextBox.Margin (Page 4524)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4525

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarTextBox.Margin (Page 4524)

ControlBarTextBox.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumHeight

See also
ControlBarTextBox (Page 4515)

Programming scripts
10.2 WinCC Unified object model

4526 System Manual, 11/2022

ControlBarTextBox.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumWidth

See also
ControlBarTextBox (Page 4515)

ControlBarTextBox.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumHeight

See also
ControlBarTextBox (Page 4515)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4527

ControlBarTextBox.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumWidth

See also
ControlBarTextBox (Page 4515)

ControlBarTextBox.Operability

Description
The "Operability" property returns whether the text box is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarTextBox.Operability

Programming scripts
10.2 WinCC Unified object model

4528 System Manual, 11/2022

See also
ControlBarTextBox (Page 4515)

ControlBarTextBox.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the text box.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarTextBox.Padding

See also
ControlBarTextBox (Page 4515)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4529

See also
ControlBarTextBox.Padding (Page 4529)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarTextBox.Padding (Page 4529)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

Programming scripts
10.2 WinCC Unified object model

4530 System Manual, 11/2022

See also
ControlBarTextBox.Padding (Page 4529)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarTextBox.Padding (Page 4529)

ControlBarTextBox.ReadOnly

Description
The "ReadOnly" property specifies whether the text box is read-only.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.ReadOnly

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4531

See also
ControlBarTextBox (Page 4515)

ControlBarTextBox.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the text box can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarTextBox.RequireExplicitUnlock

See also
ControlBarTextBox (Page 4515)

ControlBarTextBox.Text

Description
The "Text" property specifies the label of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.Text

Programming scripts
10.2 WinCC Unified object model

4532 System Manual, 11/2022

See also
ControlBarTextBox (Page 4515)

ControlBarTextBox.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.ToolTipText

See also
ControlBarTextBox (Page 4515)

ControlBarTextBox.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4533

Syntax
ControlBarTextBox.VerticalTextAlignment

See also
ControlBarTextBox (Page 4515)

ControlBarTextBox.Visible

Description
The "Visible" property specifies whether the text box is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Visible

See also
ControlBarTextBox (Page 4515)

ControlBarTextBox.Width

Description
The "Width" property specifies the width of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4534 System Manual, 11/2022

Syntax
ControlBarTextBox.Width

See also
ControlBarTextBox (Page 4515)

ControlBarToggleSwitch

Description
The "ControlBarToggleSwitch" object represents a switch of an information bar or toolbar.
You can reference the "ControlBarToggleSwitch" object via the
"HmiControlBarElementCollection" list.

Object type
HmiControlBarToggleSwitchPart

Properties
The "ControlBarToggleSwitch" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• AlternateGraphic

Specifies the graphic for the "pressed" state.
• AlternateText

Specifies the text for the "pressed" state.
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the identifier of the switch.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4535

• CustomID
Returns the custom ID.

• Enabled
Specifies whether the switch can be operated in runtime.

• ForeColor
Specifies the font color.

• Graphic
Specifies the graphic.

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the switch.

• IsAlternateState
Specifies the current state of the switch.

• Mapping
Returns the function of the switch.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the switch is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the switch is only operable while the associated button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the switch is visible.

• Width
Specifies the width.

Programming scripts
10.2 WinCC Unified object model

4536 System Manual, 11/2022

Methods
--

ControlBarToggleSwitch.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBackColor

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBorderColor

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4537

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.AlternateGraphic

Description
The "AlternateGraphic" property specifies the graphic of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateGraphic

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.AlternateText

Description
The "AlternateText" property specifies the text of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateText

Programming scripts
10.2 WinCC Unified object model

4538 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the switch of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarToggleSwitch.Authorization

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BackColor

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4539

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.Badge

Description
The "Badge" property specifies the identifier of the switch.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarToggleSwitch.Badge

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderColor

Programming scripts
10.2 WinCC Unified object model

4540 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderWidth

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Content

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4541

See also
ControlBarToggleSwitch (Page 4535)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarToggleSwitch.Content (Page 4541)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.

Programming scripts
10.2 WinCC Unified object model

4542 System Manual, 11/2022

• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarToggleSwitch.Content (Page 4541)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 4541)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4543

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarToggleSwitch.Content (Page 4541)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarToggleSwitch.Content (Page 4541)

Programming scripts
10.2 WinCC Unified object model

4544 System Manual, 11/2022

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarToggleSwitch.Content (Page 4541)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4545

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarToggleSwitch.Content (Page 4541)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 4541)

Programming scripts
10.2 WinCC Unified object model

4546 System Manual, 11/2022

ControlBarToggleSwitch.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarToggleSwitch.CustomID

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.Enabled

Description
The "Enabled" property specifies whether the switch can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Enabled

See also
ControlBarToggleSwitch (Page 4535)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4547

ControlBarToggleSwitch.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.ForeColor

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.Graphic

Description
The "Graphic" property specifies the graphic of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Graphic

See also
ControlBarToggleSwitch (Page 4535)

Programming scripts
10.2 WinCC Unified object model

4548 System Manual, 11/2022

ControlBarToggleSwitch.Height

Description
The "Height" property specifies the height of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Height

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.HotKey

Description
The "HotKey" property returns the hotkey specified for the switch. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
Button.HotKey

See also
ControlBarToggleSwitch (Page 4535)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4549

ControlBarToggleSwitch.IsAlternateState

Description
The "IsAlternateState" property specifies the current state of the switch.
• True: Switch is in "On" state.
• False: Switch is in "Off" state.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.IsAlternateState

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment

Programming scripts
10.2 WinCC Unified object model

4550 System Manual, 11/2022

• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4551

• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarToggleSwitch.Mapping

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the switch.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

4552 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.Margin

See also
ControlBarToggleSwitch (Page 4535)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarToggleSwitch.Margin (Page 4552)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4553

Access
Read-write

Syntax
Margin.Left

See also
ControlBarToggleSwitch.Margin (Page 4552)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarToggleSwitch.Margin (Page 4552)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4554 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Top

See also
ControlBarToggleSwitch.Margin (Page 4552)

ControlBarToggleSwitch.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumHeight

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4555

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumWidth

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumHeight

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

4556 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumWidth

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.Operability

Description
The property "Operability" returns whether the switch is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarToggleSwitch.Operability

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the switch.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4557

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Padding

See also
ControlBarToggleSwitch (Page 4535)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarToggleSwitch.Padding (Page 4557)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

4558 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarToggleSwitch.Padding (Page 4557)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarToggleSwitch.Padding (Page 4557)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4559

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarToggleSwitch.Padding (Page 4557)

ControlBarToggleSwitch.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the switch can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarToggleSwitch.RequireExplicitUnlock

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.Text

Description
The "Text" property specifies the label of the switch.

Programming scripts
10.2 WinCC Unified object model

4560 System Manual, 11/2022

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Text

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.ToolTipText

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.Visible

Description
The "Visible" property specifies whether the switch is visible.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4561

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Visible

See also
ControlBarToggleSwitch (Page 4535)

ControlBarToggleSwitch.Width

Description
The "Width" property specifies the width of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Width

See also
ControlBarToggleSwitch (Page 4535)

ToolBar.Enabled

Description
The "Enabled" property specifies whether the toolbar can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

4562 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
ToolBar.Enabled

See also
ProcessControl.ToolBar (Page 4430)

ToolBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ToolBar.Font

See also
ProcessControl.ToolBar (Page 4430)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4563

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
ToolBar.Font (Page 4563)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
ToolBar.Font (Page 4563)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

4564 System Manual, 11/2022

Type
Float

Access
Read-write

Syntax
Font.Size

See also
ToolBar.Font (Page 4563)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ToolBar.Font (Page 4563)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4565

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
ToolBar.Font (Page 4563)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4566 System Manual, 11/2022

Syntax
Font.Weight

See also
ToolBar.Font (Page 4563)

ToolBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the toolbar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ToolBar.Margin

See also
ProcessControl.ToolBar (Page 4430)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4567

Syntax
Margin.Bottom

See also
ToolBar.Margin (Page 4567)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ToolBar.Margin (Page 4567)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4568 System Manual, 11/2022

Syntax
Margin.Right

See also
ToolBar.Margin (Page 4567)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ToolBar.Margin (Page 4567)

ToolBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the toolbar.

Type
Object, HmiPaddingPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4569

Syntax
ToolBar.Padding

See also
ProcessControl.ToolBar (Page 4430)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ToolBar.Padding (Page 4569)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4570 System Manual, 11/2022

Syntax
Padding.Left

See also
ToolBar.Padding (Page 4569)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ToolBar.Padding (Page 4569)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4571

Syntax
Padding.Top

See also
ToolBar.Padding (Page 4569)

ToolBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
ToolBar.ShowToolTips

See also
ProcessControl.ToolBar (Page 4430)

ToolBar.UseHotKeys

Description
The "UseHotKeys" property specifies whether the shortcut keys for the buttons in the toolbar are
activated.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4572 System Manual, 11/2022

Syntax
ToolBar.UseHotKeys

See also
ProcessControl.ToolBar (Page 4430)

ToolBar.Visible

Description
The "Visible" property specifies whether the toolbar is visible.

Type
Bool

Access
Read-write

Syntax
ToolBar.Visible

See also
ProcessControl.ToolBar (Page 4430)

ProcessControl.Top

Description
The "Top" property sets the value of the Y coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4573

Syntax
ProcessControl.Top

See also
ProcessControl (Page 4322)

ProcessControl.Visible

Description
The "Visible" property specifies whether the process control is visible.

Type
Bool

Access
Read-write

Syntax
ProcessControl.Visible

See also
ProcessControl (Page 4322)

ProcessControl.Width

Description
The "Width" property specifies the width in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ProcessControl.Width

Programming scripts
10.2 WinCC Unified object model

4574 System Manual, 11/2022

See also
ProcessControl (Page 4322)

ProcessControl.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the process control display.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title
• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be moved
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
You can enable multiple properties by adding integer values or bit operators.

Access
Read-write

Syntax
ProcessControl.WindowFlags

See also
ProcessControl (Page 4322)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4575

ProcessControl.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
table view.

Syntax
ProcessControl.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
ProcessControl (Page 4322)

ProcessControl.FireCommand()

Description
The "FireCommand" method executes the command of an element in the toolbar or information
bar (control bar element, e.g. a button) of the table view.

Syntax
ProcessControl.FireCommand(commandId, custom)

Programming scripts
10.2 WinCC Unified object model

4576 System Manual, 11/2022

Parameters
commandId
Type: Int32
ID of the element of the toolbar or information bar

custom
Type: Bool
Type of element ID:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

Return value
--

See also
ProcessControl (Page 4322)

ProcessControl.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
ProcessControl.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4577

Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
ProcessControl (Page 4322)

ProcessControl_OnActivated()

Description
The "OnActivated" event occurs when a table view receives focus:
• A table display is selected via the configured tab sequence.
• A table display that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
ProcessControl_OnActivated(item)

Programming scripts
10.2 WinCC Unified object model

4578 System Manual, 11/2022

Context
item
Type: Object
Table view where the event occurs.

See also
ProcessControl (Page 4322)

ProcessControl_OnCommandFired()

Description
The "OnCommandFired" event occurs when the operator has operated an element in the toolbar
or information bar (control bar element, e.g. a button) of the table view.

Syntax
ProcessControl_OnCommandFired(item, commandId, custom)

Context
item
Type: Object
Table view where the event occurs.

commandId
Type: DInt
ID of the element of the toolbar or information bar that was operated.

custom
Type: Bool
Specifies the type of the ID of the operated element:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

See also
ProcessControl (Page 4322)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4579

ProcessControl_OnDeactivated()

Description
The "OnDeactivated" event occurs when the table view loses focus because the operator presses
the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
ProcessControl_OnDeactivated(item)

Context
item
Type: Object
Table view where the event occurs.

See also
ProcessControl (Page 4322)

ProcessControl_OnInitialized()

Description
The "OnInitialized" event occurs when a table view has been successfully initialized and the data
connection to the PLC has been established.

Syntax
ProcessControl_OnInitialized(item)

Context
item
Type: Object
Table view where the event occurs.

Programming scripts
10.2 WinCC Unified object model

4580 System Manual, 11/2022

See also
ProcessControl (Page 4322)

ProcessDiagnosisCriteriaAnalysisControl

Description
The "ProcessDiagnosisCriteriaAnalysisControl" object represents a process diagnostics view for
criteria analysis in runtime.

Object type
HmiProcessDiagnosisCriteriaAnalysisControl

Properties
The "ProcessDiagnosisCriteriaAnalysisControl" object has the following properties:
• BackColor

Specifies the background color.
• Caption

Specifies the text that is displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.
• CriteriaAnalysisView

Defines the appearance of the process diagnostics view.
• CurrentQuality

Returns the poorest quality code of all tags which influence the process diagnostics view.
• Enabled

Specifies whether the process diagnostics view can be operated in runtime.
• ForeColor

Specifies the font color of the text.
• Height

Specifies the height.
• Icon

Specifies the icon of the process diagnostics view.
• Layer

Returns the screen layer in which the process diagnostics view is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the process diagnostics view.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4581

• Parent
Returns the higher-level screen object.

• RenderingTemplate
Returns the name of the template from which the process diagnostics view was created.

• ShowFocusVisual
Specifies whether the process diagnostics view is highlighted when in focus.

• SnapToSourceControl
Specifies whether the process diagnostics overview snaps to the window of the associated
data source.

• SourceControl
Specifies the data source.

• StatusBar
Specifies the information bar of the process diagnostics view.

• StyleItemClass
Returns the style which is applied to the process diagnostics view.

• TabIndex
Returns the position of the process diagnostics view in the tab sequence.

• ToolBar
Specifies the toolbar of the process diagnostics view.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the process diagnostics view is visible.

• Width
Specifies the width.

• WindowFlags
Specifies the window configuration of the process diagnostics view.

Methods
The "ProcessDiagnosisCriteriaAnalysisControl" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the process diagnostics view.
• FireCommand()

Configures the occurrence of an event for an element.
• PropertyFlashing()

Configures flashing of a property.

ProcessDiagnosisCriteriaAnalysisControl.BackColor

Description
The "BackColor" property specifies the background color.

Programming scripts
10.2 WinCC Unified object model

4582 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControl.BackColor

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisCriteriaAnalysisControl.Caption

Description
The "Caption" property specifies the text that is displayed in the title bar.

Type
Object, HmiTextPart

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControl.Caption

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4583

Access
Read-write

Syntax
Text.Font

See also
ProcessDiagnosisCriteriaAnalysisControl.Caption (Page 4583)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 4583)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Programming scripts
10.2 WinCC Unified object model

4584 System Manual, 11/2022

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 4583)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 4583)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4585

Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 4583)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 4583)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Programming scripts
10.2 WinCC Unified object model

4586 System Manual, 11/2022

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 4583)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
ProcessDiagnosisCriteriaAnalysisControl.Caption (Page 4583)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4587

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
ProcessDiagnosisCriteriaAnalysisControl.Caption (Page 4583)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
ProcessDiagnosisCriteriaAnalysisControl.Caption (Page 4583)

Programming scripts
10.2 WinCC Unified object model

4588 System Manual, 11/2022

ProcessDiagnosisCriteriaAnalysisControl.CaptionColor

Description
The "CaptionColor" property specifies the color of the title bar.

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControl.CaptionColor

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView

Description
The "CriteriaAnalysisView" property specifies the appearance of the process diagnostics view.

Type
Object, HmiDataGridViewPart (Page 4590)

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)
DataGridView (Page 4590)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4589

DataGridView

DataGridView.AllowFilter

Description
The "AllowFilter" property specifies whether filtering of columns is permitted.

Type
Bool

Access
Read-write

Syntax
DataGridView.AllowFilter

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

DataGridView.AllowSort

Description
The "AllowSort" property specifies whether the sorting of columns is permitted.
• True: Activates the sorting and sets the "AllowSort" property of all columns to "true".
• False: Disables the sorting for all columns. The individual column properties remain

unchanged.

Type
Bool

Access
Read-write

Syntax
DataGridView.AllowSort

Programming scripts
10.2 WinCC Unified object model

4590 System Manual, 11/2022

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

DataGridView.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
DataGridView.AlternateBackColor

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

DataGridView.AlternateForeColor

Description
The "AlternateForeColor" property specifies the flashing color for the text.

Type
UInt32

Access
Read-write

Syntax
DataGridView.AlternateForeColor

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4591

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

DataGridView.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
DataGridView.BackColor

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

DataGridView.CellPadding

Description
The "CellPadding" property specifies the inner spacing of the content from the cell border.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
DataGridView.CellPadding

Programming scripts
10.2 WinCC Unified object model

4592 System Manual, 11/2022

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
DataGridView.CellPadding (Page 4592)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4593

See also
DataGridView.CellPadding (Page 4592)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
DataGridView.CellPadding (Page 4592)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

Programming scripts
10.2 WinCC Unified object model

4594 System Manual, 11/2022

See also
DataGridView.CellPadding (Page 4592)

DataGridView.ColoringMode

Description
The "ColoringMode" property specifies whether alternate coloring of every other row or column
is enabled.

Type
Int32, HmiGridColoringMode
Specifies the type of the coloring:
• None (0): None
• Columns (1): Color the columns alternately.
• Rows (2): Color the rows alternately.

Access
Read-write

Syntax
DataGridView.ColoringMode

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

DataGridView.Columns

Description
The "Columns" property represents the quantity of columns.

Type
Object, HmiDataGridColumnCollection (Page 4596)

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4595

Syntax
DataGridView.Columns

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)
HmiDataGridColumnCollection (Page 4596)

HmiDataGridColumnCollection

Description
The "HmiDataGridColumnCollection" object is a list of all columns ("DataGridColumn" objects) of
the table.
You reference a "HmiDataGridColumnCollection" object via the DataGridView.Columns
property.

Use
The "HmiDataGridColumnCollection" object is a list and can be counted and enumerated. You
can access the "HmiDataGridColumnCollection" list using the index or the tag name.

Object type
HmiDataGridColumnCollection

Properties
The "HmiDataGridColumnCollection" object has the following properties:
• Count

Returns the number of columns in the "HmiDataGridColumnCollection" list.

Methods
The "HmiDataGridColumnCollection" object has the following methods:
• Item()

Returns a column of the "HmiDataGridColumnCollection" list.

See also
DataGridView.Columns (Page 4595)

Programming scripts
10.2 WinCC Unified object model

4596 System Manual, 11/2022

HmiDataGridColumnCollection.Count

Description
The "Count" property returns the number of columns in the "HmiDataGridColumnCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiDataGridColumnCollection.Count

See also
HmiDataGridColumnCollection (Page 4596)

HmiDataGridColumnCollection.Item()

Description
The "Item" method returns a column of the "HmiDataGridColumnCollection" list.

Syntax
HmiDataGridColumnCollection[.Item](HmiDataGridColumnName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiDataGridColumnCollection" object.

Parameters
HmiDataGridColumnName
Type: String
Name of the column

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4597

Return value
Object, HmiDataGridColumnPartBase (Page 4598)

See also
HmiDataGridColumnCollection (Page 4596)
ProcessDiagnosisCriteriaAnalysisControlColumn (Page 4598)

ProcessDiagnosisCriteriaAnalysisControlColumn

Description
The "ProcessDiagnosisCriteriaAnalysisControlColumn" object represents a value column.

Object type
HmiProcessDiagnosisCriteriaAnalysisControlColumnPart

Properties
The "ProcessDiagnosisCriteriaAnalysisControlColumn" object has the following properties:
• AllowSort

Specifies whether column sorting is allowed.
• BackColor

Specifies the background color.
• Content

Specifies display options for text and graphics.
• CriteriaAnalysisBlock

Returns the criteria analysis block.
• Enabled

Specifies whether the column can be operated in runtime.
• ForeColor

Specifies the font color of the text.
• Header

Specifies the properties of the column header.
• MaximumWidth

Specifies the maximum width.
• MinimumWidth

Specifies the minimum width.
• Name

Returns the name of the column.
• OutputFormat

Specifies the format for displaying values.

Programming scripts
10.2 WinCC Unified object model

4598 System Manual, 11/2022

• SortDirection
Specifies the sorting direction.

• SortOrder
Specifies the sorting order.

• Visible
Specifies whether the column is visible.

• Width
Specifies the width.

Methods
--

See also
HmiDataGridColumnCollection (Page 4596)

ProcessDiagnosisCriteriaAnalysisControlColumn.AllowSort

Description
The "AllowSort" property specifies whether column sorting is permitted.
This property is ignored if the parent object has the "AllowSort" property set to "False".

Type
Bool

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControlColumn.AllowSort

See also
ProcessDiagnosisCriteriaAnalysisControlColumn (Page 4598)

ProcessDiagnosisCriteriaAnalysisControlColumn.BackColor

Description
The "BackColor" property specifies the background color.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4599

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControlColumn.BackColor

See also
ProcessDiagnosisCriteriaAnalysisControlColumn (Page 4598)

ProcessDiagnosisCriteriaAnalysisControlColumn.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControlColumn.Content

See also
ProcessDiagnosisCriteriaAnalysisControlColumn (Page 4598)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode

Programming scripts
10.2 WinCC Unified object model

4600 System Manual, 11/2022

Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ProcessDiagnosisCriteriaAnalysisControlColumn.Content (Page 4600)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4601

See also
ProcessDiagnosisCriteriaAnalysisControlColumn.Content (Page 4600)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ProcessDiagnosisCriteriaAnalysisControlColumn.Content (Page 4600)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4602 System Manual, 11/2022

Syntax
Content.Spacing

See also
ProcessDiagnosisCriteriaAnalysisControlColumn.Content (Page 4600)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ProcessDiagnosisCriteriaAnalysisControlColumn.Content (Page 4600)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4603

• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ProcessDiagnosisCriteriaAnalysisControlColumn.Content (Page 4600)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ProcessDiagnosisCriteriaAnalysisControlColumn.Content (Page 4600)

Programming scripts
10.2 WinCC Unified object model

4604 System Manual, 11/2022

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ProcessDiagnosisCriteriaAnalysisControlColumn.Content (Page 4600)

ProcessDiagnosisCriteriaAnalysisControlColumn.CriteriaAnalysisBlock

Description
The "CriteriaAnalysisBlock" property returns the criteria analysis block.

Type
Int32, HmiProcessDiagnosisCriteriaAnalysisBlock
Returns the criteria analysis block:
• SymbolName (0): Symbol name
• Address (1): Address
• Value (2): Value
• Comment (3): Comment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4605

Access
Read-only

Syntax
ProcessDiagnosisCriteriaAnalysisControlColumn.CriteriaAnalysisBlock

See also
ProcessDiagnosisCriteriaAnalysisControlColumn (Page 4598)

ProcessDiagnosisCriteriaAnalysisControlColumn.Enabled

Description
The "Enabled" property specifies whether the column can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControlColumn.Enabled

See also
ProcessDiagnosisCriteriaAnalysisControlColumn (Page 4598)

ProcessDiagnosisCriteriaAnalysisControlColumn.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4606 System Manual, 11/2022

Syntax
ProcessDiagnosisCriteriaAnalysisControlColumn.ForeColor

See also
ProcessDiagnosisCriteriaAnalysisControlColumn (Page 4598)

ProcessDiagnosisCriteriaAnalysisControlColumn.Header

Description
The "Header" property specifies the properties of the column header.

Type
Object, HmiDataGridColumnHeaderPart

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControlColumn.Header

See also
ProcessDiagnosisCriteriaAnalysisControlColumn (Page 4598)

DataGridColumnHeader.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
DataGridColumnHeader.Content

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4607

See also
ProcessDiagnosisCriteriaAnalysisControlColumn.Header (Page 4607)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
DataGridColumnHeader.Content (Page 4607)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.

Programming scripts
10.2 WinCC Unified object model

4608 System Manual, 11/2022

• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
DataGridColumnHeader.Content (Page 4607)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
DataGridColumnHeader.Content (Page 4607)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4609

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
DataGridColumnHeader.Content (Page 4607)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
DataGridColumnHeader.Content (Page 4607)

Programming scripts
10.2 WinCC Unified object model

4610 System Manual, 11/2022

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
DataGridColumnHeader.Content (Page 4607)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4611

Access
Read-write

Syntax
Content.TextTrimming

See also
DataGridColumnHeader.Content (Page 4607)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
DataGridColumnHeader.Content (Page 4607)

DataGridColumnHeader.Graphic

Description
The "Graphic" property specifies the graphic of the column header.

Programming scripts
10.2 WinCC Unified object model

4612 System Manual, 11/2022

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Graphic

See also
ProcessDiagnosisCriteriaAnalysisControlColumn.Header (Page 4607)

DataGridColumnHeader.Text

Description
The "Text" property specifies the label of the column header.

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Text

See also
ProcessDiagnosisCriteriaAnalysisControlColumn.Header (Page 4607)

ProcessDiagnosisCriteriaAnalysisControlColumn.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4613

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControlColumn.MaximumWidth

See also
ProcessDiagnosisCriteriaAnalysisControlColumn (Page 4598)

ProcessDiagnosisCriteriaAnalysisControlColumn.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControlColumn.MinimumWidth

See also
ProcessDiagnosisCriteriaAnalysisControlColumn (Page 4598)

ProcessDiagnosisCriteriaAnalysisControlColumn.Name

Description
The "Name" property returns the name of the column.

Type
String

Programming scripts
10.2 WinCC Unified object model

4614 System Manual, 11/2022

Access
Read-only

Syntax
ProcessDiagnosisCriteriaAnalysisControlColumn.Name

See also
ProcessDiagnosisCriteriaAnalysisControlColumn (Page 4598)

ProcessDiagnosisCriteriaAnalysisControlColumn.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying values.

Type
String

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControlColumn.OutputFormat

See also
ProcessDiagnosisCriteriaAnalysisControlColumn (Page 4598)

ProcessDiagnosisCriteriaAnalysisControlColumn.SortDirection

Description
The "SortDirection" property specifies the sorting direction.

Type
Int32, HmiSortDirection

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4615

Specifies the sorting order:
• None (0): None
• Ascending (1): Ascending
• Descending (2): Descending

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControlColumn.SortDirection

See also
ProcessDiagnosisCriteriaAnalysisControlColumn (Page 4598)

ProcessDiagnosisCriteriaAnalysisControlColumn.SortOrder

Description
The "SortOrder" property specifies the order of the sorting.
The sorting index starts at "1" (highest priority) in ascending order. Zero is ignored.

Type
UInt16

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControlColumn.SortOrder

See also
ProcessDiagnosisCriteriaAnalysisControlColumn (Page 4598)

ProcessDiagnosisCriteriaAnalysisControlColumn.Visible

Description
The "Visible" property specifies whether the column is visible.

Programming scripts
10.2 WinCC Unified object model

4616 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControlColumn.Visible

See also
ProcessDiagnosisCriteriaAnalysisControlColumn (Page 4598)

ProcessDiagnosisCriteriaAnalysisControlColumn.Width

Description
The "Width" property specifies the width in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControlColumn.Width

See also
ProcessDiagnosisCriteriaAnalysisControlColumn (Page 4598)

DataGridView.Font

Description
The "Font" property specifies the font of the cells.

Type
Object, HmiFontPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4617

Access
Read-write

Syntax
DataGridView.Font

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
DataGridView.Font (Page 4617)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Programming scripts
10.2 WinCC Unified object model

4618 System Manual, 11/2022

Access
Read-write

Syntax
Font.Name

See also
DataGridView.Font (Page 4617)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
DataGridView.Font (Page 4617)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4619

Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
DataGridView.Font (Page 4617)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
DataGridView.Font (Page 4617)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Programming scripts
10.2 WinCC Unified object model

4620 System Manual, 11/2022

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
DataGridView.Font (Page 4617)

DataGridView.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
DataGridView.ForeColor

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4621

DataGridView.GridLineColor

Description
The "GridLineColor" property specifies the color of grid lines.

Type
UInt32

Access
Read-write

Syntax
DataGridView.GridLineColor

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

DataGridView.GridLineVisibility

Description
The "GridLineVisibility" property specifies the visibility of the grid lines.

Type
Int32, HmiSimpleGridLine
Specifies the grid lines:
• None (0): None
• Vertikal (1): Vertical
• Horizontal (2): Horizontal

Access
Read-write

Syntax
DataGridView.GridLineVisibility

Programming scripts
10.2 WinCC Unified object model

4622 System Manual, 11/2022

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

DataGridView.GridLineWidth

Description
The "GridLineWidth" property specifies the thickness of the grid lines in pixels.

Type
UInt8

Access
Read-write

Syntax
DataGridView.GridLineWidth

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

DataGridView.GridSelectionMode

Description
The "GridSelectionMode" property specifies whether multiple selection is enabled in the table
content.

Type
Int32, HmiGridSelectionMode
Specifies the type of the selection:
• None (0): None
• Single (1): Only single selection
• Multi (2): Multiple selection

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4623

Syntax
DataGridView.GridSelectionMode

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

DataGridView.HeaderSettings

Description
The "HeaderSettings" property specifies the settings for all column headers in the table.

Type
Object, HmiDataGridHeaderSettingsPart

Access
Read-write

Syntax
DataGridView.HeaderSettings

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

DataGridHeaderSettings.AllowColumnReorder

Description
The "AllowColumnReorder" property specifies whether the order of the columns can be changed.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4624 System Manual, 11/2022

Syntax
DataGridHeaderSettings.AllowColumnReorder

See also
DataGridView.HeaderSettings (Page 4624)

DataGridHeaderSettings.AllowColumnResize

Description
The "AllowColumnResize" property specifies whether the width of the columns can be changed.

Type
Bool

Access
Read-write

Syntax
DataGridHeaderSettings.AllowColumnResize

See also
DataGridView.HeaderSettings (Page 4624)

DataGridHeaderSettings.ColumnHeaderType

Description
The "ColumnHeaderType" property specifies the type of content of a column header.

Type
Int32, HmiDataGridHeaderType
Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4625

Access
Read-write

Syntax
DataGridHeaderSettings.ColumnHeaderType

See also
DataGridView.HeaderSettings (Page 4624)

DataGridHeaderSettings.Font

Description
The "Font" property specifies the font of the headers.

Type
Object, HmiFontPart

Access
Read-write

Syntax
DataGridHeaderSettings.Font

See also
DataGridView.HeaderSettings (Page 4624)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

4626 System Manual, 11/2022

Access
Read-write

Syntax
Font.Italic

See also
DataGridHeaderSettings.Font (Page 4626)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
DataGridHeaderSettings.Font (Page 4626)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4627

Access
Read-write

Syntax
Font.Size

See also
DataGridHeaderSettings.Font (Page 4626)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
DataGridHeaderSettings.Font (Page 4626)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Programming scripts
10.2 WinCC Unified object model

4628 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
DataGridHeaderSettings.Font (Page 4626)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
DataGridHeaderSettings.Font (Page 4626)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4629

DataGridHeaderSettings.HeaderBackColor

Description
The "HeaderBackColor" property specifies the background color of the header.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderBackColor

See also
DataGridView.HeaderSettings (Page 4624)

DataGridHeaderSettings.HeaderForeColor

Description
The "HeaderForeColor" property specifies the font color of the headers.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderForeColor

See also
DataGridView.HeaderSettings (Page 4624)

Programming scripts
10.2 WinCC Unified object model

4630 System Manual, 11/2022

DataGridHeaderSettings.HeaderGridLineColor

Description
The "HeaderGridLineColor" property specifies the color of the separation line between column
headers.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderGridLineColor

See also
DataGridView.HeaderSettings (Page 4624)

DataGridHeaderSettings.HeaderSelectionBackColor

Description
The "HeaderSelectionBackColor" property specifies the background color of the header of a
selected line or column.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderSelectionBackColor

See also
DataGridView.HeaderSettings (Page 4624)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4631

DataGridHeaderSettings.HeaderSelectionForeColor

Description
The "HeaderSelectionForeColor" property specifies the font color of the header of a selected line
or column.

Type
UInt32

Access
Read-write

Syntax
Object.HeaderSelectionForeColor

Object
Required. An object from the "Availability" section.

See also
DataGridView.HeaderSettings (Page 4624)

DataGridHeaderSettings.RowHeaderType

Description
The "RowHeaderType" property specifies the type of content of a row header.

Type
Int32, HmiDataGridHeaderType
Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4632 System Manual, 11/2022

Syntax
DataGridHeaderSettings.RowHeaderType

See also
DataGridView.HeaderSettings (Page 4624)

DataGridView.HorizontalScrollBarVisibility

Description
The "HorizontalScrollBarVisibility" property specifies the visibility of the horizontal scroll bar of
the display.

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
DataGridView.HorizontalScrollBarVisibility

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

DataGridView.RowHeight

Description
The "RowHeight" property specifies the height of all rows in the table in DIU (Device Independent
Unit).
"0" corresponds to a automatic mechanism, which adjusts the height of each line according
to the font size and number of paragraphs.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4633

Type
UInt8

Access
Read-write

Syntax
DataGridView.RowHeight

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

DataGridView.SelectFullRow

Description
The "SelectFullRow" property specifies whether only the cell or the entire row is included in the
selection.

Type
Bool

Access
Read-write

Syntax
DataGridView.SelectFullRow

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

DataGridView.SelectionBackColor

Description
The "SelectionBackColor" property specifies the background color of the selected cells.

Programming scripts
10.2 WinCC Unified object model

4634 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
DataGridView.SelectionBackColor

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

DataGridView.SelectionBorderColor

Description
The "SelectionBorderColor" property specifies the border color of the selected cells.

Type
UInt8

Access
Read-write

Syntax
DataGridView.SelectionBorderColor

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

DataGridView.SelectionBorderWidth

Description
The "SelectionBorderWidth" property specifies the border width of the selected cells.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4635

Type
UInt8

Access
Read-write

Syntax
DataGridView.SelectionBorderWidth

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

DataGridView.SelectionForeColor

Description
The "SelectionForeColor" property specifies the font color of the selected cells.

Type
UInt32

Access
Read-write

Syntax
DataGridView.SelectionForeColor

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

DataGridView.VerticalScrollBarVisibility

Description
The "VerticalScrollBarVisibility" property specifies the visibility of the vertical scroll bar of the
display.

Programming scripts
10.2 WinCC Unified object model

4636 System Manual, 11/2022

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
DataGridView.VerticalScrollBarVisibility

See also
ProcessDiagnosisCriteriaAnalysisControl.CriteriaAnalysisView (Page 4589)

ProcessDiagnosisCriteriaAnalysisControl.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
process diagnostics view.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.
• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4637

Syntax
ProcessDiagnosisCriteriaAnalysisControl.CurrentQuality

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisCriteriaAnalysisControl.Enabled

Description
The "Enabled" property specifies whether the process diagnostics view can be operated in
runtime.

Type
Bool

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControl.Enabled

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisCriteriaAnalysisControl.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4638 System Manual, 11/2022

Syntax
ProcessDiagnosisCriteriaAnalysisControl.ForeColor

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisCriteriaAnalysisControl.Height

Description
The "Height" property specifies the height in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControl.Height

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisCriteriaAnalysisControl.Icon

Description
The "Icon" property specifies the icon of the process diagnostics view.

Type
String

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControl.Icon

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4639

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisCriteriaAnalysisControl.Layer

Description
The "Layer" property returns the screen layer in which the process diagnostics view is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
ProcessDiagnosisCriteriaAnalysisControl.Layer

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

Programming scripts
10.2 WinCC Unified object model

4640 System Manual, 11/2022

See also
ProcessDiagnosisCriteriaAnalysisControl.Layer (Page 4640)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
ProcessDiagnosisCriteriaAnalysisControl.Layer (Page 4640)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4641

See also
ProcessDiagnosisCriteriaAnalysisControl.Layer (Page 4640)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
ProcessDiagnosisCriteriaAnalysisControl.Layer (Page 4640)

ProcessDiagnosisCriteriaAnalysisControl.Left

Description
The "Left" property sets the value of the X coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControl.Left

Programming scripts
10.2 WinCC Unified object model

4642 System Manual, 11/2022

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisCriteriaAnalysisControl.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControl.Margin

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4643

See also
ProcessDiagnosisCriteriaAnalysisControl.Margin (Page 4643)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ProcessDiagnosisCriteriaAnalysisControl.Margin (Page 4643)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

Programming scripts
10.2 WinCC Unified object model

4644 System Manual, 11/2022

See also
ProcessDiagnosisCriteriaAnalysisControl.Margin (Page 4643)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ProcessDiagnosisCriteriaAnalysisControl.Margin (Page 4643)

ProcessDiagnosisCriteriaAnalysisControl.Name

Description
The "Name" property returns the name of the process diagnostics view.

Type
String

Access
Read-only

Syntax
ProcessDiagnosisCriteriaAnalysisControl.Name

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4645

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisCriteriaAnalysisControl.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
ProcessDiagnosisCriteriaAnalysisControl.Parent

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

ProcessDiagnosisCriteriaAnalysisControl.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the process
diagnostics view was created.

Type
String

Programming scripts
10.2 WinCC Unified object model

4646 System Manual, 11/2022

Access
Read-only

Syntax
ProcessDiagnosisCriteriaAnalysisControl.RenderingTemplate

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisCriteriaAnalysisControl.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the process diagnostics view is highlighted
when in focus.

Type
Bool

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControl.ShowFocusVisual

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisCriteriaAnalysisControl.SnapToSourceControl

Description
The "SnapToSourceControl" property specifies whether the process diagnostics overview snaps
to the window of the associated data source.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4647

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControl.SnapToSourceControl

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisCriteriaAnalysisControl.SourceControl

Description
The "SourceControl" property specifies the data source.

Type
Object, HmiAlarmControl (Page 1571)

Access
Read-only

Syntax
ProcessDiagnosisCriteriaAnalysisControl.SourceControl

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)
AlarmControl (Page 1571)

AlarmControl

Description
AlarmControl (Page 1571)

ProcessDiagnosisCriteriaAnalysisControl.StatusBar

Description
The "StatusBar" property specifies the information bar of the process diagnostics view.

Programming scripts
10.2 WinCC Unified object model

4648 System Manual, 11/2022

Type
Object, HmiStatusBarPart

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControl.StatusBar

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

StatusBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
StatusBar.BackColor

See also
ProcessDiagnosisCriteriaAnalysisControl.StatusBar (Page 4648)

StatusBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
information bar.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4649

Type
Object, HmiControlBarElementCollection (Page 4650)

Access
Read-only

Syntax
StatusBar.Elements

See also
ProcessDiagnosisCriteriaAnalysisControl.StatusBar (Page 4648)
HmiControlBarElementCollection (Page 4650)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

4650 System Manual, 11/2022

See also
StatusBar.Elements (Page 4649)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 4650)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4651

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 4667)

See also
HmiControlBarElementCollection (Page 4650)
Control Bar Elements (Page 4667)

Control Bar Elements

Description
Control Bar Elements (Page 4667)

StatusBar.Enabled

Description
The "Enabled" property specifies whether the information bar can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
StatusBar.Enabled

See also
ProcessDiagnosisCriteriaAnalysisControl.StatusBar (Page 4648)

Programming scripts
10.2 WinCC Unified object model

4652 System Manual, 11/2022

StatusBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
StatusBar.Font

See also
ProcessDiagnosisCriteriaAnalysisControl.StatusBar (Page 4648)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
StatusBar.Font (Page 4653)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4653

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
StatusBar.Font (Page 4653)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
StatusBar.Font (Page 4653)

Programming scripts
10.2 WinCC Unified object model

4654 System Manual, 11/2022

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
StatusBar.Font (Page 4653)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4655

See also
StatusBar.Font (Page 4653)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
StatusBar.Font (Page 4653)

StatusBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the information bar.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

4656 System Manual, 11/2022

Access
Read-write

Syntax
StatusBar.Margin

See also
ProcessDiagnosisCriteriaAnalysisControl.StatusBar (Page 4648)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
StatusBar.Margin (Page 4656)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4657

Access
Read-write

Syntax
Margin.Left

See also
StatusBar.Margin (Page 4656)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
StatusBar.Margin (Page 4656)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4658 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Top

See also
StatusBar.Margin (Page 4656)

StatusBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the information
bar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
StatusBar.Padding

See also
ProcessDiagnosisCriteriaAnalysisControl.StatusBar (Page 4648)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4659

Access
Read-write

Syntax
Padding.Bottom

See also
StatusBar.Padding (Page 4659)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
StatusBar.Padding (Page 4659)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4660 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Right

See also
StatusBar.Padding (Page 4659)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
StatusBar.Padding (Page 4659)

StatusBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4661

Access
Read-write

Syntax
StatusBar.ShowToolTips

See also
ProcessDiagnosisCriteriaAnalysisControl.StatusBar (Page 4648)

StatusBar.Visible

Description
The "Visible" property specifies whether the information bar is visible.

Type
Bool

Access
Read-write

Syntax
StatusBar.Visible

See also
ProcessDiagnosisCriteriaAnalysisControl.StatusBar (Page 4648)

ProcessDiagnosisCriteriaAnalysisControl.StyleItemClass

Description
The "StyleItemClass" property returns the style that is applied to the process diagnostics view.

Type
String

Programming scripts
10.2 WinCC Unified object model

4662 System Manual, 11/2022

Access
Read-only

Syntax
ProcessDiagnosisCriteriaAnalysisControl.StyleItemClass

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisCriteriaAnalysisControl.TabIndex

Description
The "TabIndex" property returns the position of the process diagnostics view in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
ProcessDiagnosisCriteriaAnalysisControl.TabIndex

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisCriteriaAnalysisControl.ToolBar

Description
The "ToolBar" property specifies the toolbar of the process diagnostics view.

Type
Object, HmiToolBarPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4663

Syntax
ProcessDiagnosisCriteriaAnalysisControl.ToolBar

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ToolBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ToolBar.BackColor

See also
ProcessDiagnosisCriteriaAnalysisControl.ToolBar (Page 4663)

ToolBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
toolbar.

Type
Object, HmiControlBarElementCollection (Page 4665)

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

4664 System Manual, 11/2022

Syntax
ToolBar.Elements

See also
ProcessDiagnosisCriteriaAnalysisControl.ToolBar (Page 4663)
HmiControlBarElementCollection (Page 4665)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
ToolBar.Elements (Page 4664)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4665

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 4665)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Programming scripts
10.2 WinCC Unified object model

4666 System Manual, 11/2022

Return value
Object, HmiControlBarElementPartBase (Page 4667)

See also
HmiControlBarElementCollection (Page 4665)
Control Bar Elements (Page 4667)

Control Bar Elements

ControlBarButton

Description
The "ControlBarButton" object represents a button of an information bar or toolbar.
You can reference the "ControlBarButton" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarButtonPart

Properties
The "ControlBarButton" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the label of the button.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4667

• CustomID
Returns the custom ID.

• Enabled
Specifies whether the button can be operated in runtime.

• ForeColor
Specifies the font color.

• Graphic
Specifies the graphic.

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the button.

• Mapping
Returns the function of the button.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the button is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the button is only operable while the corresponding button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the button is visible.

• Width
Specifies the width.

Methods
--

Programming scripts
10.2 WinCC Unified object model

4668 System Manual, 11/2022

ControlBarButton.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBackColor

See also
ControlBarButton (Page 4667)

ControlBarButton.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBorderColor

See also
ControlBarButton (Page 4667)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4669

ControlBarButton.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the button of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarButton.Authorization

See also
ControlBarButton (Page 4667)

ControlBarButton.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BackColor

See also
ControlBarButton (Page 4667)

Programming scripts
10.2 WinCC Unified object model

4670 System Manual, 11/2022

ControlBarButton.Badge

Description
The "Badge" property specifies the label of the button.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarButton.Badge

See also
ControlBarButton (Page 4667)

ControlBarButton.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BorderColor

See also
ControlBarButton (Page 4667)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4671

ControlBarButton.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarButton.BorderWidth

See also
ControlBarButton (Page 4667)

ControlBarButton.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarButton.Content

See also
ControlBarButton (Page 4667)

Programming scripts
10.2 WinCC Unified object model

4672 System Manual, 11/2022

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarButton.Content (Page 4672)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4673

• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect
ratio is not changed.

• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarButton.Content (Page 4672)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarButton.Content (Page 4672)

Programming scripts
10.2 WinCC Unified object model

4674 System Manual, 11/2022

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarButton.Content (Page 4672)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarButton.Content (Page 4672)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4675

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarButton.Content (Page 4672)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

4676 System Manual, 11/2022

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarButton.Content (Page 4672)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarButton.Content (Page 4672)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4677

ControlBarButton.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarButton.CustomID

See also
ControlBarButton (Page 4667)

ControlBarButton.Enabled

Description
The "Enabled" property specifies whether the button can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Enabled

See also
ControlBarButton (Page 4667)

Programming scripts
10.2 WinCC Unified object model

4678 System Manual, 11/2022

ControlBarButton.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.ForeColor

See also
ControlBarButton (Page 4667)

ControlBarButton.Graphic

Description
The "Graphic" property specifies the graphic of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Graphic

See also
ControlBarButton (Page 4667)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4679

ControlBarButton.Height

Description
The "Height" property specifies the height of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Height

See also
ControlBarButton (Page 4667)

ControlBarButton.HotKey

Description
The "HotKey" property returns the hotkey specified for the button. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
ControlBarButton.HotKey

See also
ControlBarButton (Page 4667)

Programming scripts
10.2 WinCC Unified object model

4680 System Manual, 11/2022

ControlBarButton.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4681

• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

4682 System Manual, 11/2022

Syntax
ControlBarButton.Mapping

See also
ControlBarButton (Page 4667)

ControlBarButton.Margin

Description
The "Margin" property specifies the surrounded outer distance of the button.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarButton.Margin

See also
ControlBarButton (Page 4667)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4683

Syntax
Margin.Bottom

See also
ControlBarButton.Margin (Page 4683)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarButton.Margin (Page 4683)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4684 System Manual, 11/2022

Syntax
Margin.Right

See also
ControlBarButton.Margin (Page 4683)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarButton.Margin (Page 4683)

ControlBarButton.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4685

Syntax
ControlBarButton.MaximumHeight

See also
ControlBarButton (Page 4667)

ControlBarButton.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumWidth

See also
ControlBarButton (Page 4667)

ControlBarButton.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4686 System Manual, 11/2022

Syntax
ControlBarButton.MinimumHeight

See also
ControlBarButton (Page 4667)

ControlBarButton.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumWidth

See also
ControlBarButton (Page 4667)

ControlBarButton.Operability

Description
The "Operability" property returns whether the button is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4687

Access
Read-only

Syntax
ControlBarButton.Operability

See also
ControlBarButton (Page 4667)

ControlBarButton.Padding

Description
The "Padding" property specifies the distance of the content from the border of the button.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarButton.Padding

See also
ControlBarButton (Page 4667)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4688 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarButton.Padding (Page 4688)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarButton.Padding (Page 4688)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4689

Access
Read-write

Syntax
Padding.Right

See also
ControlBarButton.Padding (Page 4688)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarButton.Padding (Page 4688)

ControlBarButton.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the button can only be operated while the
associated button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

4690 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarButton.RequireExplicitUnlock

See also
ControlBarButton (Page 4667)

ControlBarButton.Text

Description
The "Text" property specifies the label of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Text

See also
ControlBarButton (Page 4667)

ControlBarButton.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the button.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4691

Access
Read-write

Syntax
ControlBarButton.ToolTipText

See also
ControlBarButton (Page 4667)

ControlBarButton.Visible

Description
The "Visible" property specifies whether the button is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Visible

See also
ControlBarButton (Page 4667)

ControlBarButton.Width

Description
The "Width" property specifies the width of the button in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

4692 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.Width

See also
ControlBarButton (Page 4667)

ControlBarDisplay

Description
The "ControlBarDisplay" object represents a display area for text and graphics of an information
bar or toolbar.
You can reference the "ControlBarDisplay" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarDisplayPart

Properties
The "ControlBarDisplay" object has the following properties:
• Authorization

Returns the operator authorization.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the display area is enabled in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• Mapping

Returns the function of the display area.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4693

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the display area is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the display area is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the display area is visible.

• Width
Specifies the width.

Methods
--

ControlBarDisplay.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the display.

Type
Object, HmiFunctionRight

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

4694 System Manual, 11/2022

Syntax
ControlBarDislay.Authorization

See also
ControlBarDisplay (Page 4693)

ControlBarDisplay.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarDislay.Content

See also
ControlBarDisplay (Page 4693)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4695

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarDisplay.Content (Page 4695)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarDisplay.Content (Page 4695)

Programming scripts
10.2 WinCC Unified object model

4696 System Manual, 11/2022

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarDisplay.Content (Page 4695)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4697

See also
ControlBarDisplay.Content (Page 4695)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarDisplay.Content (Page 4695)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Programming scripts
10.2 WinCC Unified object model

4698 System Manual, 11/2022

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarDisplay.Content (Page 4695)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarDisplay.Content (Page 4695)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4699

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarDisplay.Content (Page 4695)

ControlBarDisplay.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarDislay.CustomID

See also
ControlBarDisplay (Page 4693)

Programming scripts
10.2 WinCC Unified object model

4700 System Manual, 11/2022

ControlBarDisplay.Enabled

Description
The "Enabled" property specifies whether the display is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Enabled

See also
ControlBarDisplay (Page 4693)

ControlBarDisplay.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.ForeColor

See also
ControlBarDisplay (Page 4693)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4701

ControlBarDisplay.Graphic

Description
The "Graphic" property specifies the graphic of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Graphic

See also
ControlBarDisplay (Page 4693)

ControlBarDisplay.Height

Description
The "Height" property specifies the height of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Height

See also
ControlBarDisplay (Page 4693)

Programming scripts
10.2 WinCC Unified object model

4702 System Manual, 11/2022

ControlBarDisplay.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4703

• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

4704 System Manual, 11/2022

Syntax
ControlBarDislay.Mapping

See also
ControlBarDisplay (Page 4693)

ControlBarDisplay.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the display.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarDislay.Margin

See also
ControlBarDisplay (Page 4693)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4705

Syntax
Margin.Bottom

See also
ControlBarDisplay.Margin (Page 4705)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarDisplay.Margin (Page 4705)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4706 System Manual, 11/2022

Syntax
Margin.Right

See also
ControlBarDisplay.Margin (Page 4705)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarDisplay.Margin (Page 4705)

ControlBarDisplay.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4707

Syntax
ControlBarDislay.MaximumHeight

See also
ControlBarDisplay (Page 4693)

ControlBarDisplay.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MaximumWidth

See also
ControlBarDisplay (Page 4693)

ControlBarDisplay.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4708 System Manual, 11/2022

Syntax
ControlBarDislay.MinimumHeight

See also
ControlBarDisplay (Page 4693)

ControlBarDisplay.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MinimumWidth

See also
ControlBarDisplay (Page 4693)

ControlBarDisplay.Operability

Description
The "Operability" property returns whether the display is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4709

Access
Read-only

Syntax
ControlBarDislay.Operability

See also
ControlBarDisplay (Page 4693)

ControlBarDisplay.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the display.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarDislay.Padding

See also
ControlBarDisplay (Page 4693)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4710 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarDisplay.Padding (Page 4710)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarDisplay.Padding (Page 4710)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4711

Access
Read-write

Syntax
Padding.Right

See also
ControlBarDisplay.Padding (Page 4710)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarDisplay.Padding (Page 4710)

ControlBarDisplay.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the display can only be operated while the
associated button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

4712 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarDislay.RequireExplicitUnlock

See also
ControlBarDisplay (Page 4693)

ControlBarDisplay.Text

Description
The "Text" property specifies the label of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Text

See also
ControlBarDisplay (Page 4693)

ControlBarDisplay.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the display.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4713

Access
Read-write

Syntax
ControlBarDislay.ToolTipText

See also
ControlBarDisplay (Page 4693)

ControlBarDisplay.Visible

Description
The "Visible" property specifies whether the display is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Visible

See also
ControlBarDisplay (Page 4693)

ControlBarDisplay.Width

Description
The "Width" property specifies the width of the display in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

4714 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.Width

See also
ControlBarDisplay (Page 4693)

ControlBarLabel

Description
The "ControlBarLabel" object represents an identifier of an information bar or toolbar.
You can reference the "ControlBarLabel" object via the "HmiControlBarElementCollection" list.

Object type
HmiControlBarLabelPart

Properties
The "ControlBarLabel" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the identifier can be operated in runtime.
• ForeColor

Specifies the font color.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Height

Specifies the height.
• Mapping

Returns the function of the identifier.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4715

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the identifier is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the identifier is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the identifier is visible.

• Width
Specifies the width.

Methods
--

ControlBarLabel.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the identifier.

Type
Object, HmiFunctionRight

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

4716 System Manual, 11/2022

Syntax
ControlBarLabel.Authorization

See also
ControlBarLabel (Page 4715)

ControlBarLabel.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarLabel.CustomID

See also
ControlBarLabel (Page 4715)

ControlBarLabel.Enabled

Description
The "Enabled" property specifies whether the identifier is active in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4717

Syntax
ControlBarLabel.Enabled

See also
ControlBarLabel (Page 4715)

ControlBarLabel.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.ForeColor

See also
ControlBarLabel (Page 4715)

ControlBarLabel.Height

Description
The "Height" property specifies the height of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4718 System Manual, 11/2022

Syntax
ControlBarLabel.Height

See also
ControlBarLabel (Page 4715)

ControlBarLabel.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.HorizontalTextAlignment

See also
ControlBarLabel (Page 4715)

ControlBarLabel.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4719

Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms

Programming scripts
10.2 WinCC Unified object model

4720 System Manual, 11/2022

• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarLabel.Mapping

See also
ControlBarLabel (Page 4715)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4721

ControlBarLabel.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the identifier.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarLabel.Margin

See also
ControlBarLabel (Page 4715)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarLabel.Margin (Page 4722)

Programming scripts
10.2 WinCC Unified object model

4722 System Manual, 11/2022

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarLabel.Margin (Page 4722)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarLabel.Margin (Page 4722)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4723

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarLabel.Margin (Page 4722)

ControlBarLabel.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumHeight

See also
ControlBarLabel (Page 4715)

Programming scripts
10.2 WinCC Unified object model

4724 System Manual, 11/2022

ControlBarLabel.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumWidth

See also
ControlBarLabel (Page 4715)

ControlBarLabel.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumHeight

See also
ControlBarLabel (Page 4715)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4725

ControlBarLabel.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumWidth

See also
ControlBarLabel (Page 4715)

ControlBarLabel.Operability

Description
The "Operability" property returns whether the identifier is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarLabel.Operability

Programming scripts
10.2 WinCC Unified object model

4726 System Manual, 11/2022

See also
ControlBarLabel (Page 4715)

ControlBarLabel.Padding

Description
The "Padding" property specifies the spacing of the content from the frame of the identifier.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarLabel.Padding

See also
ControlBarLabel (Page 4715)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4727

See also
ControlBarLabel.Padding (Page 4727)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarLabel.Padding (Page 4727)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

Programming scripts
10.2 WinCC Unified object model

4728 System Manual, 11/2022

See also
ControlBarLabel.Padding (Page 4727)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarLabel.Padding (Page 4727)

ControlBarLabel.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the identifier can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarLabel.RequireExplicitUnlock

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4729

See also
ControlBarLabel (Page 4715)

ControlBarLabel.Text

Description
The "Text" property specifies the label of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.Text

See also
ControlBarLabel (Page 4715)

ControlBarLabel.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.ToolTipText

Programming scripts
10.2 WinCC Unified object model

4730 System Manual, 11/2022

See also
ControlBarLabel (Page 4715)

ControlBarLabel.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.VerticalTextAlignment

See also
ControlBarLabel (Page 4715)

ControlBarLabel.Visible

Description
The "Visible" property specifies whether the identifier is visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4731

Syntax
ControlBarLabel.Visible

See also
ControlBarLabel (Page 4715)

ControlBarLabel.Width

Description
The "Width" property specifies the width of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Width

See also
ControlBarLabel (Page 4715)

ControlBarSeparator

Description
The "ControlBarSeparator" object represents a separator of an information bar or toolbar.
You can reference the "ControlBarSeparator" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarSeparatorPart

Programming scripts
10.2 WinCC Unified object model

4732 System Manual, 11/2022

Properties
The "ControlBarSeparator" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the disconnector can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• Mapping

Returns the function of the separator.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the separator is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the disconnector is only operable while the associated button is being
pressed.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the disconnector is visible.

• Width
Specifies the width.

Methods
--

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4733

ControlBarSeparator.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the separator.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarSeparator.Authorization

See also
ControlBarSeparator (Page 4732)

ControlBarSeparator.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarSeparator.CustomID

See also
ControlBarSeparator (Page 4732)

Programming scripts
10.2 WinCC Unified object model

4734 System Manual, 11/2022

ControlBarSeparator.Enabled

Description
The "Enabled" property specifies whether the separator is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Enabled

See also
ControlBarSeparator (Page 4732)

ControlBarSeparator.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.ForeColor

See also
ControlBarSeparator (Page 4732)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4735

ControlBarSeparator.Height

Description
The "Height" property specifies the height of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Height

See also
ControlBarSeparator (Page 4732)

ControlBarSeparator.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display

Programming scripts
10.2 WinCC Unified object model

4736 System Manual, 11/2022

• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4737

• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarSeparator.Mapping

See also
ControlBarSeparator (Page 4732)

ControlBarSeparator.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the separator.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4738 System Manual, 11/2022

Syntax
ControlBarSeparator.Margin

See also
ControlBarSeparator (Page 4732)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarSeparator.Margin (Page 4738)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4739

Syntax
Margin.Left

See also
ControlBarSeparator.Margin (Page 4738)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarSeparator.Margin (Page 4738)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4740 System Manual, 11/2022

Syntax
Margin.Top

See also
ControlBarSeparator.Margin (Page 4738)

ControlBarSeparator.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MaximumHeight

See also
ControlBarSeparator (Page 4732)

ControlBarSeparator.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4741

Syntax
ControlBarSeparator.MaximumWidth

See also
ControlBarSeparator (Page 4732)

ControlBarSeparator.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MinimumHeight

See also
ControlBarSeparator (Page 4732)

ControlBarSeparator.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4742 System Manual, 11/2022

Syntax
ControlBarSeparator.MinimumWidth

See also
ControlBarSeparator (Page 4732)

ControlBarSeparator.Operability

Description
The "Operability" property returns whether the separator is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarSeparator.Operability

See also
ControlBarSeparator (Page 4732)

ControlBarSeparator.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the separator.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4743

Access
Read-write

Syntax
ControlBarSeparator.Padding

See also
ControlBarSeparator (Page 4732)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarSeparator.Padding (Page 4743)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4744 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Left

See also
ControlBarSeparator.Padding (Page 4743)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarSeparator.Padding (Page 4743)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4745

Access
Read-write

Syntax
Padding.Top

See also
ControlBarSeparator.Padding (Page 4743)

ControlBarSeparator.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the disconnector can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarSeparator.RequireExplicitUnlock

See also
ControlBarSeparator (Page 4732)

ControlBarSeparator.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the separator.

Type
String

Programming scripts
10.2 WinCC Unified object model

4746 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarSeparator.ToolTipText

See also
ControlBarSeparator (Page 4732)

ControlBarSeparator.Visible

Description
The "Visible" property specifies whether the separator is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Visible

See also
ControlBarSeparator (Page 4732)

ControlBarSeparator.Width

Description
The "Width" property specifies the width of the separator in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4747

Access
Read-write

Syntax
ControlBarSeparator.Width

See also
ControlBarSeparator (Page 4732)

ControlBarTextBox

Description
The "ControlBarTextBox" object represents a text box of an information bar or toolbar.
You can reference the "ControlBarTextBox" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarTextBoxPart

Properties
The "ControlBarTextBox" object has the following properties:
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the text box can be operated in runtime.
• ForeColor

Specifies the font color.

Programming scripts
10.2 WinCC Unified object model

4748 System Manual, 11/2022

• Height
Specifies the height.

• HorizontalTextAlignment
Specifies the horizontal alignment of the text.

• Mapping
Returns the function of the text box.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the text box is operable.

• Padding
Specifies the distance of the content from the border.

• Readonly
Specifies whether the text box is write-protected.

• RequireExplicitUnlock
Returns whether the text box is only operable while the associated button is being pressed.

• Text
Specifies the labeling.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the text box is visible.

• Width
Specifies the width.

Methods
--

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4749

ControlBarTextBox.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.AlternateBorderColor

See also
ControlBarTextBox (Page 4748)

ControlBarTextBox.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the text box of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarTextBox.Authorization

See also
ControlBarTextBox (Page 4748)

Programming scripts
10.2 WinCC Unified object model

4750 System Manual, 11/2022

ControlBarTextBox.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BackColor

See also
ControlBarTextBox (Page 4748)

ControlBarTextBox.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BorderColor

See also
ControlBarTextBox (Page 4748)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4751

ControlBarTextBox.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarTextBox.BorderWidth

See also
ControlBarTextBox (Page 4748)

ControlBarTextBox.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarTextBox.CustomID

See also
ControlBarTextBox (Page 4748)

Programming scripts
10.2 WinCC Unified object model

4752 System Manual, 11/2022

ControlBarTextBox.Enabled

Description
The "Enabled" property specifies whether the text box can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Enabled

See also
ControlBarTextBox (Page 4748)

ControlBarTextBox.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.ForeColor

See also
ControlBarTextBox (Page 4748)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4753

ControlBarTextBox.Height

Description
The "Height" property specifies the height of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Height

See also
ControlBarTextBox (Page 4748)

ControlBarTextBox.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.HorizontalTextAlignment

Programming scripts
10.2 WinCC Unified object model

4754 System Manual, 11/2022

See also
ControlBarTextBox (Page 4748)

ControlBarTextBox.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4755

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

4756 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarTextBox.Mapping

See also
ControlBarTextBox (Page 4748)

ControlBarTextBox.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the text box.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarTextBox.Margin

See also
ControlBarTextBox (Page 4748)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4757

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarTextBox.Margin (Page 4757)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarTextBox.Margin (Page 4757)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4758 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Right

See also
ControlBarTextBox.Margin (Page 4757)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarTextBox.Margin (Page 4757)

ControlBarTextBox.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4759

Access
Read-write

Syntax
ControlBarTextBox.MaximumHeight

See also
ControlBarTextBox (Page 4748)

ControlBarTextBox.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumWidth

See also
ControlBarTextBox (Page 4748)

ControlBarTextBox.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

4760 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarTextBox.MinimumHeight

See also
ControlBarTextBox (Page 4748)

ControlBarTextBox.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumWidth

See also
ControlBarTextBox (Page 4748)

ControlBarTextBox.Operability

Description
The "Operability" property returns whether the text box is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4761

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarTextBox.Operability

See also
ControlBarTextBox (Page 4748)

ControlBarTextBox.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the text box.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarTextBox.Padding

See also
ControlBarTextBox (Page 4748)

Programming scripts
10.2 WinCC Unified object model

4762 System Manual, 11/2022

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarTextBox.Padding (Page 4762)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarTextBox.Padding (Page 4762)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4763

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarTextBox.Padding (Page 4762)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarTextBox.Padding (Page 4762)

Programming scripts
10.2 WinCC Unified object model

4764 System Manual, 11/2022

ControlBarTextBox.ReadOnly

Description
The "ReadOnly" property specifies whether the text box is read-only.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.ReadOnly

See also
ControlBarTextBox (Page 4748)

ControlBarTextBox.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the text box can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarTextBox.RequireExplicitUnlock

See also
ControlBarTextBox (Page 4748)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4765

ControlBarTextBox.Text

Description
The "Text" property specifies the label of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.Text

See also
ControlBarTextBox (Page 4748)

ControlBarTextBox.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.ToolTipText

See also
ControlBarTextBox (Page 4748)

Programming scripts
10.2 WinCC Unified object model

4766 System Manual, 11/2022

ControlBarTextBox.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.VerticalTextAlignment

See also
ControlBarTextBox (Page 4748)

ControlBarTextBox.Visible

Description
The "Visible" property specifies whether the text box is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Visible

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4767

See also
ControlBarTextBox (Page 4748)

ControlBarTextBox.Width

Description
The "Width" property specifies the width of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Width

See also
ControlBarTextBox (Page 4748)

ControlBarToggleSwitch

Description
The "ControlBarToggleSwitch" object represents a switch of an information bar or toolbar.
You can reference the "ControlBarToggleSwitch" object via the
"HmiControlBarElementCollection" list.

Object type
HmiControlBarToggleSwitchPart

Properties
The "ControlBarToggleSwitch" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".

Programming scripts
10.2 WinCC Unified object model

4768 System Manual, 11/2022

• AlternateGraphic
Specifies the graphic for the "pressed" state.

• AlternateText
Specifies the text for the "pressed" state.

• Authorization
Returns the operator authorization.

• BackColor
Specifies the background color.

• Badge
Specifies the identifier of the switch.

• BorderColor
Specifies the line color.

• BorderWidth
Specifies the line thickness.

• Content
Specifies display options for text and graphics.

• CustomID
Returns the custom ID.

• Enabled
Specifies whether the switch can be operated in runtime.

• ForeColor
Specifies the font color.

• Graphic
Specifies the graphic.

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the switch.

• IsAlternateState
Specifies the current state of the switch.

• Mapping
Returns the function of the switch.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4769

• Operability
Returns whether the switch is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the switch is only operable while the associated button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the switch is visible.

• Width
Specifies the width.

Methods
--

ControlBarToggleSwitch.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBackColor

See also
ControlBarToggleSwitch (Page 4768)

Programming scripts
10.2 WinCC Unified object model

4770 System Manual, 11/2022

ControlBarToggleSwitch.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBorderColor

See also
ControlBarToggleSwitch (Page 4768)

ControlBarToggleSwitch.AlternateGraphic

Description
The "AlternateGraphic" property specifies the graphic of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateGraphic

See also
ControlBarToggleSwitch (Page 4768)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4771

ControlBarToggleSwitch.AlternateText

Description
The "AlternateText" property specifies the text of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateText

See also
ControlBarToggleSwitch (Page 4768)

ControlBarToggleSwitch.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the switch of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarToggleSwitch.Authorization

See also
ControlBarToggleSwitch (Page 4768)

Programming scripts
10.2 WinCC Unified object model

4772 System Manual, 11/2022

ControlBarToggleSwitch.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BackColor

See also
ControlBarToggleSwitch (Page 4768)

ControlBarToggleSwitch.Badge

Description
The "Badge" property specifies the identifier of the switch.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarToggleSwitch.Badge

See also
ControlBarToggleSwitch (Page 4768)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4773

ControlBarToggleSwitch.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderColor

See also
ControlBarToggleSwitch (Page 4768)

ControlBarToggleSwitch.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderWidth

See also
ControlBarToggleSwitch (Page 4768)

Programming scripts
10.2 WinCC Unified object model

4774 System Manual, 11/2022

ControlBarToggleSwitch.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Content

See also
ControlBarToggleSwitch (Page 4768)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4775

See also
ControlBarToggleSwitch.Content (Page 4775)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarToggleSwitch.Content (Page 4775)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

4776 System Manual, 11/2022

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 4775)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarToggleSwitch.Content (Page 4775)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4777

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarToggleSwitch.Content (Page 4775)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4778 System Manual, 11/2022

Syntax
Content.TextPosition

See also
ControlBarToggleSwitch.Content (Page 4775)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarToggleSwitch.Content (Page 4775)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4779

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 4775)

ControlBarToggleSwitch.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarToggleSwitch.CustomID

See also
ControlBarToggleSwitch (Page 4768)

Programming scripts
10.2 WinCC Unified object model

4780 System Manual, 11/2022

ControlBarToggleSwitch.Enabled

Description
The "Enabled" property specifies whether the switch can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Enabled

See also
ControlBarToggleSwitch (Page 4768)

ControlBarToggleSwitch.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.ForeColor

See also
ControlBarToggleSwitch (Page 4768)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4781

ControlBarToggleSwitch.Graphic

Description
The "Graphic" property specifies the graphic of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Graphic

See also
ControlBarToggleSwitch (Page 4768)

ControlBarToggleSwitch.Height

Description
The "Height" property specifies the height of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Height

See also
ControlBarToggleSwitch (Page 4768)

Programming scripts
10.2 WinCC Unified object model

4782 System Manual, 11/2022

ControlBarToggleSwitch.HotKey

Description
The "HotKey" property returns the hotkey specified for the switch. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
Button.HotKey

See also
ControlBarToggleSwitch (Page 4768)

ControlBarToggleSwitch.IsAlternateState

Description
The "IsAlternateState" property specifies the current state of the switch.
• True: Switch is in "On" state.
• False: Switch is in "Off" state.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.IsAlternateState

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4783

See also
ControlBarToggleSwitch (Page 4768)

ControlBarToggleSwitch.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

4784 System Manual, 11/2022

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4785

Access
Read-only

Syntax
ControlBarToggleSwitch.Mapping

See also
ControlBarToggleSwitch (Page 4768)

ControlBarToggleSwitch.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the switch.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Margin

See also
ControlBarToggleSwitch (Page 4768)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4786 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarToggleSwitch.Margin (Page 4786)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarToggleSwitch.Margin (Page 4786)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4787

Access
Read-write

Syntax
Margin.Right

See also
ControlBarToggleSwitch.Margin (Page 4786)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarToggleSwitch.Margin (Page 4786)

ControlBarToggleSwitch.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

4788 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumHeight

See also
ControlBarToggleSwitch (Page 4768)

ControlBarToggleSwitch.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumWidth

See also
ControlBarToggleSwitch (Page 4768)

ControlBarToggleSwitch.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4789

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumHeight

See also
ControlBarToggleSwitch (Page 4768)

ControlBarToggleSwitch.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumWidth

See also
ControlBarToggleSwitch (Page 4768)

ControlBarToggleSwitch.Operability

Description
The property "Operability" returns whether the switch is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

4790 System Manual, 11/2022

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarToggleSwitch.Operability

See also
ControlBarToggleSwitch (Page 4768)

ControlBarToggleSwitch.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the switch.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Padding

See also
ControlBarToggleSwitch (Page 4768)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4791

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarToggleSwitch.Padding (Page 4791)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarToggleSwitch.Padding (Page 4791)

Programming scripts
10.2 WinCC Unified object model

4792 System Manual, 11/2022

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarToggleSwitch.Padding (Page 4791)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarToggleSwitch.Padding (Page 4791)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4793

ControlBarToggleSwitch.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the switch can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarToggleSwitch.RequireExplicitUnlock

See also
ControlBarToggleSwitch (Page 4768)

ControlBarToggleSwitch.Text

Description
The "Text" property specifies the label of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Text

See also
ControlBarToggleSwitch (Page 4768)

Programming scripts
10.2 WinCC Unified object model

4794 System Manual, 11/2022

ControlBarToggleSwitch.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.ToolTipText

See also
ControlBarToggleSwitch (Page 4768)

ControlBarToggleSwitch.Visible

Description
The "Visible" property specifies whether the switch is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Visible

See also
ControlBarToggleSwitch (Page 4768)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4795

ControlBarToggleSwitch.Width

Description
The "Width" property specifies the width of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Width

See also
ControlBarToggleSwitch (Page 4768)

ToolBar.Enabled

Description
The "Enabled" property specifies whether the toolbar can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ToolBar.Enabled

See also
ProcessDiagnosisCriteriaAnalysisControl.ToolBar (Page 4663)

Programming scripts
10.2 WinCC Unified object model

4796 System Manual, 11/2022

ToolBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ToolBar.Font

See also
ProcessDiagnosisCriteriaAnalysisControl.ToolBar (Page 4663)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
ToolBar.Font (Page 4797)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4797

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
ToolBar.Font (Page 4797)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
ToolBar.Font (Page 4797)

Programming scripts
10.2 WinCC Unified object model

4798 System Manual, 11/2022

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ToolBar.Font (Page 4797)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4799

See also
ToolBar.Font (Page 4797)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
ToolBar.Font (Page 4797)

ToolBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the toolbar.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

4800 System Manual, 11/2022

Access
Read-write

Syntax
ToolBar.Margin

See also
ProcessDiagnosisCriteriaAnalysisControl.ToolBar (Page 4663)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ToolBar.Margin (Page 4800)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4801

Access
Read-write

Syntax
Margin.Left

See also
ToolBar.Margin (Page 4800)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ToolBar.Margin (Page 4800)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4802 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Top

See also
ToolBar.Margin (Page 4800)

ToolBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the toolbar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ToolBar.Padding

See also
ProcessDiagnosisCriteriaAnalysisControl.ToolBar (Page 4663)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4803

Access
Read-write

Syntax
Padding.Bottom

See also
ToolBar.Padding (Page 4803)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ToolBar.Padding (Page 4803)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4804 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Right

See also
ToolBar.Padding (Page 4803)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ToolBar.Padding (Page 4803)

ToolBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4805

Access
Read-write

Syntax
ToolBar.ShowToolTips

See also
ProcessDiagnosisCriteriaAnalysisControl.ToolBar (Page 4663)

ToolBar.UseHotKeys

Description
The "UseHotKeys" property specifies whether the shortcut keys for the buttons in the toolbar are
activated.

Type
Bool

Access
Read-write

Syntax
ToolBar.UseHotKeys

See also
ProcessDiagnosisCriteriaAnalysisControl.ToolBar (Page 4663)

ToolBar.Visible

Description
The "Visible" property specifies whether the toolbar is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

4806 System Manual, 11/2022

Access
Read-write

Syntax
ToolBar.Visible

See also
ProcessDiagnosisCriteriaAnalysisControl.ToolBar (Page 4663)

ProcessDiagnosisCriteriaAnalysisControl.Top

Description
The "Top" property sets the value of the Y coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControl.Top

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisCriteriaAnalysisControl.Visible

Description
The "Visible" property specifies whether the process diagnostics view is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4807

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControl.Visible

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisCriteriaAnalysisControl.Width

Description
The "Width" property specifies the width in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControl.Width

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisCriteriaAnalysisControl.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the process diagnostics view.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title

Programming scripts
10.2 WinCC Unified object model

4808 System Manual, 11/2022

• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be positioned
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
You can enable multiple properties by adding integer values or bit operators.

Access
Read-write

Syntax
ProcessDiagnosisCriteriaAnalysisControl.WindowFlags

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisCriteriaAnalysisControl.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
process diagnostics view.

Syntax
ProcessDiagnosisCriteriaAnalysisControl.CheckAuthorization()

Parameters
--

Return value
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4809

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisCriteriaAnalysisControl.FireCommand()

Description
The "FireCommand" method executes the command of an element in the toolbar or information
bar (control bar element, e.g. a button) of the process diagnostics view for criteria analysis.

Syntax
ProcessDiagnosisCriteriaAnalysisControl.FireCommand(commandId,
custom)

Parameters
commandId
Type: Int32
ID of the element of the toolbar or information bar

custom
Type: Bool
Type of element ID:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

Return value
--

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

Programming scripts
10.2 WinCC Unified object model

4810 System Manual, 11/2022

ProcessDiagnosisCriteriaAnalysisControl.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
ProcessDiagnosisCriteriaAnalysisControl.PropertyFlashing(propertyNam
e, enable[, value][, alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4811

Return value
Bool

See also
ProcessDiagnosisCriteriaAnalysisControl (Page 4581)

ProcessDiagnosisGraphOverviewControl

Description
The "ProcessDiagnosisGraphOverviewControl" object represents a process diagnostics view for
graphic overview in runtime.

Object type
HmiProcessDiagnosisGraphOverviewControl

Properties
The "ProcessDiagnosisGraphOverviewControl" object has the following properties:
• BackColor

Specifies the background color.
• Caption

Specifies the text that is displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.
• CurrentQuality

Returns the poorest quality code of all tags which influence the process diagnostics view.
• Enabled

Specifies whether the process diagnostics view can be operated in runtime.
• Font

Specifies the font of the text.
• ForeColor

Specifies the font color of the text.
• GraphOverview

Defines the appearance of the process diagnostics view.
• GridLineColor

Specifies the color of the grid lines.
• Height

Specifies the height.
• Icon

Specifies the icon of the process diagnostics view.

Programming scripts
10.2 WinCC Unified object model

4812 System Manual, 11/2022

• Layer
Returns the screen layer in which the process diagnostics view is located.

• Left
Specifies the value of the X coordinate.

• Margin
Specifies the margin.

• Name
Returns the name of the process diagnostics view.

• OperationMode
Specifies the operating mode.

• Parent
Returns the higher-level screen object.

• PlcSource
Specifies the PLC source.

• RenderingTemplate
Returns the name of the template from which the process diagnostics view was created.

• SelectedStep
Specifies which step is selected.

• ShowFocusVisual
Specifies whether the process diagnostics view is highlighted when in focus.

• ShowOperationMode
Specifies whether to display the operating mode.

• StatusBar
Specifies the information bar of the process diagnostics view.

• StyleItemClass
Returns the style which is applied to the process diagnostics view.

• TabIndex
Returns the position of the process diagnostics view in the tab sequence.

• ToolBar
Specifies the toolbar of the process diagnostics view.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the process diagnostics view is visible.

• Width
Specifies the width.

• WindowFlags
Specifies the window configuration of the process diagnostics view.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4813

Methods
The "ProcessDiagnosisGraphOverviewControl" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the process diagnostics view.
• FireCommand()

Configures the occurrence of an event for an element.
• PropertyFlashing()

Configures flashing of a property.

Events
The "ProcessDiagnosisGraphOverviewControl" object has the following events:
• AlarmViewButtonTapped()

Occurs when the "AlarmView" button is pressed.
• PlcCodeViewerButtonTapped()

Occurs when the "PlcCodeViewer" button is pressed.
• TIAPortalButtonTapped()

Occurs when the "TIAPortal" button is pressed.

ProcessDiagnosisGraphOverviewControl.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.BackColor

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

Programming scripts
10.2 WinCC Unified object model

4814 System Manual, 11/2022

ProcessDiagnosisGraphOverviewControl.Caption

Description
The "Caption" property specifies the text that is displayed in the title bar.

Type
Object, HmiTextPart

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.Caption

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
ProcessDiagnosisGraphOverviewControl.Caption (Page 4815)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4815

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 4815)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 4815)

Programming scripts
10.2 WinCC Unified object model

4816 System Manual, 11/2022

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 4815)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4817

See also
Text.Font (Page 4815)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 4815)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Programming scripts
10.2 WinCC Unified object model

4818 System Manual, 11/2022

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 4815)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
ProcessDiagnosisGraphOverviewControl.Caption (Page 4815)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4819

Access
Read-write

Syntax
Text.Text

See also
ProcessDiagnosisGraphOverviewControl.Caption (Page 4815)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
ProcessDiagnosisGraphOverviewControl.Caption (Page 4815)

ProcessDiagnosisGraphOverviewControl.CaptionColor

Description
The "CaptionColor" property specifies the color of the title bar.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

4820 System Manual, 11/2022

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.CaptionColor

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

ProcessDiagnosisGraphOverviewControl.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
process diagnostics view.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.
• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
ProcessDiagnosisGraphOverviewControl.CurrentQuality

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4821

ProcessDiagnosisGraphOverviewControl.Enabled

Description
The "Enabled" property specifies whether the process diagnostics view can be operated in
runtime.

Type
Bool

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.Enabled

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

ProcessDiagnosisGraphOverviewControl.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.Font

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

Programming scripts
10.2 WinCC Unified object model

4822 System Manual, 11/2022

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
ProcessDiagnosisGraphOverviewControl.Font (Page 4822)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
ProcessDiagnosisGraphOverviewControl.Font (Page 4822)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4823

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
ProcessDiagnosisGraphOverviewControl.Font (Page 4822)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

Programming scripts
10.2 WinCC Unified object model

4824 System Manual, 11/2022

See also
ProcessDiagnosisGraphOverviewControl.Font (Page 4822)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
ProcessDiagnosisGraphOverviewControl.Font (Page 4822)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4825

Access
Read-write

Syntax
Font.Weight

See also
ProcessDiagnosisGraphOverviewControl.Font (Page 4822)

ProcessDiagnosisGraphOverviewControl.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.ForeColor

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

ProcessDiagnosisGraphOverviewControl.GraphOverview

Description
The "GraphOverview" property specifies the appearance of the process diagnostics view.

Type
Object, HmiDataGridViewPart (Page 4827)

Programming scripts
10.2 WinCC Unified object model

4826 System Manual, 11/2022

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.GraphOverview

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)
DataGridView (Page 4827)

DataGridView

DataGridView.AllowFilter

Description
The "AllowFilter" property specifies whether filtering of columns is permitted.

Type
Bool

Access
Read-write

Syntax
DataGridView.AllowFilter

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

DataGridView.AllowSort

Description
The "AllowSort" property specifies whether the sorting of columns is permitted.
• True: Activates the sorting and sets the "AllowSort" property of all columns to "true".
• False: Disables the sorting for all columns. The individual column properties remain

unchanged.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4827

Type
Bool

Access
Read-write

Syntax
DataGridView.AllowSort

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

DataGridView.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
DataGridView.AlternateBackColor

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

DataGridView.AlternateForeColor

Description
The "AlternateForeColor" property specifies the flashing color for the text.

Programming scripts
10.2 WinCC Unified object model

4828 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
DataGridView.AlternateForeColor

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

DataGridView.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
DataGridView.BackColor

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

DataGridView.CellPadding

Description
The "CellPadding" property specifies the inner spacing of the content from the cell border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4829

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
DataGridView.CellPadding

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
DataGridView.CellPadding (Page 4829)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

4830 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
DataGridView.CellPadding (Page 4829)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
DataGridView.CellPadding (Page 4829)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4831

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
DataGridView.CellPadding (Page 4829)

DataGridView.ColoringMode

Description
The "ColoringMode" property specifies whether alternate coloring of every other row or column
is enabled.

Type
Int32, HmiGridColoringMode
Specifies the type of the coloring:
• None (0): None
• Columns (1): Color the columns alternately.
• Rows (2): Color the rows alternately.

Access
Read-write

Syntax
DataGridView.ColoringMode

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

Programming scripts
10.2 WinCC Unified object model

4832 System Manual, 11/2022

DataGridView.Columns

Description
The "Columns" property represents the quantity of columns.

Type
Object, HmiDataGridColumnCollection (Page 4833)

Access
Read-only

Syntax
DataGridView.Columns

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)
HmiDataGridColumnCollection (Page 4833)

HmiDataGridColumnCollection

Description
The "HmiDataGridColumnCollection" object is a list of all columns ("DataGridColumn" objects) of
the table.
You reference a "HmiDataGridColumnCollection" object via the DataGridView.Columns
property.

Use
The "HmiDataGridColumnCollection" object is a list and can be counted and enumerated. You
can access the "HmiDataGridColumnCollection" list using the index or the tag name.

Object type
HmiDataGridColumnCollection

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4833

Properties
The "HmiDataGridColumnCollection" object has the following properties:
• Count

Returns the number of columns in the "HmiDataGridColumnCollection" list.

Methods
The "HmiDataGridColumnCollection" object has the following methods:
• Item()

Returns a column of the "HmiDataGridColumnCollection" list.

See also
DataGridView.Columns (Page 4833)

HmiDataGridColumnCollection.Count

Description
The "Count" property returns the number of columns in the "HmiDataGridColumnCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiDataGridColumnCollection.Count

See also
HmiDataGridColumnCollection (Page 4833)

HmiDataGridColumnCollection.Item()

Description
The "Item" method returns a column of the "HmiDataGridColumnCollection" list.

Programming scripts
10.2 WinCC Unified object model

4834 System Manual, 11/2022

Syntax
HmiDataGridColumnCollection[.Item](HmiDataGridColumnName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiDataGridColumnCollection" object.

Parameters
HmiDataGridColumnName
Type: String
Name of the column

Return value
Object, HmiDataGridColumnPartBase (Page 4835)

See also
HmiDataGridColumnCollection (Page 4833)
GraphOverviewControlColumn (Page 4835)

GraphOverviewControlColumn

Description
The "GraphOverviewControlColumn" object represents a value column.

Object type
HmiGraphOverviewControlColumnPart

Properties
The "GraphOverviewControlColumn" object has the following properties:
• AllowSort

Specifies whether column sorting is allowed.
• BackColor

Specifies the background color.
• Content

Specifies display options for text and graphics.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4835

• Enabled
Specifies whether the column can be operated in runtime.

• ForeColor
Specifies the font color of the text.

• GraphOverviewControlBlock
Specifies the graphic overview block.

• Header
Specifies the properties of the column header.

• MaximumWidth
Specifies the maximum width.

• MinimumWidth
Specifies the minimum width.

• Name
Returns the name of the column.

• OutputFormat
Specifies the format for displaying values.

• SortDirection
Specifies the sorting direction.

• SortOrder
Specifies the sorting order.

• Visible
Specifies whether the column is visible.

• Width
Specifies the width.

Methods
--

See also
HmiDataGridColumnCollection.Item() (Page 4834)

GraphOverviewControlColumn.AllowSort

Description
The "AllowSort" property specifies whether column sorting is permitted.
This property is ignored if the parent object has the "AllowSort" property set to "False".

Type
Bool

Programming scripts
10.2 WinCC Unified object model

4836 System Manual, 11/2022

Access
Read-write

Syntax
GraphOverviewControlColumn.AllowSort

See also
GraphOverviewControlColumn (Page 4835)

GraphOverviewControlColumn.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
GraphOverviewControlColumn.BackColor

See also
GraphOverviewControlColumn (Page 4835)

GraphOverviewControlColumn.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4837

Syntax
GraphOverviewControlColumn.Content

See also
GraphOverviewControlColumn (Page 4835)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
GraphOverviewControlColumn.Content (Page 4837)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode

Programming scripts
10.2 WinCC Unified object model

4838 System Manual, 11/2022

Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
GraphOverviewControlColumn.Content (Page 4837)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4839

See also
GraphOverviewControlColumn.Content (Page 4837)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
GraphOverviewControlColumn.Content (Page 4837)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

Programming scripts
10.2 WinCC Unified object model

4840 System Manual, 11/2022

See also
GraphOverviewControlColumn.Content (Page 4837)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
GraphOverviewControlColumn.Content (Page 4837)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4841

Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
GraphOverviewControlColumn.Content (Page 4837)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
GraphOverviewControlColumn.Content (Page 4837)

Programming scripts
10.2 WinCC Unified object model

4842 System Manual, 11/2022

GraphOverviewControlColumn.Enabled

Description
The "Enabled" property specifies whether the column can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
GraphOverviewControlColumn.Enabled

See also
GraphOverviewControlColumn (Page 4835)

GraphOverviewControlColumn.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
GraphOverviewControlColumn.ForeColor

See also
GraphOverviewControlColumn (Page 4835)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4843

GraphOverviewControlColumn.GraphOverviewControlBlock

Description
The "GraphOverviewControlBlock" property specifies the graphic overview block.

Type
Int32, HmiGraphOverviewBlock
Specifies the graphic overview block:
• Undefined (0): Not defined
• Step (1): Step
• StepName (2): Step name

Access
Read-write

Syntax
GraphOverviewControlColumn.GraphOverviewControlBlock

See also
GraphOverviewControlColumn (Page 4835)

GraphOverviewControlColumn.Header

Description
The "Header" property specifies the properties of the column header.

Type
Object, HmiDataGridColumnHeaderPart

Access
Read-write

Syntax
GraphOverviewControlColumn.Header

Programming scripts
10.2 WinCC Unified object model

4844 System Manual, 11/2022

See also
GraphOverviewControlColumn (Page 4835)

DataGridColumnHeader.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
DataGridColumnHeader.Content

See also
GraphOverviewControlColumn.Header (Page 4844)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4845

Syntax
Content.ContentMode

See also
DataGridColumnHeader.Content (Page 4845)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
DataGridColumnHeader.Content (Page 4845)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Programming scripts
10.2 WinCC Unified object model

4846 System Manual, 11/2022

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
DataGridColumnHeader.Content (Page 4845)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
DataGridColumnHeader.Content (Page 4845)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4847

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
DataGridColumnHeader.Content (Page 4845)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4848 System Manual, 11/2022

Syntax
Content.TextPosition

See also
DataGridColumnHeader.Content (Page 4845)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
DataGridColumnHeader.Content (Page 4845)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4849

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
DataGridColumnHeader.Content (Page 4845)

DataGridColumnHeader.Graphic

Description
The "Graphic" property specifies the graphic of the column header.

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Graphic

See also
GraphOverviewControlColumn.Header (Page 4844)

Programming scripts
10.2 WinCC Unified object model

4850 System Manual, 11/2022

DataGridColumnHeader.Text

Description
The "Text" property specifies the label of the column header.

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Text

See also
GraphOverviewControlColumn.Header (Page 4844)

GraphOverviewControlColumn.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
GraphOverviewControlColumn.MaximumWidth

See also
GraphOverviewControlColumn (Page 4835)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4851

GraphOverviewControlColumn.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
GraphOverviewControlColumn.MinimumWidth

See also
GraphOverviewControlColumn (Page 4835)

GraphOverviewControlColumn.Name

Description
The "Name" property returns the name of the column.

Type
String

Access
Read-only

Syntax
GraphOverviewControlColumn.Name

See also
GraphOverviewControlColumn (Page 4835)

Programming scripts
10.2 WinCC Unified object model

4852 System Manual, 11/2022

GraphOverviewControlColumn.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying values.

Type
String

Access
Read-write

Syntax
GraphOverviewControlColumn.OutputFormat

See also
GraphOverviewControlColumn (Page 4835)

GraphOverviewControlColumn.SortDirection

Description
The "SortDirection" property specifies the sorting direction.

Type
Int32, HmiSortDirection
Specifies the sorting order:
• None (0): None
• Ascending (1): Ascending
• Descending (2): Descending

Access
Read-write

Syntax
GraphOverviewControlColumn.SortDirection

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4853

See also
GraphOverviewControlColumn (Page 4835)

GraphOverviewControlColumn.SortOrder

Description
The "SortOrder" property specifies the order of the sorting.
The sorting index starts at "1" (highest priority) in ascending order. Zero is ignored.

Type
UInt16

Access
Read-write

Syntax
GraphOverviewControlColumn.SortOrder

See also
GraphOverviewControlColumn (Page 4835)

GraphOverviewControlColumn.Visible

Description
The "Visible" property specifies whether the column is visible.

Type
Bool

Access
Read-write

Syntax
GraphOverviewControlColumn.Visible

Programming scripts
10.2 WinCC Unified object model

4854 System Manual, 11/2022

See also
GraphOverviewControlColumn (Page 4835)

GraphOverviewControlColumn.Width

Description
The "Width" property specifies the width in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
GraphOverviewControlColumn.Width

See also
GraphOverviewControlColumn (Page 4835)

DataGridView.Font

Description
The "Font" property specifies the font of the cells.

Type
Object, HmiFontPart

Access
Read-write

Syntax
DataGridView.Font

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4855

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
DataGridView.Font (Page 4855)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

Programming scripts
10.2 WinCC Unified object model

4856 System Manual, 11/2022

See also
DataGridView.Font (Page 4855)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
DataGridView.Font (Page 4855)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4857

Syntax
Font.StrikeOut

See also
DataGridView.Font (Page 4855)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
DataGridView.Font (Page 4855)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal

Programming scripts
10.2 WinCC Unified object model

4858 System Manual, 11/2022

• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
DataGridView.Font (Page 4855)

DataGridView.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
DataGridView.ForeColor

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

DataGridView.GridLineColor

Description
The "GridLineColor" property specifies the color of grid lines.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4859

Type
UInt32

Access
Read-write

Syntax
DataGridView.GridLineColor

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

DataGridView.GridLineVisibility

Description
The "GridLineVisibility" property specifies the visibility of the grid lines.

Type
Int32, HmiSimpleGridLine
Specifies the grid lines:
• None (0): None
• Vertikal (1): Vertical
• Horizontal (2): Horizontal

Access
Read-write

Syntax
DataGridView.GridLineVisibility

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

Programming scripts
10.2 WinCC Unified object model

4860 System Manual, 11/2022

DataGridView.GridLineWidth

Description
The "GridLineWidth" property specifies the thickness of the grid lines in pixels.

Type
UInt8

Access
Read-write

Syntax
DataGridView.GridLineWidth

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

DataGridView.GridSelectionMode

Description
The "GridSelectionMode" property specifies whether multiple selection is enabled in the table
content.

Type
Int32, HmiGridSelectionMode
Specifies the type of the selection:
• None (0): None
• Single (1): Only single selection
• Multi (2): Multiple selection

Access
Read-write

Syntax
DataGridView.GridSelectionMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4861

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

DataGridView.HeaderSettings

Description
The "HeaderSettings" property specifies the settings for all column headers in the table.

Type
Object, HmiDataGridHeaderSettingsPart

Access
Read-write

Syntax
DataGridView.HeaderSettings

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

DataGridHeaderSettings.AllowColumnReorder

Description
The "AllowColumnReorder" property specifies whether the order of the columns can be changed.

Type
Bool

Access
Read-write

Syntax
DataGridHeaderSettings.AllowColumnReorder

Programming scripts
10.2 WinCC Unified object model

4862 System Manual, 11/2022

See also
DataGridView.HeaderSettings (Page 4862)

DataGridHeaderSettings.AllowColumnResize

Description
The "AllowColumnResize" property specifies whether the width of the columns can be changed.

Type
Bool

Access
Read-write

Syntax
DataGridHeaderSettings.AllowColumnResize

See also
DataGridView.HeaderSettings (Page 4862)

DataGridHeaderSettings.ColumnHeaderType

Description
The "ColumnHeaderType" property specifies the type of content of a column header.

Type
Int32, HmiDataGridHeaderType
Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4863

Syntax
DataGridHeaderSettings.ColumnHeaderType

See also
DataGridView.HeaderSettings (Page 4862)

DataGridHeaderSettings.Font

Description
The "Font" property specifies the font of the headers.

Type
Object, HmiFontPart

Access
Read-write

Syntax
DataGridHeaderSettings.Font

See also
DataGridView.HeaderSettings (Page 4862)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4864 System Manual, 11/2022

Syntax
Font.Italic

See also
DataGridHeaderSettings.Font (Page 4864)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
DataGridHeaderSettings.Font (Page 4864)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4865

Syntax
Font.Size

See also
DataGridHeaderSettings.Font (Page 4864)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
DataGridHeaderSettings.Font (Page 4864)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

4866 System Manual, 11/2022

Access
Read-write

Syntax
Font.Underline

See also
DataGridHeaderSettings.Font (Page 4864)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
DataGridHeaderSettings.Font (Page 4864)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4867

DataGridHeaderSettings.HeaderBackColor

Description
The "HeaderBackColor" property specifies the background color of the header.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderBackColor

See also
DataGridView.HeaderSettings (Page 4862)

DataGridHeaderSettings.HeaderForeColor

Description
The "HeaderForeColor" property specifies the font color of the headers.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderForeColor

See also
DataGridView.HeaderSettings (Page 4862)

Programming scripts
10.2 WinCC Unified object model

4868 System Manual, 11/2022

DataGridHeaderSettings.HeaderGridLineColor

Description
The "HeaderGridLineColor" property specifies the color of the separation line between column
headers.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderGridLineColor

See also
DataGridView.HeaderSettings (Page 4862)

DataGridHeaderSettings.HeaderSelectionBackColor

Description
The "HeaderSelectionBackColor" property specifies the background color of the header of a
selected line or column.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderSelectionBackColor

See also
DataGridView.HeaderSettings (Page 4862)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4869

DataGridHeaderSettings.HeaderSelectionForeColor

Description
The "HeaderSelectionForeColor" property specifies the font color of the header of a selected line
or column.

Type
UInt32

Access
Read-write

Syntax
Object.HeaderSelectionForeColor

Object
Required. An object from the "Availability" section.

See also
DataGridView.HeaderSettings (Page 4862)

DataGridHeaderSettings.RowHeaderType

Description
The "RowHeaderType" property specifies the type of content of a row header.

Type
Int32, HmiDataGridHeaderType
Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4870 System Manual, 11/2022

Syntax
DataGridHeaderSettings.RowHeaderType

See also
DataGridView.HeaderSettings (Page 4862)

DataGridView.HorizontalScrollBarVisibility

Description
The "HorizontalScrollBarVisibility" property specifies the visibility of the horizontal scroll bar of
the display.

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
DataGridView.HorizontalScrollBarVisibility

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

DataGridView.RowHeight

Description
The "RowHeight" property specifies the height of all rows in the table in DIU (Device Independent
Unit).
"0" corresponds to a automatic mechanism, which adjusts the height of each line according
to the font size and number of paragraphs.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4871

Type
UInt8

Access
Read-write

Syntax
DataGridView.RowHeight

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

DataGridView.SelectFullRow

Description
The "SelectFullRow" property specifies whether only the cell or the entire row is included in the
selection.

Type
Bool

Access
Read-write

Syntax
DataGridView.SelectFullRow

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

DataGridView.SelectionBackColor

Description
The "SelectionBackColor" property specifies the background color of the selected cells.

Programming scripts
10.2 WinCC Unified object model

4872 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
DataGridView.SelectionBackColor

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

DataGridView.SelectionBorderColor

Description
The "SelectionBorderColor" property specifies the border color of the selected cells.

Type
UInt8

Access
Read-write

Syntax
DataGridView.SelectionBorderColor

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

DataGridView.SelectionBorderWidth

Description
The "SelectionBorderWidth" property specifies the border width of the selected cells.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4873

Type
UInt8

Access
Read-write

Syntax
DataGridView.SelectionBorderWidth

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

DataGridView.SelectionForeColor

Description
The "SelectionForeColor" property specifies the font color of the selected cells.

Type
UInt32

Access
Read-write

Syntax
DataGridView.SelectionForeColor

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

DataGridView.VerticalScrollBarVisibility

Description
The "VerticalScrollBarVisibility" property specifies the visibility of the vertical scroll bar of the
display.

Programming scripts
10.2 WinCC Unified object model

4874 System Manual, 11/2022

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
DataGridView.VerticalScrollBarVisibility

See also
ProcessDiagnosisGraphOverviewControl.GraphOverview (Page 4826)

ProcessDiagnosisGraphOverviewControl.GridLineColor

Description
The "GridLineColor" property specifies the color of grid lines.

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.GridLineColor

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4875

ProcessDiagnosisGraphOverviewControl.Height

Description
The "Height" property specifies the height in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.Height

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

ProcessDiagnosisGraphOverviewControl.Icon

Description
The "Icon" property specifies the icon of the process diagnostics view.

Type
String

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.Icon

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

Programming scripts
10.2 WinCC Unified object model

4876 System Manual, 11/2022

ProcessDiagnosisGraphOverviewControl.Layer

Description
The "Layer" property returns the screen layer in which the process diagnostics view is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
ProcessDiagnosisGraphOverviewControl.Layer

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
ProcessDiagnosisGraphOverviewControl.Layer (Page 4877)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4877

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
ProcessDiagnosisGraphOverviewControl.Layer (Page 4877)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
ProcessDiagnosisGraphOverviewControl.Layer (Page 4877)

Programming scripts
10.2 WinCC Unified object model

4878 System Manual, 11/2022

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
ProcessDiagnosisGraphOverviewControl.Layer (Page 4877)

ProcessDiagnosisGraphOverviewControl.Left

Description
The "Left" property sets the value of the X coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.Left

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4879

ProcessDiagnosisGraphOverviewControl.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.Margin

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ProcessDiagnosisGraphOverviewControl.Margin (Page 4880)

Programming scripts
10.2 WinCC Unified object model

4880 System Manual, 11/2022

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ProcessDiagnosisGraphOverviewControl.Margin (Page 4880)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ProcessDiagnosisGraphOverviewControl.Margin (Page 4880)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4881

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ProcessDiagnosisGraphOverviewControl.Margin (Page 4880)

ProcessDiagnosisGraphOverviewControl.Name

Description
The "Name" property returns the name of the process diagnostics view.

Type
String

Access
Read-only

Syntax
ProcessDiagnosisGraphOverviewControl.Name

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

Programming scripts
10.2 WinCC Unified object model

4882 System Manual, 11/2022

ProcessDiagnosisGraphOverviewControl.OperationMode

Description
The "OperationMode" property specifies the operating mode.

Type
Object, HmiProcessDiagnosisOperationModePart

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.OperationMode

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

ProcessDiagnosisOperationMode.OpModeAutoText

Description
The "OpModeAutoText" property specifies the automatic text.

Type
String

Access
Read-write

Syntax
ProcessDiagnosisOperationMode.OpModeAutoText

See also
ProcessDiagnosisGraphOverviewControl.OperationMode (Page 4883)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4883

ProcessDiagnosisOperationMode.OpModeManText

Description
The "OpModeManText" property specifies the manual text.

Type
String

Access
Read-only

Syntax
ProcessDiagnosisOperationMode.OpModeManText

See also
ProcessDiagnosisGraphOverviewControl.OperationMode (Page 4883)

ProcessDiagnosisOperationMode.OpModeTapText

Description
The "OpModeTapText" property specifies the text on clicking.

Type
String

Access
Read-write

Syntax
ProcessDiagnosisOperationMode.OpModeTapText

See also
ProcessDiagnosisGraphOverviewControl.OperationMode (Page 4883)

Programming scripts
10.2 WinCC Unified object model

4884 System Manual, 11/2022

ProcessDiagnosisOperationMode.OpModeTopText

Description
The "OpModeTopText" property specifies the title text.

Type
String

Access
Read-only

Syntax
ProcessDiagnosisOperationMode.OpModeTopText

See also
ProcessDiagnosisGraphOverviewControl.OperationMode (Page 4883)

ProcessDiagnosisGraphOverviewControl.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
ProcessDiagnosisGraphOverviewControl.Parent

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)
Screen Items (Page 1571)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4885

Screen Items

Description
Screen Items (Page 1571)

ProcessDiagnosisGraphOverviewControl.PlcSource

Description
The "PlcSource" property specifies the PLC source.

Type
Object, HmiPlcDataSourcePart

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.PlcSource

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

PlcDataSource.Connection

Description
The "Connection" property returns the connection.

Type
Object, HmiConnection (Page 1148)

Access
Read-only

Syntax
PlcDataSource.Connection

Programming scripts
10.2 WinCC Unified object model

4886 System Manual, 11/2022

See also
ProcessDiagnosisGraphOverviewControl.PlcSource (Page 4886)
Connection (Page 1148)

Connection

Description
Connection (Page 1148)

PlcDataSource.DB_Name

Description
The "DB_Name" property returns the name of the database.

Type
String

Access
Read-only

Syntax
PlcDataSource.DB_Name

See also
ProcessDiagnosisGraphOverviewControl.PlcSource (Page 4886)

PlcDataSource.HmiConnectionName

Description
The "HmiConnectionName" property specifies the connection name.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4887

Access
Read-write

Syntax
PlcDataSource.HmiConnectionName

See also
ProcessDiagnosisGraphOverviewControl.PlcSource (Page 4886)

PlcDataSource.Tag

Description
The "Tag" property returns the tag.

Type
String, HMITag (Page 1338)

Access
Read-only

Syntax
PlcDataSource.Tag

See also
ProcessDiagnosisGraphOverviewControl.PlcSource (Page 4886)
Tag (Page 1338)

Tag

Description
Tag (Page 1338)

Programming scripts
10.2 WinCC Unified object model

4888 System Manual, 11/2022

ProcessDiagnosisGraphOverviewControl.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the process
diagnostics view was created.

Type
String

Access
Read-only

Syntax
ProcessDiagnosisGraphOverviewControl.RenderingTemplate

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

ProcessDiagnosisGraphOverviewControl.SelectedStep

Description
The "SelectedStep" property specifies which step is selected.

Type
UInt16

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.SelectedStep

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4889

ProcessDiagnosisGraphOverviewControl.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the process diagnostics view is highlighted
when in focus.

Type
Bool

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.ShowFocusVisual

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

ProcessDiagnosisGraphOverviewControl.ShowOperationMode

Description
The "ShowOperationMode" property specifies whether to display the operating mode.

Type
Bool

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.ShowOperationMode

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

Programming scripts
10.2 WinCC Unified object model

4890 System Manual, 11/2022

ProcessDiagnosisGraphOverviewControl.StatusBar

Description
The "StatusBar" property specifies the information bar of the process diagnostics view.

Type
Object, HmiStatusBarPart

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.StatusBar

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

StatusBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
StatusBar.BackColor

See also
ProcessDiagnosisGraphOverviewControl.StatusBar (Page 4891)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4891

StatusBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
information bar.

Type
Object, HmiControlBarElementCollection (Page 4892)

Access
Read-only

Syntax
StatusBar.Elements

See also
ProcessDiagnosisGraphOverviewControl.StatusBar (Page 4891)
HmiControlBarElementCollection (Page 4892)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Programming scripts
10.2 WinCC Unified object model

4892 System Manual, 11/2022

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
StatusBar.Elements (Page 4892)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 4892)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4893

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 4909)

See also
HmiControlBarElementCollection (Page 4892)
Control Bar Elements (Page 4909)

Control Bar Elements

Description
Control Bar Elements (Page 4909)

StatusBar.Enabled

Description
The "Enabled" property specifies whether the information bar can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4894 System Manual, 11/2022

Syntax
StatusBar.Enabled

See also
ProcessDiagnosisGraphOverviewControl.StatusBar (Page 4891)

StatusBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
StatusBar.Font

See also
ProcessDiagnosisGraphOverviewControl.StatusBar (Page 4891)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4895

Syntax
Font.Italic

See also
StatusBar.Font (Page 4895)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
StatusBar.Font (Page 4895)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4896 System Manual, 11/2022

Syntax
Font.Size

See also
StatusBar.Font (Page 4895)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
StatusBar.Font (Page 4895)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4897

Access
Read-write

Syntax
Font.Underline

See also
StatusBar.Font (Page 4895)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
StatusBar.Font (Page 4895)

Programming scripts
10.2 WinCC Unified object model

4898 System Manual, 11/2022

StatusBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the information bar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
StatusBar.Margin

See also
ProcessDiagnosisGraphOverviewControl.StatusBar (Page 4891)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
StatusBar.Margin (Page 4899)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4899

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
StatusBar.Margin (Page 4899)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
StatusBar.Margin (Page 4899)

Programming scripts
10.2 WinCC Unified object model

4900 System Manual, 11/2022

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
StatusBar.Margin (Page 4899)

StatusBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the information
bar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
StatusBar.Padding

See also
ProcessDiagnosisGraphOverviewControl.StatusBar (Page 4891)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4901

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
StatusBar.Padding (Page 4901)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
StatusBar.Padding (Page 4901)

Programming scripts
10.2 WinCC Unified object model

4902 System Manual, 11/2022

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
StatusBar.Padding (Page 4901)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
StatusBar.Padding (Page 4901)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4903

StatusBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
StatusBar.ShowToolTips

See also
ProcessDiagnosisGraphOverviewControl.StatusBar (Page 4891)

StatusBar.Visible

Description
The "Visible" property specifies whether the information bar is visible.

Type
Bool

Access
Read-write

Syntax
StatusBar.Visible

See also
ProcessDiagnosisGraphOverviewControl.StatusBar (Page 4891)

Programming scripts
10.2 WinCC Unified object model

4904 System Manual, 11/2022

ProcessDiagnosisGraphOverviewControl.StyleItemClass

Description
The "StyleItemClass" property returns the style that is applied to the process diagnostics view.

Type
String

Access
Read-only

Syntax
ProcessDiagnosisGraphOverviewControl.StyleItemClass

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

ProcessDiagnosisGraphOverviewControl.TabIndex

Description
The "TabIndex" property returns the position of the process diagnostics view in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
ProcessDiagnosisGraphOverviewControl.TabIndex

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4905

ProcessDiagnosisGraphOverviewControl.ToolBar

Description
The "ToolBar" property specifies the toolbar of the process diagnostics view.

Type
Object, HmiToolBarPart

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.ToolBar

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

ToolBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ToolBar.BackColor

See also
ProcessDiagnosisGraphOverviewControl.ToolBar (Page 4906)

Programming scripts
10.2 WinCC Unified object model

4906 System Manual, 11/2022

ToolBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
toolbar.

Type
Object, HmiControlBarElementCollection (Page 4907)

Access
Read-only

Syntax
ToolBar.Elements

See also
ProcessDiagnosisGraphOverviewControl.ToolBar (Page 4906)
HmiControlBarElementCollection (Page 4907)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4907

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
ToolBar.Elements (Page 4907)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 4907)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

4908 System Manual, 11/2022

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 4909)

See also
HmiControlBarElementCollection (Page 4907)
Control Bar Elements (Page 4909)

Control Bar Elements

ControlBarButton

Description
The "ControlBarButton" object represents a button of an information bar or toolbar.
You can reference the "ControlBarButton" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarButtonPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4909

Properties
The "ControlBarButton" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the label of the button.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the button can be operated in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• HotKey

Returns the hotkey specified for the button.
• Mapping

Returns the function of the button.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

4910 System Manual, 11/2022

• Operability
Returns whether the button is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the button is only operable while the corresponding button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the button is visible.

• Width
Specifies the width.

Methods
--

ControlBarButton.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBackColor

See also
ControlBarButton (Page 4909)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4911

ControlBarButton.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBorderColor

See also
ControlBarButton (Page 4909)

ControlBarButton.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the button of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarButton.Authorization

See also
ControlBarButton (Page 4909)

Programming scripts
10.2 WinCC Unified object model

4912 System Manual, 11/2022

ControlBarButton.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BackColor

See also
ControlBarButton (Page 4909)

ControlBarButton.Badge

Description
The "Badge" property specifies the label of the button.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarButton.Badge

See also
ControlBarButton (Page 4909)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4913

ControlBarButton.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BorderColor

See also
ControlBarButton (Page 4909)

ControlBarButton.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarButton.BorderWidth

See also
ControlBarButton (Page 4909)

Programming scripts
10.2 WinCC Unified object model

4914 System Manual, 11/2022

ControlBarButton.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarButton.Content

See also
ControlBarButton (Page 4909)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4915

See also
ControlBarButton.Content (Page 4915)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarButton.Content (Page 4915)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

4916 System Manual, 11/2022

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarButton.Content (Page 4915)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarButton.Content (Page 4915)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4917

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarButton.Content (Page 4915)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4918 System Manual, 11/2022

Syntax
Content.TextPosition

See also
ControlBarButton.Content (Page 4915)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarButton.Content (Page 4915)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4919

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarButton.Content (Page 4915)

ControlBarButton.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarButton.CustomID

See also
ControlBarButton (Page 4909)

Programming scripts
10.2 WinCC Unified object model

4920 System Manual, 11/2022

ControlBarButton.Enabled

Description
The "Enabled" property specifies whether the button can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Enabled

See also
ControlBarButton (Page 4909)

ControlBarButton.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.ForeColor

See also
ControlBarButton (Page 4909)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4921

ControlBarButton.Graphic

Description
The "Graphic" property specifies the graphic of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Graphic

See also
ControlBarButton (Page 4909)

ControlBarButton.Height

Description
The "Height" property specifies the height of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Height

See also
ControlBarButton (Page 4909)

Programming scripts
10.2 WinCC Unified object model

4922 System Manual, 11/2022

ControlBarButton.HotKey

Description
The "HotKey" property returns the hotkey specified for the button. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
ControlBarButton.HotKey

See also
ControlBarButton (Page 4909)

ControlBarButton.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4923

• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms

Programming scripts
10.2 WinCC Unified object model

4924 System Manual, 11/2022

• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarButton.Mapping

See also
ControlBarButton (Page 4909)

ControlBarButton.Margin

Description
The "Margin" property specifies the surrounded outer distance of the button.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4925

Syntax
ControlBarButton.Margin

See also
ControlBarButton (Page 4909)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarButton.Margin (Page 4925)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4926 System Manual, 11/2022

Syntax
Margin.Left

See also
ControlBarButton.Margin (Page 4925)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarButton.Margin (Page 4925)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4927

Syntax
Margin.Top

See also
ControlBarButton.Margin (Page 4925)

ControlBarButton.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumHeight

See also
ControlBarButton (Page 4909)

ControlBarButton.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4928 System Manual, 11/2022

Syntax
ControlBarButton.MaximumWidth

See also
ControlBarButton (Page 4909)

ControlBarButton.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumHeight

See also
ControlBarButton (Page 4909)

ControlBarButton.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4929

Syntax
ControlBarButton.MinimumWidth

See also
ControlBarButton (Page 4909)

ControlBarButton.Operability

Description
The "Operability" property returns whether the button is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarButton.Operability

See also
ControlBarButton (Page 4909)

ControlBarButton.Padding

Description
The "Padding" property specifies the distance of the content from the border of the button.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

4930 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.Padding

See also
ControlBarButton (Page 4909)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarButton.Padding (Page 4930)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4931

Access
Read-write

Syntax
Padding.Left

See also
ControlBarButton.Padding (Page 4930)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarButton.Padding (Page 4930)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4932 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Top

See also
ControlBarButton.Padding (Page 4930)

ControlBarButton.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the button can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarButton.RequireExplicitUnlock

See also
ControlBarButton (Page 4909)

ControlBarButton.Text

Description
The "Text" property specifies the label of the button.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4933

Access
Read-write

Syntax
ControlBarButton.Text

See also
ControlBarButton (Page 4909)

ControlBarButton.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.ToolTipText

See also
ControlBarButton (Page 4909)

ControlBarButton.Visible

Description
The "Visible" property specifies whether the button is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

4934 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.Visible

See also
ControlBarButton (Page 4909)

ControlBarButton.Width

Description
The "Width" property specifies the width of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Width

See also
ControlBarButton (Page 4909)

ControlBarDisplay

Description
The "ControlBarDisplay" object represents a display area for text and graphics of an information
bar or toolbar.
You can reference the "ControlBarDisplay" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarDisplayPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4935

Properties
The "ControlBarDisplay" object has the following properties:
• Authorization

Returns the operator authorization.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the display area is enabled in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• Mapping

Returns the function of the display area.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the display area is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the display area is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

Programming scripts
10.2 WinCC Unified object model

4936 System Manual, 11/2022

• Visible
Specifies whether the display area is visible.

• Width
Specifies the width.

Methods
--

ControlBarDisplay.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the display.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarDislay.Authorization

See also
ControlBarDisplay (Page 4935)

ControlBarDisplay.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4937

Syntax
ControlBarDislay.Content

See also
ControlBarDisplay (Page 4935)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarDisplay.Content (Page 4937)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode

Programming scripts
10.2 WinCC Unified object model

4938 System Manual, 11/2022

Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarDisplay.Content (Page 4937)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4939

See also
ControlBarDisplay.Content (Page 4937)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarDisplay.Content (Page 4937)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

Programming scripts
10.2 WinCC Unified object model

4940 System Manual, 11/2022

See also
ControlBarDisplay.Content (Page 4937)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarDisplay.Content (Page 4937)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4941

Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarDisplay.Content (Page 4937)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarDisplay.Content (Page 4937)

Programming scripts
10.2 WinCC Unified object model

4942 System Manual, 11/2022

ControlBarDisplay.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarDislay.CustomID

See also
ControlBarDisplay (Page 4935)

ControlBarDisplay.Enabled

Description
The "Enabled" property specifies whether the display is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Enabled

See also
ControlBarDisplay (Page 4935)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4943

ControlBarDisplay.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.ForeColor

See also
ControlBarDisplay (Page 4935)

ControlBarDisplay.Graphic

Description
The "Graphic" property specifies the graphic of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Graphic

See also
ControlBarDisplay (Page 4935)

Programming scripts
10.2 WinCC Unified object model

4944 System Manual, 11/2022

ControlBarDisplay.Height

Description
The "Height" property specifies the height of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Height

See also
ControlBarDisplay (Page 4935)

ControlBarDisplay.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4945

• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms

Programming scripts
10.2 WinCC Unified object model

4946 System Manual, 11/2022

• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarDislay.Mapping

See also
ControlBarDisplay (Page 4935)

ControlBarDisplay.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the display.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4947

Syntax
ControlBarDislay.Margin

See also
ControlBarDisplay (Page 4935)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarDisplay.Margin (Page 4947)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4948 System Manual, 11/2022

Syntax
Margin.Left

See also
ControlBarDisplay.Margin (Page 4947)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarDisplay.Margin (Page 4947)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4949

Syntax
Margin.Top

See also
ControlBarDisplay.Margin (Page 4947)

ControlBarDisplay.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MaximumHeight

See also
ControlBarDisplay (Page 4935)

ControlBarDisplay.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4950 System Manual, 11/2022

Syntax
ControlBarDislay.MaximumWidth

See also
ControlBarDisplay (Page 4935)

ControlBarDisplay.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MinimumHeight

See also
ControlBarDisplay (Page 4935)

ControlBarDisplay.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4951

Syntax
ControlBarDislay.MinimumWidth

See also
ControlBarDisplay (Page 4935)

ControlBarDisplay.Operability

Description
The "Operability" property returns whether the display is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarDislay.Operability

See also
ControlBarDisplay (Page 4935)

ControlBarDisplay.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the display.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

4952 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.Padding

See also
ControlBarDisplay (Page 4935)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarDisplay.Padding (Page 4952)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4953

Access
Read-write

Syntax
Padding.Left

See also
ControlBarDisplay.Padding (Page 4952)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarDisplay.Padding (Page 4952)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4954 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Top

See also
ControlBarDisplay.Padding (Page 4952)

ControlBarDisplay.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the display can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarDislay.RequireExplicitUnlock

See also
ControlBarDisplay (Page 4935)

ControlBarDisplay.Text

Description
The "Text" property specifies the label of the display.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4955

Access
Read-write

Syntax
ControlBarDislay.Text

See also
ControlBarDisplay (Page 4935)

ControlBarDisplay.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.ToolTipText

See also
ControlBarDisplay (Page 4935)

ControlBarDisplay.Visible

Description
The "Visible" property specifies whether the display is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

4956 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.Visible

See also
ControlBarDisplay (Page 4935)

ControlBarDisplay.Width

Description
The "Width" property specifies the width of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Width

See also
ControlBarDisplay (Page 4935)

ControlBarLabel

Description
The "ControlBarLabel" object represents an identifier of an information bar or toolbar.
You can reference the "ControlBarLabel" object via the "HmiControlBarElementCollection" list.

Object type
HmiControlBarLabelPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4957

Properties
The "ControlBarLabel" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the identifier can be operated in runtime.
• ForeColor

Specifies the font color.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Height

Specifies the height.
• Mapping

Returns the function of the identifier.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the identifier is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the identifier is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

Programming scripts
10.2 WinCC Unified object model

4958 System Manual, 11/2022

• Visible
Specifies whether the identifier is visible.

• Width
Specifies the width.

Methods
--

ControlBarLabel.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the identifier.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarLabel.Authorization

See also
ControlBarLabel (Page 4957)

ControlBarLabel.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4959

Access
Read-only

Syntax
ControlBarLabel.CustomID

See also
ControlBarLabel (Page 4957)

ControlBarLabel.Enabled

Description
The "Enabled" property specifies whether the identifier is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarLabel.Enabled

See also
ControlBarLabel (Page 4957)

ControlBarLabel.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

4960 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarLabel.ForeColor

See also
ControlBarLabel (Page 4957)

ControlBarLabel.Height

Description
The "Height" property specifies the height of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Height

See also
ControlBarLabel (Page 4957)

ControlBarLabel.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4961

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.HorizontalTextAlignment

See also
ControlBarLabel (Page 4957)

ControlBarLabel.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms

Programming scripts
10.2 WinCC Unified object model

4962 System Manual, 11/2022

• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4963

• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires
acknowledgment

• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarLabel.Mapping

See also
ControlBarLabel (Page 4957)

ControlBarLabel.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the identifier.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarLabel.Margin

Programming scripts
10.2 WinCC Unified object model

4964 System Manual, 11/2022

See also
ControlBarLabel (Page 4957)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarLabel.Margin (Page 4964)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4965

See also
ControlBarLabel.Margin (Page 4964)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarLabel.Margin (Page 4964)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

Programming scripts
10.2 WinCC Unified object model

4966 System Manual, 11/2022

See also
ControlBarLabel.Margin (Page 4964)

ControlBarLabel.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumHeight

See also
ControlBarLabel (Page 4957)

ControlBarLabel.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumWidth

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4967

See also
ControlBarLabel (Page 4957)

ControlBarLabel.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumHeight

See also
ControlBarLabel (Page 4957)

ControlBarLabel.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumWidth

Programming scripts
10.2 WinCC Unified object model

4968 System Manual, 11/2022

See also
ControlBarLabel (Page 4957)

ControlBarLabel.Operability

Description
The "Operability" property returns whether the identifier is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarLabel.Operability

See also
ControlBarLabel (Page 4957)

ControlBarLabel.Padding

Description
The "Padding" property specifies the spacing of the content from the frame of the identifier.

Type
Object, HmiPaddingPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4969

Syntax
ControlBarLabel.Padding

See also
ControlBarLabel (Page 4957)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarLabel.Padding (Page 4969)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4970 System Manual, 11/2022

Syntax
Padding.Left

See also
ControlBarLabel.Padding (Page 4969)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarLabel.Padding (Page 4969)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4971

Syntax
Padding.Top

See also
ControlBarLabel.Padding (Page 4969)

ControlBarLabel.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the identifier can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarLabel.RequireExplicitUnlock

See also
ControlBarLabel (Page 4957)

ControlBarLabel.Text

Description
The "Text" property specifies the label of the identifier.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4972 System Manual, 11/2022

Syntax
ControlBarLabel.Text

See also
ControlBarLabel (Page 4957)

ControlBarLabel.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.ToolTipText

See also
ControlBarLabel (Page 4957)

ControlBarLabel.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4973

Access
Read-write

Syntax
ControlBarLabel.VerticalTextAlignment

See also
ControlBarLabel (Page 4957)

ControlBarLabel.Visible

Description
The "Visible" property specifies whether the identifier is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarLabel.Visible

See also
ControlBarLabel (Page 4957)

ControlBarLabel.Width

Description
The "Width" property specifies the width of the identifier in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

4974 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarLabel.Width

See also
ControlBarLabel (Page 4957)

ControlBarSeparator

Description
The "ControlBarSeparator" object represents a separator of an information bar or toolbar.
You can reference the "ControlBarSeparator" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarSeparatorPart

Properties
The "ControlBarSeparator" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the disconnector can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• Mapping

Returns the function of the separator.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4975

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the separator is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the disconnector is only operable while the associated button is being
pressed.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the disconnector is visible.

• Width
Specifies the width.

Methods
--

ControlBarSeparator.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the separator.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarSeparator.Authorization

Programming scripts
10.2 WinCC Unified object model

4976 System Manual, 11/2022

See also
ControlBarSeparator (Page 4975)

ControlBarSeparator.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarSeparator.CustomID

See also
ControlBarSeparator (Page 4975)

ControlBarSeparator.Enabled

Description
The "Enabled" property specifies whether the separator is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Enabled

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4977

See also
ControlBarSeparator (Page 4975)

ControlBarSeparator.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.ForeColor

See also
ControlBarSeparator (Page 4975)

ControlBarSeparator.Height

Description
The "Height" property specifies the height of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Height

Programming scripts
10.2 WinCC Unified object model

4978 System Manual, 11/2022

See also
ControlBarSeparator (Page 4975)

ControlBarSeparator.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4979

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

4980 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarSeparator.Mapping

See also
ControlBarSeparator (Page 4975)

ControlBarSeparator.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the separator.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarSeparator.Margin

See also
ControlBarSeparator (Page 4975)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4981

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarSeparator.Margin (Page 4981)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarSeparator.Margin (Page 4981)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

4982 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Right

See also
ControlBarSeparator.Margin (Page 4981)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarSeparator.Margin (Page 4981)

ControlBarSeparator.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4983

Access
Read-write

Syntax
ControlBarSeparator.MaximumHeight

See also
ControlBarSeparator (Page 4975)

ControlBarSeparator.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MaximumWidth

See also
ControlBarSeparator (Page 4975)

ControlBarSeparator.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

4984 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarSeparator.MinimumHeight

See also
ControlBarSeparator (Page 4975)

ControlBarSeparator.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MinimumWidth

See also
ControlBarSeparator (Page 4975)

ControlBarSeparator.Operability

Description
The "Operability" property returns whether the separator is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4985

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarSeparator.Operability

See also
ControlBarSeparator (Page 4975)

ControlBarSeparator.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the separator.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarSeparator.Padding

See also
ControlBarSeparator (Page 4975)

Programming scripts
10.2 WinCC Unified object model

4986 System Manual, 11/2022

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarSeparator.Padding (Page 4986)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarSeparator.Padding (Page 4986)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4987

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarSeparator.Padding (Page 4986)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarSeparator.Padding (Page 4986)

Programming scripts
10.2 WinCC Unified object model

4988 System Manual, 11/2022

ControlBarSeparator.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the disconnector can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarSeparator.RequireExplicitUnlock

See also
ControlBarSeparator (Page 4975)

ControlBarSeparator.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the separator.

Type
String

Access
Read-write

Syntax
ControlBarSeparator.ToolTipText

See also
ControlBarSeparator (Page 4975)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4989

ControlBarSeparator.Visible

Description
The "Visible" property specifies whether the separator is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Visible

See also
ControlBarSeparator (Page 4975)

ControlBarSeparator.Width

Description
The "Width" property specifies the width of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Width

See also
ControlBarSeparator (Page 4975)

Programming scripts
10.2 WinCC Unified object model

4990 System Manual, 11/2022

ControlBarTextBox

Description
The "ControlBarTextBox" object represents a text box of an information bar or toolbar.
You can reference the "ControlBarTextBox" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarTextBoxPart

Properties
The "ControlBarTextBox" object has the following properties:
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the text box can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Mapping

Returns the function of the text box.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4991

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the text box is operable.

• Padding
Specifies the distance of the content from the border.

• Readonly
Specifies whether the text box is write-protected.

• RequireExplicitUnlock
Returns whether the text box is only operable while the associated button is being pressed.

• Text
Specifies the labeling.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the text box is visible.

• Width
Specifies the width.

Methods
--

ControlBarTextBox.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4992 System Manual, 11/2022

Syntax
ControlBarTextBox.AlternateBorderColor

See also
ControlBarTextBox (Page 4991)

ControlBarTextBox.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the text box of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarTextBox.Authorization

See also
ControlBarTextBox (Page 4991)

ControlBarTextBox.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4993

Syntax
ControlBarTextBox.BackColor

See also
ControlBarTextBox (Page 4991)

ControlBarTextBox.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BorderColor

See also
ControlBarTextBox (Page 4991)

ControlBarTextBox.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4994 System Manual, 11/2022

Syntax
ControlBarTextBox.BorderWidth

See also
ControlBarTextBox (Page 4991)

ControlBarTextBox.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarTextBox.CustomID

See also
ControlBarTextBox (Page 4991)

ControlBarTextBox.Enabled

Description
The "Enabled" property specifies whether the text box can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4995

Syntax
ControlBarTextBox.Enabled

See also
ControlBarTextBox (Page 4991)

ControlBarTextBox.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.ForeColor

See also
ControlBarTextBox (Page 4991)

ControlBarTextBox.Height

Description
The "Height" property specifies the height of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

4996 System Manual, 11/2022

Syntax
ControlBarTextBox.Height

See also
ControlBarTextBox (Page 4991)

ControlBarTextBox.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.HorizontalTextAlignment

See also
ControlBarTextBox (Page 4991)

ControlBarTextBox.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4997

Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms

Programming scripts
10.2 WinCC Unified object model

4998 System Manual, 11/2022

• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarTextBox.Mapping

See also
ControlBarTextBox (Page 4991)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 4999

ControlBarTextBox.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the text box.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarTextBox.Margin

See also
ControlBarTextBox (Page 4991)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarTextBox.Margin (Page 5000)

Programming scripts
10.2 WinCC Unified object model

5000 System Manual, 11/2022

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarTextBox.Margin (Page 5000)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarTextBox.Margin (Page 5000)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5001

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarTextBox.Margin (Page 5000)

ControlBarTextBox.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumHeight

See also
ControlBarTextBox (Page 4991)

Programming scripts
10.2 WinCC Unified object model

5002 System Manual, 11/2022

ControlBarTextBox.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumWidth

See also
ControlBarTextBox (Page 4991)

ControlBarTextBox.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumHeight

See also
ControlBarTextBox (Page 4991)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5003

ControlBarTextBox.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumWidth

See also
ControlBarTextBox (Page 4991)

ControlBarTextBox.Operability

Description
The "Operability" property returns whether the text box is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarTextBox.Operability

Programming scripts
10.2 WinCC Unified object model

5004 System Manual, 11/2022

See also
ControlBarTextBox (Page 4991)

ControlBarTextBox.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the text box.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarTextBox.Padding

See also
ControlBarTextBox (Page 4991)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5005

See also
ControlBarTextBox.Padding (Page 5005)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarTextBox.Padding (Page 5005)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

Programming scripts
10.2 WinCC Unified object model

5006 System Manual, 11/2022

See also
ControlBarTextBox.Padding (Page 5005)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarTextBox.Padding (Page 5005)

ControlBarTextBox.ReadOnly

Description
The "ReadOnly" property specifies whether the text box is read-only.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.ReadOnly

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5007

See also
ControlBarTextBox (Page 4991)

ControlBarTextBox.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the text box can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarTextBox.RequireExplicitUnlock

See also
ControlBarTextBox (Page 4991)

ControlBarTextBox.Text

Description
The "Text" property specifies the label of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.Text

Programming scripts
10.2 WinCC Unified object model

5008 System Manual, 11/2022

See also
ControlBarTextBox (Page 4991)

ControlBarTextBox.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.ToolTipText

See also
ControlBarTextBox (Page 4991)

ControlBarTextBox.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5009

Syntax
ControlBarTextBox.VerticalTextAlignment

See also
ControlBarTextBox (Page 4991)

ControlBarTextBox.Visible

Description
The "Visible" property specifies whether the text box is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Visible

See also
ControlBarTextBox (Page 4991)

ControlBarTextBox.Width

Description
The "Width" property specifies the width of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5010 System Manual, 11/2022

Syntax
ControlBarTextBox.Width

See also
ControlBarTextBox (Page 4991)

ControlBarToggleSwitch

Description
The "ControlBarToggleSwitch" object represents a switch of an information bar or toolbar.
You can reference the "ControlBarToggleSwitch" object via the
"HmiControlBarElementCollection" list.

Object type
HmiControlBarToggleSwitchPart

Properties
The "ControlBarToggleSwitch" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• AlternateGraphic

Specifies the graphic for the "pressed" state.
• AlternateText

Specifies the text for the "pressed" state.
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the identifier of the switch.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5011

• CustomID
Returns the custom ID.

• Enabled
Specifies whether the switch can be operated in runtime.

• ForeColor
Specifies the font color.

• Graphic
Specifies the graphic.

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the switch.

• IsAlternateState
Specifies the current state of the switch.

• Mapping
Returns the function of the switch.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the switch is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the switch is only operable while the associated button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the switch is visible.

• Width
Specifies the width.

Programming scripts
10.2 WinCC Unified object model

5012 System Manual, 11/2022

Methods
--

ControlBarToggleSwitch.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBackColor

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBorderColor

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5013

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.AlternateGraphic

Description
The "AlternateGraphic" property specifies the graphic of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateGraphic

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.AlternateText

Description
The "AlternateText" property specifies the text of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateText

Programming scripts
10.2 WinCC Unified object model

5014 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the switch of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarToggleSwitch.Authorization

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BackColor

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5015

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.Badge

Description
The "Badge" property specifies the identifier of the switch.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarToggleSwitch.Badge

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderColor

Programming scripts
10.2 WinCC Unified object model

5016 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderWidth

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Content

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5017

See also
ControlBarToggleSwitch (Page 5011)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarToggleSwitch.Content (Page 5017)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.

Programming scripts
10.2 WinCC Unified object model

5018 System Manual, 11/2022

• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarToggleSwitch.Content (Page 5017)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 5017)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5019

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarToggleSwitch.Content (Page 5017)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarToggleSwitch.Content (Page 5017)

Programming scripts
10.2 WinCC Unified object model

5020 System Manual, 11/2022

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarToggleSwitch.Content (Page 5017)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5021

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarToggleSwitch.Content (Page 5017)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 5017)

Programming scripts
10.2 WinCC Unified object model

5022 System Manual, 11/2022

ControlBarToggleSwitch.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarToggleSwitch.CustomID

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.Enabled

Description
The "Enabled" property specifies whether the switch can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Enabled

See also
ControlBarToggleSwitch (Page 5011)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5023

ControlBarToggleSwitch.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.ForeColor

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.Graphic

Description
The "Graphic" property specifies the graphic of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Graphic

See also
ControlBarToggleSwitch (Page 5011)

Programming scripts
10.2 WinCC Unified object model

5024 System Manual, 11/2022

ControlBarToggleSwitch.Height

Description
The "Height" property specifies the height of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Height

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.HotKey

Description
The "HotKey" property returns the hotkey specified for the switch. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
Button.HotKey

See also
ControlBarToggleSwitch (Page 5011)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5025

ControlBarToggleSwitch.IsAlternateState

Description
The "IsAlternateState" property specifies the current state of the switch.
• True: Switch is in "On" state.
• False: Switch is in "Off" state.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.IsAlternateState

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment

Programming scripts
10.2 WinCC Unified object model

5026 System Manual, 11/2022

• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5027

• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarToggleSwitch.Mapping

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the switch.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

5028 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.Margin

See also
ControlBarToggleSwitch (Page 5011)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarToggleSwitch.Margin (Page 5028)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5029

Access
Read-write

Syntax
Margin.Left

See also
ControlBarToggleSwitch.Margin (Page 5028)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarToggleSwitch.Margin (Page 5028)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5030 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Top

See also
ControlBarToggleSwitch.Margin (Page 5028)

ControlBarToggleSwitch.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumHeight

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5031

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumWidth

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumHeight

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

5032 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumWidth

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.Operability

Description
The property "Operability" returns whether the switch is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarToggleSwitch.Operability

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the switch.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5033

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Padding

See also
ControlBarToggleSwitch (Page 5011)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarToggleSwitch.Padding (Page 5033)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

5034 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarToggleSwitch.Padding (Page 5033)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarToggleSwitch.Padding (Page 5033)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5035

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarToggleSwitch.Padding (Page 5033)

ControlBarToggleSwitch.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the switch can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarToggleSwitch.RequireExplicitUnlock

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.Text

Description
The "Text" property specifies the label of the switch.

Programming scripts
10.2 WinCC Unified object model

5036 System Manual, 11/2022

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Text

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.ToolTipText

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.Visible

Description
The "Visible" property specifies whether the switch is visible.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5037

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Visible

See also
ControlBarToggleSwitch (Page 5011)

ControlBarToggleSwitch.Width

Description
The "Width" property specifies the width of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Width

See also
ControlBarToggleSwitch (Page 5011)

ToolBar.Enabled

Description
The "Enabled" property specifies whether the toolbar can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

5038 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
ToolBar.Enabled

See also
ProcessDiagnosisGraphOverviewControl.ToolBar (Page 4906)

ToolBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ToolBar.Font

See also
ProcessDiagnosisGraphOverviewControl.ToolBar (Page 4906)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5039

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
ToolBar.Font (Page 5039)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
ToolBar.Font (Page 5039)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

5040 System Manual, 11/2022

Type
Float

Access
Read-write

Syntax
Font.Size

See also
ToolBar.Font (Page 5039)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ToolBar.Font (Page 5039)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5041

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
ToolBar.Font (Page 5039)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5042 System Manual, 11/2022

Syntax
Font.Weight

See also
ToolBar.Font (Page 5039)

ToolBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the toolbar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ToolBar.Margin

See also
ProcessDiagnosisGraphOverviewControl.ToolBar (Page 4906)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5043

Syntax
Margin.Bottom

See also
ToolBar.Margin (Page 5043)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ToolBar.Margin (Page 5043)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5044 System Manual, 11/2022

Syntax
Margin.Right

See also
ToolBar.Margin (Page 5043)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ToolBar.Margin (Page 5043)

ToolBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the toolbar.

Type
Object, HmiPaddingPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5045

Syntax
ToolBar.Padding

See also
ProcessDiagnosisGraphOverviewControl.ToolBar (Page 4906)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ToolBar.Padding (Page 5045)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5046 System Manual, 11/2022

Syntax
Padding.Left

See also
ToolBar.Padding (Page 5045)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ToolBar.Padding (Page 5045)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5047

Syntax
Padding.Top

See also
ToolBar.Padding (Page 5045)

ToolBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
ToolBar.ShowToolTips

See also
ProcessDiagnosisGraphOverviewControl.ToolBar (Page 4906)

ToolBar.UseHotKeys

Description
The "UseHotKeys" property specifies whether the shortcut keys for the buttons in the toolbar are
activated.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5048 System Manual, 11/2022

Syntax
ToolBar.UseHotKeys

See also
ProcessDiagnosisGraphOverviewControl.ToolBar (Page 4906)

ToolBar.Visible

Description
The "Visible" property specifies whether the toolbar is visible.

Type
Bool

Access
Read-write

Syntax
ToolBar.Visible

See also
ProcessDiagnosisGraphOverviewControl.ToolBar (Page 4906)

ProcessDiagnosisGraphOverviewControl.Top

Description
The "Top" property sets the value of the Y coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5049

Syntax
ProcessDiagnosisGraphOverviewControl.Top

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

ProcessDiagnosisGraphOverviewControl.Visible

Description
The "Visible" property specifies whether the process diagnostics view is visible.

Type
Bool

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.Visible

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

ProcessDiagnosisGraphOverviewControl.Width

Description
The "Width" property specifies the width in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.Width

Programming scripts
10.2 WinCC Unified object model

5050 System Manual, 11/2022

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

ProcessDiagnosisGraphOverviewControl.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the process diagnostics view.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title
• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be positioned
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
You can enable multiple properties by adding integer values or bit operators.

Access
Read-write

Syntax
ProcessDiagnosisGraphOverviewControl.WindowFlags

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5051

ProcessDiagnosisGraphOverviewControl.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
process diagnostics view.

Syntax
ProcessDiagnosisGraphOverviewControl.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

ProcessDiagnosisGraphOverviewControl.FireCommand()

Description
The "FireCommand" method executes the command of an element in the toolbar or information
bar (control bar element, e.g. a button) of the process diagnostics view for graphic overview.

Syntax
ProcessDiagnosisGraphOverviewControl.FireCommand(commandId, custom)

Programming scripts
10.2 WinCC Unified object model

5052 System Manual, 11/2022

Parameters
commandId
Type: Int32
ID of the element of the toolbar or information bar

custom
Type: Bool
Type of element ID:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

Return value
--

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

ProcessDiagnosisGraphOverviewControl.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
ProcessDiagnosisGraphOverviewControl.PropertyFlashing(propertyName,
enable[, value][, alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5053

Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

ProcessDiagnosisGraphOverviewControl_AlarmViewButtonTapped()

Description
The "AlarmViewButtonTapped"event occurs when the "AlarmView" button is pressed.

Syntax
ProcessDiagnosisGraphOverviewControl_AlarmViewButtonTapped(item)

Context
item
Type: Object
Button at which the event occurs.

Programming scripts
10.2 WinCC Unified object model

5054 System Manual, 11/2022

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

ProcessDiagnosisGraphOverviewControl_PlcCodeViewerButtonTapped()

Description
The "PlcCodeViewerButtonTapped"event occurs when the "PlcCodeViewer" button is pressed.

Syntax
ProcessDiagnosisGraphOverviewControl_PlcCodeViewerButtonTapped(item)

Context
item
Type: Object
Button at which the event occurs.

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

ProcessDiagnosisGraphOverviewControl_TIAPortalButtonTapped()

Description
The "TIAPortalButtonTapped"event occurs when the "TIAPortal" button is pressed.

Syntax
ProcessDiagnosisGraphOverviewControl_TIAPortalButtonTapped(item)

Context
item
Type: Object
Button at which the event occurs.

See also
ProcessDiagnosisGraphOverviewControl (Page 4812)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5055

ProcessDiagnosisOverviewControl

Description
The "ProcessDiagnosisOverviewControl" object represents a process diagnostics overview in
runtime.

Object type
HmiProcessDiagnosisOverviewControl

Properties
The "Object" object has the following properties:
• BackColor

Specifies the background color.
• Caption

Specifies the text that is displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.
• CurrentQuality

Returns the poorest quality code of all tags which influence the process diagnostics overview.
• Enabled

Specifies whether the process diagnostics overview can be operated in runtime.
• Font

Specifies the font of the text.
• ForeColor

Specifies the font color of the text.
• Height

Specifies the height.
• Icon

Specifies the icon of the process diagnostics overview.
• Layer

Returns the screen layer in which the process diagnostics overview is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the process diagnostics overview.
• Parent

Returns the higher-level screen object.

Programming scripts
10.2 WinCC Unified object model

5056 System Manual, 11/2022

• PDiagCategories
Specifies the category of the process diagnostics overview.

• PDiagSupervisionTypes
Specifies the supervision types of the process diagnostics overview.

• PlcSource
Specifies the PLC source.

• RenderingTemplate
Returns the name of the template from which the process diagnostics overview was created.

• ShowFocusVisual
Specifies whether the process diagnostics overview is highlighted when in focus.

• StatusBar
Specifies the information bar of the process diagnostics overview.

• StyleItemClass
Returns the style which is applied to the process diagnostics overview.

• TabIndex
Returns the position of the process diagnostics overview in the tab sequence.

• ToolBar
Specifies the toolbar of the process diagnostics overview.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the process diagnostics overview is visible.

• Width
Specifies the width.

• WindowFlags
Specifies the window configuration of the process diagnostics overview.

Methods
The "ProcessDiagnosisOverviewControl" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the process diagnostics overview.
• FireCommand()

Configures the occurrence of an event for an element.
• PropertyFlashing()

Configures flashing of a property.

Events
The "ProcessDiagnosisOverviewControl" object has the following events:
• AlarmViewButtonTapped()

Occurs when the "AlarmView" button is pressed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5057

ProcessDiagnosisOverviewControl.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisOverviewControl.BackColor

See also
ProcessDiagnosisOverviewControl (Page 5056)

ProcessDiagnosisOverviewControl.Caption

Description
The "Caption" property specifies the text that is displayed in the title bar.

Type
Object, HmiTextPart

Access
Read-write

Syntax
ProcessDiagnosisOverviewControl.Caption

See also
ProcessDiagnosisOverviewControl (Page 5056)

Programming scripts
10.2 WinCC Unified object model

5058 System Manual, 11/2022

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
ProcessDiagnosisOverviewControl.Caption (Page 5058)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 5059)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5059

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 5059)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 5059)

Programming scripts
10.2 WinCC Unified object model

5060 System Manual, 11/2022

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 5059)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5061

See also
Text.Font (Page 5059)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 5059)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

5062 System Manual, 11/2022

Access
Read-write

Syntax
Text.ForeColor

See also
ProcessDiagnosisOverviewControl.Caption (Page 5058)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
ProcessDiagnosisOverviewControl.Caption (Page 5058)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5063

Access
Read-write

Syntax
Text.Visible

See also
ProcessDiagnosisOverviewControl.Caption (Page 5058)

ProcessDiagnosisOverviewControl.CaptionColor

Description
The "CaptionColor" property specifies the color of the title bar.

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisOverviewControl.CaptionColor

See also
ProcessDiagnosisOverviewControl (Page 5056)

ProcessDiagnosisOverviewControl.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
process diagnostics overview.

Type
Int32, HmiQuality

Programming scripts
10.2 WinCC Unified object model

5064 System Manual, 11/2022

Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.
• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
ProcessDiagnosisOverviewControl.CurrentQuality

See also
ProcessDiagnosisOverviewControl (Page 5056)

ProcessDiagnosisOverviewControl.Enabled

Description
The "Enabled" property specifies whether the process diagnostics overview can be operated in
runtime.

Type
Bool

Access
Read-write

Syntax
ProcessDiagnosisOverviewControl.Enabled

See also
ProcessDiagnosisOverviewControl (Page 5056)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5065

ProcessDiagnosisOverviewControl.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ProcessDiagnosisOverviewControl.Font

See also
ProcessDiagnosisOverviewControl (Page 5056)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
ProcessDiagnosisOverviewControl.Font (Page 5066)

Programming scripts
10.2 WinCC Unified object model

5066 System Manual, 11/2022

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
ProcessDiagnosisOverviewControl.Font (Page 5066)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
ProcessDiagnosisOverviewControl.Font (Page 5066)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5067

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ProcessDiagnosisOverviewControl.Font (Page 5066)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

5068 System Manual, 11/2022

See also
ProcessDiagnosisOverviewControl.Font (Page 5066)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
ProcessDiagnosisOverviewControl.Font (Page 5066)

ProcessDiagnosisOverviewControl.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5069

Access
Read-write

Syntax
ProcessDiagnosisOverviewControl.ForeColor

See also
ProcessDiagnosisOverviewControl (Page 5056)

ProcessDiagnosisOverviewControl.Height

Description
The "Height" property specifies the height in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisOverviewControl.Height

See also
ProcessDiagnosisOverviewControl (Page 5056)

ProcessDiagnosisOverviewControl.Icon

Description
The "Icon" property specifies the icon of the process diagnostics overview.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5070 System Manual, 11/2022

Syntax
ProcessDiagnosisOverviewControl.Icon

See also
ProcessDiagnosisOverviewControl (Page 5056)

ProcessDiagnosisOverviewControl.Layer

Description
The "Layer" property returns the screen layer in which the process diagnostics overview is
located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
ProcessDiagnosisOverviewControl.Layer

See also
ProcessDiagnosisOverviewControl (Page 5056)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5071

Syntax
Layer.MaximumZoom

See also
ProcessDiagnosisOverviewControl.Layer (Page 5071)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
ProcessDiagnosisOverviewControl.Layer (Page 5071)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

5072 System Manual, 11/2022

Syntax
Layer.Name

See also
ProcessDiagnosisOverviewControl.Layer (Page 5071)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
ProcessDiagnosisOverviewControl.Layer (Page 5071)

ProcessDiagnosisOverviewControl.Left

Description
The "Left" property sets the value of the X coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5073

Syntax
ProcessDiagnosisOverviewControl.Left

See also
ProcessDiagnosisOverviewControl (Page 5056)

ProcessDiagnosisOverviewControl.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ProcessDiagnosisOverviewControl.Margin

See also
ProcessDiagnosisOverviewControl (Page 5056)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

Programming scripts
10.2 WinCC Unified object model

5074 System Manual, 11/2022

See also
ProcessDiagnosisOverviewControl.Margin (Page 5074)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ProcessDiagnosisOverviewControl.Margin (Page 5074)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5075

See also
ProcessDiagnosisOverviewControl.Margin (Page 5074)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ProcessDiagnosisOverviewControl.Margin (Page 5074)

ProcessDiagnosisOverviewControl.Name

Description
The "Name" property returns the name of the process diagnostics overview.

Type
String

Access
Read-only

Syntax
ProcessDiagnosisOverviewControl.Name

Programming scripts
10.2 WinCC Unified object model

5076 System Manual, 11/2022

See also
ProcessDiagnosisOverviewControl (Page 5056)

ProcessDiagnosisOverviewControl.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
ProcessDiagnosisOverviewControl.Parent

See also
ProcessDiagnosisOverviewControl (Page 5056)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

ProcessDiagnosisOverviewControl.PDiagCategories

Description
The "PDiagCategories" property specifies the category of the process diagnostics overview.

Type
Object, HmiProcessDiagnosisOverviewPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5077

Access
Read-write

Syntax
ProcessDiagnosisOverviewControl.PDiagCategories

See also
ProcessDiagnosisOverviewControl (Page 5056)

ProcessDiagnosisOverview.Label

Description
The "Label" property specifies the label.

Type
Object, HmiTextPart

Access
Read-write

Syntax
ProcessDiagnosisOverview.Label

See also
ProcessDiagnosisOverviewControl.PDiagCategories (Page 5077)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5078 System Manual, 11/2022

Syntax
Text.Font

See also
ProcessDiagnosisOverview.Label (Page 5078)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 5078)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5079

Syntax
Font.Name

See also
Text.Font (Page 5078)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 5078)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Programming scripts
10.2 WinCC Unified object model

5080 System Manual, 11/2022

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 5078)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 5078)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5081

Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 5078)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
ProcessDiagnosisOverview.Label (Page 5078)

Programming scripts
10.2 WinCC Unified object model

5082 System Manual, 11/2022

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
ProcessDiagnosisOverview.Label (Page 5078)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
ProcessDiagnosisOverview.Label (Page 5078)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5083

ProcessDiagnosisOverview.PDiagElements

Description
The "PDiagElements" property represents the quantity of elements.

Type
Object, HmiProcessDiagnosisOverviewElementCollection (Page 5084)

Access
Read-only

Syntax
ProcessDiagnosisOverview.PDiagElements

See also
ProcessDiagnosisOverviewControl.PDiagCategories (Page 5077)
HmiProcessDiagnosisOverviewElementCollection (Page 5084)

HmiProcessDiagnosisOverviewElementCollection

Description
The "HmiProcessDiagnosisOverviewElementCollection" object is a list of all process diagnostics
overview elements ("ProcessDiagnosisOverviewElement" objects).

Use
The "HmiProcessDiagnosisOverviewElementCollection" object is a list and can be counted and
enumerated. You can access the "HmiProcessDiagnosisOverviewElementCollection" list using
the index or the tag names.

Object type
HmiProcessDiagnosisOverviewElementCollection

Properties
The "HmiProcessDiagnosisOverviewElementCollection" object has the following properties:
• Count

Returns the number of process diagnostics overview elements in the
"HmiProcessDiagnosisOverviewElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

5084 System Manual, 11/2022

Methods
The "HmiProcessDiagnosisOverviewElementCollection" object has the following methods:
• Item()

Returns a process diagnostics overview element of the
"HmiProcessDiagnosisOverviewElementCollection" list.

See also
ProcessDiagnosisOverview.PDiagElements (Page 5084)

HmiProcessDiagnosisOverviewElementCollection.Count

Description
The "Count" property returns the number of process diagnostics overview elements in the
"HmiProcessDiagnosisOverviewElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiProcessDiagnosisOverviewElementCollection.Count

See also
HmiProcessDiagnosisOverviewElementCollection (Page 5084)

HmiProcessDiagnosisOverviewElementCollection.Item()

Description
The "Item" method returns a process diagnostics overview element of the
"HmiProcessDiagnosisOverviewElementCollection" list.

Syntax
HmiProcessDiagnosisOverviewElementCollection[.Item]
(HmiProcessDiagnosisOverviewElementName)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5085

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiProcessDiagnosisOverviewElementCollection" object.

Parameters
HmiProcessDiagnosisOverviewElementName
Type: String
Name of the process diagnostics overview element

Return value
Object, HmiProcessDiagnosisOverviewElementPart (Page 5086)

See also
HmiProcessDiagnosisOverviewElementCollection (Page 5084)
ProcessDiagnosisOverviewElement (Page 5086)

ProcessDiagnosisOverviewElement

Description
The "ProcessDiagnosisOverviewElement" object represents a process diagnostics overview
element.

Object type
HmiProcessDiagnosisOverviewElementPart

Properties
The "ProcessDiagnosisOverviewElement" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateForeColor

Specifies the flashing color for the text.
• BackColor

Specifies the background color.
• FlashingRate

Specifies the flash rate.

Programming scripts
10.2 WinCC Unified object model

5086 System Manual, 11/2022

• ForeColor
Specifies the font color of the text.

• Text
Specifies the labeling of the process diagnostics overview element.

• Visible
Specifies whether the process diagnostics overview element is visible.

Methods
--

See also
HmiProcessDiagnosisOverviewElementCollection.Item() (Page 5085)

ProcessDiagnosisOverviewElement.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisOverviewElement.AlternateBackColor

See also
ProcessDiagnosisOverviewElement (Page 5086)

ProcessDiagnosisOverviewElement.AlternateForeColor

Description
The "AlternateForeColor" property specifies the flashing color for the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5087

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisOverviewElement.AlternateForeColor

See also
ProcessDiagnosisOverviewElement (Page 5086)

ProcessDiagnosisOverviewElement.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisOverviewElement.BackColor

See also
ProcessDiagnosisOverviewElement (Page 5086)

ProcessDiagnosisOverviewElement.FlashingRate

Description
The "FlashingRate" property specifies the flash rate.

Type
Int32, HmiFlashingRate

Programming scripts
10.2 WinCC Unified object model

5088 System Manual, 11/2022

Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Access
Read-write

Syntax
ProcessDiagnosisOverviewElement.FlashingRate

See also
ProcessDiagnosisOverviewElement (Page 5086)

ProcessDiagnosisOverviewElement.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisOverviewElement.ForeColor

See also
ProcessDiagnosisOverviewElement (Page 5086)

ProcessDiagnosisOverviewElement.Text

Description
The "Text" property specifies the labeling of the process diagnostics overview element.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5089

Type
String

Access
Read-write

Syntax
ProcessDiagnosisOverviewElement.Text

See also
ProcessDiagnosisOverviewElement (Page 5086)

ProcessDiagnosisOverviewElement.Visible

Description
The "Visible" property specifies whether the process diagnostics overview element is visible.

Type
Bool

Access
Read-write

Syntax
ProcessDiagnosisOverviewElement.Visible

See also
ProcessDiagnosisOverviewElement (Page 5086)

ProcessDiagnosisOverview.SymbolFont

Description
The "SymbolFont" property specifies the font of the symbol text.

Type
Object, HmiFontPart

Programming scripts
10.2 WinCC Unified object model

5090 System Manual, 11/2022

Access
Read-write

Syntax
ProcessDiagnosisOverview.SymbolFont

See also
ProcessDiagnosisOverviewControl.PDiagCategories (Page 5077)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
ProcessDiagnosisOverview.SymbolFont (Page 5090)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5091

Access
Read-write

Syntax
Font.Name

See also
ProcessDiagnosisOverview.SymbolFont (Page 5090)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
ProcessDiagnosisOverview.SymbolFont (Page 5090)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut

Programming scripts
10.2 WinCC Unified object model

5092 System Manual, 11/2022

Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ProcessDiagnosisOverview.SymbolFont (Page 5090)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
ProcessDiagnosisOverview.SymbolFont (Page 5090)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5093

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
ProcessDiagnosisOverview.SymbolFont (Page 5090)

ProcessDiagnosisOverview.Visible

Description
The "Visible" property specifies whether the process diagnostics view is visible.

Type
Bool

Access
Read-write

Syntax
ProcessDiagnosisOverview.Visible

See also
ProcessDiagnosisOverviewControl.PDiagCategories (Page 5077)

Programming scripts
10.2 WinCC Unified object model

5094 System Manual, 11/2022

ProcessDiagnosisOverviewControl.PDiagSupervisionTypes

Description
The "PDiagSupervisionTypes" property specifies the supervision types of the process diagnostics
overview.

Type
Object, HmiProcessDiagnosisOverviewPart

Access
Read-write

Syntax
ProcessDiagnosisOverviewControl.PDiagSupervisionTypes

See also
ProcessDiagnosisOverviewControl (Page 5056)

ProcessDiagnosisOverview.Label

Description
The "Label" property specifies the label.

Type
Object, HmiTextPart

Access
Read-write

Syntax
ProcessDiagnosisOverview.Label

See also
ProcessDiagnosisOverviewControl.PDiagSupervisionTypes (Page 5095)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5095

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
ProcessDiagnosisOverview.Label (Page 5095)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 5096)

Programming scripts
10.2 WinCC Unified object model

5096 System Manual, 11/2022

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 5096)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 5096)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5097

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 5096)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

5098 System Manual, 11/2022

See also
Text.Font (Page 5096)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 5096)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5099

Access
Read-write

Syntax
Text.ForeColor

See also
ProcessDiagnosisOverview.Label (Page 5095)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
ProcessDiagnosisOverview.Label (Page 5095)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

5100 System Manual, 11/2022

Access
Read-write

Syntax
Text.Visible

See also
ProcessDiagnosisOverview.Label (Page 5095)

ProcessDiagnosisOverview.PDiagElements

Description
The "PDiagElements" property represents the quantity of elements.

Type
Object, HmiProcessDiagnosisOverviewElementCollection (Page 5101)

Access
Read-only

Syntax
ProcessDiagnosisOverview.PDiagElements

See also
ProcessDiagnosisOverviewControl.PDiagSupervisionTypes (Page 5095)
HmiProcessDiagnosisOverviewElementCollection (Page 5101)

HmiProcessDiagnosisOverviewElementCollection

Description
The "HmiProcessDiagnosisOverviewElementCollection" object is a list of all process diagnostics
overview elements ("ProcessDiagnosisOverviewElement" objects).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5101

Use
The "HmiProcessDiagnosisOverviewElementCollection" object is a list and can be counted and
enumerated. You can access the "HmiProcessDiagnosisOverviewElementCollection" list using
the index or the tag names.

Object type
HmiProcessDiagnosisOverviewElementCollection

Properties
The "HmiProcessDiagnosisOverviewElementCollection" object has the following properties:
• Count

Returns the number of process diagnostics overview elements in the
"HmiProcessDiagnosisOverviewElementCollection" list.

Methods
The "HmiProcessDiagnosisOverviewElementCollection" object has the following methods:
• Item()

Returns a process diagnostics overview element of the
"HmiProcessDiagnosisOverviewElementCollection" list.

See also
ProcessDiagnosisOverview.PDiagElements (Page 5101)

HmiProcessDiagnosisOverviewElementCollection.Count

Description
The "Count" property returns the number of process diagnostics overview elements in the
"HmiProcessDiagnosisOverviewElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiProcessDiagnosisOverviewElementCollection.Count

Programming scripts
10.2 WinCC Unified object model

5102 System Manual, 11/2022

See also
HmiProcessDiagnosisOverviewElementCollection (Page 5101)

HmiProcessDiagnosisOverviewElementCollection.Item()

Description
The "Item" method returns a process diagnostics overview element of the
"HmiProcessDiagnosisOverviewElementCollection" list.

Syntax
HmiProcessDiagnosisOverviewElementCollection[.Item]
(HmiProcessDiagnosisOverviewElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiProcessDiagnosisOverviewElementCollection" object.

Parameters
HmiProcessDiagnosisOverviewElementName
Type: String
Name of the process diagnostics overview element

Return value
Object, HmiProcessDiagnosisOverviewElementPart (Page 5103)

See also
HmiProcessDiagnosisOverviewElementCollection (Page 5101)
ProcessDiagnosisOverviewElement (Page 5103)

ProcessDiagnosisOverviewElement

Description
The "ProcessDiagnosisOverviewElement" object represents a process diagnostics overview
element.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5103

Object type
HmiProcessDiagnosisOverviewElementPart

Properties
The "ProcessDiagnosisOverviewElement" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateForeColor

Specifies the flashing color for the text.
• BackColor

Specifies the background color.
• FlashingRate

Specifies the flash rate.
• ForeColor

Specifies the font color of the text.
• Text

Specifies the labeling of the process diagnostics overview element.
• Visible

Specifies whether the process diagnostics overview element is visible.

Methods
--

See also
HmiProcessDiagnosisOverviewElementCollection.Item() (Page 5103)

ProcessDiagnosisOverviewElement.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5104 System Manual, 11/2022

Syntax
ProcessDiagnosisOverviewElement.AlternateBackColor

See also
ProcessDiagnosisOverviewElement (Page 5103)

ProcessDiagnosisOverviewElement.AlternateForeColor

Description
The "AlternateForeColor" property specifies the flashing color for the text.

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisOverviewElement.AlternateForeColor

See also
ProcessDiagnosisOverviewElement (Page 5103)

ProcessDiagnosisOverviewElement.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisOverviewElement.BackColor

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5105

See also
ProcessDiagnosisOverviewElement (Page 5103)

ProcessDiagnosisOverviewElement.FlashingRate

Description
The "FlashingRate" property specifies the flash rate.

Type
Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Access
Read-write

Syntax
ProcessDiagnosisOverviewElement.FlashingRate

See also
ProcessDiagnosisOverviewElement (Page 5103)

ProcessDiagnosisOverviewElement.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5106 System Manual, 11/2022

Syntax
ProcessDiagnosisOverviewElement.ForeColor

See also
ProcessDiagnosisOverviewElement (Page 5103)

ProcessDiagnosisOverviewElement.Text

Description
The "Text" property specifies the labeling of the process diagnostics overview element.

Type
String

Access
Read-write

Syntax
ProcessDiagnosisOverviewElement.Text

See also
ProcessDiagnosisOverviewElement (Page 5103)

ProcessDiagnosisOverviewElement.Visible

Description
The "Visible" property specifies whether the process diagnostics overview element is visible.

Type
Bool

Access
Read-write

Syntax
ProcessDiagnosisOverviewElement.Visible

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5107

See also
ProcessDiagnosisOverviewElement (Page 5103)

ProcessDiagnosisOverview.SymbolFont

Description
The "SymbolFont" property specifies the font of the symbol text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ProcessDiagnosisOverview.SymbolFont

See also
ProcessDiagnosisOverviewControl.PDiagSupervisionTypes (Page 5095)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

Programming scripts
10.2 WinCC Unified object model

5108 System Manual, 11/2022

See also
ProcessDiagnosisOverview.SymbolFont (Page 5108)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
ProcessDiagnosisOverview.SymbolFont (Page 5108)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5109

See also
ProcessDiagnosisOverview.SymbolFont (Page 5108)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ProcessDiagnosisOverview.SymbolFont (Page 5108)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5110 System Manual, 11/2022

Syntax
Font.Underline

See also
ProcessDiagnosisOverview.SymbolFont (Page 5108)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
ProcessDiagnosisOverview.SymbolFont (Page 5108)

ProcessDiagnosisOverview.Visible

Description
The "Visible" property specifies whether the process diagnostics view is visible.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5111

Type
Bool

Access
Read-write

Syntax
ProcessDiagnosisOverview.Visible

See also
ProcessDiagnosisOverviewControl.PDiagSupervisionTypes (Page 5095)

ProcessDiagnosisOverviewControl.PlcSource

Description
The "PlcSource" property specifies the PLC source.

Type
Object, HmiPlcDataSourcePart

Access
Read-write

Syntax
ProcessDiagnosisOverviewControl.PlcSource

See also
ProcessDiagnosisOverviewControl (Page 5056)

PlcDataSource.Connection

Description
The "Connection" property returns the connection.

Type
Object, HmiConnection (Page 1148)

Programming scripts
10.2 WinCC Unified object model

5112 System Manual, 11/2022

Access
Read-only

Syntax
PlcDataSource.Connection

See also
ProcessDiagnosisOverviewControl.PlcSource (Page 5112)
Connection (Page 1148)

Connection

Description
Connection (Page 1148)

PlcDataSource.DB_Name

Description
The "DB_Name" property returns the name of the database.

Type
String

Access
Read-only

Syntax
PlcDataSource.DB_Name

See also
ProcessDiagnosisOverviewControl.PlcSource (Page 5112)

PlcDataSource.HmiConnectionName

Description
The "HmiConnectionName" property specifies the connection name.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5113

Type
String

Access
Read-write

Syntax
PlcDataSource.HmiConnectionName

See also
ProcessDiagnosisOverviewControl.PlcSource (Page 5112)

PlcDataSource.Tag

Description
The "Tag" property returns the tag.

Type
String, HMITag (Page 1338)

Access
Read-only

Syntax
PlcDataSource.Tag

See also
ProcessDiagnosisOverviewControl.PlcSource (Page 5112)
Tag (Page 1338)

Tag

Description
Tag (Page 1338)

Programming scripts
10.2 WinCC Unified object model

5114 System Manual, 11/2022

ProcessDiagnosisOverviewControl.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the process
diagnostics overview was created.

Type
String

Access
Read-only

Syntax
ProcessDiagnosisOverviewControl.RenderingTemplate

See also
ProcessDiagnosisOverviewControl (Page 5056)

ProcessDiagnosisOverviewControl.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the process diagnostics overview is
highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
ProcessDiagnosisOverviewControl.ShowFocusVisual

See also
ProcessDiagnosisOverviewControl (Page 5056)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5115

ProcessDiagnosisOverviewControl.StatusBar

Description
The "StatusBar" property specifies the information bar of the process diagnostics overview.

Type
Object, HmiStatusBarPart

Access
Read-write

Syntax
ProcessDiagnosisOverviewControl.StatusBar

See also
ProcessDiagnosisOverviewControl (Page 5056)

StatusBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
StatusBar.BackColor

See also
ProcessDiagnosisOverviewControl.StatusBar (Page 5116)

Programming scripts
10.2 WinCC Unified object model

5116 System Manual, 11/2022

StatusBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
information bar.

Type
Object, HmiControlBarElementCollection (Page 5117)

Access
Read-only

Syntax
StatusBar.Elements

See also
ProcessDiagnosisOverviewControl.StatusBar (Page 5116)
HmiControlBarElementCollection (Page 5117)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5117

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
StatusBar.Elements (Page 5117)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 5117)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

5118 System Manual, 11/2022

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 5134)

See also
HmiControlBarElementCollection (Page 5117)
Control Bar Elements (Page 5134)

Control Bar Elements

Description
Control Bar Elements (Page 5134)

StatusBar.Enabled

Description
The "Enabled" property specifies whether the information bar can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5119

Syntax
StatusBar.Enabled

See also
ProcessDiagnosisOverviewControl.StatusBar (Page 5116)

StatusBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
StatusBar.Font

See also
ProcessDiagnosisOverviewControl.StatusBar (Page 5116)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5120 System Manual, 11/2022

Syntax
Font.Italic

See also
StatusBar.Font (Page 5120)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
StatusBar.Font (Page 5120)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5121

Syntax
Font.Size

See also
StatusBar.Font (Page 5120)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
StatusBar.Font (Page 5120)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

5122 System Manual, 11/2022

Access
Read-write

Syntax
Font.Underline

See also
StatusBar.Font (Page 5120)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
StatusBar.Font (Page 5120)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5123

StatusBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the information bar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
StatusBar.Margin

See also
ProcessDiagnosisOverviewControl.StatusBar (Page 5116)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
StatusBar.Margin (Page 5124)

Programming scripts
10.2 WinCC Unified object model

5124 System Manual, 11/2022

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
StatusBar.Margin (Page 5124)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
StatusBar.Margin (Page 5124)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5125

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
StatusBar.Margin (Page 5124)

StatusBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the information
bar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
StatusBar.Padding

See also
ProcessDiagnosisOverviewControl.StatusBar (Page 5116)

Programming scripts
10.2 WinCC Unified object model

5126 System Manual, 11/2022

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
StatusBar.Padding (Page 5126)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
StatusBar.Padding (Page 5126)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5127

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
StatusBar.Padding (Page 5126)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
StatusBar.Padding (Page 5126)

Programming scripts
10.2 WinCC Unified object model

5128 System Manual, 11/2022

StatusBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
StatusBar.ShowToolTips

See also
ProcessDiagnosisOverviewControl.StatusBar (Page 5116)

StatusBar.Visible

Description
The "Visible" property specifies whether the information bar is visible.

Type
Bool

Access
Read-write

Syntax
StatusBar.Visible

See also
ProcessDiagnosisOverviewControl.StatusBar (Page 5116)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5129

ProcessDiagnosisOverviewControl.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the process diagnostics
overview.

Type
String

Access
Read-only

Syntax
ProcessDiagnosisOverviewControl.StyleItemClass

See also
ProcessDiagnosisOverviewControl (Page 5056)

ProcessDiagnosisOverviewControl.TabIndex

Description
The "TabIndex" property returns the position of the process diagnostics overview in the tab
sequence.

Type
UInt16

Access
Read-only

Syntax
ProcessDiagnosisOverviewControl.TabIndex

See also
ProcessDiagnosisOverviewControl (Page 5056)

Programming scripts
10.2 WinCC Unified object model

5130 System Manual, 11/2022

ProcessDiagnosisOverviewControl.ToolBar

Description
The property "ToolBar" specifies the toolbar of the process diagnostics overview.

Type
Object, HmiToolBarPart

Access
Read-write

Syntax
ProcessDiagnosisOverviewControl.ToolBar

See also
ProcessDiagnosisOverviewControl (Page 5056)

ToolBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ToolBar.BackColor

See also
ProcessDiagnosisOverviewControl.ToolBar (Page 5131)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5131

ToolBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
toolbar.

Type
Object, HmiControlBarElementCollection (Page 5132)

Access
Read-only

Syntax
ToolBar.Elements

See also
ProcessDiagnosisOverviewControl.ToolBar (Page 5131)
HmiControlBarElementCollection (Page 5132)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Programming scripts
10.2 WinCC Unified object model

5132 System Manual, 11/2022

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
ToolBar.Elements (Page 5132)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 5132)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5133

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 5134)

See also
HmiControlBarElementCollection (Page 5132)
Control Bar Elements (Page 5134)

Control Bar Elements

ControlBarButton

Description
The "ControlBarButton" object represents a button of an information bar or toolbar.
You can reference the "ControlBarButton" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarButtonPart

Programming scripts
10.2 WinCC Unified object model

5134 System Manual, 11/2022

Properties
The "ControlBarButton" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the label of the button.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the button can be operated in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• HotKey

Returns the hotkey specified for the button.
• Mapping

Returns the function of the button.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5135

• Operability
Returns whether the button is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the button is only operable while the corresponding button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the button is visible.

• Width
Specifies the width.

Methods
--

ControlBarButton.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBackColor

See also
ControlBarButton (Page 5134)

Programming scripts
10.2 WinCC Unified object model

5136 System Manual, 11/2022

ControlBarButton.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBorderColor

See also
ControlBarButton (Page 5134)

ControlBarButton.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the button of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarButton.Authorization

See also
ControlBarButton (Page 5134)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5137

ControlBarButton.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BackColor

See also
ControlBarButton (Page 5134)

ControlBarButton.Badge

Description
The "Badge" property specifies the label of the button.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarButton.Badge

See also
ControlBarButton (Page 5134)

Programming scripts
10.2 WinCC Unified object model

5138 System Manual, 11/2022

ControlBarButton.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BorderColor

See also
ControlBarButton (Page 5134)

ControlBarButton.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarButton.BorderWidth

See also
ControlBarButton (Page 5134)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5139

ControlBarButton.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarButton.Content

See also
ControlBarButton (Page 5134)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

5140 System Manual, 11/2022

See also
ControlBarButton.Content (Page 5140)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarButton.Content (Page 5140)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5141

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarButton.Content (Page 5140)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarButton.Content (Page 5140)

Programming scripts
10.2 WinCC Unified object model

5142 System Manual, 11/2022

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarButton.Content (Page 5140)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5143

Syntax
Content.TextPosition

See also
ControlBarButton.Content (Page 5140)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarButton.Content (Page 5140)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

5144 System Manual, 11/2022

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarButton.Content (Page 5140)

ControlBarButton.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarButton.CustomID

See also
ControlBarButton (Page 5134)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5145

ControlBarButton.Enabled

Description
The "Enabled" property specifies whether the button can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Enabled

See also
ControlBarButton (Page 5134)

ControlBarButton.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.ForeColor

See also
ControlBarButton (Page 5134)

Programming scripts
10.2 WinCC Unified object model

5146 System Manual, 11/2022

ControlBarButton.Graphic

Description
The "Graphic" property specifies the graphic of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Graphic

See also
ControlBarButton (Page 5134)

ControlBarButton.Height

Description
The "Height" property specifies the height of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Height

See also
ControlBarButton (Page 5134)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5147

ControlBarButton.HotKey

Description
The "HotKey" property returns the hotkey specified for the button. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
ControlBarButton.HotKey

See also
ControlBarButton (Page 5134)

ControlBarButton.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent

Programming scripts
10.2 WinCC Unified object model

5148 System Manual, 11/2022

• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5149

• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarButton.Mapping

See also
ControlBarButton (Page 5134)

ControlBarButton.Margin

Description
The "Margin" property specifies the surrounded outer distance of the button.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5150 System Manual, 11/2022

Syntax
ControlBarButton.Margin

See also
ControlBarButton (Page 5134)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarButton.Margin (Page 5150)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5151

Syntax
Margin.Left

See also
ControlBarButton.Margin (Page 5150)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarButton.Margin (Page 5150)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5152 System Manual, 11/2022

Syntax
Margin.Top

See also
ControlBarButton.Margin (Page 5150)

ControlBarButton.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumHeight

See also
ControlBarButton (Page 5134)

ControlBarButton.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5153

Syntax
ControlBarButton.MaximumWidth

See also
ControlBarButton (Page 5134)

ControlBarButton.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumHeight

See also
ControlBarButton (Page 5134)

ControlBarButton.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5154 System Manual, 11/2022

Syntax
ControlBarButton.MinimumWidth

See also
ControlBarButton (Page 5134)

ControlBarButton.Operability

Description
The "Operability" property returns whether the button is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarButton.Operability

See also
ControlBarButton (Page 5134)

ControlBarButton.Padding

Description
The "Padding" property specifies the distance of the content from the border of the button.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5155

Access
Read-write

Syntax
ControlBarButton.Padding

See also
ControlBarButton (Page 5134)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarButton.Padding (Page 5155)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5156 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Left

See also
ControlBarButton.Padding (Page 5155)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarButton.Padding (Page 5155)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5157

Access
Read-write

Syntax
Padding.Top

See also
ControlBarButton.Padding (Page 5155)

ControlBarButton.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the button can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarButton.RequireExplicitUnlock

See also
ControlBarButton (Page 5134)

ControlBarButton.Text

Description
The "Text" property specifies the label of the button.

Type
String

Programming scripts
10.2 WinCC Unified object model

5158 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.Text

See also
ControlBarButton (Page 5134)

ControlBarButton.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.ToolTipText

See also
ControlBarButton (Page 5134)

ControlBarButton.Visible

Description
The "Visible" property specifies whether the button is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5159

Access
Read-write

Syntax
ControlBarButton.Visible

See also
ControlBarButton (Page 5134)

ControlBarButton.Width

Description
The "Width" property specifies the width of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Width

See also
ControlBarButton (Page 5134)

ControlBarDisplay

Description
The "ControlBarDisplay" object represents a display area for text and graphics of an information
bar or toolbar.
You can reference the "ControlBarDisplay" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarDisplayPart

Programming scripts
10.2 WinCC Unified object model

5160 System Manual, 11/2022

Properties
The "ControlBarDisplay" object has the following properties:
• Authorization

Returns the operator authorization.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the display area is enabled in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• Mapping

Returns the function of the display area.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the display area is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the display area is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5161

• Visible
Specifies whether the display area is visible.

• Width
Specifies the width.

Methods
--

ControlBarDisplay.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the display.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarDislay.Authorization

See also
ControlBarDisplay (Page 5160)

ControlBarDisplay.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5162 System Manual, 11/2022

Syntax
ControlBarDislay.Content

See also
ControlBarDisplay (Page 5160)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarDisplay.Content (Page 5162)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5163

Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarDisplay.Content (Page 5162)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

Programming scripts
10.2 WinCC Unified object model

5164 System Manual, 11/2022

See also
ControlBarDisplay.Content (Page 5162)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarDisplay.Content (Page 5162)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5165

See also
ControlBarDisplay.Content (Page 5162)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarDisplay.Content (Page 5162)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming

Programming scripts
10.2 WinCC Unified object model

5166 System Manual, 11/2022

Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarDisplay.Content (Page 5162)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarDisplay.Content (Page 5162)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5167

ControlBarDisplay.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarDislay.CustomID

See also
ControlBarDisplay (Page 5160)

ControlBarDisplay.Enabled

Description
The "Enabled" property specifies whether the display is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Enabled

See also
ControlBarDisplay (Page 5160)

Programming scripts
10.2 WinCC Unified object model

5168 System Manual, 11/2022

ControlBarDisplay.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.ForeColor

See also
ControlBarDisplay (Page 5160)

ControlBarDisplay.Graphic

Description
The "Graphic" property specifies the graphic of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Graphic

See also
ControlBarDisplay (Page 5160)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5169

ControlBarDisplay.Height

Description
The "Height" property specifies the height of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Height

See also
ControlBarDisplay (Page 5160)

ControlBarDisplay.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display

Programming scripts
10.2 WinCC Unified object model

5170 System Manual, 11/2022

• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5171

• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarDislay.Mapping

See also
ControlBarDisplay (Page 5160)

ControlBarDisplay.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the display.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5172 System Manual, 11/2022

Syntax
ControlBarDislay.Margin

See also
ControlBarDisplay (Page 5160)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarDisplay.Margin (Page 5172)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5173

Syntax
Margin.Left

See also
ControlBarDisplay.Margin (Page 5172)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarDisplay.Margin (Page 5172)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5174 System Manual, 11/2022

Syntax
Margin.Top

See also
ControlBarDisplay.Margin (Page 5172)

ControlBarDisplay.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MaximumHeight

See also
ControlBarDisplay (Page 5160)

ControlBarDisplay.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5175

Syntax
ControlBarDislay.MaximumWidth

See also
ControlBarDisplay (Page 5160)

ControlBarDisplay.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MinimumHeight

See also
ControlBarDisplay (Page 5160)

ControlBarDisplay.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5176 System Manual, 11/2022

Syntax
ControlBarDislay.MinimumWidth

See also
ControlBarDisplay (Page 5160)

ControlBarDisplay.Operability

Description
The "Operability" property returns whether the display is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarDislay.Operability

See also
ControlBarDisplay (Page 5160)

ControlBarDisplay.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the display.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5177

Access
Read-write

Syntax
ControlBarDislay.Padding

See also
ControlBarDisplay (Page 5160)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarDisplay.Padding (Page 5177)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5178 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Left

See also
ControlBarDisplay.Padding (Page 5177)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarDisplay.Padding (Page 5177)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5179

Access
Read-write

Syntax
Padding.Top

See also
ControlBarDisplay.Padding (Page 5177)

ControlBarDisplay.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the display can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarDislay.RequireExplicitUnlock

See also
ControlBarDisplay (Page 5160)

ControlBarDisplay.Text

Description
The "Text" property specifies the label of the display.

Type
String

Programming scripts
10.2 WinCC Unified object model

5180 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.Text

See also
ControlBarDisplay (Page 5160)

ControlBarDisplay.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.ToolTipText

See also
ControlBarDisplay (Page 5160)

ControlBarDisplay.Visible

Description
The "Visible" property specifies whether the display is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5181

Access
Read-write

Syntax
ControlBarDislay.Visible

See also
ControlBarDisplay (Page 5160)

ControlBarDisplay.Width

Description
The "Width" property specifies the width of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Width

See also
ControlBarDisplay (Page 5160)

ControlBarLabel

Description
The "ControlBarLabel" object represents an identifier of an information bar or toolbar.
You can reference the "ControlBarLabel" object via the "HmiControlBarElementCollection" list.

Object type
HmiControlBarLabelPart

Programming scripts
10.2 WinCC Unified object model

5182 System Manual, 11/2022

Properties
The "ControlBarLabel" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the identifier can be operated in runtime.
• ForeColor

Specifies the font color.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Height

Specifies the height.
• Mapping

Returns the function of the identifier.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the identifier is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the identifier is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5183

• Visible
Specifies whether the identifier is visible.

• Width
Specifies the width.

Methods
--

ControlBarLabel.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the identifier.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarLabel.Authorization

See also
ControlBarLabel (Page 5182)

ControlBarLabel.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5184 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarLabel.CustomID

See also
ControlBarLabel (Page 5182)

ControlBarLabel.Enabled

Description
The "Enabled" property specifies whether the identifier is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarLabel.Enabled

See also
ControlBarLabel (Page 5182)

ControlBarLabel.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5185

Access
Read-write

Syntax
ControlBarLabel.ForeColor

See also
ControlBarLabel (Page 5182)

ControlBarLabel.Height

Description
The "Height" property specifies the height of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Height

See also
ControlBarLabel (Page 5182)

ControlBarLabel.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

5186 System Manual, 11/2022

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.HorizontalTextAlignment

See also
ControlBarLabel (Page 5182)

ControlBarLabel.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5187

• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export

Programming scripts
10.2 WinCC Unified object model

5188 System Manual, 11/2022

• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires
acknowledgment

• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarLabel.Mapping

See also
ControlBarLabel (Page 5182)

ControlBarLabel.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the identifier.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarLabel.Margin

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5189

See also
ControlBarLabel (Page 5182)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarLabel.Margin (Page 5189)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

Programming scripts
10.2 WinCC Unified object model

5190 System Manual, 11/2022

See also
ControlBarLabel.Margin (Page 5189)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarLabel.Margin (Page 5189)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5191

See also
ControlBarLabel.Margin (Page 5189)

ControlBarLabel.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumHeight

See also
ControlBarLabel (Page 5182)

ControlBarLabel.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumWidth

Programming scripts
10.2 WinCC Unified object model

5192 System Manual, 11/2022

See also
ControlBarLabel (Page 5182)

ControlBarLabel.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumHeight

See also
ControlBarLabel (Page 5182)

ControlBarLabel.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumWidth

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5193

See also
ControlBarLabel (Page 5182)

ControlBarLabel.Operability

Description
The "Operability" property returns whether the identifier is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarLabel.Operability

See also
ControlBarLabel (Page 5182)

ControlBarLabel.Padding

Description
The "Padding" property specifies the spacing of the content from the frame of the identifier.

Type
Object, HmiPaddingPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5194 System Manual, 11/2022

Syntax
ControlBarLabel.Padding

See also
ControlBarLabel (Page 5182)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarLabel.Padding (Page 5194)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5195

Syntax
Padding.Left

See also
ControlBarLabel.Padding (Page 5194)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarLabel.Padding (Page 5194)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5196 System Manual, 11/2022

Syntax
Padding.Top

See also
ControlBarLabel.Padding (Page 5194)

ControlBarLabel.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the identifier can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarLabel.RequireExplicitUnlock

See also
ControlBarLabel (Page 5182)

ControlBarLabel.Text

Description
The "Text" property specifies the label of the identifier.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5197

Syntax
ControlBarLabel.Text

See also
ControlBarLabel (Page 5182)

ControlBarLabel.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.ToolTipText

See also
ControlBarLabel (Page 5182)

ControlBarLabel.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Programming scripts
10.2 WinCC Unified object model

5198 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarLabel.VerticalTextAlignment

See also
ControlBarLabel (Page 5182)

ControlBarLabel.Visible

Description
The "Visible" property specifies whether the identifier is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarLabel.Visible

See also
ControlBarLabel (Page 5182)

ControlBarLabel.Width

Description
The "Width" property specifies the width of the identifier in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5199

Access
Read-write

Syntax
ControlBarLabel.Width

See also
ControlBarLabel (Page 5182)

ControlBarSeparator

Description
The "ControlBarSeparator" object represents a separator of an information bar or toolbar.
You can reference the "ControlBarSeparator" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarSeparatorPart

Properties
The "ControlBarSeparator" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the disconnector can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• Mapping

Returns the function of the separator.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.

Programming scripts
10.2 WinCC Unified object model

5200 System Manual, 11/2022

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the separator is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the disconnector is only operable while the associated button is being
pressed.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the disconnector is visible.

• Width
Specifies the width.

Methods
--

ControlBarSeparator.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the separator.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarSeparator.Authorization

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5201

See also
ControlBarSeparator (Page 5200)

ControlBarSeparator.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarSeparator.CustomID

See also
ControlBarSeparator (Page 5200)

ControlBarSeparator.Enabled

Description
The "Enabled" property specifies whether the separator is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Enabled

Programming scripts
10.2 WinCC Unified object model

5202 System Manual, 11/2022

See also
ControlBarSeparator (Page 5200)

ControlBarSeparator.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.ForeColor

See also
ControlBarSeparator (Page 5200)

ControlBarSeparator.Height

Description
The "Height" property specifies the height of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Height

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5203

See also
ControlBarSeparator (Page 5200)

ControlBarSeparator.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

5204 System Manual, 11/2022

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5205

Access
Read-only

Syntax
ControlBarSeparator.Mapping

See also
ControlBarSeparator (Page 5200)

ControlBarSeparator.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the separator.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarSeparator.Margin

See also
ControlBarSeparator (Page 5200)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5206 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarSeparator.Margin (Page 5206)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarSeparator.Margin (Page 5206)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5207

Access
Read-write

Syntax
Margin.Right

See also
ControlBarSeparator.Margin (Page 5206)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarSeparator.Margin (Page 5206)

ControlBarSeparator.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

5208 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarSeparator.MaximumHeight

See also
ControlBarSeparator (Page 5200)

ControlBarSeparator.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MaximumWidth

See also
ControlBarSeparator (Page 5200)

ControlBarSeparator.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5209

Access
Read-write

Syntax
ControlBarSeparator.MinimumHeight

See also
ControlBarSeparator (Page 5200)

ControlBarSeparator.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MinimumWidth

See also
ControlBarSeparator (Page 5200)

ControlBarSeparator.Operability

Description
The "Operability" property returns whether the separator is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

5210 System Manual, 11/2022

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarSeparator.Operability

See also
ControlBarSeparator (Page 5200)

ControlBarSeparator.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the separator.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarSeparator.Padding

See also
ControlBarSeparator (Page 5200)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5211

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarSeparator.Padding (Page 5211)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarSeparator.Padding (Page 5211)

Programming scripts
10.2 WinCC Unified object model

5212 System Manual, 11/2022

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarSeparator.Padding (Page 5211)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarSeparator.Padding (Page 5211)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5213

ControlBarSeparator.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the disconnector can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarSeparator.RequireExplicitUnlock

See also
ControlBarSeparator (Page 5200)

ControlBarSeparator.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the separator.

Type
String

Access
Read-write

Syntax
ControlBarSeparator.ToolTipText

See also
ControlBarSeparator (Page 5200)

Programming scripts
10.2 WinCC Unified object model

5214 System Manual, 11/2022

ControlBarSeparator.Visible

Description
The "Visible" property specifies whether the separator is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Visible

See also
ControlBarSeparator (Page 5200)

ControlBarSeparator.Width

Description
The "Width" property specifies the width of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Width

See also
ControlBarSeparator (Page 5200)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5215

ControlBarTextBox

Description
The "ControlBarTextBox" object represents a text box of an information bar or toolbar.
You can reference the "ControlBarTextBox" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarTextBoxPart

Properties
The "ControlBarTextBox" object has the following properties:
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the text box can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Mapping

Returns the function of the text box.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.

Programming scripts
10.2 WinCC Unified object model

5216 System Manual, 11/2022

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the text box is operable.

• Padding
Specifies the distance of the content from the border.

• Readonly
Specifies whether the text box is write-protected.

• RequireExplicitUnlock
Returns whether the text box is only operable while the associated button is being pressed.

• Text
Specifies the labeling.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the text box is visible.

• Width
Specifies the width.

Methods
--

ControlBarTextBox.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5217

Syntax
ControlBarTextBox.AlternateBorderColor

See also
ControlBarTextBox (Page 5216)

ControlBarTextBox.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the text box of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarTextBox.Authorization

See also
ControlBarTextBox (Page 5216)

ControlBarTextBox.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5218 System Manual, 11/2022

Syntax
ControlBarTextBox.BackColor

See also
ControlBarTextBox (Page 5216)

ControlBarTextBox.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BorderColor

See also
ControlBarTextBox (Page 5216)

ControlBarTextBox.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5219

Syntax
ControlBarTextBox.BorderWidth

See also
ControlBarTextBox (Page 5216)

ControlBarTextBox.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarTextBox.CustomID

See also
ControlBarTextBox (Page 5216)

ControlBarTextBox.Enabled

Description
The "Enabled" property specifies whether the text box can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5220 System Manual, 11/2022

Syntax
ControlBarTextBox.Enabled

See also
ControlBarTextBox (Page 5216)

ControlBarTextBox.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.ForeColor

See also
ControlBarTextBox (Page 5216)

ControlBarTextBox.Height

Description
The "Height" property specifies the height of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5221

Syntax
ControlBarTextBox.Height

See also
ControlBarTextBox (Page 5216)

ControlBarTextBox.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.HorizontalTextAlignment

See also
ControlBarTextBox (Page 5216)

ControlBarTextBox.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID

Programming scripts
10.2 WinCC Unified object model

5222 System Manual, 11/2022

Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5223

• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarTextBox.Mapping

See also
ControlBarTextBox (Page 5216)

Programming scripts
10.2 WinCC Unified object model

5224 System Manual, 11/2022

ControlBarTextBox.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the text box.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarTextBox.Margin

See also
ControlBarTextBox (Page 5216)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarTextBox.Margin (Page 5225)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5225

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarTextBox.Margin (Page 5225)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarTextBox.Margin (Page 5225)

Programming scripts
10.2 WinCC Unified object model

5226 System Manual, 11/2022

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarTextBox.Margin (Page 5225)

ControlBarTextBox.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumHeight

See also
ControlBarTextBox (Page 5216)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5227

ControlBarTextBox.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumWidth

See also
ControlBarTextBox (Page 5216)

ControlBarTextBox.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumHeight

See also
ControlBarTextBox (Page 5216)

Programming scripts
10.2 WinCC Unified object model

5228 System Manual, 11/2022

ControlBarTextBox.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumWidth

See also
ControlBarTextBox (Page 5216)

ControlBarTextBox.Operability

Description
The "Operability" property returns whether the text box is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarTextBox.Operability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5229

See also
ControlBarTextBox (Page 5216)

ControlBarTextBox.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the text box.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarTextBox.Padding

See also
ControlBarTextBox (Page 5216)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

Programming scripts
10.2 WinCC Unified object model

5230 System Manual, 11/2022

See also
ControlBarTextBox.Padding (Page 5230)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarTextBox.Padding (Page 5230)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5231

See also
ControlBarTextBox.Padding (Page 5230)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarTextBox.Padding (Page 5230)

ControlBarTextBox.ReadOnly

Description
The "ReadOnly" property specifies whether the text box is read-only.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.ReadOnly

Programming scripts
10.2 WinCC Unified object model

5232 System Manual, 11/2022

See also
ControlBarTextBox (Page 5216)

ControlBarTextBox.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the text box can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarTextBox.RequireExplicitUnlock

See also
ControlBarTextBox (Page 5216)

ControlBarTextBox.Text

Description
The "Text" property specifies the label of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.Text

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5233

See also
ControlBarTextBox (Page 5216)

ControlBarTextBox.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.ToolTipText

See also
ControlBarTextBox (Page 5216)

ControlBarTextBox.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5234 System Manual, 11/2022

Syntax
ControlBarTextBox.VerticalTextAlignment

See also
ControlBarTextBox (Page 5216)

ControlBarTextBox.Visible

Description
The "Visible" property specifies whether the text box is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Visible

See also
ControlBarTextBox (Page 5216)

ControlBarTextBox.Width

Description
The "Width" property specifies the width of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5235

Syntax
ControlBarTextBox.Width

See also
ControlBarTextBox (Page 5216)

ControlBarToggleSwitch

Description
The "ControlBarToggleSwitch" object represents a switch of an information bar or toolbar.
You can reference the "ControlBarToggleSwitch" object via the
"HmiControlBarElementCollection" list.

Object type
HmiControlBarToggleSwitchPart

Properties
The "ControlBarToggleSwitch" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• AlternateGraphic

Specifies the graphic for the "pressed" state.
• AlternateText

Specifies the text for the "pressed" state.
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the identifier of the switch.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.

Programming scripts
10.2 WinCC Unified object model

5236 System Manual, 11/2022

• CustomID
Returns the custom ID.

• Enabled
Specifies whether the switch can be operated in runtime.

• ForeColor
Specifies the font color.

• Graphic
Specifies the graphic.

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the switch.

• IsAlternateState
Specifies the current state of the switch.

• Mapping
Returns the function of the switch.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the switch is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the switch is only operable while the associated button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the switch is visible.

• Width
Specifies the width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5237

Methods
--

ControlBarToggleSwitch.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBackColor

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBorderColor

Programming scripts
10.2 WinCC Unified object model

5238 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.AlternateGraphic

Description
The "AlternateGraphic" property specifies the graphic of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateGraphic

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.AlternateText

Description
The "AlternateText" property specifies the text of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateText

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5239

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the switch of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarToggleSwitch.Authorization

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BackColor

Programming scripts
10.2 WinCC Unified object model

5240 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.Badge

Description
The "Badge" property specifies the identifier of the switch.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarToggleSwitch.Badge

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderColor

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5241

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderWidth

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Content

Programming scripts
10.2 WinCC Unified object model

5242 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 5236)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarToggleSwitch.Content (Page 5242)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5243

• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarToggleSwitch.Content (Page 5242)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 5242)

Programming scripts
10.2 WinCC Unified object model

5244 System Manual, 11/2022

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarToggleSwitch.Content (Page 5242)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarToggleSwitch.Content (Page 5242)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5245

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarToggleSwitch.Content (Page 5242)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

5246 System Manual, 11/2022

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarToggleSwitch.Content (Page 5242)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 5242)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5247

ControlBarToggleSwitch.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarToggleSwitch.CustomID

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.Enabled

Description
The "Enabled" property specifies whether the switch can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Enabled

See also
ControlBarToggleSwitch (Page 5236)

Programming scripts
10.2 WinCC Unified object model

5248 System Manual, 11/2022

ControlBarToggleSwitch.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.ForeColor

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.Graphic

Description
The "Graphic" property specifies the graphic of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Graphic

See also
ControlBarToggleSwitch (Page 5236)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5249

ControlBarToggleSwitch.Height

Description
The "Height" property specifies the height of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Height

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.HotKey

Description
The "HotKey" property returns the hotkey specified for the switch. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
Button.HotKey

See also
ControlBarToggleSwitch (Page 5236)

Programming scripts
10.2 WinCC Unified object model

5250 System Manual, 11/2022

ControlBarToggleSwitch.IsAlternateState

Description
The "IsAlternateState" property specifies the current state of the switch.
• True: Switch is in "On" state.
• False: Switch is in "Off" state.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.IsAlternateState

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5251

• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms

Programming scripts
10.2 WinCC Unified object model

5252 System Manual, 11/2022

• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarToggleSwitch.Mapping

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the switch.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5253

Access
Read-write

Syntax
ControlBarToggleSwitch.Margin

See also
ControlBarToggleSwitch (Page 5236)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarToggleSwitch.Margin (Page 5253)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5254 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Left

See also
ControlBarToggleSwitch.Margin (Page 5253)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarToggleSwitch.Margin (Page 5253)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5255

Access
Read-write

Syntax
Margin.Top

See also
ControlBarToggleSwitch.Margin (Page 5253)

ControlBarToggleSwitch.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumHeight

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

5256 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumWidth

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumHeight

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5257

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumWidth

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.Operability

Description
The property "Operability" returns whether the switch is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarToggleSwitch.Operability

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the switch.

Programming scripts
10.2 WinCC Unified object model

5258 System Manual, 11/2022

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Padding

See also
ControlBarToggleSwitch (Page 5236)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarToggleSwitch.Padding (Page 5258)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5259

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarToggleSwitch.Padding (Page 5258)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarToggleSwitch.Padding (Page 5258)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

5260 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarToggleSwitch.Padding (Page 5258)

ControlBarToggleSwitch.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the switch can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarToggleSwitch.RequireExplicitUnlock

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.Text

Description
The "Text" property specifies the label of the switch.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5261

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Text

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.ToolTipText

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.Visible

Description
The "Visible" property specifies whether the switch is visible.

Programming scripts
10.2 WinCC Unified object model

5262 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Visible

See also
ControlBarToggleSwitch (Page 5236)

ControlBarToggleSwitch.Width

Description
The "Width" property specifies the width of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Width

See also
ControlBarToggleSwitch (Page 5236)

ToolBar.Enabled

Description
The "Enabled" property specifies whether the toolbar can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5263

Type
Bool

Access
Read-write

Syntax
ToolBar.Enabled

See also
ProcessDiagnosisOverviewControl.ToolBar (Page 5131)

ToolBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ToolBar.Font

See also
ProcessDiagnosisOverviewControl.ToolBar (Page 5131)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Programming scripts
10.2 WinCC Unified object model

5264 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
ToolBar.Font (Page 5264)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
ToolBar.Font (Page 5264)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5265

Type
Float

Access
Read-write

Syntax
Font.Size

See also
ToolBar.Font (Page 5264)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ToolBar.Font (Page 5264)

Programming scripts
10.2 WinCC Unified object model

5266 System Manual, 11/2022

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
ToolBar.Font (Page 5264)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5267

Syntax
Font.Weight

See also
ToolBar.Font (Page 5264)

ToolBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the toolbar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ToolBar.Margin

See also
ProcessDiagnosisOverviewControl.ToolBar (Page 5131)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5268 System Manual, 11/2022

Syntax
Margin.Bottom

See also
ToolBar.Margin (Page 5268)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ToolBar.Margin (Page 5268)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5269

Syntax
Margin.Right

See also
ToolBar.Margin (Page 5268)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ToolBar.Margin (Page 5268)

ToolBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the toolbar.

Type
Object, HmiPaddingPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5270 System Manual, 11/2022

Syntax
ToolBar.Padding

See also
ProcessDiagnosisOverviewControl.ToolBar (Page 5131)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ToolBar.Padding (Page 5270)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5271

Syntax
Padding.Left

See also
ToolBar.Padding (Page 5270)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ToolBar.Padding (Page 5270)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5272 System Manual, 11/2022

Syntax
Padding.Top

See also
ToolBar.Padding (Page 5270)

ToolBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
ToolBar.ShowToolTips

See also
ProcessDiagnosisOverviewControl.ToolBar (Page 5131)

ToolBar.UseHotKeys

Description
The "UseHotKeys" property specifies whether the shortcut keys for the buttons in the toolbar are
activated.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5273

Syntax
ToolBar.UseHotKeys

See also
ProcessDiagnosisOverviewControl.ToolBar (Page 5131)

ToolBar.Visible

Description
The "Visible" property specifies whether the toolbar is visible.

Type
Bool

Access
Read-write

Syntax
ToolBar.Visible

See also
ProcessDiagnosisOverviewControl.ToolBar (Page 5131)

ProcessDiagnosisOverviewControl.Top

Description
The "Top" property sets the value of the Y coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5274 System Manual, 11/2022

Syntax
ProcessDiagnosisOverviewControl.Top

See also
ProcessDiagnosisOverviewControl (Page 5056)

ProcessDiagnosisOverviewControl.Visible

Description
The "Visible" property specifies whether the process diagnostics view is visible.

Type
Bool

Access
Read-write

Syntax
ProcessDiagnosisOverviewControl.Visible

See also
ProcessDiagnosisOverviewControl (Page 5056)

ProcessDiagnosisOverviewControl.Width

Description
The "Width" property specifies the width in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisOverviewControl.Width

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5275

See also
ProcessDiagnosisOverviewControl (Page 5056)

ProcessDiagnosisOverviewControl.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the process diagnostics
overview.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title
• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be positioned
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
You can enable multiple properties by adding integer values or bit operators.

Access
Read-write

Syntax
ProcessDiagnosisOverviewControl.WindowFlags

See also
ProcessDiagnosisOverviewControl (Page 5056)

Programming scripts
10.2 WinCC Unified object model

5276 System Manual, 11/2022

ProcessDiagnosisOverviewControl.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
process diagnostics overview.

Syntax
ProcessDiagnosisOverviewControl.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
ProcessDiagnosisOverviewControl (Page 5056)

ProcessDiagnosisOverviewControl.FireCommand()

Description
The "FireCommand" method executes the command of an element in the toolbar or information
bar (control bar element, e.g. a button) of the process diagnostics overview.

Syntax
ProcessDiagnosisOverviewControl.FireCommand(commandId, custom)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5277

Parameters
commandId
Type: Int32
ID of the element of the toolbar or information bar

custom
Type: Bool
Type of element ID:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

Return value
--

See also
ProcessDiagnosisOverviewControl (Page 5056)

ProcessDiagnosisOverviewControl.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
ProcessDiagnosisOverviewControl.PropertyFlashing(propertyName,
enable[, value][, alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant

Programming scripts
10.2 WinCC Unified object model

5278 System Manual, 11/2022

Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
ProcessDiagnosisOverviewControl (Page 5056)

ProcessDiagnosisOverviewControl_AlarmViewButtonTapped()

Description
The "AlarmViewButtonTapped"event occurs when the "AlarmView" button is pressed.

Syntax
ProcessDiagnosisOverviewControl_AlarmViewButtonTapped(item)

Context
item
Type: Object
Button at which the event occurs.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5279

See also
ProcessDiagnosisOverviewControl (Page 5056)

ProcessDiagnosisPlcCodeViewerControl

Description
The "ProcessDiagnosisPlcCodeViewerControl" object represents a PLC code view in runtime.

Object type
HmiProcessDiagnosisPlcCodeViewerControl

Properties
The "ProcessDiagnosisPlcCodeViewerControl" object has the following properties:
• BackColor

Specifies the background color.
• Caption

Specifies the text to be displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.
• CurrentQuality

Returns the poorest quality code of all tags which influence the PLC code view.
• CurrentZoomFactor

Specifies the zoom factor of the PLC code view.
• Enabled

Specifies whether the PLC code view can be operated in runtime.
• Height

Specifies the height.
• Icon

Specifies the icon of the PLC code view.
• Layer

Returns the screen layer in which the PLC code view is located.
• Left

Specifies the value of the X coordinate.
• LineColors

Returns the line colors.
• Margin

Specifies the margin.
• Name

Returns the name of the PLC code view.

Programming scripts
10.2 WinCC Unified object model

5280 System Manual, 11/2022

• OverviewDetailRatio
Specifies how much space the detail view takes up in the PLC code view.

• Parent
Returns the higher-level screen object.

• RenderingTemplate
Returns the name of the template from which the PLC code view was created.

• ShowFocusVisual
Specifies whether the PLC code view is highlighted when in focus.

• ShowSymbolLine
Specifies whether the symbol line is displayed.

• StatusBar
Specifies the information bar of the PLC code view.

• StyleItemClass
Returns the style which is applied to the PLC code view.

• SymbolLineBackColor
Specifies the background color of the symbol line.

• SymbolLineFont
Specifies the font of the text in the symbol line.

• SymbolLineForeColor
Specifies the text font color of the symbol line.

• TabIndex
Returns the position of the PLC code view in the tab sequence.

• ToolBar
Specifies the toolbar of the PLC code view.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the PLC code view is visible.

• Width
Specifies the width of the PLC code view.

• WindowFlags
Specifies the window configuration of the PLC code view.

Methods
The "SystemDiagnosisControl" object has the following methods:
• FireCommand()

Configures the occurrence of an event for an element.
• Next()

Navigates to the next network.
• OpenCodeViewerFromAlarm()

Opens the corresponding block in the PLC code view according to the selection in the alarm
control.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5281

• OpenGRAPHDetails()
Opens the "GRAPH" details block in the PLC code view.

• OpenGRAPHDetailsByConnectionName()
Opens the "GRAPH" details block in the PLC code view.

• OpenProDiagDetailsFB()
Represents the logic of a network input of a function block in the PLC code view.

• OpenProDiagDetailsFC()
Represents the logic of a function in the PLC code view, taking the UDT instance into account.

• OpenProDiagDetailsNetwork()
Represents a network and its logic in the PLC code view.

• Previous()
Navigates to the previous network.

• ResetToConfiguration()
Executes the "ResetToConfiguration" command in the PLC code view.

• ToggleCriteriaAnalysis()
Executes the "ToggleCriteriaAnalysis" command in the PLC code view.

• ToggleGRAPHViewerMode()
Executes the "ToggleGRAPHViewerMode" command in the PLC code view.

• ToggleNetworkDisplay()
Executes the "ToggleNetworkDisplay" command in the PLC code view.

• ZoomIn()
Executes the "ZoomIn" command in the PLC code view.

• ZoomOut()
Executes the "ZoomOut" command in the PLC code view.

Events
The "SystemDiagnosisControl" object has the following events:
• OnActivated()

Occurs when a system diagnostics control receives focus.
• OnCommandFired()

Occurs when the operator has operated an element in the toolbar or information bar of the
system diagnostics control.

• OnDeactivated()
Occurs when a system diagnostics control loses focus.

• OnInitialized()
Occurs when a system diagnostics control has been successfully initialized and the data
connection to the PLC has been established.

Programming scripts
10.2 WinCC Unified object model

5282 System Manual, 11/2022

ProcessDiagnosisPlcCodeViewerControl.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisPlcCodeViewerControl.BackColor

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.Caption

Description
The "Caption" property specifies the text to be displayed in the title bar.

Type
Object, HmiTextPart

Access
Read-write

Syntax
ProcessDiagnosisPlcCodeViewerControl.Caption

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5283

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
ProcessDiagnosisPlcCodeViewerControl.Caption (Page 5283)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 5284)

Programming scripts
10.2 WinCC Unified object model

5284 System Manual, 11/2022

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 5284)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 5284)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5285

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 5284)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

5286 System Manual, 11/2022

See also
Text.Font (Page 5284)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 5284)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5287

Access
Read-write

Syntax
Text.ForeColor

See also
ProcessDiagnosisPlcCodeViewerControl.Caption (Page 5283)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
ProcessDiagnosisPlcCodeViewerControl.Caption (Page 5283)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

5288 System Manual, 11/2022

Access
Read-write

Syntax
Text.Visible

See also
ProcessDiagnosisPlcCodeViewerControl.Caption (Page 5283)

ProcessDiagnosisPlcCodeViewerControl.CaptionColor

Description
The "CaptionColor" property specifies the background color of the title bar.

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisPlcCodeViewerControl.CaptionColor

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
PLC code view.

Type
Int32, HmiQuality

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5289

Returns the current quality code:
• None (0): Undefined or not initialized
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.
• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
ProcessDiagnosisPlcCodeViewerControl.CurrentQuality

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.CurrentZoomFactor

Description
The "CurrentZoomFactor" property specifies the zoom factor of the PLC code view. The zoom
factor may differ from the containing screen. The value 1.0 corresponds to a zoom factor of
100%.

Type
Float

Access
Read-write

Syntax
ProcessDiagnosisPlcCodeViewerControl.CurrentZoomFactor

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

Programming scripts
10.2 WinCC Unified object model

5290 System Manual, 11/2022

ProcessDiagnosisPlcCodeViewerControl.Enabled

Description
The "Enabled" property specifies whether the PLC code view can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ProcessDiagnosisPlcCodeViewerControl.Enabled

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.Height

Description
The "Height" property specifies the height.

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisPlcCodeViewerControl.Height

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5291

ProcessDiagnosisPlcCodeViewerControl.Icon

Description
The "Icon" property specifies the icon of the PLC code view.

Type
String

Access
Read-write

Syntax
ProcessDiagnosisPlcCodeViewerControl.Icon

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.Layer

Description
The "Layer" property returns the screen layer in which the PLC code view is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
ProcessDiagnosisPlcCodeViewerControl.Layer

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

Programming scripts
10.2 WinCC Unified object model

5292 System Manual, 11/2022

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
ProcessDiagnosisPlcCodeViewerControl.Layer (Page 5292)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
ProcessDiagnosisPlcCodeViewerControl.Layer (Page 5292)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5293

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
ProcessDiagnosisPlcCodeViewerControl.Layer (Page 5292)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
ProcessDiagnosisPlcCodeViewerControl.Layer (Page 5292)

Programming scripts
10.2 WinCC Unified object model

5294 System Manual, 11/2022

ProcessDiagnosisPlcCodeViewerControl.Left

Description
The "Left" property specifies the value of the X coordinate.

Type
Int32

Access
Read-write

Syntax
ProcessDiagnosisPlcCodeViewerControl.Left

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.LineColors

Description
The "LineColors" property returns the line colors.

Type
Object, HmiLineColorPart

Access
Read-only

Syntax
ProcessDiagnosisPlcCodeViewerControl.LineColors

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5295

LineColor.ActiveLine

Description
The "ActiveLine" property returns the active line.

Type
UInt32

Access
Read-only

Syntax
LineColor.ActiveLine

See also
ProcessDiagnosisPlcCodeViewerControl.LineColors (Page 5295)

LineColor.InactiveLine

Description
The "InactiveLine" property returns the inactive line.

Type
UInt32

Access
Read-only

Syntax
LineColor.InactiveLine

See also
ProcessDiagnosisPlcCodeViewerControl.LineColors (Page 5295)

Programming scripts
10.2 WinCC Unified object model

5296 System Manual, 11/2022

LineColor.NormalLine

Description
The "NormalLine" property returns the normal line.

Type
UInt32

Access
Read-only

Syntax
LineColor.NormalLine

See also
ProcessDiagnosisPlcCodeViewerControl.LineColors (Page 5295)

ProcessDiagnosisPlcCodeViewerControl.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ProcessDiagnosisPlcCodeViewerControl.Margin

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5297

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ProcessDiagnosisPlcCodeViewerControl.Margin (Page 5297)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ProcessDiagnosisPlcCodeViewerControl.Margin (Page 5297)

Programming scripts
10.2 WinCC Unified object model

5298 System Manual, 11/2022

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ProcessDiagnosisPlcCodeViewerControl.Margin (Page 5297)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ProcessDiagnosisPlcCodeViewerControl.Margin (Page 5297)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5299

ProcessDiagnosisPlcCodeViewerControl.Name

Description
The "Name" property returns the name of the PLC code view.

Type
String

Access
Read-only

Syntax
ProcessDiagnosisPlcCodeViewerControl.Name

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.OverviewDetailRatio

Description
The "OverviewDetailRatio" property specifies how much space the detail view takes up in the PLC
code view.

Type
Float

Access
Read-write

Syntax
ProcessDiagnosisPlcCodeViewerControl.OverviewDetailRatio

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

Programming scripts
10.2 WinCC Unified object model

5300 System Manual, 11/2022

ProcessDiagnosisPlcCodeViewerControl.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 5301)

Access
Read-only

Syntax
ProcessDiagnosisPlcCodeViewerControl.Parent

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)
Screen Items (Page 5301)

Screen Items

Description
Screen Items (Page 1571)

ProcessDiagnosisPlcCodeViewerControl.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the PLC code
view was created.

Type
String

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5301

Syntax
ProcessDiagnosisPlcCodeViewerControl.RenderingTemplate

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the PLC code view is highlighted when in
focus.

Type
Bool

Access
Read-write

Syntax
ProcessDiagnosisPlcCodeViewerControl.ShowFocusVisual

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.ShowSymbolLine

Description
The "ShowSymbolLine" property specifies whether the symbol line is displayed.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5302 System Manual, 11/2022

Syntax
ProcessDiagnosisPlcCodeViewerControl.ShowSymbolLine

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.StatusBar

Description
The "StatusBar" property specifies the information bar.

Type
Object, HmiStatusBarPart

Access
Read-write

Syntax
ProcessDiagnosisPlcCodeViewerControl.StatusBar

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

StatusBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
StatusBar.BackColor

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5303

See also
ProcessDiagnosisPlcCodeViewerControl.StatusBar (Page 5303)

StatusBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
information bar.

Type
Object, HmiControlBarElementCollection (Page 5304)

Access
Read-only

Syntax
StatusBar.Elements

See also
ProcessDiagnosisPlcCodeViewerControl.StatusBar (Page 5303)
HmiControlBarElementCollection (Page 5304)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Programming scripts
10.2 WinCC Unified object model

5304 System Manual, 11/2022

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
StatusBar.Elements (Page 5304)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 5304)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5305

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 5306)

See also
HmiControlBarElementCollection (Page 5304)
Control Bar Elements (Page 5306)

Control Bar Elements

ControlBarButton

Description
The "ControlBarButton" object represents a button of an information bar or toolbar.
You can reference the "ControlBarButton" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarButtonPart

Programming scripts
10.2 WinCC Unified object model

5306 System Manual, 11/2022

Properties
The "ControlBarButton" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the label of the button.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the button can be operated in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• HotKey

Returns the hotkey specified for the button.
• Mapping

Returns the function of the button.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5307

• Operability
Returns whether the button is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the button is only operable while the corresponding button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the button is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 5304)

ControlBarButton.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBackColor

See also
ControlBarButton (Page 5306)

Programming scripts
10.2 WinCC Unified object model

5308 System Manual, 11/2022

ControlBarButton.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBorderColor

See also
ControlBarButton (Page 5306)

ControlBarButton.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the button of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarButton.Authorization

See also
ControlBarButton (Page 5306)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5309

ControlBarButton.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BackColor

See also
ControlBarButton (Page 5306)

ControlBarButton.Badge

Description
The "Badge" property specifies the label of the button.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarButton.Badge

See also
ControlBarButton (Page 5306)

Programming scripts
10.2 WinCC Unified object model

5310 System Manual, 11/2022

ControlBarButton.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BorderColor

See also
ControlBarButton (Page 5306)

ControlBarButton.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarButton.BorderWidth

See also
ControlBarButton (Page 5306)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5311

ControlBarButton.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarButton.Content

See also
ControlBarButton (Page 5306)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

5312 System Manual, 11/2022

See also
ControlBarButton.Content (Page 5312)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarButton.Content (Page 5312)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5313

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarButton.Content (Page 5312)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarButton.Content (Page 5312)

Programming scripts
10.2 WinCC Unified object model

5314 System Manual, 11/2022

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarButton.Content (Page 5312)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5315

Syntax
Content.TextPosition

See also
ControlBarButton.Content (Page 5312)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarButton.Content (Page 5312)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

5316 System Manual, 11/2022

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarButton.Content (Page 5312)

ControlBarButton.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarButton.CustomID

See also
ControlBarButton (Page 5306)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5317

ControlBarButton.Enabled

Description
The "Enabled" property specifies whether the button can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Enabled

See also
ControlBarButton (Page 5306)

ControlBarButton.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.ForeColor

See also
ControlBarButton (Page 5306)

Programming scripts
10.2 WinCC Unified object model

5318 System Manual, 11/2022

ControlBarButton.Graphic

Description
The "Graphic" property specifies the graphic of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Graphic

See also
ControlBarButton (Page 5306)

ControlBarButton.Height

Description
The "Height" property specifies the height of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Height

See also
ControlBarButton (Page 5306)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5319

ControlBarButton.HotKey

Description
The "HotKey" property returns the hotkey specified for the button. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
ControlBarButton.HotKey

See also
ControlBarButton (Page 5306)

ControlBarButton.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent

Programming scripts
10.2 WinCC Unified object model

5320 System Manual, 11/2022

• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5321

• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarButton.Mapping

See also
ControlBarButton (Page 5306)

ControlBarButton.Margin

Description
The "Margin" property specifies the surrounded outer distance of the button.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5322 System Manual, 11/2022

Syntax
ControlBarButton.Margin

See also
ControlBarButton (Page 5306)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarButton.Margin (Page 5322)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5323

Syntax
Margin.Left

See also
ControlBarButton.Margin (Page 5322)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarButton.Margin (Page 5322)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5324 System Manual, 11/2022

Syntax
Margin.Top

See also
ControlBarButton.Margin (Page 5322)

ControlBarButton.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumHeight

See also
ControlBarButton (Page 5306)

ControlBarButton.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5325

Syntax
ControlBarButton.MaximumWidth

See also
ControlBarButton (Page 5306)

ControlBarButton.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumHeight

See also
ControlBarButton (Page 5306)

ControlBarButton.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5326 System Manual, 11/2022

Syntax
ControlBarButton.MinimumWidth

See also
ControlBarButton (Page 5306)

ControlBarButton.Operability

Description
The "Operability" property returns whether the button is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarButton.Operability

See also
ControlBarButton (Page 5306)

ControlBarButton.Padding

Description
The "Padding" property specifies the distance of the content from the border of the button.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5327

Access
Read-write

Syntax
ControlBarButton.Padding

See also
ControlBarButton (Page 5306)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarButton.Padding (Page 5327)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5328 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Left

See also
ControlBarButton.Padding (Page 5327)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarButton.Padding (Page 5327)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5329

Access
Read-write

Syntax
Padding.Top

See also
ControlBarButton.Padding (Page 5327)

ControlBarButton.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the button can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarButton.RequireExplicitUnlock

See also
ControlBarButton (Page 5306)

ControlBarButton.Text

Description
The "Text" property specifies the label of the button.

Type
String

Programming scripts
10.2 WinCC Unified object model

5330 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.Text

See also
ControlBarButton (Page 5306)

ControlBarButton.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.ToolTipText

See also
ControlBarButton (Page 5306)

ControlBarButton.Visible

Description
The "Visible" property specifies whether the button is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5331

Access
Read-write

Syntax
ControlBarButton.Visible

See also
ControlBarButton (Page 5306)

ControlBarButton.Width

Description
The "Width" property specifies the width of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Width

See also
ControlBarButton (Page 5306)

ControlBarDisplay

Description
The "ControlBarDisplay" object represents a display area for text and graphics of an information
bar or toolbar.
You can reference the "ControlBarDisplay" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarDisplayPart

Programming scripts
10.2 WinCC Unified object model

5332 System Manual, 11/2022

Properties
The "ControlBarDisplay" object has the following properties:
• Authorization

Returns the operator authorization.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the display area is enabled in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• Mapping

Returns the function of the display area.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the display area is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the display area is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5333

• Visible
Specifies whether the display area is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 5304)

ControlBarDisplay.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the display.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarDislay.Authorization

See also
ControlBarDisplay (Page 5332)

ControlBarDisplay.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Programming scripts
10.2 WinCC Unified object model

5334 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.Content

See also
ControlBarDisplay (Page 5332)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarDisplay.Content (Page 5334)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5335

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarDisplay.Content (Page 5334)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5336 System Manual, 11/2022

Syntax
Content.HorizontalTextAlignment

See also
ControlBarDisplay.Content (Page 5334)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarDisplay.Content (Page 5334)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5337

Syntax
Content.SplitRatio

See also
ControlBarDisplay.Content (Page 5334)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarDisplay.Content (Page 5334)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Programming scripts
10.2 WinCC Unified object model

5338 System Manual, 11/2022

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarDisplay.Content (Page 5334)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5339

See also
ControlBarDisplay.Content (Page 5334)

ControlBarDisplay.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarDislay.CustomID

See also
ControlBarDisplay (Page 5332)

ControlBarDisplay.Enabled

Description
The "Enabled" property specifies whether the display is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Enabled

Programming scripts
10.2 WinCC Unified object model

5340 System Manual, 11/2022

See also
ControlBarDisplay (Page 5332)

ControlBarDisplay.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.ForeColor

See also
ControlBarDisplay (Page 5332)

ControlBarDisplay.Graphic

Description
The "Graphic" property specifies the graphic of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Graphic

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5341

See also
ControlBarDisplay (Page 5332)

ControlBarDisplay.Height

Description
The "Height" property specifies the height of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Height

See also
ControlBarDisplay (Page 5332)

ControlBarDisplay.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment

Programming scripts
10.2 WinCC Unified object model

5342 System Manual, 11/2022

• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5343

• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarDislay.Mapping

See also
ControlBarDisplay (Page 5332)

ControlBarDisplay.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the display.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

5344 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.Margin

See also
ControlBarDisplay (Page 5332)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarDisplay.Margin (Page 5344)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5345

Access
Read-write

Syntax
Margin.Left

See also
ControlBarDisplay.Margin (Page 5344)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarDisplay.Margin (Page 5344)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5346 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Top

See also
ControlBarDisplay.Margin (Page 5344)

ControlBarDisplay.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MaximumHeight

See also
ControlBarDisplay (Page 5332)

ControlBarDisplay.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5347

Access
Read-write

Syntax
ControlBarDislay.MaximumWidth

See also
ControlBarDisplay (Page 5332)

ControlBarDisplay.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MinimumHeight

See also
ControlBarDisplay (Page 5332)

ControlBarDisplay.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

5348 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.MinimumWidth

See also
ControlBarDisplay (Page 5332)

ControlBarDisplay.Operability

Description
The "Operability" property returns whether the display is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarDislay.Operability

See also
ControlBarDisplay (Page 5332)

ControlBarDisplay.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the display.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5349

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarDislay.Padding

See also
ControlBarDisplay (Page 5332)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarDisplay.Padding (Page 5349)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

5350 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarDisplay.Padding (Page 5349)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarDisplay.Padding (Page 5349)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5351

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarDisplay.Padding (Page 5349)

ControlBarDisplay.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the display can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarDislay.RequireExplicitUnlock

See also
ControlBarDisplay (Page 5332)

ControlBarDisplay.Text

Description
The "Text" property specifies the label of the display.

Programming scripts
10.2 WinCC Unified object model

5352 System Manual, 11/2022

Type
String

Access
Read-write

Syntax
ControlBarDislay.Text

See also
ControlBarDisplay (Page 5332)

ControlBarDisplay.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.ToolTipText

See also
ControlBarDisplay (Page 5332)

ControlBarDisplay.Visible

Description
The "Visible" property specifies whether the display is visible.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5353

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Visible

See also
ControlBarDisplay (Page 5332)

ControlBarDisplay.Width

Description
The "Width" property specifies the width of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Width

See also
ControlBarDisplay (Page 5332)

ControlBarLabel

Description
The "ControlBarLabel" object represents an identifier of an information bar or toolbar.
You can reference the "ControlBarLabel" object via the "HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

5354 System Manual, 11/2022

Object type
HmiControlBarLabelPart

Properties
The "ControlBarLabel" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the identifier can be operated in runtime.
• ForeColor

Specifies the font color.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Height

Specifies the height.
• Mapping

Returns the function of the identifier.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the identifier is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the identifier is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5355

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the identifier is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 5304)

ControlBarLabel.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the identifier.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarLabel.Authorization

See also
ControlBarLabel (Page 5354)

ControlBarLabel.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Programming scripts
10.2 WinCC Unified object model

5356 System Manual, 11/2022

Type
Int32

Access
Read-only

Syntax
ControlBarLabel.CustomID

See also
ControlBarLabel (Page 5354)

ControlBarLabel.Enabled

Description
The "Enabled" property specifies whether the identifier is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarLabel.Enabled

See also
ControlBarLabel (Page 5354)

ControlBarLabel.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5357

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.ForeColor

See also
ControlBarLabel (Page 5354)

ControlBarLabel.Height

Description
The "Height" property specifies the height of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Height

See also
ControlBarLabel (Page 5354)

ControlBarLabel.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Programming scripts
10.2 WinCC Unified object model

5358 System Manual, 11/2022

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.HorizontalTextAlignment

See also
ControlBarLabel (Page 5354)

ControlBarLabel.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5359

• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms

Programming scripts
10.2 WinCC Unified object model

5360 System Manual, 11/2022

• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarLabel.Mapping

See also
ControlBarLabel (Page 5354)

ControlBarLabel.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the identifier.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5361

Syntax
ControlBarLabel.Margin

See also
ControlBarLabel (Page 5354)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarLabel.Margin (Page 5361)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5362 System Manual, 11/2022

Syntax
Margin.Left

See also
ControlBarLabel.Margin (Page 5361)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarLabel.Margin (Page 5361)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5363

Syntax
Margin.Top

See also
ControlBarLabel.Margin (Page 5361)

ControlBarLabel.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumHeight

See also
ControlBarLabel (Page 5354)

ControlBarLabel.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5364 System Manual, 11/2022

Syntax
ControlBarLabel.MaximumWidth

See also
ControlBarLabel (Page 5354)

ControlBarLabel.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumHeight

See also
ControlBarLabel (Page 5354)

ControlBarLabel.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5365

Syntax
ControlBarLabel.MinimumWidth

See also
ControlBarLabel (Page 5354)

ControlBarLabel.Operability

Description
The "Operability" property returns whether the identifier is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarLabel.Operability

See also
ControlBarLabel (Page 5354)

ControlBarLabel.Padding

Description
The "Padding" property specifies the spacing of the content from the frame of the identifier.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

5366 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarLabel.Padding

See also
ControlBarLabel (Page 5354)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarLabel.Padding (Page 5366)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5367

Access
Read-write

Syntax
Padding.Left

See also
ControlBarLabel.Padding (Page 5366)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarLabel.Padding (Page 5366)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5368 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Top

See also
ControlBarLabel.Padding (Page 5366)

ControlBarLabel.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the identifier can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarLabel.RequireExplicitUnlock

See also
ControlBarLabel (Page 5354)

ControlBarLabel.Text

Description
The "Text" property specifies the label of the identifier.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5369

Access
Read-write

Syntax
ControlBarLabel.Text

See also
ControlBarLabel (Page 5354)

ControlBarLabel.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.ToolTipText

See also
ControlBarLabel (Page 5354)

ControlBarLabel.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

5370 System Manual, 11/2022

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.VerticalTextAlignment

See also
ControlBarLabel (Page 5354)

ControlBarLabel.Visible

Description
The "Visible" property specifies whether the identifier is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarLabel.Visible

See also
ControlBarLabel (Page 5354)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5371

ControlBarLabel.Width

Description
The "Width" property specifies the width of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Width

See also
ControlBarLabel (Page 5354)

ControlBarSeparator

Description
The "ControlBarSeparator" object represents a separator of an information bar or toolbar.
You can reference the "ControlBarSeparator" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarSeparatorPart

Properties
The "ControlBarSeparator" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the disconnector can be operated in runtime.
• ForeColor

Specifies the font color.

Programming scripts
10.2 WinCC Unified object model

5372 System Manual, 11/2022

• Height
Specifies the height.

• Mapping
Returns the function of the separator.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the separator is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the disconnector is only operable while the associated button is being
pressed.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the disconnector is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 5304)

ControlBarSeparator.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the separator.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5373

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarSeparator.Authorization

See also
ControlBarSeparator (Page 5372)

ControlBarSeparator.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarSeparator.CustomID

See also
ControlBarSeparator (Page 5372)

ControlBarSeparator.Enabled

Description
The "Enabled" property specifies whether the separator is active in runtime.

Programming scripts
10.2 WinCC Unified object model

5374 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Enabled

See also
ControlBarSeparator (Page 5372)

ControlBarSeparator.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.ForeColor

See also
ControlBarSeparator (Page 5372)

ControlBarSeparator.Height

Description
The "Height" property specifies the height of the separator in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5375

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Height

See also
ControlBarSeparator (Page 5372)

ControlBarSeparator.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line

Programming scripts
10.2 WinCC Unified object model

5376 System Manual, 11/2022

• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5377

• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarSeparator.Mapping

See also
ControlBarSeparator (Page 5372)

ControlBarSeparator.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the separator.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarSeparator.Margin

See also
ControlBarSeparator (Page 5372)

Programming scripts
10.2 WinCC Unified object model

5378 System Manual, 11/2022

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarSeparator.Margin (Page 5378)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarSeparator.Margin (Page 5378)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5379

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarSeparator.Margin (Page 5378)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarSeparator.Margin (Page 5378)

Programming scripts
10.2 WinCC Unified object model

5380 System Manual, 11/2022

ControlBarSeparator.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MaximumHeight

See also
ControlBarSeparator (Page 5372)

ControlBarSeparator.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MaximumWidth

See also
ControlBarSeparator (Page 5372)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5381

ControlBarSeparator.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MinimumHeight

See also
ControlBarSeparator (Page 5372)

ControlBarSeparator.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MinimumWidth

See also
ControlBarSeparator (Page 5372)

Programming scripts
10.2 WinCC Unified object model

5382 System Manual, 11/2022

ControlBarSeparator.Operability

Description
The "Operability" property returns whether the separator is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarSeparator.Operability

See also
ControlBarSeparator (Page 5372)

ControlBarSeparator.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the separator.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarSeparator.Padding

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5383

See also
ControlBarSeparator (Page 5372)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarSeparator.Padding (Page 5383)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

Programming scripts
10.2 WinCC Unified object model

5384 System Manual, 11/2022

See also
ControlBarSeparator.Padding (Page 5383)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarSeparator.Padding (Page 5383)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5385

See also
ControlBarSeparator.Padding (Page 5383)

ControlBarSeparator.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the disconnector can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarSeparator.RequireExplicitUnlock

See also
ControlBarSeparator (Page 5372)

ControlBarSeparator.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the separator.

Type
String

Access
Read-write

Syntax
ControlBarSeparator.ToolTipText

Programming scripts
10.2 WinCC Unified object model

5386 System Manual, 11/2022

See also
ControlBarSeparator (Page 5372)

ControlBarSeparator.Visible

Description
The "Visible" property specifies whether the separator is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Visible

See also
ControlBarSeparator (Page 5372)

ControlBarSeparator.Width

Description
The "Width" property specifies the width of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Width

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5387

See also
ControlBarSeparator (Page 5372)

ControlBarTextBox

Description
The "ControlBarTextBox" object represents a text box of an information bar or toolbar.
You can reference the "ControlBarTextBox" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarTextBoxPart

Properties
The "ControlBarTextBox" object has the following properties:
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the text box can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Mapping

Returns the function of the text box.
• Margin

Specifies the margin.

Programming scripts
10.2 WinCC Unified object model

5388 System Manual, 11/2022

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the text box is operable.

• Padding
Specifies the distance of the content from the border.

• Readonly
Specifies whether the text box is write-protected.

• RequireExplicitUnlock
Returns whether the text box is only operable while the associated button is being pressed.

• Text
Specifies the labeling.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the text box is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 5304)

ControlBarTextBox.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5389

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.AlternateBorderColor

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the text box of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarTextBox.Authorization

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.BackColor

Description
The "BackColor" property specifies the background color.

Programming scripts
10.2 WinCC Unified object model

5390 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BackColor

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BorderColor

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5391

Type
UInt8

Access
Read-write

Syntax
ControlBarTextBox.BorderWidth

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarTextBox.CustomID

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.Enabled

Description
The "Enabled" property specifies whether the text box can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

5392 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Enabled

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.ForeColor

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.Height

Description
The "Height" property specifies the height of the text box in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5393

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Height

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.HorizontalTextAlignment

See also
ControlBarTextBox (Page 5388)

Programming scripts
10.2 WinCC Unified object model

5394 System Manual, 11/2022

ControlBarTextBox.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5395

• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

5396 System Manual, 11/2022

Syntax
ControlBarTextBox.Mapping

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the text box.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarTextBox.Margin

See also
ControlBarTextBox (Page 5388)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5397

Syntax
Margin.Bottom

See also
ControlBarTextBox.Margin (Page 5397)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarTextBox.Margin (Page 5397)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5398 System Manual, 11/2022

Syntax
Margin.Right

See also
ControlBarTextBox.Margin (Page 5397)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarTextBox.Margin (Page 5397)

ControlBarTextBox.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5399

Syntax
ControlBarTextBox.MaximumHeight

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumWidth

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5400 System Manual, 11/2022

Syntax
ControlBarTextBox.MinimumHeight

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumWidth

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.Operability

Description
The "Operability" property returns whether the text box is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5401

Access
Read-only

Syntax
ControlBarTextBox.Operability

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the text box.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarTextBox.Padding

See also
ControlBarTextBox (Page 5388)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5402 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarTextBox.Padding (Page 5402)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarTextBox.Padding (Page 5402)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5403

Access
Read-write

Syntax
Padding.Right

See also
ControlBarTextBox.Padding (Page 5402)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarTextBox.Padding (Page 5402)

ControlBarTextBox.ReadOnly

Description
The "ReadOnly" property specifies whether the text box is read-only.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

5404 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarTextBox.ReadOnly

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the text box can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarTextBox.RequireExplicitUnlock

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.Text

Description
The "Text" property specifies the label of the text box.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5405

Access
Read-write

Syntax
ControlBarTextBox.Text

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.ToolTipText

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

5406 System Manual, 11/2022

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.VerticalTextAlignment

See also
ControlBarTextBox (Page 5388)

ControlBarTextBox.Visible

Description
The "Visible" property specifies whether the text box is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Visible

See also
ControlBarTextBox (Page 5388)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5407

ControlBarTextBox.Width

Description
The "Width" property specifies the width of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Width

See also
ControlBarTextBox (Page 5388)

ControlBarToggleSwitch

Description
The "ControlBarToggleSwitch" object represents a switch of an information bar or toolbar.
You can reference the "ControlBarToggleSwitch" object via the
"HmiControlBarElementCollection" list.

Object type
HmiControlBarToggleSwitchPart

Properties
The "ControlBarToggleSwitch" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• AlternateGraphic

Specifies the graphic for the "pressed" state.
• AlternateText

Specifies the text for the "pressed" state.

Programming scripts
10.2 WinCC Unified object model

5408 System Manual, 11/2022

• Authorization
Returns the operator authorization.

• BackColor
Specifies the background color.

• Badge
Specifies the identifier of the switch.

• BorderColor
Specifies the line color.

• BorderWidth
Specifies the line thickness.

• Content
Specifies display options for text and graphics.

• CustomID
Returns the custom ID.

• Enabled
Specifies whether the switch can be operated in runtime.

• ForeColor
Specifies the font color.

• Graphic
Specifies the graphic.

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the switch.

• IsAlternateState
Specifies the current state of the switch.

• Mapping
Returns the function of the switch.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the switch is operable.

• Padding
Specifies the distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5409

• RequireExplicitUnlock
Returns whether the switch is only operable while the associated button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the switch is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 5304)

ControlBarToggleSwitch.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBackColor

See also
ControlBarToggleSwitch (Page 5408)

Programming scripts
10.2 WinCC Unified object model

5410 System Manual, 11/2022

ControlBarToggleSwitch.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBorderColor

See also
ControlBarToggleSwitch (Page 5408)

ControlBarToggleSwitch.AlternateGraphic

Description
The "AlternateGraphic" property specifies the graphic of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateGraphic

See also
ControlBarToggleSwitch (Page 5408)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5411

ControlBarToggleSwitch.AlternateText

Description
The "AlternateText" property specifies the text of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateText

See also
ControlBarToggleSwitch (Page 5408)

ControlBarToggleSwitch.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the switch of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarToggleSwitch.Authorization

See also
ControlBarToggleSwitch (Page 5408)

Programming scripts
10.2 WinCC Unified object model

5412 System Manual, 11/2022

ControlBarToggleSwitch.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BackColor

See also
ControlBarToggleSwitch (Page 5408)

ControlBarToggleSwitch.Badge

Description
The "Badge" property specifies the identifier of the switch.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarToggleSwitch.Badge

See also
ControlBarToggleSwitch (Page 5408)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5413

ControlBarToggleSwitch.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderColor

See also
ControlBarToggleSwitch (Page 5408)

ControlBarToggleSwitch.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderWidth

See also
ControlBarToggleSwitch (Page 5408)

Programming scripts
10.2 WinCC Unified object model

5414 System Manual, 11/2022

ControlBarToggleSwitch.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Content

See also
ControlBarToggleSwitch (Page 5408)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5415

See also
ControlBarToggleSwitch.Content (Page 5415)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarToggleSwitch.Content (Page 5415)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

5416 System Manual, 11/2022

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 5415)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarToggleSwitch.Content (Page 5415)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5417

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarToggleSwitch.Content (Page 5415)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5418 System Manual, 11/2022

Syntax
Content.TextPosition

See also
ControlBarToggleSwitch.Content (Page 5415)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarToggleSwitch.Content (Page 5415)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5419

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 5415)

ControlBarToggleSwitch.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarToggleSwitch.CustomID

See also
ControlBarToggleSwitch (Page 5408)

Programming scripts
10.2 WinCC Unified object model

5420 System Manual, 11/2022

ControlBarToggleSwitch.Enabled

Description
The "Enabled" property specifies whether the switch can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Enabled

See also
ControlBarToggleSwitch (Page 5408)

ControlBarToggleSwitch.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.ForeColor

See also
ControlBarToggleSwitch (Page 5408)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5421

ControlBarToggleSwitch.Graphic

Description
The "Graphic" property specifies the graphic of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Graphic

See also
ControlBarToggleSwitch (Page 5408)

ControlBarToggleSwitch.Height

Description
The "Height" property specifies the height of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Height

See also
ControlBarToggleSwitch (Page 5408)

Programming scripts
10.2 WinCC Unified object model

5422 System Manual, 11/2022

ControlBarToggleSwitch.HotKey

Description
The "HotKey" property returns the hotkey specified for the switch. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
Button.HotKey

See also
ControlBarToggleSwitch (Page 5408)

ControlBarToggleSwitch.IsAlternateState

Description
The "IsAlternateState" property specifies the current state of the switch.
• True: Switch is in "On" state.
• False: Switch is in "Off" state.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.IsAlternateState

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5423

See also
ControlBarToggleSwitch (Page 5408)

ControlBarToggleSwitch.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

5424 System Manual, 11/2022

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5425

Access
Read-only

Syntax
ControlBarToggleSwitch.Mapping

See also
ControlBarToggleSwitch (Page 5408)

ControlBarToggleSwitch.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the switch.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Margin

See also
ControlBarToggleSwitch (Page 5408)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5426 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarToggleSwitch.Margin (Page 5426)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarToggleSwitch.Margin (Page 5426)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5427

Access
Read-write

Syntax
Margin.Right

See also
ControlBarToggleSwitch.Margin (Page 5426)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarToggleSwitch.Margin (Page 5426)

ControlBarToggleSwitch.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

5428 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumHeight

See also
ControlBarToggleSwitch (Page 5408)

ControlBarToggleSwitch.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumWidth

See also
ControlBarToggleSwitch (Page 5408)

ControlBarToggleSwitch.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5429

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumHeight

See also
ControlBarToggleSwitch (Page 5408)

ControlBarToggleSwitch.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumWidth

See also
ControlBarToggleSwitch (Page 5408)

ControlBarToggleSwitch.Operability

Description
The property "Operability" returns whether the switch is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

5430 System Manual, 11/2022

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarToggleSwitch.Operability

See also
ControlBarToggleSwitch (Page 5408)

ControlBarToggleSwitch.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the switch.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Padding

See also
ControlBarToggleSwitch (Page 5408)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5431

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarToggleSwitch.Padding (Page 5431)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarToggleSwitch.Padding (Page 5431)

Programming scripts
10.2 WinCC Unified object model

5432 System Manual, 11/2022

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarToggleSwitch.Padding (Page 5431)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarToggleSwitch.Padding (Page 5431)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5433

ControlBarToggleSwitch.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the switch can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarToggleSwitch.RequireExplicitUnlock

See also
ControlBarToggleSwitch (Page 5408)

ControlBarToggleSwitch.Text

Description
The "Text" property specifies the label of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Text

See also
ControlBarToggleSwitch (Page 5408)

Programming scripts
10.2 WinCC Unified object model

5434 System Manual, 11/2022

ControlBarToggleSwitch.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.ToolTipText

See also
ControlBarToggleSwitch (Page 5408)

ControlBarToggleSwitch.Visible

Description
The "Visible" property specifies whether the switch is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Visible

See also
ControlBarToggleSwitch (Page 5408)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5435

ControlBarToggleSwitch.Width

Description
The "Width" property specifies the width of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Width

See also
ControlBarToggleSwitch (Page 5408)

StatusBar.Enabled

Description
The "Enabled" property specifies whether the information bar can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
StatusBar.Enabled

See also
ProcessDiagnosisPlcCodeViewerControl.StatusBar (Page 5303)

Programming scripts
10.2 WinCC Unified object model

5436 System Manual, 11/2022

StatusBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
StatusBar.Font

See also
ProcessDiagnosisPlcCodeViewerControl.StatusBar (Page 5303)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
StatusBar.Font (Page 5437)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5437

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
StatusBar.Font (Page 5437)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
StatusBar.Font (Page 5437)

Programming scripts
10.2 WinCC Unified object model

5438 System Manual, 11/2022

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
StatusBar.Font (Page 5437)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5439

See also
StatusBar.Font (Page 5437)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
StatusBar.Font (Page 5437)

StatusBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the information bar.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

5440 System Manual, 11/2022

Access
Read-write

Syntax
StatusBar.Margin

See also
ProcessDiagnosisPlcCodeViewerControl.StatusBar (Page 5303)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
StatusBar.Margin (Page 5440)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5441

Access
Read-write

Syntax
Margin.Left

See also
StatusBar.Margin (Page 5440)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
StatusBar.Margin (Page 5440)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5442 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Top

See also
StatusBar.Margin (Page 5440)

StatusBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the information
bar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
StatusBar.Padding

See also
ProcessDiagnosisPlcCodeViewerControl.StatusBar (Page 5303)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5443

Access
Read-write

Syntax
Padding.Bottom

See also
StatusBar.Padding (Page 5443)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
StatusBar.Padding (Page 5443)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5444 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Right

See also
StatusBar.Padding (Page 5443)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
StatusBar.Padding (Page 5443)

StatusBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5445

Access
Read-write

Syntax
StatusBar.ShowToolTips

See also
ProcessDiagnosisPlcCodeViewerControl.StatusBar (Page 5303)

StatusBar.Visible

Description
The "Visible" property specifies whether the information bar is visible.

Type
Bool

Access
Read-write

Syntax
StatusBar.Visible

See also
ProcessDiagnosisPlcCodeViewerControl.StatusBar (Page 5303)

ProcessDiagnosisPlcCodeViewerControl.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the PLC code view.

Type
String

Programming scripts
10.2 WinCC Unified object model

5446 System Manual, 11/2022

Access
Read-only

Syntax
ProcessDiagnosisPlcCodeViewerControl.StyleItemClass

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.SymbolLineBackColor

Description
The "SymbolLineBackColor" property specifies the background color of the symbol line.

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisPlcCodeViewerControl.SymbolLineBackColor

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.SymbolLineFont

Description
The "SymbolLineFont" property specifies the font of the text in the symbol line.

Type
Object, HmiFontPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5447

Syntax
ProcessDiagnosisPlcCodeViewerControl.SymbolLineFont

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
ProcessDiagnosisPlcCodeViewerControl.SymbolLineFont (Page 5447)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5448 System Manual, 11/2022

Syntax
Font.Name

See also
ProcessDiagnosisPlcCodeViewerControl.SymbolLineFont (Page 5447)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
ProcessDiagnosisPlcCodeViewerControl.SymbolLineFont (Page 5447)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5449

Access
Read-write

Syntax
Font.StrikeOut

See also
ProcessDiagnosisPlcCodeViewerControl.SymbolLineFont (Page 5447)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
ProcessDiagnosisPlcCodeViewerControl.SymbolLineFont (Page 5447)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight

Programming scripts
10.2 WinCC Unified object model

5450 System Manual, 11/2022

Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
ProcessDiagnosisPlcCodeViewerControl.SymbolLineFont (Page 5447)

ProcessDiagnosisPlcCodeViewerControl.SymbolLineForeColor

Description
The "SymbolLineForeColor" property specifies the text font color of the symbol line.

Type
UInt32

Access
Read-write

Syntax
ProcessDiagnosisPlcCodeViewerControl.SymbolLineForeColor

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5451

ProcessDiagnosisPlcCodeViewerControl.TabIndex

Description
The "TabIndex" property returns the position of the PLC code view in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
ProcessDiagnosisPlcCodeViewerControl.TabIndex

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.ToolBar

Description
The "ToolBar" property specifies the toolbar of the PLC code view.

Type
Object, HmiToolBarPart

Access
Read-write

Syntax
ProcessDiagnosisPlcCodeViewerControl.ToolBar

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

Programming scripts
10.2 WinCC Unified object model

5452 System Manual, 11/2022

ToolBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ToolBar.BackColor

See also
ProcessDiagnosisPlcCodeViewerControl.ToolBar (Page 5452)

ToolBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
toolbar.

Type
Object, HmiControlBarElementCollection (Page 5454)

Access
Read-only

Syntax
ToolBar.Elements

See also
ProcessDiagnosisPlcCodeViewerControl.ToolBar (Page 5452)
HmiControlBarElementCollection (Page 5454)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5453

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
ToolBar.Elements (Page 5453)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

5454 System Manual, 11/2022

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 5454)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 5456)

See also
HmiControlBarElementCollection (Page 5454)
Control Bar Elements (Page 5456)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5455

Control Bar Elements

Description
Control Bar Elements (Page 5306)

ToolBar.Enabled

Description
The "Enabled" property specifies whether the toolbar can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ToolBar.Enabled

See also
ProcessDiagnosisPlcCodeViewerControl.ToolBar (Page 5452)

ToolBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ToolBar.Font

Programming scripts
10.2 WinCC Unified object model

5456 System Manual, 11/2022

See also
ProcessDiagnosisPlcCodeViewerControl.ToolBar (Page 5452)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
ToolBar.Font (Page 5456)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5457

See also
ToolBar.Font (Page 5456)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
ToolBar.Font (Page 5456)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5458 System Manual, 11/2022

Syntax
Font.StrikeOut

See also
ToolBar.Font (Page 5456)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
ToolBar.Font (Page 5456)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5459

• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
ToolBar.Font (Page 5456)

ToolBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the toolbar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ToolBar.Margin

See also
ProcessDiagnosisPlcCodeViewerControl.ToolBar (Page 5452)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Programming scripts
10.2 WinCC Unified object model

5460 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ToolBar.Margin (Page 5460)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ToolBar.Margin (Page 5460)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5461

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ToolBar.Margin (Page 5460)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ToolBar.Margin (Page 5460)

ToolBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the toolbar.

Programming scripts
10.2 WinCC Unified object model

5462 System Manual, 11/2022

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ToolBar.Padding

See also
ProcessDiagnosisPlcCodeViewerControl.ToolBar (Page 5452)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ToolBar.Padding (Page 5462)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5463

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ToolBar.Padding (Page 5462)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ToolBar.Padding (Page 5462)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

5464 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ToolBar.Padding (Page 5462)

ToolBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
ToolBar.ShowToolTips

See also
ProcessDiagnosisPlcCodeViewerControl.ToolBar (Page 5452)

ToolBar.UseHotKeys

Description
The "UseHotKeys" property specifies whether the shortcut keys for the buttons in the toolbar are
activated.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5465

Type
Bool

Access
Read-write

Syntax
ToolBar.UseHotKeys

See also
ProcessDiagnosisPlcCodeViewerControl.ToolBar (Page 5452)

ToolBar.Visible

Description
The "Visible" property specifies whether the toolbar is visible.

Type
Bool

Access
Read-write

Syntax
ToolBar.Visible

See also
ProcessDiagnosisPlcCodeViewerControl.ToolBar (Page 5452)

ProcessDiagnosisPlcCodeViewerControl.Top

Description
The "Top" property specifies the value of the Y coordinate.

Programming scripts
10.2 WinCC Unified object model

5466 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
ProcessDiagnosisPlcCodeViewerControl.Top

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.Visible

Description
The "Visible" property specifies whether the PLC code view is visible.

Type
Bool

Access
Read-write

Syntax
ProcessDiagnosisPlcCodeViewerControl.Visible

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.Width

Description
The "Width" property specifies the width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5467

Access
Read-write

Syntax
ProcessDiagnosisPlcCodeViewerControl.Width

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the system PLC code view.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title
• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be positioned
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
You can enable multiple properties by adding integer values or bit operators.

Access
Read-write

Syntax
ProcessDiagnosisPlcCodeViewerControl.WindowFlags

Programming scripts
10.2 WinCC Unified object model

5468 System Manual, 11/2022

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.FireCommand()

Description
The "FireCommand" method executes the command of an element in the toolbar or information
bar (control bar element, e.g. a button) of the PLC code view.

Syntax
ProcessDiagnosisPlcCodeViewerControl.FireCommand(commandId, custom)

Parameters
commandId
Type: Int32
ID of the element of the toolbar or information bar

custom
Type: Bool
Type of element ID:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

Return value
--

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.Next()

Description
The "Next" method navigates to the next network.

Syntax
ProcessDiagnosisPlcCodeViewerControl.Next()

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5469

Parameters
--

Return value
--

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.OpenCodeViewerFromAlarm()

Description
The "OpenCodeViewerFromAlarm" method opens the corresponding block in the PLC code view
according to the selection in the alarm control.

Syntax
ProcessDiagnosisPlcCodeViewerControl.OpenCodeViewerFromAlarm(HmiConn
ectionName, CpuAlarmID, TextlistIndex)

Parameters
HmiConnectionName
Type: String
Connection name

CpuAlarmID
Type: Object, HMIUint64
ID of the CPU alarm

TextlistIndex
Type: Object, HMIUint64
Index of the text list

Return value
--

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

Programming scripts
10.2 WinCC Unified object model

5470 System Manual, 11/2022

ProcessDiagnosisPlcCodeViewerControl.OpenGRAPHDetails()

Description
The "OpenGRAPHDetails" method opens the "GRAPH" details block in the PLC code view.

Syntax
ProcessDiagnosisPlcCodeViewerControl.OpenGRAPHDetails(PlcName,
Block, StepNumber)

Parameters
PlcName
Type: String
Name of the PLC

Block
Type: String
Name of the block

StepNumber
Type: UInt16
Step number

Return value
--

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.OpenGRAPHDetailsByConnectionName()

Description
The "OpenGRAPHDetailsByConnectionName" method opens the "GRAPH" details block in the
PLC code view.

Syntax
ProcessDiagnosisPlcCodeViewerControl.OpenGRAPHDetailsByConnectionNam
e(HmiConnectionName, Block, StepNumber)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5471

Parameters
HmiConnectionName
Type: String
Connection name

Block
Type: String
Name of the block

StepNumber
Type: UInt16
Step number

Return value
--

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.OpenProDiagDetailsFB()

Description
The "OpenProDiagDetailsFB" method represents the logic of a network input of a function block
in the PLC code view.

Syntax
ProcessDiagnosisPlcCodeViewerControl.OpenProDiagDetailsFB(PlcName,
ContainingBlock, CallBlock, Pin, PinSubstringSearch)

Parameters
PlcName
Type: String
Name of the PLC.

ContainingBlock
Type: String
Name of the contained block

Programming scripts
10.2 WinCC Unified object model

5472 System Manual, 11/2022

CallBlock
Type: String
Name of the called block

Pin
Type: String
Name of the input pin of the "CallBlock".

PinSubstringSearch
Type: Bool
Specifies whether the pin name starts with the transferred pin parameter.
• True: Pin name starts with the transferred pin parameter.
• False: Pin name must be the same as the pin parameter.

Return value
--

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.OpenProDiagDetailsFC()

Description
The "OpenProDiagDetailsFC" represents the logic of a function in the PLC code view, taking the
UDT instance into account.

Syntax
ProcessDiagnosisPlcCodeViewerControl.OpenProDiagDetailsFC(PlcName,
ContainingBlock, CallBlock, Pin, UdtInstance, PinSubstringSearch)

Parameters
PlcName
Type: String
Name of the PLC.

ContainingBlock
Type: String
Name of the contained block

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5473

CallBlock
Type: String
Name of the called block

Pin
Type: String
Name of the input pin of the "CallBlock".
UdtInstance
Type: String
UDT instance that is used to limit the display of FCs called multiple times.

PinSubstringSearch
Type: Bool
Specifies whether the pin name starts with the transferred pin parameter.
• True: Pin name starts with the transferred pin parameter
• False: Pin name must be the same as the pin parameter

Return value
--

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.OpenProDiagDetailsNetwork()

Description
The "OpenProDiagDetailsNetwork" method represents a network and its logic in the PLC code
view.

Syntax
ProcessDiagnosisPlcCodeViewerControl.OpenProDiagDetailsNetwork(PlcNa
me, ContainingBlock, Operand)

Parameters
PlcName
Type: String
Name of the PLC

Programming scripts
10.2 WinCC Unified object model

5474 System Manual, 11/2022

ContainingBlock
Type: String
Name of the contained block

Operand
Type: String
Operand of the access point

Return value
--

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.Previous()

Description
The "Previous" method navigates to the previous network.

Syntax
ProcessDiagnosisPlcCodeViewerControl.Previous()

Parameters
--

Return value
--

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.ResetToConfiguration()

Description
The "ResetToConfiguration" method executes the "ResetToConfiguration" command in der PLC
code view.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5475

Syntax
ProcessDiagnosisPlcCodeViewerControl.ResetToConfiguration()

Parameters
--

Return value
--

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.ToggleCriteriaAnalysis()

Description
The "ToggleCriteriaAnalysis" method executes the "ToggleCriteriaAnalysis" command in der PLC
code view.

Syntax
ProcessDiagnosisPlcCodeViewerControl.ToggleCriteriaAnalysis()

Parameters
--

Return value
--

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.ToggleGRAPHViewerMode()

Description
The "ToggleGRAPHViewerMode" method executes the "ToggleGRAPHViewerMode" command in
der PLC code view.

Programming scripts
10.2 WinCC Unified object model

5476 System Manual, 11/2022

Syntax
ProcessDiagnosisPlcCodeViewerControl.ToggleGRAPHViewerMode()

Parameters
--

Return value
--

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.ToggleNetworkDisplay()

Description
The "ToggleNetworkDisplay" method executes the "ToggleNetworkDisplay" command in der PLC
code view.

Syntax
ProcessDiagnosisPlcCodeViewerControl.ToggleNetworkDisplay()

Parameters
--

Return value
--

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.ZoomIn()

Description
The "ZoomIn" method executes the "ZoomIn" command in der PLC code view.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5477

Syntax
ProcessDiagnosisPlcCodeViewerControl.ZoomIn()

Parameters
--

Return value
--

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

ProcessDiagnosisPlcCodeViewerControl.ZoomOut()

Description
The "ZoomOut" method executes the "ZoomOut" command in der PLC code view.

Syntax
ProcessDiagnosisPlcCodeViewerControl.ZoomOut()

Parameters
--

Return value
--

See also
ProcessDiagnosisPlcCodeViewerControl (Page 5280)

RadioButtonGroup

Description
The "RadioButtonGroup" object represents an option button in runtime.

Object type
HmiRadioButtonGroup

Programming scripts
10.2 WinCC Unified object model

5478 System Manual, 11/2022

Properties
The "RadioButtonGroup" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the border color.
• BorderWidth

Specifies the border thickness.
• Content

Specifies the display options for text and graphics.
• CurrentQuality

Returns the poorest quality code of all tags which influence the option button.
• Enabled

Specifies whether the option button can be operated in runtime.
• Font

Specifies the font of the text.
• ForeColor

Specifies the font color of the text.
• Height

Specifies the height.
• Layer

Returns the layer of the screen in which the option button is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the option button.
• Opacity

Specifies the opacity.
• Operability

Returns whether the option button is operable.
• Padding

Specifies the distance of the content from the border of the option button.
• Parent

Returns the higher-level screen object.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5479

• ProcessValue
Specifies the process value.

• RenderingTemplate
Returns the name of the template from which the option button was created.

• RequireExplicitUnlock
Returns whether the option button is only operable while the associated button is being
pressed.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the option button rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• SelectionItemHeight
Specifies the height of the option button entries.

• SelectionItems
Returns the list of all option button entries.

• SelectorPosition
Specifies the horizontal alignment of the option button entries.

• ShowFocusVisual
Specifies whether the option button is highlighted when in focus.

• StyleItemClass
Returns the style which is applied to the option button.

• TabIndex
Returns the position of the option button in the tab sequence.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the option button is visible.

• VisualizeQuality
Specifies whether the connection quality of the process value is displayed.

• Width
Specifies the width.

Programming scripts
10.2 WinCC Unified object model

5480 System Manual, 11/2022

Methods
The "RadioButtonGroup" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the option button.
• PropertyFlashing()

Configures flashing of a property.

Events
The "RadioButtonGroup" object has the following events:
• OnActivated()

Occurs when an option button receives focus.
• OnContextTapped()

Occurs when an option button is right-clicked or long-touched.
• OnDeactivated()

Occurs when an option button loses focus.
• OnKeyDown()

Occurs when a key is pressed while the option button is in focus.
• OnKeyUp()

Occurs when a key is released while the option button is in focus.
• OnTapped()

Occurs when an option button is left-clicked or short-touched.

RadioButtonGroup.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
RadioButtonGroup.AlternateBackColor

See also
RadioButtonGroup (Page 5478)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5481

RadioButtonGroup.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color which is displayed for line
styles such as "Dash".

Type
UInt32

Access
Read-write

Syntax
RadioButtonGroup.AlternateBorderColor

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
RadioButtonGroup.Authorization

See also
RadioButtonGroup (Page 5478)

Programming scripts
10.2 WinCC Unified object model

5482 System Manual, 11/2022

RadioButtonGroup.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
RadioButtonGroup.BackColor

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
RadioButtonGroup.BorderColor

See also
RadioButtonGroup (Page 5478)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5483

RadioButtonGroup.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
RadioButtonGroup.BorderWidth

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.Content

Description
The "Content" property specifies the display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
RadioButtonGroup.Content

See also
RadioButtonGroup (Page 5478)

Programming scripts
10.2 WinCC Unified object model

5484 System Manual, 11/2022

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
RadioButtonGroup.Content (Page 5484)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5485

• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect
ratio is not changed.

• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
RadioButtonGroup.Content (Page 5484)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
RadioButtonGroup.Content (Page 5484)

Programming scripts
10.2 WinCC Unified object model

5486 System Manual, 11/2022

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
RadioButtonGroup.Content (Page 5484)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
RadioButtonGroup.Content (Page 5484)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5487

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
RadioButtonGroup.Content (Page 5484)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

5488 System Manual, 11/2022

Access
Read-write

Syntax
Content.TextTrimming

See also
RadioButtonGroup.Content (Page 5484)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
RadioButtonGroup.Content (Page 5484)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5489

RadioButtonGroup.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
option button.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
RadioButtonGroup.CurrentQuality

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.Enabled

Description
The "Enabled" property specifies whether the option button can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5490 System Manual, 11/2022

Syntax
RadioButtonGroup.Enabled

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
RadioButtonGroup.Font

See also
RadioButtonGroup (Page 5478)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5491

See also
RadioButtonGroup.Font (Page 5491)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
RadioButtonGroup.Font (Page 5491)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

Programming scripts
10.2 WinCC Unified object model

5492 System Manual, 11/2022

See also
RadioButtonGroup.Font (Page 5491)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
RadioButtonGroup.Font (Page 5491)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5493

Syntax
Font.Underline

See also
RadioButtonGroup.Font (Page 5491)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
RadioButtonGroup.Font (Page 5491)

RadioButtonGroup.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Programming scripts
10.2 WinCC Unified object model

5494 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
RadioButtonGroup.ForeColor

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
RadioButtonGroup.Height

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.Layer

Description
The "Layer" property returns the layer of the screen in which the option button is located.

Type
Object, HmiLayerPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5495

Access
Read-only

Syntax
RadioButtonGroup.Layer

See also
RadioButtonGroup (Page 5478)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
RadioButtonGroup.Layer (Page 5495)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Programming scripts
10.2 WinCC Unified object model

5496 System Manual, 11/2022

Access
Read-write

Syntax
Layer.MinimumZoom

See also
RadioButtonGroup.Layer (Page 5495)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
RadioButtonGroup.Layer (Page 5495)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5497

Access
Read-write

Syntax
Layer.Visible

See also
RadioButtonGroup.Layer (Page 5495)

RadioButtonGroup.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
RadioButtonGroup.Left

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

5498 System Manual, 11/2022

Access
Read-write

Syntax
RadioButtonGroup.Margin

See also
RadioButtonGroup (Page 5478)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
RadioButtonGroup.Margin (Page 5498)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5499

Access
Read-write

Syntax
Margin.Left

See also
RadioButtonGroup.Margin (Page 5498)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
RadioButtonGroup.Margin (Page 5498)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5500 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Top

See also
RadioButtonGroup.Margin (Page 5498)

RadioButtonGroup.Name

Description
The "Name" property returns the name of the option button.

Type
String

Access
Read-only

Syntax
RadioButtonGroup.Name

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" indicates completely transparent.

Type
Float

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5501

Access
Read-write

Syntax
RadioButtonGroup.Opacity

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.Operability

Description
The "Operability" property returns whether the option button is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
RadioButtonGroup.Operability

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.Padding

Description
The "Padding" property specifies the distance of the content from the border of the option
button.

Programming scripts
10.2 WinCC Unified object model

5502 System Manual, 11/2022

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
RadioButtonGroup.Padding

See also
RadioButtonGroup (Page 5478)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
RadioButtonGroup.Padding (Page 5502)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5503

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
RadioButtonGroup.Padding (Page 5502)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
RadioButtonGroup.Padding (Page 5502)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

5504 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
RadioButtonGroup.Padding (Page 5502)

RadioButtonGroup.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
RadioButtonGroup.Parent

See also
RadioButtonGroup (Page 5478)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5505

RadioButtonGroup.ProcessValue

Description
The "ProcessValue" property specifies the process value.

Type
Variant

Access
Read-write

Syntax
RadioButtonGroup.ProcessValue

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the option
button was created.

Type
String

Access
Read-only

Syntax
RadioButtonGroup.RenderingTemplate

See also
RadioButtonGroup (Page 5478)

Programming scripts
10.2 WinCC Unified object model

5506 System Manual, 11/2022

RadioButtonGroup.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the option button can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
RadioButtonGroup.RequireExplicitUnlock

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
RadioButtonGroup.RotationAngle

See also
RadioButtonGroup (Page 5478)
RadioButtonGroup.RotationCenterPlacement (Page 5508)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5507

RadioButtonGroup.RotationCenterX (Page 5508)
RadioButtonGroup.RotationCenterY (Page 5509)

RadioButtonGroup.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the option
button rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
RadioButtonGroup.RotationCenterPlacement

See also
RadioButtonGroup (Page 5478)
RadioButtonGroup.RotationAngle (Page 5507)
RadioButtonGroup.RotationCenterX (Page 5508)
RadioButtonGroup.RotationCenterY (Page 5509)

RadioButtonGroup.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Programming scripts
10.2 WinCC Unified object model

5508 System Manual, 11/2022

Type
Float

Access
Read-write

Syntax
RadioButtonGroup.RotationCenterX

See also
RadioButtonGroup (Page 5478)
RadioButtonGroup.RotationAngle (Page 5507)
RadioButtonGroup.RotationCenterPlacement (Page 5508)
RadioButtonGroup.RotationCenterY (Page 5509)

RadioButtonGroup.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
RadioButtonGroup.RotationCenterY

See also
RadioButtonGroup (Page 5478)
RadioButtonGroup.RotationAngle (Page 5507)
RadioButtonGroup.RotationCenterPlacement (Page 5508)
RadioButtonGroup.RotationCenterX (Page 5508)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5509

RadioButtonGroup.SelectionItemHeight

Description
The "SelectionItemHeight" property specifies the height of the option button entries. The value
"0" indicates that the height is calculated automatically.

Type
UInt16

Access
Read-write

Syntax
RadioButtonGroup.SelectionItemHeight

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.SelectionItems

Description
The "SelectionItems" property returns the list of all option button entries ("SelectionItem"
objects).

Type
Object, HmiSelectionItemCollection (Page 5511)

Access
Read-only

Syntax
RadioButtonGroup.SelectionItems

See also
RadioButtonGroup (Page 5478)
HmiSelectionItemCollection (Page 5511)

Programming scripts
10.2 WinCC Unified object model

5510 System Manual, 11/2022

HmiSelectionItemCollection

Description
The "HmiSelectionItemCollection" object is a list of all entries ("SelectionItem" objects) of a list
object.

Use
The "HmiSelectionItemCollection" object is a list and can be counted and enumerated. You can
access the "HmiSelectionItemCollection" list using the index or the tag name.

Object type
HmiSelectionItemCollection

Properties
The "HmiSelectionItemCollection" object has the following properties:
• Count

Returns the number of list entries of the "HmiSelectionItemCollection" list.

Methods
The "HmiSelectionItemCollection" object has the following methods:
• Item()

Returns a list entry of the "HmiSelectionItemCollection" list.

See also
RadioButtonGroup.SelectionItems (Page 5510)

HmiSelectionItemCollection.Count

Description
The "Count" property returns the number of list entries in the "HmiSelectionItemCollection" list.

Type
UInt32

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5511

Syntax
HmiSelectionItemCollection.Count

See also
HmiSelectionItemCollection (Page 5511)

HmiSelectionItemCollection.Item()

Description
The "Item" method returns a list entry of the "HmiSelectionItemCollection" list.

Syntax
HmiSelectionItemCollection[.Item](HmiSelectionItemName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiSelectionItemCollection" object.

Parameters
HmiSelectionItemName
Type: String
Name of the list entry

Return value
Object, HmiSelectionItemPart (Page 5512)

See also
HmiSelectionItemCollection (Page 5511)
SelectionItem (Page 5512)

SelectionItem

Description
The "SelectionItem" object represents a list entry.

Programming scripts
10.2 WinCC Unified object model

5512 System Manual, 11/2022

Object type
HmiSelectionItemPart

Properties
The "SelectionItem" object has the following properties:
• Graphic

Specifies the graphic of the list entry.
• IsSelected

Specifies whether the list entry is selected.
• Text

Specifies the list entry text.

Methods
--

SelectionItem.Graphic

Description
The "Graphic" property specifies the graphic of the list entry.

Type
String

Access
Read-write

Syntax
SelectionItem.Graphic

See also
SelectionItem (Page 5512)

SelectionItem.IsSelected

Description
The "IsSelected" property specifies whether the list entry is selected.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5513

Type
Bool

Access
Read-write

Syntax
SelectionItem.IsSelected

See also
SelectionItem (Page 5512)

SelectionItem.Text

Description
The "Text" property specifies the text of the list entry.

Type
String

Access
Read-write

Syntax
SelectionItem.Text

See also
SelectionItem (Page 5512)

RadioButtonGroup.SelectorPosition

Description
The "SelectorPosition" property specifies the horizontal alignment of the option button entries.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

5514 System Manual, 11/2022

Specifies the text alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched. Can only be used with layout containers, Fallback behaves like Center

Access
Read-write

Syntax
RadioButtonGroup.SelectorPosition

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the option button is highlighted when in
focus.

Type
Bool

Access
Read-write

Syntax
RadioButtonGroup.ShowFocusVisual

See also
RadioButtonGroup (Page 5478)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5515

RadioButtonGroup.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the option button.

Type
String

Access
Read-only

Syntax
RadioButtonGroup.StyleItemClass

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.TabIndex

Description
The "TabIndex" property returns the position of the option button in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
RadioButtonGroup.TabIndex

See also
RadioButtonGroup (Page 5478)

Programming scripts
10.2 WinCC Unified object model

5516 System Manual, 11/2022

RadioButtonGroup.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
RadioButtonGroup.ToolTipText

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
RadioButtonGroup.Top

See also
RadioButtonGroup (Page 5478)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5517

RadioButtonGroup.Visible

Description
The "Visible" property specifies whether the option button is visible.

Type
Bool

Access
Read-write

Syntax
RadioButtonGroup.Visible

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Access
Read-write

Syntax
RadioButtonGroup.VisualizeQuality

See also
RadioButtonGroup (Page 5478)

Programming scripts
10.2 WinCC Unified object model

5518 System Manual, 11/2022

RadioButtonGroup.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
RadioButtonGroup.Width

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
option button.

Syntax
RadioButtonGroup.CheckAuthorization()

Parameters
--

Return value
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5519

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
RadioButtonGroup.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

Programming scripts
10.2 WinCC Unified object model

5520 System Manual, 11/2022

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup_OnActivated()

Description
The "OnActivated" event occurs when an option button receives focus:
• An option button is selected via the configured tab sequence.
• An option button that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
RadioButtonGroup_OnActivated(item)

Context
item
Type: Object
Option button where the event occurs.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5521

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• An option button is right-clicked.
• An option button is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
RadioButtonGroup_OnContextTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Option button where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key

Programming scripts
10.2 WinCC Unified object model

5522 System Manual, 11/2022

• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup_OnDeactivated()

Description
The "OnDeactivated" event occurs when the option button loses focus because the operator
presses the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
RadioButtonGroup_OnDeactivated(item)

Context
item
Type: Object

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5523

Option button where the event occurs.

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the option button is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
RadioButtonGroup_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Option button where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key

Programming scripts
10.2 WinCC Unified object model

5524 System Manual, 11/2022

• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the option button is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
RadioButtonGroup_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Option button where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5525

• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
RadioButtonGroup (Page 5478)

RadioButtonGroup_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• An option button is left-clicked.
• The <RETURN> or <SPACE> key is pressed when an option button has the focus.
• An option button is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
RadioButtonGroup_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Option button where the event occurs.

x
Type: DInt
X-coordinate of the input point

Programming scripts
10.2 WinCC Unified object model

5526 System Manual, 11/2022

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
RadioButtonGroup (Page 5478)

Rectangle

Description
The "Rectangle" object represents a rectangle in runtime.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5527

Object type
HmiRectangle

Properties
The "Rectangle" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BackFillPattern

Specifies the pattern of the background or the fill.
• BorderColor

Specifies the border color.
• BorderWidth

Specifies the border thickness.
• Corners

Specifies the rounding of the rectangle corners.
• CurrentQuality

Returns the poorest quality code of all tags which influence the rectangle.
• DashType

Specifies the stroke style of the border or line.
• Enabled

Specifies whether the rectangle can be operated in runtime.
• FillDirection

Specifies the direction from which the rectangle is filled.
• FillLevel

Specifies the fill of the rectangle in percent.
• Height

Specifies the height.
• Layer

Returns the layer of the screen in which the rectangle is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the rectangle.

Programming scripts
10.2 WinCC Unified object model

5528 System Manual, 11/2022

• Opacity
Specifies the opacity.

• Operability
Returns whether the rectangle is operable.

• Parent
Returns the higher-level screen object.

• RequireExplicitUnlock
Returns whether the rectangle is only operable while the associated button is being pressed.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the rectangle rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFillLevel
Specifies whether the fill level is displayed.

• ShowFocusVisual
Specifies whether the rectangle is highlighted when in focus.

• StyleItemClass
Returns the style which is applied to the rectangle.

• TabIndex
Returns the position of the rectangle in the tab sequence.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the rectangle is visible.

• Width
Specifies the width.

Methods
The "Rectangle" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the rectangle.
• PropertyFlashing()

Configures flashing of a property.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5529

Events
The "Rectangle" object has the following events:
• OnActivated()

Occurs when a rectangle receives focus.
• OnContextTapped()

Occurs when a rectangle is right-clicked or long-touched.
• OnDeactivated()

Occurs when a rectangle loses focus.
• OnKeyDown()

Occurs when a key is pressed while the rectangle is in focus.
• OnKeyUp()

Occurs when a key is released while the rectangle is in focus.
• OnTapped()

Occurs when a rectangle is left-clicked or short-touched.

Rectangle.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
Rectangle.AlternateBackColor

See also
Rectangle (Page 5527)

Rectangle.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color which is displayed for line
styles such as "Dash".

Programming scripts
10.2 WinCC Unified object model

5530 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
Rectangle.AlternateBorderColor

See also
Rectangle (Page 5527)

Rectangle.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
Rectangle.Authorization

See also
Rectangle (Page 5527)

Rectangle.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5531

Access
Read-write

Syntax
Rectangle.BackColor

See also
Rectangle (Page 5527)

Rectangle.BackFillPattern

Description
The "BackFillPattern" property specifies the pattern of the background or the fill.

Type
Int32, HmiFillPattern
Specifies the filling:
• Solid (0): Solid
• Transparent (65536): Transparent
• Horizontal (131072): Horizontal
• Vertical (131073): Vertical
• ForwardDiagonal (131074): Forward diagonal stripe
• BackwardDiagonal (131075): Backward diagonal stripe
• Cross (131076): Cross
• DiagonalCross (131077): Diagonal cross
• GradientHorizontal (1048576): Horizontal gradient
• GradientVertical (1048577): Vertical gradient
• GradientForwardDiagonal (1048578): Gradient forward diagonal
• GradientBackwardDiagonal (1048579): Gradient backward diagonal
• GradientHorizontalTricolor (1048832): Horizontal tricolor gradient
• GradientVerticalTricolor (1048833): Vertical tricolor gradient
• GradientForwardDiagonalTricolor (1048834): Forward diagonal tricolor gradient
• GradientBackwardDiagonalTricolor (1048835): Backward diagonal tricolor gradient

Programming scripts
10.2 WinCC Unified object model

5532 System Manual, 11/2022

Access
Read-write

Syntax
Rectangle.BackFillPattern

See also
Rectangle (Page 5527)

Rectangle.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
Rectangle.BorderColor

See also
Rectangle (Page 5527)

Rectangle.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5533

Syntax
Rectangle.BorderWidth

See also
Rectangle (Page 5527)

Rectangle.Corners

Description
The "Corners" property specifies the rounding of the rectangle corners.

Type
Object, HmiCornersPart

Access
Read-write

Syntax
Rectangle.Corners

See also
Rectangle (Page 5527)

Corners.BottomLeftRadius

Description
The "BottomLeftRadius" property specifies the radius of the rounding of the bottom-left corner.

Type
UInt32

Access
Read-write

Syntax
Corners.BottomLeftRadius

Programming scripts
10.2 WinCC Unified object model

5534 System Manual, 11/2022

See also
Rectangle.Corners (Page 5534)

Corners.BottomRightRadius

Description
The "BottomRightRadius" property specifies the radius of the rounding of the bottom-right
corner.

Type
UInt32

Access
Read-write

Syntax
Corners.BottomRightRadius

See also
Rectangle.Corners (Page 5534)

Corners.TopLeftRadius

Description
The "TopLeftRadius" property specifies the radius of the rounding of the top-left corner.

Type
UInt32

Access
Read-write

Syntax
Corners.TopLeftRadius

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5535

See also
Rectangle.Corners (Page 5534)

Corners.TopRightRadius

Description
The "TopRightRadius" property specifies the radius of the rounding of the top-right corner.

Type
UInt32

Access
Read-write

Syntax
Corners.TopRightRadius

See also
Rectangle.Corners (Page 5534)

Rectangle.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
rectangle.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Programming scripts
10.2 WinCC Unified object model

5536 System Manual, 11/2022

Access
Read-only

Syntax
Rectangle.CurrentQuality

See also
Rectangle (Page 5527)

Rectangle.DashType

Description
The "DashType" property specifies the stroke type of the border or line.

Type
Int32, HmiDashType
Specifies the stroke style:
• Solid (0): Solid
• Dash(1): Dashed
• Dot (2): Dotted
• DashDot (3): Dash-dotted
• DashDotDot (4): Dash-dot-dot

Access
Read-write

Syntax
Rectangle.DashType

See also
Rectangle (Page 5527)

Rectangle.Enabled

Description
The "Enabled" property specifies whether the rectangle can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5537

Type
Bool

Access
Read-write

Syntax
Rectangle.Enabled

See also
Rectangle (Page 5527)

Rectangle.FillDirection

Description
The "FillDirection" property specifies the direction from which the rectangle is filled.

Type
Int32, HmiFillDirection
Specifies the filling direction:
• BottomToTop (0): From bottom to top
• TopToBottom (1): From top to bottom
• LeftToRight (2): From left to right
• RightToLeft (3): From right to left

Access
Read-write

Syntax
Rectangle.FillDirection

See also
Rectangle (Page 5527)

Programming scripts
10.2 WinCC Unified object model

5538 System Manual, 11/2022

Rectangle.FillLevel

Description
The "FillLevel" property specifies the fill level of the rectangle in percent.

Type
UInt8

Access
Read-write

Syntax
Rectangle.FillLevel

See also
Rectangle (Page 5527)

Rectangle.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Rectangle.Height

See also
Rectangle (Page 5527)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5539

Rectangle.Layer

Description
The "Layer" property returns the layer of the screen in which the rectangle is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
Rectangle.Layer

See also
Rectangle (Page 5527)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
Rectangle.Layer (Page 5540)

Programming scripts
10.2 WinCC Unified object model

5540 System Manual, 11/2022

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
Rectangle.Layer (Page 5540)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
Rectangle.Layer (Page 5540)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5541

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
Rectangle.Layer (Page 5540)

Rectangle.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Rectangle.Left

See also
Rectangle (Page 5527)

Programming scripts
10.2 WinCC Unified object model

5542 System Manual, 11/2022

Rectangle.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
Rectangle.Margin

See also
Rectangle (Page 5527)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
Rectangle.Margin (Page 5543)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5543

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
Rectangle.Margin (Page 5543)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
Rectangle.Margin (Page 5543)

Programming scripts
10.2 WinCC Unified object model

5544 System Manual, 11/2022

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
Rectangle.Margin (Page 5543)

Rectangle.Name

Description
The "Name" property returns the name of the rectangle.

Type
String

Access
Read-only

Syntax
Rectangle.Name

See also
Rectangle (Page 5527)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5545

Rectangle.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" indicates completely transparent.

Type
Float

Access
Read-write

Syntax
Rectangle.Opacity

See also
Rectangle (Page 5527)

Rectangle.Operability

Description
The "Operability" property returns whether the rectangle is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
Rectangle.Operability

Programming scripts
10.2 WinCC Unified object model

5546 System Manual, 11/2022

See also
Rectangle (Page 5527)

Rectangle.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
Rectangle.Parent

See also
Rectangle (Page 5527)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Rectangle.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the rectangle can only be operated while
the associated button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5547

Access
Read-only

Syntax
Rectangle.RequireExplicitUnlock

See also
Rectangle (Page 5527)

Rectangle.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
Rectangle.RotationAngle

See also
Rectangle (Page 5527)
Rectangle.RotationCenterPlacement (Page 5548)
Rectangle.RotationCenterX (Page 5549)
Rectangle.RotationCenterY (Page 5550)

Rectangle.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the rectangle
rotates.

Programming scripts
10.2 WinCC Unified object model

5548 System Manual, 11/2022

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
Rectangle.RotationCenterPlacement

See also
Rectangle (Page 5527)
Rectangle.RotationAngle (Page 5548)
Rectangle.RotationCenterX (Page 5549)
Rectangle.RotationCenterY (Page 5550)

Rectangle.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
Rectangle.RotationCenterX

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5549

See also
Rectangle (Page 5527)
Rectangle.RotationAngle (Page 5548)
Rectangle.RotationCenterPlacement (Page 5548)
Rectangle.RotationCenterY (Page 5550)

Rectangle.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
Rectangle.RotationCenterY

See also
Rectangle (Page 5527)
Rectangle.RotationAngle (Page 5548)
Rectangle.RotationCenterPlacement (Page 5548)
Rectangle.RotationCenterX (Page 5549)

Rectangle.ShowFillLevel

Description
The "ShowFillLevel" property specifies whether the fill level is displayed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

5550 System Manual, 11/2022

Access
Read-write

Syntax
Rectangle.ShowFillLevel

See also
Rectangle (Page 5527)

Rectangle.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the rectangle is highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
Rectangle.ShowFocusVisual

See also
Rectangle (Page 5527)

Rectangle.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the rectangle.

Type
String

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5551

Syntax
Rectangle.StyleItemClass

See also
Rectangle (Page 5527)

Rectangle.TabIndex

Description
The "TabIndex" property returns the position of the rectangle in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
Rectangle.TabIndex

See also
Rectangle (Page 5527)

Rectangle.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
Rectangle.ToolTipText

Programming scripts
10.2 WinCC Unified object model

5552 System Manual, 11/2022

See also
Rectangle (Page 5527)

Rectangle.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Rectangle.Top

See also
Rectangle (Page 5527)

Rectangle.Visible

Description
The "Visible" property specifies whether the rectangle is visible.

Type
Bool

Access
Read-write

Syntax
Rectangle.Visible

See also
Rectangle (Page 5527)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5553

Rectangle.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Rectangle.Width

See also
Rectangle (Page 5527)

Rectangle.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
rectangle.

Syntax
Rectangle.CheckAuthorization()

Parameters
--

Return value
Bool

Programming scripts
10.2 WinCC Unified object model

5554 System Manual, 11/2022

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
Rectangle (Page 5527)

Rectangle.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
Rectangle.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5555

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
Rectangle (Page 5527)

Rectangle_OnActivated()

Description
The "OnActivated" event occurs when a rectangle receives focus:
• A rectangle is selected via the configured tab sequence.
• A rectangle that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
Rectangle_OnActivated(item)

Context
item
Type: Object
Rectangle where the event occurs.

Programming scripts
10.2 WinCC Unified object model

5556 System Manual, 11/2022

See also
Rectangle (Page 5527)

Rectangle_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A rectangle is right-clicked.
• A rectangle is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
Rectangle_OnContextTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Rectangle where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5557

• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Rectangle (Page 5527)

Rectangle_OnDeactivated()

Description
The "OnDeactivated" event occurs when the rectangle loses focus because the operator presses
the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
Rectangle_OnDeactivated(item)

Context
item
Type: Object

Programming scripts
10.2 WinCC Unified object model

5558 System Manual, 11/2022

Rectangle where the event occurs.

See also
Rectangle (Page 5527)

Rectangle_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the rectangle is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
Rectangle_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Rectangle where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5559

• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Rectangle (Page 5527)

Rectangle_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the rectangle is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
Rectangle_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Rectangle where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key

Programming scripts
10.2 WinCC Unified object model

5560 System Manual, 11/2022

• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Rectangle (Page 5527)

Rectangle_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A rectangle is left-clicked.
• The <RETURN> or <SPACE> key is pressed when a rectangle has the focus.
• A rectangle is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
Rectangle_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Rectangle where the event occurs.

x
Type: DInt
X-coordinate of the input point

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5561

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Rectangle (Page 5527)

ScreenWindow

Description
ScreenWindow (Page 1436)

Programming scripts
10.2 WinCC Unified object model

5562 System Manual, 11/2022

Slider

Description
The "Slider" object represents a slider for monitoring of process values in runtime.

Object type
HmiSlider

Properties
The "Slider" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BarMode

Specifies the color display of the slider.
• BorderColor

Specifies the border color.
• BorderWidth

Specifies the border thickness.
• ComputedMaxPeakValue

 Returns the highest process value that occurred.
• ComputedMinPeakValue

Returns the lowest process value that occurred.
• ComputedValueTendency

Returns the change of the process value.
• CurrentQuality

Returns the poorest quality code of all tags which influence the slider.
• Enabled

Specifies whether the slider can be operated in runtime.
• Font

Specifies the font of the text.
• Height

Specifies the height.
• Label

Specifies the labeling below the slider.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5563

• Layer
Returns the layer of the screen in which the slider is located.

• Left
Specifies the value of the X coordinate.

• Margin
Specifies the margin.

• Name
Returns the name of the slider.

• NormalRangeColor
Specifies the color of the normal range.

• Opacity
Specifies the opacity.

• Operability
Returns whether the slider is operable.

• OriginValue
Specifies the output value of the normal range that is visualized.

• OutputFormat
Specifies the format for displaying the process values.

• Parent
Returns the higher-level screen object.

• PeakIndicators
Specifies whether the highest and lowest process value up to this time are displayed.

• ProcessValue
Specifies the process value.

• ProcessValueIndicatorBackColor
Specifies the background color for the process value.

• ProcessValueIndicatorForeColor
Specifies the foreground color for the process value.

• ProcessValueIndicatorMode
Specifies the type of display of the current process value.

• RelativeToOrigin
Specifies whether the output value is an absolute or a percentage value between the
minimum and maximum value.

• RenderingTemplate
Returns the name of the template from which the slider was created.

• RequireExplicitUnlock
Returns whether the slider is only operable while the associated button is being pressed.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the slider rotates.

Programming scripts
10.2 WinCC Unified object model

5564 System Manual, 11/2022

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ScaleBackColor
Specifies the background color of the scale.

• ScaleForeColor
Specifies the foreground color of the scale.

• ShowFocusVisual
Specifies whether the slider is highlighted when in focus.

• ShowTrendIndicator
Specifies whether the tendency (rising or falling) of the process value to be monitored is
indicated by means of a small arrow.

• ShowValue
Specifies whether the process value is additionally output as text.

• StraightScale
Specifies the scale of the slider.

• StyleItemClass
Returns the style which is applied to the slider.

• TabIndex
Returns the position of the slider in the tab sequence.

• ThresholdIndicators
Specifies how parameterized limit values are visualized.

• Thresholds
Returns the list of all limit values of the slider.

• ThumbBackColor
Specifies the background color of the slider.

• ThumbForeColor
Specifies the foreground color of the slider.

• Title
Specifies the caption which appears as the title.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• TrendIndicatorColor
Specifies the color of the trend indicator.

• ValuePosition
Specifies where the value of the current slider position is additionally displayed numerically.

• Visible
Specifies whether the slider is visible.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5565

• VisualizeQuality
Specifies whether the connection quality of the process value is displayed.

• Width
Specifies the width.

• WriteDuringChange
Specifies when changes are transferred.

Methods
The "Slider" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the slider.
• PropertyFlashing()

Configures flashing of a property.

Events
The "Slider" object has the following events:
• OnActivated()

Occurs when a slider receives focus.
• OnContextTapped()

Occurs when a slider is right-clicked or long-touched.
• OnDeactivated()

Occurs when a slider loses focus.
• OnKeyDown()

Occurs when a key is pressed while the slider is in focus.
• OnKeyUp()

Occurs when a key is released while the slider is in focus.
• OnTapped()

Occurs when a slider is left-clicked or short-touched.

Slider.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5566 System Manual, 11/2022

Syntax
Slider.AlternateBackColor

See also
Slider (Page 5563)

Slider.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color which is displayed for line
styles such as "Dash".

Type
UInt32

Access
Read-write

Syntax
Slider.AlternateBorderColor

See also
Slider (Page 5563)

Slider.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5567

Syntax
Slider.Authorization

See also
Slider (Page 5563)

Slider.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
Slider.BackColor

See also
Slider (Page 5563)

Slider.BarMode

Description
The "BarMode" property specifies the color of the slider.

Type
Int32, HmiBarMode
Specifies the bar mode:
• Segmented (0): Bar changes color according to the bar segments.
• Unicolor (1): Entire bar has same color.

Programming scripts
10.2 WinCC Unified object model

5568 System Manual, 11/2022

• SegmentedStatic (2): Bar segments in the background, process value indicator in front of the
bar segments.

• UnicolorStatic (3): Background color changes according to the process value and the limit
colors, process value indicator runs in front of the bar segments.

Access
Read-write

Syntax
Slider.BarMode

See also
Slider (Page 5563)

Slider.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
Slider.BorderColor

See also
Slider (Page 5563)

Slider.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5569

Type
UInt8

Access
Read-write

Syntax
Slider.BorderWidth

See also
Slider (Page 5563)

Slider.ComputedMaxPeakValue

Description
The "ComputedMaxPeakValue" property returns the highest process value that occurred.

Type
Variant

Access
Read-only

Syntax
Slider.ComputedMaxPeakValue

See also
Slider (Page 5563)
Slider.ComputedMinPeakValue (Page 5570)

Slider.ComputedMinPeakValue

Description
The "ComputedMinPeakValue" property returns the lowest process value which occurred.

Programming scripts
10.2 WinCC Unified object model

5570 System Manual, 11/2022

Type
Variant

Access
Read-only

Syntax
Slider.ComputedMinPeakValue

See also
Slider (Page 5563)
Slider.ComputedMaxPeakValue (Page 5570)

Slider.ComputedValueTendency

Description
The "ComputedValueTendency" property returns the change in the process value.

Type
Int32, HmiValueTendency
Returns the modification:
• Steady (0): No change
• Upwards (1): Change upwards
• Downwards (2): Change downwards

Access
Read-only

Syntax
Slider.ComputedValueTendency

See also
Slider (Page 5563)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5571

Slider.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
slider.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
Slider.CurrentQuality

See also
Slider (Page 5563)

Slider.Enabled

Description
The "Enabled" property specifies whether the slider can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5572 System Manual, 11/2022

Syntax
Slider.Enabled

See also
Slider (Page 5563)

Slider.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Slider.Font

See also
Slider (Page 5563)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5573

See also
Slider.Font (Page 5573)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Slider.Font (Page 5573)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

Programming scripts
10.2 WinCC Unified object model

5574 System Manual, 11/2022

See also
Slider.Font (Page 5573)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Slider.Font (Page 5573)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5575

Syntax
Font.Underline

See also
Slider.Font (Page 5573)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Slider.Font (Page 5573)

Slider.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

5576 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
Slider.Height

See also
Slider (Page 5563)

Slider.Label

Description
The "Label" property specifies the labeling below the slider.

Type
Object, HmiTextPart

Access
Read-write

Syntax
Slider.Label

See also
Slider (Page 5563)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5577

Access
Read-write

Syntax
Text.Font

See also
Slider.Label (Page 5577)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 5577)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Programming scripts
10.2 WinCC Unified object model

5578 System Manual, 11/2022

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 5577)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 5577)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5579

Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 5577)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 5577)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Programming scripts
10.2 WinCC Unified object model

5580 System Manual, 11/2022

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 5577)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
Slider.Label (Page 5577)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5581

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
Slider.Label (Page 5577)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
Slider.Label (Page 5577)

Programming scripts
10.2 WinCC Unified object model

5582 System Manual, 11/2022

Slider.Layer

Description
The "Layer" property returns the layer of the screen in which the slider is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
Slider.Layer

See also
Slider (Page 5563)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
Slider.Layer (Page 5583)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5583

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
Slider.Layer (Page 5583)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
Slider.Layer (Page 5583)

Programming scripts
10.2 WinCC Unified object model

5584 System Manual, 11/2022

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
Slider.Layer (Page 5583)

Slider.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Slider.Left

See also
Slider (Page 5563)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5585

Slider.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
Slider.Margin

See also
Slider (Page 5563)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
Slider.Margin (Page 5586)

Programming scripts
10.2 WinCC Unified object model

5586 System Manual, 11/2022

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
Slider.Margin (Page 5586)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
Slider.Margin (Page 5586)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5587

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
Slider.Margin (Page 5586)

Slider.Name

Description
The "Name" property returns the name of the slider.

Type
String

Access
Read-only

Syntax
Slider.Name

See also
Slider (Page 5563)

Programming scripts
10.2 WinCC Unified object model

5588 System Manual, 11/2022

Slider.NormalRangeColor

Description
The "NormalRangeColor" property specifies the color of the normal range.

Type
UInt32

Access
Read-write

Syntax
Slider.NormalRangeColor

See also
Slider (Page 5563)

Slider.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" indicates completely transparent.

Type
Float

Access
Read-write

Syntax
Slider.Opacity

See also
Slider (Page 5563)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5589

Slider.Operability

Description
The "Operability" property returns whether the slider is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
Slider.Operability

See also
Slider (Page 5563)

Slider.OriginValue

Description
The "OriginValue" property specifies the output value of the normal range to be visualized.

Type
Float

Access
Read-write

Syntax
Slider.OriginValue

Programming scripts
10.2 WinCC Unified object model

5590 System Manual, 11/2022

See also
Slider (Page 5563)

Slider.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying the process values, e.g. "{0000}"
for a 4-digit integer with leading zeros.

Type
String

Access
Read-write

Syntax
Slider.OutputFormat

See also
Slider (Page 5563)

Slider.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
Slider.Parent

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5591

See also
Slider (Page 5563)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Slider.PeakIndicators

Description
The "PeakIndicators" property specifies whether the highest and lowest process value up to this
time are displayed.

Type
Int32, HmiPeakIndicator
Specifies the display of the peak indicator:
• None (0): No display
• Low (1): Only the lowest process value
• High (2): Only the highest process value

Access
Read-write

Syntax
Slider.PeakIndicators

See also
Slider (Page 5563)

Slider.ProcessValue

Description
The "ProcessValue" property specifies the process value.

Programming scripts
10.2 WinCC Unified object model

5592 System Manual, 11/2022

Type
Variant

Access
Read-write

Syntax
Slider.ProcessValue

See also
Slider (Page 5563)

Slider.ProcessValueIndicatorBackColor

Description
The "ProcessValueIndicatorBackColor" property specifies the background color for the process
value indicator.

Type
UInt32

Access
Read-write

Syntax
Slider.ProcessValueIndicatorBackColor

See also
Slider (Page 5563)
Slider.ProcessValueIndicatorForeColor (Page 5593)

Slider.ProcessValueIndicatorForeColor

Description
The "ProcessValueIndicatorForeColor" property specifies the foreground color for the process
value indicator.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5593

Type
UInt32

Access
Read-write

Syntax
Slider.ProcessValueIndicatorForeColor

See also
Slider (Page 5563)
Slider.ProcessValueIndicatorBackColor (Page 5593)

Slider.ProcessValueIndicatorMode

Description
The "ProcessValueIndicatorMode" property specifies the type of display of the current process
value.

Type
Int32, HmiProcessIndicatorMode
Specifies the type of display:
• Bar (0): Bar only
• Indicator (1): Hair line or needle, no numerical display of the process value.
• DetailedIndicator (2): Detailed display with numerical value
• BarWithDetailedIndicator (3): Bar with numerical value

Access
Read-write

Syntax
Slider.ProcessValueIndicatorMode

See also
Slider (Page 5563)

Programming scripts
10.2 WinCC Unified object model

5594 System Manual, 11/2022

Slider.RelativeToOrigin

Description
The "RelativeToOrigin" property specifies whether the output value is an absolute or a
percentage value between minimum and maximum value.

Type
Bool

Access
Read-write

Syntax
Slider.RelativeToOrigin

See also
Slider (Page 5563)

Slider.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the slider was
created.

Type
String

Access
Read-only

Syntax
Slider.RenderingTemplate

See also
Slider (Page 5563)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5595

Slider.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the slider can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
Slider.RequireExplicitUnlock

See also
Slider (Page 5563)

Slider.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
Slider.RotationAngle

See also
Slider (Page 5563)
Slider.RotationCenterPlacement (Page 5597)

Programming scripts
10.2 WinCC Unified object model

5596 System Manual, 11/2022

Slider.RotationCenterX (Page 5597)
Slider.RotationCenterY (Page 5598)

Slider.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the slider
rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
Slider.RotationCenterPlacement

See also
Slider (Page 5563)
Slider.RotationAngle (Page 5596)
Slider.RotationCenterX (Page 5597)
Slider.RotationCenterY (Page 5598)

Slider.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5597

Type
Float

Access
Read-write

Syntax
Slider.RotationCenterX

See also
Slider (Page 5563)
Slider.RotationAngle (Page 5596)
Slider.RotationCenterPlacement (Page 5597)
Slider.RotationCenterY (Page 5598)

Slider.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
Slider.RotationCenterY

See also
Slider (Page 5563)
Slider.RotationAngle (Page 5596)
Slider.RotationCenterPlacement (Page 5597)
Slider.RotationCenterX (Page 5597)

Programming scripts
10.2 WinCC Unified object model

5598 System Manual, 11/2022

Slider.ScaleBackColor

Description
The "ScaleBackColor" property specifies the background color of the scale.

Type
UInt32

Access
Read-write

Syntax
Slider.ScaleBackColor

See also
Slider (Page 5563)
Slider.ScaleForeColor (Page 5599)

Slider.ScaleForeColor

Description
The "ScaleForeColor" property specifies the foreground color of the scale.

Type
UInt32

Access
Read-write

Syntax
Slider.ScaleForeColor

See also
Slider (Page 5563)
Slider.ScaleBackColor (Page 5599)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5599

Slider.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the slider is highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
Slider.ShowFocusVisual

See also
Slider (Page 5563)

Slider.ShowTrendIndicator

Description
The "ShowTrendIndicator" property specifies whether the tendency (rising or falling) of the
process value to be monitored is indicated by means of a small arrow.

Type
Bool

Access
Read-write

Syntax
Slider.ShowTrendIndicator

See also
Slider (Page 5563)

Programming scripts
10.2 WinCC Unified object model

5600 System Manual, 11/2022

Slider.ShowValue

Description
The "ShowValue" property specifies whether the process value is additionally output as text.

Type
Bool

Access
Read-write

Syntax
Slider.ShowValue

See also
Slider (Page 5563)

Slider.StraightScale

Description
The "StraightScale" property specifies the scale of the slider.

Type
Object, HmiStraightScalePart

Access
Read-write

Syntax
Slider.StraightScale

See also
Slider (Page 5563)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5601

StraightScale.AutoScaling

Description
The "AutoScaling" property specifies whether automatic scaling is activated.

Type
Bool

Access
Read-write

Syntax
StraightScale.AutoScaling

See also
Slider.StraightScale (Page 5601)

StraightScale.BeginValue

Description
The "BeginValue" property specifies the start of a value range or value range section.

Type
Float

Access
Read-write

Syntax
StraightScale.BeginValue

See also
Slider.StraightScale (Page 5601)

Programming scripts
10.2 WinCC Unified object model

5602 System Manual, 11/2022

StraightScale.DivisionCount

Description
The "DivisionCount" property specifies the number of main units with subdivisions. To this
purpose the automatic scaling must be switched off.

Type
Int32

Access
Read-write

Syntax
StraightScale.DivisionCount

See also
Slider.StraightScale (Page 5601)

StraightScale.EndValue

Description
The "EndValue" property specifies the end of a value range or value range section.

Type
Float

Access
Read-write

Syntax
StraightScale.EndValue

See also
Slider.StraightScale (Page 5601)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5603

StraightScale.LabelColor

Description
The "LabelColor" property specifies the color of the labeling.

Type
UInt32

Access
Read-write

Syntax
StraightScale.LabelColor

See also
Slider.StraightScale (Page 5601)

StraightScale.LabelFont

Description
The "LabelFont" property specifies the font of the labeling.

Type
Object, HmiFontPart

Access
Read-write

Syntax
StraightScale.LabelFont

See also
Slider.StraightScale (Page 5601)

Programming scripts
10.2 WinCC Unified object model

5604 System Manual, 11/2022

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
StraightScale.LabelFont (Page 5604)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
StraightScale.LabelFont (Page 5604)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5605

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
StraightScale.LabelFont (Page 5604)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

Programming scripts
10.2 WinCC Unified object model

5606 System Manual, 11/2022

See also
StraightScale.LabelFont (Page 5604)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
StraightScale.LabelFont (Page 5604)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5607

Access
Read-write

Syntax
Font.Weight

See also
StraightScale.LabelFont (Page 5604)

StraightScale.LargeTickLabelingStep

Description
The "LargeTickLabelingStep" property specifies the interval at which scale sections are labeled.

Type
UInt8

Access
Read-write

Syntax
StraightScale.LargeTickLabelingStep

See also
Slider.StraightScale (Page 5601)

StraightScale.MeasurementUnit

Description
The "MeasurementUnit" property returns the displayed unit.

Type
String

Programming scripts
10.2 WinCC Unified object model

5608 System Manual, 11/2022

Access
Read-only

Syntax
StraightScale.MeasurementUnit

See also
Slider.StraightScale (Page 5601)

StraightScale.MeasurementUnitType

Description
The "MeasurementUnitType" property specifies the display format of the unit.

Type
Int32, HmiMeasurementUnit
Specifies the display format:
• None (0): No unit
• Name (1): Unit name, for example "kilogram"
• Symbol (2): Unit, for example "kg"

Access
Read-write

Syntax
StraightScale.MeasurementUnitType

See also
Slider.StraightScale (Page 5601)

StraightScale.Orientation

Description
The "Orientation" property specifies the orientation of the scale.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5609

Type
Int32, HmiOrientation
Specifies the alignment:
• Horizontal (0): Horizontal
• Vertical (1): Vertical

Access
Read-write

Syntax
StraightScale.Orientation

See also
Slider.StraightScale (Page 5601)

StraightScale.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying the process values, e.g. "{0000}"
for a 4-digit integer with leading zeros.

Type
String

Access
Read-write

Syntax
StraightScale.OutputFormat

See also
Slider.StraightScale (Page 5601)

Programming scripts
10.2 WinCC Unified object model

5610 System Manual, 11/2022

StraightScale.ScaleMode

Description
The "ScaleMode" property specifies the type of scaling.

Type
Int32, HmiScaleMode
Specifies the scaling:
• None (0): None
• Labels (1): Labels
• Ticks (2): Tick marks

Access
Read-write

Syntax
StraightScale.ScaleMode

See also
Slider.StraightScale (Page 5601)

StraightScale.ScalingType

Description
The "ScalingType" property specifies the scaling.

Type
Int32, HmiScalingType
Specifies the scaling:
• Linear (0): Linear
• Logarithmic (1): Logarithmic
• NegativeLogarithmic (2): Negative logarithmic
• Tangent (4): Tangential
• Quadratic (5): Square
• Cubic (6): Cubic

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5611

Access
Read-write

Syntax
StraightScale.ScalingType

See also
Slider.StraightScale (Page 5601)

StraightScale.SubDivisionCount

Description
The "SubDivisionCount" property specifies the number of subdivisions of the main units.

Type
Int32

Access
Read-write

Syntax
StraightScale.SubDivisionCount

See also
Slider.StraightScale (Page 5601)

StraightScale.TickColor

Description
The "TickColor" property specifies the color of the tick marks.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5612 System Manual, 11/2022

Syntax
StraightScale.TickColor

See also
Slider.StraightScale (Page 5601)

Slider.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the slider.

Type
String

Access
Read-only

Syntax
Slider.StyleItemClass

See also
Slider (Page 5563)

Slider.TabIndex

Description
The "TabIndex" property returns the position of the slider in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
Slider.TabIndex

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5613

See also
Slider (Page 5563)

Slider.ThresholdIndicators

Description
The "ThresholdIndicators" property specifies how parameterized limit values are visualized.

Type
Int32, HmiThresholdIndicator
Specifies the visualization:
• None (0): None
• Lines (1): Lines
• Markers (2): Markers

Access
Read-write

Syntax
Slider.ThresholdIndicators

See also
Slider (Page 5563)

Slider.Thresholds

Description
The "Thresholds" property returns the list of all limit values ("Threshold" objects) of the slider.

Type
Object, HmiThresholdCollection (Page 5615)

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

5614 System Manual, 11/2022

Syntax
Slider.Thresholds

See also
Slider (Page 5563)
HmiThresholdCollection (Page 5615)

HmiThresholdCollection

Description
The "HmiThresholdCollection" object is a list of all limit values ("Threshold" objects).

Use
The "HmiThresholdCollection" object is a list and can be counted and enumerated. You can
access the "HmiThresholdCollection" list using the index or the tag name.

Object type
HmiThresholdCollection

Properties
The "HmiThresholdCollection" object has the following properties:
• Count

Returns the number of limit values of the "HmiThresholdCollection" list.

Methods
The "HmiThresholdCollection" object has the following methods:
• Item()

Returns a limit value of the "HmiThresholdCollection" list.

See also
Slider.Thresholds (Page 5614)

HmiThresholdCollection.Count

Description
The "Count" property returns the number of limit values in the "HmiThresholdCollection" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5615

Type
UInt32

Access
Read-only

Syntax
HmiThresholdCollection.Count

See also
HmiThresholdCollection (Page 5615)

HmiThresholdCollection.Item()

Description
The "Item" method returns a limit value of the "HmiThresholdCollection" list.

Syntax
HmiThresholdCollection[.Item](HmiThresholdName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiThresholdCollection" object.

Parameters
HmiThresholdName
Type: String
Name of the limit value

Return value
Object, HmiThresholdPart (Page 5617)

See also
HmiThresholdCollection (Page 5615)
Threshold (Page 5617)

Programming scripts
10.2 WinCC Unified object model

5616 System Manual, 11/2022

Threshold

Description
The "Threshold" object represents a limit value.

Object type
HmiThresholdPart

Properties
The "Threshold" object has the following properties:
• Color

Specifies the color of the limit value.
• DisplayName

Specifies the display name of the limit value.
• Name

Specifies the name of the limit value.
• ThresholdMode

Specifies the type of limit value.
• Value

Returns the limit value.

Methods
--

See also
HmiThresholdCollection (Page 5615)

Threshold.Color

Description
The "Color" property specifies the color of the limit value.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5617

Syntax
Threshold.Color

See also
Threshold (Page 5617)

Threshold.DisplayName

Description
The "DisplayName" property specifies the display name of the limit value.

Type
String

Access
Read-write

Syntax
Threshold.DisplayName

See also
Threshold (Page 5617)

Threshold.Name

Description
The "Name" property specifies the name of the limit value.

Type
String

Access
Read-write

Syntax
Threshold.Name

Programming scripts
10.2 WinCC Unified object model

5618 System Manual, 11/2022

See also
Threshold (Page 5617)

Threshold.ThresholdMode

Description
The "ThresholdMode" property specifies the type of limit value.

Type
Int32, HmiThresholdMode
Specifies the threshold value:
• Undefined (0): Undefined
• Upper (1): Upper threshold
• Lower (2): Lower threshold
• Normal (3): Normal threshold
• Minimum (4): Minimum threshold
• Maximum (5): Maximum threshold

Access
Read-write

Syntax
Threshold.ThresholdMode

See also
Threshold (Page 5617)

Threshold.Value

Description
The "Value" property returns the limit value of the tag.

Type
Float

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5619

Access
Read-only

Syntax
Threshold.Value

See also
Threshold (Page 5617)

Slider.ThumbBackColor

Description
The "ThumbBackColor" property specifies the background color of the handle of the slider.

Type
UInt32

Access
Read-write

Syntax
Slider.ThumbBackColor

See also
Slider (Page 5563)
Slider.ThumbForeColor (Page 5620)

Slider.ThumbForeColor

Description
The "ThumbForeColor" property specifies the foreground color of the handle of the slider.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

5620 System Manual, 11/2022

Access
Read-write

Syntax
Slider.ThumbForeColor

See also
Slider (Page 5563)
Slider.ThumbBackColor (Page 5620)

Slider.Title

Description
The "Title" property specifies the caption that appears as the title.

Type
Object, HmiTextPart

Access
Read-write

Syntax
Slider.Title

See also
Slider (Page 5563)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5621

Access
Read-write

Syntax
Text.Font

See also
Slider.Title (Page 5621)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 5621)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Programming scripts
10.2 WinCC Unified object model

5622 System Manual, 11/2022

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 5621)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 5621)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5623

Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 5621)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 5621)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Programming scripts
10.2 WinCC Unified object model

5624 System Manual, 11/2022

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 5621)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
Slider.Title (Page 5621)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5625

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
Slider.Title (Page 5621)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
Slider.Title (Page 5621)

Programming scripts
10.2 WinCC Unified object model

5626 System Manual, 11/2022

Slider.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
Slider.ToolTipText

See also
Slider (Page 5563)

Slider.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
Slider.Top

See also
Slider (Page 5563)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5627

Slider.TrendIndicatorColor

Description
The "TrendIndicatorColor" property specifies the color of the trend indicator. The trend indicator
uses a small arrow to represent the tendency (rising or falling) of the process value to be
monitored. To activate the trend indicator, the "ShowTrendIndicator" property must be activated.

Type
UInt32

Access
Read-write

Syntax
Slider.TrendIndicatorColor

See also
Slider (Page 5563)

Slider.ValuePosition

Description
The "ValuePosition" property specifies where the value of the current slider position is
additionally displayed numerically.

Type
Int32, HmiSimplePosition
Specifies the position:
• LeftOrTop (0): Left for vertical alignment, top for horizontal alignment
• RightOrBottom (1): Right for vertical alignment, bottom for horizontal alignment

Access
Read-write

Syntax
Slider.ValuePosition

Programming scripts
10.2 WinCC Unified object model

5628 System Manual, 11/2022

See also
Slider (Page 5563)

Slider.Visible

Description
The "Visible" property specifies whether the slider is visible.

Type
Bool

Access
Read-write

Syntax
Slider.Visible

See also
Slider (Page 5563)

Slider.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Access
Read-write

Syntax
Slider.VisualizeQuality

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5629

See also
Slider (Page 5563)

Slider.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Slider.Width

See also
Slider (Page 5563)

Slider.WriteDuringChange

Description
The "WriteDuringChange" property specifies when changes are transferred.
• True: Even during the modification of the slider.
• False: Only after the slider has been released.

Type
Bool

Access
Read-write

Syntax
Slider.WriteDuringChange

Programming scripts
10.2 WinCC Unified object model

5630 System Manual, 11/2022

See also
Slider (Page 5563)

Slider.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
slider.

Syntax
Slider.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
Slider (Page 5563)

Slider.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5631

Syntax
Slider.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
Slider (Page 5563)

Programming scripts
10.2 WinCC Unified object model

5632 System Manual, 11/2022

Slider_OnActivated()

Description
The "OnActivated" event occurs when a slider receives focus:
• A slider is selected via the configured tab sequence.
• A slider that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
Slider_OnActivated(item)

Context
item
Type: Object
Slider where the event occurs.

See also
Slider (Page 5563)

Slider_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A slider is right-clicked.
• A slider is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
Slider_OnContextTapped(item, x, y, modifiers, trigger)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5633

Context
item
Type: Object
Slider where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

Programming scripts
10.2 WinCC Unified object model

5634 System Manual, 11/2022

See also
Slider (Page 5563)

Slider_OnDeactivated()

Description
The "OnDeactivated" event occurs when the slider loses focus because the operator presses the
<TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
Slider_OnDeactivated(item)

Context
item
Type: Object
Slider where the event occurs.

See also
Slider (Page 5563)

Slider_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the slider is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5635

Syntax
Slider_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Slider where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Slider (Page 5563)

Slider_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the slider is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

5636 System Manual, 11/2022

Syntax
Slider_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Slider where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Slider (Page 5563)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5637

Slider_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A slider is left-clicked.
• The <RETURN> or <SPACE> key is pressed when a slider has the focus.
• A slider is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
Slider_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Slider where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

5638 System Manual, 11/2022

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Slider (Page 5563)

SwacContainer

Description
The "SwacContainer" object represents a container for SWAC components (Siemens Web
Application Collaboration) in runtime.

Object type
HmiSwacContainer

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5639

Properties
The "SwacContainer" object has the following properties:
• Authorization

Returns the operator authorization.
• Caption

Specifies the text that is displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.
• ContainedType

Returns the type of the contained objects.
• CurrentQuality

Returns the poorest quality code of all tags which influence the container.
• Enabled

Specifies whether the container can be operated in runtime.
• Height

Specifies the height.
• Icon

Specifies the icon of the container.
• Layer

Returns the screen layer in which the container is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the container.
• Operability

Returns whether the container is operable.
• Parent

Returns the higher-level screen object.
• Properties

allows access to the dynamic properties of the SWAC component.
• RenderingTemplate

Returns the name of the template from which the container was created.
• RequireExplicitUnlock

Returns whether the container is only operable while the corresponding button is being
pressed.

• ShowFocusVisual
Specifies whether the container is highlighted when in focus.

• StyleItemClass
Returns the style which is applied to the container.

Programming scripts
10.2 WinCC Unified object model

5640 System Manual, 11/2022

• TabIndex
Returns the position of the container in the tab sequence.

• Top
Specifies the value of the Y coordinate.

• Url
Specifies the URL displayed by the container.

• Visible
Specifies whether the container is visible.

• Width
Specifies the width.

• WindowFlags
Specifies the window configuration of the container.

Methods
The "SwacContainer" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the container.
• PropertyFlashing()

Configures flashing of a property.

SwacContainer.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
SwacContainer.Authorization

See also
SwacContainer (Page 5639)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5641

SwacContainer.Caption

Description
The "Caption" property specifies the text that is displayed in the title bar.

Type
Object, HmiTextPart

Access
Read-write

Syntax
SwacContainer.Caption

See also
SwacContainer (Page 5639)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
SwacContainer.Caption (Page 5642)

Programming scripts
10.2 WinCC Unified object model

5642 System Manual, 11/2022

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 5642)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 5642)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5643

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 5642)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

Programming scripts
10.2 WinCC Unified object model

5644 System Manual, 11/2022

See also
Text.Font (Page 5642)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 5642)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5645

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 5642)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
SwacContainer.Caption (Page 5642)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Programming scripts
10.2 WinCC Unified object model

5646 System Manual, 11/2022

Access
Read-write

Syntax
Text.Text

See also
SwacContainer.Caption (Page 5642)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
SwacContainer.Caption (Page 5642)

SwacContainer.CaptionColor

Description
The "CaptionColor" property specifies the color of the title bar.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5647

Access
Read-write

Syntax
SwacContainer.CaptionColor

See also
SwacContainer (Page 5639)

SwacContainer.ContainedType

Description
The "ContainedType" property returns the type of the contained objects (CustomControl,
SwacComponent, or WidgetType).

Type
String

Access
Read-only

Syntax
SwacContainer.ContainedType

See also
SwacContainer (Page 5639)

SwacContainer.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
container.

Type
Int32, HmiQuality

Programming scripts
10.2 WinCC Unified object model

5648 System Manual, 11/2022

Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.
• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
SwacContainer.CurrentQuality

See also
SwacContainer (Page 5639)

SwacContainer.Enabled

Description
The "Enabled" property specifies whether the container can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
SwacContainer.Enabled

See also
SwacContainer (Page 5639)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5649

SwacContainer.Height

Description
The "Height" property specifies the height in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
SwacContainer.Height

See also
SwacContainer (Page 5639)

SwacContainer.Icon

Description
The "Icon" property specifies the icon of the container.

Type
String

Access
Read-write

Syntax
SwacContainer.Icon

See also
SwacContainer (Page 5639)

Programming scripts
10.2 WinCC Unified object model

5650 System Manual, 11/2022

SwacContainer.Layer

Description
The "Layer" property returns the screen layer in which the container is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
SwacContainer.Layer

See also
SwacContainer (Page 5639)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
SwacContainer.Layer (Page 5651)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5651

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
SwacContainer.Layer (Page 5651)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
SwacContainer.Layer (Page 5651)

Programming scripts
10.2 WinCC Unified object model

5652 System Manual, 11/2022

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
SwacContainer.Layer (Page 5651)

SwacContainer.Left

Description
The "Left" property sets the value of the X coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
SwacContainer.Left

See also
SwacContainer (Page 5639)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5653

SwacContainer.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
SwacContainer.Margin

See also
SwacContainer (Page 5639)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
SwacContainer.Margin (Page 5654)

Programming scripts
10.2 WinCC Unified object model

5654 System Manual, 11/2022

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
SwacContainer.Margin (Page 5654)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
SwacContainer.Margin (Page 5654)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5655

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
SwacContainer.Margin (Page 5654)

SwacContainer.Name

Description
The "Name" property returns the name of the container.

Type
String

Access
Read-only

Syntax
SwacContainer.Name

See also
SwacContainer (Page 5639)

Programming scripts
10.2 WinCC Unified object model

5656 System Manual, 11/2022

SwacContainer.Operability

Description
The "Operability" property returns whether the container is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
SwacContainer.Operability

See also
SwacContainer (Page 5639)

SwacContainer.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
SwacContainer.Parent

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5657

See also
SwacContainer (Page 5639)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

SwacContainer.Properties

Description
The "Properties" property allows access to the dynamic properties of the SWAC component.

Type
Object, HmiDynamicPropertyPart

Access
Read-write

Syntax
SwacContainer.Properties

See also
SwacContainer (Page 5639)

SwacContainer.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the container
was created.

Type
String

Programming scripts
10.2 WinCC Unified object model

5658 System Manual, 11/2022

Access
Read-only

Syntax
SwacContainer.RenderingTemplate

See also
SwacContainer (Page 5639)

SwacContainer.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the container is only operable while the
corresponding button is being pressed.

Type
Bool

Access
Read-only

Syntax
SwacContainer.RequireExplicitUnlock

See also
SwacContainer (Page 5639)

SwacContainer.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the container is highlighted when in focus.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5659

Access
Read-write

Syntax
SwacContainer.ShowFocusVisual

See also
SwacContainer (Page 5639)

SwacContainer.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the container.

Type
String

Access
Read-only

Syntax
SwacContainer.StyleItemClass

See also
SwacContainer (Page 5639)

SwacContainer.TabIndex

Description
The "TabIndex" property returns the position of the container in the tab sequence.

Type
UInt16

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

5660 System Manual, 11/2022

Syntax
SwacContainer.TabIndex

See also
SwacContainer (Page 5639)

SwacContainer.Top

Description
The "Top" property sets the value of the Y coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
SwacContainer.Top

See also
SwacContainer (Page 5639)

SwacContainer.Url

Description
The "Url" property specifies the URL displayed by the container.

Type
String

Access
Read-write

Syntax
SwacContainer.Url

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5661

See also
SwacContainer (Page 5639)

SwacContainer.Visible

Description
The "Visible" property specifies whether the container is visible.

Type
Bool

Access
Read-write

Syntax
SwacContainer.Visible

See also
SwacContainer (Page 5639)

SwacContainer.Width

Description
The "Width" property specifies the width in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
SwacContainer.Width

See also
SwacContainer (Page 5639)

Programming scripts
10.2 WinCC Unified object model

5662 System Manual, 11/2022

SwacContainer.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the container.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title
• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be positioned
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
You can enable multiple properties by adding integer values or bit operators.

Access
Read-write

Syntax
SwacContainer.WindowFlags

Example
Adapting the "windowFlags" tag depending on the window configuration:

Copy code
var windowFlags = HmiWindowFlag.ShowCaption | HmiWindowFlag.ShowBorder;
if (CanClose){
 windowFlags |= HmiWindowFlag.CanClose;
} else {
 windowFlags &= HmiWindowFlag.CanClose;
}

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5663

See also
SwacContainer (Page 5639)

SwacContainer.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
container.

Syntax
SwacContainer.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
SwacContainer (Page 5639)

SwacContainer.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Programming scripts
10.2 WinCC Unified object model

5664 System Manual, 11/2022

Syntax
SwacContainer.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
SwacContainer (Page 5639)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5665

SymbolContainer

Description
The "SymbolContainer" object represents a container for displaying the project graphics in
runtime.

Object type
HmiSymbolContainer

Properties
The "SymbolContainer" object has the following properties:
• Authorization

Returns the operator authorization.
• ContainedType

Returns the type of the contained objects.
• CurrentQuality

Returns the poorest quality code of all tags which influence the container.
• Effect

Specifies the effect for the display of the container surface.
• EffectColor

Specifies the color of the container surface.
• Enabled

Specifies whether the container can be operated in runtime.
• Flip

Specifies whether the symbol is mirrored.
• Height

Specifies the height.
• Layer

Returns the screen layer in which the container is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the container.
• Opacity

Specifies the opacity.
• Operability

Returns whether the container is operable.

Programming scripts
10.2 WinCC Unified object model

5666 System Manual, 11/2022

• Parent
Returns the higher-level screen object.

• ProcessValue
Specifies the process value.

• Properties
Allows access to the dynamic properties of the project graphics.

• RenderingTemplate
Returns the name of the template from which the container was created.

• RequireExplicitUnlock
Returns whether the container is only operable while the corresponding button is being
pressed.

• RotationAngle
Specifies the rotation angle in degrees.

• RotationCenterPlacement
Specifies the reference point around which the container rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFocusVisual
Specifies whether the container is highlighted when in focus.

• StyleItemClass
Returns the style which is applied to the container.

• TabIndex
Returns the position of the container in the tab sequence.

• Thresholds
Returns the list of all limit values of the container.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the container is visible.

• VisualizeQuality
Specifies whether the connection quality of the process value is displayed.

• Width
Specifies the width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5667

Methods
The "SymbolContainer" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the container.
• PropertyFlashing()

Configures flashing of a property.

Events
The "SymbolContainer" object has the following events:
• OnContextTapped()

Occurs when a container is right-clicked or long-touched.
• OnKeyDown()

Occurs when a key is pressed while the container is in focus.
• OnKeyUp()

Occurs when a key is released while the container is in focus.
• OnTapped()

Occurs when a container is left-clicked or short-touched.

SymbolContainer.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
SymbolContainer.Authorization

See also
SymbolContainer (Page 5666)

Programming scripts
10.2 WinCC Unified object model

5668 System Manual, 11/2022

SymbolContainer.ContainedType

Description
The "ContainedType" property returns the type of the contained objects (CustomControl,
SwacComponent, or WidgetType).

Type
String

Access
Read-only

Syntax
SymbolContainer.ContainedType

See also
SymbolContainer (Page 5666)

SymbolContainer.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
container.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.
• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5669

Syntax
SymbolContainer.CurrentQuality

See also
SymbolContainer (Page 5666)

SymbolContainer.Effect

Description
The "Effect" property specifies the effect for the display of the container surface.

Type
Int32, HmiSymbolEffect
Specifies the effect.
• None (0): None
• UseEffectColor (1): Uses the "EffectColor".

Access
Read-write

Syntax
SymbolContainer.Effect

See also
SymbolContainer (Page 5666)

SymbolContainer.EffectColor

Description
The "EffectColor" property specifies the color of the container surface.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5670 System Manual, 11/2022

Syntax
SymbolContainer.EffectColor

See also
SymbolContainer (Page 5666)

SymbolContainer.Enabled

Description
The "Enabled" property specifies whether the container can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
SymbolContainer.Enabled

See also
SymbolContainer (Page 5666)

SymbolContainer.Flip

Description
The "Flip" property specifies whether the symbol is mirrored.

Type
Int32, HmiFlipMode
Specifies the mirroring:
• None (0): None
• Horizontal (1): Horizontal (mirrored at vertical axis)

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5671

Syntax
SymbolContainer.Flip

See also
SymbolContainer (Page 5666)

SymbolContainer.Height

Description
The "Height" property specifies the height in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
SymbolContainer.Height

See also
SymbolContainer (Page 5666)

SymbolContainer.Layer

Description
The "Layer" property returns the screen layer in which the container is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
SymbolContainer.Layer

Programming scripts
10.2 WinCC Unified object model

5672 System Manual, 11/2022

See also
SymbolContainer (Page 5666)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
SymbolContainer.Layer (Page 5672)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5673

See also
SymbolContainer.Layer (Page 5672)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
SymbolContainer.Layer (Page 5672)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

Programming scripts
10.2 WinCC Unified object model

5674 System Manual, 11/2022

See also
SymbolContainer.Layer (Page 5672)

SymbolContainer.Left

Description
The "Left" property sets the value of the X coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
SymbolContainer.Left

See also
SymbolContainer (Page 5666)

SymbolContainer.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
SymbolContainer.Margin

See also
SymbolContainer (Page 5666)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5675

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
SymbolContainer.Margin (Page 5675)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
SymbolContainer.Margin (Page 5675)

Programming scripts
10.2 WinCC Unified object model

5676 System Manual, 11/2022

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
SymbolContainer.Margin (Page 5675)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
SymbolContainer.Margin (Page 5675)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5677

SymbolContainer.Name

Description
The "Name" property returns the name of the container.

Type
String

Access
Read-only

Syntax
SymbolContainer.Name

See also
SymbolContainer (Page 5666)

SymbolContainer.Opacity

Description
The "Opacity" property specifies the opacity. The "0" value indicates completely transparency.

Type
Float

Access
Read-write

Syntax
SymbolContainer.Opacity

See also
SymbolContainer (Page 5666)

Programming scripts
10.2 WinCC Unified object model

5678 System Manual, 11/2022

SymbolContainer.Operability

Description
The "Operability" property returns whether the container is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
SymbolContainer.Operability

See also
SymbolContainer (Page 5666)

SymbolContainer.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
SymbolContainer.Parent

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5679

See also
SymbolContainer (Page 5666)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

SymbolContainer.ProcessValue

Description
The "ProcessValue" property specifies the process value.

Type
Variant

Access
Read-write

Syntax
SymbolContainer.ProcessValue

See also
SymbolContainer (Page 5666)

SymbolContainer.Properties

Description
The "Properties" property allows access to the dynamic properties of the project graphics.

Type
Object, HmiDynamicPropertyPart

Programming scripts
10.2 WinCC Unified object model

5680 System Manual, 11/2022

Access
Read-write

Syntax
SymbolContainer.Properties

See also
SymbolContainer (Page 5666)

SymbolContainer.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the container
was created.

Type
String

Access
Read-only

Syntax
SymbolContainer.RenderingTemplate

See also
SymbolContainer (Page 5666)

SymbolContainer.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the container is only operable while the
corresponding button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5681

Access
Read-only

Syntax
SymbolContainer.RequireExplicitUnlock

See also
SymbolContainer (Page 5666)

SymbolContainer.RotationAngle

Description
The "RotationAngle" property specifies the rotation angle in degrees.

Type
Int16

Access
Read-write

Syntax
SymbolContainer.RotationAngle

See also
SymbolContainer (Page 5666)
SymbolContainer.RotationCenterPlacement (Page 5682)
SymbolContainer.RotationCenterX (Page 5683)
SymbolContainer.RotationCenterY (Page 5684)

SymbolContainer.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the container
rotates.

Programming scripts
10.2 WinCC Unified object model

5682 System Manual, 11/2022

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in the DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
SymbolContainer.RotationCenterPlacement

See also
SymbolContainer (Page 5666)
SymbolContainer.RotationAngle (Page 5682)
SymbolContainer.RotationCenterX (Page 5683)
SymbolContainer.RotationCenterY (Page 5684)

SymbolContainer.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
SymbolContainer.RotationCenterX

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5683

See also
SymbolContainer (Page 5666)
SymbolContainer.RotationAngle (Page 5682)
SymbolContainer.RotationCenterPlacement (Page 5682)
SymbolContainer.RotationCenterY (Page 5684)

SymbolContainer.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
SymbolContainer.RotationCenterY

See also
SymbolContainer (Page 5666)
SymbolContainer.RotationAngle (Page 5682)
SymbolContainer.RotationCenterPlacement (Page 5682)
SymbolContainer.RotationCenterX (Page 5683)

SymbolContainer.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the container is highlighted when in focus.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

5684 System Manual, 11/2022

Access
Read-write

Syntax
SymbolContainer.ShowFocusVisual

See also
SymbolContainer (Page 5666)

SymbolContainer.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the container.

Type
String

Access
Read-only

Syntax
SymbolContainer.StyleItemClass

See also
SymbolContainer (Page 5666)

SymbolContainer.TabIndex

Description
The "TabIndex" property returns the position of the container in the tab sequence.

Type
UInt16

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5685

Syntax
SymbolContainer.TabIndex

See also
SymbolContainer (Page 5666)

SymbolContainer.Thresholds

Description
The "Thresholds" property returns the list of all limit values ("Threshold" objects) of the container.

Type
Object, HmiThresholdCollection (Page 5686)

Access
Read-only

Syntax
SymbolContainer.Thresholds

See also
SymbolContainer (Page 5666)
HmiThresholdCollection (Page 5686)

HmiThresholdCollection

Description
The "HmiThresholdCollection" object is a list of all limit values ("Threshold" objects).

Use
The "HmiThresholdCollection" object is a list and can be counted and enumerated. You can
access the "HmiThresholdCollection" list using the index or the tag name.

Object type
HmiThresholdCollection

Programming scripts
10.2 WinCC Unified object model

5686 System Manual, 11/2022

Properties
The "HmiThresholdCollection" object has the following properties:
• Count

Returns the number of limit values of the "HmiThresholdCollection" list.

Methods
The "HmiThresholdCollection" object has the following methods:
• Item()

Returns a limit value of the "HmiThresholdCollection" list.

See also
SymbolContainer.Thresholds (Page 5686)

HmiThresholdCollection.Count

Description
The "Count" property returns the number of limit values in the "HmiThresholdCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiThresholdCollection.Count

See also
HmiThresholdCollection (Page 5686)

HmiThresholdCollection.Item()

Description
The "Item" method returns a limit value of the "HmiThresholdCollection" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5687

Syntax
HmiThresholdCollection[.Item](HmiThresholdName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiThresholdCollection" object.

Parameters
HmiThresholdName
Type: String
Name of the limit value

Return value
Object, HmiThresholdPart (Page 5688)

See also
HmiThresholdCollection (Page 5686)
Threshold (Page 5688)

Threshold

Description
The "Threshold" object represents a limit value.

Object type
HmiThresholdPart

Properties
The "Threshold" object has the following properties:
• Color

Specifies the color of the limit value.
• DisplayName

Specifies the display name of the limit value.
• Name

Specifies the name of the limit value.

Programming scripts
10.2 WinCC Unified object model

5688 System Manual, 11/2022

• ThresholdMode
Specifies the type of limit value.

• Value
Returns the limit value.

Methods
--

See also
HmiThresholdCollection (Page 5686)

Threshold.Color

Description
The "Color" property specifies the color of the limit value.

Type
UInt32

Access
Read-write

Syntax
Threshold.Color

See also
Threshold (Page 5688)

Threshold.DisplayName

Description
The "DisplayName" property specifies the display name of the limit value.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5689

Access
Read-write

Syntax
Threshold.DisplayName

See also
Threshold (Page 5688)

Threshold.Name

Description
The "Name" property specifies the name of the limit value.

Type
String

Access
Read-write

Syntax
Threshold.Name

See also
Threshold (Page 5688)

Threshold.ThresholdMode

Description
The "ThresholdMode" property specifies the type of limit value.

Type
Int32, HmiThresholdMode
Specifies the threshold value:
• Undefined (0): Undefined
• Upper (1): Upper threshold

Programming scripts
10.2 WinCC Unified object model

5690 System Manual, 11/2022

• Lower (2): Lower threshold
• Normal (3): Normal threshold
• Minimum (4): Minimum threshold
• Maximum (5): Maximum threshold

Access
Read-write

Syntax
Threshold.ThresholdMode

See also
Threshold (Page 5688)

Threshold.Value

Description
The "Value" property returns the limit value of the tag.

Type
Float

Access
Read-only

Syntax
Threshold.Value

See also
Threshold (Page 5688)

SymbolContainer.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5691

Type
String

Access
Read-write

Syntax
SymbolContainer.ToolTipText

See also
SymbolContainer (Page 5666)

SymbolContainer.Top

Description
The "Top" property sets the value of the Y coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
SymbolContainer.Top

See also
SymbolContainer (Page 5666)

SymbolContainer.Visible

Description
The "Visible" property specifies whether the container is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

5692 System Manual, 11/2022

Access
Read-write

Syntax
SymbolContainer.Visible

See also
SymbolContainer (Page 5666)

SymbolContainer.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Access
Read-write

Syntax
SymbolContainer.VisualizeQuality

See also
SymbolContainer (Page 5666)

SymbolContainer.Width

Description
The "Width" property specifies the width in the DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5693

Access
Read-write

Syntax
SymbolContainer.Width

See also
SymbolContainer (Page 5666)

SymbolContainer.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
container.

Syntax
SymbolContainer.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
SymbolContainer (Page 5666)

Programming scripts
10.2 WinCC Unified object model

5694 System Manual, 11/2022

SymbolContainer.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
SymbolContainer.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5695

Return value
Bool

See also
SymbolContainer (Page 5666)

SymbolContainer_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A container is right-clicked.
• A container is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
SymbolContainer_OnContextTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Container where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key

Programming scripts
10.2 WinCC Unified object model

5696 System Manual, 11/2022

• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
SymbolContainer (Page 5666)

SymbolContainer_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the container is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
SymbolContainer_OnKeyDown(item, keyCode, modifiers)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5697

Context
item
Type: Object
Container where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
SymbolContainer (Page 5666)

SymbolContainer_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the container is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
SymbolContainer_OnKeyUp(item, keyCode, modifiers)

Programming scripts
10.2 WinCC Unified object model

5698 System Manual, 11/2022

Context
item
Type:
Container where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
SymbolContainer (Page 5666)

SymbolContainer_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A container type is left-clicked.
• The <RETURN> or <SPACE> key is pressed when an container has the focus.
• A container is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5699

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
SymbolContainer_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Container where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger

Programming scripts
10.2 WinCC Unified object model

5700 System Manual, 11/2022

The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
SymbolContainer (Page 5666)

SymbolicIOField

Description
The "SymbolicIOField" object represents a symbolic I/O field for the input and display of text or
graphic objects as a list in runtime.

Object type
HmiSymbolicIOField

Properties
The "SymbolicIOField" object has the following properties:
• AcceptExplicitely

Specifies whether the process value is only written by explicit triggering of double-click, enter
key, or tab.

• AcceptOnDeactivated
Specifies whether the process value is written when the symbolic I/O field loses the input
focus.

• AlternateBackColor
Specifies the second color for a color gradient.

• AlternateBorderColor
Specifies the second border color which is displayed for line styles such as "Dash".

• Authorization
Returns the operator authorization.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5701

• AutoTabOnAccept
Specifies whether a switch to the next object in the configured tab sequence occurs
automatically after a value is entered.

• BackColor
Specifies the background color.

• BorderColor
Specifies the border color.

• BorderWidth
Specifies the border thickness.

• Content
Specifies the display options for text and graphics.

• CurrentQuality
Returns the poorest quality code of all tags which influence the symbolic I/O field.

• Enabled
Specifies whether the symbolic I/O field can be operated in runtime.

• ExpandOnActivate
Specifies whether the list drops down when the symbolic I/O field receives focus.

• Font
Specifies the font of the text.

• ForeColor
Specifies the font color of the text.

• Graphic
Returns the graphic of the graphics list according to the process value.

• Height
Specifies the height.

• IOFieldType
Specifies the mode of the symbolic I/O field.

• Layer
Returns the layer of the screen in which the symbolic I/O field is located.

• Left
Specifies the value of the X coordinate.

• Margin
Specifies the margin.

• Name
Returns the name of the symbolic I/O field.

• Opacity
Specifies the opacity.

• Operability
Returns whether the symbolic I/O field is operable.

• Padding
Specifies the distance of the content from the border of the symbolic I/O field.

Programming scripts
10.2 WinCC Unified object model

5702 System Manual, 11/2022

• Parent
Returns the higher-level screen object.

• ProcessValue
Specifies the process value.

• RenderingTemplate
Returns the name of the template from which the symbolic I/O field was created.

• RequireExplicitUnlock
Returns whether the symbolic I/O field is only operable while the associated button is being
pressed.

• ResourceList
Specifies the text or graphics list.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the symbolic I/O field rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• SelectedIndex
Specifies the index for the selected list entry.

• SelectionBackColor
Specifies the background color of the selected list entry.

• SelectionForeColor
Specifies the font color of the text of the selected list entry.

• ShowFocusVisual
Specifies whether the symbolic I/O field is highlighted when in focus.

• StyleItemClass
Returns the style which is applied to the symbolic I/O field.

• TabIndex
Returns the position of the symbolic I/O field in the tab sequence.

• Text
Returns the text of the text list according to the process value.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the symbolic I/O field is visible.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5703

• VisualizeQuality
Specifies whether the connection quality of the process value is displayed.

• Width
Specifies the width.

Methods
The "SymbolicIOField" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the symbolic I/O field.
• PropertyFlashing()

Configures flashing of a property.

Events
The "SymbolicIOField" object has the following events:
• OnActivated()

Occurs when a symbolic I/O field receives focus.
• OnContextTapped()

Occurs when a symbolic I/O field is right-clicked or long-touched.
• OnDeactivated()

Occurs when a symbolic I/O field loses the focus.
• OnKeyDown()

Occurs when a key is pressed while the symbolic I/O field is in focus.
• OnKeyUp()

Occurs when a key is released while the symbolic I/O field is in focus.
• OnTapped()

Occurs when a symbolic I/O field is left-clicked or short-touched.

SymbolicIOField.AcceptExplicitely

Description
The "AcceptExplicitely" property specifies whether the process value is only written by explicit
triggering of double-click, Enter key, or tab.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5704 System Manual, 11/2022

Syntax
SymbolicIOField.AcceptExplicitely

See also
SymbolicIOField (Page 5701)

SymbolicIOField.AcceptOnDeactivated

Description
The "AcceptOnDeactivated" property specifies whether the process value is written when the
symbolic I/O field loses the input focus.

Type
Bool

Access
Read-write

Syntax
SymbolicIOField.AcceptOnDeactivated

See also
SymbolicIOField (Page 5701)

SymbolicIOField.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5705

Syntax
SymbolicIOField.AlternateBackColor

See also
SymbolicIOField (Page 5701)

SymbolicIOField.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color which is displayed for line
styles such as "Dash".

Type
UInt32

Access
Read-write

Syntax
SymbolicIOField.AlternateBorderColor

See also
SymbolicIOField (Page 5701)

SymbolicIOField.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

5706 System Manual, 11/2022

Syntax
SymbolicIOField.Authorization

See also
SymbolicIOField (Page 5701)

SymbolicIOField.AutoTabOnAccept

Description
The "AutoTabOnAccept" property specifies whether a switch to the next object in the configured
tab sequence occurs automatically after a value is entered.

Type
Bool

Access
Read-write

Syntax
SymbolicIOField.AutoTabOnAccept

See also
SymbolicIOField (Page 5701)

SymbolicIOField.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5707

Syntax
SymbolicIOField.BackColor

See also
SymbolicIOField (Page 5701)

SymbolicIOField.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
SymbolicIOField.BorderColor

See also
SymbolicIOField (Page 5701)

SymbolicIOField.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
SymbolicIOField.BorderWidth

Programming scripts
10.2 WinCC Unified object model

5708 System Manual, 11/2022

See also
SymbolicIOField (Page 5701)

SymbolicIOField.Content

Description
The "Content" property specifies the display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
SymbolicIOField.Content

See also
SymbolicIOField (Page 5701)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5709

Syntax
Content.ContentMode

See also
SymbolicIOField.Content (Page 5709)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
SymbolicIOField.Content (Page 5709)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Programming scripts
10.2 WinCC Unified object model

5710 System Manual, 11/2022

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
SymbolicIOField.Content (Page 5709)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
SymbolicIOField.Content (Page 5709)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5711

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
SymbolicIOField.Content (Page 5709)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5712 System Manual, 11/2022

Syntax
Content.TextPosition

See also
SymbolicIOField.Content (Page 5709)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
SymbolicIOField.Content (Page 5709)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5713

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
SymbolicIOField.Content (Page 5709)

SymbolicIOField.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
symbolic I/O field.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
SymbolicIOField.CurrentQuality

Programming scripts
10.2 WinCC Unified object model

5714 System Manual, 11/2022

See also
SymbolicIOField (Page 5701)

SymbolicIOField.Enabled

Description
The "Enabled" property specifies whether the symbolic I/O field can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
SymbolicIOField.Enabled

See also
SymbolicIOField (Page 5701)

SymbolicIOField.ExpandOnActivate

Description
The "ExpandOnActivate" property specifies whether the list drops down when the symbolic I/O
field receives focus.

Type
Bool

Access
Read-write

Syntax
SymbolicIOField.ExpandOnActivate

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5715

See also
SymbolicIOField (Page 5701)

SymbolicIOField.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
SymbolicIOField.Font

See also
SymbolicIOField (Page 5701)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

Programming scripts
10.2 WinCC Unified object model

5716 System Manual, 11/2022

See also
SymbolicIOField.Font (Page 5716)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
SymbolicIOField.Font (Page 5716)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5717

See also
SymbolicIOField.Font (Page 5716)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
SymbolicIOField.Font (Page 5716)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5718 System Manual, 11/2022

Syntax
Font.Underline

See also
SymbolicIOField.Font (Page 5716)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
SymbolicIOField.Font (Page 5716)

SymbolicIOField.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5719

Type
UInt32

Access
Read-write

Syntax
SymbolicIOField.ForeColor

See also
SymbolicIOField (Page 5701)

SymbolicIOField.Graphic

Description
The "Graphic" property returns the graphic of the graphics list according to the process value.

Type
String

Access
Read-only

Syntax
SymbolicIOField.Graphic

See also
SymbolicIOField (Page 5701)

SymbolicIOField.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

5720 System Manual, 11/2022

Access
Read-write

Syntax
SymbolicIOField.Height

See also
SymbolicIOField (Page 5701)

SymbolicIOField.IOFieldType

Description
The "IOFieldType" property specifies the mode of the symbolic I/O field.

Type
Int32, HmiIOFieldType
Specifies the type:
• Output (0): Output only
• InputOutput (2): Input and output

Access
Read-write

Syntax
SymbolicIOField.IOFieldType

See also
SymbolicIOField (Page 5701)

SymbolicIOField.Layer

Description
The "Layer" property returns the layer of the screen in which the symbolic I/O field is located.

Type
Object, HmiLayerPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5721

Access
Read-only

Syntax
SymbolicIOField.Layer

See also
SymbolicIOField (Page 5701)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
SymbolicIOField.Layer (Page 5721)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Programming scripts
10.2 WinCC Unified object model

5722 System Manual, 11/2022

Access
Read-write

Syntax
Layer.MinimumZoom

See also
SymbolicIOField.Layer (Page 5721)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
SymbolicIOField.Layer (Page 5721)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5723

Access
Read-write

Syntax
Layer.Visible

See also
SymbolicIOField.Layer (Page 5721)

SymbolicIOField.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
SymbolicIOField.Left

See also
SymbolicIOField (Page 5701)

SymbolicIOField.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

5724 System Manual, 11/2022

Access
Read-write

Syntax
SymbolicIOField.Margin

See also
SymbolicIOField (Page 5701)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
SymbolicIOField.Margin (Page 5724)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5725

Access
Read-write

Syntax
Margin.Left

See also
SymbolicIOField.Margin (Page 5724)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
SymbolicIOField.Margin (Page 5724)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5726 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Top

See also
SymbolicIOField.Margin (Page 5724)

SymbolicIOField.Name

Description
The "Name" property returns the name of the symbolic I/O field.

Type
String

Access
Read-only

Syntax
SymbolicIOField.Name

See also
SymbolicIOField (Page 5701)

SymbolicIOField.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" indicates completely transparent.

Type
Float

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5727

Access
Read-write

Syntax
SymbolicIOField.Opacity

See also
SymbolicIOField (Page 5701)

SymbolicIOField.Operability

Description
The "Operability" property returns whether the symbolic I/O field is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
SymbolicIOField.Operability

See also
SymbolicIOField (Page 5701)

SymbolicIOField.Padding

Description
The "Padding" property specifies the distance of the content from the border of the symbolic I/O
field.

Programming scripts
10.2 WinCC Unified object model

5728 System Manual, 11/2022

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
SymbolicIOField.Padding

See also
SymbolicIOField (Page 5701)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
SymbolicIOField.Padding (Page 5728)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5729

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
SymbolicIOField.Padding (Page 5728)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
SymbolicIOField.Padding (Page 5728)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

5730 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
SymbolicIOField.Padding (Page 5728)

SymbolicIOField.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
SymbolicIOField.Parent

See also
SymbolicIOField (Page 5701)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5731

SymbolicIOField.ProcessValue

Description
The "ProcessValue" property specifies the process value.

Type
Variant

Access
Read-write

Syntax
SymbolicIOField.ProcessValue

See also
SymbolicIOField (Page 5701)

SymbolicIOField.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the symbolic
I/O field was created.

Type
String

Access
Read-only

Syntax
SymbolicIOField.RenderingTemplate

See also
SymbolicIOField (Page 5701)

Programming scripts
10.2 WinCC Unified object model

5732 System Manual, 11/2022

SymbolicIOField.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the symbolic I/O field can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
SymbolicIOField.RequireExplicitUnlock

See also
SymbolicIOField (Page 5701)

SymbolicIOField.ResourceList

Description
The "ResourceList" property specifies the text or graphics list.

Type
String, HmiResourceList

Access
Read-write

Syntax
SymbolicIOField.ResourceList

See also
SymbolicIOField (Page 5701)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5733

SymbolicIOField.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
SymbolicIOField.RotationAngle

See also
SymbolicIOField (Page 5701)
SymbolicIOField.RotationCenterPlacement (Page 5734)
SymbolicIOField.RotationCenterX (Page 5735)
SymbolicIOField.RotationCenterY (Page 5736)

SymbolicIOField.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the symbolic I/O
field rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

5734 System Manual, 11/2022

Access
Read-write

Syntax
SymbolicIOField.RotationCenterPlacement

See also
SymbolicIOField (Page 5701)
SymbolicIOField.RotationAngle (Page 5734)
SymbolicIOField.RotationCenterX (Page 5735)
SymbolicIOField.RotationCenterY (Page 5736)

SymbolicIOField.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
SymbolicIOField.RotationCenterX

See also
SymbolicIOField (Page 5701)
SymbolicIOField.RotationAngle (Page 5734)
SymbolicIOField.RotationCenterPlacement (Page 5734)
SymbolicIOField.RotationCenterY (Page 5736)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5735

SymbolicIOField.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
SymbolicIOField.RotationCenterY

See also
SymbolicIOField (Page 5701)
SymbolicIOField.RotationAngle (Page 5734)
SymbolicIOField.RotationCenterPlacement (Page 5734)
SymbolicIOField.RotationCenterX (Page 5735)

SymbolicIOField.SelectedIndex

Description
The "SelectedIndex" property specifies the index of the selected list entry. Returns the index
according to the process value. The index is "-1", if no selection is available or the process value
does not match.

Type
Int32

Access
Read-write

Syntax
SymbolicIOField.SelectedIndex

Programming scripts
10.2 WinCC Unified object model

5736 System Manual, 11/2022

See also
SymbolicIOField (Page 5701)

SymbolicIOField.SelectionBackColor

Description
The "SelectionBackColor" property specifies the background color of the selected list entry

Type
UInt32

Access
Read-write

Syntax
SymbolicIOField.SelectionBackColor

See also
SymbolicIOField (Page 5701)

SymbolicIOField.SelectionForeColor

Description
The "SelectionForeColor" property specifies the font color of the text of the selected list entry.

Type
UInt32

Access
Read-write

Syntax
SymbolicIOField.SelectionForeColor

See also
SymbolicIOField (Page 5701)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5737

SymbolicIOField.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the symbolic I/O field is highlighted when in
focus.

Type
Bool

Access
Read-write

Syntax
SymbolicIOField.ShowFocusVisual

See also
SymbolicIOField (Page 5701)

SymbolicIOField.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the symbolic I/O field.

Type
String

Access
Read-only

Syntax
SymbolicIOField.StyleItemClass

See also
SymbolicIOField (Page 5701)

Programming scripts
10.2 WinCC Unified object model

5738 System Manual, 11/2022

SymbolicIOField.TabIndex

Description
The "TabIndex" property returns the position of the symbolic I/O field in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
SymbolicIOField.TabIndex

See also
SymbolicIOField (Page 5701)

SymbolicIOField.Text

Description
The "Text" property returns the text of the text list according to the process value.

Type
String

Access
Read-only

Syntax
SymbolicIOField.Text

See also
SymbolicIOField (Page 5701)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5739

SymbolicIOField.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
SymbolicIOField.ToolTipText

See also
SymbolicIOField (Page 5701)

SymbolicIOField.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
SymbolicIOField.Top

See also
SymbolicIOField (Page 5701)

Programming scripts
10.2 WinCC Unified object model

5740 System Manual, 11/2022

SymbolicIOField.Visible

Description
The "Visible" property specifies whether the symbolic I/O field is visible.

Type
Bool

Access
Read-write

Syntax
SymbolicIOField.Visible

See also
SymbolicIOField (Page 5701)

SymbolicIOField.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Access
Read-write

Syntax
SymbolicIOField.VisualizeQuality

See also
SymbolicIOField (Page 5701)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5741

SymbolicIOField.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
SymbolicIOField.Width

See also
SymbolicIOField (Page 5701)

SymbolicIOField.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
symbolic I/O field.

Syntax
SymbolicIOField.CheckAuthorization()

Parameters
--

Return value
Bool

Programming scripts
10.2 WinCC Unified object model

5742 System Manual, 11/2022

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
SymbolicIOField (Page 5701)

SymbolicIOField.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
SymbolicIOField.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5743

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
SymbolicIOField (Page 5701)

SymbolicIOField_OnActivated()

Description
The "OnActivated" event occurs when a symbolic I/O field receives focus:
• A symbolic I/O field is selected via the configured tab sequence.
• A symbolic I/O field that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
SymbolicIOField_OnActivated(item)

Context
item
Type: Object
Symbolic I/O field where the event occurs.

Programming scripts
10.2 WinCC Unified object model

5744 System Manual, 11/2022

See also
SymbolicIOField (Page 5701)

SymbolicIOField_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A symbolic I/O field is right-clicked.
• A symbolic I/O field is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
SymbolicIOField_OnContextTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Symbolic I/O field where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5745

• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
SymbolicIOField (Page 5701)

SymbolicIOField_OnDeactivated()

Description
The "OnDeactivated" event occurs when the symbolic I/O field loses focus because the operator
presses the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
SymbolicIOField_OnDeactivated(item)

Context
item
Type: Object

Programming scripts
10.2 WinCC Unified object model

5746 System Manual, 11/2022

Symbolic I/O field where the event occurs.

See also
SymbolicIOField (Page 5701)

SymbolicIOField_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the symbolic I/O field is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
SymbolicIOField_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Symbolic I/O field where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5747

• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
SymbolicIOField (Page 5701)

SymbolicIOField_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the symbolic I/O field is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
SymbolicIOField_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Symbolic I/O field where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key

Programming scripts
10.2 WinCC Unified object model

5748 System Manual, 11/2022

• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
SymbolicIOField (Page 5701)

SymbolicIOField_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A symbolic I/O field is left-clicked.
• The <RETURN> or <SPACE> key is pressed when a symbolic I/O field has the focus.
• A symbolic I/O field is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
SymbolicIOField_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Symbolic I/O field where the event occurs.

x
Type: DInt
X-coordinate of the input point

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5749

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
SymbolicIOField (Page 5701)

SystemDiagnosisControl

Description
The "SystemDiagnosisControl" object represents a system diagnostics control in runtime.

Programming scripts
10.2 WinCC Unified object model

5750 System Manual, 11/2022

Object type
HmiSystemDiagnosisControl

Properties
The "SystemDiagnosisControl" object has the following properties:
• BackColor

Specifies the background color.
• Caption

Specifies the text to be displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.
• CurrentQuality

Returns the poorest quality code of all tags which influence the system diagnostics control.
• DiagnosisBufferPathText

Specifies the path to the diagnostic buffer.
• DiagnosisOverviewPathText

Specifies the path to the diagnostics overview.
• Enabled

Specifies whether the system diagnostics control can be operated in runtime.
• Height

Specifies the height.
• Icon

Specifies the icon of the system diagnostics control.
• Layer

Returns the screen layer in which the system diagnostics control is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• MatrixView

Specifies the matrix view of the system diagnostics control.
• Name

Returns the name of the system diagnostics control.
• Parent

Returns the higher-level screen object.
• RenderingTemplate

Returns the name of the template from which the system diagnostics control was created.
• ShowFocusVisual

Specifies whether the system diagnostics control is highlighted when in focus.
• ShowStatusPath

Specifies that the status path is displayed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5751

• StatusBar
Specifies the information bar of the system diagnostics control.

• StyleItemClass
Returns the style which is applied to the system diagnostics control.

• SystemDiagnosisView
Specifies the table layout.

• SystemDiagnosisViewType
Specifies the type of table layout.

• TabIndex
Returns the position of the system diagnostics control in the tab sequence.

• TimeZone
Specifies the time zone.

• ToolBar
Specifies the toolbar of the system diagnostics control.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the system diagnostics control is visible.

• Width
Specifies the width.

• WindowFlags
Specifies the window configuration of the system diagnostics control.

Methods
The "SystemDiagnosisControl" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the system diagnostics control.
• FireCommand()

Configures the occurrence of an event for an element.
• GoToPlc()

Navigates to the next PLC.
• PropertyFlashing()

Configures flashing of a property.

Events
The "SystemDiagnosisControl" object has the following events:
• OnActivated()

Occurs when a system diagnostics control receives focus.
• OnCommandFired()

Occurs when the operator has operated an element in the toolbar or information bar of the
system diagnostics control.

Programming scripts
10.2 WinCC Unified object model

5752 System Manual, 11/2022

• OnDeactivated()
Occurs when a system diagnostics control loses focus.

• OnInitialized()
Occurs when a system diagnostics control has been successfully initialized and the data
connection to the PLC has been established.

SystemDiagnosisControl.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
SystemDiagnosisControl.BackColor

See also
SystemDiagnosisControl (Page 5750)

SystemDiagnosisControl.Caption

Description
The "Caption" property specifies the text to be displayed in the title bar.

Type
Object, HmiTextPart

Access
Read-write

Syntax
SystemDiagnosisControl.Caption

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5753

See also
SystemDiagnosisControl (Page 5750)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
SystemDiagnosisControl.Caption (Page 5753)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

Programming scripts
10.2 WinCC Unified object model

5754 System Manual, 11/2022

See also
Text.Font (Page 5754)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 5754)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5755

See also
Text.Font (Page 5754)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 5754)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5756 System Manual, 11/2022

Syntax
Font.Underline

See also
Text.Font (Page 5754)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 5754)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5757

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
SystemDiagnosisControl.Caption (Page 5753)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
SystemDiagnosisControl.Caption (Page 5753)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Programming scripts
10.2 WinCC Unified object model

5758 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
SystemDiagnosisControl.Caption (Page 5753)

SystemDiagnosisControl.CaptionColor

Description
The "CaptionColor" property specifies the background color of the title bar.

Type
UInt32

Access
Read-write

Syntax
SystemDiagnosisControl.CaptionColor

See also
SystemDiagnosisControl (Page 5750)

SystemDiagnosisControl.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
system diagnostics control.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5759

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.
• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
SystemDiagnosisControl.CurrentQuality

See also
SystemDiagnosisControl (Page 5750)

SystemDiagnosisControl.DiagnosisBufferPathText

Description
The "DiagnosisBufferPathText" property specifies the path to the diagnostic buffer.

Type
String

Access
Read-write

Syntax
SystemDiagnosisControl.DiagnosisBufferPathText

See also
SystemDiagnosisControl (Page 5750)

Programming scripts
10.2 WinCC Unified object model

5760 System Manual, 11/2022

SystemDiagnosisControl.DiagnosisOverviewPathText

Description
The "DiagnosisOverviewPathText" property specifies the path to the diagnostics overview.

Type
String

Access
Read-write

Syntax
SystemDiagnosisControl.DiagnosisOverviewPathText

See also
SystemDiagnosisControl (Page 5750)

SystemDiagnosisControl.Enabled

Description
The "Enabled" property specifies whether the system diagnostics control can be operated in
runtime.

Type
Bool

Access
Read-write

Syntax
SystemDiagnosisControl.Enabled

See also
SystemDiagnosisControl (Page 5750)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5761

SystemDiagnosisControl.Height

Description
The "Height" property specifies the height.

Type
UInt32

Access
Read-write

Syntax
SystemDiagnosisControl.Height

See also
SystemDiagnosisControl (Page 5750)

SystemDiagnosisControl.Icon

Description
The "Icon" property specifies the icon of the system diagnostics control.

Type
String

Access
Read-write

Syntax
SystemDiagnosisControl.Icon

See also
SystemDiagnosisControl (Page 5750)

Programming scripts
10.2 WinCC Unified object model

5762 System Manual, 11/2022

SystemDiagnosisControl.Layer

Description
The "Layer" property returns the screen layer in which the system diagnostics control is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
SystemDiagnosisControl.Layer

See also
SystemDiagnosisControl (Page 5750)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
SystemDiagnosisControl.Layer (Page 5763)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5763

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
SystemDiagnosisControl.Layer (Page 5763)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
SystemDiagnosisControl.Layer (Page 5763)

Programming scripts
10.2 WinCC Unified object model

5764 System Manual, 11/2022

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
SystemDiagnosisControl.Layer (Page 5763)

SystemDiagnosisControl.Left

Description
The "Left" property specifies the value of the X coordinate.

Type
Int32

Access
Read-write

Syntax
SystemDiagnosisControl.Left

See also
SystemDiagnosisControl (Page 5750)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5765

SystemDiagnosisControl.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
SystemDiagnosisControl.Margin

See also
SystemDiagnosisControl (Page 5750)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
SystemDiagnosisControl.Margin (Page 5766)

Programming scripts
10.2 WinCC Unified object model

5766 System Manual, 11/2022

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
SystemDiagnosisControl.Margin (Page 5766)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
SystemDiagnosisControl.Margin (Page 5766)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5767

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
SystemDiagnosisControl.Margin (Page 5766)

SystemDiagnosisControl.MatrixView

Description
The "MatrixView" property specifies the matrix view of the system diagnostics control.

Type
Object, HmiMatrixViewPart

Access
Read-write

Syntax
SystemDiagnosisControl.MatrixView

See also
SystemDiagnosisControl (Page 5750)

Programming scripts
10.2 WinCC Unified object model

5768 System Manual, 11/2022

MatrixView.TileBorderWidth

Description
The "TileBorderWidth" property specifies the border width of the tile.

Type
UInt8

Access
Read-write

Syntax
MatrixView.TileBorderWidth

See also
SystemDiagnosisControl.MatrixView (Page 5768)

MatrixView.TileHeightMax

Description
The "TileHeightMax" property specifies the maximum height of the tile.

Type
UInt16

Access
Read-write

Syntax
MatrixView.TileHeightMax

See also
SystemDiagnosisControl.MatrixView (Page 5768)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5769

MatrixView.TileHeightMin

Description
The "TileHeightMin" property specifies the minimum height of the tile.

Type
UInt16

Access
Read-write

Syntax
MatrixView.TileHeightMin

See also
SystemDiagnosisControl.MatrixView (Page 5768)

MatrixView.TileWidthMax

Description
The "TileWidthMax" property specifies the maximum width of the tile.

Type
UInt16

Access
Read-write

Syntax
MatrixView.TileWidthMax

See also
SystemDiagnosisControl.MatrixView (Page 5768)

Programming scripts
10.2 WinCC Unified object model

5770 System Manual, 11/2022

MatrixView.TileWidthMin

Description
The "TileWidthMin" property specifies the minimum width of the tile.

Type
UInt16

Access
Read-write

Syntax
MatrixView.TileWidthMin

See also
SystemDiagnosisControl.MatrixView (Page 5768)

MatrixView.HardwareDetails

Description
The "HardwareDetails" property returns a list of the HMI device hardware details.

Type
Object, HmiSystemDiagnosisHardwareDetailCollection (Page 5772)

Access
Read-only

Syntax
MatrixView.HardwareDetails

See also
SystemDiagnosisControl.MatrixView (Page 5768)
HmiSystemDiagnosisHardwareDetailCollection (Page 5772)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5771

HmiSystemDiagnosisHardwareDetailCollection

Description
The "HmiSystemDiagnosisHardwareDetailCollection" object is a list of all hardware details
("HmiSystemDiagnosisHardwareDetailPart" objects) of the HMI device on which the system
diagnostics were activated.
You can reference the "HmiSystemDiagnosisHardwareDetailCollection" object via
the "MatrixView.HardwareDetails" property.

Use
The "HmiSystemDiagnosisHardwareDetailCollection" object is a list which can be counted and
enumerated. You can access the "HmiSystemDiagnosisHardwareDetailCollection" list using the
index or the tag names.

Object type
HmiSystemDiagnosisHardwareDetailCollection

Properties
The "HmiSystemDiagnosisHardwareDetailCollection" object has the following properties:
• Count

Returns the number of hardware details of the
"HmiSystemDiagnosisHardwareDetailCollection" list.

Methods
The "HmiSystemDiagnosisHardwareDetailCollection" object has the following methods:
• Item()

Returns the name of a hardware detail.

See also
MatrixView.HardwareDetails (Page 5771)
SystemDiagnosisControl.MatrixView (Page 5768)

HmiSystemDiagnosisHardwareDetailCollection.Count

Description
The "Count" property returns the number of hardware details of the
"HmiSystemDiagnosisHardwareDetailCollection" list.

Programming scripts
10.2 WinCC Unified object model

5772 System Manual, 11/2022

Type
UInt32

Access
Read-only

Syntax
HmiSystemDiagnosisHardwareDetailCollection.Count

See also
HmiSystemDiagnosisHardwareDetailCollection (Page 5772)
MatrixView.HardwareDetails (Page 5771)

HmiSystemDiagnosisHardwareDetailCollection.Item()

Description
The "Item" method returns a hardware detail of the
"HmiSystemDiagnosisHardwareDetailCollection" list.

Syntax
HmiSystemDiagnosisHardwareDetailCollection[.Item]
(HmiSystemDiagnosisHardwareDetailName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiSystemDiagnosisHardwareDetailCollection" object.

Parameters
HmiSystemDiagnosisHardwareDetailName
Type: String
Name of a hardware detail

Return value
Object, HmiSystemDiagnosisHardwareDetailPart (Page 5774)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5773

See also
HmiSystemDiagnosisHardwareDetailCollection (Page 5772)
SystemDiagnosisHardwareDetail (Page 5774)

SystemDiagnosisHardwareDetail

Description
The "SystemDiagnosisHardwareDetail" object represents a hardware detail.

Object type
HmiSystemDiagnosisHardwareDetailPart

Properties
The "SystemDiagnosisHardwareDetail" object has the following properties:
• SystemDiagnosisMatrixBlock

Sets the matrix block of the system diagnostics control.
• Visible

Specifies whether the hardware detail is visible.

Methods
--

See also
HmiSystemDiagnosisHardwareDetailCollection (Page 5772)
MatrixView.HardwareDetails (Page 5771)

SystemDiagnosisHardwareDetail.SystemDiagnosisMatrixBlock

Description
The "SystemDiagnosisMatrixBlock" property specifies the matrix block of a hardware detail.

Type
Int32, HmiSystemDiagnosisMatrixBlock
Specifies the type of matrix block.
• Undefined (0): None
• Status (1): Status

Programming scripts
10.2 WinCC Unified object model

5774 System Manual, 11/2022

• Name (2): Name
• OperatingState (3): Operating state
• Rack (4): Rack
• Slot (5): Slot
• OrderNumber (6): Order number
• Address (7): Address
• PlantDesignation (8): Plant Designation
• LocationIdentifier (9): Location identifier
• Subsystem (10): Subsystem
• Station (11): Station
• Subslot (12): Subslot
• SubAddress (13): Subaddress
• SoftwareVersion (14): Software Version
• Installation (15): Installation
• AdditionalInformation (16): Additional information
• ErrorDescription (17): Error description
• ManufacturerID (18): Manufacturer ID
• HardwareVersion (19): Hardware version
• ProfileID (20): Profile ID
• SpecificProfileData (21): Specific profile data
• IandMDataVersion (22): I and M Data Version
• SerialNumber (23): Serial number
• RevisionCounter (24): Version counter
• Type (25): Type
• IPAddress (32): IP addresses

Access
Read-write

Syntax
SystemDiagnosisHardwareDetail.SystemDiagnosisMatrixBlock

See also
SystemDiagnosisHardwareDetail (Page 5774)
HmiSystemDiagnosisHardwareDetailCollection (Page 5772)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5775

SystemDiagnosisHardwareDetail.Visible

Description
The "Visible" property specifies whether the hardware detail is visible.

Type
Bool

Access
Read-write

Syntax
SystemDiagnosisHardwareDetail.Visible

See also
SystemDiagnosisHardwareDetail (Page 5774)
HmiSystemDiagnosisHardwareDetailCollection (Page 5772)

MatrixView.SystemDiagnosisHardwareDetailView

Description
The "SystemDiagnosisHardwareDetailView" property specifies the view of the hardware detail.

Type
Object, HmiSystemDiagnosisDetailViewPart

Access
Read-write

Syntax
MatrixView.SystemDiagnosisHardwareDetailView

See also
SystemDiagnosisControl.MatrixView (Page 5768)
SystemDiagnosisControl (Page 5750)

Programming scripts
10.2 WinCC Unified object model

5776 System Manual, 11/2022

SystemDiagnosisDetailView.AllowFilter

Description
The "AllowFilter" property specifies whether filtering of columns is permitted.

Type
Bool

Access
Read-write

Syntax
SystemDiagnosisDetailView.AllowFilter

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

SystemDiagnosisDetailView.AllowSort

Description
The "AllowSort" property specifies whether the sorting of columns is permitted.
• True: Activates the sorting and sets the "AllowSort" property of all columns to "True".
• False: Disables the sorting for all columns. The individual column properties remain

unchanged.

Type
Bool

Access
Read-write

Syntax
SystemDiagnosisDetailView.AllowSort

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5777

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

SystemDiagnosisDetailView.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
SystemDiagnosisDetailView.AlternateBackColor

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

SystemDiagnosisDetailView.AlternateForeColor

Description
The "AlternateForeColor" property specifies the second foreground color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
SystemDiagnosisDetailView.AlternateForeColor

Programming scripts
10.2 WinCC Unified object model

5778 System Manual, 11/2022

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

SystemDiagnosisDetailView.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
SystemDiagnosisDetailView.BackColor

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

SystemDiagnosisDetailView.CellPadding

Description
The "CellPadding" property specifies the inner spacing of the content from the cell border.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
SystemDiagnosisDetailView.CellPadding

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5779

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
SystemDiagnosisDetailView.CellPadding (Page 5779)
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

Programming scripts
10.2 WinCC Unified object model

5780 System Manual, 11/2022

See also
SystemDiagnosisDetailView.CellPadding (Page 5779)
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
SystemDiagnosisDetailView.CellPadding (Page 5779)
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5781

See also
SystemDiagnosisDetailView.CellPadding (Page 5779)
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

SystemDiagnosisDetailView.ColoringMode

Description
The "ColoringMode" property specifies whether alternate coloring of every other row or column
is enabled.

Type
Int32, HmiGridColoringMode
Specifies the type of the coloring:
• None (0): None
• Columns (1): Color the columns alternately.
• Rows (2): Color the rows alternately.

Access
Read-write

Syntax
SystemDiagnosisDetailView.ColoringMode

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

SystemDiagnosisDetailView.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Programming scripts
10.2 WinCC Unified object model

5782 System Manual, 11/2022

Access
Read-write

Syntax
SystemDiagnosisDetailView.Font

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
SystemDiagnosisDetailView.Font (Page 5782)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5783

Access
Read-write

Syntax
Font.Name

See also
SystemDiagnosisDetailView.Font (Page 5782)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
SystemDiagnosisDetailView.Font (Page 5782)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut

Programming scripts
10.2 WinCC Unified object model

5784 System Manual, 11/2022

Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
SystemDiagnosisDetailView.Font (Page 5782)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
SystemDiagnosisDetailView.Font (Page 5782)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5785

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
SystemDiagnosisDetailView.Font (Page 5782)

SystemDiagnosisDetailView.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
SystemDiagnosisDetailView.ForeColor

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

Programming scripts
10.2 WinCC Unified object model

5786 System Manual, 11/2022

SystemDiagnosisDetailView.GridLineColor

Description
The "GridLineColor" property specifies the color of grid lines.

Type
UInt32

Access
Read-write

Syntax
SystemDiagnosisDetailView.GridLineColor

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

SystemDiagnosisDetailView.GridLineVisibility

Description
The "GridLineVisibility" property specifies whether the grid lines are visible.

Type
Int32, HmiSimpleGridLine
Specifies the visibility of the grid lines:
• None (0): None
• Vertikal (1): Vertical grid lines visible
• Horizontal (2): Horizontal grid lines visible

Access
Read-write

Syntax
SystemDiagnosisDetailView.GridLineVisibility

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5787

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

SystemDiagnosisDetailView.GridLineWidth

Description
The "GridLineWidth" property specifies the thickness of the grid lines in pixels.

Type
UInt8

Access
Read-write

Syntax
SystemDiagnosisDetailView.GridLineWidth

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

SystemDiagnosisDetailView.GridSelectionMode

Description
The "GridSelectionMode" property specifies whether multiple selection is enabled in the table
content.

Type
Int32, HmiGridSelectionMode
Specifies the type of the selection:
• None (0): None
• Single (1): Only single selection
• Multi (2): Multiple selection

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5788 System Manual, 11/2022

Syntax
SystemDiagnosisDetailView.GridSelectionMode

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

SystemDiagnosisDetailView.HardwareDetails

Description
The "HardwareDetails" property returns a list of all hardware details.

Type
Object, HmiSystemDiagnosisHardwareDetailCollection (Page 5789)

Access
Read-only

Syntax
SystemDiagnosisDetailView.HardwareDetails

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)
HmiSystemDiagnosisHardwareDetailCollection (Page 5789)

HmiSystemDiagnosisHardwareDetailCollection

Description
The "HmiSystemDiagnosisHardwareDetailCollection" object is a list of all hardware details
("HmiSystemDiagnosisHardwareDetailPart" objects) of the HMI device on which the system
diagnostics were activated.
You can reference the "HmiSystemDiagnosisHardwareDetailCollection" object via
the "SystemDiagnosisDetailView.HardwareDetails" property.

Use
The "HmiSystemDiagnosisHardwareDetailCollection" object is a list which can be counted and
enumerated. You can access the "HmiSystemDiagnosisHardwareDetailCollection" list using the
index or the tag names.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5789

Object type
HmiSystemDiagnosisHardwareDetailCollection

Properties
The "HmiSystemDiagnosisHardwareDetailCollection" object has the following properties:
• Count

Returns the number of hardware details of the
"HmiSystemDiagnosisHardwareDetailCollection" list.

Methods
The "HmiSystemDiagnosisHardwareDetailCollection" object has the following methods:
• Item()

Returns the name of a hardware detail.

See also
SystemDiagnosisDetailView.HardwareDetails (Page 5789)

HmiSystemDiagnosisHardwareDetailCollection.Count

Description
The "Count" property returns the number of hardware details of the
"HmiSystemDiagnosisHardwareDetailCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiSystemDiagnosisHardwareDetailCollection.Count

See also
HmiSystemDiagnosisHardwareDetailCollection (Page 5789)

Programming scripts
10.2 WinCC Unified object model

5790 System Manual, 11/2022

HmiSystemDiagnosisHardwareDetailCollection.Item()

Description
The "Item" method returns a hardware detail of the
"HmiSystemDiagnosisHardwareDetailCollection" list.

Syntax
HmiSystemDiagnosisHardwareDetailCollection[.Item]
(HmiSystemDiagnosisHardwareDetailName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiSystemDiagnosisHardwareDetailCollection" object.

Parameters
HmiSystemDiagnosisHardwareDetailName
Type: String
Name of a hardware detail

Return value
Object, HmiSystemDiagnosisHardwareDetailPart (Page 5791)

See also
HmiSystemDiagnosisHardwareDetailCollection (Page 5789)
SystemDiagnosisHardwareDetail (Page 5791)

SystemDiagnosisHardwareDetail

Description
SystemDiagnosisHardwareDetail (Page 5774)

SystemDiagnosisDetailView.HeaderSettings

Description
The "HeaderSettings" property specifies the settings for all column headers in the table.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5791

Type
Object, HmiDataGridHeaderSettingsPart

Access
Read-write

Syntax
SystemDiagnosisDetailView.HeaderSettings

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

DataGridHeaderSettings.AllowColumnReorder

Description
The "AllowColumnReorder" property specifies whether the order of the columns can be changed.

Type
Bool

Access
Read-write

Syntax
DataGridHeaderSettings.AllowColumnReorder

See also
SystemDiagnosisDetailView.HeaderSettings (Page 5791)

DataGridHeaderSettings.AllowColumnResize

Description
The "AllowColumnResize" property specifies whether the width of the columns can be changed.

Programming scripts
10.2 WinCC Unified object model

5792 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
DataGridHeaderSettings.AllowColumnResize

See also
SystemDiagnosisDetailView.HeaderSettings (Page 5791)

DataGridHeaderSettings.ColumnHeaderType

Description
The "ColumnHeaderType" property specifies the type of content of a column header.

Type
Int32, HmiDataGridHeaderType
Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Access
Read-write

Syntax
DataGridHeaderSettings.ColumnHeaderType

See also
SystemDiagnosisDetailView.HeaderSettings (Page 5791)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5793

DataGridHeaderSettings.Font

Description
The "Font" property specifies the font of the headers.

Type
Object, HmiFontPart

Access
Read-write

Syntax
DataGridHeaderSettings.Font

See also
SystemDiagnosisDetailView.HeaderSettings (Page 5791)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
DataGridHeaderSettings.Font (Page 5794)

Programming scripts
10.2 WinCC Unified object model

5794 System Manual, 11/2022

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
DataGridHeaderSettings.Font (Page 5794)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
DataGridHeaderSettings.Font (Page 5794)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5795

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
DataGridHeaderSettings.Font (Page 5794)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

5796 System Manual, 11/2022

See also
DataGridHeaderSettings.Font (Page 5794)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
DataGridHeaderSettings.Font (Page 5794)

DataGridHeaderSettings.HeaderBackColor

Description
The "HeaderBackColor" property specifies the background color of the header.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5797

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderBackColor

See also
SystemDiagnosisDetailView.HeaderSettings (Page 5791)

DataGridHeaderSettings.HeaderForeColor

Description
The "HeaderForeColor" property specifies the font color of the headers.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderForeColor

See also
SystemDiagnosisDetailView.HeaderSettings (Page 5791)

DataGridHeaderSettings.HeaderGridLineColor

Description
The "HeaderGridLineColor" property specifies the color of the separation line between column
headers.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

5798 System Manual, 11/2022

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderGridLineColor

See also
SystemDiagnosisDetailView.HeaderSettings (Page 5791)

DataGridHeaderSettings.HeaderSelectionBackColor

Description
The "HeaderSelectionBackColor" property specifies the background color of the header of a
selected line or column.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderSelectionBackColor

See also
SystemDiagnosisDetailView.HeaderSettings (Page 5791)

DataGridHeaderSettings.HeaderSelectionForeColor

Description
The "HeaderSelectionForeColor" property specifies the font color of the header of a selected line
or column.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5799

Access
Read-write

Syntax
Object.HeaderSelectionForeColor

Object
Required. An object from the "Availability" section.

See also
SystemDiagnosisDetailView.HeaderSettings (Page 5791)

DataGridHeaderSettings.RowHeaderType

Description
The "RowHeaderType" property specifies the type of content of a row header.

Type
Int32, HmiDataGridHeaderType
Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Access
Read-write

Syntax
DataGridHeaderSettings.RowHeaderType

See also
SystemDiagnosisDetailView.HeaderSettings (Page 5791)

Programming scripts
10.2 WinCC Unified object model

5800 System Manual, 11/2022

SystemDiagnosisDetailView.HorizontalScrollBarVisibility

Description
The "HorizontalScrollBarVisibility" property specifies the visibility of the horizontal scroll bar of
the display.

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
SystemDiagnosisDetailView.HorizontalScrollBarVisibility

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

SystemDiagnosisDetailView.RowHeight

Description
The "RowHeight" property specifies the height of all rows in the table in DIU (Device Independent
Unit).
"0" corresponds to a automatic mechanism, which adjusts the height of each line according
to the font size and number of paragraphs.

Type
UInt8

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5801

Syntax
SystemDiagnosisDetailView.RowHeight

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

SystemDiagnosisDetailView.SelectFullRow

Description
The "SelectFullRow" property specifies whether only the cell or the entire row is included in the
selection.

Type
Bool

Access
Read-write

Syntax
SystemDiagnosisDetailView.SelectFullRow

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

SystemDiagnosisDetailView.SelectionBackColor

Description
The "SelectionBackColor" property specifies the background color of the selected cells.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5802 System Manual, 11/2022

Syntax
SystemDiagnosisDetailView.SelectionBackColor

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

SystemDiagnosisDetailView.SelectionBorderColor

Description
The "SelectionBorderColor" property specifies the border color of the selected cells.

Type
UInt8

Access
Read-write

Syntax
DataGridView.SelectionBorderColor

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

SystemDiagnosisDetailView.SelectionBorderWidth

Description
The "SelectionBorderWidth" property specifies the border width of the selected cells.

Type
UInt8

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5803

Syntax
SystemDiagnosisDetailView.SelectionBorderWidth

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

SystemDiagnosisDetailView.SelectionForeColor

Description
The "SelectionForeColor" property specifies the font color of the selected cells.

Type
UInt32

Access
Read-write

Syntax
SystemDiagnosisDetailView.SelectionForeColor

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

SystemDiagnosisDetailView.VerticalScrollBarVisibility

Description
The "VerticalScrollBarVisibility" property specifies the visibility of the vertical scroll bar of the
display.

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Programming scripts
10.2 WinCC Unified object model

5804 System Manual, 11/2022

Access
Read-write

Syntax
SystemDiagnosisDetailView.VerticalScrollBarVisibility

See also
MatrixView.SystemDiagnosisHardwareDetailView (Page 5776)

SystemDiagnosisControl.Name

Description
The "Name" property returns the name of the system diagnostics control.

Type
String

Access
Read-only

Syntax
SystemDiagnosisControl.Name

See also
SystemDiagnosisControl (Page 5750)

SystemDiagnosisControl.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 5750)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5805

Access
Read-only

Syntax
SystemDiagnosisControl.Parent

See also
SystemDiagnosisControl (Page 5750)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

SystemDiagnosisControl.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the system
diagnostics control was created.

Type
String

Access
Read-only

Syntax
SystemDiagnosisControl.RenderingTemplate

See also
SystemDiagnosisControl (Page 5750)

Programming scripts
10.2 WinCC Unified object model

5806 System Manual, 11/2022

SystemDiagnosisControl.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the system diagnostics control is highlighted
when in focus.

Type
Bool

Access
Read-write

Syntax
SystemDiagnosisControl.ShowFocusVisual

See also
SystemDiagnosisControl (Page 5750)

SystemDiagnosisControl.ShowStatusPath

Description
The "ShowStatusPath" property specifies that the status path is displayed.

Type
Bool

Access
Read-write

Syntax
SystemDiagnosisControl.ShowStatusPath

See also
SystemDiagnosisControl (Page 5750)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5807

SystemDiagnosisControl.StatusBar

Description
The "StatusBar" property specifies the information bar.

Type
Object, HmiStatusBarPart

Access
Read-write

Syntax
SystemDiagnosisControl.StatusBar

See also
SystemDiagnosisControl (Page 5750)

StatusBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
StatusBar.BackColor

See also
SystemDiagnosisControl.StatusBar (Page 5808)

Programming scripts
10.2 WinCC Unified object model

5808 System Manual, 11/2022

StatusBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
information bar.

Type
Object, HmiControlBarElementCollection (Page 5809)

Access
Read-only

Syntax
StatusBar.Elements

See also
SystemDiagnosisControl.StatusBar (Page 5808)
HmiControlBarElementCollection (Page 5809)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5809

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
StatusBar.Elements (Page 5809)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 5809)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

5810 System Manual, 11/2022

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 5811)

See also
HmiControlBarElementCollection (Page 5809)
Control Bar Elements (Page 5811)

Control Bar Elements

ControlBarButton

Description
The "ControlBarButton" object represents a button of an information bar or toolbar.
You can reference the "ControlBarButton" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarButtonPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5811

Properties
The "ControlBarButton" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the label of the button.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the button can be operated in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• HotKey

Returns the hotkey specified for the button.
• Mapping

Returns the function of the button.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

5812 System Manual, 11/2022

• Operability
Returns whether the button is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the button is only operable while the corresponding button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the button is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 5809)

ControlBarButton.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBackColor

See also
ControlBarButton (Page 5811)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5813

ControlBarButton.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBorderColor

See also
ControlBarButton (Page 5811)

ControlBarButton.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the button of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarButton.Authorization

See also
ControlBarButton (Page 5811)

Programming scripts
10.2 WinCC Unified object model

5814 System Manual, 11/2022

ControlBarButton.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BackColor

See also
ControlBarButton (Page 5811)

ControlBarButton.Badge

Description
The "Badge" property specifies the label of the button.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarButton.Badge

See also
ControlBarButton (Page 5811)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5815

ControlBarButton.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BorderColor

See also
ControlBarButton (Page 5811)

ControlBarButton.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarButton.BorderWidth

See also
ControlBarButton (Page 5811)

Programming scripts
10.2 WinCC Unified object model

5816 System Manual, 11/2022

ControlBarButton.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarButton.Content

See also
ControlBarButton (Page 5811)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5817

See also
ControlBarButton.Content (Page 5817)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarButton.Content (Page 5817)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

5818 System Manual, 11/2022

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarButton.Content (Page 5817)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarButton.Content (Page 5817)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5819

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarButton.Content (Page 5817)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5820 System Manual, 11/2022

Syntax
Content.TextPosition

See also
ControlBarButton.Content (Page 5817)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarButton.Content (Page 5817)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5821

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarButton.Content (Page 5817)

ControlBarButton.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarButton.CustomID

See also
ControlBarButton (Page 5811)

Programming scripts
10.2 WinCC Unified object model

5822 System Manual, 11/2022

ControlBarButton.Enabled

Description
The "Enabled" property specifies whether the button can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Enabled

See also
ControlBarButton (Page 5811)

ControlBarButton.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.ForeColor

See also
ControlBarButton (Page 5811)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5823

ControlBarButton.Graphic

Description
The "Graphic" property specifies the graphic of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Graphic

See also
ControlBarButton (Page 5811)

ControlBarButton.Height

Description
The "Height" property specifies the height of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Height

See also
ControlBarButton (Page 5811)

Programming scripts
10.2 WinCC Unified object model

5824 System Manual, 11/2022

ControlBarButton.HotKey

Description
The "HotKey" property returns the hotkey specified for the button. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
ControlBarButton.HotKey

See also
ControlBarButton (Page 5811)

ControlBarButton.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5825

• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms

Programming scripts
10.2 WinCC Unified object model

5826 System Manual, 11/2022

• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarButton.Mapping

See also
ControlBarButton (Page 5811)

ControlBarButton.Margin

Description
The "Margin" property specifies the surrounded outer distance of the button.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5827

Syntax
ControlBarButton.Margin

See also
ControlBarButton (Page 5811)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarButton.Margin (Page 5827)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5828 System Manual, 11/2022

Syntax
Margin.Left

See also
ControlBarButton.Margin (Page 5827)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarButton.Margin (Page 5827)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5829

Syntax
Margin.Top

See also
ControlBarButton.Margin (Page 5827)

ControlBarButton.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumHeight

See also
ControlBarButton (Page 5811)

ControlBarButton.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5830 System Manual, 11/2022

Syntax
ControlBarButton.MaximumWidth

See also
ControlBarButton (Page 5811)

ControlBarButton.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumHeight

See also
ControlBarButton (Page 5811)

ControlBarButton.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5831

Syntax
ControlBarButton.MinimumWidth

See also
ControlBarButton (Page 5811)

ControlBarButton.Operability

Description
The "Operability" property returns whether the button is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarButton.Operability

See also
ControlBarButton (Page 5811)

ControlBarButton.Padding

Description
The "Padding" property specifies the distance of the content from the border of the button.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

5832 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.Padding

See also
ControlBarButton (Page 5811)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarButton.Padding (Page 5832)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5833

Access
Read-write

Syntax
Padding.Left

See also
ControlBarButton.Padding (Page 5832)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarButton.Padding (Page 5832)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5834 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Top

See also
ControlBarButton.Padding (Page 5832)

ControlBarButton.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the button can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarButton.RequireExplicitUnlock

See also
ControlBarButton (Page 5811)

ControlBarButton.Text

Description
The "Text" property specifies the label of the button.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5835

Access
Read-write

Syntax
ControlBarButton.Text

See also
ControlBarButton (Page 5811)

ControlBarButton.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.ToolTipText

See also
ControlBarButton (Page 5811)

ControlBarButton.Visible

Description
The "Visible" property specifies whether the button is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

5836 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.Visible

See also
ControlBarButton (Page 5811)

ControlBarButton.Width

Description
The "Width" property specifies the width of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Width

See also
ControlBarButton (Page 5811)

ControlBarDisplay

Description
The "ControlBarDisplay" object represents a display area for text and graphics of an information
bar or toolbar.
You can reference the "ControlBarDisplay" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarDisplayPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5837

Properties
The "ControlBarDisplay" object has the following properties:
• Authorization

Returns the operator authorization.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the display area is enabled in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• Mapping

Returns the function of the display area.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the display area is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the display area is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

Programming scripts
10.2 WinCC Unified object model

5838 System Manual, 11/2022

• Visible
Specifies whether the display area is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 5809)

ControlBarDisplay.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the display.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarDislay.Authorization

See also
ControlBarDisplay (Page 5837)

ControlBarDisplay.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5839

Access
Read-write

Syntax
ControlBarDislay.Content

See also
ControlBarDisplay (Page 5837)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarDisplay.Content (Page 5839)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Programming scripts
10.2 WinCC Unified object model

5840 System Manual, 11/2022

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarDisplay.Content (Page 5839)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5841

Syntax
Content.HorizontalTextAlignment

See also
ControlBarDisplay.Content (Page 5839)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarDisplay.Content (Page 5839)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5842 System Manual, 11/2022

Syntax
Content.SplitRatio

See also
ControlBarDisplay.Content (Page 5839)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarDisplay.Content (Page 5839)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5843

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarDisplay.Content (Page 5839)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

Programming scripts
10.2 WinCC Unified object model

5844 System Manual, 11/2022

See also
ControlBarDisplay.Content (Page 5839)

ControlBarDisplay.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarDislay.CustomID

See also
ControlBarDisplay (Page 5837)

ControlBarDisplay.Enabled

Description
The "Enabled" property specifies whether the display is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Enabled

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5845

See also
ControlBarDisplay (Page 5837)

ControlBarDisplay.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.ForeColor

See also
ControlBarDisplay (Page 5837)

ControlBarDisplay.Graphic

Description
The "Graphic" property specifies the graphic of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Graphic

Programming scripts
10.2 WinCC Unified object model

5846 System Manual, 11/2022

See also
ControlBarDisplay (Page 5837)

ControlBarDisplay.Height

Description
The "Height" property specifies the height of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Height

See also
ControlBarDisplay (Page 5837)

ControlBarDisplay.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5847

• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms

Programming scripts
10.2 WinCC Unified object model

5848 System Manual, 11/2022

• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarDislay.Mapping

See also
ControlBarDisplay (Page 5837)

ControlBarDisplay.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the display.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5849

Access
Read-write

Syntax
ControlBarDislay.Margin

See also
ControlBarDisplay (Page 5837)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarDisplay.Margin (Page 5849)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5850 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Left

See also
ControlBarDisplay.Margin (Page 5849)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarDisplay.Margin (Page 5849)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5851

Access
Read-write

Syntax
Margin.Top

See also
ControlBarDisplay.Margin (Page 5849)

ControlBarDisplay.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MaximumHeight

See also
ControlBarDisplay (Page 5837)

ControlBarDisplay.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

5852 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.MaximumWidth

See also
ControlBarDisplay (Page 5837)

ControlBarDisplay.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MinimumHeight

See also
ControlBarDisplay (Page 5837)

ControlBarDisplay.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5853

Access
Read-write

Syntax
ControlBarDislay.MinimumWidth

See also
ControlBarDisplay (Page 5837)

ControlBarDisplay.Operability

Description
The "Operability" property returns whether the display is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarDislay.Operability

See also
ControlBarDisplay (Page 5837)

ControlBarDisplay.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the display.

Programming scripts
10.2 WinCC Unified object model

5854 System Manual, 11/2022

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarDislay.Padding

See also
ControlBarDisplay (Page 5837)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarDisplay.Padding (Page 5854)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5855

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarDisplay.Padding (Page 5854)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarDisplay.Padding (Page 5854)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

5856 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarDisplay.Padding (Page 5854)

ControlBarDisplay.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the display can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarDislay.RequireExplicitUnlock

See also
ControlBarDisplay (Page 5837)

ControlBarDisplay.Text

Description
The "Text" property specifies the label of the display.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5857

Type
String

Access
Read-write

Syntax
ControlBarDislay.Text

See also
ControlBarDisplay (Page 5837)

ControlBarDisplay.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.ToolTipText

See also
ControlBarDisplay (Page 5837)

ControlBarDisplay.Visible

Description
The "Visible" property specifies whether the display is visible.

Programming scripts
10.2 WinCC Unified object model

5858 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Visible

See also
ControlBarDisplay (Page 5837)

ControlBarDisplay.Width

Description
The "Width" property specifies the width of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Width

See also
ControlBarDisplay (Page 5837)

ControlBarLabel

Description
The "ControlBarLabel" object represents an identifier of an information bar or toolbar.
You can reference the "ControlBarLabel" object via the "HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5859

Object type
HmiControlBarLabelPart

Properties
The "ControlBarLabel" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the identifier can be operated in runtime.
• ForeColor

Specifies the font color.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Height

Specifies the height.
• Mapping

Returns the function of the identifier.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the identifier is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the identifier is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

Programming scripts
10.2 WinCC Unified object model

5860 System Manual, 11/2022

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the identifier is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 5809)

ControlBarLabel.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the identifier.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarLabel.Authorization

See also
ControlBarLabel (Page 5859)

ControlBarLabel.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5861

Type
Int32

Access
Read-only

Syntax
ControlBarLabel.CustomID

See also
ControlBarLabel (Page 5859)

ControlBarLabel.Enabled

Description
The "Enabled" property specifies whether the identifier is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarLabel.Enabled

See also
ControlBarLabel (Page 5859)

ControlBarLabel.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Programming scripts
10.2 WinCC Unified object model

5862 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.ForeColor

See also
ControlBarLabel (Page 5859)

ControlBarLabel.Height

Description
The "Height" property specifies the height of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Height

See also
ControlBarLabel (Page 5859)

ControlBarLabel.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5863

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.HorizontalTextAlignment

See also
ControlBarLabel (Page 5859)

ControlBarLabel.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display

Programming scripts
10.2 WinCC Unified object model

5864 System Manual, 11/2022

• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5865

• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarLabel.Mapping

See also
ControlBarLabel (Page 5859)

ControlBarLabel.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the identifier.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5866 System Manual, 11/2022

Syntax
ControlBarLabel.Margin

See also
ControlBarLabel (Page 5859)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarLabel.Margin (Page 5866)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5867

Syntax
Margin.Left

See also
ControlBarLabel.Margin (Page 5866)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarLabel.Margin (Page 5866)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5868 System Manual, 11/2022

Syntax
Margin.Top

See also
ControlBarLabel.Margin (Page 5866)

ControlBarLabel.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumHeight

See also
ControlBarLabel (Page 5859)

ControlBarLabel.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5869

Syntax
ControlBarLabel.MaximumWidth

See also
ControlBarLabel (Page 5859)

ControlBarLabel.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumHeight

See also
ControlBarLabel (Page 5859)

ControlBarLabel.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5870 System Manual, 11/2022

Syntax
ControlBarLabel.MinimumWidth

See also
ControlBarLabel (Page 5859)

ControlBarLabel.Operability

Description
The "Operability" property returns whether the identifier is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarLabel.Operability

See also
ControlBarLabel (Page 5859)

ControlBarLabel.Padding

Description
The "Padding" property specifies the spacing of the content from the frame of the identifier.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5871

Access
Read-write

Syntax
ControlBarLabel.Padding

See also
ControlBarLabel (Page 5859)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarLabel.Padding (Page 5871)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5872 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Left

See also
ControlBarLabel.Padding (Page 5871)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarLabel.Padding (Page 5871)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5873

Access
Read-write

Syntax
Padding.Top

See also
ControlBarLabel.Padding (Page 5871)

ControlBarLabel.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the identifier can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarLabel.RequireExplicitUnlock

See also
ControlBarLabel (Page 5859)

ControlBarLabel.Text

Description
The "Text" property specifies the label of the identifier.

Type
String

Programming scripts
10.2 WinCC Unified object model

5874 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarLabel.Text

See also
ControlBarLabel (Page 5859)

ControlBarLabel.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.ToolTipText

See also
ControlBarLabel (Page 5859)

ControlBarLabel.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5875

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.VerticalTextAlignment

See also
ControlBarLabel (Page 5859)

ControlBarLabel.Visible

Description
The "Visible" property specifies whether the identifier is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarLabel.Visible

See also
ControlBarLabel (Page 5859)

Programming scripts
10.2 WinCC Unified object model

5876 System Manual, 11/2022

ControlBarLabel.Width

Description
The "Width" property specifies the width of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Width

See also
ControlBarLabel (Page 5859)

ControlBarSeparator

Description
The "ControlBarSeparator" object represents a separator of an information bar or toolbar.
You can reference the "ControlBarSeparator" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarSeparatorPart

Properties
The "ControlBarSeparator" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the disconnector can be operated in runtime.
• ForeColor

Specifies the font color.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5877

• Height
Specifies the height.

• Mapping
Returns the function of the separator.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the separator is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the disconnector is only operable while the associated button is being
pressed.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the disconnector is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 5809)

ControlBarSeparator.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the separator.

Programming scripts
10.2 WinCC Unified object model

5878 System Manual, 11/2022

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarSeparator.Authorization

See also
ControlBarSeparator (Page 5877)

ControlBarSeparator.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarSeparator.CustomID

See also
ControlBarSeparator (Page 5877)

ControlBarSeparator.Enabled

Description
The "Enabled" property specifies whether the separator is active in runtime.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5879

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Enabled

See also
ControlBarSeparator (Page 5877)

ControlBarSeparator.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.ForeColor

See also
ControlBarSeparator (Page 5877)

ControlBarSeparator.Height

Description
The "Height" property specifies the height of the separator in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

5880 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Height

See also
ControlBarSeparator (Page 5877)

ControlBarSeparator.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5881

• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time

Programming scripts
10.2 WinCC Unified object model

5882 System Manual, 11/2022

• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarSeparator.Mapping

See also
ControlBarSeparator (Page 5877)

ControlBarSeparator.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the separator.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarSeparator.Margin

See also
ControlBarSeparator (Page 5877)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5883

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarSeparator.Margin (Page 5883)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarSeparator.Margin (Page 5883)

Programming scripts
10.2 WinCC Unified object model

5884 System Manual, 11/2022

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarSeparator.Margin (Page 5883)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarSeparator.Margin (Page 5883)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5885

ControlBarSeparator.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MaximumHeight

See also
ControlBarSeparator (Page 5877)

ControlBarSeparator.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MaximumWidth

See also
ControlBarSeparator (Page 5877)

Programming scripts
10.2 WinCC Unified object model

5886 System Manual, 11/2022

ControlBarSeparator.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MinimumHeight

See also
ControlBarSeparator (Page 5877)

ControlBarSeparator.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MinimumWidth

See also
ControlBarSeparator (Page 5877)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5887

ControlBarSeparator.Operability

Description
The "Operability" property returns whether the separator is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarSeparator.Operability

See also
ControlBarSeparator (Page 5877)

ControlBarSeparator.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the separator.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarSeparator.Padding

Programming scripts
10.2 WinCC Unified object model

5888 System Manual, 11/2022

See also
ControlBarSeparator (Page 5877)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarSeparator.Padding (Page 5888)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5889

See also
ControlBarSeparator.Padding (Page 5888)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarSeparator.Padding (Page 5888)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

Programming scripts
10.2 WinCC Unified object model

5890 System Manual, 11/2022

See also
ControlBarSeparator.Padding (Page 5888)

ControlBarSeparator.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the disconnector can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarSeparator.RequireExplicitUnlock

See also
ControlBarSeparator (Page 5877)

ControlBarSeparator.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the separator.

Type
String

Access
Read-write

Syntax
ControlBarSeparator.ToolTipText

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5891

See also
ControlBarSeparator (Page 5877)

ControlBarSeparator.Visible

Description
The "Visible" property specifies whether the separator is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Visible

See also
ControlBarSeparator (Page 5877)

ControlBarSeparator.Width

Description
The "Width" property specifies the width of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Width

Programming scripts
10.2 WinCC Unified object model

5892 System Manual, 11/2022

See also
ControlBarSeparator (Page 5877)

ControlBarTextBox

Description
The "ControlBarTextBox" object represents a text box of an information bar or toolbar.
You can reference the "ControlBarTextBox" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarTextBoxPart

Properties
The "ControlBarTextBox" object has the following properties:
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the text box can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Mapping

Returns the function of the text box.
• Margin

Specifies the margin.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5893

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the text box is operable.

• Padding
Specifies the distance of the content from the border.

• Readonly
Specifies whether the text box is write-protected.

• RequireExplicitUnlock
Returns whether the text box is only operable while the associated button is being pressed.

• Text
Specifies the labeling.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the text box is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 5809)

ControlBarTextBox.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Programming scripts
10.2 WinCC Unified object model

5894 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.AlternateBorderColor

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the text box of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarTextBox.Authorization

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.BackColor

Description
The "BackColor" property specifies the background color.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5895

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BackColor

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BorderColor

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Programming scripts
10.2 WinCC Unified object model

5896 System Manual, 11/2022

Type
UInt8

Access
Read-write

Syntax
ControlBarTextBox.BorderWidth

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarTextBox.CustomID

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.Enabled

Description
The "Enabled" property specifies whether the text box can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5897

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Enabled

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.ForeColor

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.Height

Description
The "Height" property specifies the height of the text box in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

5898 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Height

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.HorizontalTextAlignment

See also
ControlBarTextBox (Page 5893)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5899

ControlBarTextBox.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page

Programming scripts
10.2 WinCC Unified object model

5900 System Manual, 11/2022

• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5901

Syntax
ControlBarTextBox.Mapping

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the text box.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarTextBox.Margin

See also
ControlBarTextBox (Page 5893)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5902 System Manual, 11/2022

Syntax
Margin.Bottom

See also
ControlBarTextBox.Margin (Page 5902)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarTextBox.Margin (Page 5902)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5903

Syntax
Margin.Right

See also
ControlBarTextBox.Margin (Page 5902)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarTextBox.Margin (Page 5902)

ControlBarTextBox.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5904 System Manual, 11/2022

Syntax
ControlBarTextBox.MaximumHeight

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumWidth

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5905

Syntax
ControlBarTextBox.MinimumHeight

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumWidth

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.Operability

Description
The "Operability" property returns whether the text box is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Programming scripts
10.2 WinCC Unified object model

5906 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarTextBox.Operability

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the text box.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarTextBox.Padding

See also
ControlBarTextBox (Page 5893)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5907

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarTextBox.Padding (Page 5907)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarTextBox.Padding (Page 5907)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5908 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Right

See also
ControlBarTextBox.Padding (Page 5907)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarTextBox.Padding (Page 5907)

ControlBarTextBox.ReadOnly

Description
The "ReadOnly" property specifies whether the text box is read-only.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5909

Access
Read-write

Syntax
ControlBarTextBox.ReadOnly

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the text box can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarTextBox.RequireExplicitUnlock

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.Text

Description
The "Text" property specifies the label of the text box.

Type
String

Programming scripts
10.2 WinCC Unified object model

5910 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarTextBox.Text

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.ToolTipText

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5911

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.VerticalTextAlignment

See also
ControlBarTextBox (Page 5893)

ControlBarTextBox.Visible

Description
The "Visible" property specifies whether the text box is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Visible

See also
ControlBarTextBox (Page 5893)

Programming scripts
10.2 WinCC Unified object model

5912 System Manual, 11/2022

ControlBarTextBox.Width

Description
The "Width" property specifies the width of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Width

See also
ControlBarTextBox (Page 5893)

ControlBarToggleSwitch

Description
The "ControlBarToggleSwitch" object represents a switch of an information bar or toolbar.
You can reference the "ControlBarToggleSwitch" object via the
"HmiControlBarElementCollection" list.

Object type
HmiControlBarToggleSwitchPart

Properties
The "ControlBarToggleSwitch" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• AlternateGraphic

Specifies the graphic for the "pressed" state.
• AlternateText

Specifies the text for the "pressed" state.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5913

• Authorization
Returns the operator authorization.

• BackColor
Specifies the background color.

• Badge
Specifies the identifier of the switch.

• BorderColor
Specifies the line color.

• BorderWidth
Specifies the line thickness.

• Content
Specifies display options for text and graphics.

• CustomID
Returns the custom ID.

• Enabled
Specifies whether the switch can be operated in runtime.

• ForeColor
Specifies the font color.

• Graphic
Specifies the graphic.

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the switch.

• IsAlternateState
Specifies the current state of the switch.

• Mapping
Returns the function of the switch.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the switch is operable.

• Padding
Specifies the distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

5914 System Manual, 11/2022

• RequireExplicitUnlock
Returns whether the switch is only operable while the associated button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the switch is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 5809)

ControlBarToggleSwitch.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBackColor

See also
ControlBarToggleSwitch (Page 5913)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5915

ControlBarToggleSwitch.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBorderColor

See also
ControlBarToggleSwitch (Page 5913)

ControlBarToggleSwitch.AlternateGraphic

Description
The "AlternateGraphic" property specifies the graphic of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateGraphic

See also
ControlBarToggleSwitch (Page 5913)

Programming scripts
10.2 WinCC Unified object model

5916 System Manual, 11/2022

ControlBarToggleSwitch.AlternateText

Description
The "AlternateText" property specifies the text of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateText

See also
ControlBarToggleSwitch (Page 5913)

ControlBarToggleSwitch.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the switch of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarToggleSwitch.Authorization

See also
ControlBarToggleSwitch (Page 5913)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5917

ControlBarToggleSwitch.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BackColor

See also
ControlBarToggleSwitch (Page 5913)

ControlBarToggleSwitch.Badge

Description
The "Badge" property specifies the identifier of the switch.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarToggleSwitch.Badge

See also
ControlBarToggleSwitch (Page 5913)

Programming scripts
10.2 WinCC Unified object model

5918 System Manual, 11/2022

ControlBarToggleSwitch.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderColor

See also
ControlBarToggleSwitch (Page 5913)

ControlBarToggleSwitch.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderWidth

See also
ControlBarToggleSwitch (Page 5913)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5919

ControlBarToggleSwitch.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Content

See also
ControlBarToggleSwitch (Page 5913)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

5920 System Manual, 11/2022

See also
ControlBarToggleSwitch.Content (Page 5920)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarToggleSwitch.Content (Page 5920)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5921

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 5920)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarToggleSwitch.Content (Page 5920)

Programming scripts
10.2 WinCC Unified object model

5922 System Manual, 11/2022

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarToggleSwitch.Content (Page 5920)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5923

Syntax
Content.TextPosition

See also
ControlBarToggleSwitch.Content (Page 5920)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarToggleSwitch.Content (Page 5920)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

5924 System Manual, 11/2022

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 5920)

ControlBarToggleSwitch.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarToggleSwitch.CustomID

See also
ControlBarToggleSwitch (Page 5913)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5925

ControlBarToggleSwitch.Enabled

Description
The "Enabled" property specifies whether the switch can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Enabled

See also
ControlBarToggleSwitch (Page 5913)

ControlBarToggleSwitch.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.ForeColor

See also
ControlBarToggleSwitch (Page 5913)

Programming scripts
10.2 WinCC Unified object model

5926 System Manual, 11/2022

ControlBarToggleSwitch.Graphic

Description
The "Graphic" property specifies the graphic of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Graphic

See also
ControlBarToggleSwitch (Page 5913)

ControlBarToggleSwitch.Height

Description
The "Height" property specifies the height of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Height

See also
ControlBarToggleSwitch (Page 5913)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5927

ControlBarToggleSwitch.HotKey

Description
The "HotKey" property returns the hotkey specified for the switch. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
Button.HotKey

See also
ControlBarToggleSwitch (Page 5913)

ControlBarToggleSwitch.IsAlternateState

Description
The "IsAlternateState" property specifies the current state of the switch.
• True: Switch is in "On" state.
• False: Switch is in "Off" state.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.IsAlternateState

Programming scripts
10.2 WinCC Unified object model

5928 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 5913)

ControlBarToggleSwitch.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5929

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

5930 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarToggleSwitch.Mapping

See also
ControlBarToggleSwitch (Page 5913)

ControlBarToggleSwitch.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the switch.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Margin

See also
ControlBarToggleSwitch (Page 5913)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5931

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarToggleSwitch.Margin (Page 5931)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarToggleSwitch.Margin (Page 5931)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5932 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Right

See also
ControlBarToggleSwitch.Margin (Page 5931)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarToggleSwitch.Margin (Page 5931)

ControlBarToggleSwitch.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5933

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumHeight

See also
ControlBarToggleSwitch (Page 5913)

ControlBarToggleSwitch.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumWidth

See also
ControlBarToggleSwitch (Page 5913)

ControlBarToggleSwitch.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

5934 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumHeight

See also
ControlBarToggleSwitch (Page 5913)

ControlBarToggleSwitch.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumWidth

See also
ControlBarToggleSwitch (Page 5913)

ControlBarToggleSwitch.Operability

Description
The property "Operability" returns whether the switch is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5935

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarToggleSwitch.Operability

See also
ControlBarToggleSwitch (Page 5913)

ControlBarToggleSwitch.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the switch.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Padding

See also
ControlBarToggleSwitch (Page 5913)

Programming scripts
10.2 WinCC Unified object model

5936 System Manual, 11/2022

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarToggleSwitch.Padding (Page 5936)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarToggleSwitch.Padding (Page 5936)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5937

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarToggleSwitch.Padding (Page 5936)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarToggleSwitch.Padding (Page 5936)

Programming scripts
10.2 WinCC Unified object model

5938 System Manual, 11/2022

ControlBarToggleSwitch.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the switch can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarToggleSwitch.RequireExplicitUnlock

See also
ControlBarToggleSwitch (Page 5913)

ControlBarToggleSwitch.Text

Description
The "Text" property specifies the label of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Text

See also
ControlBarToggleSwitch (Page 5913)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5939

ControlBarToggleSwitch.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.ToolTipText

See also
ControlBarToggleSwitch (Page 5913)

ControlBarToggleSwitch.Visible

Description
The "Visible" property specifies whether the switch is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Visible

See also
ControlBarToggleSwitch (Page 5913)

Programming scripts
10.2 WinCC Unified object model

5940 System Manual, 11/2022

ControlBarToggleSwitch.Width

Description
The "Width" property specifies the width of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Width

See also
ControlBarToggleSwitch (Page 5913)

StatusBar.Enabled

Description
The "Enabled" property specifies whether the information bar can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
StatusBar.Enabled

See also
SystemDiagnosisControl.StatusBar (Page 5808)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5941

StatusBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
StatusBar.Font

See also
SystemDiagnosisControl.StatusBar (Page 5808)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
StatusBar.Font (Page 5942)

Programming scripts
10.2 WinCC Unified object model

5942 System Manual, 11/2022

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
StatusBar.Font (Page 5942)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
StatusBar.Font (Page 5942)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5943

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
StatusBar.Font (Page 5942)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

5944 System Manual, 11/2022

See also
StatusBar.Font (Page 5942)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
StatusBar.Font (Page 5942)

StatusBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the information bar.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5945

Access
Read-write

Syntax
StatusBar.Margin

See also
SystemDiagnosisControl.StatusBar (Page 5808)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
StatusBar.Margin (Page 5945)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5946 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Left

See also
StatusBar.Margin (Page 5945)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
StatusBar.Margin (Page 5945)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5947

Access
Read-write

Syntax
Margin.Top

See also
StatusBar.Margin (Page 5945)

StatusBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the information
bar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
StatusBar.Padding

See also
SystemDiagnosisControl.StatusBar (Page 5808)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5948 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Bottom

See also
StatusBar.Padding (Page 5948)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
StatusBar.Padding (Page 5948)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5949

Access
Read-write

Syntax
Padding.Right

See also
StatusBar.Padding (Page 5948)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
StatusBar.Padding (Page 5948)

StatusBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

5950 System Manual, 11/2022

Access
Read-write

Syntax
StatusBar.ShowToolTips

See also
SystemDiagnosisControl.StatusBar (Page 5808)

StatusBar.Visible

Description
The "Visible" property specifies whether the information bar is visible.

Type
Bool

Access
Read-write

Syntax
StatusBar.Visible

See also
SystemDiagnosisControl.StatusBar (Page 5808)

SystemDiagnosisControl.StyleItemClass

Description
The "StyleItemClass" property returns the style that is applied to the system diagnostics control.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5951

Access
Read-only

Syntax
SystemDiagnosisControl.StyleItemClass

See also
SystemDiagnosisControl (Page 5750)

SystemDiagnosisControl.SystemDiagnosisView

Description
The "SystemDiagnosisView" property specifies the system diagnostics control.

Type
Object, HmiDataGridViewPart

Access
Read-write

Syntax
SystemDiagnosisControl.SystemDiagnosisView

See also
SystemDiagnosisControl (Page 5750)

DataGridView.AllowFilter

Description
The "AllowFilter" property specifies whether filtering of columns is permitted.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5952 System Manual, 11/2022

Syntax
DataGridView.AllowFilter

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

DataGridView.AllowSort

Description
The "AllowSort" property specifies whether the sorting of columns is permitted.
• True: Activates the sorting and sets the "AllowSort" property of all columns to "true".
• False: Disables the sorting for all columns. The individual column properties remain

unchanged.

Type
Bool

Access
Read-write

Syntax
DataGridView.AllowSort

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

DataGridView.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5953

Access
Read-write

Syntax
DataGridView.AlternateBackColor

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

DataGridView.AlternateForeColor

Description
The "AlternateForeColor" property specifies the flashing color for the text.

Type
UInt32

Access
Read-write

Syntax
DataGridView.AlternateForeColor

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

DataGridView.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

5954 System Manual, 11/2022

Access
Read-write

Syntax
DataGridView.BackColor

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

DataGridView.CellPadding

Description
The "CellPadding" property specifies the inner spacing of the content from the cell border.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
DataGridView.CellPadding

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5955

Access
Read-write

Syntax
Padding.Bottom

See also
DataGridView.CellPadding (Page 5955)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
DataGridView.CellPadding (Page 5955)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

5956 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Right

See also
DataGridView.CellPadding (Page 5955)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
DataGridView.CellPadding (Page 5955)

DataGridView.ColoringMode

Description
The "ColoringMode" property specifies whether alternate coloring of every other row or column
is enabled.

Type
Int32, HmiGridColoringMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5957

Specifies the type of the coloring:
• None (0): None
• Columns (1): Color the columns alternately.
• Rows (2): Color the rows alternately.

Access
Read-write

Syntax
DataGridView.ColoringMode

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

DataGridView.Columns

Description
The "Columns" property represents the quantity of columns.

Type
Object, HmiDataGridColumnCollection (Page 5959)

Access
Read-only

Syntax
DataGridView.Columns

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)
HmiDataGridColumnCollection (Page 5959)

Programming scripts
10.2 WinCC Unified object model

5958 System Manual, 11/2022

HmiDataGridColumnCollection

Description
The "HmiDataGridColumnCollection" object is a list of all columns ("DataGridColumn" objects) of
the table.
You reference a "HmiDataGridColumnCollection" object via the DataGridView.Columns
property.

Use
The "HmiDataGridColumnCollection" object is a list and can be counted and enumerated. You
can access the "HmiDataGridColumnCollection" list using the index or the tag name.

Object type
HmiDataGridColumnCollection

Properties
The "HmiDataGridColumnCollection" object has the following properties:
• Count

Returns the number of columns in the "HmiDataGridColumnCollection" list.

Methods
The "HmiDataGridColumnCollection" object has the following methods:
• Item()

Returns a column of the "HmiDataGridColumnCollection" list.

See also
DataGridView.Columns (Page 5958)

HmiDataGridColumnCollection.Count

Description
The "Count" property returns the number of columns in the "HmiDataGridColumnCollection" list.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5959

Access
Read-only

Syntax
HmiDataGridColumnCollection.Count

See also
HmiDataGridColumnCollection (Page 5959)

HmiDataGridColumnCollection.Item()

Description
The "Item" method returns a column of the "HmiDataGridColumnCollection" list.

Syntax
HmiDataGridColumnCollection[.Item](HmiDataGridColumnName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiDataGridColumnCollection" object.

Parameters
HmiDataGridColumnName
Type: String
Name of the column

Return value
Object, HmiDataGridColumnPartBase (Page 5961)

See also
HmiDataGridColumnCollection (Page 5959)
SystemDiagnosisControlColumn (Page 5961)

Programming scripts
10.2 WinCC Unified object model

5960 System Manual, 11/2022

SystemDiagnosisControlColumn

Description
The "SystemDiagnosisControlColumn" object represents a value column.

Object type
HmiSystemDiagnosisControlColumnPart

Properties
The "SystemDiagnosisControlColumn" object has the following properties:
• AllowSort

Specifies whether column sorting is allowed.
• BackColor

Specifies the background color.
• Content

Specifies the display options for text and graphics.
• Enabled

Specifies whether the column can be operated in runtime.
• ForeColor

Specifies the font color of the text.
• Header

Specifies the properties of the column header.
• MaximumWidth

Specifies the maximum width.
• MinimumWidth

Specifies the minimum width.
• Name

Returns the name of the column.
• OutputFormat

Specifies the format for displaying values.
• SortDirection

Specifies the sorting direction.
• SortOrder

Specifies the sorting order.
• SystemDiagnosisControlBlock

Specifies property that will be displayed in the column.
• Visible

Specifies whether the column is visible.
• Width

Specifies the width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5961

Methods
--

See also
HmiDataGridColumnCollection (Page 5959)
HmiDataGridColumnCollection.Item() (Page 5960)

SystemDiagnosisControlColumn.AllowSort

Description
The "AllowSort" property specifies whether column sorting is permitted.
This property is ignored if the parent object has the "AllowSort" property set to "False".

Type
Bool

Access
Read-write

Syntax
SystemDiagnosisControlColumn.AllowSort

See also
SystemDiagnosisControlColumn (Page 5961)

SystemDiagnosisControlColumn.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5962 System Manual, 11/2022

Syntax
SystemDiagnosisControlColumn.BackColor

See also
SystemDiagnosisControlColumn (Page 5961)

SystemDiagnosisControlColumn.Content

Description
The "Content" property specifies the display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
SystemDiagnosisControlColumn.Content

See also
SystemDiagnosisControlColumn (Page 5961)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5963

Access
Read-write

Syntax
Content.ContentMode

See also
SystemDiagnosisControlColumn.Content (Page 5963)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
SystemDiagnosisControlColumn.Content (Page 5963)

Programming scripts
10.2 WinCC Unified object model

5964 System Manual, 11/2022

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
SystemDiagnosisControlColumn.Content (Page 5963)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5965

See also
SystemDiagnosisControlColumn.Content (Page 5963)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
SystemDiagnosisControlColumn.Content (Page 5963)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Programming scripts
10.2 WinCC Unified object model

5966 System Manual, 11/2022

Access
Read-write

Syntax
Content.TextPosition

See also
SystemDiagnosisControlColumn.Content (Page 5963)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
SystemDiagnosisControlColumn.Content (Page 5963)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5967

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
SystemDiagnosisControlColumn.Content (Page 5963)

SystemDiagnosisControlColumn.Enabled

Description
The "Enabled" property specifies whether the column can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
SystemDiagnosisControlColumn.Enabled

See also
SystemDiagnosisControlColumn (Page 5961)

Programming scripts
10.2 WinCC Unified object model

5968 System Manual, 11/2022

SystemDiagnosisControlColumn.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
SystemDiagnosisControlColumn.ForeColor

See also
SystemDiagnosisControlColumn (Page 5961)

SystemDiagnosisControlColumn.Header

Description
The "Header" property specifies the properties of the column header.

Type
Object, HmiDataGridColumnHeaderPart

Access
Read-write

Syntax
SystemDiagnosisControlColumn.Header

See also
SystemDiagnosisControlColumn (Page 5961)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5969

DataGridColumnHeader.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
DataGridColumnHeader.Content

See also
SystemDiagnosisControlColumn.Header (Page 5969)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

5970 System Manual, 11/2022

See also
DataGridColumnHeader.Content (Page 5970)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
DataGridColumnHeader.Content (Page 5970)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5971

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
DataGridColumnHeader.Content (Page 5970)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
DataGridColumnHeader.Content (Page 5970)

Programming scripts
10.2 WinCC Unified object model

5972 System Manual, 11/2022

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
DataGridColumnHeader.Content (Page 5970)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5973

Syntax
Content.TextPosition

See also
DataGridColumnHeader.Content (Page 5970)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
DataGridColumnHeader.Content (Page 5970)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

5974 System Manual, 11/2022

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
DataGridColumnHeader.Content (Page 5970)

DataGridColumnHeader.Graphic

Description
The "Graphic" property specifies the graphic of the column header.

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Graphic

See also
SystemDiagnosisControlColumn.Header (Page 5969)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5975

DataGridColumnHeader.Text

Description
The "Text" property specifies the label of the column header.

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Text

See also
SystemDiagnosisControlColumn.Header (Page 5969)

SystemDiagnosisControlColumn.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
SystemDiagnosisControlColumn.MaximumWidth

See also
SystemDiagnosisControlColumn (Page 5961)

Programming scripts
10.2 WinCC Unified object model

5976 System Manual, 11/2022

SystemDiagnosisControlColumn.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
SystemDiagnosisControlColumn.MinimumWidth

See also
SystemDiagnosisControlColumn (Page 5961)

SystemDiagnosisControlColumn.Name

Description
The "Name" property returns the name of the column.

Type
String

Access
Read-only

Syntax
SystemDiagnosisControlColumn.Name

See also
SystemDiagnosisControlColumn (Page 5961)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5977

SystemDiagnosisControlColumn.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying values.

Type
String

Access
Read-write

Syntax
SystemDiagnosisControlColumn.OutputFormat

See also
SystemDiagnosisControlColumn (Page 5961)

SystemDiagnosisControlColumn.SortDirection

Description
The "SortDirection" property specifies the sorting direction.

Type
Int32, HmiSortDirection
Specifies the sorting order:
• None (0): None
• Ascending (1): Ascending
• Descending (2): Descending

Access
Read-write

Syntax
SystemDiagnosisControlColumn.SortDirection

Programming scripts
10.2 WinCC Unified object model

5978 System Manual, 11/2022

See also
SystemDiagnosisControlColumn (Page 5961)

SystemDiagnosisControlColumn.SortOrder

Description
The "SortOrder" property specifies the sorting order.
The sorting index begins at "1" (highest priority) in ascending order. 0 is ignored.

Type
UInt16

Access
Read-write

Syntax
SystemDiagnosisControlColumn.SortOrder

See also
SystemDiagnosisControlColumn (Page 5961)

SystemDiagnosisControlColumn.SystemDiagnosisControlBlock

Description
The "SystemDiagnosisControlBlock" specifies the property that will be displayed in the column.

Type
Int32, HmiSystemDiagnosisControlBlock
Specifies the control block:
• Undefined (0): Not defined
• Number (1): Number
• DateTime (2): Time information
• EventMessage (3): Event message
• EventType (4): Event type
• EventState (5): Event state

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5979

Access
Read-write

Syntax
SystemDiagnosisControlColumn.SystemDiagnosisControlBlock

See also
SystemDiagnosisControlColumn (Page 5961)

SystemDiagnosisControlColumn.Visible

Description
The "Visible" property specifies whether the column is visible.

Type
Bool

Access
Read-write

Syntax
SystemDiagnosisControlColumn.Visible

See also
SystemDiagnosisControlColumn (Page 5961)

SystemDiagnosisControlColumn.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5980 System Manual, 11/2022

Syntax
SystemDiagnosisControlColumn.Width

See also
SystemDiagnosisControlColumn (Page 5961)

DataGridView.Font

Description
The "Font" property specifies the font of the cells.

Type
Object, HmiFontPart

Access
Read-write

Syntax
DataGridView.Font

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5981

Syntax
Font.Italic

See also
DataGridView.Font (Page 5981)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
DataGridView.Font (Page 5981)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5982 System Manual, 11/2022

Syntax
Font.Size

See also
DataGridView.Font (Page 5981)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
DataGridView.Font (Page 5981)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5983

Access
Read-write

Syntax
Font.Underline

See also
DataGridView.Font (Page 5981)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
DataGridView.Font (Page 5981)

Programming scripts
10.2 WinCC Unified object model

5984 System Manual, 11/2022

DataGridView.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
DataGridView.ForeColor

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

DataGridView.GridLineColor

Description
The "GridLineColor" property specifies the color of grid lines.

Type
UInt32

Access
Read-write

Syntax
DataGridView.GridLineColor

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5985

DataGridView.GridLineVisibility

Description
The "GridLineVisibility" property specifies the visibility of the grid lines.

Type
Int32, HmiSimpleGridLine
Specifies the grid lines:
• None (0): None
• Vertikal (1): Vertical
• Horizontal (2): Horizontal

Access
Read-write

Syntax
DataGridView.GridLineVisibility

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

DataGridView.GridLineWidth

Description
The "GridLineWidth" property specifies the thickness of the grid lines in pixels.

Type
UInt8

Access
Read-write

Syntax
DataGridView.GridLineWidth

Programming scripts
10.2 WinCC Unified object model

5986 System Manual, 11/2022

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

DataGridView.GridSelectionMode

Description
The "GridSelectionMode" property specifies whether multiple selection is enabled in the table
content.

Type
Int32, HmiGridSelectionMode
Specifies the type of the selection:
• None (0): None
• Single (1): Only single selection
• Multi (2): Multiple selection

Access
Read-write

Syntax
DataGridView.GridSelectionMode

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

DataGridView.HeaderSettings

Description
The "HeaderSettings" property specifies the settings for all column headers in the table.

Type
Object, HmiDataGridHeaderSettingsPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5987

Syntax
DataGridView.HeaderSettings

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

DataGridHeaderSettings.AllowColumnReorder

Description
The "AllowColumnReorder" property specifies whether the order of the columns can be changed.

Type
Bool

Access
Read-write

Syntax
DataGridHeaderSettings.AllowColumnReorder

See also
DataGridView.HeaderSettings (Page 5987)

DataGridHeaderSettings.AllowColumnResize

Description
The "AllowColumnResize" property specifies whether the width of the columns can be changed.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

5988 System Manual, 11/2022

Syntax
DataGridHeaderSettings.AllowColumnResize

See also
DataGridView.HeaderSettings (Page 5987)

DataGridHeaderSettings.ColumnHeaderType

Description
The "ColumnHeaderType" property specifies the type of content of a column header.

Type
Int32, HmiDataGridHeaderType
Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Access
Read-write

Syntax
DataGridHeaderSettings.ColumnHeaderType

See also
DataGridView.HeaderSettings (Page 5987)

DataGridHeaderSettings.Font

Description
The "Font" property specifies the font of the headers.

Type
Object, HmiFontPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5989

Access
Read-write

Syntax
DataGridHeaderSettings.Font

See also
DataGridView.HeaderSettings (Page 5987)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
DataGridHeaderSettings.Font (Page 5989)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Programming scripts
10.2 WinCC Unified object model

5990 System Manual, 11/2022

Access
Read-write

Syntax
Font.Name

See also
DataGridHeaderSettings.Font (Page 5989)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
DataGridHeaderSettings.Font (Page 5989)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5991

Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
DataGridHeaderSettings.Font (Page 5989)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
DataGridHeaderSettings.Font (Page 5989)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Programming scripts
10.2 WinCC Unified object model

5992 System Manual, 11/2022

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
DataGridHeaderSettings.Font (Page 5989)

DataGridHeaderSettings.HeaderBackColor

Description
The "HeaderBackColor" property specifies the background color of the header.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderBackColor

See also
DataGridView.HeaderSettings (Page 5987)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5993

DataGridHeaderSettings.HeaderForeColor

Description
The "HeaderForeColor" property specifies the font color of the headers.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderForeColor

See also
DataGridView.HeaderSettings (Page 5987)

DataGridHeaderSettings.HeaderGridLineColor

Description
The "HeaderGridLineColor" property specifies the color of the separation line between column
headers.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderGridLineColor

See also
DataGridView.HeaderSettings (Page 5987)

Programming scripts
10.2 WinCC Unified object model

5994 System Manual, 11/2022

DataGridHeaderSettings.HeaderSelectionBackColor

Description
The "HeaderSelectionBackColor" property specifies the background color of the header of a
selected line or column.

Type
UInt32

Access
Read-write

Syntax
DataGridHeaderSettings.HeaderSelectionBackColor

See also
DataGridView.HeaderSettings (Page 5987)

DataGridHeaderSettings.HeaderSelectionForeColor

Description
The "HeaderSelectionForeColor" property specifies the font color of the header of a selected line
or column.

Type
UInt32

Access
Read-write

Syntax
Object.HeaderSelectionForeColor

Object
Required. An object from the "Availability" section.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5995

See also
DataGridView.HeaderSettings (Page 5987)

DataGridHeaderSettings.RowHeaderType

Description
The "RowHeaderType" property specifies the type of content of a row header.

Type
Int32, HmiDataGridHeaderType
Specifies the type of headers:
• None (0): No column header
• Index (1): Consecutive number
• Content (2): Text and graphic

Access
Read-write

Syntax
DataGridHeaderSettings.RowHeaderType

See also
DataGridView.HeaderSettings (Page 5987)

DataGridView.HorizontalScrollBarVisibility

Description
The "HorizontalScrollBarVisibility" property specifies the visibility of the horizontal scroll bar of
the display.

Type
Int32, HmiScrollBarVisibility

Programming scripts
10.2 WinCC Unified object model

5996 System Manual, 11/2022

Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
DataGridView.HorizontalScrollBarVisibility

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

DataGridView.RowHeight

Description
The "RowHeight" property specifies the height of all rows in the table in DIU (Device Independent
Unit).
"0" corresponds to a automatic mechanism, which adjusts the height of each line according
to the font size and number of paragraphs.

Type
UInt8

Access
Read-write

Syntax
DataGridView.RowHeight

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5997

DataGridView.SelectFullRow

Description
The "SelectFullRow" property specifies whether only the cell or the entire row is included in the
selection.

Type
Bool

Access
Read-write

Syntax
DataGridView.SelectFullRow

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

DataGridView.SelectionBackColor

Description
The "SelectionBackColor" property specifies the background color of the selected cells.

Type
UInt32

Access
Read-write

Syntax
DataGridView.SelectionBackColor

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

Programming scripts
10.2 WinCC Unified object model

5998 System Manual, 11/2022

DataGridView.SelectionBorderColor

Description
The "SelectionBorderColor" property specifies the border color of the selected cells.

Type
UInt8

Access
Read-write

Syntax
DataGridView.SelectionBorderColor

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

DataGridView.SelectionBorderWidth

Description
The "SelectionBorderWidth" property specifies the border width of the selected cells.

Type
UInt8

Access
Read-write

Syntax
DataGridView.SelectionBorderWidth

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 5999

DataGridView.SelectionForeColor

Description
The "SelectionForeColor" property specifies the font color of the selected cells.

Type
UInt32

Access
Read-write

Syntax
DataGridView.SelectionForeColor

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

DataGridView.VerticalScrollBarVisibility

Description
The "VerticalScrollBarVisibility" property specifies the visibility of the vertical scroll bar of the
display.

Type
Int32, HmiScrollBarVisibility
Specifies the visibility of the scroll bar:
• Automatic (0): Only visible if required
• Visible (1): Always visible
• Collapsed (2): Never visible

Access
Read-write

Syntax
DataGridView.VerticalScrollBarVisibility

Programming scripts
10.2 WinCC Unified object model

6000 System Manual, 11/2022

See also
SystemDiagnosisControl.SystemDiagnosisView (Page 5952)

SystemDiagnosisControl.SystemDiagnosisViewType

Description
The "SystemDiagnosisViewType" property specifies the type of system diagnostics control.

Type
Int32, HmiSystemDiagnosisViewType
Specifies the type of system diagnostics control.
• Diagnosis (0): Diagnostic view
• Matrix (1): Matrix view

Access
Read-write

Syntax
SystemDiagnosisControl.SystemDiagnosisViewType

See also
SystemDiagnosisControl (Page 5750)

SystemDiagnosisControl.TabIndex

Description
The "TabIndex" property returns the position of the system diagnostics control in the tab
sequence.

Type
UInt16

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6001

Syntax
SystemDiagnosisControl.TabIndex

See also
SystemDiagnosisControl (Page 5750)

SystemDiagnosisControl.TimeZone

Description
The "TimeZone" property specifies the time zone.

Type
HmiTimeZone

Access
Read-write

Syntax
SystemDiagnosisControl.TimeZone

See also
SystemDiagnosisControl (Page 5750)

SystemDiagnosisControl.ToolBar

Description
The "ToolBar" property specifies the toolbar.

Type
Object, HmiToolBarPart

Access
Read-write

Syntax
SystemDiagnosisControl.ToolBar

Programming scripts
10.2 WinCC Unified object model

6002 System Manual, 11/2022

See also
SystemDiagnosisControl (Page 5750)

ToolBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ToolBar.BackColor

See also
SystemDiagnosisControl.ToolBar (Page 6002)

ToolBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
toolbar.

Type
Object, HmiControlBarElementCollection (Page 6004)

Access
Read-only

Syntax
ToolBar.Elements

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6003

See also
SystemDiagnosisControl.ToolBar (Page 6002)
HmiControlBarElementCollection (Page 6004)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
ToolBar.Elements (Page 6003)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

6004 System Manual, 11/2022

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 6004)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 5811)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6005

See also
HmiControlBarElementCollection (Page 6004)
Control Bar Elements (Page 5811)

Control Bar Elements

Description
Control Bar Elements (Page 5811)

ToolBar.Enabled

Description
The "Enabled" property specifies whether the toolbar can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ToolBar.Enabled

See also
SystemDiagnosisControl.ToolBar (Page 6002)

Toolbar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Programming scripts
10.2 WinCC Unified object model

6006 System Manual, 11/2022

Access
Read-write

Syntax
ToolBar.Font

See also
SystemDiagnosisControl.ToolBar (Page 6002)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Toolbar.Font (Page 6006)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6007

Access
Read-write

Syntax
Font.Name

See also
Toolbar.Font (Page 6006)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Toolbar.Font (Page 6006)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut

Programming scripts
10.2 WinCC Unified object model

6008 System Manual, 11/2022

Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Toolbar.Font (Page 6006)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Toolbar.Font (Page 6006)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6009

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Toolbar.Font (Page 6006)

Toolbar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the toolbar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ToolBar.Margin

See also
SystemDiagnosisControl.ToolBar (Page 6002)

Programming scripts
10.2 WinCC Unified object model

6010 System Manual, 11/2022

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
Toolbar.Margin (Page 6010)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
Toolbar.Margin (Page 6010)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6011

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
Toolbar.Margin (Page 6010)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
Toolbar.Margin (Page 6010)

Programming scripts
10.2 WinCC Unified object model

6012 System Manual, 11/2022

Toolbar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the toolbar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ToolBar.Padding

See also
SystemDiagnosisControl.ToolBar (Page 6002)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
Toolbar.Padding (Page 6013)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6013

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
Toolbar.Padding (Page 6013)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
Toolbar.Padding (Page 6013)

Programming scripts
10.2 WinCC Unified object model

6014 System Manual, 11/2022

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
Toolbar.Padding (Page 6013)

ToolBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
ToolBar.ShowToolTips

See also
SystemDiagnosisControl.ToolBar (Page 6002)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6015

ToolBar.UseHotKeys

Description
The "UseHotKeys" property specifies whether the shortcut keys for the buttons in the toolbar are
activated.

Type
Bool

Access
Read-write

Syntax
ToolBar.UseHotKeys

See also
SystemDiagnosisControl.ToolBar (Page 6002)

ToolBar.Visible

Description
The "Visible" property specifies whether the toolbar is visible.

Type
Bool

Access
Read-write

Syntax
ToolBar.Visible

See also
SystemDiagnosisControl.ToolBar (Page 6002)

Programming scripts
10.2 WinCC Unified object model

6016 System Manual, 11/2022

SystemDiagnosisControl.Top

Description
The "Top" property specifies the value of the Y coordinate.

Type
Int32

Access
Read-write

Syntax
SystemDiagnosisControl.Top

See also
SystemDiagnosisControl (Page 5750)

SystemDiagnosisControl.Visible

Description
The "Visible" property specifies whether the system diagnostics control is visible.

Type
Bool

Access
Read-write

Syntax
SystemDiagnosisControl.Visible

See also
SystemDiagnosisControl (Page 5750)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6017

SystemDiagnosisControl.Width

Description
The "Width" property specifies the width.

Type
UInt32

Access
Read-write

Syntax
SystemDiagnosisControl.Width

See also
SystemDiagnosisControl (Page 5750)

SystemDiagnosisControl.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the system diagnostics
control.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title
• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be positioned
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Programming scripts
10.2 WinCC Unified object model

6018 System Manual, 11/2022

Note
You can enable multiple properties by adding integer values or bit operators.

Type
HmiWindowFlag

Access
Read-write

Syntax
SystemDiagnosisControl.WindowFlags

See also
SystemDiagnosisControl (Page 5750)

SystemDiagnosisControl.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
system diagnostics control.

Syntax
SystemDiagnosisControl.CheckAuthorization()

Parameters
--

Return value
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6019

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
SystemDiagnosisControl (Page 5750)

SystemDiagnosisControl.FireCommand()

Description
The "FireCommand" method executes the command of an element in the toolbar or information
bar (control bar element, e.g. a button) of the system diagnostics control.

Syntax
SystemDiagnosisControl.FireCommand(commandId, custom)

Parameters
commandId
Type: Int32
ID of the element of the toolbar or information bar

custom
Type: Bool
Type of element ID:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

Return value
--

See also
SystemDiagnosisControl (Page 5750)

Programming scripts
10.2 WinCC Unified object model

6020 System Manual, 11/2022

SystemDiagnosisControl.GoToPlc()

Description
The "GoToPlc" method navigates to the next PLC.

Syntax
SystemDiagnosisControl.GoToPlc()

Parameters
--

Return value
--

See also
SystemDiagnosisControl (Page 5750)

SystemDiagnosisControl.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
SystemDiagnosisControl.PropertyFlashing(propertyName, enable[,
value][, alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6021

Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
SystemDiagnosisControl (Page 5750)

SystemDiagnosisControl_OnActivated()

Description
The "OnActivated" event occurs when a system diagnostics control receives focus:
• A system diagnostics control is selected via the configured tab sequence.
• A system diagnostics control that had no focus is clicked/tapped.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
SystemDiagnosisControl_OnActivated(item)

Programming scripts
10.2 WinCC Unified object model

6022 System Manual, 11/2022

Context
item
Type: Object
System diagnostics control where the event occurs.

See also
SystemDiagnosisControl (Page 5750)

SystemDiagnosisControl_OnCommandFired()

Description
The "OnCommandFired" event occurs when the operator has operated an element in the toolbar
or information bar (control bar element, e.g. a button) of the system diagnostics control.

Syntax
SystemDiagnosisControl_OnCommandFired(item, commandId, custom)

Context
item
Type: Object
System diagnostics control where the event occurs.

commandId
Type: DInt
ID of the element of the toolbar or information bar that was operated.

custom
Type: Bool
Specifies the type of the ID of the operated element:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

See also
SystemDiagnosisControl (Page 5750)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6023

SystemDiagnosisControl_OnDeactivated()

Description
The "OnDeactivated" event occurs when the system diagnostics control loses focus because the
operator has pressed the <TAB> key or executed another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
SystemDiagnosisControl_OnDeactivated(item)

Context
item
Type: Object
System diagnostics control where the event occurs.

See also
SystemDiagnosisControl (Page 5750)

SystemDiagnosisControl_OnInitialized()

Description
The "OnInitialized" event occurs when a system diagnostics control has been successfully
initialized and the data connection to the PLC has been established.

Syntax
SystemDiagnosisControl_OnInitialized(item)

Context
item
Type: Object
System diagnostics control where the event occurs.

Programming scripts
10.2 WinCC Unified object model

6024 System Manual, 11/2022

See also
SystemDiagnosisControl (Page 5750)

Text

Description
The "Text" object represents a text box without frame and background.

Object type
HmiText

Properties
The "Text" object has the following properties:
• Authorization

Returns the operator authorization.
• CurrentQuality

Returns the poorest quality code of all tags which influence the text box.
• Enabled

Specifies whether the text box can be operated in runtime.
• Font

Specifies the font of the text.
• ForeColor

Specifies the font color of the text.
• Height

Specifies the height in the (Device Independent Unit).
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Layer

Returns the screen layer in which the text box is located.
• Left

Specifies the value of the X coordinate in the (Device Independent Unit).
• Margin

Specifies the margin.
• Name

Returns the name of the text box.
• Opacity

Specifies the opacity.
• Operability

Returns whether the text box is operable.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6025

• Parent
Returns the higher-level screen object (Parent container).

• RequireExplicitUnlock
Returns whether the text box is only operable while the associated button is being pressed.

• RotationAngle
Specifies the rotation angle of the text box in degrees.

• RotationCenterPlacement
Specifies the reference point around which the text box rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFocusVisual
Specifies whether the text box is highlighted when in focus.

• StyleItemClass
Specifies the style which is applied to the text box.

• TabIndex
Returns the position of the text box in the tab sequence.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the text box is visible.

• Width
Specifies the width in (Device Independent Unit).

Methods
The "Text" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the text box.
• PropertyFlashing()

Configures flashing of a property.

Programming scripts
10.2 WinCC Unified object model

6026 System Manual, 11/2022

Events
The "Text" object has the following events:
• OnActivated()

Occurs when a text box receives focus.
• OnContextTapped()

Occurs when the text box is right-clicked or long-touched.
• OnDeactivated()

Occurs when a text box loses focus.
• OnKeyDown()

Occurs when a key is pressed while the text box is in focus.
• OnKeyUp()

Occurs when a key is released while the text box is in focus.
• OnTapped()

Occurs when the text box is left-clicked or short-touched.

Text.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
Text.Authorization

See also
Text (Page 6025)

Text.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
text box.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6027

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.
• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
Text.CurrentQuality

See also
Text (Page 6025)

Text.Enabled

Description
The "Enabled" property specifies whether the text box can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
Text.Enabled

See also
Text (Page 6025)

Programming scripts
10.2 WinCC Unified object model

6028 System Manual, 11/2022

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
Text (Page 6025)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 6029)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6029

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 6029)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 6029)

Programming scripts
10.2 WinCC Unified object model

6030 System Manual, 11/2022

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 6029)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6031

See also
Text.Font (Page 6029)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 6029)

Text.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

6032 System Manual, 11/2022

Access
Read-write

Syntax
Text.ForeColor

See also
Text (Page 6025)

Text.Height

Description
The "Height" property specifies the height in the (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
Text.Height

See also
Text (Page 6025)

Text.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the text alignment:
• Left (0): Left
• Center (1): Centered

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6033

• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Text.HorizontalTextAlignment

See also
Text (Page 6025)

Text.Layer

Description
The "Layer" property returns the screen layer in which the text box is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
Text.Layer

See also
Text (Page 6025)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Programming scripts
10.2 WinCC Unified object model

6034 System Manual, 11/2022

Access
Read-write

Syntax
Layer.MaximumZoom

See also
Text.Layer (Page 6034)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6035

Syntax
Layer.Name

See also
Text.Layer (Page 6034)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
Text.Layer (Page 6034)

Text.Left

Description
The "Left" property sets the value of the X coordinate in the (Device Independent Unit).

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6036 System Manual, 11/2022

Syntax
Text.Left

See also
Text (Page 6025)

Text.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
Text.Margin

See also
Text (Page 6025)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6037

See also
Text.Margin (Page 6037)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
Text.Margin (Page 6037)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

Programming scripts
10.2 WinCC Unified object model

6038 System Manual, 11/2022

See also
Text.Margin (Page 6037)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
Text.Margin (Page 6037)

Text.Name

Description
The "Name" property returns the name of the text box.

Type
String

Access
Read-only

Syntax
Text.Name

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6039

See also
Text (Page 6025)

Text.Opacity

Description
The "Opacity" property specifies the opacity. The "0" value indicates completely transparency.

Type
Float

Access
Read-write

Syntax
Text.Opacity

See also
Text (Page 6025)

Text.Operability

Description
The "Operability" property returns whether the text box is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

6040 System Manual, 11/2022

Syntax
Text.Operability

See also
Text (Page 6025)

Text.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
Text.Parent

See also
Text (Page 6025)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

Text.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the text box can only be operated while
the associated button is being pressed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6041

Type
Bool

Access
Read-only

Syntax
Text.RequireExplicitUnlock

See also
Text (Page 6025)

Text.RotationAngle

Description
The "RotationAngle" property specifies the rotation angle of the text box in degrees.

Type
Int16

Access
Read-write

Syntax
Text.RotationAngle

See also
Text (Page 6025)
Text.RotationCenterPlacement (Page 6043)
Text.RotationCenterY (Page 6044)
Text.RotationCenterX (Page 6043)

Programming scripts
10.2 WinCC Unified object model

6042 System Manual, 11/2022

Text.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the text box
rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in the DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
Text.RotationCenterPlacement

See also
Text (Page 6025)
Text.RotationAngle (Page 6042)
Text.RotationCenterX (Page 6043)
Text.RotationCenterY (Page 6044)

Text.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point.

Type
Float

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6043

Access
Read-write

Syntax
Text.RotationCenterX

See also
Text (Page 6025)
Text.RotationAngle (Page 6042)
Text.RotationCenterPlacement (Page 6043)
Text.RotationCenterY (Page 6044)

Text.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point.

Type
Float

Access
Read-write

Syntax
Text.RotationCenterY

See also
Text (Page 6025)
Text.RotationAngle (Page 6042)
Text.RotationCenterPlacement (Page 6043)
Text.RotationCenterX (Page 6043)

Text.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the text box is highlighted when in focus.

Programming scripts
10.2 WinCC Unified object model

6044 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
Text.ShowFocusVisual

See also
Text (Page 6025)

Text.StyleItemClass

Description
The "StyleItemClass" property specifies the style which is applied to the text box.

Type
String

Access
Read-only

Syntax
Text.StyleItemClass

See also
Text (Page 6025)

Text.TabIndex

Description
The "TabIndex" property returns the position of the text box in the tab sequence.

Type
UInt16

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6045

Access
Read-only

Syntax
Text.TabIndex

See also
Text (Page 6025)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
Text (Page 6025)

Text.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6046 System Manual, 11/2022

Syntax
Text.ToolTipText

See also
Text (Page 6025)

Text.Top

Description
The "Top" property specifies the value of the Y coordinate.

Type
Int32

Access
Read-write

Syntax
Text.Top

See also
Text (Page 6025)

Text.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6047

Access
Read-write

Syntax
Text.VerticalTextAlignment

See also
Text (Page 6025)

Text.Visible

Description
The "Visible" property specifies whether the text box is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
Text (Page 6025)

Text.Width

Description
The "Width" property specifies the width in the (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6048 System Manual, 11/2022

Syntax
Text.Width

See also
Text (Page 6025)

Text.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
text box.

Syntax
Text.CheckAuthorization()

Parameters
-

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
Text (Page 6025)

Text.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6049

Syntax
Text.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
Text (Page 6025)

Programming scripts
10.2 WinCC Unified object model

6050 System Manual, 11/2022

Text_OnActivated()

Description
The "OnActivated" event occurs when a text box receives focus:
• A text box is selected via the configured tab sequence.
• A text box that had no focus is clicked/tapped.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
Text_OnActivated(item)

Context
item
Type: Object
Text box where the event occurs.

See also
Text (Page 6025)

Text_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A text box is right-clicked.
• A text box is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
Text_OnContextTapped(item, x, y, modifiers, trigger)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6051

Context
item
Type: Object
Text box where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

Programming scripts
10.2 WinCC Unified object model

6052 System Manual, 11/2022

See also
Text (Page 6025)

Text_OnDeactivated()

Description
The "OnDeactivated" event occurs when the text box loses focus because the operator has
pressed the <TAB> key or executed another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
Text_OnDeactivated(item)

Context
item
Type: Object
Text box where the event occurs.

See also
Text (Page 6025)

Text_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the text box is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6053

Syntax
Text_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Text box where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Text (Page 6025)

Text_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the text box is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Programming scripts
10.2 WinCC Unified object model

6054 System Manual, 11/2022

Syntax
Text_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Text box where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
Text (Page 6025)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6055

Text_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A text box is left-clicked.
• The <RETURN> or <SPACE> key is pressed when a text box has the focus.
• A text box is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
Text_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Text box where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

6056 System Manual, 11/2022

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
Text (Page 6025)

TextBox

Description
The "TextBox" object represents a text box in runtime.

Object type
HmiTextBox

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6057

Properties
The "TextBox" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the border color.
• BorderWidth

Specifies the border thickness.
• CurrentQuality

Returns the poorest quality code of all tags which influence the text box.
• Enabled

Specifies whether the text box can be operated in runtime.
• Font

Specifies the font of the text.
• ForeColor

Specifies the font color of the text.
• Height

Specifies the height.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Layer

Returns the layer of the screen in which the text box is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.
• Name

Returns the name of the text box.
• Opacity

Specifies the opacity.
• Operability

Returns whether the text box is operable.
• Padding

Specifies the distance of the content from the border of the text box.
• Parent

Returns the higher-level screen object.

Programming scripts
10.2 WinCC Unified object model

6058 System Manual, 11/2022

• ReadOnly
Specifies whether the text box is write-protected.

• RenderingTemplate
Returns the name of the template from which the text box was created.

• RequireExplicitUnlock
Returns whether the text box is only operable while the associated button is being pressed.

• RotationAngle
Specifies the angle of rotation in degrees.

• RotationCenterPlacement
Specifies the reference point around which the text box rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFocusVisual
Specifies whether the text box is highlighted when in focus.

• StyleItemClass
Returns the style which is applied to the text box.

• TabIndex
Returns the position of the text box in the tab sequence.

• Text
Specifies the labeling of the text box.

• TextTrimming
Specifies the type of text trimming if space is not sufficient.

• TextWrapping
Specifies how text is wrapped if there is insufficient space.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the text box is visible.

• VisualizeQuality
Specifies whether the connection quality of the process value is displayed.

• Width
Specifies the width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6059

Methods
The "TextBox" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the text box.
• PropertyFlashing()

Configures flashing of a property.

Events
The "TextBox" object has the following events:
• OnActivated()

Occurs when a text box receives focus.
• OnContextTapped()

Occurs when a text box is right-clicked or long-touched.
• OnDeactivated()

Occurs when a text box loses focus.
• OnKeyDown()

Occurs when a key is pressed while the text box is in focus.
• OnKeyUp()

Occurs when a key is released while the text box is in focus.
• OnTapped()

Occurs when a text box is left-clicked or short-touched.

TextBox.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
TextBox.AlternateBackColor

See also
TextBox (Page 6057)

Programming scripts
10.2 WinCC Unified object model

6060 System Manual, 11/2022

TextBox.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color which is displayed for line
styles such as "Dash".

Type
UInt32

Access
Read-write

Syntax
TextBox.AlternateBorderColor

See also
TextBox (Page 6057)

TextBox.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
TextBox.Authorization

See also
TextBox (Page 6057)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6061

TextBox.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
TextBox.BackColor

See also
TextBox (Page 6057)

TextBox.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
TextBox.BorderColor

See also
TextBox (Page 6057)

Programming scripts
10.2 WinCC Unified object model

6062 System Manual, 11/2022

TextBox.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
TextBox.BorderWidth

See also
TextBox (Page 6057)

TextBox.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
text box.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6063

Syntax
TextBox.CurrentQuality

See also
TextBox (Page 6057)

TextBox.Enabled

Description
The "Enabled" property specifies whether the text box can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
TextBox.Enabled

See also
TextBox (Page 6057)

TextBox.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
TextBox.Font

Programming scripts
10.2 WinCC Unified object model

6064 System Manual, 11/2022

See also
TextBox (Page 6057)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
TextBox.Font (Page 6064)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6065

See also
TextBox.Font (Page 6064)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
TextBox.Font (Page 6064)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6066 System Manual, 11/2022

Syntax
Font.StrikeOut

See also
TextBox.Font (Page 6064)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
TextBox.Font (Page 6064)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6067

• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
TextBox.Font (Page 6064)

TextBox.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
TextBox.ForeColor

See also
TextBox (Page 6057)

TextBox.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

6068 System Manual, 11/2022

Type
Uint32

Access
Read-write

Syntax
TextBox.Height

See also
TextBox (Page 6057)

TextBox.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the text alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched. Can only be used with layout containers, Fallback behaves like Center

Access
Read-write

Syntax
TextBox.HorizontalTextAlignment

See also
TextBox (Page 6057)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6069

TextBox.Layer

Description
The "Layer" property returns the layer of the screen in which the text box is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
TextBox.Layer

See also
TextBox (Page 6057)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
TextBox.Layer (Page 6070)

Programming scripts
10.2 WinCC Unified object model

6070 System Manual, 11/2022

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
TextBox.Layer (Page 6070)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
TextBox.Layer (Page 6070)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6071

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
TextBox.Layer (Page 6070)

TextBox.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
TextBox.Left

See also
TextBox (Page 6057)

Programming scripts
10.2 WinCC Unified object model

6072 System Manual, 11/2022

TextBox.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
TextBox.Margin

See also
TextBox (Page 6057)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
TextBox.Margin (Page 6073)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6073

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
TextBox.Margin (Page 6073)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
TextBox.Margin (Page 6073)

Programming scripts
10.2 WinCC Unified object model

6074 System Manual, 11/2022

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
TextBox.Margin (Page 6073)

TextBox.Name

Description
The "Name" property returns the name of the text box.

Type
String

Access
Read-only

Syntax
TextBox.Name

See also
TextBox (Page 6057)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6075

TextBox.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" indicates completely transparent.

Type
Float

Access
Read-write

Syntax
TextBox.Opacity

See also
TextBox (Page 6057)

TextBox.Operability

Description
The "Operability" property returns whether the text box is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
TextBox.Operability

Programming scripts
10.2 WinCC Unified object model

6076 System Manual, 11/2022

See also
TextBox (Page 6057)

TextBox.Padding

Description
The "Padding" property specifies the distance of the content from the border of the text box.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
TextBox.Padding

See also
TextBox (Page 6057)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6077

See also
TextBox.Padding (Page 6077)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
TextBox.Padding (Page 6077)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

Programming scripts
10.2 WinCC Unified object model

6078 System Manual, 11/2022

See also
TextBox.Padding (Page 6077)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
TextBox.Padding (Page 6077)

TextBox.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
TextBox.Parent

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6079

See also
TextBox (Page 6057)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

TextBox.ReadOnly

Description
The "ReadOnly" property specifies whether the text box is read-only.

Type
Bool

Access
Read-write

Syntax
TextBox.ReadOnly

See also
TextBox (Page 6057)

TextBox.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the text box
was created.

Type
String

Programming scripts
10.2 WinCC Unified object model

6080 System Manual, 11/2022

Access
Read-only

Syntax
TextBox.RenderingTemplate

See also
TextBox (Page 6057)

TextBox.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the text box can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
TextBox.RequireExplicitUnlock

See also
TextBox (Page 6057)

TextBox.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6081

Access
Read-write

Syntax
TextBox.RotationAngle

See also
TextBox (Page 6057)
TextBox.RotationCenterPlacement (Page 6082)
TextBox.RotationCenterX (Page 6083)
TextBox.RotationCenterY (Page 6083)

TextBox.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the text box
rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
TextBox.RotationCenterPlacement

Programming scripts
10.2 WinCC Unified object model

6082 System Manual, 11/2022

See also
TextBox (Page 6057)
TextBox.RotationCenterX (Page 6083)
TextBox.RotationCenterY (Page 6083)
TextBox.RotationAngle (Page 6081)

TextBox.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
TextBox.RotationCenterX

See also
TextBox (Page 6057)
TextBox.RotationCenterPlacement (Page 6082)
TextBox.RotationAngle (Page 6081)
TextBox.RotationCenterY (Page 6083)

TextBox.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6083

Access
Read-write

Syntax
TextBox.RotationCenterY

See also
TextBox (Page 6057)
TextBox.RotationCenterPlacement (Page 6082)
TextBox.RotationAngle (Page 6081)
TextBox.RotationCenterX (Page 6083)

TextBox.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the text box is highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
TextBox.ShowFocusVisual

See also
TextBox (Page 6057)

TextBox.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the text box.

Type
String

Programming scripts
10.2 WinCC Unified object model

6084 System Manual, 11/2022

Access
Read-only

Syntax
TextBox.StyleItemClass

See also
TextBox (Page 6057)

TextBox.TabIndex

Description
The "TabIndex" property returns the position of the text box in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
TextBox.TabIndex

See also
TextBox (Page 6057)

TextBox.Text

Description
The "Text" property specifies the labeling of the text box.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6085

Syntax
TextBox.Text

See also
TextBox (Page 6057)

TextBox.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
TextBox.TextTrimming

See also
TextBox (Page 6057)

TextBox.TextWrapping

Description
The "TextWrapping" property specifies how text is wrapped if there is insufficient space.

Type
Int32, HmiTextWrapping
Specifies the text break:
• NoWrap (0): No text break
• WordWrap (1): Text break at the end of the line

Programming scripts
10.2 WinCC Unified object model

6086 System Manual, 11/2022

Access
Read-write

Syntax
TextBox.TextWrapping

See also
TextBox (Page 6057)

TextBox.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
TextBox.ToolTipText

See also
TextBox (Page 6057)

TextBox.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6087

Syntax
TextBox.Top

See also
TextBox (Page 6057)

TextBox.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the text alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched. Can only be used with layout containers, Fallback behaves like Center

Access
Read-write

Syntax
TextBox.VerticalTextAlignment

See also
TextBox (Page 6057)

TextBox.Visible

Description
The "Visible" property specifies whether the text box is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

6088 System Manual, 11/2022

Access
Read-write

Syntax
TextBox.Visible

See also
TextBox (Page 6057)

TextBox.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Access
Read-write

Syntax
TextBox.VisualizeQuality

See also
TextBox (Page 6057)

TextBox.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6089

Access
Read-write

Syntax
TextBox.Width

See also
TextBox (Page 6057)

TextBox.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
text box.

Syntax
TextBox.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
TextBox (Page 6057)

Programming scripts
10.2 WinCC Unified object model

6090 System Manual, 11/2022

TextBox.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
TextBox.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6091

Return value
Bool

See also
TextBox (Page 6057)

TextBox_OnActivated()

Description
The "OnActivated" event occurs when a text box receives focus:
• A text box is selected via the configured tab sequence.
• A text box that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
TextBox_OnActivated(item)

Context
item
Type: Object
Text box where the event occurs.

See also
TextBox (Page 6057)

Programming scripts
10.2 WinCC Unified object model

6092 System Manual, 11/2022

TextBox_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A text box is right-clicked.
• A text box is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Syntax
TextBox_OnContextTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Text box where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6093

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
TextBox (Page 6057)

TextBox_OnDeactivated()

Description
The "OnDeactivated" event occurs when the text box loses focus because the operator presses
the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
TextBox_OnDeactivated(item)

Context
item
Type: Object
Text box where the event occurs.

See also
TextBox (Page 6057)

Programming scripts
10.2 WinCC Unified object model

6094 System Manual, 11/2022

TextBox_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the text box is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
TextBox_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Text box where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
TextBox (Page 6057)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6095

TextBox_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the text box is in focus.

Order
The events are triggered in the following order:
1. OnKeyDown
2. OnKeyUp

Syntax
TextBox_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Text box where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
TextBox (Page 6057)

Programming scripts
10.2 WinCC Unified object model

6096 System Manual, 11/2022

TextBox_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A text box is left-clicked.
• The <RETURN> or <SPACE> key is pressed when a text box has the focus.
• A text box is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
3. OnTapped

Syntax
TextBox_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Text box where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6097

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
TextBox (Page 6057)

ToggleSwitch

Description
The "ToggleSwitch" object represents a switch in runtime.

Object type
HmiToggleSwitch

Programming scripts
10.2 WinCC Unified object model

6098 System Manual, 11/2022

Properties
The "ToggleSwitch" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• AlternateGraphic

Specifies the graphic for the "pressed" state.
• AlternateText

Specifies the text for the "pressed" state.
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the border color.
• BorderWidth

Specifies the border width.
• Content

Specifies the display options for text and graphics.
• CurrentQuality

Returns the poorest quality code of all tags which influence the switch.
• Enabled

Specifies whether the switch can be operated in runtime.
• Font

Specifies the font of the text.
• ForeColor

Specifies the font color of the text.
• Graphic

Specifies the graphic for the "not pressed" state.
• Height

Specifies the height.
• HotKey

Returns the hotkey specified for the switch.
• IsAlternateState

Specifies the state of the switch.
• Layer

Returns the screen layer in which the switch is located.
• Left

Specifies the value of the X coordinate.
• Margin

Specifies the margin.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6099

• Name
Returns the name of the switch.

• Opacity
Specifies the opacity.

• Operability
Returns whether the switch is operable.

• Padding
Specifies the distance of the content from the border of the switch.

• Parent
Returns the higher-level screen object.

• RenderingTemplate
Returns the name of the template from which the switch was created.

• RequireExplicitUnlock
Returns whether the switch is only operable while the associated button is being pressed.

• RotationAngle
Specifies the rotation angle in degrees.

• RotationCenterPlacement
Specifies the reference point around which the switch rotates.

• RotationCenterX
Specifies the X coordinate of the rotation point.

• RotationCenterY
Specifies the Y coordinate of the rotation point.

• ShowFocusVisual
Specifies whether the switch is highlighted when in focus.

• StyleItemClass
Returns the style which is applied to the switch.

• TabIndex
Returns the position of the switch in the tab sequence.

• Text
Specifies the text for the "not pressed" state.

• ToolTipText
Specifies the tooltip text.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the switch is visible.

• VisualizeQuality
Specifies whether the connection quality of the process value is displayed.

• Width
Specifies the width.

Programming scripts
10.2 WinCC Unified object model

6100 System Manual, 11/2022

Methods
The "ToggleSwitch" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the switch.
• PropertyFlashing()

Configures flashing of a property.

Events
The "ToggleSwitch" object has the following events:
• OnActivated()

Occurs when a switch receives focus.
• OnContextTapped()

Occurs when a switch is right-clicked or long-touched.
• OnDeactivated()

Occurs when a switch loses focus.
• OnDown()

Occurs when the operator presses a switch.
• OnKeyDown()

Occurs when a key is pressed while the switch is in focus.
• OnKeyUp()

Occurs when a key is released while the switch is in focus.
• OnStateChanged()

Occurs if the state of a switch changes.
• OnTapped()

Occurs when a switch is left-clicked or short-touched.
• OnUp()

Occurs when the operator resolves the pressure on a switch via the input device.

ToggleSwitch.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6101

Syntax
ToggleSwitch.AlternateBackColor

See also
ToggleSwitch (Page 6098)

ToggleSwitch.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color which is displayed for line
styles such as "Dash".

Type
UInt32

Access
Read-write

Syntax
ToggleSwitch.AlternateBorderColor

See also
ToggleSwitch (Page 6098)

ToggleSwitch.AlternateGraphic

Description
The "AlternateGraphic" property specifies the graphic for the "pressed" state.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6102 System Manual, 11/2022

Syntax
ToggleSwitch.AlternateGraphic

See also
ToggleSwitch (Page 6098)

ToggleSwitch.AlternateText

Description
The "AlternateText" property specifies the text for the "pressed" state.

Type
String

Access
Read-write

Syntax
ToggleSwitch.AlternateText

See also
ToggleSwitch (Page 6098)

ToggleSwitch.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ToggleSwitch.Authorization

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6103

See also
ToggleSwitch (Page 6098)

ToggleSwitch.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ToggleSwitch.BackColor

See also
ToggleSwitch (Page 6098)

ToggleSwitch.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ToggleSwitch.BorderColor

See also
ToggleSwitch (Page 6098)

Programming scripts
10.2 WinCC Unified object model

6104 System Manual, 11/2022

ToggleSwitch.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ToggleSwitch.BorderWidth

See also
ToggleSwitch (Page 6098)

ToggleSwitch.Content

Description
The "Content" property specifies the display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ToggleSwitch.Content

See also
ToggleSwitch (Page 6098)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6105

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ToggleSwitch.Content (Page 6105)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.

Programming scripts
10.2 WinCC Unified object model

6106 System Manual, 11/2022

• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect
ratio is not changed.

• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ToggleSwitch.Content (Page 6105)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ToggleSwitch.Content (Page 6105)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6107

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ToggleSwitch.Content (Page 6105)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ToggleSwitch.Content (Page 6105)

Programming scripts
10.2 WinCC Unified object model

6108 System Manual, 11/2022

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ToggleSwitch.Content (Page 6105)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6109

Access
Read-write

Syntax
Content.TextTrimming

See also
ToggleSwitch.Content (Page 6105)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ToggleSwitch.Content (Page 6105)

Programming scripts
10.2 WinCC Unified object model

6110 System Manual, 11/2022

ToggleSwitch.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
switch.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
ToggleSwitch.CurrentQuality

See also
ToggleSwitch (Page 6098)

ToggleSwitch.Enabled

Description
The "Enabled" property specifies whether the switch can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6111

Syntax
ToggleSwitch.Enabled

See also
ToggleSwitch (Page 6098)

ToggleSwitch.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ToggleSwitch.Font

See also
ToggleSwitch (Page 6098)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

Programming scripts
10.2 WinCC Unified object model

6112 System Manual, 11/2022

See also
ToggleSwitch.Font (Page 6112)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
ToggleSwitch.Font (Page 6112)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6113

See also
ToggleSwitch.Font (Page 6112)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ToggleSwitch.Font (Page 6112)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6114 System Manual, 11/2022

Syntax
Font.Underline

See also
ToggleSwitch.Font (Page 6112)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
ToggleSwitch.Font (Page 6112)

ToggleSwitch.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6115

Type
UInt32

Access
Read-write

Syntax
ToggleSwitch.ForeColor

See also
ToggleSwitch (Page 6098)

ToggleSwitch.Graphic

Description
The "Graphic" property specifies the graphic for the "not pressed" state.

Type
String

Access
Read-write

Syntax
ToggleSwitch.Graphic

See also
ToggleSwitch (Page 6098)

ToggleSwitch.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

6116 System Manual, 11/2022

Access
Read-write

Syntax
ToggleSwitch.Height

See also
ToggleSwitch (Page 6098)

ToggleSwitch.HotKey

Description
The "HotKey" property returns the hotkey specified for the switch. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
ToggleSwitch.HotKey

See also
ToggleSwitch (Page 6098)

ToggleSwitch.IsAlternateState

Description
The "IsAlternateState" property specifies the state of the switch:
• True: Pressed
• False: Not pressed

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6117

Type
Bool

Access
Read-write

Syntax
ToggleSwitch.IsAlternateState

See also
ToggleSwitch (Page 6098)

ToggleSwitch.Layer

Description
The "Layer" property returns the layer of the screen in which the switch is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
ToggleSwitch.Layer

See also
ToggleSwitch (Page 6098)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Programming scripts
10.2 WinCC Unified object model

6118 System Manual, 11/2022

Access
Read-write

Syntax
Layer.MaximumZoom

See also
ToggleSwitch.Layer (Page 6118)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
ToggleSwitch.Layer (Page 6118)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6119

Access
Read-only

Syntax
Layer.Name

See also
ToggleSwitch.Layer (Page 6118)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
ToggleSwitch.Layer (Page 6118)

ToggleSwitch.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6120 System Manual, 11/2022

Access
Read-write

Syntax
ToggleSwitch.Left

See also
ToggleSwitch (Page 6098)

ToggleSwitch.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ToggleSwitch.Margin

See also
ToggleSwitch (Page 6098)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6121

Syntax
Margin.Bottom

See also
ToggleSwitch.Margin (Page 6121)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ToggleSwitch.Margin (Page 6121)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6122 System Manual, 11/2022

Syntax
Margin.Right

See also
ToggleSwitch.Margin (Page 6121)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ToggleSwitch.Margin (Page 6121)

ToggleSwitch.Name

Description
The "Name" property returns the name of the switch.

Type
String

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6123

Syntax
ToggleSwitch.Name

See also
ToggleSwitch (Page 6098)

ToggleSwitch.Opacity

Description
The "Opacity" property specifies the opacity. The value "0" indicates completely transparent.

Type
Float

Access
Read-write

Syntax
ToggleSwitch.Opacity

See also
ToggleSwitch (Page 6098)

ToggleSwitch.Operability

Description
The "Operability" property returns whether the switch is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Programming scripts
10.2 WinCC Unified object model

6124 System Manual, 11/2022

Access
Read-only

Syntax
ToggleSwitch.Operability

See also
ToggleSwitch (Page 6098)

ToggleSwitch.Padding

Description
The "Padding" property specifies the distance of the content from the border of the switch.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ToggleSwitch.Padding

See also
ToggleSwitch (Page 6098)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6125

Syntax
Padding.Bottom

See also
ToggleSwitch.Padding (Page 6125)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ToggleSwitch.Padding (Page 6125)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6126 System Manual, 11/2022

Syntax
Padding.Right

See also
ToggleSwitch.Padding (Page 6125)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ToggleSwitch.Padding (Page 6125)

ToggleSwitch.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6127

Syntax
ToggleSwitch.Parent

See also
ToggleSwitch (Page 6098)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

ToggleSwitch.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the switch was
created.

Type
String

Access
Read-only

Syntax
ToggleSwitch.RenderingTemplate

See also
ToggleSwitch (Page 6098)

ToggleSwitch.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the switch can only be operated while the
associated button is being pressed.

Programming scripts
10.2 WinCC Unified object model

6128 System Manual, 11/2022

Type
Bool

Access
Read-only

Syntax
ToggleSwitch.RequireExplicitUnlock

See also
ToggleSwitch (Page 6098)

ToggleSwitch.RotationAngle

Description
The "RotationAngle" property specifies the angle of rotation in degrees.

Type
Int16

Access
Read-write

Syntax
ToggleSwitch.RotationAngle

See also
ToggleSwitch (Page 6098)
ToggleSwitch.RotationCenterPlacement (Page 6130)
ToggleSwitch.RotationCenterX (Page 6130)
ToggleSwitch.RotationCenterY (Page 6131)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6129

ToggleSwitch.RotationCenterPlacement

Description
The "RotationCenterPlacement" property sets the reference point around which the switch
rotates.

Type
Int32, HmiRotationCenterPlacement
Specifies the reference point:
• AbsoluteFromCenter (0): Absolute distance from the object center in DIU (Device

Independent Unit).
• NormedFromCenter (1): Relative distance from the center of the object to the surrounding

object. The frame of the object is represented by the values "1" or "-1". The center of rotation
can also lie outside the object.

• AbsoluteToContainer (2): Absolute distance from the screen origin (Top,Left: 0.0) in DIU
(Device Independent Unit).

Access
Read-write

Syntax
ToggleSwitch.RotationCenterPlacement

See also
ToggleSwitch (Page 6098)
ToggleSwitch.RotationAngle (Page 6129)
ToggleSwitch.RotationCenterX (Page 6130)
ToggleSwitch.RotationCenterY (Page 6131)

ToggleSwitch.RotationCenterX

Description
The "RotationCenterX" property specifies the X coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Programming scripts
10.2 WinCC Unified object model

6130 System Manual, 11/2022

Access
Read-write

Syntax
ToggleSwitch.RotationCenterX

See also
ToggleSwitch (Page 6098)
ToggleSwitch.RotationAngle (Page 6129)
ToggleSwitch.RotationCenterPlacement (Page 6130)
ToggleSwitch.RotationCenterY (Page 6131)

ToggleSwitch.RotationCenterY

Description
The "RotationCenterY" property specifies the Y coordinate of the rotation point. The value is the
relative or absolute deviation from the center of the reference object.

Type
Float

Access
Read-write

Syntax
ToggleSwitch.RotationCenterY

See also
ToggleSwitch (Page 6098)
ToggleSwitch.RotationAngle (Page 6129)
ToggleSwitch.RotationCenterPlacement (Page 6130)
ToggleSwitch.RotationCenterX (Page 6130)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6131

ToggleSwitch.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the switch is highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
ToggleSwitch.ShowFocusVisual

See also
ToggleSwitch (Page 6098)

ToggleSwitch.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the switch.

Type
String

Access
Read-only

Syntax
ToggleSwitch.StyleItemClass

See also
ToggleSwitch (Page 6098)

Programming scripts
10.2 WinCC Unified object model

6132 System Manual, 11/2022

ToggleSwitch.TabIndex

Description
The "TabIndex" property returns the position of the switch in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
ToggleSwitch.TabIndex

See also
ToggleSwitch (Page 6098)

ToggleSwitch.Text

Description
The "Text" property specifies the text for the "not pressed" state.

Type
String

Access
Read-write

Syntax
ToggleSwitch.Text

See also
ToggleSwitch (Page 6098)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6133

ToggleSwitch.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip.

Type
String

Access
Read-write

Syntax
ToggleSwitch.ToolTipText

See also
ToggleSwitch (Page 6098)

ToggleSwitch.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
ToggleSwitch.Top

See also
ToggleSwitch (Page 6098)

Programming scripts
10.2 WinCC Unified object model

6134 System Manual, 11/2022

ToggleSwitch.Visible

Description
The "Visible" property specifies whether the switch is visible.

Type
Bool

Access
Read-write

Syntax
ToggleSwitch.Visible

See also
ToggleSwitch (Page 6098)

ToggleSwitch.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Access
Read-write

Syntax
ToggleSwitch.VisualizeQuality

See also
ToggleSwitch (Page 6098)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6135

ToggleSwitch.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ToggleSwitch.Width

See also
ToggleSwitch (Page 6098)

ToggleSwitch.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
switch.

Syntax
ToggleSwitch.CheckAuthorization()

Parameters
--

Return value
Bool

Programming scripts
10.2 WinCC Unified object model

6136 System Manual, 11/2022

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
ToggleSwitch (Page 6098)

ToggleSwitch.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
ToggleSwitch.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6137

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
ToggleSwitch (Page 6098)

ToggleSwitch_OnActivated()

Description
The "OnActivated" event occurs when a switch receives focus:
• A switch is selected via the configured tab sequence.
• A switch that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
ToggleSwitch_OnActivated(item)

Context
item
Type: Object
Switch where the event occurs.

Programming scripts
10.2 WinCC Unified object model

6138 System Manual, 11/2022

See also
ToggleSwitch (Page 6098)

ToggleSwitch_OnContextTapped()

Description
The "OnContextTapped" event occurs with the following inputs of the operator:
• A switch is right-clicked.
• A switch is long-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Order
The events are triggered in the following order:
1. OnDown
2. OnUp
3. OnContextTapped

Syntax
ToggleSwitch_OnContextTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Switch where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6139

Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
ToggleSwitch (Page 6098)

ToggleSwitch_OnDeactivated()

Description
The "OnDeactivated" event occurs when the switch loses focus because the operator presses the
<TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Programming scripts
10.2 WinCC Unified object model

6140 System Manual, 11/2022

Syntax
ToggleSwitch_OnDeactivated(item)

Context
item
Type: Object
Switch where the event occurs.

See also
ToggleSwitch (Page 6098)

ToggleSwitch_OnDown()

Description
The "OnDown" event occurs when the operator presses a switch:
• A switch is clicked with a mouse button.
• The <RETURN> or <SPACE> key is pressed when a switch has the focus.
• A switch is touched.

Order
The events are triggered in the following order:
1. OnDown
2. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
3. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
4. OnUp

Syntax
ToggleSwitch_OnDown(item, x, y, modifiers, trigger)

Context
Item
Type: Object
Switch where the event occurs.

x
Type: DInt

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6141

X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
ToggleSwitch (Page 6098)

ToggleSwitch_OnKeyDown()

Description
The "OnKeyDown" event occurs when a key is pressed while the switch is in focus. If the key is
<RETURN> or <SPACE>, an "OnKeyDown" event is triggered before an "OnDown" event.

Programming scripts
10.2 WinCC Unified object model

6142 System Manual, 11/2022

Order
The events are triggered in the following order:
1. OnDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyDown
3. OnKeyUp
4. OnUp (if triggered by the <RETURN> or <SPACE> key)

Syntax
ToggleSwitch_OnKeyDown(item, keyCode, modifiers)

Context
item
Type: Object
Switch where the event occurs.

keyCode
Type: UInt
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

See also
ToggleSwitch (Page 6098)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6143

ToggleSwitch_OnKeyUp()

Description
The "OnKeyUp" event occurs when a key is released while the switch is in focus. If the key is
<RETURN> or <SPACE>, an "OnUp" event is triggered after the "OnKeyUp" event.

Order
The events are triggered in the following order:
1. OnDown (if triggered by the <RETURN> or <SPACE> key)
2. OnKeyDown
3. OnKeyUp
4. OnUp (if triggered by the <RETURN> or <SPACE> key)

Syntax
ToggleSwitch_OnKeyUp(item, keyCode, modifiers)

Context
item
Type:
Switch where the event occurs.

keyCode
Type:
Virtual key code of the key that triggered the event (for example "27" for ESC).

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

Programming scripts
10.2 WinCC Unified object model

6144 System Manual, 11/2022

See also
ToggleSwitch (Page 6098)

ToggleSwitch_OnStateChanged()

Description
The "OnStateChanged" event occurs when the state of a switch changes, for example, from "On"
to "Off".

Syntax
ToggleSwitch_OnStateChanged(item, isAlternate)

Context
item
Type: Object
Switch where the event occurs.

isAlternate
Type: Bool
Specifies the state of the switch.

See also
ToggleSwitch (Page 6098)

ToggleSwitch_OnTapped()

Description
The "OnTapped" event occurs with the following inputs of the operator:
• A switch is left-clicked.
• The <RETURN> or <SPACE> key is pressed when a switch has the focus.
• A switch is short-touched.

Note
The length of the contact is defined by a limit value: 1000 ms if it is not specified by the
operating system or web browser.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6145

Order
The events are triggered in the following order:
1. OnDown
2. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
3. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
4. OnUp
5. OnTapped

Syntax
ToggleSwitch_OnTapped(item, x, y, modifiers, trigger)

Context
item
Type: Object
Switch where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger

Programming scripts
10.2 WinCC Unified object model

6146 System Manual, 11/2022

The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

See also
ToggleSwitch (Page 6098)

ToggleSwitch_OnUp()

Description
The event "OnUp" occurs when the operator releases the pressure on a switch via the input
device:
• The mouse button is released via a switch.
• The <RETURN> or <SPACE> key is released when a switch has the focus.
• The touch of a switch is canceled.
• A switch is exited while pressed.
This event does not occur as long as the operator keeps the switch pressed.

Order
The events are triggered in the following order:
1. OnDown
2. OnKeyDown (if triggered by the <RETURN> or <SPACE> key)
3. OnKeyUp (if triggered by the <RETURN> or <SPACE> key)
4. OnUp

Syntax
ToggleSwitch_OnUp(item, x, y, modifiers, trigger)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6147

Context
Item
Type: Object
Switch where the event occurs.

x
Type: DInt
X-coordinate of the input point

y
Type: DInt
Y-coordinate of the input point

modifiers
Type: Int32, HmiKeyboardModifier
Help key that is pressed as you type:
• None (0): None
• Control (1): Control key
• Shift (2): Shift key
• Control + Shift (3): Control key + Shift key
• Alt (4): Alternate key
• Control + Alt (5): Control key + Alternate key
• Shift + Alt (6): Shift key + Alternate key
• Control + Shift + Alt (7): Control key + Shift key + Alternate key

trigger
Type: Int32, HmiEventTrigger
The event is triggered as follows:
• Unknown (0): Unknown
• Touch (1): Touch (touch device)
• Left (16): Left-click (mouse)
• Middle (17): Middle-click (mouse)
• Right (18): Right-click (mouse)
• Enter (256): Enter key (keyboard)
• Space (257): Space key (keyboard)
• Escape (258): Escape key (keyboard)

Programming scripts
10.2 WinCC Unified object model

6148 System Manual, 11/2022

See also
ToggleSwitch (Page 6098)

TopLevelScreenWindow

Description
TopLevelScreenWindow (Page 1522)

TouchArea

Description
The "TouchArea" object represents a touch area in runtime.

Object type
HmiTouchArea

Properties
The "TouchArea" object has the following properties:
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Enabled

Specifies whether the touch area can be operated in runtime.
• Height

Specifies the height.
• Layer

Returns the layer of the screen in which the touch area is located.
• Left

Specifies the value of the X coordinate.
• Name

Returns the name of the touch area.
• Operability

Returns whether the touch area is operable.
• Parent

Returns the higher-level screen object.
• RequireExplicitUnlock

Returns whether the touch area is only operable while the associated button is being pressed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6149

• StyleItemClass
Returns the style which is applied to the touch area.

• TabIndex
Returns the position of the touch area in the tab sequence.

• Top
Specifies the value of the Y coordinate.

• Visible
Specifies whether the touch area is visible.

• Width
Specifies the width.

Methods
The "TouchArea" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the touch area.
• PropertyFlashing()

Configures flashing of a property.

Events
The "TouchArea" object has the following events:
• OnGestureDetected()

Occurs when the operator performs a touch gesture.

TouchArea.Authorization

Description
The "Authorization" property returns the operator authorization.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
TouchArea.Authorization

Programming scripts
10.2 WinCC Unified object model

6150 System Manual, 11/2022

See also
TouchArea (Page 6149)

TouchArea.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
TouchArea.BackColor

See also
TouchArea (Page 6149)

TouchArea.Enabled

Description
The "Enabled" property specifies whether the touch area can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
TouchArea.Enabled

See also
TouchArea (Page 6149)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6151

TouchArea.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
TouchArea.Height

See also
TouchArea (Page 6149)

TouchArea.Layer

Description
The "Layer" property returns the layer of the screen in which the touch area is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
TouchArea.Layer

See also
TouchArea (Page 6149)

Programming scripts
10.2 WinCC Unified object model

6152 System Manual, 11/2022

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
TouchArea.Layer (Page 6152)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
TouchArea.Layer (Page 6152)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6153

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
TouchArea.Layer (Page 6152)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
TouchArea.Layer (Page 6152)

Programming scripts
10.2 WinCC Unified object model

6154 System Manual, 11/2022

TouchArea.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
TouchArea.Left

See also
TouchArea (Page 6149)

TouchArea.Name

Description
The "Name" property returns the name of the touch area.

Type
String

Access
Read-only

Syntax
TouchArea.Name

See also
TouchArea (Page 6149)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6155

TouchArea.Operability

Description
The "Operability" property returns whether the option button is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
TouchArea.Operability

See also
TouchArea (Page 6149)

TouchArea.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
TouchArea.Parent

Programming scripts
10.2 WinCC Unified object model

6156 System Manual, 11/2022

See also
TouchArea (Page 6149)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

TouchArea.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the touch area can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
TouchArea.RequireExplicitUnlock

See also
TouchArea (Page 6149)

TouchArea.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the touch area.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6157

Access
Read-only

Syntax
TouchArea.StyleItemClass

See also
TouchArea (Page 6149)

TouchArea.TabIndex

Description
The "TabIndex" property returns the position of the touch area in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
TouchArea.TabIndex

See also
TouchArea (Page 6149)

TouchArea.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6158 System Manual, 11/2022

Syntax
TouchArea.Top

See also
TouchArea (Page 6149)

TouchArea.Visible

Description
The "Visible" property specifies whether the touch area is visible.

Type
Bool

Access
Read-write

Syntax
TouchArea.Visible

See also
TouchArea (Page 6149)

TouchArea.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
TouchArea.Width

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6159

See also
TouchArea (Page 6149)

TouchArea.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
touch area.

Syntax
TouchArea.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
TouchArea (Page 6149)

TouchArea.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Programming scripts
10.2 WinCC Unified object model

6160 System Manual, 11/2022

Syntax
TouchArea.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
TouchArea (Page 6149)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6161

TouchArea_OnGestureDetected()

Description
The "OnGestureDetected" event occurs when the operator performs a touch gesture:

Syntax
TouchArea_OnGestureDetected(item, gesture)

Context
item
Type: Object
Touch area where the event occurs.

gesture
Type: Int32, HmiGesture
Touch gesture which is detected:
• Unknown (0): Unknown
• SwipeLeft (1): Swipe to the left
• SwipeRight (2): Swipe to the right
• SwipeUp (3): Swipe upwards
• SwipeDown (4): Swipe downwards

Programming scripts
10.2 WinCC Unified object model

6162 System Manual, 11/2022

Example
Set the value of the "MyTag1" tag depending on the detected gesture:

Copy code
export function Touch_area_1_OnGestureDetected(item, gesture) {
// value of tag ‚MyTag1‘ will be set depending on the detected gesture
 if(gesture == UI.Enums.HmiGesture.SwipeRight)
 {
 UI.RootWindow.Screen = 'ScreenRight';
 let tag1 = Tags('tag1');
 tag1.Write(1); //write value '1234' to tag 'MyTag1'
 }
 if(gesture == UI.Enums.HmiGesture.SwipeLeft)
 {
 UI.RootWindow.Screen = 'ScreenLeft';
 let tag1 = Tags('tag1');
 tag1.Write(2); //write value '1234' to tag 'MyTag1'
 }
 if(gesture == UI.Enums.HmiGesture.SwipeUp)
 {
 UI.RootWindow.Screen = 'ScreenUp';
 let tag1 = Tags('tag1');
 tag1.Write(3); //write value '1234' to tag 'MyTag1'
 }
 if(gesture == UI.Enums.HmiGesture.SwipeDown)
 {
 UI.RootWindow.Screen = 'ScreenDown';
 let tag1 = Tags('tag1');
 tag1.Write(4); //write value '1234' to tag 'MyTag1'
 }
 if(gesture == UI.Enums.HmiGesture.Unknown)
 {
 let tag1 = Tags('tag1');
 tag1.Write(0); //write value '1234' to tag 'MyTag1'
 }
}

See also
TouchArea (Page 6149)

TrendCompanion

Description
The "TrendCompanion" object represents a value table in runtime.

Object type
HmiTrendCompanion

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6163

Properties
The "TrendCompanion" object has the following properties:
• BackColor

Specifies the background color.
• Caption

Specifies the text to be displayed in the title bar.
• CaptionColor

Specifies the color of the title bar.
• CurrentQuality

Returns the poorest quality code of all tags which influence the value table.
• Enabled

Specifies whether the value table can be operated in runtime.
• Height

Specifies the height in the (Device Independent Unit).
• Icon

Specifies the icon of the value table.
• Layer

Returns the screen layer in which the value table is located.
• Left

Specifies the value of the X coordinate in the (Device Independent Unit).
• Margin

Specifies the margin.
• Name

Returns the name of the value table.
• Parent

Returns the higher-level screen object (Parent container).
• RenderingTemplate

Returns the name of the template from which the value table was created.
• ShowAlways

Specifies whether the value table can be closed.
• ShowFocusVisual

Specifies whether the value table is highlighted when in focus.
• SnapToSourceControl

Specifies whether the value table snaps to the window of the associated data source.
• SourceTrendControl

Specifies the data source.
• StatusBar

Specifies the information bar of the value table.
• StyleItemClass

Specifies the style which is applied to the value table.
• TabIndex

Returns the position of the value table in the tab sequence.

Programming scripts
10.2 WinCC Unified object model

6164 System Manual, 11/2022

• TimeZone
Specifies the time zone.

• ToolBar
Specifies the toolbar of the value table.

• Top
Specifies the value of the Y coordinate.

• TrendCompanionMode
Specifies the window display of the value table.

• TrendRulerView
Specifies the ruler window of the value table.

• TrendStatisticAreaView
Specifies the view of the statistics area.

• TrendStatisticResultView
Specifies the view of the statistics mode.

• UseSourceControlBackColor
Specifies whether the background color of the value table is taken from the associated data
source.

• UseSourceControlTrendColors
Specifies whether the font color of the value table is taken from the associated data source.

• Visible
Specifies whether the value table is visible.

• Width
Specifies the width in (Device Independent Unit).

• WindowFlags
Specifies the window configuration of the value table.

Methods
The "TrendCompanion" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the value table.
• FireCommand()

Executes the command of an element of the toolbar or information bar of the value table.
• PropertyFlashing()

Configures flashing of a property.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6165

Events
The "TrendCompanion" object has the following events:
• OnActivated()

Occurs when the value table receives focus.
• OnCommandFired()

Occurs when the operator has operated an element in the toolbar or information bar of the
value table.

• OnDeactivated()
Occurs when the value table loses focus.

• OnInitialized()
Occurs when the value table has been successfully initialized and the data connection to the
PLC has been established.

TrendCompanion.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
TrendCompanion.BackColor

See also
TrendCompanion (Page 6163)

TrendCompanion.Caption

Description
The "Caption" property specifies the text to be displayed in the title bar.

Type
Object, HmiTextPart

Programming scripts
10.2 WinCC Unified object model

6166 System Manual, 11/2022

Access
Read-write

Syntax
TrendCompanion.Caption

See also
TrendCompanion (Page 6163)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
TrendCompanion.Caption (Page 6166)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6167

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 6167)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 6167)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Programming scripts
10.2 WinCC Unified object model

6168 System Manual, 11/2022

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 6167)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 6167)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6169

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 6167)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 6167)

Programming scripts
10.2 WinCC Unified object model

6170 System Manual, 11/2022

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
TrendCompanion.Caption (Page 6166)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
TrendCompanion.Caption (Page 6166)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6171

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
TrendCompanion.Caption (Page 6166)

TrendCompanion.CaptionColor

Description
The "CaptionColor" property specifies the color of the title bar.

Type
UInt32

Access
Read-write

Syntax
TrendCompanion.CaptionColor

See also
TrendCompanion (Page 6163)

Programming scripts
10.2 WinCC Unified object model

6172 System Manual, 11/2022

TrendCompanion.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
value table.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
TrendCompanion.CurrentQuality

See also
TrendCompanion (Page 6163)

TrendCompanion.Enabled

Description
The "Enabled" property specifies whether the value table can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6173

Syntax
TrendCompanion.Enabled

See also
TrendCompanion (Page 6163)

TrendCompanion.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
TrendCompanion.Height

See also
TrendCompanion (Page 6163)

TrendCompanion.Icon

Description
The "Icon" property specifies the icon of the value table.

Type
String

Access
Read-write

Syntax
TrendCompanion.Icon

Programming scripts
10.2 WinCC Unified object model

6174 System Manual, 11/2022

See also
TrendCompanion (Page 6163)

TrendCompanion.Layer

Description
The "Layer" property returns the screen layer in which the value table is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
TrendCompanion.Layer

See also
TrendCompanion (Page 6163)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6175

See also
TrendCompanion.Layer (Page 6175)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
TrendCompanion.Layer (Page 6175)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

Programming scripts
10.2 WinCC Unified object model

6176 System Manual, 11/2022

See also
TrendCompanion.Layer (Page 6175)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
TrendCompanion.Layer (Page 6175)

TrendCompanion.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
TrendCompanion.Left

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6177

See also
TrendCompanion (Page 6163)

TrendCompanion.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
TrendCompanion.Margin

See also
TrendCompanion (Page 6163)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

Programming scripts
10.2 WinCC Unified object model

6178 System Manual, 11/2022

See also
TrendCompanion.Margin (Page 6178)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
TrendCompanion.Margin (Page 6178)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6179

See also
TrendCompanion.Margin (Page 6178)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
TrendCompanion.Margin (Page 6178)

TrendCompanion.Name

Description
The "Name" property returns the name of the value table.

Type
String

Access
Read-only

Syntax
TrendCompanion.Name

Programming scripts
10.2 WinCC Unified object model

6180 System Manual, 11/2022

See also
TrendCompanion (Page 6163)

TrendCompanion.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
TrendCompanion.Parent

See also
TrendCompanion (Page 6163)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

TrendCompanion.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the value table
was created.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6181

Access
Read-only

Syntax
TrendCompanion.RenderingTemplate

See also
TrendCompanion (Page 6163)

TrendCompanion.ShowAlways

Description
The "ShowAlways" property specifies whether the value table can be closed.

Type
Bool

Access
Read-write

Syntax
TrendCompanion.ShowAlways

See also
TrendCompanion (Page 6163)

TrendCompanion.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the value table is highlighted when in focus.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6182 System Manual, 11/2022

Syntax
TrendCompanion.ShowFocusVisual

See also
TrendCompanion (Page 6163)

TrendCompanion.SnapToSourceControl

Description
The "SnapToSourceControl" property specifies whether the value table snaps to the window of
the associated data source.

Type
Bool

Access
Read-write

Syntax
TrendCompanion.SnapToSourceControl

See also
TrendCompanion (Page 6163)

TrendCompanion.SourceTrendControl

Description
The "SourceTrendControl" property specifies the data source.

Type
Object, HmiTrendControlBase (Page 6374)

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6183

Syntax
TrendCompanion.SourceTrendControl

See also
TrendCompanion (Page 6163)
TrendControl (Page 6374)

TrendControl

Description
TrendControl (Page 6374)

TrendCompanion.StatusBar

Description
The "StatusBar" property specifies the information bar of the value table.

Type
Object, HmiStatusBarPart

Access
Read-write

Syntax
TrendCompanion.StatusBar

See also
TrendCompanion (Page 6163)

StatusBar.BackColor

Description
The "BackColor" property specifies the background color.

Programming scripts
10.2 WinCC Unified object model

6184 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
StatusBar.BackColor

See also
TrendCompanion.StatusBar (Page 6184)

StatusBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
information bar.

Type
Object, HmiControlBarElementCollection (Page 6185)

Access
Read-only

Syntax
StatusBar.Elements

See also
TrendCompanion.StatusBar (Page 6184)
HmiControlBarElementCollection (Page 6185)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6185

You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
StatusBar.Elements (Page 6185)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

Programming scripts
10.2 WinCC Unified object model

6186 System Manual, 11/2022

See also
HmiControlBarElementCollection (Page 6185)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 6187)

See also
HmiControlBarElementCollection (Page 6185)
Control Bar Elements (Page 6187)

Control Bar Elements

ControlBarButton

Description
The "ControlBarButton" object represents a button of an information bar or toolbar.
You can reference the "ControlBarButton" object via the "HmiControlBarElementCollection"
list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6187

Object type
HmiControlBarButtonPart

Properties
The "ControlBarButton" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the label of the button.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the button can be operated in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• HotKey

Returns the hotkey specified for the button.
• Mapping

Returns the function of the button.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.

Programming scripts
10.2 WinCC Unified object model

6188 System Manual, 11/2022

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the button is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the button is only operable while the corresponding button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the button is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 6185)

ControlBarButton.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBackColor

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6189

See also
ControlBarButton (Page 6187)

ControlBarButton.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBorderColor

See also
ControlBarButton (Page 6187)

ControlBarButton.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the button of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarButton.Authorization

Programming scripts
10.2 WinCC Unified object model

6190 System Manual, 11/2022

See also
ControlBarButton (Page 6187)

ControlBarButton.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BackColor

See also
ControlBarButton (Page 6187)

ControlBarButton.Badge

Description
The "Badge" property specifies the label of the button.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarButton.Badge

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6191

See also
ControlBarButton (Page 6187)

ControlBarButton.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BorderColor

See also
ControlBarButton (Page 6187)

ControlBarButton.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarButton.BorderWidth

Programming scripts
10.2 WinCC Unified object model

6192 System Manual, 11/2022

See also
ControlBarButton (Page 6187)

ControlBarButton.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarButton.Content

See also
ControlBarButton (Page 6187)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6193

Syntax
Content.ContentMode

See also
ControlBarButton.Content (Page 6193)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarButton.Content (Page 6193)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Programming scripts
10.2 WinCC Unified object model

6194 System Manual, 11/2022

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarButton.Content (Page 6193)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarButton.Content (Page 6193)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6195

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarButton.Content (Page 6193)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6196 System Manual, 11/2022

Syntax
Content.TextPosition

See also
ControlBarButton.Content (Page 6193)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarButton.Content (Page 6193)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6197

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarButton.Content (Page 6193)

ControlBarButton.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarButton.CustomID

See also
ControlBarButton (Page 6187)

Programming scripts
10.2 WinCC Unified object model

6198 System Manual, 11/2022

ControlBarButton.Enabled

Description
The "Enabled" property specifies whether the button can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Enabled

See also
ControlBarButton (Page 6187)

ControlBarButton.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.ForeColor

See also
ControlBarButton (Page 6187)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6199

ControlBarButton.Graphic

Description
The "Graphic" property specifies the graphic of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Graphic

See also
ControlBarButton (Page 6187)

ControlBarButton.Height

Description
The "Height" property specifies the height of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Height

See also
ControlBarButton (Page 6187)

Programming scripts
10.2 WinCC Unified object model

6200 System Manual, 11/2022

ControlBarButton.HotKey

Description
The "HotKey" property returns the hotkey specified for the button. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
ControlBarButton.HotKey

See also
ControlBarButton (Page 6187)

ControlBarButton.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6201

• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms

Programming scripts
10.2 WinCC Unified object model

6202 System Manual, 11/2022

• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarButton.Mapping

See also
ControlBarButton (Page 6187)

ControlBarButton.Margin

Description
The "Margin" property specifies the surrounded outer distance of the button.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6203

Syntax
ControlBarButton.Margin

See also
ControlBarButton (Page 6187)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarButton.Margin (Page 6203)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6204 System Manual, 11/2022

Syntax
Margin.Left

See also
ControlBarButton.Margin (Page 6203)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarButton.Margin (Page 6203)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6205

Syntax
Margin.Top

See also
ControlBarButton.Margin (Page 6203)

ControlBarButton.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumHeight

See also
ControlBarButton (Page 6187)

ControlBarButton.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6206 System Manual, 11/2022

Syntax
ControlBarButton.MaximumWidth

See also
ControlBarButton (Page 6187)

ControlBarButton.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumHeight

See also
ControlBarButton (Page 6187)

ControlBarButton.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6207

Syntax
ControlBarButton.MinimumWidth

See also
ControlBarButton (Page 6187)

ControlBarButton.Operability

Description
The "Operability" property returns whether the button is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarButton.Operability

See also
ControlBarButton (Page 6187)

ControlBarButton.Padding

Description
The "Padding" property specifies the distance of the content from the border of the button.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

6208 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.Padding

See also
ControlBarButton (Page 6187)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarButton.Padding (Page 6208)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6209

Access
Read-write

Syntax
Padding.Left

See also
ControlBarButton.Padding (Page 6208)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarButton.Padding (Page 6208)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6210 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Top

See also
ControlBarButton.Padding (Page 6208)

ControlBarButton.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the button can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarButton.RequireExplicitUnlock

See also
ControlBarButton (Page 6187)

ControlBarButton.Text

Description
The "Text" property specifies the label of the button.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6211

Access
Read-write

Syntax
ControlBarButton.Text

See also
ControlBarButton (Page 6187)

ControlBarButton.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.ToolTipText

See also
ControlBarButton (Page 6187)

ControlBarButton.Visible

Description
The "Visible" property specifies whether the button is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

6212 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.Visible

See also
ControlBarButton (Page 6187)

ControlBarButton.Width

Description
The "Width" property specifies the width of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Width

See also
ControlBarButton (Page 6187)

ControlBarDisplay

Description
The "ControlBarDisplay" object represents a display area for text and graphics of an information
bar or toolbar.
You can reference the "ControlBarDisplay" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarDisplayPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6213

Properties
The "ControlBarDisplay" object has the following properties:
• Authorization

Returns the operator authorization.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the display area is enabled in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• Mapping

Returns the function of the display area.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the display area is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the display area is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

Programming scripts
10.2 WinCC Unified object model

6214 System Manual, 11/2022

• Visible
Specifies whether the display area is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 6185)

ControlBarDisplay.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the display.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarDislay.Authorization

See also
ControlBarDisplay (Page 6213)

ControlBarDisplay.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6215

Access
Read-write

Syntax
ControlBarDislay.Content

See also
ControlBarDisplay (Page 6213)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarDisplay.Content (Page 6215)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Programming scripts
10.2 WinCC Unified object model

6216 System Manual, 11/2022

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarDisplay.Content (Page 6215)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6217

Syntax
Content.HorizontalTextAlignment

See also
ControlBarDisplay.Content (Page 6215)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarDisplay.Content (Page 6215)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6218 System Manual, 11/2022

Syntax
Content.SplitRatio

See also
ControlBarDisplay.Content (Page 6215)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarDisplay.Content (Page 6215)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6219

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarDisplay.Content (Page 6215)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

Programming scripts
10.2 WinCC Unified object model

6220 System Manual, 11/2022

See also
ControlBarDisplay.Content (Page 6215)

ControlBarDisplay.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarDislay.CustomID

See also
ControlBarDisplay (Page 6213)

ControlBarDisplay.Enabled

Description
The "Enabled" property specifies whether the display is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Enabled

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6221

See also
ControlBarDisplay (Page 6213)

ControlBarDisplay.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.ForeColor

See also
ControlBarDisplay (Page 6213)

ControlBarDisplay.Graphic

Description
The "Graphic" property specifies the graphic of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Graphic

Programming scripts
10.2 WinCC Unified object model

6222 System Manual, 11/2022

See also
ControlBarDisplay (Page 6213)

ControlBarDisplay.Height

Description
The "Height" property specifies the height of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Height

ControlBarDisplay.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6223

• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms

Programming scripts
10.2 WinCC Unified object model

6224 System Manual, 11/2022

• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarDislay.Mapping

See also
ControlBarDisplay (Page 6213)

ControlBarDisplay.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the display.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6225

Syntax
ControlBarDislay.Margin

See also
ControlBarDisplay (Page 6213)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarDisplay.Margin (Page 6225)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6226 System Manual, 11/2022

Syntax
Margin.Left

See also
ControlBarDisplay.Margin (Page 6225)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarDisplay.Margin (Page 6225)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6227

Syntax
Margin.Top

See also
ControlBarDisplay.Margin (Page 6225)

ControlBarDisplay.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MaximumHeight

See also
ControlBarDisplay (Page 6213)

ControlBarDisplay.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6228 System Manual, 11/2022

Syntax
ControlBarDislay.MaximumWidth

See also
ControlBarDisplay (Page 6213)

ControlBarDisplay.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MinimumHeight

See also
ControlBarDisplay (Page 6213)

ControlBarDisplay.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6229

Syntax
ControlBarDislay.MinimumWidth

See also
ControlBarDisplay (Page 6213)

ControlBarDisplay.Operability

Description
The "Operability" property returns whether the display is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarDislay.Operability

See also
ControlBarDisplay (Page 6213)

ControlBarDisplay.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the display.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

6230 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.Padding

See also
ControlBarDisplay (Page 6213)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarDisplay.Padding (Page 6230)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6231

Access
Read-write

Syntax
Padding.Left

See also
ControlBarDisplay.Padding (Page 6230)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarDisplay.Padding (Page 6230)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6232 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Top

See also
ControlBarDisplay.Padding (Page 6230)

ControlBarDisplay.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the display can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarDislay.RequireExplicitUnlock

See also
ControlBarDisplay (Page 6213)

ControlBarDisplay.Text

Description
The "Text" property specifies the label of the display.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6233

Access
Read-write

Syntax
ControlBarDislay.Text

See also
ControlBarDisplay (Page 6213)

ControlBarDisplay.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.ToolTipText

See also
ControlBarDisplay (Page 6213)

ControlBarDisplay.Visible

Description
The "Visible" property specifies whether the display is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

6234 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.Visible

See also
ControlBarDisplay (Page 6213)

ControlBarDisplay.Width

Description
The "Width" property specifies the width of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Width

See also
ControlBarDisplay (Page 6213)

ControlBarLabel

Description
The "ControlBarLabel" object represents an identifier of an information bar or toolbar.
You can reference the "ControlBarLabel" object via the "HmiControlBarElementCollection" list.

Object type
HmiControlBarLabelPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6235

Properties
The "ControlBarLabel" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the identifier can be operated in runtime.
• ForeColor

Specifies the font color.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Height

Specifies the height.
• Mapping

Returns the function of the identifier.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the identifier is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the identifier is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

Programming scripts
10.2 WinCC Unified object model

6236 System Manual, 11/2022

• Visible
Specifies whether the identifier is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 6185)

ControlBarLabel.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the identifier.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarLabel.Authorization

See also
ControlBarLabel (Page 6235)

ControlBarLabel.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6237

Type
Int32

Access
Read-only

Syntax
ControlBarLabel.CustomID

See also
ControlBarLabel (Page 6235)

ControlBarLabel.Enabled

Description
The "Enabled" property specifies whether the identifier is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarLabel.Enabled

See also
ControlBarLabel (Page 6235)

ControlBarLabel.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Programming scripts
10.2 WinCC Unified object model

6238 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.ForeColor

See also
ControlBarLabel (Page 6235)

ControlBarLabel.Height

Description
The "Height" property specifies the height of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Height

See also
ControlBarLabel (Page 6235)

ControlBarLabel.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6239

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.HorizontalTextAlignment

See also
ControlBarLabel (Page 6235)

ControlBarLabel.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display

Programming scripts
10.2 WinCC Unified object model

6240 System Manual, 11/2022

• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6241

• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarLabel.Mapping

See also
ControlBarLabel (Page 6235)

ControlBarLabel.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the identifier.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6242 System Manual, 11/2022

Syntax
ControlBarLabel.Margin

See also
ControlBarLabel (Page 6235)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarLabel.Margin (Page 6242)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6243

Syntax
Margin.Left

See also
ControlBarLabel.Margin (Page 6242)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarLabel.Margin (Page 6242)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6244 System Manual, 11/2022

Syntax
Margin.Top

See also
ControlBarLabel.Margin (Page 6242)

ControlBarLabel.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumHeight

See also
ControlBarLabel (Page 6235)

ControlBarLabel.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6245

Syntax
ControlBarLabel.MaximumWidth

See also
ControlBarLabel (Page 6235)

ControlBarLabel.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumHeight

See also
ControlBarLabel (Page 6235)

ControlBarLabel.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6246 System Manual, 11/2022

Syntax
ControlBarLabel.MinimumWidth

See also
ControlBarLabel (Page 6235)

ControlBarLabel.Operability

Description
The "Operability" property returns whether the identifier is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarLabel.Operability

See also
ControlBarLabel (Page 6235)

ControlBarLabel.Padding

Description
The "Padding" property specifies the spacing of the content from the frame of the identifier.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6247

Access
Read-write

Syntax
ControlBarLabel.Padding

See also
ControlBarLabel (Page 6235)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarLabel.Padding (Page 6247)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6248 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Left

See also
ControlBarLabel.Padding (Page 6247)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarLabel.Padding (Page 6247)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6249

Access
Read-write

Syntax
Padding.Top

See also
ControlBarLabel.Padding (Page 6247)

ControlBarLabel.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the identifier can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarLabel.RequireExplicitUnlock

See also
ControlBarLabel (Page 6235)

ControlBarLabel.Text

Description
The "Text" property specifies the label of the identifier.

Type
String

Programming scripts
10.2 WinCC Unified object model

6250 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarLabel.Text

ControlBarLabel.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.ToolTipText

See also
ControlBarLabel (Page 6235)

ControlBarLabel.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6251

Access
Read-write

Syntax
ControlBarLabel.VerticalTextAlignment

ControlBarLabel.Visible

Description
The "Visible" property specifies whether the identifier is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarLabel.Visible

ControlBarLabel.Width

Description
The "Width" property specifies the width of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Width

Programming scripts
10.2 WinCC Unified object model

6252 System Manual, 11/2022

See also
ControlBarLabel (Page 6235)

ControlBarSeparator

Description
The "ControlBarSeparator" object represents a separator of an information bar or toolbar.
You can reference the "ControlBarSeparator" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarSeparatorPart

Properties
The "ControlBarSeparator" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the disconnector can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• Mapping

Returns the function of the separator.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the separator is operable.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6253

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the disconnector is only operable while the associated button is being
pressed.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the disconnector is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 6185)

ControlBarSeparator.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the separator.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarSeparator.Authorization

See also
ControlBarSeparator (Page 6253)

Programming scripts
10.2 WinCC Unified object model

6254 System Manual, 11/2022

ControlBarSeparator.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarSeparator.CustomID

See also
ControlBarSeparator (Page 6253)

ControlBarSeparator.Enabled

Description
The "Enabled" property specifies whether the separator is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Enabled

See also
ControlBarSeparator (Page 6253)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6255

ControlBarSeparator.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.ForeColor

See also
ControlBarSeparator (Page 6253)

ControlBarSeparator.Height

Description
The "Height" property specifies the height of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Height

See also
ControlBarSeparator (Page 6253)

Programming scripts
10.2 WinCC Unified object model

6256 System Manual, 11/2022

ControlBarSeparator.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6257

• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

6258 System Manual, 11/2022

Syntax
ControlBarSeparator.Mapping

See also
ControlBarSeparator (Page 6253)

ControlBarSeparator.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the separator.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarSeparator.Margin

See also
ControlBarSeparator (Page 6253)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6259

Syntax
Margin.Bottom

See also
ControlBarSeparator.Margin (Page 6259)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarSeparator.Margin (Page 6259)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6260 System Manual, 11/2022

Syntax
Margin.Right

See also
ControlBarSeparator.Margin (Page 6259)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarSeparator.Margin (Page 6259)

ControlBarSeparator.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6261

Syntax
ControlBarSeparator.MaximumHeight

See also
ControlBarSeparator (Page 6253)

ControlBarSeparator.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MaximumWidth

See also
ControlBarSeparator (Page 6253)

ControlBarSeparator.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6262 System Manual, 11/2022

Syntax
ControlBarSeparator.MinimumHeight

See also
ControlBarSeparator (Page 6253)

ControlBarSeparator.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MinimumWidth

See also
ControlBarSeparator (Page 6253)

ControlBarSeparator.Operability

Description
The "Operability" property returns whether the separator is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6263

Access
Read-only

Syntax
ControlBarSeparator.Operability

See also
ControlBarSeparator (Page 6253)

ControlBarSeparator.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the separator.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarSeparator.Padding

See also
ControlBarSeparator (Page 6253)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6264 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarSeparator.Padding (Page 6264)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarSeparator.Padding (Page 6264)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6265

Access
Read-write

Syntax
Padding.Right

See also
ControlBarSeparator.Padding (Page 6264)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarSeparator.Padding (Page 6264)

ControlBarSeparator.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the disconnector can only be operated
while the associated button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

6266 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarSeparator.RequireExplicitUnlock

See also
ControlBarSeparator (Page 6253)

ControlBarSeparator.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the separator.

Type
String

Access
Read-write

Syntax
ControlBarSeparator.ToolTipText

See also
ControlBarSeparator (Page 6253)

ControlBarSeparator.Visible

Description
The "Visible" property specifies whether the separator is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6267

Access
Read-write

Syntax
ControlBarSeparator.Visible

See also
ControlBarSeparator (Page 6253)

ControlBarSeparator.Width

Description
The "Width" property specifies the width of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Width

See also
ControlBarSeparator (Page 6253)

ControlBarTextBox

Description
The "ControlBarTextBox" object represents a text box of an information bar or toolbar.
You can reference the "ControlBarTextBox" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarTextBoxPart

Programming scripts
10.2 WinCC Unified object model

6268 System Manual, 11/2022

Properties
The "ControlBarTextBox" object has the following properties:
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the text box can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Mapping

Returns the function of the text box.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the text box is operable.
• Padding

Specifies the distance of the content from the border.
• Readonly

Specifies whether the text box is write-protected.
• RequireExplicitUnlock

Returns whether the text box is only operable while the associated button is being pressed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6269

• Text
Specifies the labeling.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the text box is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 6185)

ControlBarTextBox.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.AlternateBorderColor

See also
ControlBarTextBox (Page 6268)

Programming scripts
10.2 WinCC Unified object model

6270 System Manual, 11/2022

ControlBarTextBox.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the text box of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarTextBox.Authorization

See also
ControlBarTextBox (Page 6268)

ControlBarTextBox.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BackColor

See also
ControlBarTextBox (Page 6268)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6271

ControlBarTextBox.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BorderColor

See also
ControlBarTextBox (Page 6268)

ControlBarTextBox.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarTextBox.BorderWidth

See also
ControlBarTextBox (Page 6268)

Programming scripts
10.2 WinCC Unified object model

6272 System Manual, 11/2022

ControlBarTextBox.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarTextBox.CustomID

See also
ControlBarTextBox (Page 6268)

ControlBarTextBox.Enabled

Description
The "Enabled" property specifies whether the text box can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Enabled

See also
ControlBarTextBox (Page 6268)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6273

ControlBarTextBox.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.ForeColor

See also
ControlBarTextBox (Page 6268)

ControlBarTextBox.Height

Description
The "Height" property specifies the height of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Height

See also
ControlBarTextBox (Page 6268)

Programming scripts
10.2 WinCC Unified object model

6274 System Manual, 11/2022

ControlBarTextBox.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.HorizontalTextAlignment

See also
ControlBarTextBox (Page 6268)

ControlBarTextBox.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the text box.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarTextBox.Margin

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6275

See also
ControlBarTextBox (Page 6268)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarTextBox.Margin (Page 6275)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

Programming scripts
10.2 WinCC Unified object model

6276 System Manual, 11/2022

See also
ControlBarTextBox.Margin (Page 6275)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarTextBox.Margin (Page 6275)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6277

See also
ControlBarTextBox.Margin (Page 6275)

ControlBarTextBox.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

6278 System Manual, 11/2022

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6279

Access
Read-only

Syntax
ControlBarTextBox.Mapping

See also
ControlBarTextBox (Page 6268)

ControlBarTextBox.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumHeight

See also
ControlBarTextBox (Page 6268)

ControlBarTextBox.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

6280 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarTextBox.MaximumWidth

See also
ControlBarTextBox (Page 6268)

ControlBarTextBox.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumHeight

See also
ControlBarTextBox (Page 6268)

ControlBarTextBox.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6281

Access
Read-write

Syntax
ControlBarTextBox.MinimumWidth

See also
ControlBarTextBox (Page 6268)

ControlBarTextBox.Operability

Description
The "Operability" property returns whether the text box is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarTextBox.Operability

See also
ControlBarTextBox (Page 6268)

ControlBarTextBox.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the text box.

Programming scripts
10.2 WinCC Unified object model

6282 System Manual, 11/2022

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarTextBox.Padding

See also
ControlBarTextBox (Page 6268)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarTextBox.Padding (Page 6282)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6283

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarTextBox.Padding (Page 6282)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarTextBox.Padding (Page 6282)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

6284 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarTextBox.Padding (Page 6282)

ControlBarTextBox.ReadOnly

Description
The "ReadOnly" property specifies whether the text box is read-only.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.ReadOnly

See also
ControlBarTextBox (Page 6268)

ControlBarTextBox.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the text box can only be operated while
the associated button is being pressed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6285

Type
Bool

Access
Read-only

Syntax
ControlBarTextBox.RequireExplicitUnlock

See also
ControlBarTextBox (Page 6268)

ControlBarTextBox.Text

Description
The "Text" property specifies the label of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.Text

See also
ControlBarTextBox (Page 6268)

ControlBarTextBox.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the text box.

Programming scripts
10.2 WinCC Unified object model

6286 System Manual, 11/2022

Type
String

Access
Read-write

Syntax
ControlBarTextBox.ToolTipText

See also
ControlBarTextBox (Page 6268)

ControlBarTextBox.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.VerticalTextAlignment

See also
ControlBarTextBox (Page 6268)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6287

ControlBarTextBox.Visible

Description
The "Visible" property specifies whether the text box is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Visible

See also
ControlBarTextBox (Page 6268)

ControlBarTextBox.Width

Description
The "Width" property specifies the width of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Width

See also
ControlBarTextBox (Page 6268)

Programming scripts
10.2 WinCC Unified object model

6288 System Manual, 11/2022

ControlBarToggleSwitch

Description
The "ControlBarToggleSwitch" object represents a switch of an information bar or toolbar.
You can reference the "ControlBarToggleSwitch" object via the
"HmiControlBarElementCollection" list.

Object type
HmiControlBarToggleSwitchPart

Properties
The "ControlBarToggleSwitch" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• AlternateGraphic

Specifies the graphic for the "pressed" state.
• AlternateText

Specifies the text for the "pressed" state.
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the identifier of the switch.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the switch can be operated in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6289

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the switch.

• IsAlternateState
Specifies the current state of the switch.

• Mapping
Returns the function of the switch.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the switch is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the switch is only operable while the associated button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the switch is visible.

• Width
Specifies the width.

Methods
--

See also
HmiControlBarElementCollection (Page 6185)

Programming scripts
10.2 WinCC Unified object model

6290 System Manual, 11/2022

ControlBarToggleSwitch.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBackColor

See also
ControlBarToggleSwitch (Page 6289)

ControlBarToggleSwitch.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBorderColor

See also
ControlBarToggleSwitch (Page 6289)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6291

ControlBarToggleSwitch.AlternateGraphic

Description
The "AlternateGraphic" property specifies the graphic of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateGraphic

See also
ControlBarToggleSwitch (Page 6289)

ControlBarToggleSwitch.AlternateText

Description
The "AlternateText" property specifies the text of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateText

See also
ControlBarToggleSwitch (Page 6289)

Programming scripts
10.2 WinCC Unified object model

6292 System Manual, 11/2022

ControlBarToggleSwitch.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the switch of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarToggleSwitch.Authorization

See also
ControlBarToggleSwitch (Page 6289)

ControlBarToggleSwitch.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BackColor

See also
ControlBarToggleSwitch (Page 6289)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6293

ControlBarToggleSwitch.Badge

Description
The "Badge" property specifies the identifier of the switch.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarToggleSwitch.Badge

See also
ControlBarToggleSwitch (Page 6289)

ControlBarToggleSwitch.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderColor

See also
ControlBarToggleSwitch (Page 6289)

Programming scripts
10.2 WinCC Unified object model

6294 System Manual, 11/2022

ControlBarToggleSwitch.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderWidth

See also
ControlBarToggleSwitch (Page 6289)

ControlBarToggleSwitch.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Content

See also
ControlBarToggleSwitch (Page 6289)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6295

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarToggleSwitch.Content (Page 6295)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.

Programming scripts
10.2 WinCC Unified object model

6296 System Manual, 11/2022

• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect
ratio is not changed.

• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarToggleSwitch.Content (Page 6295)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 6295)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6297

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarToggleSwitch.Content (Page 6295)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarToggleSwitch.Content (Page 6295)

Programming scripts
10.2 WinCC Unified object model

6298 System Manual, 11/2022

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarToggleSwitch.Content (Page 6295)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6299

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarToggleSwitch.Content (Page 6295)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 6295)

Programming scripts
10.2 WinCC Unified object model

6300 System Manual, 11/2022

ControlBarToggleSwitch.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarToggleSwitch.CustomID

See also
ControlBarToggleSwitch (Page 6289)

ControlBarToggleSwitch.Enabled

Description
The "Enabled" property specifies whether the switch can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Enabled

See also
ControlBarToggleSwitch (Page 6289)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6301

ControlBarToggleSwitch.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.ForeColor

See also
ControlBarToggleSwitch (Page 6289)

ControlBarToggleSwitch.Graphic

Description
The "Graphic" property specifies the graphic of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Graphic

See also
ControlBarToggleSwitch (Page 6289)

Programming scripts
10.2 WinCC Unified object model

6302 System Manual, 11/2022

ControlBarToggleSwitch.Height

Description
The "Height" property specifies the height of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Height

See also
ControlBarToggleSwitch (Page 6289)

ControlBarToggleSwitch.HotKey

Description
The "HotKey" property returns the hotkey specified for the switch. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
Button.HotKey

See also
ControlBarToggleSwitch (Page 6289)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6303

ControlBarToggleSwitch.IsAlternateState

Description
The "IsAlternateState" property specifies the current state of the switch.
• True: Switch is in "On" state.
• False: Switch is in "Off" state.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.IsAlternateState

See also
ControlBarToggleSwitch (Page 6289)

ControlBarToggleSwitch.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment

Programming scripts
10.2 WinCC Unified object model

6304 System Manual, 11/2022

• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6305

• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarToggleSwitch.Mapping

See also
ControlBarToggleSwitch (Page 6289)

ControlBarToggleSwitch.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the switch.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

6306 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.Margin

See also
ControlBarToggleSwitch (Page 6289)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarToggleSwitch.Margin (Page 6306)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6307

Access
Read-write

Syntax
Margin.Left

See also
ControlBarToggleSwitch.Margin (Page 6306)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarToggleSwitch.Margin (Page 6306)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6308 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Top

See also
ControlBarToggleSwitch.Margin (Page 6306)

ControlBarToggleSwitch.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumHeight

See also
ControlBarToggleSwitch (Page 6289)

ControlBarToggleSwitch.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6309

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumWidth

See also
ControlBarToggleSwitch (Page 6289)

ControlBarToggleSwitch.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumHeight

See also
ControlBarToggleSwitch (Page 6289)

ControlBarToggleSwitch.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

6310 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumWidth

See also
ControlBarToggleSwitch (Page 6289)

ControlBarToggleSwitch.Operability

Description
The property "Operability" returns whether the switch is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarToggleSwitch.Operability

See also
ControlBarToggleSwitch (Page 6289)

ControlBarToggleSwitch.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the switch.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6311

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Padding

See also
ControlBarToggleSwitch (Page 6289)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarToggleSwitch.Padding (Page 6311)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

6312 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarToggleSwitch.Padding (Page 6311)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarToggleSwitch.Padding (Page 6311)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6313

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarToggleSwitch.Padding (Page 6311)

ControlBarToggleSwitch.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the switch can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarToggleSwitch.RequireExplicitUnlock

See also
ControlBarToggleSwitch (Page 6289)

ControlBarToggleSwitch.Text

Description
The "Text" property specifies the label of the switch.

Programming scripts
10.2 WinCC Unified object model

6314 System Manual, 11/2022

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Text

See also
ControlBarToggleSwitch (Page 6289)

ControlBarToggleSwitch.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.ToolTipText

See also
ControlBarToggleSwitch (Page 6289)

ControlBarToggleSwitch.Visible

Description
The "Visible" property specifies whether the switch is visible.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6315

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Visible

See also
ControlBarToggleSwitch (Page 6289)

ControlBarToggleSwitch.Width

Description
The "Width" property specifies the width of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Width

See also
ControlBarToggleSwitch (Page 6289)

StatusBar.Enabled

Description
The "Enabled" property specifies whether the information bar can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

6316 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
StatusBar.Enabled

See also
TrendCompanion.StatusBar (Page 6184)

StatusBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
StatusBar.Font

See also
TrendCompanion.StatusBar (Page 6184)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6317

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
StatusBar.Font (Page 6317)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
StatusBar.Font (Page 6317)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

6318 System Manual, 11/2022

Type
Float

Access
Read-write

Syntax
Font.Size

See also
StatusBar.Font (Page 6317)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
StatusBar.Font (Page 6317)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6319

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
StatusBar.Font (Page 6317)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6320 System Manual, 11/2022

Syntax
Font.Weight

See also
StatusBar.Font (Page 6317)

StatusBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the information bar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
StatusBar.Margin

See also
TrendCompanion.StatusBar (Page 6184)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6321

Syntax
Margin.Bottom

See also
StatusBar.Margin (Page 6321)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
StatusBar.Margin (Page 6321)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6322 System Manual, 11/2022

Syntax
Margin.Right

See also
StatusBar.Margin (Page 6321)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
StatusBar.Margin (Page 6321)

StatusBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the information
bar.

Type
Object, HmiPaddingPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6323

Syntax
StatusBar.Padding

See also
TrendCompanion.StatusBar (Page 6184)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
StatusBar.Padding (Page 6323)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6324 System Manual, 11/2022

Syntax
Padding.Left

See also
StatusBar.Padding (Page 6323)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
StatusBar.Padding (Page 6323)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6325

Syntax
Padding.Top

See also
StatusBar.Padding (Page 6323)

StatusBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
StatusBar.ShowToolTips

See also
TrendCompanion.StatusBar (Page 6184)

StatusBar.Visible

Description
The "Visible" property specifies whether the information bar is visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6326 System Manual, 11/2022

Syntax
StatusBar.Visible

See also
TrendCompanion.StatusBar (Page 6184)

TrendCompanion.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the value table.

Type
String

Access
Read-only

Syntax
TrendCompanion.StyleItemClass

See also
TrendCompanion (Page 6163)

TrendCompanion.TabIndex

Description
The "TabIndex" property returns the position of the value table in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
TrendCompanion.TabIndex

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6327

See also
TrendCompanion (Page 6163)

TrendCompanion.TimeZone

Description
The "TimeZone" property specifies the time zone.

Type
HmiTimeZone

Access
Read-write

Syntax
TrendCompanion.TimeZone

See also
TrendCompanion (Page 6163)

TrendCompanion.ToolBar

Description
The "ToolBar" property specifies the toolbar of the value table.

Type
Object, HmiToolBarPart

Access
Read-write

Syntax
TrendCompanion.ToolBar

Programming scripts
10.2 WinCC Unified object model

6328 System Manual, 11/2022

See also
TrendCompanion (Page 6163)

ToolBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ToolBar.BackColor

See also
TrendCompanion.ToolBar (Page 6328)

ToolBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
toolbar.

Type
Object, HmiControlBarElementCollection (Page 6330)

Access
Read-only

Syntax
ToolBar.Elements

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6329

See also
TrendCompanion.ToolBar (Page 6328)
HmiControlBarElementCollection (Page 6330)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
ToolBar.Elements (Page 6329)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

6330 System Manual, 11/2022

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 6330)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 6332)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6331

See also
HmiControlBarElementCollection (Page 6330)
Control Bar Elements (Page 6332)

Control Bar Elements

Description
Control Bar Elements (Page 6187)

ToolBar.Enabled

Description
The "Enabled" property specifies whether the toolbar can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ToolBar.Enabled

See also
TrendCompanion.ToolBar (Page 6328)

ToolBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Programming scripts
10.2 WinCC Unified object model

6332 System Manual, 11/2022

Access
Read-write

Syntax
ToolBar.Font

See also
TrendCompanion.ToolBar (Page 6328)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
ToolBar.Font (Page 6332)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6333

Access
Read-write

Syntax
Font.Name

See also
ToolBar.Font (Page 6332)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
ToolBar.Font (Page 6332)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut

Programming scripts
10.2 WinCC Unified object model

6334 System Manual, 11/2022

Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ToolBar.Font (Page 6332)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
ToolBar.Font (Page 6332)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6335

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
ToolBar.Font (Page 6332)

ToolBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the toolbar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ToolBar.Margin

See also
TrendCompanion.ToolBar (Page 6328)

Programming scripts
10.2 WinCC Unified object model

6336 System Manual, 11/2022

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ToolBar.Margin (Page 6336)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ToolBar.Margin (Page 6336)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6337

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ToolBar.Margin (Page 6336)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ToolBar.Margin (Page 6336)

Programming scripts
10.2 WinCC Unified object model

6338 System Manual, 11/2022

ToolBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the toolbar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ToolBar.Padding

See also
TrendCompanion.ToolBar (Page 6328)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ToolBar.Padding (Page 6339)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6339

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ToolBar.Padding (Page 6339)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ToolBar.Padding (Page 6339)

Programming scripts
10.2 WinCC Unified object model

6340 System Manual, 11/2022

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ToolBar.Padding (Page 6339)

ToolBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
ToolBar.ShowToolTips

See also
TrendCompanion.ToolBar (Page 6328)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6341

ToolBar.UseHotKeys

Description
The "UseHotKeys" property specifies whether the shortcut keys for the buttons in the toolbar are
activated.

Type
Bool

Access
Read-write

Syntax
ToolBar.UseHotKeys

See also
TrendCompanion.ToolBar (Page 6328)

ToolBar.Visible

Description
The "Visible" property specifies whether the toolbar is visible.

Type
Bool

Access
Read-write

Syntax
ToolBar.Visible

See also
TrendCompanion.ToolBar (Page 6328)

Programming scripts
10.2 WinCC Unified object model

6342 System Manual, 11/2022

TrendCompanion.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
TrendCompanion.Top

See also
TrendCompanion (Page 6163)

TrendCompanion.TrendCompanionMode

Description
The "TrendCompanionMode" property specifies the window display of the value table.

Type
HmiTrendCompanionMode
Specifies the window display of the value table:
• Ruler (0): Ruler as reading aid
• StatisticArea (1): Statistics area
• StatisticResult (2): Statistics result

Access
Read-write

Syntax
TrendCompanion.TrendCompanionMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6343

See also
TrendCompanion (Page 6163)

TrendCompanion.TrendRulerView

Description
The "TrendRulerView" property specifies the ruler window of the value table.

Type
Object, HmiTrendColumnPart (Page 6344)

Access
Read-write

Syntax
TrendCompanion.TrendRulerView

See also
TrendCompanion (Page 6163)
TrendColumn (Page 6344)

TrendColumn

Description
The "TrendColumn" object represents a column in the trend view.

Object type
HmiTrendColumnPart

Properties
The "TrendColumn" object has the following properties:
• AllowSort

Specifies whether column sorting is allowed.
• BackColor

Specifies the background color.

Programming scripts
10.2 WinCC Unified object model

6344 System Manual, 11/2022

• Content
Specifies display options for text and graphics.

• Enabled
Specifies whether the column can be operated in runtime.

• ForeColor
Specifies the font color of the text.

• Header
Specifies the properties of the column header.

• MaximumWidth
Specifies the maximum width.

• MinimumWidth
Specifies the minimum width.

• Name
Returns the name of the column.

• OutputFormat
Specifies the format for displaying values.

• SortDirection
Specifies the sorting direction.

• SortOrder
Specifies the sorting order.

• TrendInfoBlock
Specifies the info block.

• Visible
Specifies whether the column is visible.

• Width
Specifies the width of the column in the DIU (Device Independent Unit).

Methods
--

See also
TrendCompanion.TrendRulerView (Page 6344)

TrendColumn.AllowSort

Description
The "AllowSort" property specifies whether the sorting of the column is permitted.
This property is ignored if the parent object has the "AllowSort" property set to "False".

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6345

Type
Bool

Access
Read-write

Syntax
TrendColumn.AllowSort

See also
TrendColumn (Page 6344)

TrendColumn.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
TrendColumn.BackColor

See also
TrendColumn (Page 6344)

TrendColumn.Content

Description
The "Content" property specifies display options for text and graphics.

Programming scripts
10.2 WinCC Unified object model

6346 System Manual, 11/2022

Type
Object, HmiContentPart

Access
Read-write

Syntax
TrendColumn.Content

See also
TrendColumn (Page 6344)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
TrendColumn.Content (Page 6346)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6347

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
TrendColumn.Content (Page 6346)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered

Programming scripts
10.2 WinCC Unified object model

6348 System Manual, 11/2022

• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
TrendColumn.Content (Page 6346)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
TrendColumn.Content (Page 6346)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6349

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
TrendColumn.Content (Page 6346)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
TrendColumn.Content (Page 6346)

Programming scripts
10.2 WinCC Unified object model

6350 System Manual, 11/2022

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
TrendColumn.Content (Page 6346)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6351

Syntax
Content.VerticalTextAlignment

See also
TrendColumn.Content (Page 6346)

TrendColumn.Enabled

Description
The "Enabled" property specifies whether the column can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
TrendColumn.Enabled

See also
TrendColumn (Page 6344)

TrendColumn.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6352 System Manual, 11/2022

Syntax
TrendColumn.ForeColor

See also
TrendColumn (Page 6344)

TrendColumn.Header

Description
The "Header" property specifies the properties of the column header.

Type
Object, HmiDataGridColumnHeaderPart

Access
Read-write

Syntax
TrendColumn.Header

See also
TrendColumn (Page 6344)

DataGridColumnHeader.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6353

Syntax
DataGridColumnHeader.Content

See also
TrendColumn.Header (Page 6353)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
DataGridColumnHeader.Content (Page 6353)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode

Programming scripts
10.2 WinCC Unified object model

6354 System Manual, 11/2022

Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
DataGridColumnHeader.Content (Page 6353)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6355

See also
DataGridColumnHeader.Content (Page 6353)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
DataGridColumnHeader.Content (Page 6353)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

Programming scripts
10.2 WinCC Unified object model

6356 System Manual, 11/2022

See also
DataGridColumnHeader.Content (Page 6353)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
DataGridColumnHeader.Content (Page 6353)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6357

Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
DataGridColumnHeader.Content (Page 6353)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
DataGridColumnHeader.Content (Page 6353)

Programming scripts
10.2 WinCC Unified object model

6358 System Manual, 11/2022

DataGridColumnHeader.Graphic

Description
The "Graphic" property specifies the graphic of the column header.

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Graphic

See also
TrendColumn.Header (Page 6353)

DataGridColumnHeader.Text

Description
The "Text" property specifies the label of the column header.

Type
String

Access
Read-write

Syntax
DataGridColumnHeader.Text

See also
TrendColumn.Header (Page 6353)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6359

TrendColumn.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
TrendColumn.MaximumWidth

See also
TrendColumn (Page 6344)

TrendColumn.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
TrendColumn.MinimumWidth

See also
TrendColumn (Page 6344)

Programming scripts
10.2 WinCC Unified object model

6360 System Manual, 11/2022

TrendColumn.Name

Description
The "Name" property returns the name of the column.

Type
String

Access
Read-only

Syntax
TrendColumn.Name

See also
TrendColumn (Page 6344)

TrendColumn.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying values.

Type
String

Access
Read-write

Syntax
TrendColumn.OutputFormat

See also
TrendColumn (Page 6344)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6361

TrendColumn.SortDirection

Description
The "SortDirection" property specifies the direction of the sorting.

Type
Int32, HmiSortDirection
Specifies the sorting order.
• None (0): None
• Ascending (1): Ascending
• Descending (2): Descending

Access
Read-write

Syntax
TrendColumn.SortDirection

See also
TrendColumn (Page 6344)

TrendColumn.SortOrder

Description
The "SortOrder" property specifies the order of the sorting.
The sorting index starts at "1" (highest priority) in ascending order. Zero is ignored.

Type
UInt16

Access
Read-write

Syntax
TrendColumn.SortOrder

Programming scripts
10.2 WinCC Unified object model

6362 System Manual, 11/2022

See also
TrendColumn (Page 6344)

TrendColumn.TrendInfoBlock

Description
The "TrendInfoBlock" property specifies the info block.

Type
Int32, HmiTrendInfoBlock
Specifies the info block:
• None (0): None
• Name (1): Name
• Index (2): Index
• Label (3): Labels
• Show (4): Show
• TagNameY (5): Tag name X
• TagNameX (6): Tag name Y
• YValue (7): Y value
• XValueOrTimestamp (8): X values or time stamp
• YValueLowerLimit (9): Y value low limit
• TimestampLowerLimit (10): Time stamp low limit
• YValueUpperLimit (11): Y value high limit
• TimestampUpperLimit (12): Time stamp low limit
• Minimum (13): Minimum
• MinimumTimestamp (14): Minimum time stamp
• Maximum (15): Maximum
• MaximumTimestamp (16): Maximum time stamp
• Average (17): Average
• StandardDeviation (18): Standard deviation
• Integral (19): Integral
• WeightedAverageValue (20): Weighted mean
• Duration (21): Duration
• NumberOfValues (22): Number of values
• AreaName (23): Area name

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6363

• AreaNameLL (24): Area name (LL)
• AreaNameHL (25): Area name (HL)
• Sum (32): Total

Access
Read-write

Syntax
TrendColumn.TrendInfoBlock

See also
TrendColumn (Page 6344)

TrendColumn.Visible

Description
The "Visible" property specifies whether the column is visible.

Type
Bool

Access
Read-write

Syntax
TrendColumn.Visible

See also
TrendColumn (Page 6344)

TrendColumn.Width

Description
The "Width" property specifies the width of the column in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

6364 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
TrendColumn.Width

See also
TrendColumn (Page 6344)

TrendCompanion.TrendStatisticAreaView

Description
The "TrendStatisticAreaView" property specifies the view of the statistics area.

Type
Object, HmiTrendColumnPart (Page 6365)

Access
Read-write

Syntax
TrendCompanion.TrendStatisticAreaView

See also
TrendCompanion (Page 6163)
TrendColumn (Page 6365)

TrendColumn

Description
TrendColumn (Page 6344)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6365

TrendCompanion.TrendStatisticResultView

Description
The "TrendStatisticResultView" property specifies the view of the statistics mode.

Type
Object, HmiTrendColumnPart (Page 6366)

Access
Read-write

Syntax
TrendCompanion.TrendStatisticResultView

See also
TrendCompanion (Page 6163)
TrendColumn (Page 6366)

TrendColumn

Description
TrendColumn (Page 6344)

TrendCompanion.UseSourceControlBackColor

Description
The "UseSourceControlBackColor" property specifies whether the background color of the value
table is taken from the associated data source.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6366 System Manual, 11/2022

Syntax
TrendCompanion.UseSourceControlBackColor

See also
TrendCompanion (Page 6163)

TrendCompanion.UseSourceControlTrendColors

Description
The "UseSourceControlTrendColors"property specifies whether the font color of the value table
is taken from the associated data source.

Type
Bool

Access
Read-write

Syntax
TrendCompanion.UseSourceControlTrendColors

See also
TrendCompanion (Page 6163)

TrendCompanion.Visible

Description
The "Visible" property specifies whether the value table is visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6367

Syntax
TrendCompanion.Visible

See also
TrendCompanion (Page 6163)

TrendCompanion.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
TrendCompanion.Width

See also
TrendCompanion (Page 6163)

TrendCompanion.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the value table.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title
• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized

Programming scripts
10.2 WinCC Unified object model

6368 System Manual, 11/2022

• CanMove (16): Can be positioned
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
Enable multiple properties by adding the integer values or bit operators.

Access
Read-write

Syntax
TrendCompanion.WindowFlags

Example
Adapt the "windowFlags" tag depending on the window configuration:

Copy code
var windowFlags = HmiWindowFlag.ShowCaption | HmiWindowFlag.ShowBorder;
if (CanClose){
 windowFlags |= HmiWindowFlag.CanClose;
} else {
 windowFlags &= HmiWindowFlag.CanClose;
}

See also
TrendCompanion (Page 6163)

TrendCompanion.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
value table.

Syntax
TrendCompanion.CheckAuthorization()

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6369

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
TrendCompanion (Page 6163)

TrendCompanion.FireCommand()

Description
The "FireCommand" method executes the command of an element in the toolbar or information
bar (control bar element, e.g. a button) of the value table.

Syntax
TrendCompanion.FireCommand(commandId, custom)

Parameters
commandId
Type: Int32
ID of the element of the toolbar or information bar

custom
Type: Bool
Type of element ID:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

Programming scripts
10.2 WinCC Unified object model

6370 System Manual, 11/2022

Return value
--

See also
TrendCompanion (Page 6163)

TrendCompanion.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
TrendCompanion.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6371

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
TrendCompanion (Page 6163)

TrendCompanion_OnActivated()

Description
The "OnActivated" event occurs when a value table receives focus:
• A value table is selected via the configured tab sequence.
• A value table that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
TrendCompanion_OnActivated(item)

Context
item
Type: Object
Value table where the event occurs.

See also
TrendCompanion (Page 6163)

Programming scripts
10.2 WinCC Unified object model

6372 System Manual, 11/2022

TrendCompanion_OnCommandFired()

Description
The "OnCommandFired" event occurs when the operator has operated an element in the toolbar
or information bar (control bar element, e.g. a button) of the value table.

Syntax
TrendCompanion_OnCommandFired(item, commandId, custom)

Context
item
Type: Object
Value table where the event occurs.

commandId
Type: DInt
ID of the element of the toolbar or information bar that was operated.

custom
Type: Bool
Specifies the type of the ID of the operated element:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

See also
TrendCompanion (Page 6163)

TrendCompanion_OnDeactivated()

Description
The "OnDeactivated" event occurs when a value table loses focus because the operator presses
the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6373

Syntax
TrendCompanion_OnDeactivated(item)

Context
item
Type: Object
Value table where the event occurs.

See also
TrendCompanion (Page 6163)

TrendCompanion_OnInitialized()

Description
The "OnInitialized" event occurs when a value table has been successfully initialized and the data
connection to the PLC has been established.

Syntax
TrendCompanion_OnInitialized(item)

Context
item
Type: Object
Value table where the event occurs.

See also
TrendCompanion (Page 6163)

TrendControl

Description
The "TrendControl" object represents a trend control of tag values from the current process or the
archive in runtime.

Programming scripts
10.2 WinCC Unified object model

6374 System Manual, 11/2022

Object type
HmiTrendControl

Properties
The "TrendControl" object has the following properties:
• AreaSpacing

Specifies the distance between trend areas.
• BackColor

Specifies the background color.
• Caption

Specifies the text to be displayed in the title bar.
• CaptionColor

Specifies the color of the title bar.
• CurrentQuality

Returns the poorest quality code of all tags which influence the trend control.
• Enabled

Specifies whether the trend control can be operated in runtime.
• ExtendRulerToAxis

Specifies whether the ruler is extended into the axis.
• Height

Specifies the height.
• Icon

Specifies the icon of the trend control.
• Layer

Returns the screen layer in which the trend control is located.
• Left

Specifies the value of the X coordinate.
• Legend

Specifies the appearance of the legend.
• Margin

Specifies the margin.
• Name

Returns the name of the trend control.
• Online

Specifies the start and stop of the trend control updating.
• Parent

Returns the higher-level screen object.
• RenderingTemplate

Returns the name of the template from which the trend control was created.
• ShiftAxis

Specifies whether to swap the x axis and y axis of the trend control.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6375

• ShowFocusVisual
Specifies whether the trend control is highlighted when in focus.

• ShowRuler
Specifies whether the ruler is displayed for determining a trend value.

• ShowStatisticRulers
Specifies whether to display the two rulers for specifying the statistics area.

• StatusBar
Sets the information bar of the trend control.

• StyleItemClass
Returns the style which is applied to the trend control.

• TabIndex
Returns the position of the trend control in the tab sequence.

• TimeZone
Specifies the time zone.

• ToolBar
Specifies the toolbar of the trend control.

• Top
Specifies the value of the Y coordinate.

• TrendAreas
Returns the trend areas of the trend control.

• Visible
Specifies whether the trend control is visible.

• Width
Specifies the width.

• WindowFlags
Specifies the window configuration of the trend control.

Methods
The "TrendControl" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the trend control.
• FireCommand()

Executes the command of an element of the toolbar or information bar of the trend view.
• PropertyFlashing()

Configures flashing of a property.

Programming scripts
10.2 WinCC Unified object model

6376 System Manual, 11/2022

Events
The "TrendControl" object has the following events:
• OnActivated()

Occurs when a trend control receives focus.
• OnCommandFired()

Occurs when the operator has operated an element in the toolbar or information bar of the
trend control.

• OnDeactivated()
Occurs when a trend control loses focus.

• OnInitialized()
Occurs when a trend control has been successfully initialized and the data connection to the
PLC has been established.

TrendControl.AreaSpacing

Description
The "AreaSpacing" property specifies the spacing between trend areas.

Type
UInt16

Access
Read-write

Syntax
TrendControl.AreaSpacing

See also
TrendControl (Page 6374)

TrendControl.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6377

Access
Read-write

Syntax
TrendControl.BackColor

See also
TrendControl (Page 6374)

TrendControl.Caption

Description
The "Caption" property specifies the text to be displayed in the title bar.

Type
Object, HmiTextPart

Access
Read-write

Syntax
TrendControl.Caption

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6378 System Manual, 11/2022

Syntax
Text.Font

See also
TrendControl.Caption (Page 6378)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 6378)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6379

Syntax
Font.Name

See also
Text.Font (Page 6378)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 6378)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Programming scripts
10.2 WinCC Unified object model

6380 System Manual, 11/2022

Access
Read-write

Syntax
Font.StrikeOut

See also
Text.Font (Page 6378)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 6378)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6381

Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 6378)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
TrendControl.Caption (Page 6378)

Programming scripts
10.2 WinCC Unified object model

6382 System Manual, 11/2022

Text.Text

Description
The "Text" property specifies the label.

Type
String

Access
Read-write

Syntax
Text.Text

See also
TrendControl.Caption (Page 6378)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
TrendControl.Caption (Page 6378)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6383

TrendControl.CaptionColor

Description
The "CaptionColor" property specifies the color of the title bar.

Type
UInt32

Access
Read-write

Syntax
TrendControl.CaptionColor

See also
TrendControl (Page 6374)

TrendControl.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
trend view.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the quality of the value is worse than usual.
• Good (4): Usable, quality of the value is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

6384 System Manual, 11/2022

Syntax
TrendControl.CurrentQuality

See also
TrendControl (Page 6374)

TrendControl.Enabled

Description
The "Enabled" property specifies whether the trend view can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
TrendControl.Enabled

See also
TrendControl (Page 6374)

TrendControl.ExtendRulerToAxis

Description
The "ExtendRulerToAxis" property specifies whether the ruler is extended to the axis.

Type
Bool

Access
Read-write

Syntax
TrendControl.ExtendRulerToAxis

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6385

See also
TrendControl (Page 6374)

TrendControl.Height

Description
The "Height" property specifies the height in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
TrendControl.Height

See also
TrendControl (Page 6374)

TrendControl.Icon

Description
The "Icon" property specifies the icon of the trend view.

Type
String

Access
Read-write

Syntax
TrendControl.Icon

Programming scripts
10.2 WinCC Unified object model

6386 System Manual, 11/2022

See also
TrendControl (Page 6374)

TrendControl.Layer

Description
The "Layer" property returns the layer of the screen in which the trend view is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
TrendControl.Layer

See also
TrendControl (Page 6374)

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6387

See also
TrendControl.Layer (Page 6387)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
TrendControl.Layer (Page 6387)

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

Programming scripts
10.2 WinCC Unified object model

6388 System Manual, 11/2022

See also
TrendControl.Layer (Page 6387)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
TrendControl.Layer (Page 6387)

TrendControl.Left

Description
The "Left" property sets the value of the X coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
TrendControl.Left

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6389

See also
TrendControl (Page 6374)

TrendControl.Legend

Description
The "Legend" property specifies the appearance of the legend ("Legend" object).

Type
Object, HmiLegendPart

Access
Read-write

Syntax
TrendControl.Legend

See also
TrendControl (Page 6374)

Legend.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Legend.ForeColor

Programming scripts
10.2 WinCC Unified object model

6390 System Manual, 11/2022

See also
TrendControl.Legend (Page 6390)

Legend.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Legend.Font

See also
TrendControl.Legend (Page 6390)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6391

See also
Legend.Font (Page 6391)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Legend.Font (Page 6391)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

Programming scripts
10.2 WinCC Unified object model

6392 System Manual, 11/2022

See also
Legend.Font (Page 6391)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
Legend.Font (Page 6391)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6393

Syntax
Font.Underline

See also
Legend.Font (Page 6391)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
Legend.Font (Page 6391)

Legend.Visible

Description
The "Visible" property specifies whether the legend is visible.

Programming scripts
10.2 WinCC Unified object model

6394 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
Legend.Visible

See also
TrendControl.Legend (Page 6390)

TrendControl.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
TrendControl.Margin

See also
TrendControl (Page 6374)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6395

Access
Read-write

Syntax
Margin.Bottom

See also
TrendControl.Margin (Page 6395)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
TrendControl.Margin (Page 6395)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6396 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Right

See also
TrendControl.Margin (Page 6395)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
TrendControl.Margin (Page 6395)

TrendControl.Name

Description
The "Name" property returns the name of the trend view.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6397

Access
Read-only

Syntax
TrendControl.Name

See also
TrendControl (Page 6374)

TrendControl.Online

Description
The "Online" property specifies the start and stop of the updating of the trend view.
• True: Online. The trend view is updated with new values.
• False: Offline. No new values are added to the trend view.

Type
Bool

Access
Read-write

Syntax
TrendControl.Online

See also
TrendControl (Page 6374)

TrendControl.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Programming scripts
10.2 WinCC Unified object model

6398 System Manual, 11/2022

Access
Read-only

Syntax
TrendControl.Parent

See also
TrendControl (Page 6374)
Screen Items (Page 1571)

Screen Items

Description
Screen Items (Page 1571)

TrendControl.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the trend view
was created.

Type
String

Access
Read-only

Syntax
TrendControl.RenderingTemplate

See also
TrendControl (Page 6374)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6399

TrendControl.ShiftAxis

Description
The "ShiftAxis" property specifies whether to swap the x axis and y axis of the trend view.

Type
Bool

Access
Read-write

Syntax
TrendControl.ShiftAxis

See also
TrendControl (Page 6374)

TrendControl.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the trend view is highlighted when in focus.

Type
Bool

Access
Read-write

Syntax
TrendControl.ShowFocusVisual

See also
TrendControl (Page 6374)

Programming scripts
10.2 WinCC Unified object model

6400 System Manual, 11/2022

TrendControl.ShowRuler

Description
The "ShowRuler" property specifies whether the ruler is displayed for determining a trend value.

Type
Bool

Access
Read-write

Syntax
TrendControl.ShowRuler

See also
TrendControl (Page 6374)

TrendControl.ShowStatisticRulers

Description
The "ShowStatisticRulers" property specifies whether to display the two rulers for specifying the
statistics area.

Type
Bool

Access
Read-write

Syntax
TrendControl.ShowStatisticRulers

See also
TrendControl (Page 6374)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6401

TrendControl.StatusBar

Description
The "StatusBar" property specifies the information bar of the trend view.

Type
Object, HmiStatusBarPart

Access
Read-write

Syntax
TrendControl.StatusBar

See also
TrendControl (Page 6374)

StatusBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
StatusBar.BackColor

See also
TrendControl.StatusBar (Page 6402)

Programming scripts
10.2 WinCC Unified object model

6402 System Manual, 11/2022

StatusBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
information bar.

Type
Object, HmiControlBarElementCollection (Page 6403)

Access
Read-only

Syntax
StatusBar.Elements

See also
HmiControlBarElementCollection (Page 6403)
TrendControl.StatusBar (Page 6402)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6403

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
StatusBar.Elements (Page 6403)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 6403)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

6404 System Manual, 11/2022

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 6421)

See also
HmiControlBarElementCollection (Page 6403)
Control Bar Elements (Page 6421)

Control Bar Elements

Description
Control Bar Elements (Page 6421)

StatusBar.Enabled

Description
The "Enabled" property specifies whether the information bar can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6405

Syntax
StatusBar.Enabled

See also
TrendControl.StatusBar (Page 6402)

StatusBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
StatusBar.Font

See also
TrendControl.StatusBar (Page 6402)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6406 System Manual, 11/2022

Syntax
Font.Italic

See also
StatusBar.Font (Page 6406)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
StatusBar.Font (Page 6406)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6407

Syntax
Font.Size

See also
StatusBar.Font (Page 6406)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
StatusBar.Font (Page 6406)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

6408 System Manual, 11/2022

Access
Read-write

Syntax
Font.Underline

See also
StatusBar.Font (Page 6406)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
StatusBar.Font (Page 6406)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6409

StatusBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the information bar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
StatusBar.Margin

See also
TrendControl.StatusBar (Page 6402)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
StatusBar.Margin (Page 6410)

Programming scripts
10.2 WinCC Unified object model

6410 System Manual, 11/2022

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
StatusBar.Margin (Page 6410)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
StatusBar.Margin (Page 6410)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6411

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
StatusBar.Margin (Page 6410)

StatusBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the information
bar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
StatusBar.Padding

See also
TrendControl.StatusBar (Page 6402)

Programming scripts
10.2 WinCC Unified object model

6412 System Manual, 11/2022

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
StatusBar.Padding (Page 6412)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
StatusBar.Padding (Page 6412)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6413

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
StatusBar.Padding (Page 6412)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
StatusBar.Padding (Page 6412)

Programming scripts
10.2 WinCC Unified object model

6414 System Manual, 11/2022

StatusBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
StatusBar.ShowToolTips

See also
TrendControl.StatusBar (Page 6402)

StatusBar.Visible

Description
The "Visible" property specifies whether the information bar is visible.

Type
Bool

Access
Read-write

Syntax
StatusBar.Visible

See also
TrendControl.StatusBar (Page 6402)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6415

TrendControl.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the trend view.

Type
String

Access
Read-only

Syntax
TrendControl.StyleItemClass

See also
TrendControl (Page 6374)

TrendControl.TabIndex

Description
The "TabIndex" property returns the position of the trend view in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
TrendControl.TabIndex

See also
TrendControl (Page 6374)

Programming scripts
10.2 WinCC Unified object model

6416 System Manual, 11/2022

TrendControl.TimeZone

Description
The "TimeZone" property specifies the time zone.

Positive numbers according to the Microsoft time zone index value specification, negative
numbers from CHROM (-1 = RH local)

Type
HmiTimeZone
Values according to the Microsoft Time Zone Index Value specification. "-1" stands for local
time.

Access
Read-write

Syntax
TrendControl.TimeZone

See also
TrendControl (Page 6374)

TrendControl.ToolBar

Description
The "ToolBar" property specifies the toolbar of the trend view.

Type
Object, HmiToolBarPart

Access
Read-write

Syntax
TrendControl.ToolBar

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6417

See also
TrendControl (Page 6374)

ToolBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ToolBar.BackColor

See also
TrendControl.ToolBar (Page 6417)

ToolBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
toolbar.

Type
Object, HmiControlBarElementCollection (Page 6419)

Access
Read-only

Syntax
ToolBar.Elements

Programming scripts
10.2 WinCC Unified object model

6418 System Manual, 11/2022

See also
HmiControlBarElementCollection (Page 6419)
TrendControl.ToolBar (Page 6417)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
ToolBar.Elements (Page 6418)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6419

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 6419)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 6421)

Programming scripts
10.2 WinCC Unified object model

6420 System Manual, 11/2022

See also
HmiControlBarElementCollection (Page 6419)
Control Bar Elements (Page 6421)

Control Bar Elements

ControlBarButton

Description
The "ControlBarButton" object represents a button of an information bar or toolbar.
You can reference the "ControlBarButton" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarButtonPart

Properties
The "ControlBarButton" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the label of the button.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the button can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6421

• ForeColor
Specifies the font color.

• Graphic
Specifies the graphic.

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the button.

• Mapping
Returns the function of the button.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the button is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the button is only operable while the corresponding button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the button is visible.

• Width
Specifies the width.

Methods
--

Programming scripts
10.2 WinCC Unified object model

6422 System Manual, 11/2022

ControlBarButton.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBackColor

See also
ControlBarButton (Page 6421)

ControlBarButton.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBorderColor

See also
ControlBarButton (Page 6421)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6423

ControlBarButton.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the button of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarButton.Authorization

See also
ControlBarButton (Page 6421)

ControlBarButton.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BackColor

See also
ControlBarButton (Page 6421)

Programming scripts
10.2 WinCC Unified object model

6424 System Manual, 11/2022

ControlBarButton.Badge

Description
The "Badge" property specifies the label of the button.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarButton.Badge

See also
ControlBarButton (Page 6421)

ControlBarButton.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BorderColor

See also
ControlBarButton (Page 6421)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6425

ControlBarButton.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarButton.BorderWidth

See also
ControlBarButton (Page 6421)

ControlBarButton.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarButton.Content

See also
ControlBarButton (Page 6421)

Programming scripts
10.2 WinCC Unified object model

6426 System Manual, 11/2022

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarButton.Content (Page 6426)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6427

• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect
ratio is not changed.

• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarButton.Content (Page 6426)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarButton.Content (Page 6426)

Programming scripts
10.2 WinCC Unified object model

6428 System Manual, 11/2022

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarButton.Content (Page 6426)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarButton.Content (Page 6426)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6429

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarButton.Content (Page 6426)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

6430 System Manual, 11/2022

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarButton.Content (Page 6426)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarButton.Content (Page 6426)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6431

ControlBarButton.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarButton.CustomID

See also
ControlBarButton (Page 6421)

ControlBarButton.Enabled

Description
The "Enabled" property specifies whether the button can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Enabled

See also
ControlBarButton (Page 6421)

Programming scripts
10.2 WinCC Unified object model

6432 System Manual, 11/2022

ControlBarButton.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.ForeColor

See also
ControlBarButton (Page 6421)

ControlBarButton.Graphic

Description
The "Graphic" property specifies the graphic of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Graphic

See also
ControlBarButton (Page 6421)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6433

ControlBarButton.Height

Description
The "Height" property specifies the height of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Height

See also
ControlBarButton (Page 6421)

ControlBarButton.HotKey

Description
The "HotKey" property returns the hotkey specified for the button. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
ControlBarButton.HotKey

See also
ControlBarButton (Page 6421)

Programming scripts
10.2 WinCC Unified object model

6434 System Manual, 11/2022

ControlBarButton.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6435

• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

6436 System Manual, 11/2022

Syntax
ControlBarButton.Mapping

See also
ControlBarButton (Page 6421)

ControlBarButton.Margin

Description
The "Margin" property specifies the surrounded outer distance of the button.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarButton.Margin

See also
ControlBarButton (Page 6421)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6437

Syntax
Margin.Bottom

See also
ControlBarButton.Margin (Page 6437)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarButton.Margin (Page 6437)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6438 System Manual, 11/2022

Syntax
Margin.Right

See also
ControlBarButton.Margin (Page 6437)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarButton.Margin (Page 6437)

ControlBarButton.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6439

Syntax
ControlBarButton.MaximumHeight

See also
ControlBarButton (Page 6421)

ControlBarButton.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumWidth

See also
ControlBarButton (Page 6421)

ControlBarButton.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6440 System Manual, 11/2022

Syntax
ControlBarButton.MinimumHeight

See also
ControlBarButton (Page 6421)

ControlBarButton.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumWidth

See also
ControlBarButton (Page 6421)

ControlBarButton.Operability

Description
The "Operability" property returns whether the button is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6441

Access
Read-only

Syntax
ControlBarButton.Operability

See also
ControlBarButton (Page 6421)

ControlBarButton.Padding

Description
The "Padding" property specifies the distance of the content from the border of the button.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarButton.Padding

See also
ControlBarButton (Page 6421)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6442 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarButton.Padding (Page 6442)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarButton.Padding (Page 6442)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6443

Access
Read-write

Syntax
Padding.Right

See also
ControlBarButton.Padding (Page 6442)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarButton.Padding (Page 6442)

ControlBarButton.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the button can only be operated while the
associated button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

6444 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarButton.RequireExplicitUnlock

See also
ControlBarButton (Page 6421)

ControlBarButton.Text

Description
The "Text" property specifies the label of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Text

See also
ControlBarButton (Page 6421)

ControlBarButton.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the button.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6445

Access
Read-write

Syntax
ControlBarButton.ToolTipText

See also
ControlBarButton (Page 6421)

ControlBarButton.Visible

Description
The "Visible" property specifies whether the button is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Visible

See also
ControlBarButton (Page 6421)

ControlBarButton.Width

Description
The "Width" property specifies the width of the button in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

6446 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.Width

See also
ControlBarButton (Page 6421)

ControlBarDisplay

Description
The "ControlBarDisplay" object represents a display area for text and graphics of an information
bar or toolbar.
You can reference the "ControlBarDisplay" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarDisplayPart

Properties
The "ControlBarDisplay" object has the following properties:
• Authorization

Returns the operator authorization.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the display area is enabled in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• Mapping

Returns the function of the display area.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6447

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the display area is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the display area is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the display area is visible.

• Width
Specifies the width.

Methods
--

ControlBarDisplay.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the display.

Type
Object, HmiFunctionRight

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

6448 System Manual, 11/2022

Syntax
ControlBarDislay.Authorization

See also
ControlBarDisplay (Page 6447)

ControlBarButton.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarDislay.Content

See also
ControlBarDisplay (Page 6447)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6449

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarButton.Content (Page 6449)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarButton.Content (Page 6449)

Programming scripts
10.2 WinCC Unified object model

6450 System Manual, 11/2022

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarButton.Content (Page 6449)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6451

See also
ControlBarButton.Content (Page 6449)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarButton.Content (Page 6449)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Programming scripts
10.2 WinCC Unified object model

6452 System Manual, 11/2022

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarButton.Content (Page 6449)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarButton.Content (Page 6449)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6453

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarButton.Content (Page 6449)

ControlBarDisplay.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarDislay.CustomID

See also
ControlBarDisplay (Page 6447)

Programming scripts
10.2 WinCC Unified object model

6454 System Manual, 11/2022

ControlBarDisplay.Enabled

Description
The "Enabled" property specifies whether the display is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Enabled

See also
ControlBarDisplay (Page 6447)

ControlBarDisplay.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.ForeColor

See also
ControlBarDisplay (Page 6447)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6455

ControlBarDisplay.Graphic

Description
The "Graphic" property specifies the graphic of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Graphic

See also
ControlBarDisplay (Page 6447)

ControlBarDisplay.Height

Description
The "Height" property specifies the height of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Height

See also
ControlBarDisplay (Page 6447)

Programming scripts
10.2 WinCC Unified object model

6456 System Manual, 11/2022

ControlBarDisplay.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6457

• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

6458 System Manual, 11/2022

Syntax
ControlBarDislay.Mapping

See also
ControlBarDisplay (Page 6447)

ControlBarButton.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the display.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarDislay.Margin

See also
ControlBarDisplay (Page 6447)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6459

Syntax
Margin.Bottom

See also
ControlBarButton.Margin (Page 6459)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarButton.Margin (Page 6459)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6460 System Manual, 11/2022

Syntax
Margin.Right

See also
ControlBarButton.Margin (Page 6459)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarButton.Margin (Page 6459)

ControlBarDisplay.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6461

Syntax
ControlBarDislay.MaximumHeight

See also
ControlBarDisplay (Page 6447)

ControlBarDisplay.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MaximumWidth

See also
ControlBarDisplay (Page 6447)

ControlBarDisplay.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6462 System Manual, 11/2022

Syntax
ControlBarDislay.MinimumHeight

See also
ControlBarDisplay (Page 6447)

ControlBarDisplay.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MinimumWidth

See also
ControlBarDisplay (Page 6447)

ControlBarDisplay.Operability

Description
The "Operability" property returns whether the display is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6463

Access
Read-only

Syntax
ControlBarDislay.Operability

See also
ControlBarDisplay (Page 6447)

ControlBarButton.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the display.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarDislay.Padding

See also
ControlBarDisplay (Page 6447)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6464 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarButton.Padding (Page 6464)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarButton.Padding (Page 6464)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6465

Access
Read-write

Syntax
Padding.Right

See also
ControlBarButton.Padding (Page 6464)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarButton.Padding (Page 6464)

ControlBarDisplay.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the display can only be operated while the
associated button is being pressed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

6466 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarDislay.RequireExplicitUnlock

See also
ControlBarDisplay (Page 6447)

ControlBarDisplay.Text

Description
The "Text" property specifies the label of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Text

See also
ControlBarDisplay (Page 6447)

ControlBarDisplay.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the display.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6467

Access
Read-write

Syntax
ControlBarDislay.ToolTipText

See also
ControlBarDisplay (Page 6447)

ControlBarDisplay.Visible

Description
The "Visible" property specifies whether the display is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Visible

See also
ControlBarDisplay (Page 6447)

ControlBarDisplay.Width

Description
The "Width" property specifies the width of the display in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

6468 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.Width

See also
ControlBarDisplay (Page 6447)

ControlBarLabel

Description
The "ControlBarLabel" object represents an identifier of an information bar or toolbar.
You can reference the "ControlBarLabel" object via the "HmiControlBarElementCollection" list.

Object type
HmiControlBarLabelPart

Properties
The "ControlBarLabel" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the identifier can be operated in runtime.
• ForeColor

Specifies the font color.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Height

Specifies the height.
• Mapping

Returns the function of the identifier.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6469

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the identifier is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the identifier is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the identifier is visible.

• Width
Specifies the width.

Methods
--

ControlBarLabel.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the identifier.

Type
Object, HmiFunctionRight

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

6470 System Manual, 11/2022

Syntax
ControlBarLabel.Authorization

See also
ControlBarLabel (Page 6469)

ControlBarLabel.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarLabel.CustomID

See also
ControlBarLabel (Page 6469)

ControlBarLabel.Enabled

Description
The "Enabled" property specifies whether the identifier is active in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6471

Syntax
ControlBarLabel.Enabled

See also
ControlBarLabel (Page 6469)

ControlBarLabel.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.ForeColor

See also
ControlBarLabel (Page 6469)

ControlBarLabel.Height

Description
The "Height" property specifies the height of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6472 System Manual, 11/2022

Syntax
ControlBarLabel.Height

See also
ControlBarLabel (Page 6469)

ControlBarLabel.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.HorizontalTextAlignment

See also
ControlBarLabel (Page 6469)

ControlBarLabel.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6473

Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms

Programming scripts
10.2 WinCC Unified object model

6474 System Manual, 11/2022

• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarLabel.Mapping

See also
ControlBarLabel (Page 6469)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6475

ControlBarLabel.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the identifier.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarLabel.Margin

See also
ControlBarLabel (Page 6469)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarLabel.Margin (Page 6476)

Programming scripts
10.2 WinCC Unified object model

6476 System Manual, 11/2022

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarLabel.Margin (Page 6476)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarLabel.Margin (Page 6476)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6477

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarLabel.Margin (Page 6476)

ControlBarLabel.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumHeight

See also
ControlBarLabel (Page 6469)

Programming scripts
10.2 WinCC Unified object model

6478 System Manual, 11/2022

ControlBarLabel.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumWidth

See also
ControlBarLabel (Page 6469)

ControlBarLabel.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumHeight

See also
ControlBarLabel (Page 6469)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6479

ControlBarLabel.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumWidth

See also
ControlBarLabel (Page 6469)

ControlBarLabel.Operability

Description
The "Operability" property returns whether the identifier is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarLabel.Operability

Programming scripts
10.2 WinCC Unified object model

6480 System Manual, 11/2022

See also
ControlBarLabel (Page 6469)

ControlBarLabel.Padding

Description
The "Padding" property specifies the spacing of the content from the frame of the identifier.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarLabel.Padding

See also
ControlBarLabel (Page 6469)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6481

See also
ControlBarLabel.Padding (Page 6481)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarLabel.Padding (Page 6481)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

Programming scripts
10.2 WinCC Unified object model

6482 System Manual, 11/2022

See also
ControlBarLabel.Padding (Page 6481)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarLabel.Padding (Page 6481)

ControlBarLabel.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the identifier can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarLabel.RequireExplicitUnlock

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6483

See also
ControlBarLabel (Page 6469)

ControlBarLabel.Text

Description
The "Text" property specifies the label of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.Text

See also
ControlBarLabel (Page 6469)

ControlBarLabel.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.ToolTipText

Programming scripts
10.2 WinCC Unified object model

6484 System Manual, 11/2022

See also
ControlBarLabel (Page 6469)

ControlBarLabel.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.VerticalTextAlignment

See also
ControlBarLabel (Page 6469)

ControlBarLabel.Visible

Description
The "Visible" property specifies whether the identifier is visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6485

Syntax
ControlBarLabel.Visible

See also
ControlBarLabel (Page 6469)

ControlBarLabel.Width

Description
The "Width" property specifies the width of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Width

See also
ControlBarLabel (Page 6469)

ControlBarSeparator

Description
The "ControlBarSeparator" object represents a separator of an information bar or toolbar.
You can reference the "ControlBarSeparator" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarSeparatorPart

Programming scripts
10.2 WinCC Unified object model

6486 System Manual, 11/2022

Properties
The "ControlBarSeparator" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the disconnector can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• Mapping

Returns the function of the separator.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the separator is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the disconnector is only operable while the associated button is being
pressed.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the disconnector is visible.

• Width
Specifies the width.

Methods
--

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6487

ControlBarSeparator.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the separator.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarSeparator.Authorization

See also
ControlBarSeparator (Page 6486)

ControlBarSeparator.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarSeparator.CustomID

See also
ControlBarSeparator (Page 6486)

Programming scripts
10.2 WinCC Unified object model

6488 System Manual, 11/2022

ControlBarSeparator.Enabled

Description
The "Enabled" property specifies whether the separator is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Enabled

See also
ControlBarSeparator (Page 6486)

ControlBarSeparator.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.ForeColor

See also
ControlBarSeparator (Page 6486)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6489

ControlBarSeparator.Height

Description
The "Height" property specifies the height of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Height

See also
ControlBarSeparator (Page 6486)

ControlBarSeparator.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display

Programming scripts
10.2 WinCC Unified object model

6490 System Manual, 11/2022

• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6491

• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarSeparator.Mapping

See also
ControlBarSeparator (Page 6486)

ControlBarSeparator.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the separator.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6492 System Manual, 11/2022

Syntax
ControlBarSeparator.Margin

See also
ControlBarSeparator (Page 6486)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarSeparator.Margin (Page 6492)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6493

Syntax
Margin.Left

See also
ControlBarSeparator.Margin (Page 6492)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarSeparator.Margin (Page 6492)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6494 System Manual, 11/2022

Syntax
Margin.Top

See also
ControlBarSeparator.Margin (Page 6492)

ControlBarSeparator.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MaximumHeight

See also
ControlBarSeparator (Page 6486)

ControlBarSeparator.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6495

Syntax
ControlBarSeparator.MaximumWidth

See also
ControlBarSeparator (Page 6486)

ControlBarSeparator.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MinimumHeight

See also
ControlBarSeparator (Page 6486)

ControlBarSeparator.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6496 System Manual, 11/2022

Syntax
ControlBarSeparator.MinimumWidth

See also
ControlBarSeparator (Page 6486)

ControlBarSeparator.Operability

Description
The "Operability" property returns whether the separator is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarSeparator.Operability

See also
ControlBarSeparator (Page 6486)

ControlBarSeparator.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the separator.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6497

Access
Read-write

Syntax
ControlBarSeparator.Padding

See also
ControlBarSeparator (Page 6486)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarSeparator.Padding (Page 6497)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6498 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Left

See also
ControlBarSeparator.Padding (Page 6497)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarSeparator.Padding (Page 6497)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6499

Access
Read-write

Syntax
Padding.Top

See also
ControlBarSeparator.Padding (Page 6497)

ControlBarSeparator.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the disconnector can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarSeparator.RequireExplicitUnlock

See also
ControlBarSeparator (Page 6486)

ControlBarSeparator.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the separator.

Type
String

Programming scripts
10.2 WinCC Unified object model

6500 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarSeparator.ToolTipText

See also
ControlBarSeparator (Page 6486)

ControlBarSeparator.Visible

Description
The "Visible" property specifies whether the separator is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Visible

See also
ControlBarSeparator (Page 6486)

ControlBarSeparator.Width

Description
The "Width" property specifies the width of the separator in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6501

Access
Read-write

Syntax
ControlBarSeparator.Width

See also
ControlBarSeparator (Page 6486)

ControlBarTextBox

Description
The "ControlBarTextBox" object represents a text box of an information bar or toolbar.
You can reference the "ControlBarTextBox" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarTextBoxPart

Properties
The "ControlBarTextBox" object has the following properties:
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the text box can be operated in runtime.
• ForeColor

Specifies the font color.

Programming scripts
10.2 WinCC Unified object model

6502 System Manual, 11/2022

• Height
Specifies the height.

• HorizontalTextAlignment
Specifies the horizontal alignment of the text.

• Mapping
Returns the function of the text box.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the text box is operable.

• Padding
Specifies the distance of the content from the border.

• Readonly
Specifies whether the text box is write-protected.

• RequireExplicitUnlock
Returns whether the text box is only operable while the associated button is being pressed.

• Text
Specifies the labeling.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the text box is visible.

• Width
Specifies the width.

Methods
--

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6503

ControlBarTextBox.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.AlternateBorderColor

See also
ControlBarTextBox (Page 6502)

ControlBarTextBox.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the text box of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarTextBox.Authorization

See also
ControlBarTextBox (Page 6502)

Programming scripts
10.2 WinCC Unified object model

6504 System Manual, 11/2022

ControlBarTextBox.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BackColor

See also
ControlBarTextBox (Page 6502)

ControlBarTextBox.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BorderColor

See also
ControlBarTextBox (Page 6502)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6505

ControlBarTextBox.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarTextBox.BorderWidth

See also
ControlBarTextBox (Page 6502)

ControlBarTextBox.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarTextBox.CustomID

See also
ControlBarTextBox (Page 6502)

Programming scripts
10.2 WinCC Unified object model

6506 System Manual, 11/2022

ControlBarTextBox.Enabled

Description
The "Enabled" property specifies whether the text box can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Enabled

See also
ControlBarTextBox (Page 6502)

ControlBarTextBox.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.ForeColor

See also
ControlBarTextBox (Page 6502)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6507

ControlBarTextBox.Height

Description
The "Height" property specifies the height of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Height

See also
ControlBarTextBox (Page 6502)

ControlBarTextBox.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.HorizontalTextAlignment

Programming scripts
10.2 WinCC Unified object model

6508 System Manual, 11/2022

See also
ControlBarTextBox (Page 6502)

ControlBarTextBox.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6509

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

6510 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarTextBox.Mapping

See also
ControlBarTextBox (Page 6502)

ControlBarTextBox.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the text box.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarTextBox.Margin

See also
ControlBarTextBox (Page 6502)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6511

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarTextBox.Margin (Page 6511)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarTextBox.Margin (Page 6511)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6512 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Right

See also
ControlBarTextBox.Margin (Page 6511)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarTextBox.Margin (Page 6511)

ControlBarTextBox.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6513

Access
Read-write

Syntax
ControlBarTextBox.MaximumHeight

See also
ControlBarTextBox (Page 6502)

ControlBarTextBox.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumWidth

See also
ControlBarTextBox (Page 6502)

ControlBarTextBox.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

6514 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarTextBox.MinimumHeight

See also
ControlBarTextBox (Page 6502)

ControlBarTextBox.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumWidth

See also
ControlBarTextBox (Page 6502)

ControlBarTextBox.Operability

Description
The "Operability" property returns whether the text box is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6515

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarTextBox.Operability

See also
ControlBarTextBox (Page 6502)

ControlBarTextBox.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the text box.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarTextBox.Padding

See also
ControlBarTextBox (Page 6502)

Programming scripts
10.2 WinCC Unified object model

6516 System Manual, 11/2022

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarTextBox.Padding (Page 6516)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarTextBox.Padding (Page 6516)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6517

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarTextBox.Padding (Page 6516)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarTextBox.Padding (Page 6516)

Programming scripts
10.2 WinCC Unified object model

6518 System Manual, 11/2022

ControlBarTextBox.ReadOnly

Description
The "ReadOnly" property specifies whether the text box is read-only.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.ReadOnly

See also
ControlBarTextBox (Page 6502)

ControlBarTextBox.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the text box can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarTextBox.RequireExplicitUnlock

See also
ControlBarTextBox (Page 6502)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6519

ControlBarTextBox.Text

Description
The "Text" property specifies the label of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.Text

See also
ControlBarTextBox (Page 6502)

ControlBarTextBox.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.ToolTipText

See also
ControlBarTextBox (Page 6502)

Programming scripts
10.2 WinCC Unified object model

6520 System Manual, 11/2022

ControlBarTextBox.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.VerticalTextAlignment

See also
ControlBarTextBox (Page 6502)

ControlBarTextBox.Visible

Description
The "Visible" property specifies whether the text box is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Visible

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6521

See also
ControlBarTextBox (Page 6502)

ControlBarTextBox.Width

Description
The "Width" property specifies the width of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.Width

See also
ControlBarTextBox (Page 6502)

ControlBarToggleSwitch

Description
The "ControlBarToggleSwitch" object represents a switch of an information bar or toolbar.
You can reference the "ControlBarToggleSwitch" object via the
"HmiControlBarElementCollection" list.

Object type
HmiControlBarToggleSwitchPart

Properties
The "ControlBarToggleSwitch" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".

Programming scripts
10.2 WinCC Unified object model

6522 System Manual, 11/2022

• AlternateGraphic
Specifies the graphic for the "pressed" state.

• AlternateText
Specifies the text for the "pressed" state.

• Authorization
Returns the operator authorization.

• BackColor
Specifies the background color.

• Badge
Specifies the identifier of the switch.

• BorderColor
Specifies the line color.

• BorderWidth
Specifies the line thickness.

• Content
Specifies display options for text and graphics.

• CustomID
Returns the custom ID.

• Enabled
Specifies whether the switch can be operated in runtime.

• ForeColor
Specifies the font color.

• Graphic
Specifies the graphic.

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the switch.

• IsAlternateState
Specifies the current state of the switch.

• Mapping
Returns the function of the switch.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6523

• Operability
Returns whether the switch is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the switch is only operable while the associated button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the switch is visible.

• Width
Specifies the width.

Methods
--

ControlBarToggleSwitch.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBackColor

See also
ControlBarToggleSwitch (Page 6522)

Programming scripts
10.2 WinCC Unified object model

6524 System Manual, 11/2022

ControlBarToggleSwitch.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBorderColor

See also
ControlBarToggleSwitch (Page 6522)

ControlBarToggleSwitch.AlternateGraphic

Description
The "AlternateGraphic" property specifies the graphic of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateGraphic

See also
ControlBarToggleSwitch (Page 6522)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6525

ControlBarToggleSwitch.AlternateText

Description
The "AlternateText" property specifies the text of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateText

See also
ControlBarToggleSwitch (Page 6522)

ControlBarToggleSwitch.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the switch of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarToggleSwitch.Authorization

See also
ControlBarToggleSwitch (Page 6522)

Programming scripts
10.2 WinCC Unified object model

6526 System Manual, 11/2022

ControlBarToggleSwitch.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BackColor

See also
ControlBarToggleSwitch (Page 6522)

ControlBarToggleSwitch.Badge

Description
The "Badge" property specifies the identifier of the switch.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarToggleSwitch.Badge

See also
ControlBarToggleSwitch (Page 6522)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6527

ControlBarToggleSwitch.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderColor

See also
ControlBarToggleSwitch (Page 6522)

ControlBarToggleSwitch.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderWidth

See also
ControlBarToggleSwitch (Page 6522)

Programming scripts
10.2 WinCC Unified object model

6528 System Manual, 11/2022

ControlBarToggleSwitch.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Content

See also
ControlBarToggleSwitch (Page 6522)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6529

See also
ControlBarToggleSwitch.Content (Page 6529)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarToggleSwitch.Content (Page 6529)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

6530 System Manual, 11/2022

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 6529)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarToggleSwitch.Content (Page 6529)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6531

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarToggleSwitch.Content (Page 6529)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6532 System Manual, 11/2022

Syntax
Content.TextPosition

See also
ControlBarToggleSwitch.Content (Page 6529)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarToggleSwitch.Content (Page 6529)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6533

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 6529)

ControlBarToggleSwitch.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarToggleSwitch.CustomID

See also
ControlBarToggleSwitch (Page 6522)

Programming scripts
10.2 WinCC Unified object model

6534 System Manual, 11/2022

ControlBarToggleSwitch.Enabled

Description
The "Enabled" property specifies whether the switch can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Enabled

See also
ControlBarToggleSwitch (Page 6522)

ControlBarToggleSwitch.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.ForeColor

See also
ControlBarToggleSwitch (Page 6522)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6535

ControlBarToggleSwitch.Graphic

Description
The "Graphic" property specifies the graphic of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Graphic

See also
ControlBarToggleSwitch (Page 6522)

ControlBarToggleSwitch.Height

Description
The "Height" property specifies the height of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Height

See also
ControlBarToggleSwitch (Page 6522)

Programming scripts
10.2 WinCC Unified object model

6536 System Manual, 11/2022

ControlBarToggleSwitch.HotKey

Description
The "HotKey" property returns the hotkey specified for the switch. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
Button.HotKey

See also
ControlBarToggleSwitch (Page 6522)

ControlBarToggleSwitch.IsAlternateState

Description
The "IsAlternateState" property specifies the current state of the switch.
• True: Switch is in "On" state.
• False: Switch is in "Off" state.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.IsAlternateState

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6537

See also
ControlBarToggleSwitch (Page 6522)

ControlBarToggleSwitch.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

6538 System Manual, 11/2022

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6539

Access
Read-only

Syntax
ControlBarToggleSwitch.Mapping

See also
ControlBarToggleSwitch (Page 6522)

ControlBarToggleSwitch.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the switch.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Margin

See also
ControlBarToggleSwitch (Page 6522)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6540 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarToggleSwitch.Margin (Page 6540)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarToggleSwitch.Margin (Page 6540)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6541

Access
Read-write

Syntax
Margin.Right

See also
ControlBarToggleSwitch.Margin (Page 6540)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarToggleSwitch.Margin (Page 6540)

ControlBarToggleSwitch.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

6542 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumHeight

See also
ControlBarToggleSwitch (Page 6522)

ControlBarToggleSwitch.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumWidth

See also
ControlBarToggleSwitch (Page 6522)

ControlBarToggleSwitch.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6543

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumHeight

See also
ControlBarToggleSwitch (Page 6522)

ControlBarToggleSwitch.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumWidth

See also
ControlBarToggleSwitch (Page 6522)

ControlBarToggleSwitch.Operability

Description
The property "Operability" returns whether the switch is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

6544 System Manual, 11/2022

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarToggleSwitch.Operability

See also
ControlBarToggleSwitch (Page 6522)

ControlBarToggleSwitch.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the switch.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Padding

See also
ControlBarToggleSwitch (Page 6522)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6545

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarToggleSwitch.Padding (Page 6545)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarToggleSwitch.Padding (Page 6545)

Programming scripts
10.2 WinCC Unified object model

6546 System Manual, 11/2022

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarToggleSwitch.Padding (Page 6545)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarToggleSwitch.Padding (Page 6545)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6547

ControlBarToggleSwitch.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the switch can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarToggleSwitch.RequireExplicitUnlock

See also
ControlBarToggleSwitch (Page 6522)

ControlBarToggleSwitch.Text

Description
The "Text" property specifies the label of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Text

See also
ControlBarToggleSwitch (Page 6522)

Programming scripts
10.2 WinCC Unified object model

6548 System Manual, 11/2022

ControlBarToggleSwitch.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.ToolTipText

See also
ControlBarToggleSwitch (Page 6522)

ControlBarToggleSwitch.Visible

Description
The "Visible" property specifies whether the switch is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Visible

See also
ControlBarToggleSwitch (Page 6522)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6549

ControlBarToggleSwitch.Width

Description
The "Width" property specifies the width of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Width

See also
ControlBarToggleSwitch (Page 6522)

ToolBar.Enabled

Description
The "Enabled" property specifies whether the toolbar can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ToolBar.Enabled

See also
TrendControl.ToolBar (Page 6417)

Programming scripts
10.2 WinCC Unified object model

6550 System Manual, 11/2022

ToolBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ToolBar.Font

See also
TrendControl.ToolBar (Page 6417)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
ToolBar.Font (Page 6551)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6551

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
ToolBar.Font (Page 6551)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
ToolBar.Font (Page 6551)

Programming scripts
10.2 WinCC Unified object model

6552 System Manual, 11/2022

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ToolBar.Font (Page 6551)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6553

See also
ToolBar.Font (Page 6551)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
ToolBar.Font (Page 6551)

ToolBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the toolbar.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

6554 System Manual, 11/2022

Access
Read-write

Syntax
ToolBar.Margin

See also
TrendControl.ToolBar (Page 6417)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ToolBar.Margin (Page 6554)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6555

Access
Read-write

Syntax
Margin.Left

See also
ToolBar.Margin (Page 6554)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ToolBar.Margin (Page 6554)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6556 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Top

See also
ToolBar.Margin (Page 6554)

ToolBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the toolbar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ToolBar.Padding

See also
TrendControl.ToolBar (Page 6417)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6557

Access
Read-write

Syntax
Padding.Bottom

See also
ToolBar.Padding (Page 6557)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ToolBar.Padding (Page 6557)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6558 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Right

See also
ToolBar.Padding (Page 6557)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ToolBar.Padding (Page 6557)

ToolBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6559

Access
Read-write

Syntax
ToolBar.ShowToolTips

See also
TrendControl.ToolBar (Page 6417)

ToolBar.UseHotKeys

Description
The "UseHotKeys" property specifies whether the shortcut keys for the buttons in the toolbar are
activated.

Type
Bool

Access
Read-write

Syntax
ToolBar.UseHotKeys

See also
TrendControl.ToolBar (Page 6417)

ToolBar.Visible

Description
The "Visible" property specifies whether the toolbar is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

6560 System Manual, 11/2022

Access
Read-write

Syntax
ToolBar.Visible

See also
TrendControl.ToolBar (Page 6417)

TrendControl.Top

Description
The "Top" property sets the value of the Y coordinate in DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
TrendControl.Top

See also
TrendControl (Page 6374)

TrendControl.TrendAreas

Description
The "TrendAreas" property returns the trend areas ("TrendArea" objects) of the trend control.

Type
Object, HmiTrendAreaCollection (Page 6562)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6561

Access
Read-only

Syntax
TrendControl.TrendAreas

See also
TrendControl (Page 6374)
HmiTrendAreaCollection (Page 6562)

HmiTrendAreaCollection

Description
The "HmiTrendAreaCollection" object is a list of all trend areas ("TrendArea" objects) of the trend
view.

Use
The "HmiTrendAreaCollection" object is a list and can be counted and enumerated. You can
access the "HmiTrendAreaCollection" list using the index or the tag name.

Object type
HmiTrendAreaCollection

Properties
The "HmiTrendAreaCollection" object has the following properties:
• Count

Returns the number of trend areas of the "HmiTrendAreaCollection" list.

Methods
The "HmiTrendAreaCollection" object has the following methods:
• Item()

Returns a trend area of the "HmiTrendAreaCollection" list.

See also
TrendControl.TrendAreas (Page 6561)

Programming scripts
10.2 WinCC Unified object model

6562 System Manual, 11/2022

HmiTrendAreaCollection.Count

Description
The "Count" property returns the number of trend areas in the "HmiTrendAreaCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiTrendAreaCollection.Count

See also
HmiTrendAreaCollection (Page 6562)

HmiTrendAreaCollection.Item()

Description
The "Item" method returns a trend area of the "HmiTrendAreaCollection" list.

Syntax
HmiTrendAreaCollection[.Item](HmiTrendAreaName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiTrendAreaCollection" object.

Parameters
HmiTrendAreaName
Type: String
Name of the trend area

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6563

Return value
Object, HmiTrendAreaPart (Page 6564)

See also
HmiTrendAreaCollection (Page 6562)
TrendArea (Page 6564)

TrendArea

Description
The "TrendArea" object represents a trend view of the trend display.

Object type
HmiTrendAreaPart

Properties
The "TrendArea" object has the following properties:
• BackColor

Specifies the background color.
• BottomTimeAxes

Returns the lower time axes of the trend area.
• GridLines

Specifies the grid lines of the trend area.
• LeftValueAxes

Returns the left value axes of the trend area.
• MajorGridLinesColor

Specifies the color of the main grid lines.
• MinorGridLinesColor

Specifies the color of the auxiliary grid lines.
• Name

Returns the name of the trend area.
• RightValueAxes

Returns the right value axes of the trend area.
• Ruler

Specifies the appearance of the ruler to determine the trend value.
• SelectedTrend

Specifies the selected trend of the trend area.
• SizeFactor

Specifies the scaling factor of the trend area relative to its height.

Programming scripts
10.2 WinCC Unified object model

6564 System Manual, 11/2022

• StatisticRulers
Specifies the two rulers for specifying the statistics area.

• TopTimeAxes
Returns the upper time axes of the trend area.

• Trends
Returns the trends of the trend area.

• Visible
Specifies whether the trend area is visible.

Methods
--

TrendArea.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
TrendArea.BackColor

See also
TrendArea (Page 6564)

TrendArea.BottomTimeAxes

Description
The "BottomTimeAxes" property returns the lower time axes of the trend area.

Type
Object, HmiTimeAxisCollection (Page 6566)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6565

Access
Read-only

Syntax
TrendArea.BottomTimeAxes

See also
TrendArea (Page 6564)
HmiTimeAxisCollection (Page 6566)

HmiTimeAxisCollection

Description
The "HmiTimeAxisCollection" object is a list of all time axes ("TimeAxis" objects) of the trend area.

Use
The "HmiTimeAxisCollection" object is a list and can be counted and enumerated. You can access
the "HmiTimeAxisCollection" list using the index or the tag name.

Object type
HmiTimeAxisCollection

Properties
The "HmiTimeAxisCollection" object has the following properties:
• Count

Returns the number of time axes of the "HmiTimeAxisCollection" list.

Methods
The "HmiTimeAxisCollection" object has the following methods:
• Item()

Returns a time axis of the "HmiTimeAxisCollection" list.

See also
TrendArea.BottomTimeAxes (Page 6565)

Programming scripts
10.2 WinCC Unified object model

6566 System Manual, 11/2022

HmiTimeAxisCollection.Count

Description
The "Count" property returns the number of time axes in the "HmiTimeAxisCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiTimeAxisCollection.Count

See also
HmiTimeAxisCollection (Page 6566)

HmiTimeAxisCollection.Item()

Description
The "Item" method returns a time axis of the "HmiTimeAxisCollection" list.

Syntax
HmiTimeAxisCollection[.Item](HmiTimeAxisName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiTimeAxisCollection" object.

Parameters
HmiTimeAxisName
Type: String
Name of the time axis

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6567

Return value
Object, HmiTimeAxisPart (Page 6568)

See also
HmiTimeAxisCollection (Page 6566)
TimeAxis (Page 6568)

TimeAxis

Description
The "TimeAxis" object represents a time axis of the trend area.

Object type
HmiTimeAxisPart

Properties
The "TimeAxis" object has the following properties:
• AlwaysShowRecent

Specifies whether the area with the youngest value is always displayed.
• AutoScaling

Specifies whether the automatic scaling is activated.
• AxisColor

Specifies the color of the time axis.
• BeginTime

Specifies the date and time for the start time of the time range.
• DisplayName

Specifies the display name of the time axis.
• EndTime

Specifies the date and time for the end time of the time range.
• LabelColor

Specifies the color of the axis labeling.
• LabelFont

Specifies the font of the axis labeling.
• OutputFormat

Specifies the format for displaying the time axis values.
• PointCount

Specifies the number of measurement points from the start time.
• RangeType

Specifies the type of time range.

Programming scripts
10.2 WinCC Unified object model

6568 System Manual, 11/2022

• ScaleMode
Specifies the type of scaling.

• TickColor
Specifies the color of the tick marks.

• TimeRangeBase
Specifies the basis of the time range.

• TimeRangeFactor
Specifies the factor of the time base for defining the time range.

• Visible
Specifies whether the time axis is visible.

Methods
--

TimeAxis.AlwaysShowRecent

Description
The "AlwaysShowRecent" property specifies whether the area with the most recent value is
always displayed.

Type
Bool

Access
Read-write

Syntax
TimeAxis.AlwaysShowRecent

See also
TimeAxis (Page 6568)

TimeAxis.AutoScaling

Description
The "AutoScaling" property specifies whether automatic scaling is activated.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6569

Type
Bool

Access
Read-write

Syntax
TimeAxis.AutoScaling

See also
TimeAxis (Page 6568)

TimeAxis.AxisColor

Description
The "AxisColor" property specifies the color of the time axis.

Type
UInt32

Access
Read-write

Syntax
TimeAxis.BackColor

See also
TimeAxis (Page 6568)

TimeAxis.BeginTime

Description
The "BeginTime" property specifies the date and time for the start time of the time range.

Type
DateTime

Programming scripts
10.2 WinCC Unified object model

6570 System Manual, 11/2022

Access
Read-write

Syntax
TimeAxis.BeginValue

See also
TimeAxis (Page 6568)

TimeAxis.DisplayName

Description
The "DisplayName" property specifies the display name of the time axis.

Type
String

Access
Read-write

Syntax
TimeAxis.DisplayName

See also
TimeAxis (Page 6568)

TimeAxis.EndTime

Description
The "EndTime" property specifies the date and time for the end time of the time range.

Type
DateTime

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6571

Syntax
TimeAxis.EndValue

See also
TimeAxis (Page 6568)

TimeAxis.LabelColor

Description
The "LabelColor" property specifies the color of the axis labeling.

Type
UInt32

Access
Read-write

Syntax
TimeAxis.LabelColor

See also
TimeAxis (Page 6568)

TimeAxis.LabelFont

Description
The "LabelFont" property specifies the font of the axis labeling.

Type
Object, HmiFontPart

Access
Read-write

Syntax
TimeAxis.LabelFont

Programming scripts
10.2 WinCC Unified object model

6572 System Manual, 11/2022

See also
TimeAxis (Page 6568)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
TimeAxis.LabelFont (Page 6572)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6573

See also
TimeAxis.LabelFont (Page 6572)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
TimeAxis.LabelFont (Page 6572)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6574 System Manual, 11/2022

Syntax
Font.StrikeOut

See also
TimeAxis.LabelFont (Page 6572)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
TimeAxis.LabelFont (Page 6572)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6575

• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
TimeAxis.LabelFont (Page 6572)

TimeAxis.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying the axis values, e.g. "{0000}" for
a 4-digit integer with leading zeros.

Type
String

Access
Read-write

Syntax
TimeAxis.OutputFormat

See also
TimeAxis (Page 6568)

TimeAxis.PointCount

Description
The "PointCount" property specifies the number of measurement points from the start time.

Programming scripts
10.2 WinCC Unified object model

6576 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
TimeAxis.PointCount

See also
TimeAxis (Page 6568)

TimeAxis.RangeType

Description
The "RangeType" property specifies the type of time range.

Type
Int32, HmiTimeRangeType
Specifies the time range:
• TimeRange (0): Any time range
• FromBeginToEnd (1): Total time range
• PointCount (2): Number of measurement points

Access
Read-write

Syntax
TimeAxis.RangeType

See also
TimeAxis (Page 6568)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6577

TimeAxis.ScaleMode

Description
The "ScaleMode" property specifies the type of scaling.

Type
Int32, HmiScaleMode
Specifies the scaling:
• None (0): None
• Labels (1): Labels
• Ticks (2): Tick marks

Access
Read-write

Syntax
TimeAxis.ScaleMode

See also
TimeAxis (Page 6568)

TimeAxis.TickColor

Description
The "TickColor" property specifies the color of the tick marks.

Type
UInt32

Access
Read-write

Syntax
TimeAxis.TickColor

Programming scripts
10.2 WinCC Unified object model

6578 System Manual, 11/2022

See also
TimeAxis (Page 6568)

TimeAxis.TimeRangeBase

Description
The "TimeRangeBase" property specifies the base of the time range.

Type
Int32, HmiTimeRangeBase
Specifies a time range:
• Undefined (0): Not defined
• Millisecond (1): Millisecond
• Second (2): Second
• Minute (3): Minute
• Hour (4): Hour
• Day (5): Day
• Month (6): Month
• Year (7): Year

Access
Read-write

Syntax
TimeAxis.TimeRangeBase

See also
TimeAxis (Page 6568)

TimeAxis.TimeRangeFactor

Description
The "TimeRangeFactor" property specifies the factor of the time base for defining the time range.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6579

Type
Int32

Access
Read-write

Syntax
TimeAxis.TimeRangeFactor

See also
TimeAxis (Page 6568)

TimeAxis.Visible

Description
The "Visible" property specifies whether the time axis is visible.

Type
Bool

Access
Read-write

Syntax
TimeAxis.Visible

See also
TimeAxis (Page 6568)

TrendArea.GridLines

Description
The "GridLines" property specifies the grid lines of the trend area.

Programming scripts
10.2 WinCC Unified object model

6580 System Manual, 11/2022

Type
Int32, HmiGridLine
Specifies the display of the grid lines:
• None (0): None
• VerticalMajor (1): Vertical, coarse
• HorizontalMajor (2): Horizontal, coarse
• VerticalMinor (4): Vertical, fine
• HorizontalMinor (8): Horizontal, fine

Access
Read-write

Syntax
TrendArea.GridLines

See also
TrendArea (Page 6564)

TrendArea.LeftValueAxes

Description
The "LeftValueAxes" property returns the left value axes of the trend area.

Type
Object, HmiYValueAxisCollection (Page 6582)

Access
Read-only

Syntax
TrendArea.LeftValueAxes

See also
TrendArea (Page 6564)
HmiYValueAxisCollection (Page 6582)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6581

HmiYValueAxisCollection

Description
The "HmiYValueAxisCollection" object is a list of all value axes ("YValueAxis" objects) of the trend
area.

Use
The "HmiYValueAxisCollection" object is a list and can be counted and enumerated. You can
access the "HmiYValueAxisCollection" list using the index or the tag name.

Object type
HmiYValueAxisCollection

Properties
The "HmiYValueAxisCollection" object has the following properties:
• Count

Returns the number of value axes in the "HmiYValueAxisCollection" list.

Methods
The "HmiYValueAxisCollection" object has the following methods:
• Item()

Returns a value axis of the "HmiYValueAxisCollection" list.

See also
TrendArea.LeftValueAxes (Page 6581)

HmiYValueAxisCollection.Count

Description
The "Count" property returns the number of value axes in the "HmiYValueAxisCollection" list.

Type
UInt32

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

6582 System Manual, 11/2022

Syntax
HmiYValueAxisCollection.Count

See also
HmiYValueAxisCollection (Page 6582)

HmiYValueAxisCollection.Item()

Description
The "Item" method returns a value axis of the "HmiYValueAxisCollection" list.

Syntax
HmiYValueAxisCollection[.Item](HmiYValueAxisName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiYValueAxisCollection" object.

Parameters
HmiYValueAxisName
Type: String
Name of the value axis

Return value
Object, HmiYValueAxisPart (Page 6583)

See also
HmiYValueAxisCollection (Page 6582)
YValueAxis (Page 6583)

YValueAxis

Description
The "YValueAxis" object represents a value axis of the trend area.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6583

Object type
HmiYValueAxisPart

Properties
The "YValueAxis" object has the following properties:
• ApplyScalingEntries

Specifies whether the user scaling of the axis section is applied.
• AutoRange

Specifies whether automatic determination of the value range is activated by the minimum
and maximum value of the trend.

• AutoScaling
Specifies whether the automatic scaling is activated.

• AxisColor
Specifies the color of the value axis.

• BeginValue
Specifies the start of a value range or value range section.

• DisplayName
Specifies the display name of the value axis.

• DivisionCount
Specifies the number of main units with subdivisions.

• EndValue
Specifies the end of a value range or value range section.

• HelpLines
Returns the appearance of the help lines.

• LabelColor
Specifies the color of the axis labeling.

• LabelFont
Specifies the font of the axis labeling.

• LargeTickLabelingStep
Specifies the interval at which scale sections are labeled.

• MeasurementUnit
Returns the displayed unit.

• MeasurementUnitType
Specifies the display format of the unit.

• OutputFormat
Specifies the format for displaying the axis values.

• ScalingEntries
Returns the specification of the user scaling of the axis sections.

• ScaleMode
Specifies the scale mode:

Programming scripts
10.2 WinCC Unified object model

6584 System Manual, 11/2022

• ScalingType
Specifies the scaling.

• ShowScalingDisplayNames
Specifies whether the display names of the user scaling are used.

• SubDivisionCount
Specifies the number of divisions of the main units.

• TickColor
Specifies the color of the tick marks.

• Visible
Specifies whether the value axis is visible.

Methods
--

YValueAxis.ApplyScalingEntries

Description
The "ApplyScalingEntries" property specifies whether the user scaling of the axis sections is
applied.

Type
Bool

Access
Read-write

Syntax
YValueAxis.ApplyScalingEntries

See also
YValueAxis (Page 6583)

YValueAxis.AutoRange

Description
The "AutoRange" property specifies whether automatic determination of the value range is
activated by the minimum and maximum value of the trend.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6585

Type
Bool

Access
Read-write

Syntax
YValueAxis.AutoRange

See also
YValueAxis (Page 6583)

YValueAxis.AutoScaling

Description
The "AutoScaling" property specifies whether automatic scaling is activated.

Type
Bool

Access
Read-write

Syntax
YValueAxis.AutoScaling

See also
YValueAxis (Page 6583)

YValueAxis.AxisColor

Description
The "AxisColor" property specifies the color of the value axis.

Programming scripts
10.2 WinCC Unified object model

6586 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
YValueAxis.BackColor

See also
YValueAxis (Page 6583)

YValueAxis.BeginValue

Description
The "BeginValue" property specifies the start of a value range or value range section.

Type
Float

Access
Read-write

Syntax
YValueAxis.BeginValue

See also
YValueAxis (Page 6583)

YValueAxis.DisplayName

Description
The "DisplayName" property specifies the display name of the value axis.

Type
String

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6587

Access
Read-write

Syntax
YValueAxis.DisplayName

See also
YValueAxis (Page 6583)

YValueAxis.DivisionCount

Description
The "DivisionCount" property specifies the number of main units with subdivisions. To this
purpose the automatic scaling must be switched off.

Type
Int32

Access
Read-write

Syntax
YValueAxis.DivisionCount

See also
YValueAxis (Page 6583)

YValueAxis.EndValue

Description
The "EndValue" property specifies the end of a value range or value range section.

Type
Float

Programming scripts
10.2 WinCC Unified object model

6588 System Manual, 11/2022

Access
Read-write

Syntax
YValueAxis.EndValue

See also
YValueAxis (Page 6583)

YValueAxis.HelpLines

Description
The "HelpLines" property returns the appearance of the help lines.

Type
Object, HmiHelpLineCollection (Page 6589)

Access
Read-only

Syntax
YValueAxis.HelpLines

See also
YValueAxis (Page 6583)
HmiHelpLineCollection (Page 6589)

HmiHelpLineCollection

Description
The "HmiHelpLineCollection" object is a list of all help lines ("HelpLine" objects).

Use
The "HmiHelpLineCollection" object is a list and can be counted and enumerated. You can access
the "HmiHelpLineCollection" list using the index or the tag name.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6589

Object type
HmiHelpLineCollection

Properties
The "HmiHelpLineCollection" object has the following properties:
• Count

Returns the number of help lines of the "HmiHelpLineCollection" list.

Methods
The "HmiHelpLineCollection" object has the following methods:
• Item()

Returns a help line of the "HmiHelpLineCollection" list.

See also
YValueAxis.HelpLines (Page 6589)

HmiHelpLineCollection.Count

Description
The "Count" property returns the number of help lines in the "HmiHelpLineCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiHelpLineCollection.Count

See also
HmiHelpLineCollection (Page 6589)

Programming scripts
10.2 WinCC Unified object model

6590 System Manual, 11/2022

HmiHelpLineCollection.Item()

Description
The "Item" method returns help line of the "HmiHelpLineCollection" list.

Syntax
HmiHelpLineCollection[.Item](HmiHelpLineName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiHelpLineCollection" object.

Parameters
HmiHelpLineName
Type: String
Name of the help line

Return value
Object, HmiHelpLinePart (Page 6591)

See also
HmiHelpLineCollection (Page 6589)
HelpLine (Page 6591)

HelpLine

Description
The "HelpLine" object represents a help line of the value axis.

Object type
HmiHelpLinePart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6591

Properties
The "HelpLine" object has the following properties:
• Value

Specifies the value of the help line.
• Visible

Specifies whether the help line is visible.

Methods
--

HelpLine.Value

Description
The "Value" property sets the value of the help line.

Type
Float

Access
Read-write

Syntax
HelpLine.Value

See also
HelpLine (Page 6591)

HelpLine.Visible

Description
The "Visible" property specifies whether the help line is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

6592 System Manual, 11/2022

Access
Read-write

Syntax
HelpLine.Visible

See also
HelpLine (Page 6591)

YValueAxis.LabelColor

Description
The "LabelColor" property specifies the color of the axis labeling.

Type
UInt32

Access
Read-write

Syntax
YValueAxis.LabelColor

See also
YValueAxis (Page 6583)

YValueAxis.LabelFont

Description
The "LabelFont" property specifies the font of the axis labeling.

Type
Object, HmiFontPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6593

Syntax
YValueAxis.LabelFont

See also
YValueAxis (Page 6583)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
YValueAxis.LabelFont (Page 6593)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6594 System Manual, 11/2022

Syntax
Font.Name

See also
YValueAxis.LabelFont (Page 6593)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
YValueAxis.LabelFont (Page 6593)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6595

Access
Read-write

Syntax
Font.StrikeOut

See also
YValueAxis.LabelFont (Page 6593)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
YValueAxis.LabelFont (Page 6593)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight

Programming scripts
10.2 WinCC Unified object model

6596 System Manual, 11/2022

Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
YValueAxis.LabelFont (Page 6593)

YValueAxis.LargeTickLabelingStep

Description
The "LargeTickLabelingStep" property specifies the interval at which scale sections are labeled.

Type
UInt8

Access
Read-write

Syntax
YValueAxis.LargeTickLabelingStep

See also
YValueAxis (Page 6583)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6597

YValueAxis.MeasurementUnit

Description
The "MeasurementUnit" property returns the displayed unit.

Type
String

Access
Read-only

Syntax
YValueAxis.MeasurementUnit

See also
YValueAxis (Page 6583)

YValueAxis.MeasurementUnitType

Description
The "MeasurementUnitType" property specifies the display format of the unit.

Type
Int32, HmiMeasurementUnit
Specifies the display format:
• None (0): No unit
• Name (1): Unit name, for example "kilogram"
• Symbol (2): Unit, for example "kg"

Access
Read-write

Syntax
YValueAxis.MeasurementUnitType

Programming scripts
10.2 WinCC Unified object model

6598 System Manual, 11/2022

See also
YValueAxis (Page 6583)

YValueAxis.OutputFormat

Description
The "OutputFormat" property specifies the format for displaying the axis values, e.g. "{0000}" for
a 4-digit integer with leading zeros.

Type
String

Access
Read-write

Syntax
YValueAxis.OutputFormat

See also
YValueAxis (Page 6583)

YValueAxis.ScalingEntries

Description
The "ScalingEntries" property returns the user scaling of the axes sections.

Type
Object, HmiScalingEntryCollection (Page 6600)

Access
Read-only

Syntax
YValueAxis.ScalingEntries

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6599

See also
YValueAxis (Page 6583)
HmiScalingEntryCollection (Page 6600)

HmiScalingEntryCollection

Description
The "HmiScalingEntryCollection" object is a list of all user-defined axis sections ("ScalingEntry"
objects).

Use
The "HmiScalingEntryCollection" object is a list and can be counted and enumerated. You can
access the "HmiScalingEntryCollection" list using the index or the tag name.

Object type
HmiHelpLineCollection

Properties
The "HmiScalingEntryCollection" object has the following properties:
• Count

Returns the number of user-defined axis sections of the "HmiScalingEntryCollection" list.

Methods
The "HmiScalingEntryCollection" object has the following methods:
• Item()

Returns a user-defined axis section of the "HmiScalingEntryCollection" list.

See also
YValueAxis.ScalingEntries (Page 6599)

HmiScalingEntryCollection.Count

Description
The "Count" property returns the number of the user-defined axis sections in the
"HmiScalingEntryCollection" list.

Programming scripts
10.2 WinCC Unified object model

6600 System Manual, 11/2022

Type
UInt32

Access
Read-only

Syntax
HmiScalingEntryCollection.Count

See also
HmiScalingEntryCollection (Page 6600)

HmiScalingEntryCollection.Item()

Description
The "Item" method returns a user-defined axis section of the "HmiScalingEntryCollection" list.

Syntax
HmiScalingEntryCollection[.Item](HmiScalingEntryName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiScalingEntryCollection" object.

Parameters
HmiScalingEntryName
Type: String
Name of the user-defined axis section

Return value
Object, HmiScalingEntryPart (Page 6602)

See also
HmiScalingEntryCollection (Page 6600)
Scaling Entry (Page 6602)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6601

Scaling Entry

Description
The "ScalingEntry" object represents a user-defined axis section of the value axis.

Object type
HmiScalingEntryPart

Properties
The "YValueAxis" object has the following properties:
• BeginValue

Specifies the start of a value range section.
• BeginValueTarget

Specifies the scaled value for the start of a value range section.
• DisplayName

Specifies the display name of an axis section.
• EndValue

Specifies the end of a value range section.
• EndValueTarget

Specifies the scaled value for the end of a value range section.

Methods
--

ScalingEntry.BeginValue

Description
The "BeginValue" property specifies the start of a value range section.

Type
Float

Access
Read-write

Syntax
ScalingEntry.BeginValue

Programming scripts
10.2 WinCC Unified object model

6602 System Manual, 11/2022

See also
Scaling Entry (Page 6602)

ScalingEntry.BeginValueTarget

Description
The"BeginValueTarget" property specifies the scaled value for the start of a value range section.

Type
Float

Access
Read-write

Syntax
ScalingEntry.BeginValueTarget

See also
Scaling Entry (Page 6602)

ScalingEntry.DisplayName

Description
The "DisplayName" property specifies the display name of an axis section.

Type
String

Access
Read-write

Syntax
ScalingEntry.DisplayName

See also
Scaling Entry (Page 6602)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6603

ScalingEntry.EndValue

Description
The "EndValue" property specifies the end of a value range section.

Type
Float

Access
Read-write

Syntax
ScalingEntry.EndValue

See also
Scaling Entry (Page 6602)

ScalingEntry.EndValueTarget

Description
The"EndValueTarget" property specifies the scaled value for the end of a value range section.

Type
Float

Access
Read-write

Syntax
ScalingEntry.EndValueTarget

See also
Scaling Entry (Page 6602)

Programming scripts
10.2 WinCC Unified object model

6604 System Manual, 11/2022

YValueAxis.ScaleMode

Description
The "ScaleMode" property specifies the scale mode.

Type
Int32, HmiScaleMode
Specifies the scale mode:
• None (0): None
• Labels (1): Labels
• Ticks (2): Tick marks

Access
Read-write

Syntax
YValueAxis.ScaleMode

See also
YValueAxis (Page 6583)

YValueAxis.ScalingType

Description
The "ScalingType" property specifies the scaling.

Type
Int32, HmiScalingType
Specifies the scaling:
• Linear (0): Linear
• Logarithmic (1): Logarithmic
• NegativeLogarithmic (2): Negative logarithmic
• Tangent (4): Tangential
• Quadratic (5): Square
• Cubic (6): Cubic

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6605

Access
Read-write

Syntax
YValueAxis.ScalingType

See also
YValueAxis (Page 6583)

YValueAxis.ShowScalingDisplayNames

Description
The "ShowScalingDisplayNames" property specifies whether the display names of the user
scaling are used.

Type
Bool

Access
Read-write

Syntax
YValueAxis.ShowScalingDisplayNames

See also
YValueAxis (Page 6583)

YValueAxis.SubDivisionCount

Description
The "SubDivisionCount" property specifies the number of subdivisions of the main units.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6606 System Manual, 11/2022

Access
Read-write

Syntax
YValueAxis.SubDivisionCount

See also
YValueAxis (Page 6583)

YValueAxis.TickColor

Description
The "TickColor" property specifies the color of the tick marks.

Type
UInt32

Access
Read-write

Syntax
YValueAxis.TickColor

See also
YValueAxis (Page 6583)

YValueAxis.Visible

Description
The "Visible" property specifies whether the value axis is visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6607

Syntax
YValueAxis.Visible

See also
YValueAxis (Page 6583)

TrendArea.MajorGridLinesColor

Description
The "MajorGridLinesColor" property specifies the color of the main grid lines.

Type
UInt32

Access
Read-write

Syntax
TrendArea.MajorGridLinesColor

See also
TrendArea (Page 6564)

TrendArea.MinorGridLinesColor

Description
The "MinorGridLinesColor" specifies the color of the auxiliary grid lines.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6608 System Manual, 11/2022

Syntax
TrendArea.MinorGridLinesColor

See also
TrendArea (Page 6564)

TrendArea.Name

Description
The "Name" property returns the name of the trend view.

Type
String

Access
Read-only

Syntax
TrendArea.Name

See also
TrendArea (Page 6564)

TrendArea.RightValueAxes

Description
The "RightValueAxes" property returns the right value axes of the trend area.

Type
Object, HmiYValueAxisCollection (Page 6610)

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6609

Syntax
TrendArea.RightValueAxes

See also
TrendArea (Page 6564)
HmiYValueAxisCollection (Page 6610)

HmiYValueAxisCollection

Description
The "HmiYValueAxisCollection" object is a list of all value axes ("YValueAxis" objects) of the trend
area.

Use
The "HmiYValueAxisCollection" object is a list and can be counted and enumerated. You can
access the "HmiYValueAxisCollection" list using the index or the tag name.

Object type
HmiYValueAxisCollection

Properties
The "HmiYValueAxisCollection" object has the following properties:
• Count

Returns the number of value axes in the "HmiYValueAxisCollection" list.

Methods
The "HmiYValueAxisCollection" object has the following methods:
• Item()

Returns a value axis of the "HmiYValueAxisCollection" list.

See also
TrendArea.RightValueAxes (Page 6609)

Programming scripts
10.2 WinCC Unified object model

6610 System Manual, 11/2022

HmiYValueAxisCollection.Count

Description
The "Count" property returns the number of value axes in the "HmiYValueAxisCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiYValueAxisCollection.Count

See also
HmiYValueAxisCollection (Page 6610)

HmiYValueAxisCollection.Item()

Description
The "Item" method returns a value axis of the "HmiYValueAxisCollection" list.

Syntax
HmiYValueAxisCollection[.Item](HmiYValueAxisName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiYValueAxisCollection" object.

Parameters
HmiYValueAxisName
Type: String
Name of the value axis

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6611

Return value
Object, HmiYValueAxisPart (Page 6583)

See also
HmiYValueAxisCollection (Page 6610)
YValueAxis (Page 6583)

YValueAxis

Description
YValueAxis (Page 6583)

TrendArea.Ruler

Description
The "Ruler" property specifies the appearance of the ruler for determining the trend value.

Type
Object, HmiRulerPart

Access
Read-write

Syntax
TrendArea.Ruler

See also
TrendArea (Page 6564)

Ruler.Color

Description
The "Color" property specifies the color of the ruler.

Programming scripts
10.2 WinCC Unified object model

6612 System Manual, 11/2022

Type
UInt32

Access
Read-write

Syntax
Ruler.Color

See also
TrendArea.Ruler (Page 6612)

Ruler.Width

Description
The "Width" property specifies the width of the ruler.

Type
UInt32

Access
Read-write

Syntax
Ruler.Width

See also
TrendArea.Ruler (Page 6612)

TrendArea.SelectedTrend

Description
The "SelectedTrend" property specifies the selected trend of the trend area.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6613

Type
Object, HmiTrendPart (Page 6621)

Access
Read-write

Syntax
TrendArea.SelectedTrend

See also
TrendArea (Page 6564)
Trend (Page 6621)

Trend

Description
Trend (Page 6621)

TrendArea.SizeFactor

Description
The "SizeFactor" property specifies the scaling factor of the trend area relative to its height.

Type
UInt16

Access
Read-write

Syntax
TrendArea.SizeFactor

See also
TrendArea (Page 6564)

Programming scripts
10.2 WinCC Unified object model

6614 System Manual, 11/2022

TrendArea.StatisticRulers

Description
The "StatisticRulers" property specifies the two rulers for specifying the statistics area.

Type
Object, HmiRulerPart

Access
Read-write

Syntax
TrendArea.StatisticRulers

See also
TrendArea (Page 6564)

Ruler.Color

Description
The "Color" property specifies the color of the ruler.

Type
UInt32

Access
Read-write

Syntax
Ruler.Color

See also
TrendArea.StatisticRulers (Page 6615)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6615

Ruler.Width

Description
The "Width" property specifies the width of the ruler.

Type
UInt32

Access
Read-write

Syntax
Ruler.Width

See also
TrendArea.StatisticRulers (Page 6615)

TrendArea.TopTimeAxes

Description
The "TopTimeAxes" property returns the upper value axes of the trend area.

Type
Object, HmiTimeAxisCollection (Page 6617)

Access
Read-only

Syntax
TrendArea.TopTimeAxes

See also
TrendArea (Page 6564)
HmiTimeAxisCollection (Page 6617)

Programming scripts
10.2 WinCC Unified object model

6616 System Manual, 11/2022

HmiTimeAxisCollection

Description
The "HmiTimeAxisCollection" object is a list of all time axes ("TimeAxis" objects) of the trend area.

Use
The "HmiTimeAxisCollection" object is a list and can be counted and enumerated. You can access
the "HmiTimeAxisCollection" list using the index or the tag name.

Object type
HmiTimeAxisCollection

Properties
The "HmiTimeAxisCollection" object has the following properties:
• Count

Returns the number of time axes of the "HmiTimeAxisCollection" list.

Methods
The "HmiTimeAxisCollection" object has the following methods:
• Item()

Returns a time axis of the "HmiTimeAxisCollection" list.

See also
TrendArea.TopTimeAxes (Page 6616)

HmiTimeAxisCollection.Count

Description
The "Count" property returns the number of time axes in the "HmiTimeAxisCollection" list.

Type
UInt32

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6617

Syntax
HmiTimeAxisCollection.Count

See also
HmiTimeAxisCollection (Page 6617)

HmiTimeAxisCollection.Item()

Description
The "Item" method returns a time axis of the "HmiTimeAxisCollection" list.

Syntax
HmiTimeAxisCollection[.Item](HmiTimeAxisName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiTimeAxisCollection" object.

Parameters
HmiTimeAxisName
Type: String
Name of the time axis

Return value
Object, HmiTimeAxisPart (Page 6568)

See also
HmiTimeAxisCollection (Page 6617)
TimeAxis (Page 6568)

TimeAxis

Description
TimeAxis (Page 6568)

Programming scripts
10.2 WinCC Unified object model

6618 System Manual, 11/2022

TrendArea.Trends

Description
The "Trends" property returns the trends ("Trend" objects) of the trend area.

Type
Object, HmiTrendCollection (Page 6619)

Access
Read-only

Syntax
TrendArea.Trends

See also
TrendArea (Page 6564)
HmiTrendCollection (Page 6619)

HmiTrendCollection

Description
The "HmiTrendCollection" object is a list of all trends ("Trend" objects) of the trend view.

Use
The "HmiTrendCollection" object is a list and can be counted and enumerated. You can access the
"HmiTrendCollection" list using the index or the tag name.

Object type
HmiTrendCollection

Properties
The "HmiTrendCollection" object has the following properties:
• Count

Returns the number of trends of the "HmiTrendCollection" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6619

Methods
The "HmiTrendCollection" object has the following methods:
• Item()

Returns a trend of the "HmiTrendCollection" list.

See also
TrendArea.Trends (Page 6619)

HmiTrendCollection.Count

Description
The "Count" property returns the number of curves in the "HmiTrendCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiTrendCollection.Count

See also
HmiTrendCollection (Page 6619)

HmiTrendCollection.Item()

Description
The "Item" method returns a trend of the "HmiTrendCollection" list.

Syntax
HmiTrendCollection[.Item](HmiTrendName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiTrendCollection" object.

Programming scripts
10.2 WinCC Unified object model

6620 System Manual, 11/2022

Parameters
HmiTrendName
Type: String
Trend name

Return value
Object, HmiTrendPart (Page 6621)

See also
HmiTrendCollection (Page 6619)
Trend (Page 6621)

Trend

Description
The "Trend" object represents a trend of the trend area.

Object type
HmiTrendPart

Properties
The "Trend" object has the following properties:
• AggregationMode

Specifies the compression of values for logging tags.
• AlternateBackColor

Specifies the second color for a color gradient.
• BackColor

Specifies the background color.
• BackFillPattern

Specifies the pattern of the background or the fill.
• DashType

Specifies the stroke style of the trend.
• DataSourceY

Specifies the tag for the data source of the value axis.
• DisplayName

Specifies the display name of the trend.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6621

• LineColor
Specifies the line color.

• LineWidth
Specifies the line thickness.

• MarkerColor
Specifies the color of the trend points.

• MarkerDimension
Specifies the width of the trend points.

• MarkerGraphic
Specifies a graphic object as a trend point.

• MarkerType
Specifies the type of the trend points.

• QualityVisualization
Specifies the colors for values of a specific quality.

• ShowLoggedDataImmediately
Specifies which logged values are displayed.

• Thresholds
Returns the list of all limit values of the trend.

• TimeAxis
References a time axis of the trend.

• TrendMode
Specifies the type of trend view.

• Visible
Specifies whether the trend is visible.

• YValueAxis
References a value axis of the trend.

Methods
--

Trend.AggregationMode

Description
The "AggregationMode" property specifies the compression of values for logging tags.

Type
Int32, HmiAggregationMode

Programming scripts
10.2 WinCC Unified object model

6622 System Manual, 11/2022

Specifies the type of compression:
• None (0): None
• TimeAverageStepped (1): Average over time displayed in steps
• MinMax (2): Lowest and highest value from defined period

Access
Read-write

Syntax
Trend.AggregationMode

See also
Trend (Page 6621)

Trend.AlternateBackColor

Description
The "AlternateBackColor" specifies the second color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
Trend.AlternateBackColor

See also
Trend (Page 6621)

Trend.BackColor

Description
The "BackColor" property specifies the background color.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6623

Type
UInt32

Access
Read-write

Syntax
Trend.BackColor

See also
Trend (Page 6621)

Trend.BackFillPattern

Description
The "BackFillPattern" property specifies the pattern of the background or the fill.

Type
Int32, HmiFillPattern
Specifies the filling:
• Solid (0): Solid
• Transparent (65536): Transparent
• Horizontal (131072): Horizontal
• Vertical (131073): Vertical
• ForwardDiagonal (131074): Forward diagonal stripe
• BackwardDiagonal (131075): Backward diagonal stripe
• Cross (131076): Cross
• DiagonalCross (131077): Diagonal cross
• GradientHorizontal (1048576): Horizontal gradient
• GradientVertical (1048577): Vertical gradient
• GradientForwardDiagonal (1048578): Gradient forward diagonal
• GradientBackwardDiagonal (1048579): Gradient backward diagonal
• GradientHorizontalTricolor (1048832): Horizontal tricolor gradient
• GradientVerticalTricolor (1048833): Vertical tricolor gradient

Programming scripts
10.2 WinCC Unified object model

6624 System Manual, 11/2022

• GradientForwardDiagonalTricolor (1048834): Forward diagonal tricolor gradient
• GradientBackwardDiagonalTricolor (1048835): Backward diagonal tricolor gradient

Access
Read-write

Syntax
Trend.BackFillPattern

See also
Trend (Page 6621)

Trend.DashType

Description
The "DashType" property specifies the stroke style type of the trend.

Type
Int32, HmiDashType
Specifies the stroke style:
• Solid (0): Solid
• Dash(1): Dashed
• Dot (2): Dotted
• DashDot (3): Dash-dot
• DashDotDot (4): Dash-dot-dot

Access
Read-write

Syntax
Trend.DashType

See also
Trend (Page 6621)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6625

Trend.DataSourceY

Description
The "DataSourceY" property specifies the tag for the data source of the values axis.

Type
Object, HmiDataSourcePart

Access
Read-write

Syntax
Trend.DataSourceX

See also
Trend (Page 6621)

DataSource.Source

Description
The "Source" property specifies the data source, e.g. a tag or logging tag.

Type
String

Access
Read-write

Syntax
DataSource.Source

See also
Trend.DataSourceY (Page 6626)

Programming scripts
10.2 WinCC Unified object model

6626 System Manual, 11/2022

DataSource.VisualizeQuality

Description
The "VisualizeQuality" property specifies whether the connection quality of the process value is
displayed.

Type
Bool

Access
Read-write

Syntax
DataSource.VisualizeQuality

See also
Trend.DataSourceY (Page 6626)

Trend.DisplayName

Description
The "DisplayName" property specifies the display name of the trend.

Type
String

Access
Read-write

Syntax
Trend.DisplayName

See also
Trend (Page 6621)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6627

Trend.LineColor

Description
The "LineColor" property specifies the line color.

Type
UInt32

Access
Read-write

Syntax
Trend.LineColor

See also
Trend (Page 6621)

Trend.LineWidth

Description
The "LineWidth" property specifies the line thickness.

Type
UInt8

Access
Read-write

Syntax
Trend.LineWidth

See also
Trend (Page 6621)

Programming scripts
10.2 WinCC Unified object model

6628 System Manual, 11/2022

Trend.MarkerColor

Description
The "MarkerColor" property specifies the color of the trend points.

Type
UInt32

Access
Read-write

Syntax
Trend.MarkerColor

See also
Trend (Page 6621)

Trend.MarkerDimension

Description
The "MarkerDimension" property specifies the width of the trend points.

Type
UInt32

Access
Read-write

Syntax
Trend.MarkerDimension

See also
Trend (Page 6621)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6629

Trend.MarkerGraphic

Description
The "MarkerGraphic" property specifies a graphic object as a trend point.

Type
String

Access
Read-write

Syntax
Trend.MarkerGraphic

See also
Trend (Page 6621)

Trend.MarkerType

Description
The "MarkerType" property specifies the type of trend points.

Type
Int32, HmiMarkerType
Specifies the type of the trend points:
• None (0): None
• Points (1): Dots
• Square (2): Square
• Circle (3): Circles
• Graphic (4): Graphic

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6630 System Manual, 11/2022

Syntax
Trend.MarkerType

See also
Trend (Page 6621)

Trend.QualityVisualization

Description
The "QualityVisualization" property specifies the colors for values of a specific quality.

Type
Object, HmiQualityPart

Access
Read-write

Syntax
Trend.QualityVisualization

See also
Trend (Page 6621)

Quality.BadColor

Description
The "BadColor" property specifies the color for values of the quality "Bad". Values of this quality
cannot be used.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6631

Syntax
Quality.BadColor

See also
Trend.QualityVisualization (Page 6631)

Quality.UncertainColor

Description
The "UncertainColor" property specifies the color for values of the quality "Uncertain". The
quality of this level's values is worse than usual. It might still be possible to use the values,
however.

Type
UInt32

Access
Read-write

Syntax
Quality.UncertainColor

See also
Trend.QualityVisualization (Page 6631)

Quality.Visible

Description
The "Visible" property specifies whether the colors are visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6632 System Manual, 11/2022

Syntax
Quality.Visible

See also
Trend.QualityVisualization (Page 6631)

Trend.ShowLoggedDataImmediately

Description
The "ShowLoggedDataImmediately" property specifies which logged values are displayed:
• True: Entire visible range
• False: Only from current time

Type
Bool

Access
Read-write

Syntax
Trend.ShowLoggedDataImmediately

See also
Trend (Page 6621)

Trend.Thresholds

Description
The "Thresholds" property returns the list of all limit values ("Threshold" objects) of the trend.

Type
Object, HmiThresholdCollection (Page 6634)

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6633

Syntax
Trend.Thresholds

See also
Trend (Page 6621)
HmiThresholdCollection (Page 6634)

HmiThresholdCollection

Description
The "HmiThresholdCollection" object is a list of all limit values ("Threshold" objects).

Use
The "HmiThresholdCollection" object is a list and can be counted and enumerated. You can
access the "HmiThresholdCollection" list using the index or the tag name.

Object type
HmiThresholdCollection

Properties
The "HmiThresholdCollection" object has the following properties:
• Count

Returns the number of limit values of the "HmiThresholdCollection" list.

Methods
The "HmiThresholdCollection" object has the following methods:
• Item()

Returns a limit value of the "HmiThresholdCollection" list.

See also
Trend.Thresholds (Page 6633)

HmiThresholdCollection.Count

Description
The "Count" property returns the number of limit values in the "HmiThresholdCollection" list.

Programming scripts
10.2 WinCC Unified object model

6634 System Manual, 11/2022

Type
UInt32

Access
Read-only

Syntax
HmiThresholdCollection.Count

See also
HmiThresholdCollection (Page 6634)

HmiThresholdCollection.Item()

Description
The "Item" method returns a limit value of the "HmiThresholdCollection" list.

Syntax
HmiThresholdCollection[.Item](HmiThresholdName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiThresholdCollection" object.

Parameters
HmiThresholdName
Type: String
Name of the limit value

Return value
Object, HmiThresholdPart (Page 6636)

See also
HmiThresholdCollection (Page 6634)
Threshold (Page 6636)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6635

Threshold

Description
The "Threshold" object represents a limit value.

Object type
HmiThresholdPart

Properties
The "Threshold" object has the following properties:
• Color

Specifies the color of the limit value.
• DisplayName

Specifies the display name of the limit value.
• Name

Specifies the name of the limit value.
• ThresholdMode

Specifies the type of limit value.
• Value

Returns the limit value.

Methods
--

Threshold.Color

Description
The "Color" property specifies the color of the limit value.

Type
UInt32

Access
Read-write

Syntax
Threshold.Color

Programming scripts
10.2 WinCC Unified object model

6636 System Manual, 11/2022

See also
Threshold (Page 6636)

Threshold.DisplayName

Description
The "DisplayName" property specifies the display name of the limit value.

Type
String

Access
Read-write

Syntax
Threshold.DisplayName

See also
Threshold (Page 6636)

Threshold.Name

Description
The "Name" property specifies the name of the limit value.

Type
String

Access
Read-write

Syntax
Threshold.Name

See also
Threshold (Page 6636)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6637

Threshold.ThresholdMode

Description
The "ThresholdMode" property specifies the type of limit value.

Type
Int32, HmiThresholdMode
Specifies the threshold value:
• Undefined (0): Undefined
• Upper (1): Upper threshold
• Lower (2): Lower threshold
• Normal (3): Normal threshold
• Minimum (4): Minimum threshold
• Maximum (5): Maximum threshold

Access
Read-write

Syntax
Threshold.ThresholdMode

See also
Threshold (Page 6636)

Threshold.Value

Description
The "Value" property returns the limit value of the tag.

Type
Float

Access
Read-only

Programming scripts
10.2 WinCC Unified object model

6638 System Manual, 11/2022

Syntax
Threshold.Value

See also
Threshold (Page 6636)

Trend.TimeAxis

Description
The "TimeAxis" property references a time axis of the trend.

Type
Object, HmiTimeAxisPart (Page 6568)

Access
Read-write

Syntax
Trend.TimeAxis

See also
Trend (Page 6621)
TimeAxis (Page 6568)

TimeAxis

Description
TimeAxis (Page 6568)

Trend.TrendMode

Description
The "TrendMode" property specifies the type of trend view.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6639

Type
Int32, HmiTrendMode
Specifies the trend type:
• Points (0): Dots
• Interpolated (1): Interpolated
• Stepped (2): Levels
• Bar (3): Bar
• Value (4): Values

Access
Read-write

Syntax
Trend.TrendMode

See also
Trend (Page 6621)

Trend.Visible

Description
The "Visible" property specifies whether the trend is visible.

Type
Bool

Access
Read-write

Syntax
Trend.Visible

See also
Trend (Page 6621)

Programming scripts
10.2 WinCC Unified object model

6640 System Manual, 11/2022

Trend.YValueAxis

Description
The "YValueAxis" property references a value axis of the trend.

Type
Object, HmiYValueAxisPart (Page 6583)

Access
Read-write

Syntax
Trend.YValueAxis

See also
Trend (Page 6621)
YValueAxis (Page 6583)

YValueAxis

Description
YValueAxis (Page 6583)

TrendArea.Visible

Description
The "Visible" property specifies whether the trend area is visible.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6641

Syntax
TrendArea.Visible

See also
TrendArea (Page 6564)

TrendControl.Visible

Description
The "Visible" property specifies whether the trend view is visible.

Type
Bool

Access
Read-write

Syntax
TrendControl.Visible

See also
TrendControl (Page 6374)

TrendControl.Width

Description
The "Width" property specifies the width in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
TrendControl.Width

Programming scripts
10.2 WinCC Unified object model

6642 System Manual, 11/2022

See also
TrendControl (Page 6374)

TrendControl.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the trend view.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title
• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be positioned
• CanMaximize (32): Can be maximized
• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
Enable multiple properties by adding the integer values or bit operators.

Access
Read-write

Syntax
TrendControl.WindowFlags

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6643

Example
Adapt the "windowFlags" tag depending on the window configuration:

Copy code
var windowFlags = HmiWindowFlag.ShowCaption | HmiWindowFlag.ShowBorder;
if (CanClose){
 windowFlags |= HmiWindowFlag.CanClose;
} else {
 windowFlags &= HmiWindowFlag.CanClose;
}

See also
TrendControl (Page 6374)

TrendControl.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
trend view.

Syntax
TrendControl.CheckAuthorization()

Parameters
--

Return value
Bool

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
TrendControl (Page 6374)

Programming scripts
10.2 WinCC Unified object model

6644 System Manual, 11/2022

TrendControl.FireCommand()

Description
The "FireCommand" method executes the command of an element in the toolbar or information
bar (control bar element, e.g. a button) of the trend view.

Syntax
TrendControl.FireCommand(commandId, custom)

Parameters
commandId
Type: Int32
ID of the element of the toolbar or information bar

custom
Type: Bool
Type of element ID:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

Return value
--

See also
TrendControl (Page 6374)

TrendControl.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
TrendControl.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6645

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Return value
Bool

See also
TrendControl (Page 6374)

Programming scripts
10.2 WinCC Unified object model

6646 System Manual, 11/2022

TrendControl_OnActivated()

Description
The "OnActivated" event occurs when a trend view receives focus:
• A trend view is selected via the configured tab sequence.
• A trend view that had no focus is clicked/touched.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
TrendControl_OnActivated(item)

Context
item
Type: Object
Trend view where the event occurs.

See also
TrendControl (Page 6374)

TrendControl_OnCommandFired()

Description
The "OnCommandFired" event occurs when the operator has operated an element in the toolbar
or information bar (control bar element, e.g. a button) of the trend control.

Syntax
TrendControl_OnCommandFired(item, commandId, custom)

Context
item
Type: Object
Trend control where the event occurs.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6647

commandId
Type: DInt
ID of the element of the toolbar or information bar that was operated.

custom
Type: Bool
Specifies the type of the ID of the operated element:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

See also
TrendControl (Page 6374)

TrendControl_OnDeactivated()

Description
The "OnDeactivated" event occurs when a trend view loses focus because the operator presses
the <TAB> key or executes another action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.

Syntax
TrendControl_OnDeactivated(item)

Context
item
Type: Object
Trend view where the event occurs.

See also
TrendControl (Page 6374)

Programming scripts
10.2 WinCC Unified object model

6648 System Manual, 11/2022

TrendControl_OnInitialized()

Description
The "OnInitialized" event occurs when a trend view has been successfully initialized and the data
connection to the PLC has been established.

Syntax
TrendControl_OnInitialized(item)

Context
item
Type: Object
Trend view where the event occurs.

See also
TrendControl (Page 6374)

WebControl

Description
The "WebControl" object represents a web browser in runtime.

Object type
HmiWebControl

Properties
The "WebControl" object has the following properties:
• BackColor

Specifies the background color.
• Caption

Specifies the text that is displayed in the title bar.
• CaptionColor

Specifies the background color of the title bar.
• CurrentQuality

Returns the poorest quality code of all tags which influence the web browser.
• Enabled

Specifies whether the web browser can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6649

• Height
Specifies the height.

• Icon
Specifies the icon of the web browser.

• Layer
Returns the screen layer in which the web browser is located.

• Left
Specifies the value of the X coordinate.

• Margin
Specifies the margin.

• Name
Returns the name of the web browser.

• Parent
Returns the higher-level screen object.

• RenderingTemplate
Returns the name of the template from which the web browser was created.

• ShowFocusVisual
Specifies whether the web browser is highlighted when in focus.

• StatusBar
Specifies the information bar of the web browser.

• StyleItemClass
Returns the style which is applied to the web browser.

• TabIndex
Returns the position of the web browser in the tab sequence.

• ToolBar
Specifies the toolbar of the web browser.

• Top
Specifies the value of the Y coordinate.

• Url
Specifies the URL displayed by the web browser.

• Visible
Specifies whether the web browser is visible.

• Width
Specifies the width.

• WindowFlags
Specifies the window configuration of the web browser.

Programming scripts
10.2 WinCC Unified object model

6650 System Manual, 11/2022

Methods
The "WebControl" object has the following methods:
• CheckAuthorization()

Returns whether the current user is authorized to operate the web browser.
• FireCommand()

Configures the occurrence of an event for an element.
• PropertyFlashing()

Configures flashing of a property.

Events
The "WebControl" object has the following events:
• OnActivated()

Occurs when a web browser receives focus.
• OnCommandFired()

Occurs when the operator has operated an element in the toolbar or information bar of the
web browser.

• OnDeactivated()
Occurs when a web browser loses focus.

• OnInitialized()
Occurs when a web browser has been successfully initialized and the data connection to the
PLC has been established.

WebControl.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
WebControl.BackColor

See also
WebControl (Page 6649)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6651

WebControl.Caption

Description
The "Caption" property specifies the text that is displayed in the title bar.

Type
Object, HmiTextPart

Access
Read-write

Syntax
WebControl.Caption

See also
WebControl (Page 6649)

Text.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
Text.Font

See also
WebControl.Caption (Page 6652)

Programming scripts
10.2 WinCC Unified object model

6652 System Manual, 11/2022

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
Text.Font (Page 6652)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
Text.Font (Page 6652)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6653

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Syntax
Font.Size

See also
Text.Font (Page 6652)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

Programming scripts
10.2 WinCC Unified object model

6654 System Manual, 11/2022

See also
Text.Font (Page 6652)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
Text.Font (Page 6652)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6655

Access
Read-write

Syntax
Font.Weight

See also
Text.Font (Page 6652)

Text.ForeColor

Description
The "ForeColor" property sets the font color of the text.

Type
UInt32

Access
Read-write

Syntax
Text.ForeColor

See also
WebControl.Caption (Page 6652)

Text.Text

Description
The "Text" property specifies the label.

Type
String

Programming scripts
10.2 WinCC Unified object model

6656 System Manual, 11/2022

Access
Read-write

Syntax
Text.Text

See also
WebControl.Caption (Page 6652)

Text.Visible

Description
The "Visible" property specifies whether the text is visible.

Type
Bool

Access
Read-write

Syntax
Text.Visible

See also
WebControl.Caption (Page 6652)

WebControl.CaptionColor

Description
The "CaptionColor" property specifies the color of the title bar.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6657

Access
Read-write

Syntax
WebControl.CaptionColor

See also
WebControl (Page 6649)

WebControl.CurrentQuality

Description
The "CurrentQuality" property returns the poorest quality code of all tags which influence the
web browser.

Type
Int32, HmiQuality
Returns the current quality code:
• None (0): Undefined or not initialized.
• Bad (1): Value cannot be used.
• Uncertain (2): Usable, but the value quality is worse than usual.
• Good (4): Usable, value quality is good.
• UpperLimitViolation (64): Value has exceeded the high limit.
• LowerLimitViolation (128): Value has fallen below the low limit.

Access
Read-only

Syntax
WebControl.CurrentQuality

See also
WebControl (Page 6649)

Programming scripts
10.2 WinCC Unified object model

6658 System Manual, 11/2022

WebControl.Enabled

Description
The "Enabled" property specifies whether the web browser can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
WebControl.Enabled

See also
WebControl (Page 6649)

WebControl.Height

Description
The "Height" property specifies the height in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
WebControl.Height

See also
WebControl (Page 6649)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6659

WebControl.Icon

Description
The "Icon" property specifies the icon of the web browser.

Type
String

Access
Read-write

Syntax
WebControl.Icon

See also
WebControl (Page 6649)

WebControl.Layer

Description
The "Layer" property returns the screen layer in which the web browser is located.

Type
Object, HmiLayerPart

Access
Read-only

Syntax
WebControl.Layer

See also
WebControl (Page 6649)

Programming scripts
10.2 WinCC Unified object model

6660 System Manual, 11/2022

Layer.MaximumZoom

Description
The "MaximumZoom" property specifies the maximum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MaximumZoom

See also
WebControl.Layer (Page 6660)

Layer.MinimumZoom

Description
The "MinimumZoom" specifies the minimum zoom up to which the layer can be seen.

Type
Float

Access
Read-write

Syntax
Layer.MinimumZoom

See also
WebControl.Layer (Page 6660)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6661

Layer.Name

Description
The "Name" property returns the name of the screen layer.

Type
String

Access
Read-only

Syntax
Layer.Name

See also
WebControl.Layer (Page 6660)

Layer.Visible

Description
The "Visible" property specifies whether the screen layer and contained objects are visible.

Type
Bool

Access
Read-write

Syntax
Layer.Visible

See also
WebControl.Layer (Page 6660)

Programming scripts
10.2 WinCC Unified object model

6662 System Manual, 11/2022

WebControl.Left

Description
The "Left" property sets the value of the X coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Syntax
WebControl.Left

See also
WebControl (Page 6649)

WebControl.Margin

Description
The "Margin" property specifies the margin.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
WebControl.Margin

See also
WebControl (Page 6649)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6663

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
WebControl.Margin (Page 6663)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
WebControl.Margin (Page 6663)

Programming scripts
10.2 WinCC Unified object model

6664 System Manual, 11/2022

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
WebControl.Margin (Page 6663)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
WebControl.Margin (Page 6663)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6665

WebControl.Name

Description
The "Name" property returns the name of the web browser.

Type
String

Access
Read-only

Syntax
WebControl.Name

See also
WebControl (Page 6649)

WebControl.Parent

Description
The "Parent" property returns the higher-level screen object (Parent container).

Type
Object, HmiScreenObjectBase (Page 1571)

Access
Read-only

Syntax
WebControl.Parent

See also
WebControl (Page 6649)
Screen Items (Page 1571)

Programming scripts
10.2 WinCC Unified object model

6666 System Manual, 11/2022

Screen Items

Description
Screen Items (Page 1571)

WebControl.RenderingTemplate

Description
The "RenderingTemplate" property returns the name of the template from which the web
browser was created.

Type
String

Access
Read-only

Syntax
WebControl.RenderingTemplate

See also
WebControl (Page 6649)

WebControl.ShowFocusVisual

Description
The "ShowFocusVisual" property specifies whether the web browser is highlighted when in
focus.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6667

Syntax
WebControl.ShowFocusVisual

See also
WebControl (Page 6649)

WebControl.StatusBar

Description
The "StatusBar" property specifies the information bar of the web browser.

Type
Object, HmiStatusBarPart

Access
Read-write

Syntax
WebControl.StatusBar

See also
WebControl (Page 6649)

StatusBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
StatusBar.BackColor

Programming scripts
10.2 WinCC Unified object model

6668 System Manual, 11/2022

See also
WebControl.StatusBar (Page 6668)

StatusBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
information bar.

Type
Object, HmiControlBarElementCollection (Page 6669)

Access
Read-only

Syntax
StatusBar.Elements

See also
WebControl.StatusBar (Page 6668)
HmiControlBarElementCollection (Page 6669)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6669

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
StatusBar.Elements (Page 6669)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 6669)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

6670 System Manual, 11/2022

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 6686)

See also
HmiControlBarElementCollection (Page 6669)
Control Bar Elements (Page 6686)

Control Bar Elements

Description
Control Bar Elements (Page 6686)

StatusBar.Enabled

Description
The "Enabled" property specifies whether the information bar can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6671

Syntax
StatusBar.Enabled

See also
WebControl.StatusBar (Page 6668)

StatusBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
StatusBar.Font

See also
WebControl.StatusBar (Page 6668)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6672 System Manual, 11/2022

Syntax
Font.Italic

See also
StatusBar.Font (Page 6672)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
StatusBar.Font (Page 6672)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Type
Float

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6673

Syntax
Font.Size

See also
StatusBar.Font (Page 6672)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
StatusBar.Font (Page 6672)

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

6674 System Manual, 11/2022

Access
Read-write

Syntax
Font.Underline

See also
StatusBar.Font (Page 6672)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Syntax
Font.Weight

See also
StatusBar.Font (Page 6672)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6675

StatusBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the information bar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
StatusBar.Margin

See also
WebControl.StatusBar (Page 6668)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
StatusBar.Margin (Page 6676)

Programming scripts
10.2 WinCC Unified object model

6676 System Manual, 11/2022

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
StatusBar.Margin (Page 6676)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
StatusBar.Margin (Page 6676)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6677

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
StatusBar.Margin (Page 6676)

StatusBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the information
bar.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
StatusBar.Padding

See also
WebControl.StatusBar (Page 6668)

Programming scripts
10.2 WinCC Unified object model

6678 System Manual, 11/2022

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
StatusBar.Padding (Page 6678)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
StatusBar.Padding (Page 6678)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6679

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
StatusBar.Padding (Page 6678)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
StatusBar.Padding (Page 6678)

Programming scripts
10.2 WinCC Unified object model

6680 System Manual, 11/2022

StatusBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
StatusBar.ShowToolTips

See also
WebControl.StatusBar (Page 6668)

StatusBar.Visible

Description
The "Visible" property specifies whether the information bar is visible.

Type
Bool

Access
Read-write

Syntax
StatusBar.Visible

See also
WebControl.StatusBar (Page 6668)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6681

WebControl.StyleItemClass

Description
The "StyleItemClass" property returns the style which is applied to the web browser.

Type
String

Access
Read-only

Syntax
WebControl.StyleItemClass

See also
WebControl (Page 6649)

WebControl.TabIndex

Description
The "TabIndex" property returns the position of the web browser in the tab sequence.

Type
UInt16

Access
Read-only

Syntax
WebControl.TabIndex

See also
WebControl (Page 6649)

Programming scripts
10.2 WinCC Unified object model

6682 System Manual, 11/2022

WebControl.ToolBar

Description
The "ToolBar" property specifies the toolbar of the web browser.

Type
Object, HmiToolBarPart

Access
Read-write

Syntax
WebControl.ToolBar

See also
WebControl (Page 6649)

ToolBar.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ToolBar.BackColor

See also
WebControl.ToolBar (Page 6683)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6683

ToolBar.Elements

Description
The "Elements" property returns a list of the basic elements (e.g., buttons or labels) of the
toolbar.

Type
Object, HmiControlBarElementCollection (Page 6684)

Access
Read-only

Syntax
ToolBar.Elements

See also
WebControl.ToolBar (Page 6683)
HmiControlBarElementCollection (Page 6684)

HmiControlBarElementCollection

Description
The "HmiControlBarElementCollection" object is a list of all the basic elements (e.g. buttons or
labels) of an information bar or toolbar.
You reference a "HmiControlBarElementCollection" object via the property
StatusBar.Elements or ToolBar.Elements

Use
The "HmiControlBarElementCollection" object is a list which can be counted and enumerated.
You can access the "HmiControlBarElementCollection" list using the index or the tag names.

Object type
HmiControlBarElementCollection

Programming scripts
10.2 WinCC Unified object model

6684 System Manual, 11/2022

Properties
The "HmiControlBarElementCollection" object has the following properties:
• Count

Returns the number of basic elements of the "HmiControlBarElementCollection" list.

Methods
The "HmiControlBarElementCollection" object has the following methods:
• Item()

Returns a basic element of the "HmiControlBarElementCollection" list.

See also
ToolBar.Elements (Page 6684)

HmiControlBarElementCollection.Count

Description
The "Count" property returns the number of basic elements (e.g., buttons or labels) of the
"HmiControlBarElementCollection" list.

Type
UInt32

Access
Read-only

Syntax
HmiControlBarElementCollection.Count

See also
HmiControlBarElementCollection (Page 6684)

HmiControlBarElementCollection.Item()

Description
The "Item" method returns a basic element (e.g., button or label) of the
"HmiControlBarElementCollection" list.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6685

Syntax
HmiControlBarElementCollection[.Item](HmiControlBarElementName)

Note
The .Item part of the expression is not required. The "Item" method is the standard method of
the "HmiControlBarElementCollection" object.

Parameters
HmiControlBarElementName
Type: String
Name of the element

Return value
Object, HmiControlBarElementPartBase (Page 6686)

See also
HmiControlBarElementCollection (Page 6684)
Control Bar Elements (Page 6686)

Control Bar Elements

ControlBarButton

Description
The "ControlBarButton" object represents a button of an information bar or toolbar.
You can reference the "ControlBarButton" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarButtonPart

Programming scripts
10.2 WinCC Unified object model

6686 System Manual, 11/2022

Properties
The "ControlBarButton" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the label of the button.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the button can be operated in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• HotKey

Returns the hotkey specified for the button.
• Mapping

Returns the function of the button.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6687

• Operability
Returns whether the button is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the button is only operable while the corresponding button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the button is visible.

• Width
Specifies the width.

Methods
--

ControlBarButton.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBackColor

See also
ControlBarButton (Page 6686)

Programming scripts
10.2 WinCC Unified object model

6688 System Manual, 11/2022

ControlBarButton.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.AlternateBorderColor

See also
ControlBarButton (Page 6686)

ControlBarButton.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the button of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarButton.Authorization

See also
ControlBarButton (Page 6686)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6689

ControlBarButton.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BackColor

See also
ControlBarButton (Page 6686)

ControlBarButton.Badge

Description
The "Badge" property specifies the label of the button.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarButton.Badge

See also
ControlBarButton (Page 6686)

Programming scripts
10.2 WinCC Unified object model

6690 System Manual, 11/2022

ControlBarButton.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.BorderColor

See also
ControlBarButton (Page 6686)

ControlBarButton.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarButton.BorderWidth

See also
ControlBarButton (Page 6686)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6691

ControlBarButton.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarButton.Content

See also
ControlBarButton (Page 6686)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

Programming scripts
10.2 WinCC Unified object model

6692 System Manual, 11/2022

See also
ControlBarButton.Content (Page 6692)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarButton.Content (Page 6692)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6693

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarButton.Content (Page 6692)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarButton.Content (Page 6692)

Programming scripts
10.2 WinCC Unified object model

6694 System Manual, 11/2022

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarButton.Content (Page 6692)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6695

Syntax
Content.TextPosition

See also
ControlBarButton.Content (Page 6692)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarButton.Content (Page 6692)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment

Programming scripts
10.2 WinCC Unified object model

6696 System Manual, 11/2022

Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarButton.Content (Page 6692)

ControlBarButton.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarButton.CustomID

See also
ControlBarButton (Page 6686)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6697

ControlBarButton.Enabled

Description
The "Enabled" property specifies whether the button can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarButton.Enabled

See also
ControlBarButton (Page 6686)

ControlBarButton.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.ForeColor

See also
ControlBarButton (Page 6686)

Programming scripts
10.2 WinCC Unified object model

6698 System Manual, 11/2022

ControlBarButton.Graphic

Description
The "Graphic" property specifies the graphic of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.Graphic

See also
ControlBarButton (Page 6686)

ControlBarButton.Height

Description
The "Height" property specifies the height of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Height

See also
ControlBarButton (Page 6686)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6699

ControlBarButton.HotKey

Description
The "HotKey" property returns the hotkey specified for the button. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
ControlBarButton.HotKey

See also
ControlBarButton (Page 6686)

ControlBarButton.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent

Programming scripts
10.2 WinCC Unified object model

6700 System Manual, 11/2022

• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6701

• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarButton.Mapping

See also
ControlBarButton (Page 6686)

ControlBarButton.Margin

Description
The "Margin" property specifies the surrounded outer distance of the button.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6702 System Manual, 11/2022

Syntax
ControlBarButton.Margin

See also
ControlBarButton (Page 6686)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarButton.Margin (Page 6702)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6703

Syntax
Margin.Left

See also
ControlBarButton.Margin (Page 6702)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarButton.Margin (Page 6702)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6704 System Manual, 11/2022

Syntax
Margin.Top

See also
ControlBarButton.Margin (Page 6702)

ControlBarButton.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MaximumHeight

See also
ControlBarButton (Page 6686)

ControlBarButton.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6705

Syntax
ControlBarButton.MaximumWidth

See also
ControlBarButton (Page 6686)

ControlBarButton.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.MinimumHeight

See also
ControlBarButton (Page 6686)

ControlBarButton.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6706 System Manual, 11/2022

Syntax
ControlBarButton.MinimumWidth

See also
ControlBarButton (Page 6686)

ControlBarButton.Operability

Description
The "Operability" property returns whether the button is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarButton.Operability

See also
ControlBarButton (Page 6686)

ControlBarButton.Padding

Description
The "Padding" property specifies the distance of the content from the border of the button.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6707

Access
Read-write

Syntax
ControlBarButton.Padding

See also
ControlBarButton (Page 6686)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarButton.Padding (Page 6707)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6708 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Left

See also
ControlBarButton.Padding (Page 6707)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarButton.Padding (Page 6707)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6709

Access
Read-write

Syntax
Padding.Top

See also
ControlBarButton.Padding (Page 6707)

ControlBarButton.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the button can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarButton.RequireExplicitUnlock

See also
ControlBarButton (Page 6686)

ControlBarButton.Text

Description
The "Text" property specifies the label of the button.

Type
String

Programming scripts
10.2 WinCC Unified object model

6710 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarButton.Text

See also
ControlBarButton (Page 6686)

ControlBarButton.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the button.

Type
String

Access
Read-write

Syntax
ControlBarButton.ToolTipText

See also
ControlBarButton (Page 6686)

ControlBarButton.Visible

Description
The "Visible" property specifies whether the button is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6711

Access
Read-write

Syntax
ControlBarButton.Visible

See also
ControlBarButton (Page 6686)

ControlBarButton.Width

Description
The "Width" property specifies the width of the button in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarButton.Width

See also
ControlBarButton (Page 6686)

ControlBarDisplay

Description
The "ControlBarDisplay" object represents a display area for text and graphics of an information
bar or toolbar.
You can reference the "ControlBarDisplay" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarDisplayPart

Programming scripts
10.2 WinCC Unified object model

6712 System Manual, 11/2022

Properties
The "ControlBarDisplay" object has the following properties:
• Authorization

Returns the operator authorization.
• Content

Specifies display options for text and graphics.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the display area is enabled in runtime.
• ForeColor

Specifies the font color.
• Graphic

Specifies the graphic.
• Height

Specifies the height.
• Mapping

Returns the function of the display area.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the display area is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the display area is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6713

• Visible
Specifies whether the display area is visible.

• Width
Specifies the width.

Methods
--

ControlBarDisplay.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the display.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarDislay.Authorization

See also
ControlBarDisplay (Page 6712)

ControlBarDisplay.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6714 System Manual, 11/2022

Syntax
ControlBarDislay.Content

See also
ControlBarDisplay (Page 6712)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarDisplay.Content (Page 6714)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6715

Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.
• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarDisplay.Content (Page 6714)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

Programming scripts
10.2 WinCC Unified object model

6716 System Manual, 11/2022

See also
ControlBarDisplay.Content (Page 6714)

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarDisplay.Content (Page 6714)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6717

See also
ControlBarDisplay.Content (Page 6714)

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarDisplay.Content (Page 6714)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming

Programming scripts
10.2 WinCC Unified object model

6718 System Manual, 11/2022

Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarDisplay.Content (Page 6714)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarDisplay.Content (Page 6714)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6719

ControlBarDisplay.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarDislay.CustomID

See also
ControlBarDisplay (Page 6712)

ControlBarDisplay.Enabled

Description
The "Enabled" property specifies whether the display is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarDislay.Enabled

See also
ControlBarDisplay (Page 6712)

Programming scripts
10.2 WinCC Unified object model

6720 System Manual, 11/2022

ControlBarDisplay.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.ForeColor

See also
ControlBarDisplay (Page 6712)

ControlBarDisplay.Graphic

Description
The "Graphic" property specifies the graphic of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.Graphic

See also
ControlBarDisplay (Page 6712)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6721

ControlBarDisplay.Height

Description
The "Height" property specifies the height of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Height

See also
ControlBarDisplay (Page 6712)

ControlBarDisplay.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display

Programming scripts
10.2 WinCC Unified object model

6722 System Manual, 11/2022

• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6723

• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarDislay.Mapping

See also
ControlBarDisplay (Page 6712)

ControlBarDisplay.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the display.

Type
Object, HmiMarginPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6724 System Manual, 11/2022

Syntax
ControlBarDislay.Margin

See also
ControlBarDisplay (Page 6712)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarDisplay.Margin (Page 6724)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6725

Syntax
Margin.Left

See also
ControlBarDisplay.Margin (Page 6724)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarDisplay.Margin (Page 6724)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6726 System Manual, 11/2022

Syntax
Margin.Top

See also
ControlBarDisplay.Margin (Page 6724)

ControlBarDisplay.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MaximumHeight

See also
ControlBarDisplay (Page 6712)

ControlBarDisplay.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6727

Syntax
ControlBarDislay.MaximumWidth

See also
ControlBarDisplay (Page 6712)

ControlBarDisplay.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.MinimumHeight

See also
ControlBarDisplay (Page 6712)

ControlBarDisplay.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6728 System Manual, 11/2022

Syntax
ControlBarDislay.MinimumWidth

See also
ControlBarDisplay (Page 6712)

ControlBarDisplay.Operability

Description
The "Operability" property returns whether the display is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarDislay.Operability

See also
ControlBarDisplay (Page 6712)

ControlBarDisplay.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the display.

Type
Object, HmiPaddingPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6729

Access
Read-write

Syntax
ControlBarDislay.Padding

See also
ControlBarDisplay (Page 6712)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarDisplay.Padding (Page 6729)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6730 System Manual, 11/2022

Access
Read-write

Syntax
Padding.Left

See also
ControlBarDisplay.Padding (Page 6729)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarDisplay.Padding (Page 6729)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6731

Access
Read-write

Syntax
Padding.Top

See also
ControlBarDisplay.Padding (Page 6729)

ControlBarDisplay.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the display can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarDislay.RequireExplicitUnlock

See also
ControlBarDisplay (Page 6712)

ControlBarDisplay.Text

Description
The "Text" property specifies the label of the display.

Type
String

Programming scripts
10.2 WinCC Unified object model

6732 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarDislay.Text

See also
ControlBarDisplay (Page 6712)

ControlBarDisplay.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the display.

Type
String

Access
Read-write

Syntax
ControlBarDislay.ToolTipText

See also
ControlBarDisplay (Page 6712)

ControlBarDisplay.Visible

Description
The "Visible" property specifies whether the display is visible.

Type
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6733

Access
Read-write

Syntax
ControlBarDislay.Visible

See also
ControlBarDisplay (Page 6712)

ControlBarDisplay.Width

Description
The "Width" property specifies the width of the display in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarDislay.Width

See also
ControlBarDisplay (Page 6712)

ControlBarLabel

Description
The "ControlBarLabel" object represents an identifier of an information bar or toolbar.
You can reference the "ControlBarLabel" object via the "HmiControlBarElementCollection" list.

Object type
HmiControlBarLabelPart

Programming scripts
10.2 WinCC Unified object model

6734 System Manual, 11/2022

Properties
The "ControlBarLabel" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the identifier can be operated in runtime.
• ForeColor

Specifies the font color.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Height

Specifies the height.
• Mapping

Returns the function of the identifier.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.
• MinimumHeight

Specifies the minimum height.
• MinimumWidth

Specifies the minimum width.
• Operability

Returns whether the identifier is operable.
• Padding

Specifies the distance of the content from the border.
• RequireExplicitUnlock

Returns whether the identifier is only operable while the corresponding button is being
pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6735

• Visible
Specifies whether the identifier is visible.

• Width
Specifies the width.

Methods
--

ControlBarLabel.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the identifier.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarLabel.Authorization

See also
ControlBarLabel (Page 6734)

ControlBarLabel.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6736 System Manual, 11/2022

Access
Read-only

Syntax
ControlBarLabel.CustomID

See also
ControlBarLabel (Page 6734)

ControlBarLabel.Enabled

Description
The "Enabled" property specifies whether the identifier is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarLabel.Enabled

See also
ControlBarLabel (Page 6734)

ControlBarLabel.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6737

Access
Read-write

Syntax
ControlBarLabel.ForeColor

See also
ControlBarLabel (Page 6734)

ControlBarLabel.Height

Description
The "Height" property specifies the height of the identifier in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.Height

See also
ControlBarLabel (Page 6734)

ControlBarLabel.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment

Programming scripts
10.2 WinCC Unified object model

6738 System Manual, 11/2022

Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarLabel.HorizontalTextAlignment

See also
ControlBarLabel (Page 6734)

ControlBarLabel.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6739

• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export

Programming scripts
10.2 WinCC Unified object model

6740 System Manual, 11/2022

• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires
acknowledgment

• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarLabel.Mapping

See also
ControlBarLabel (Page 6734)

ControlBarLabel.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the identifier.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarLabel.Margin

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6741

See also
ControlBarLabel (Page 6734)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarLabel.Margin (Page 6741)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

Programming scripts
10.2 WinCC Unified object model

6742 System Manual, 11/2022

See also
ControlBarLabel.Margin (Page 6741)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarLabel.Margin (Page 6741)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6743

See also
ControlBarLabel.Margin (Page 6741)

ControlBarLabel.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumHeight

See also
ControlBarLabel (Page 6734)

ControlBarLabel.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MaximumWidth

Programming scripts
10.2 WinCC Unified object model

6744 System Manual, 11/2022

See also
ControlBarLabel (Page 6734)

ControlBarLabel.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumHeight

See also
ControlBarLabel (Page 6734)

ControlBarLabel.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarLabel.MinimumWidth

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6745

See also
ControlBarLabel (Page 6734)

ControlBarLabel.Operability

Description
The "Operability" property returns whether the identifier is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarLabel.Operability

See also
ControlBarLabel (Page 6734)

ControlBarLabel.Padding

Description
The "Padding" property specifies the spacing of the content from the frame of the identifier.

Type
Object, HmiPaddingPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6746 System Manual, 11/2022

Syntax
ControlBarLabel.Padding

See also
ControlBarLabel (Page 6734)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarLabel.Padding (Page 6746)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6747

Syntax
Padding.Left

See also
ControlBarLabel.Padding (Page 6746)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarLabel.Padding (Page 6746)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6748 System Manual, 11/2022

Syntax
Padding.Top

See also
ControlBarLabel.Padding (Page 6746)

ControlBarLabel.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the identifier can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarLabel.RequireExplicitUnlock

See also
ControlBarLabel (Page 6734)

ControlBarLabel.Text

Description
The "Text" property specifies the label of the identifier.

Type
String

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6749

Syntax
ControlBarLabel.Text

See also
ControlBarLabel (Page 6734)

ControlBarLabel.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the identifier.

Type
String

Access
Read-write

Syntax
ControlBarLabel.ToolTipText

See also
ControlBarLabel (Page 6734)

ControlBarLabel.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Programming scripts
10.2 WinCC Unified object model

6750 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarLabel.VerticalTextAlignment

See also
ControlBarLabel (Page 6734)

ControlBarLabel.Visible

Description
The "Visible" property specifies whether the identifier is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarLabel.Visible

See also
ControlBarLabel (Page 6734)

ControlBarLabel.Width

Description
The "Width" property specifies the width of the identifier in DIU (Device Independent Unit).

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6751

Access
Read-write

Syntax
ControlBarLabel.Width

See also
ControlBarLabel (Page 6734)

ControlBarSeparator

Description
The "ControlBarSeparator" object represents a separator of an information bar or toolbar.
You can reference the "ControlBarSeparator" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarSeparatorPart

Properties
The "ControlBarSeparator" object has the following properties:
• Authorization

Returns the operator authorization.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the disconnector can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• Mapping

Returns the function of the separator.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.

Programming scripts
10.2 WinCC Unified object model

6752 System Manual, 11/2022

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the separator is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the disconnector is only operable while the associated button is being
pressed.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the disconnector is visible.

• Width
Specifies the width.

Methods
--

ControlBarSeparator.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the separator.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarSeparator.Authorization

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6753

See also
ControlBarSeparator (Page 6752)

ControlBarSeparator.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarSeparator.CustomID

See also
ControlBarSeparator (Page 6752)

ControlBarSeparator.Enabled

Description
The "Enabled" property specifies whether the separator is active in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Enabled

Programming scripts
10.2 WinCC Unified object model

6754 System Manual, 11/2022

See also
ControlBarSeparator (Page 6752)

ControlBarSeparator.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.ForeColor

See also
ControlBarSeparator (Page 6752)

ControlBarSeparator.Height

Description
The "Height" property specifies the height of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Height

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6755

See also
ControlBarSeparator (Page 6752)

ControlBarSeparator.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup

Programming scripts
10.2 WinCC Unified object model

6756 System Manual, 11/2022

• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6757

Access
Read-only

Syntax
ControlBarSeparator.Mapping

See also
ControlBarSeparator (Page 6752)

ControlBarSeparator.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the separator.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarSeparator.Margin

See also
ControlBarSeparator (Page 6752)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6758 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarSeparator.Margin (Page 6758)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarSeparator.Margin (Page 6758)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6759

Access
Read-write

Syntax
Margin.Right

See also
ControlBarSeparator.Margin (Page 6758)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarSeparator.Margin (Page 6758)

ControlBarSeparator.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

6760 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarSeparator.MaximumHeight

See also
ControlBarSeparator (Page 6752)

ControlBarSeparator.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MaximumWidth

See also
ControlBarSeparator (Page 6752)

ControlBarSeparator.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6761

Access
Read-write

Syntax
ControlBarSeparator.MinimumHeight

See also
ControlBarSeparator (Page 6752)

ControlBarSeparator.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.MinimumWidth

See also
ControlBarSeparator (Page 6752)

ControlBarSeparator.Operability

Description
The "Operability" property returns whether the separator is operable.

Type
Int32, HmiOperability

Programming scripts
10.2 WinCC Unified object model

6762 System Manual, 11/2022

Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarSeparator.Operability

See also
ControlBarSeparator (Page 6752)

ControlBarSeparator.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the separator.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarSeparator.Padding

See also
ControlBarSeparator (Page 6752)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6763

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarSeparator.Padding (Page 6763)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarSeparator.Padding (Page 6763)

Programming scripts
10.2 WinCC Unified object model

6764 System Manual, 11/2022

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarSeparator.Padding (Page 6763)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarSeparator.Padding (Page 6763)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6765

ControlBarSeparator.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the disconnector can only be operated
while the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarSeparator.RequireExplicitUnlock

See also
ControlBarSeparator (Page 6752)

ControlBarSeparator.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the separator.

Type
String

Access
Read-write

Syntax
ControlBarSeparator.ToolTipText

See also
ControlBarSeparator (Page 6752)

Programming scripts
10.2 WinCC Unified object model

6766 System Manual, 11/2022

ControlBarSeparator.Visible

Description
The "Visible" property specifies whether the separator is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarSeparator.Visible

See also
ControlBarSeparator (Page 6752)

ControlBarSeparator.Width

Description
The "Width" property specifies the width of the separator in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarSeparator.Width

See also
ControlBarSeparator (Page 6752)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6767

ControlBarTextBox

Description
The "ControlBarTextBox" object represents a text box of an information bar or toolbar.
You can reference the "ControlBarTextBox" object via the "HmiControlBarElementCollection"
list.

Object type
HmiControlBarTextBoxPart

Properties
The "ControlBarTextBox" object has the following properties:
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• CustomID

Returns the custom ID.
• Enabled

Specifies whether the text box can be operated in runtime.
• ForeColor

Specifies the font color.
• Height

Specifies the height.
• HorizontalTextAlignment

Specifies the horizontal alignment of the text.
• Mapping

Returns the function of the text box.
• Margin

Specifies the margin.
• MaximumHeight

Specifies the maximum height.
• MaximumWidth

Specifies the maximum width.

Programming scripts
10.2 WinCC Unified object model

6768 System Manual, 11/2022

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the text box is operable.

• Padding
Specifies the distance of the content from the border.

• Readonly
Specifies whether the text box is write-protected.

• RequireExplicitUnlock
Returns whether the text box is only operable while the associated button is being pressed.

• Text
Specifies the labeling.

• ToolTipText
Specifies the tooltip text.

• VerticalTextAlignment
Specifies the vertical alignment of the text.

• Visible
Specifies whether the text box is visible.

• Width
Specifies the width.

Methods
--

ControlBarTextBox.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6769

Syntax
ControlBarTextBox.AlternateBorderColor

See also
ControlBarTextBox (Page 6768)

ControlBarTextBox.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the text box of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarTextBox.Authorization

See also
ControlBarTextBox (Page 6768)

ControlBarTextBox.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6770 System Manual, 11/2022

Syntax
ControlBarTextBox.BackColor

See also
ControlBarTextBox (Page 6768)

ControlBarTextBox.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.BorderColor

See also
ControlBarTextBox (Page 6768)

ControlBarTextBox.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6771

Syntax
ControlBarTextBox.BorderWidth

See also
ControlBarTextBox (Page 6768)

ControlBarTextBox.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarTextBox.CustomID

See also
ControlBarTextBox (Page 6768)

ControlBarTextBox.Enabled

Description
The "Enabled" property specifies whether the text box can be operated in runtime.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6772 System Manual, 11/2022

Syntax
ControlBarTextBox.Enabled

See also
ControlBarTextBox (Page 6768)

ControlBarTextBox.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.ForeColor

See also
ControlBarTextBox (Page 6768)

ControlBarTextBox.Height

Description
The "Height" property specifies the height of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6773

Syntax
ControlBarTextBox.Height

See also
ControlBarTextBox (Page 6768)

ControlBarTextBox.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
ControlBarTextBox.HorizontalTextAlignment

See also
ControlBarTextBox (Page 6768)

ControlBarTextBox.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID

Programming scripts
10.2 WinCC Unified object model

6774 System Manual, 11/2022

Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment
• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6775

• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms
• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarTextBox.Mapping

See also
ControlBarTextBox (Page 6768)

Programming scripts
10.2 WinCC Unified object model

6776 System Manual, 11/2022

ControlBarTextBox.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the text box.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ControlBarTextBox.Margin

See also
ControlBarTextBox (Page 6768)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarTextBox.Margin (Page 6777)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6777

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ControlBarTextBox.Margin (Page 6777)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarTextBox.Margin (Page 6777)

Programming scripts
10.2 WinCC Unified object model

6778 System Manual, 11/2022

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ControlBarTextBox.Margin (Page 6777)

ControlBarTextBox.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumHeight

See also
ControlBarTextBox (Page 6768)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6779

ControlBarTextBox.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MaximumWidth

See also
ControlBarTextBox (Page 6768)

ControlBarTextBox.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumHeight

See also
ControlBarTextBox (Page 6768)

Programming scripts
10.2 WinCC Unified object model

6780 System Manual, 11/2022

ControlBarTextBox.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Access
Read-write

Syntax
ControlBarTextBox.MinimumWidth

See also
ControlBarTextBox (Page 6768)

ControlBarTextBox.Operability

Description
The "Operability" property returns whether the text box is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarTextBox.Operability

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6781

See also
ControlBarTextBox (Page 6768)

ControlBarTextBox.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the text box.

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarTextBox.Padding

See also
ControlBarTextBox (Page 6768)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

Programming scripts
10.2 WinCC Unified object model

6782 System Manual, 11/2022

See also
ControlBarTextBox.Padding (Page 6782)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarTextBox.Padding (Page 6782)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6783

See also
ControlBarTextBox.Padding (Page 6782)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarTextBox.Padding (Page 6782)

ControlBarTextBox.ReadOnly

Description
The "ReadOnly" property specifies whether the text box is read-only.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.ReadOnly

Programming scripts
10.2 WinCC Unified object model

6784 System Manual, 11/2022

See also
ControlBarTextBox (Page 6768)

ControlBarTextBox.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the text box can only be operated while
the associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarTextBox.RequireExplicitUnlock

See also
ControlBarTextBox (Page 6768)

ControlBarTextBox.Text

Description
The "Text" property specifies the label of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.Text

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6785

See also
ControlBarTextBox (Page 6768)

ControlBarTextBox.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the text box.

Type
String

Access
Read-write

Syntax
ControlBarTextBox.ToolTipText

See also
ControlBarTextBox (Page 6768)

ControlBarTextBox.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6786 System Manual, 11/2022

Syntax
ControlBarTextBox.VerticalTextAlignment

See also
ControlBarTextBox (Page 6768)

ControlBarTextBox.Visible

Description
The "Visible" property specifies whether the text box is visible.

Type
Bool

Access
Read-write

Syntax
ControlBarTextBox.Visible

See also
ControlBarTextBox (Page 6768)

ControlBarTextBox.Width

Description
The "Width" property specifies the width of the text box in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6787

Syntax
ControlBarTextBox.Width

See also
ControlBarTextBox (Page 6768)

ControlBarToggleSwitch

Description
The "ControlBarToggleSwitch" object represents a switch of an information bar or toolbar.
You can reference the "ControlBarToggleSwitch" object via the
"HmiControlBarElementCollection" list.

Object type
HmiControlBarToggleSwitchPart

Properties
The "ControlBarToggleSwitch" object has the following properties:
• AlternateBackColor

Specifies the second color for a color gradient.
• AlternateBorderColor

Specifies the second border color which is displayed for line styles such as "Dash".
• AlternateGraphic

Specifies the graphic for the "pressed" state.
• AlternateText

Specifies the text for the "pressed" state.
• Authorization

Returns the operator authorization.
• BackColor

Specifies the background color.
• Badge

Specifies the identifier of the switch.
• BorderColor

Specifies the line color.
• BorderWidth

Specifies the line thickness.
• Content

Specifies display options for text and graphics.

Programming scripts
10.2 WinCC Unified object model

6788 System Manual, 11/2022

• CustomID
Returns the custom ID.

• Enabled
Specifies whether the switch can be operated in runtime.

• ForeColor
Specifies the font color.

• Graphic
Specifies the graphic.

• Height
Specifies the height.

• HotKey
Returns the hotkey specified for the switch.

• IsAlternateState
Specifies the current state of the switch.

• Mapping
Returns the function of the switch.

• Margin
Specifies the margin.

• MaximumHeight
Specifies the maximum height.

• MaximumWidth
Specifies the maximum width.

• MinimumHeight
Specifies the minimum height.

• MinimumWidth
Specifies the minimum width.

• Operability
Returns whether the switch is operable.

• Padding
Specifies the distance of the content from the border.

• RequireExplicitUnlock
Returns whether the switch is only operable while the associated button is being pressed.

• Text
Specifies the label.

• ToolTipText
Specifies the tooltip text.

• Visible
Specifies whether the switch is visible.

• Width
Specifies the width.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6789

Methods
--

ControlBarToggleSwitch.AlternateBackColor

Description
The "AlternateBackColor" property specifies the second background color for a color gradient.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBackColor

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.AlternateBorderColor

Description
The "AlternateBorderColor" property specifies the second border color used with line styles such
as "Dash".

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateBorderColor

Programming scripts
10.2 WinCC Unified object model

6790 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.AlternateGraphic

Description
The "AlternateGraphic" property specifies the graphic of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateGraphic

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.AlternateText

Description
The "AlternateText" property specifies the text of the switch for the "On" state.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.AlternateText

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6791

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.Authorization

Description
The "Authorization" property returns the operator authorization (HmiFunctionRight) that the
logged-in operator must have to use the switch of an information bar or toolbar.

Type
Object, HmiFunctionRight

Access
Read-only

Syntax
ControlBarToggleSwitch.Authorization

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.BackColor

Description
The "BackColor" property specifies the background color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BackColor

Programming scripts
10.2 WinCC Unified object model

6792 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.Badge

Description
The "Badge" property specifies the identifier of the switch.

Type
Object, HmiBadgePart

Access
Read-write

Syntax
ControlBarToggleSwitch.Badge

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.BorderColor

Description
The "BorderColor" property specifies the border color.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderColor

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6793

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.BorderWidth

Description
The "BorderWidth" property specifies the border thickness.

Type
UInt8

Access
Read-write

Syntax
ControlBarToggleSwitch.BorderWidth

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.Content

Description
The "Content" property specifies display options for text and graphics.

Type
Object, HmiContentPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Content

Programming scripts
10.2 WinCC Unified object model

6794 System Manual, 11/2022

See also
ControlBarToggleSwitch (Page 6788)

Content.ContentMode

Description
The "ContentMode" property specifies whether text, graphics, or both are used for the display.

Type
Int32, HmiContentMode
Specifies the appearance of text and graphics:
• GraphicOrText (0): Graphic has priority. If no graphic is available, text is used.
• GraphicAndText (1): Text and graphics
• Text (2): Text only
• Graphic (3): Graphic only

Access
Read-write

Syntax
Content.ContentMode

See also
ControlBarToggleSwitch.Content (Page 6794)

Content.GraphicStretchMode

Description
The "GraphicStretchMode" property defines the type of scaling of the graphic.

Type
Int32, HmiGraphicStretchMode
Specifies the scaling of the graphic:
• None (0): The graphic is shown in the original size and centered.
• Fill (1): Graphic is displayed in the available space. Aspect ratio is adjusted, but not scaled.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6795

• Uniform (2): Graphic is displayed in the available space. Aspect ratio is not changed.
• UniformToFill (3): Graphic is displayed in the available space. The rest is truncated. Aspect

ratio is not changed.
• Tiled (4): The graphic is shown in the original size and repeated in tiles.

Access
Read-write

Syntax
Content.GraphicStretchMode

See also
ControlBarToggleSwitch.Content (Page 6794)

Content.HorizontalTextAlignment

Description
The "HorizontalTextAlignment" property specifies the horizontal alignment of the text.

Type
Int32, HmiHorizontalAlignment
Specifies the horizontal alignment:
• Left (0): Left
• Center (1): Centered
• Right (2): Right
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.HorizontalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 6794)

Programming scripts
10.2 WinCC Unified object model

6796 System Manual, 11/2022

Content.Spacing

Description
The "Spacing" property specifies the spacing between graphics and text.

Type
UInt32

Access
Read-write

Syntax
Content.Spacing

See also
ControlBarToggleSwitch.Content (Page 6794)

Content.SplitRatio

Description
The "SplitRatio" property specifies how much space the graphic takes up in relation to the text.
A split ratio of 0.7 means that the graphic takes up 70% of the space.

Type
Float

Access
Read-write

Syntax
Content.SplitRatio

See also
ControlBarToggleSwitch.Content (Page 6794)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6797

Content.TextPosition

Description
The "TextPosition" property specifies the position of the text in comparison to the graphic.

Type
Int32, HmiTextPosition
Specifies the position of the text:
• Left (0): Left
• Right (1): Right
• Top (2): Above
• Bottom (3): Below
• Behind (4): Behind
• InFront (5): In front

Access
Read-write

Syntax
Content.TextPosition

See also
ControlBarToggleSwitch.Content (Page 6794)

Content.TextTrimming

Description
The "TextTrimming" property specifies the type of text trimming if space is not sufficient.

Type
Int32, HmiTextTrimming
Specifies the text trimming:
• None (0): No trimming
• CharacterEllipsis (1): Trimming of the text end with character ellipsis ("…")

Programming scripts
10.2 WinCC Unified object model

6798 System Manual, 11/2022

Access
Read-write

Syntax
Content.TextTrimming

See also
ControlBarToggleSwitch.Content (Page 6794)

Content.VerticalTextAlignment

Description
The "VerticalTextAlignment" property specifies the vertical alignment of the text.

Type
Int32, HmiVerticalAlignment
Specifies the vertical alignment:
• Top (0): Top
• Center (1): Centered
• Bottom (2): Bottom
• Stretch (3): Stretched

Access
Read-write

Syntax
Content.VerticalTextAlignment

See also
ControlBarToggleSwitch.Content (Page 6794)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6799

ControlBarToggleSwitch.CustomID

Description
The "CustomID" property returns the custom ID for identification of an element of an information
bar or toolbar.

Type
Int32

Access
Read-only

Syntax
ControlBarToggleSwitch.CustomID

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.Enabled

Description
The "Enabled" property specifies whether the switch can be operated in runtime.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Enabled

See also
ControlBarToggleSwitch (Page 6788)

Programming scripts
10.2 WinCC Unified object model

6800 System Manual, 11/2022

ControlBarToggleSwitch.ForeColor

Description
The "ForeColor" property specifies the font color of the text.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.ForeColor

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.Graphic

Description
The "Graphic" property specifies the graphic of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Graphic

See also
ControlBarToggleSwitch (Page 6788)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6801

ControlBarToggleSwitch.Height

Description
The "Height" property specifies the height of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Height

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.HotKey

Description
The "HotKey" property returns the hotkey specified for the switch. Hotkeys are unique within a
screen. The hotkeys are activated from the active (local) screen window down to the top level
screen window.

Type
UInt16

Access
Read-only

Syntax
Button.HotKey

See also
ControlBarToggleSwitch (Page 6788)

Programming scripts
10.2 WinCC Unified object model

6802 System Manual, 11/2022

ControlBarToggleSwitch.IsAlternateState

Description
The "IsAlternateState" property specifies the current state of the switch.
• True: Switch is in "On" state.
• False: Switch is in "Off" state.

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.IsAlternateState

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.Mapping

Description
The "Mapping" property returns the function of an element of an information bar or toolbar.

Type
Int32, HmiAlarmControlID
Function of an element of the alarm control:
• None (0): None
• Help (1): Show help
• Configuration (2): Configuration dialog
• AlarmView (3): Alarm control
• AlarmStatisticsView (5): Alarm statistics display
• AlarmAnnunciator (7): Alarm annunciator
• SingleAcknowledgment (8): Single-mode acknowledgment
• GroupAcknowledgment (9): Group acknowledgment

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6803

• AlwaysShowRecent (10): Show recent
• SelectionDisplay (11): Selection display
• DisplayOptionsSetup (12): Display options setup
• DisabledAlarmsSetup (13): Configuration of the locked alarms
• FirstLine (14): First row
• PreviousLine (15): Previous line
• NextLine (16): Next line
• LastLine (17): Last line
• InfoTextSetup (18): Info text setup
• CommentsSetup (19): Comments setup
• LoopInAlarm (20): Loop-in-alarm
• DisableAlarm (21): Lock alarm
• EnableAlarm (22): Release alarm
• ShelveAlarm (23): Shelve alarm
• UnshelveAlarm (24): Unshelve alarm
• SortSetup (25): Sorting setup
• TimeBaseSetup (26): Time base setup
• CopyLines (27): Copy lines
• PreviousPage (28): Previous page
• NextPage (29): Next page
• TimeBase (256): Timebase
• Date (257): Date
• Time (258): Time
• PendingAlarms (259): Pending alarms
• Alarms (260): Alarms
• PendingAcknowledgeableAlarms (261): Pending acknowledgeable alarms
• PendingShelvedAlarms (262): Pending shelved alarms
• Selection (263): Selection
• DisplayOption (264): Display options
• Disabled (265): Disabled
• HasPendingShelvedAlarms (272): Pending shelved alarms available
• ConnectionStatus (273): Connection status
• Print (30): Print
• ShowActiveAlarms (31): Show active alarms
• ShowLoggedAlarms (32): Show logged alarms

Programming scripts
10.2 WinCC Unified object model

6804 System Manual, 11/2022

• ShowLoggedAlarmsUpdated (33): Show and update logged alarms
• ShowDefinedAlarms (34): Show defined alarms
• SingleReset (35): Single confirm
• Export (36): Export
• MoveToNextAcknowledgeableAlarm (37): Skip to the next alarm that requires

acknowledgment
• StartTime (274): Start time
• EndTime (275): End time
• CurrentContextHint (276): Note on current context
• SelectContext (38): Select context
• StatusText (277): Status text
• Custom (65536): Reserved for user-defined functions. The "CustomID" property can be used

for identification.
• PendingResettableAlarms (278): Pending engaged alarms
• StatisticsSetup (39): Show alarm statistics settings
• MaximumRecordsExceeded (279): Number of logged alarms exceeds the value of

AlarmStatisticsSettings.MaximumRecords.

Access
Read-only

Syntax
ControlBarToggleSwitch.Mapping

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the switch.

Type
Object, HmiMarginPart

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6805

Access
Read-write

Syntax
ControlBarToggleSwitch.Margin

See also
ControlBarToggleSwitch (Page 6788)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Syntax
Margin.Bottom

See also
ControlBarToggleSwitch.Margin (Page 6805)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

6806 System Manual, 11/2022

Access
Read-write

Syntax
Margin.Left

See also
ControlBarToggleSwitch.Margin (Page 6805)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Syntax
Margin.Right

See also
ControlBarToggleSwitch.Margin (Page 6805)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6807

Access
Read-write

Syntax
Margin.Top

See also
ControlBarToggleSwitch.Margin (Page 6805)

ControlBarToggleSwitch.MaximumHeight

Description
The "MaximumHeight" property specifies the maximum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumHeight

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.MaximumWidth

Description
The "MaximumWidth" property specifies the maximum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

6808 System Manual, 11/2022

Access
Read-write

Syntax
ControlBarToggleSwitch.MaximumWidth

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.MinimumHeight

Description
The "MinimumHeight" property specifies the minimum height.

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumHeight

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.MinimumWidth

Description
The "MinimumWidth" property specifies the minimum width.

Type
UInt32

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6809

Access
Read-write

Syntax
ControlBarToggleSwitch.MinimumWidth

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.Operability

Description
The property "Operability" returns whether the switch is operable.

Type
Int32, HmiOperability
Returns the operability:
• Operable (0): Operable
• DisabledProgrammatically (1): Not operable because disabled.
• NoAuthorization (2): Not operable because operator authorization is missing.
• NoExplicitUnlock (4): Not operable because unlock button is not pressed.

Access
Read-only

Syntax
ControlBarToggleSwitch.Operability

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the switch.

Programming scripts
10.2 WinCC Unified object model

6810 System Manual, 11/2022

Type
Object, HmiPaddingPart

Access
Read-write

Syntax
ControlBarToggleSwitch.Padding

See also
ControlBarToggleSwitch (Page 6788)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ControlBarToggleSwitch.Padding (Page 6810)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6811

Type
Int32

Access
Read-write

Syntax
Padding.Left

See also
ControlBarToggleSwitch.Padding (Page 6810)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ControlBarToggleSwitch.Padding (Page 6810)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Programming scripts
10.2 WinCC Unified object model

6812 System Manual, 11/2022

Type
Int32

Access
Read-write

Syntax
Padding.Top

See also
ControlBarToggleSwitch.Padding (Page 6810)

ControlBarToggleSwitch.RequireExplicitUnlock

Description
The "RequireExplicitUnlock" property returns whether the switch can only be operated while the
associated button is being pressed.

Type
Bool

Access
Read-only

Syntax
ControlBarToggleSwitch.RequireExplicitUnlock

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.Text

Description
The "Text" property specifies the label of the switch.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6813

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.Text

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.ToolTipText

Description
The "ToolTipText" property specifies the text of the tooltip of the switch.

Type
String

Access
Read-write

Syntax
ControlBarToggleSwitch.ToolTipText

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.Visible

Description
The "Visible" property specifies whether the switch is visible.

Programming scripts
10.2 WinCC Unified object model

6814 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
ControlBarToggleSwitch.Visible

See also
ControlBarToggleSwitch (Page 6788)

ControlBarToggleSwitch.Width

Description
The "Width" property specifies the width of the switch in DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
ControlBarToggleSwitch.Width

See also
ControlBarToggleSwitch (Page 6788)

ToolBar.Enabled

Description
The "Enabled" property specifies whether the toolbar can be operated in runtime.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6815

Type
Bool

Access
Read-write

Syntax
ToolBar.Enabled

See also
WebControl.ToolBar (Page 6683)

ToolBar.Font

Description
The "Font" property specifies the font of the text.

Type
Object, HmiFontPart

Access
Read-write

Syntax
ToolBar.Font

See also
WebControl.ToolBar (Page 6683)

Font.Italic

Description
The "Italic" property specifies whether the text is displayed in italics.

Programming scripts
10.2 WinCC Unified object model

6816 System Manual, 11/2022

Type
Bool

Access
Read-write

Syntax
Font.Italic

See also
ToolBar.Font (Page 6816)

Font.Name

Description
The "Name" property specifies the name of the character set used.

Type
String

Access
Read-write

Syntax
Font.Name

See also
ToolBar.Font (Page 6816)

Font.Size

Description
The "Size" property specifies the font size in DIU (Device Independent Unit).

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6817

Type
Float

Access
Read-write

Syntax
Font.Size

See also
ToolBar.Font (Page 6816)

Font.StrikeOut

Description
The "StrikeOut" property specifies whether font is struck through.

Type
Int32, HmiFontStrikeOut
Specifies the type of strikethrough font:
• None (0): None
• Single (1): Single

Access
Read-write

Syntax
Font.StrikeOut

See also
ToolBar.Font (Page 6816)

Programming scripts
10.2 WinCC Unified object model

6818 System Manual, 11/2022

Font.Underline

Description
The "Underline" property specifies whether the font is underlined.

Type
Bool

Access
Read-write

Syntax
Font.Underline

See also
ToolBar.Font (Page 6816)

Font.Weight

Description
The "Weight" property specifies the font thickness.

Type
Int32, HmiFontWeight
Specifies the font weight:
• None (0): None
• Light (300): Light
• Normal (400): Normal
• SemiBold (600): Semi-bold
• Bold (700): Bold

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6819

Syntax
Font.Weight

See also
ToolBar.Font (Page 6816)

ToolBar.Margin

Description
The "Margin" property specifies the surrounded outer spacing of the toolbar.

Type
Object, HmiMarginPart

Access
Read-write

Syntax
ToolBar.Margin

See also
WebControl.ToolBar (Page 6683)

Margin.Bottom

Description
The "Bottom" property specifies the spacing to the bottom.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6820 System Manual, 11/2022

Syntax
Margin.Bottom

See also
ToolBar.Margin (Page 6820)

Margin.Left

Description
The "Left" property specifies the spacing to the left.

Type
Int32

Access
Read-write

Syntax
Margin.Left

See also
ToolBar.Margin (Page 6820)

Margin.Right

Description
The "Right" property specifies the spacing to the right.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6821

Syntax
Margin.Right

See also
ToolBar.Margin (Page 6820)

Margin.Top

Description
The "Top" property specifies the spacing to the top.

Type
Int32

Access
Read-write

Syntax
Margin.Top

See also
ToolBar.Margin (Page 6820)

ToolBar.Padding

Description
The "Padding" property specifies the spacing of the content from the border of the toolbar.

Type
Object, HmiPaddingPart

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6822 System Manual, 11/2022

Syntax
ToolBar.Padding

See also
WebControl.ToolBar (Page 6683)

Padding.Bottom

Description
The "Bottom" property specifies the bottom distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Bottom

See also
ToolBar.Padding (Page 6822)

Padding.Left

Description
The "Left" property specifies the left distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6823

Syntax
Padding.Left

See also
ToolBar.Padding (Page 6822)

Padding.Right

Description
The "Right" property specifies the right distance of the content from the border.

Type
Int32

Access
Read-write

Syntax
Padding.Right

See also
ToolBar.Padding (Page 6822)

Padding.Top

Description
The "Top" property specifies the top distance of the content from the border.

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6824 System Manual, 11/2022

Syntax
Padding.Top

See also
ToolBar.Padding (Page 6822)

ToolBar.ShowToolTips

Description
The "ShowToolTips" property specifies whether tooltips are displayed.

Type
Bool

Access
Read-write

Syntax
ToolBar.ShowToolTips

See also
WebControl.ToolBar (Page 6683)

ToolBar.UseHotKeys

Description
The "UseHotKeys" property specifies whether the shortcut keys for the buttons in the toolbar are
activated.

Type
Bool

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6825

Syntax
ToolBar.UseHotKeys

See also
WebControl.ToolBar (Page 6683)

ToolBar.Visible

Description
The "Visible" property specifies whether the toolbar is visible.

Type
Bool

Access
Read-write

Syntax
ToolBar.Visible

See also
WebControl.ToolBar (Page 6683)

WebControl.Top

Description
The "Top" property sets the value of the Y coordinate in the DIU (Device Independent Unit).

Type
Int32

Access
Read-write

Programming scripts
10.2 WinCC Unified object model

6826 System Manual, 11/2022

Syntax
WebControl.Top

See also
WebControl (Page 6649)

WebControl.Url

Description
The "Url" property specifies the URL displayed by the web browser.

Type
String

Access
Read-write

Syntax
WebControl.Url

See also
WebControl (Page 6649)

WebControl.Visible

Description
The "Visible" property specifies whether the web browser is visible.

Type
Bool

Access
Read-write

Syntax
WebControl.Visible

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6827

See also
WebControl (Page 6649)

WebControl.Width

Description
The "Width" property specifies the width in the DIU (Device Independent Unit).

Type
UInt32

Access
Read-write

Syntax
WebControl.Width

See also
WebControl (Page 6649)

WebControl.WindowFlags

Description
The "WindowFlags" property specifies the window configuration of the web browser.

Type
Int32, HmiWindowFlag
Specifies the window configuration:
• None (0): Use default setting of the object
• ShowCaption (1): Show title
• ShowBorder (2): Show border
• AlwaysOnTop (4): Always on top
• CanSize (8): Can be sized
• CanMove (16): Can be moved
• CanMaximize (32): Can be maximized

Programming scripts
10.2 WinCC Unified object model

6828 System Manual, 11/2022

• CanClose (64): Can be closed
• AlwaysInParent (128): Position always inside the surrounding object

Note
You can enable multiple properties by adding integer values or bit operators.

Access
Read-write

Syntax
WebControl.WindowFlags

See also
WebControl (Page 6649)

WebControl.CheckAuthorization()

Description
The "CheckAuthorization" method returns whether the current user is authorized to operate the
web browser.

Syntax
WebControl.CheckAuthorization()

Parameters
--

Return value
Bool

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6829

Example
Set the background of all screen objects that start with "btn" and cannot be operated to light gray:

Copy code
for (const screenItem of Screen.Items) {
 if (screenItem.Name.startsWith('btn') && !screenItem.CheckAuthorization()) {
 screenItem.BackColor = 0xFFAAAAAA; // light grey
 }
}

See also
WebControl (Page 6649)

WebControl.FireCommand()

Description
The "FireCommand" method executes the command of an element in the toolbar or information
bar (control bar element, e.g. a button) of the browser.

Syntax
WebControl.FireCommand(commandId, custom)

Parameters
commandId
Type: Int32
ID of the element of the toolbar or information bar

custom
Type: Bool
Type of element ID:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

Return value
--

See also
WebControl (Page 6649)

Programming scripts
10.2 WinCC Unified object model

6830 System Manual, 11/2022

WebControl.PropertyFlashing()

Description
The "PropertyFlashing" method configures the flashing of a property. Flashing refers to the
change between two values of a property.

Syntax
WebControl.PropertyFlashing(propertyName, enable[, value][,
alternateValue][, rate])

Parameters
propertyName
Type: String
Name of the property for which flashing is configured.

enable
Type: Bool
Specifies that flashing is activated.

value
Optional, type: Variant
Value of the property for which flashing is configured.

alternateValue
Optional, type: Variant
Specifies the second value for flashing.

rate
Optional, type: Int32, HmiFlashingRate
Specifies the flash rate:
• Slow (0): Slow, 2 s
• Medium (1): Medium, 1 s
• Fast (2): Fast, 500 ms

Note
If the parameter is missing, "Medium" is used.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6831

Return value
Bool

See also
WebControl (Page 6649)

WebControl_OnActivated()

Description
The "OnActivated" event occurs when a web browser receives focus:
• A web browser is selected via the configured tab sequence.
• A web browser that had no focus is clicked/tapped.
The "OnActivated" event is only used to detect whether an object has been selected and is
receiving focus. The event is not triggered if the object already had the focus.
The event does not trigger a password prompt. For this reason, do not use the "OnActivated"
event if you want to configure access protection on the function call of the object.

Syntax
Ellipse_OnActivated(item)

Context
item
Type: Object
Web browser where the event occurs.

See also
WebControl (Page 6649)

WebControl_OnCommandFired()

Description
The "OnCommandFired" event occurs when the operator has operated an element in the toolbar
or information bar (control bar element, e.g. a button) of the web browser.

Syntax
WebControl_OnCommandFired(item, commandId, custom)

Programming scripts
10.2 WinCC Unified object model

6832 System Manual, 11/2022

Context
item
Type: Object
Web browser where the event occurs.

commandId
Type: DInt
ID of the element of the toolbar or information bar that was operated.

custom
Type: Bool
Specifies the type of the ID of the operated element:
• True: Custom ID
• False: ID of a standard function of an element (ControlID)

See also
WebControl (Page 6649)

WebControl_OnDeactivated()

Description
The "OnDeactivated" event occurs when a web browser loses focus because the operator presses
the <TAB> key or executes a different action with the mouse.
The "OnDeactivated" event is only used to detect whether an object was deselected.
The event does not trigger a password prompt. For this reason, do not use the
"OnDeactivated" event if you want to configure access protection on the function call of
the object.
System functions or user-defined functions on the "OnDeactivated" event are not executed
when a screen is closed.

Syntax
WebControl_OnDeactivated(item)

Context
item
Type: Object
Web browser where the event occurs.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6833

See also
WebControl (Page 6649)

WebControl_OnInitialized()

Description
The "OnInitialized" event occurs when a web browser has been successfully initialized and the
data connection to the PLC has been established.

Syntax
WebControl_OnInitialized(item)

Context
item
Type: Object
Web browser where the event occurs.

See also
WebControl (Page 6649)

SysDiag

Description
The "SysDiag" object enables access to the system diagnostics control.

Object type
HMIUISysDiag

Properties
--

Methods
--

Programming scripts
10.2 WinCC Unified object model

6834 System Manual, 11/2022

See also
UI (Page 1395)

SysFct

Description
The "SysFct" object enables access to the system functions of the "SysDiag" object.

Object type
HMIUISysDiagSysFct

Properties
--

Methods
The "SysFct" object has the following methods:
• GoToPlc()

Calls the "GoToPlc" method of the system diagnostics control.

See also
SysDiag (Page 6834)

SysFct.GoToPlc()

Description
The "GoToPlc" calls the "GoToPlc" method of the system diagnostics control.

Syntax
[HMIRuntime.]UI.SysDiag.SysFct.GoToPlc(screenItemPath);

Parameters
screenItemPath
Type: String, HmiSystemDiagnosisControl
Path of the system diagnostics control

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6835

Return value
ErrorCode

See also
SysFct (Page 6835)

SysFct

Description
The "SysFct" object ("HMIUISysFct" type) enables access to the system functions of the "UI"
object.

Object type
HMIUISysFct

Properties
--

Methods
The "SysFct" object has the following methods:
• ChangeScreen()

Loads a new screen into a screen window.
• ChangeScreenAsync()

Loads a new screen asynchronously into a screen window.
• ChangeScreenAsyncByNumber()

Loads a new screen asynchronously into a screen window.
• ChangeScreenByNumber()

Loads a new screen into a screen window.
• ClosePopup()

Closes a popup window in runtime.
• GetPropertyValue()

Returns the current value of a property of a screen object.
• LogOff()

Logs off the current user.
• OpenScreenByNumberInPopup()

Opens a screen in a popup window.
• OpenScreenInPopup()

Opens a screen in a popup window.

Programming scripts
10.2 WinCC Unified object model

6836 System Manual, 11/2022

• SetLanguage()
Sets a new current runtime language.

• SetPropertyValue()
Sets the current value of a property of a screen object.

• ToggleLanguage()
Changes the runtime language to the next one in the list of configured languages.

See also
UI (Page 1395)

SysFct.ChangeScreen()

Description
The "ChangeScreen" method loads a new screen into a screen window.

Syntax
[HMIRuntime.]UI.SysFct.ChangeScreen(screenName, screenWindowPath);

Parameters
screenName
Type: String, HmiScreen
Name of the new screen

screenWindowPath
Type: String, HmiScreenWindow
Object path of the screen window

Return value
ErrorCode

See also
SysFct (Page 6836)

SysFct.ChangeScreenAsync()

Description
The "ChangeScreenAsync" method loads a new screen asynchronously into a screen window.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6837

This method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful (then())
and faulty (catch()) execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern is called after the operation.

Syntax
[HMIRuntime.]UI.SysFct.ChangeScreenAsync(screenName,
screenWindowPath)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
screenName
Type: String, HmiScreen
Name of the new screen

screenWindowPath
Type: String, HmiScreenWindow
Object path of the screen window

Return value
Promise
Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler.

See also
SysFct (Page 6836)

SysFct.ChangeScreenAsyncByNumber()

Description
The "ChangeScreenAsyncByNumber" method loads a new screen asynchronously into a screen
window.

Programming scripts
10.2 WinCC Unified object model

6838 System Manual, 11/2022

This method executes an asynchronous operation without blocking further script execution.
To do this, the method uses a Promise object which has handlers for the successful (then())
and faulty (catch()) execution of the operation. Depending on the result, the corresponding
handler of the Promise pattern is called after the operation.

Syntax
[HMIRuntime.]UI.SysFct.ChangeScreenAsyncByNumber(screenNumber,
screenWindowPath)
.then(function() {
 ...
})
.catch(function(errorCode) {
 ...
})

Parameters
screenNumber
Type: UInt32
Unique number (> 0) of the new screen

screenWindowPath
Type: String, HmiScreenWindow
Object path of the screen window

Return value
Promise
Depending on the state of the Promise object:
• Promise fulfilled (fulfilled)

No return for the "then()" handler.
• Promise rejected (rejected)

ErrorCode as parameter of the "catch()" handler.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6839

Example
Load the screen with the number "6" asynchronously into the screen window
"ScreenWindow_1":

Copy code
HMIRuntime.UI.SysFct.ChangeScreenAsyncByNumber(6,"~/ScreenWindow_1")
.then(function () {
 HMIRuntime.Trace("Screen changed!");
})
.catch((error) => {
 let errMsg = HMIRuntime.GetDetailedErrorDescription(error);
 HMIRuntime.Trace("ChangeScreen failed! Error = " + error + " " +
errMsg);
});

See also
SysFct (Page 6836)

SysFct.ChangeScreenByNumber()

Description
The "ChangeScreenByNumber" method loads a new screen into a screen window.

Syntax
[HMIRuntime.]UI.SysFct.ChangeScreenByNumber(screenNumber,
screenWindowPath);

Parameters
screenNumber
Type: UInt32
Unique number (> 0) of the new screen

screenWindowPath
Type: String, HmiScreenWindow
Object path of the screen window

Return value
ErrorCode

Programming scripts
10.2 WinCC Unified object model

6840 System Manual, 11/2022

Example
Load the screen with the number "6" into the screen window "ScreenWindow_1":

Copy code
let err = HMIRuntime.UI.SysFct.ChangeScreenByNumber(6, "~/ScreenWindow_1");

See also
SysFct (Page 6836)

SysFct.ClosePopup()

Description
The "ClosePopup" method closes a popup window in runtime.

Syntax
[HMIRuntime.]UI.SysFct.ClosePopup(popupWindowPath);

Parameter
popupWindowPath
Type: String, HmiPopupScreenPath
Object path of the popup window to be closed

Return value
ErrorCode

See also
SysFct (Page 6836)

SysFct.GetPropertyValue()

Description
The "GetPropertyValue" method returns the current value of a property of a screen object.

Syntax
[HMIRuntime.]UI.SysFct.GetPropertyValue(screenItemPath,
screenItemPropertyName);

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6841

Parameters
screenItemPath
Type: String, HmiScreenItemBase
Screen object path

screenItemPropertyName
Type: String
Name of the property of the screen object

Return value
Variant

See also
SysFct (Page 6836)

SysFct.LogOff()

Description
The "LogOff" method logs off the current user.

Syntax
[HMIRuntime.]UI.SysFct.LogOff();

Parameters
--

Return value
ErrorCode

See also
SysFct (Page 6836)

SysFct.OpenScreenByNumberInPopup()

Description
The "OpenScreenByNumberInPopup" method opens a screen in a popup window.

Programming scripts
10.2 WinCC Unified object model

6842 System Manual, 11/2022

Syntax
[HMIRuntime.]UI.SysFct.OpenScreenByNumberInPopup(popupWindowName,
screenNumber, toggleOpen, caption, left, top, hideCloseButton[,
parentScreenPath]);

Parameters
popupWindowName
Type: String, HmiPopupScreenName
Name of the popup window. The name must be unique within the parent screen.

screenNumber
Type: UInt32
Unique number (> 0) of the screen that will be loaded into the popup window.

toggleOpen
Type: Bool
Specifies the behavior of the popup window when it is reopened:
• True: If the window is open, it will be closed.
• False: If the window is open, it remains open.

caption
Type: String
Specifies the window title of the popup window.

left
Type: Int32
Specifies the window position as offset from the left-hand margin.

top
Type: Int32
Specifies the window position as offset from the top margin.

hideCloseButton
Type: Bool
Specifies whether the Close button is displayed:
• True: Close button is not displayed.
• False: Close button is displayed.

parentScreenPath
Optional, type: String, HmiParentScreen
Object path of the parent screen. If this value is left empty, the popup window is global and
will not close along with the parent screen.

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6843

Return value
ErrorCode

Example
Load the screen with the number "6" into the screen window "ScreenWindow_1":

Copy code
let err = HMIRuntime.UI.SysFct.OpenScreenByNumberInPopup("popup", 6,
false, "popup caption", 20, 30, false, undefined);

See also
SysFct (Page 6836)

SysFct.OpenScreenInPopup()

Description
The "OpenScreenInPopup" method opens a screen in a popup window.

Syntax
[HMIRuntime.]UI.SysFct.OpenScreenInPopup(popupWindowName,
screenName, toggleOpen, caption, left, top, hideCloseButton[,
parentScreenPath]);

Parameters
popupWindowName
Type: String, HMIPopupScreenWindow
Name of the popup window. The name must be unique within the parent screen.

screenName
Type: String, HMIScreen
Name of the screen that will be loaded into the popup window.

toggleOpen
Type: Bool
Specifies the behavior of the popup window when it is reopened:
• True: If the window is open, it will be closed.
• False: If the window is open, it remains open.

Programming scripts
10.2 WinCC Unified object model

6844 System Manual, 11/2022

caption
Type: String
Specifies the window title of the popup window.

left
Type: Int32
Specifies the window position as offset from the left-hand margin.

top
Type: Int32
Specifies the window position as offset from the top margin.

hideCloseButton
Type: Bool
Specifies whether the Close button is displayed:
• True: Close button is not displayed.
• False: Close button is displayed.

parentScreenPath
Optional, type: String, HmiParentScreen
Object path of the parent screen. If this value is left empty, the popup window is global and
will not close along with the parent screen.

Return value
ErrorCode

See also
SysFct (Page 6836)

SysFct.SetLanguage()

Description
The "SetLanguage" method specifies a new current runtime language.

Syntax
[HMIRuntime.]UI.SysFct.SetLanguage(lcid);

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6845

Parameters
lcid
Type: UInt32, HMILCID
ID of the new language

Return value
ErrorCode

Locale IDs (HMILCID)
The following table contains the Microsoft locale IDs of the languages supported in runtime:

Language Country/Region Locale ID
Afrikaans South Africa 1078
Albanian Albania 1052
Armenian Armenia 1067
Azerbaijani (Cyrillic) Azerbaijan 2092
Azerbaijani (Latin) Azerbaijan 1068
Basque Basque country 1069
Belarusian Belarus 1059
Bulgarian Bulgaria 1026
Chinese Hong Kong S.A.R. 3076
Chinese Macao S.A.R. 5124
Chinese Singapore 4100
Chinese Taiwan 1028
Chinese PR China 2052
Danish Denmark 1030
German Germany 1031
German Liechtenstein 5127
German Luxembourg 4103
German Austria 3079
German Switzerland 2055
English Australia 3081
English Belize 10249
English United Kingdom 2057
English Ireland 6153
English Jamaica 8201
English Canada 4105
English Caribbean 9225
English New Zealand 5129
English Philippines 13321
English Zimbabwe 12297

Programming scripts
10.2 WinCC Unified object model

6846 System Manual, 11/2022

Language Country/Region Locale ID
English South Africa 7177
English Trinidad and Tobago 11273
English USA 1033
Estonian Estonia 1061
Faroese Faroe Islands 1080
Finnish Finland 1035
French Belgium 2060
French France 1036
French Canada 3084
French Luxembourg 5132
French Monaco 6156
French Switzerland 4108
Galician Galicia 1110
Georgian Georgia 1079
Greek Greece 1032
Hindi India 1081
Indonesian Indonesia 1057
Icelandic Iceland 1039
Italian Italy 1040
Italian Switzerland 2064
Japanese Japan 1041
Kazakh Kazakhstan 1087
Catalan Catalonia 1027
Kyrgyz Kyrgyzstan 1088
Konkani India 1111
Korean Korea 1042
Croatian Croatia 1050
Latvian Latvia 1062
Malay Brunei Darussalam 2110
Malay Malaysia 1086
Macedonian Macedonia, FYRM 1071
Mongolian (Cyrillic) Mongolia 1104
Dutch Belgium 2067
Dutch Netherlands 1043
Norwegian (Bokmål) Norway 1044
Norwegian (Nynorsk) Norway 2068
Polish Poland 1045
Portuguese Brazil 1046
Portuguese Portugal 2070
Romanian Romania 1048
Russian Russia 1049
Sanskrit India 1103
Swedish Finland 2077

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6847

Language Country/Region Locale ID
Swedish Sweden 1053
Serbian (Cyrillic) Serbia and Montenegro (former‐

ly)
3098

Serbian (Latin) Serbia and Montenegro (former‐
ly)

2074

Slovakian Slovakia 1051
Slovenian Slovenia 1060
Spanish Argentina 11274
Spanish Bolivia 16394
Spanish Chile 13322
Spanish Costa Rica 5130
Spanish Dominican Republic 7178
Spanish Ecuador 12298
Spanish El Salvador 17418
Spanish Guatemala 4106
Spanish Honduras 18442
Spanish Colombia 9226
Spanish Mexico 2058
Spanish Nicaragua 19466
Spanish Panama 6154
Spanish Paraguay 15370
Spanish Peru 10250
Spanish Puerto Rico 20490
Spanish Spain 1034
Spanish Uruguay 14346
Spanish Venezuela 8202
Swahili Kenya 1089
Tatar Russia 1092
Thai Thailand 1054
Czech Czech Republic 1029
Turkish Turkey 1055
Ukrainian Ukraine 1058
Hungarian Hungary 1038
Uzbek (Cyrillic) Uzbekistan 2115
Uzbek (Latin) Uzbekistan 1091
Vietnamese Vietnam 1066

See also
SysFct (Page 6836)

Programming scripts
10.2 WinCC Unified object model

6848 System Manual, 11/2022

SysFct.SetPropertyValue()

Description
The "SetPropertyValue" method sets the current value of a property of a screen object.

Syntax
[HMIRuntime.]UI.SysFct.SetPropertyValue(screenItemPath,
screenItemPropertyName, value);

Parameters
screenItemPath
Type: String, HmiScreenItemBase
Object path of the screen object

screenItemPropertyName
Type: String
Name of the property of the screen object

value
Type: Variant
New value of the property of the screen object

Return value
ErrorCode

See also
SysFct (Page 6836)

SysFct.ToggleLanguage()

Description
The "ToggleLanguage" method toggles the runtime language to the next in the list of
configured languages.

Syntax
[HMIRuntime.]UI.SysFct.ToggleLanguage();

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6849

Parameters
--

Return value
ErrorCode

See also
SysFct (Page 6836)

10.2.2.21 UserManagement

Description
The "UserManagement" object allows the roles of the current user to be checked.

Object type
HMIUserManagement

Properties
--

Methods
The "UserManagement" object has the following methods:
• GetRolesFromUser()

Returns the roles of the current user.
• HasUserRole()

returns whether the current user has the selected role.

UserManagement.GetRolesFromUser()

Description
The "GetRolesFromUser" method returns the roles of the current user.

Syntax
HMIRuntime.UserManagement.GetRolesFromUser();

Programming scripts
10.2 WinCC Unified object model

6850 System Manual, 11/2022

Parameters
--

Return value
String[], HMIUserRole[]

See also
UserManagement (Page 6850)

UserManagement.HasUserRole()

Description
The "HasUserRole" method returns whether the current user has the selected role.

Syntax
HMIRuntime.UserManagement.HasUserRole(RoleName);

Parameters
RoleName
Type: String, HMIUserRole
Name of the role.

Return value
Bool

See also
UserManagement (Page 6850)

Programming scripts
10.2 WinCC Unified object model

System Manual, 11/2022 6851

Programming scripts
10.2 WinCC Unified object model

6852 System Manual, 11/2022

Planning tasks 11
11.1 Basics

11.1.1 Field of application of the Scheduler
In the Scheduler, you configure tasks that are executed in the background regardless of the
screen. You create tasks by linking scripts to a trigger. The linked functions will be called when
the triggering event occurs.

Application example
You use Scheduled tasks to execute event-controlled tasks automatically. For example, you use
a task to automate the following:
• Regular swap out of log data
• Printout of an alarm report when an alarm buffer overflow occurs
• Printout of a report at shift end
• Monitoring a tag
• Monitoring of a user change

Note
The availability of the listed examples is dependent on the HMI device.

11.1.2 Basic of the scheduler

Definition
You use Scheduled tasks to configure tasks which are only to be executed cyclically or at
 a specific condition. Each task has a trigger and an action.

System Manual, 11/2022 6853

Triggers
You use the triggers to define when and how often the task is to be processed during runtime.
The following triggers are supported:

Triggers Type Description
Time Cyclic Executed cyclically at the set time

from runtime start, for example,
every 2 seconds with "T2s".

Daily
Weekly
Monthly
Yearly

Cyclic Is executed in cycles starting
from runtime start, in each case
at the configured time, for exam‐
ple "Daily, 12:00:00 h".

Once Acyclic Is executed exactly once at the
configured time.

Tags Acyclic Executed when the value of one
of the projected tags changes.

Alarms Acyclic Executed when the state of one
of the following alarm properties
changes:
• Alarm class, for example

"Warning"
• Alarm state, for example "In‐

coming"
• Priority, for example "4"

Note
Local session tags cannot be used as triggers.

Trigger an action
If the configured trigger condition is fulfilled, the event "Update" is triggered. You configure a
local script, which triggers one or more actions.

Filling out property values of one or more tasks automatically
When planning new tasks, Scheduled tasks allows the property values of already defined tasks
to be used. Bulk creation of property values is possible in the Scheduled tasks editor. This
functionality saves the time that would be needed to create individual tasks.

Planning tasks
11.1 Basics

6854 System Manual, 11/2022

Follow these steps to fill out the property values of one or more tasks automatically:
1. In the Task editor, select the "Name" or "Trigger" cell.
2. Use the mouse to drag the bottom right-hand corner downwards. The values are transferred

to the destination cells.

3. To change the attributes, use the text boxes in the editor or the text boxes under "Properties
> Properties > General". In the latter, you can also define the time specifications, for example,
time, day, month and year.

Planning tasks
11.1 Basics

System Manual, 11/2022 6855

Overwriting property values of one or more tasks automatically
1. In the "Trigger" column, select the cell whose value you want to change. Select the desired

value from the list.
2. To overwrite the changed value in tasks below, select the source cell in the "Trigger" column.
3. Use the mouse to drag the bottom right-hand corner downwards.
4. In the dialog box, confirm your choice with OK. The values are overwritten in the destination

cells.

Sorting values in the Scheduler editor
By clicking the column header, the table is sorted alphabetically in the selected column.

See also
Creating tasks with the "Time" trigger (Page 6856)
Creating tasks with the "Tags" trigger (Page 6857)
Creating tasks with the "Alarms" trigger (Page 6857)

11.2 Creating tasks with the "Time" trigger

Requirement
• The "Scheduler" editor is open.

Procedure
Follow these steps to create a task with the trigger "Time":
1. Create a new task with "Add".
2. Select the required cycle as the "Trigger", for example "T250ms" for 250 ms.

Planning tasks
11.2 Creating tasks with the "Time" trigger

6856 System Manual, 11/2022

Result
The task with the "Time" trigger has been created.

See also
Basic of the scheduler (Page 6853)
Creating tasks with the "Tags" trigger (Page 6857)
Creating tasks with the "Alarms" trigger (Page 6857)

11.3 Creating tasks with the "Tags" trigger

Requirement
• The "Scheduler" editor is open.
• You have created a tag that is monitored for changes in value.

Procedure
Follow these steps to create a task with the trigger "Tags":
1. Create a new task with "Add".
2. Select the option "Tags" as the "Trigger."
3. Select "Properties > Properties > General" in the Inspector window to select the tag.

Result
The task with the "Tags" trigger has been created.

See also
Basic of the scheduler (Page 6853)
Creating tasks with the "Time" trigger (Page 6856)
Creating tasks with the "Alarms" trigger (Page 6857)

11.4 Creating tasks with the "Alarms" trigger

Requirement
• The "Scheduler" editor is open.

Planning tasks
11.4 Creating tasks with the "Alarms" trigger

System Manual, 11/2022 6857

Procedure
Follow these steps to create a task with the trigger "Alarms":
1. Create a new task with "Add".
2. Select the option "Alarms" as the "Trigger".
3. Configure the trigger under "Properties > Properties > General" in the Inspector window.

– Select the "Criterion", for example "Alarm class".
– Select the "Condition", for example "Not equal".
– Select the "Operand", for example "Alarm".

Result
The task with the "Alarms" trigger has been created.

See also
Basic of the scheduler (Page 6853)
Creating tasks with the "Time" trigger (Page 6856)
Creating tasks with the "Tags" trigger (Page 6857)

Planning tasks
11.4 Creating tasks with the "Alarms" trigger

6858 System Manual, 11/2022

Using the diagnostics functions 12
12.1 Configuring system diagnostics objects

12.1.1 Activating system diagnostics (S7-1200/1500)

Introduction
An integrated HMI connection must exist between the controller and the HMI device so that the
controller can send error messages to the system diagnostics view. In addition, the system
diagnostics must be enabled both in the PLC and on the HMI device.
With an HMI connection to a SIMATIC S7-1200/1500 controller, the system diagnostics on the
HMI device can be activated and deactivated by default.
The following describes how to activate system diagnostics in a controller and on an HMI
device, if necessary.

Note
System diagnostics works only for integrated connections.

Requirement
• There is an integrated HMI connection between the S7-1200/1500 controller and the HMI

device (WinCC Unified PC or WinCC Unified Panel).

Activating system diagnostics in the controller
To activate the system diagnostics in a controller, proceed as follows:
1. Open the "Device configuration" of the controller in the project tree.
2. In the "Device view" tab, select the CPU on the rack.
3. Select "Properties > General > System diagnostics" in the Inspector window.

System Manual, 11/2022 6859

4. Activate the option "Activate system diagnostics for this device".

5. Right-click the controller in the project tree and select "Compile > Hardware (rebuild all)" in
the shortcut menu.

Activating system diagnostics on the HMI device
To activate the system diagnostics on an HMI device, proceed as follows:
1. Open the "Runtime settings" of the HMI device in the project tree.
2. Select the option "System diagnostics" under "Alarms > Controller alarms".

The display of system diagnostic alarms is enabled in Runtime.

Note
When an upload is performed from the PLC to the TIA Portal, the uploaded PLC must be
compiled to HMI RT before it is compiled and downloaded.
This is system behavior, because the runtime data file is created during compiling.

12.1.2 Configuring diagnostics indicators (S7-1200/1500)

Showing the overall status of HMI connections via traffic light SVGs
The diagnostic status is represented by a system tag named "@DiagnosticsIndicatorTag". The
"System" is notified of the diagnostic status of the configured PLCs.
The diagnostic status contains the overall status of all relevant PLCs. The merged state always
corresponds to the worst state of all relevant PLCs.

Using the diagnostics functions
12.1 Configuring system diagnostics objects

6860 System Manual, 11/2022

Requirements
• Integrated HMI connection with PLC S7-1200/1500.
• PLC setting "Central alarm management in the PLC" is enabled.

• "Automatic update" and "System diagnostics" are enabled for the controller alarms of the HMI
connection.

Using dynamic SVGs
System diagnostics for RT Unified provides 3 pre-programmed dynamic SVGs for S7-1200/1500
PLCs as tools for dynamic widgets:
• Diagnostics indicator ①
• Signal lamp ②
• Signal tower ③

Using the diagnostics functions
12.1 Configuring system diagnostics objects

System Manual, 11/2022 6861

1 2 3

4

6 5

To create a diagnostics indicator, proceed as follows:
1. Open the "Toolbox" and find "IndustryGraphicLibrary > Dynamic widgets > SIMATIC >

SystemDiagnostic" ④.
2. Select one of the 3 pre-programmed SVGs:

– "SysDiag_DiagnosticsIndicator"
– "SysDiag_SignalLamp"
– "SysDiag_SignalTower"

3. Double-click or drag-and-drop the selected SVG over to the screen. The object is added to the
screen.

4. Open the properties of the object in the Inspector window. Assign the "Tag" dynamization to
the interface element "State" ⑥.

5. Dynamize the State property with the tag "@DiagnosticsIndicatorTag" ⑤.
The color of the dynamized SVG changes according to the defined tag values in Runtime.

Table 12-1 Possible diagnostic values
Status Diagnostic value Color
Uncertain 0 Gray
Good 1 Green
Maintenance 2 Yellow
Error 3 Red

Using the diagnostics functions
12.1 Configuring system diagnostics objects

6862 System Manual, 11/2022

12.1.3 Configuring system diagnostics of the controller (S7-1200/1500)
The system diagnostics control shows the diagnostic events of the configured PLCs in your HMI
device. When loading the screen, the control displays the diagnostic buffer of the PLC with the
most serious status. Navigation buttons can be used to navigate to the next PLC.

Requirements
• At least one S7-1200/1500 PLC is configured. The S7-1200 PLC is supported as of firmware

version 4.0.
• PLC setting "Central alarm management in the PLC" is enabled.
• An HMI device has been configured.
• An integrated HMI connection has been established between the S7-1200/1500 PLC and the

HMI device.
• "Automatic update" and "System diagnostics" are enabled for the controller alarms of the HMI

connection.
• System diagnostics is enabled in every controller and on the HMI device.
• A screen has been created.
• The Inspector window is open.

Using the diagnostics functions
12.1 Configuring system diagnostics objects

System Manual, 11/2022 6863

Procedure
Double-click the icon of the "System diagnostics control" object in the "Controls" section of
the "Toolbox" task card, or drag it into the screen using drag-and-drop. The object is added to the
screen.

You can change the setting for the position, geometry, style, color, and font of the object in
the Inspector window. You can adapt the following properties in particular:
• "View type": Switches between the diagnostic view and the matrix view.
• "Information bar": Specifies the representation of the information bar.
• "Toolbar": Specifies the buttons of the system diagnostics control.

Setting pre-defined styles
You can assign pre-defined styles to the object in Runtime: "Dark Style", "Extended Style" or
"Bright Style". You can use pre-defined styles to change the background color of the object.

Using the diagnostics functions
12.1 Configuring system diagnostics objects

6864 System Manual, 11/2022

To assign a style, follow these steps:
1. Open the runtime settings of the HMI device.

2. In the "General > Screen > Selected style" tab, select one of the following options:
"Bright style", "Extended style" or "Dark style" to use the style.

Using the diagnostics functions
12.1 Configuring system diagnostics objects

System Manual, 11/2022 6865

Result
The "System diagnostics control" has been added to the screen. The system diagnostics can
access the data of the integrated HMI connections to S7-1200/1500 PLCs. In Runtime, the
diagnostic alarms of the selected PLC are displayed in the "System diagnostics control". The
selected PLC can be changed using the buttons ④. Once Runtime has started, the events of the
PLC with the most serious error are displayed.

3 74 5 6

2

1

① Grid view
② Detail view
③ Update the view of the diagnostics event
④ Switch to the next or previous PLC
⑤ Navigation buttons for the grid view:

jump to the first line
jump to the previous line
jump to the next line
jump to the last line

⑥ Enable/disable detail view
⑦ Status text field

The diagnostic buffer displays the diagnostics events of a PLC in a grid view ①. The grid view
shows the last 200 diagnostics events of the PLC.
The first column shows the number of the entry.

Using the diagnostics functions
12.1 Configuring system diagnostics objects

6866 System Manual, 11/2022

The symbols in the second column indicate the event type of the PLC:

Device in operation

Maintenance required

Maintenance necessary

Error in the device

You can see the symbols of the incoming or outgoing status in the third column:

Incoming event

Outgoing event

Incoming event for which there is no independent outgoing event

User-defined diagnostics event

The fourth column shows the date and time of the event. You can see the event information
in the last column.
Below the grid view, the detail view ② of the selected row from the grid view is displayed.
You can enable or disable the detail view with the button ⑥.
When the screen is loaded, the "System diagnostics control" shows the PLC with the most
severe error. If several PLCs are configured for system diagnostics, you can use the toolbar
buttons ④ to switch to the next or previous PLC.
To update the "System diagnostics control", select the toolbar button ③. For performance
reasons, no automatic update is performed. You need to perform the update manually.
At the bottom of the window, a status field ⑦ is displayed with the diagnostic status and the
name of the station/PLC.

Note
Rearranging columns
You have the option of changing the column order configured in the engineering system. You
can find more detailed information in the "AUTOHOTSPOT" manual in the section "Rearranging
columns at runtime (Page 7451)".

Using the diagnostics functions
12.1 Configuring system diagnostics objects

System Manual, 11/2022 6867

Languages in Runtime
The alarms are displayed in the RT language selected by the user in the screen logon dialog. The
Runtime language and the PLC language should be identical.
The PLC supports only three languages, which can be configured by the user in the
engineering. If the PLC language and the runtime language are different, the event text
is displayed as follows according to the fallback mechanism:
• English US
• English UK
• the standard text "## text is missing ##"

12.1.4 System diagnostics display

Use
You can use the "System diagnostics control" object to display the diagnostic status of several
PLCs using traffic light SVGs. The diagnostic status contains the overall status of all relevant PLCs.
The merged state is always the worst state of all PLCs.

Using the diagnostics functions
12.1 Configuring system diagnostics objects

6868 System Manual, 11/2022

Defining the properties of the system diagnostics control
You define the properties of the system diagnostics control in the Inspector window under
"Properties > Properties".

Selecting the view type
You select the view type in the following way:
1. Click "Properties > Properties > General > View type" in the Inspector window.
2. Choose between the "Matrix view" and the "Diagnostic view".
Selection of the matrix view as start view is recommended. From the matrix view, you can
switch to the diagnostic view using the corresponding button in the toolbar.

Matrix view
With the matrix view, you have the possibility to check the status of your PLCs and their
lower-level hardware components.
All hardware components are displayed as tiles. You can configure the display as well as the
content of the tiles:
Make the settings for hardware details and tiles under "Properties > Properties > General >
Matrix view".

Using the diagnostics functions
12.1 Configuring system diagnostics objects

System Manual, 11/2022 6869

Diagnostic view
The diagnostic view shows the diagnostic buffer of the PLC with the diagnostic events of the
currently selected PLC.
It is not possible to switch between different PLCs in Runtime. Navigating to the diagnostic
view via the selected PLC in the matrix view is recommended.
Under "Properties > Properties > General > Diagnostic view", you make the settings for the
rows, header, grid lines, scroll bar, cells and columns.

Using the diagnostics functions
12.1 Configuring system diagnostics objects

6870 System Manual, 11/2022

Using the diagnostics functions
12.1 Configuring system diagnostics objects

System Manual, 11/2022 6871

Setting up column sorting
To set up the column sorting in the diagnostic view, follow these steps:
1. In the Inspector window, click "Properties > Properties > General > Diagnostic view > Columns

> [0] Column".
2. Select the sorting direction and sorting order for the individual columns.

Dynamization of graphic properties with tags or scripts
You can dynamize the following properties containing a graphic with a tag or with a script:
• Graphic
• Icon

Access protection in Runtime
Configure access protection with the property "Operator control - allow" in the Inspector window
under "Properties > Properties > Security". A logged-in user having the required authorization
can acknowledge and edit the system diagnostics control using the buttons in the system
diagnostics control.

Configuring the information bar
The information bar of the system diagnostics control shows the connection status and path.
The connection status is not displayed while the PLC is starting.
To configure the information bar, follow these steps:
1. Configure the general properties of the information bar, such as the font and background

color, under "Properties > Properties > Miscellaneous > Information bar".
2. Configure the display of the information bar elements under "Properties > Properties >

Miscellaneous > Information bar > Elements".

Toolbar
You can define the buttons of the system diagnostics control in Runtime and their operator
authorizations in the Inspector window under "Properties > Properties > Miscellaneous > Toolbar
> Elements". Some buttons are enabled by default. To display additional buttons in the object,
activate the "Visibility" property in the settings of the corresponding button.
The following buttons are available for the system diagnostics control:

Button Function
Home Shows the home page.

Reload Updates the view of the diagnostic event.

Using the diagnostics functions
12.1 Configuring system diagnostics objects

6872 System Manual, 11/2022

Button Function
First line Selects the first of the pending diagnostic events. The visible area of the view

is moved.

Previous line Selects the previous diagnostic event, starting from the currently selected
diagnostic event. The visible area of the view is moved.

Next line Selects the next diagnostic event, starting from the currently selected diag‐
nostic event. The visible area of the view is moved.

Last line Selects the last of the pending diagnostic events. The visible area of the view
is moved.

Share view Enables/disables the detail view.

Previous Navigates to the previous PLC.

Show diagnostic buffer Changes from the matrix view to the diagnostic view. The diagnostic view
shows the diagnostics buffer of the PLC.
This button is only enabled if a PLC or one of its lower-level modules is shown
in the matrix view.

Setting the time zone
Under Properties > Properties > Miscellaneous > Time zone, you set the desired time zone by
entering a decimal value for the time zone.
• "0" and positive numerical values: The values correspond to the index values of the Microsoft

time zones.
• "-1": The local time zone of the device.

Note
In Runtime, you also have the option of setting the time zone via a selection list.

Using the diagnostics functions
12.1 Configuring system diagnostics objects

System Manual, 11/2022 6873

12.2 Example: System diagnostics with all objects

12.2.1 Example: Procedures overview

Introduction
• A controller and an HMI device have been created.
• An HMI connection has been established between the controller and HMI device.
• System diagnostics is activated in the controller and on the HMI device.

Configuration steps
To get a quick view of errors, create an overview screen with the various objects for displaying
diagnostic alarms.
The following example shows how to efficiently use the objects of the "Tools" or "Libraries"
task cards in your project.
The example is divided into several steps:
• Creating screens

The project engineer creates multiple screens for system diagnostics:
– Overview screen with all objects for system diagnostics
– Screen for the alarm view
– Screen for the system diagnostics view

• Inserting objects in the screens
The project engineer inserts various objects in the screens:
– Alarm view in the "Alarm" screen
– Screen window for displaying the alarm view and system diagnostics view

• Configuring objects
The project engineer connects objects to enable targeted navigation to the cause of the error
in runtime.
– System diagnostics indicator with screen window of the system diagnostics view
– Goto button with the screen window of the alarm view and the system diagnostics view.

Using the diagnostics functions
12.2 Example: System diagnostics with all objects

6874 System Manual, 11/2022

12.3 Process diagnostics

12.3.1 Basics of supervision with ProDiag

Introduction
The TIA Portal functionality, ProDiag (Process Diagnostics), is used to monitor and determine
errors that occur in your plant or machine. You can use ProDiag to show the type of error, the
cause of the error and the location of the error on the HMI device.

Use
You can use ProDiag functions to monitor your plant and to visualize it on an HMI device. The
main objective of ProDiag is the reduction of downtime and loss of production after an error
occurs, and the avoidance of errors using timely warnings. Diagnostic and display objects
provide specific information for the operator for troubleshooting and show the processes on an
HMI device on site.

Principle
In STEP 7, you create operand supervisions and configure the settings according to your
requirements. When an error occurs, a supervision alarm is generated based on the criteria you
have configured. The configured supervision instances are stored in the preset ProDiag function
block. You can use the automatically generated ProDiag FBs or create and configure your own
ProDiag FBs.

Advantages
ProDiag enables you to configure supervisions and monitor your plant without changing the
user program code.
You perform plant diagnostics on your HMI device. The data is automatically synchronized in
order to keep the display on your HMI device always up-to-date.

12.3.2 Requirements and licensing

Introduction
You configure the ProDiag supervisions in TIA Portal with STEP 7 and create the screen objects
for monitoring and diagnostics with WinCC. You need a license to use the ProDiag functionality
and the corresponding screen objects.

Using the diagnostics functions
12.3 Process diagnostics

System Manual, 11/2022 6875

Software requirements
To configure ProDiag supervisions, you need the following products:
• TIA Portal STEP 7 Professional
• WinCC Unified

Hardware requirements
ProDiag functionality is available for CPUs of the S7-1500 series with firmware version 2.0 or
higher.
The objects for the supervision and diagnostics of plants are available for the following HMI
devices:
• WinCC Unified

Note
Objects for supervision and diagnostics of plants can be used under the "Full access" and "Read
access" protection levels configured in the CPU.
ProDiag objects under the "HMI access" and "No access" protection levels cannot be used.

Licensing of ProDiag supervisions
The number of ProDiag monitors that you configure with STEP 7 is licensed. You do not need a
license for the first 25 supervisions, licenses must be used for additional supervisions.

Number of super‐
visions

<= 25 <= 250 <= 500 <= 750 <= 1000 > 1000

Number of licen‐
ses

None 1 2 3 4 5

Licensing of ProjDiag objects
To use the objects for the diagnostics and supervision in conjunction with the ProDiag
supervision in your program, you need a ProDiag license, specifically the WinCC Unified Runtime
license.

Enable process diagnostics
To activate process diagnostics on an HMI device, follow these steps:
1. Open the "Runtime settings" of the HMI device in the project tree.
2. Under Process diagnostics, select the "Enable process diagnostics" option.
The display of process diagnostic alarms is enabled in runtime.

Using the diagnostics functions
12.3 Process diagnostics

6876 System Manual, 11/2022

12.3.3 Objects for the supervision and diagnostics of plants

Introduction
WinCC offers the following objects for displaying the current monitoring status and for fault
diagnostics in the program code:
• GRAPH overview
• PLC code view

GRAPH overview
The "GRAPH overview" object is used to display the current program status for executed steps of
the GRAPH sequencer.

PLC code view
The "PLC code viewer" object is used to display the current program status of user programs that
have been programmed in the GRAPH programming language.

Using the diagnostics functions
12.3 Process diagnostics

System Manual, 11/2022 6877

12.3.4 GRAPH overview

Use
The "GRAPH Overview" object is used to display the current program status for executed steps of
the GRAPH sequencer. Errors during execution of a program are displayed directly at the
corresponding step.

The following information is displayed in the "GRAPH Overview" object:
• Name and status of the function block
• Status of initial and simultaneous steps
• Number and name of the first step currently executed step
• Operating mode for running the GRAPH sequencer

WinCC supports the display of step names for the GRAPH blocks in multiple languages
starting from Version 6.0. The step names will then be displayed in the selected Runtime
language following a language changeover in Runtime. If the selected language is not
available in the GRAPH block, the names are displayed in the default language (English).

Note
Device dependency of the "GRAPH Overview" object
The "GRAPH overview" object is available for Unified PC.

Note
Requirement for display in GRAPH overview
For the display of the program status of an S7 GRAPH instance data block in the "GRAPH
overview" object to be possible, the instance-specific properties of the block must be set as
"Visible in HMI" and "Accessible from HMI".

Using the diagnostics functions
12.3 Process diagnostics

6878 System Manual, 11/2022

Layout
In the Inspector window, you customize the position, style, colors and font types of the object.
You can adapt the following properties in particular:
• Assigned GRAPH DB tag
• Buttons of the toolbar

Operating mode
Four operating modes are available for running the GRAPH sequence:
• AUTO (default setting) - Automatically switches to the next step when the transition is

fulfilled.
• TAP - Automatically switches to the next step when the transition is fulfilled and there is an

edge change from "0" to "1" at the T_PUSH parameter.
• TOP - Automatically switches to the next step when the transition is fulfilled or there is an

edge change from "0" to "1" at the T_PUSH parameter.
• MAN - The next step is not automatically enabled when the transition is fulfilled. The steps

can be selected and deselected manually.

Note
You set the operating mode by modifying the interface parameters of the GRAPH block in your
control program.

In WinCC Unified Runtime, you have the option to customize the name for the operating
mode that is displayed in the GRAPH overview.

Configuring a compact view
You can also configure a slim GRAPH overview without toolbar buttons and operating mode
display.
To display a slim GRAPH overview in single-line compatibility mode, drag the control to the
desired size.

Using the diagnostics functions
12.3 Process diagnostics

System Manual, 11/2022 6879

Symbols
The symbols displayed in the GRAPH overview are pre-defined:

Symbol Name Function
Error Indicates that an error has occurred during the execution of a step.

Initial step Indicates that the currently executing step is the first step in the GRAPH
block.

Simultaneous step Shows that there are other simultaneous steps in the GRAPH block in addi‐
tion to the current one.

Buttons
You specify the buttons that are displayed in the GRAPH overview under "Properties >
Miscellaneous > Toolbar > Elements".

Button Name Function
Next Step Jumps to the next step in parallel step. When you get to the last step, you can

jump back to the first step.

Jump to Alarm Control Opens the configured alarm view with the error alarm in WinCC Unified.
The button is intended to be populated with appropriate system functions/
scripts.

Jump To PLC Code Viewer Opens the configured PLC code view.
The button is intended to be populated with appropriate system functions/
scripts.
Ideally, use the "OpenViewerGraphFromOverview" system function.

Jump to TIA Portal Several system functions are available for opening the TIA Portal.

12.3.5 Configuring a GRAPH overview

Introduction
You can use the GRAPH overview to view the current program status for the executed steps of
a GRAPH sequencer.

Using the diagnostics functions
12.3 Process diagnostics

6880 System Manual, 11/2022

Requirement
• A PLC including a GRAPH instance data block has been created.
• GRAPH instance data block contains at least one tag which is visible in HMI and accessible

from HMI.
Note
The process tag you are using for the GRAPH overview must be visible in HMI and accessible
from HMI.
To identify the tags of the GRAPH data block as visible and accessible for HMI, open the GRAPH
function block, select the block in the work area, and select "Edit > Internal parameters visible/
accessible from HMI" in the menu bar. Then compile the program blocks.

• An HMI device has been created.
• You have created a screen.
• The Inspector window is open.

Procedure
1. Drag-and-drop the GRAPH overview from the toolbox view into the configured screen.
2. In the Inspector window, click "Properties > Properties > Miscellaneous".
3. Open the selection button under "PLC Source > Tag".

The "Add new object" dialog opens.
4. Select the corresponding PLC in the "Program blocks" folder.
5. Select the corresponding PLC tag of the GRAPH instance data block.

Note
If no connection was configured between the HMI device and the selected PLC, a connection
is set up automatically.
In addition, an HMI tag is created which is connected to the PLC tag.

6. To display the GRAPH overview in compatibility mode without toolbar buttons and operating
mode display, drag the control to the desired size, whereby several basic views are possible.

Using the diagnostics functions
12.3 Process diagnostics

System Manual, 11/2022 6881

7. Under "Properties > Properties > Miscellaneous > Toolbar > Elements", specify the buttons to
be displayed in the object.

8. Under "Properties > Events" you can assign system functions or scripts to the buttons in the
GRAPH overview in order to jump to the alarm control and the PLC code display in runtime
and to open the TIA Portal.

Result
The GRAPH overview is inserted in the screen. The current status of the GRAPH step sequence is
displayed in Runtime.

12.3.6 PLC code view

Use
The "PLC code viewer" object is used to display the current program status of user programs that
have been programmed in the GRAPH programming language.
In the PLC code view, you display various items of information about the user program:
• Information area
• Toolbar
• Detail view
• Transition/Interlock view

Using the diagnostics functions
12.3 Process diagnostics

6882 System Manual, 11/2022

Information area
The information area shows the GRAPH sequence in the left area and the details, e.g. for the step
or for the transition, in the right area.

Toolbar
The toolbar shows information about the first or the selected icon.

Buttons of the toolbar
The table below shows the buttons on the toolbar and their meaning.

Using the diagnostics functions
12.3 Process diagnostics

System Manual, 11/2022 6883

Operating el‐
ement

Description Function

"Previous network" Navigates to the previous network.

"Next network" Navigates to the next network.

"Zoom in" Enlarges the information area.

"Zoom out" Reduces the information area.

"Step mode" Switches between manual and automatic step selection for
the active step.

"Transition or Interlock" Switches between the transition and interlock networks.

12.3.7 Configuring the PLC code view

Introduction
To display the PLC program networks in the GRAPH programming language in Runtime, insert a
PLC code viewer control into your project.

Requirement
• At least one PLC has been created.
• An HMI device has been created.
• An HMI connection has been established between the controller and HMI device.
• The system diagnostics is activated on all devices
• You have created a screen.

Procedure
1. Drag-and-drop the PLC code view from the toolbox view.
2. In the Inspector window, click "Properties > Properties > Toolbar".

Using the diagnostics functions
12.3 Process diagnostics

6884 System Manual, 11/2022

3. Select the buttons that you require in Runtime, for example: Next network, Previous network,
Step mode.

4. Select an authorization for operator input in "Properties > Properties > Security".

Result
The PLC code view is inserted in the screen. In Runtime, PLC user programs that are programmed
in the GRAPH programming language can be displayed.
You can populate the PLC code viewer using system functions, e.g. jump from the GRAPH
overview, or you can select the corresponding parameters directly.

Using the diagnostics functions
12.3 Process diagnostics

System Manual, 11/2022 6885

Using the diagnostics functions
12.3 Process diagnostics

6886 System Manual, 11/2022

Configuring users and roles 13
13.1 Basics

13.1.1 User management in the TIA Portal
The user management in the TIA Portal allows for the plant-wide, central user management
including optional connection of Microsoft Active Directories. The user management forms the
basis for an efficient and integrated management of personalized access rights in the plant. The
safety risks are significantly reduced through this approach. Thanks to the specific assignment of
roles and rights to individuals, maintenance is minimized while achieving a high degree of
transparency.

Functions
The user management in the TIA Portal offers:
• Central, cross-project management of user groups and users in the system.
• Import of user groups and users from Microsoft Active Directory.
• Failsafe performance thanks to redundant design of a User Management Control domain

(UMC domain).
• Load distribution thanks to multiple UMC stations in one UMC domain.
You can also find this information on the Internet in the
"Centralized user management in TIA Portal" tile on the Software
in TIA Portal (https://new.siemens.com/global/en/products/automation/industry-software/
automation-software/tia-portal/software/tia-portal-options.html) page.
You can configure the user management for:
• Engineering System
• Runtime
In the engineering system, you specify whether you are using a local or a central user
management. By default, the use of the local user management is specified in the
engineering system.

Protection in the engineering system
In the engineering system, you can protect the project from unintentional or unauthorized
changes.
When you set up project protection in the engineering system, you will become the project
administrator. Only authorized users can open and edit the protected project.

System Manual, 11/2022 6887

https://new.siemens.com/global/en/products/automation/industry-software/automation-software/tia-portal/software/tia-portal-options.html
https://new.siemens.com/global/en/products/automation/industry-software/automation-software/tia-portal/software/tia-portal-options.html

To protect the project, follow these steps:
1. Click "Security settings > Settings > Password policies" in the project tree.
2. You can define your own password policies.
3. Click on "Project protection > Protect this project".
4. Specify the login information for the project administrator.
5. The project administrator with the system-defined role "Engineering administrator" is

created. The project is protected.
Project protection cannot be revoked.

Protection in Runtime
In Runtime, you can protect:
• Access to Runtime.
• Operation of objects from authorized use.
You can also use the user management without project protection. The system-defined
engineering roles are not available in an unprotected project.

User management for the runtime
All information for user management in runtime is available in the following sections.

See also
Configuring user management in the engineering system for Runtime (Page 6894)

13.1.2 Central user management and UMC
The TIA User Management Component (UMC) option allows for the setup of a project-wide,
central user management. You can also apply user groups and users from a Microsoft Active
Directory.
From the TIA Portal, you can add the centrally defined user groups and users to the user
management of the project. To add user groups and users from UMC, the corresponding
rights are required in UMC.

Installing the User Management Component UMC
To use the central user management, install the "User Management Component UMC" software
package. The UMC installation file and the UMC documentation in English is available on the TIA
Portal installation data storage medium ("..\support", "...\Documents\Readme\English").

Configuring users and roles
13.1 Basics

6888 System Manual, 11/2022

Install the UMC files on the PC on which you are managing the data of the central user
management.

Note
We highly recommend that you read the UMC documentation completely before you start
working with the user management, especially the sections on "Secure Application Data
Support (SADS)". SADS is mandatory for working with the user management in the TIA Portal.

Licenses for central user management
The number of UMC domains is cumulative.
The license is free for up to 10 users.
The following licenses are available if you are managing more users:

Software/license Article number
TIA Portal User Management Component (UMC)
Rental license for 100 user accounts and 365 days

6ES7823-1UE30-0YA0

TIA Portal User Management Component (UMC)
Rental license for 4000 user accounts and 365 days

6ES7823-1UE10-0YA0

• Certificates of license (https://mall.industry.siemens.com/mall/en/WW/Catalog/Search?
searchTerm=user%20management%20component&tab=Product)

• Details about license concepts: Software and licenses (https://new.siemens.com/global/en/
products/automation/topic-areas/simatic/licenses.html)

• Trial license (https://support.industry.siemens.com/cs/ww/en/view/109772992) for
registered users in the Siemens Industry Online Support. The software is subject to export
restrictions.

13.1.3 Local and central user management
In the engineering system, you specify whether you are using a local or a central user
management. By default, the use of the local user management is specified in the engineering
system.

Local users and local user management
You define and manage the local users in a TIA Portal project. The local users are only valid for
this project. You assign users different functions with system-defined or user-defined roles. You
assign the function rights to the roles.
You cannot configure user groups in the local user management.
The following figure shows how you assign a role to a user and how you assign different
function rights to the role:

Configuring users and roles
13.1 Basics

System Manual, 11/2022 6889

https://mall.industry.siemens.com/mall/en/WW/Catalog/Search?searchTerm=user%20management%20component&tab=Product
https://mall.industry.siemens.com/mall/en/WW/Catalog/Search?searchTerm=user%20management%20component&tab=Product
https://new.siemens.com/global/en/products/automation/topic-areas/simatic/licenses.html
https://new.siemens.com/global/en/products/automation/topic-areas/simatic/licenses.html
https://support.industry.siemens.com/cs/ww/en/view/109772992

Options for local user management
A local user management is always part of the specific project in which the user management is
configured.
The following figure shows the options of the local user management.
• Engineering system:

– Configuring local users.
– Adding roles and assigning function rights to the roles.
– Assigning the roles to local users.

• WinCC Unified Runtime:
– Managing local users.
– Managing data of the local users.
– Assigning the available roles to local users.

Configuring users and roles
13.1 Basics

6890 System Manual, 11/2022

Logon via RFID with local user management for Unified PCs
If local user management is used, WinCC Unified Runtime supports login with RFID and PM-
LOGON for local web clients.
The prerequisite is that PM-LOGON is installed on the UMC server and the teach-in of the
RFID cards has been completed.
Additional information on licensing and installing PM-LOGON as well as on the
teach-in for the RFID cards is available in the PM-LOGON Operating Manual (https://
support.industry.siemens.com/cs/de/en/view/109810587).

Logon via RFID with local user management for Unified Control Panels
Additional information on using RFID on Unified Control Panels is available in the Unified
Comfort Panels (https://support.industry.siemens.com/cs/ww/en/view/109810754) Operating
Instructions TIA V18 or higher.

Central user groups, users and central user management
Outside of the TIA Portal, you define and manage the following in the central user management:
• User groups
• Central users
You organize the users in various user groups.
In the TIA Portal, you assign:
• The different functions to the user groups with the help of system-defined or user-defined

roles.
• The function rights to the roles.
The following figure shows you how to you assign a role to a user group and function rights
to the role:

You can repeatedly import the user groups and central users from the central user
management into the TIA Portal projects. You require the corresponding rights in the central
user management for importing.

Configuring users and roles
13.1 Basics

System Manual, 11/2022 6891

https://support.industry.siemens.com/cs/de/en/view/109810587
https://support.industry.siemens.com/cs/de/en/view/109810587
https://support.industry.siemens.com/cs/ww/en/view/109810754

Options of the central user management
The following figure shows the options of the central user management.
• Engineering system:

– Importing user groups and central users into a TIA Portal project.
• Central user management:

– Managing user groups and their data.
– Managing central users and their data.

See also
Examples (Page 6918)

Configuring users and roles
13.1 Basics

6892 System Manual, 11/2022

13.1.4 Roles and function rights
In the user management, you assign users or user groups different functions through system-
defined or user-defined roles. The roles are assigned system-defined and user-defined function
rights by the system or by you.
• System-defined roles are specified by the system.

You cannot rename or delete the system-defined roles. The function rights are assigned to
the roles by the system. You cannot change the assignment.

• You can add user-defined roles.
You can rename or delete the user-defined roles. You assign different function rights to a role.

Relevant roles in the engineering system
The system creates the following system-defined roles that are relevant for the engineering
system.
Engineering roles:
• Engineering administrator
• Engineering standard
The roles are only available in a protected project.

Relevant roles in runtime
The system creates the following system-defined roles that are relevant for runtime.
HMI roles:
• HMI Administrator
• HMI Operator
• HMI Monitor
• HMI Monitor Client
The roles are also available in an unprotected project.

Function rights
The function rights specify which functions a user or a user group may use in a specific role. You
can link different function rights to multiple roles. You can also add user-specific runtime rights.
You can assign multiple function rights to a role.

Note
User - Role - Function right
If you do not assign a role to a user or a function right to a role, the user or role is not downloaded
to the device.

Configuring users and roles
13.1 Basics

System Manual, 11/2022 6893

13.2 Configuring user management in the engineering system for
Runtime

13.2.1 Specifying local or central user management
In the engineering system, you specify whether you are using local or central user management.
By default, the use of the local user management is specified in the engineering system.

Requirement
• A project is open.
• A device has been created.
• Password settings for Runtime and engineering are defined.

Specify password settings
To set the password settings for the runtime and engineering, follow these steps:
1. Open "Security settings > Settings" in the project tree.
2. In the "Settings" editor, select the "Password policies" menu command.
3. Specify the password settings.

Specifying the user management
To define the user management, follow these steps:
1. Open the "Runtime settings" of the device in the project tree of the project.
2. Under "User management > User management configuration", select:

– Local user management
User data is stored on the device.

– Central user management
User data is loaded from the UMC.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

6894 System Manual, 11/2022

See also
Managing local users (Page 6900)
Managing central users and user groups (Page 6903)

13.2.2 Configuring a connection to the central user management
You have specified in the Engineering System that you are using central user management.

Configuring a connection to the central user management
Follow these steps to configure the connection to the central user management:
1. Enter the UMC server address in "User management configuration".
2. Enter the server ID. The server ID can be determined from the configuration of the UMC

server.
The server ID is the fingerprint of the web certificate (https) on which the UMC server is
installed. For more information, refer to Server ID (Page 6896).

3. Enter the address of the identity provider.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

System Manual, 11/2022 6895

You are connected with the central user management.

Note
If you cannot connect to the central user management or you do not know the server ID, leave
the entry field for the server ID empty.
The configuration is nevertheless downloaded to Runtime. Enter the server ID:
1. On the PC using Runtime Manager.
2. On the Panel using the Control Panel.

13.2.3 Server ID
The WinCC Unified PC station or the Unified Comfort Panel communicate via an encrypted HTTPS
connection to the UMC server to verify the authentication.
The server ID is the fingerprint of the Internet Information Service (IIS) web certificate
(HTTPS) on the computer where the UMC server is installed.

Note
In a distributed UMC domain with UMC ring server and multiple UMC servers / UMC RT servers,
you decide which server of the UMC domain is used for user authentication of the respective
Unified Station.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

6896 System Manual, 11/2022

Take over server ID via the IIS Manager
If you want to apply the server ID via the IIS Manager, follow these steps:
1. Open the IIS Manager on the computer to which the WinCC Unified PC station or the SIMATIC

WinCC Unified Comfort Panel is to connect for authentication.

2. Edit the bindings of the default web page in IIS.

Note
If WinCC Unified is already installed on the same computer (single-user station system),
select the "WinCC Unified SCADA" web page as the web page.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

System Manual, 11/2022 6897

3. Edit the bindings of the 'HTTPS' type.

4. Open the stored SSL certificate.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

6898 System Manual, 11/2022

5. Open the details of the SSL certificate. Scroll to the "Fingerprint" attribute.

6. Transfer the fingerprint of the certificate into the runtime settings of the WinCC Unified
Station.

Take over server ID via a browser
You can also take over the server ID via a browser and without administrator rights.
You can find the procedure under the following link to "Fingerprints (https://www.grc.com/
fingerprints.htm)" in the section "How to display this page's (or any page's) SSL certificate
fingerprint".

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

System Manual, 11/2022 6899

https://www.grc.com/fingerprints.htm
https://www.grc.com/fingerprints.htm

13.2.4 Users and user groups

13.2.4.1 Managing local users
You have specified in the Engineering System that you are using local user management. To
manage the local users in your project, you have the option of:
• Adding users
• Specifying data of a user:

– User name
– Password
– Authentication procedure
– Runtime timeout
– Comment

• Copying, pasting, deleting users

Requirement
• A project is open.
• The "Security Settings > Users and Roles" editor is open.
• The "Users" tab is open.

Restrictions
Please note the following restrictions:
• You can add a maximum of 256 users.
• The user name may not exceed 255 characters.
• The password may not exceed 120 characters and must meet the defined password

guidelines.
• The comment may not exceed 1000 characters.

Note
Permissible characters for user names and passwords
You can use the following numbers, letters and special characters for user names and passwords:
• 0123456789
• A...Z a...z
• !#$%&()*+,-./:;<=>?@\[]^_`{}~|
• Spaces within the user name or password

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

6900 System Manual, 11/2022

Adding users
To add a user, follow these steps:
1. Click "Add new user".
2. Click "Add new local user" in the submenu.
3. Enter a user name according to the password policies.
4. Select the authentication procedure for the user:

– Password: Enter a password according to the password policies. Enter the password again
to confirm.

– Radius: The logon is made via a RADIUS server on which the password is saved. This option
is only used for devices that support logon using a RADIUS server.

5. Set the runtime timeout for the user. This setting is only effective on the Unified Comfort
Panel. Observe the notes in the individual manuals.

6. You can enter a comment for the project user.
A new project user has been created. Assign the roles to the user.

Tips for an efficient procedure

• You can also create a new user by copying an existing user. As a result, the assigned roles are also assigned to the copied
user. You must re-assign the password for the copied user.

"Anonymous" user
In V18, a default "Anonymous" user is available. When enabled, the "Anonymous" user does not
require a password.
You cannot use the "Anonymous" user to log in to Runtime.

Changing the user data
To change the data of a user, follow these steps:
1. In the "Users" tab, click the field whose data you want to change.
2. Change the user name, password, authentication procedure, runtime timeout or comment.

Deleting users
To delete a project user, proceed as follows:
1. Select the user in the "Users" tab that is open.
2. In the shortcut menu, select the "Delete" command or press the key.

13.2.4.2 Downloading local user management
You have added at least one user. Compile and download the local user management.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

System Manual, 11/2022 6901

Compiling and downloading local user management
To load the local user management for the first time, follow these steps:
1. Select the device in the project tree.
2. Select "Download to device > Software (all)" from the shortcut menu.

The compilation of the project is checked and content that has not been compiled is
compiled. The compilation result is displayed in the Inspector window under "Info > Compile".

3. The "Load Preview" dialog is displayed.
4. Check the displayed defaults and change the settings if necessary:

– Specify whether runtime should start on the target system after the download.
– Before the download, specify whether existing data is retained. When downloading for

the first time, select "Reset to initial values".
– Specify whether all logs are reset in runtime.

The setting is only accepted when you have selected "Start runtime".

5. Click "Download".

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

6902 System Manual, 11/2022

Runtime starts after loading the settings.

Note
For the first download of a TIA Portal project to a runtime device, select the option "Reset to start
values" when downloading the user data.
For all subsequent loading processes, select "Keep current values".
On the runtime device, the user configuration is not project-specific, but device-specific. The
defined user management is used in all projects in a device.
All system-defined roles are included in each runtime project.

Keep current values during download
To keep the current values during the next download, select "Keep current values" during
download.
The following user management data is kept:
• User name
• Password
• Password guidelines
• Comment
• Language
• Function rights
• User role
• User group
• User management mode - local or central
• Data of the central user management: Server address, server ID, identity provider address

See also
Managing local users (Page 6900)

13.2.4.3 Managing central users and user groups
You have specified in the Engineering System that you are using central user management.
You can add central users and user groups that were created in the central user management
to a project. Central users and user groups are managed in the central user management.
The changes affect the project to which these users or user groups belong.
You can synchronize the user management in the engineering system with the central user
management or check the synchronization status.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

System Manual, 11/2022 6903

Main advantage of the central user management
The main advantage of the central user management is the management of the user groups.
• In the user groups, you manage the central users independent of the engineering system.

You add the central users to the user groups.
• The function rights of a user are known via the role assignment in the user group in the

Unified Runtime.
• Changes to the user data are effective in Runtime even without loading the project.
• When you import the user group into the TIA Portal, the users and their data including

passwords is automatically imported into the project.

Requirement
• A project is open.
• The connection to the central user management is configured.
• You have a user account with the corresponding rights in the central user management.
• The "Security Settings > Users and Roles" editor is open.
• The "User groups" tab is open.

Restrictions
Please note the following restrictions:
• You can add a maximum of 256 central users.
• You can add a maximum of 50 central user groups.
• You cannot copy central users and user groups.

Information about user groups and users
You can display the following information for central users and user groups:
• User groups: The users they contain and whether they have already been imported into the

user management.
• User: The user groups of which the user is a member and whether they have already been

imported into the user management.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

6904 System Manual, 11/2022

Adding user group
To add a user group from the central user management to a TIA Portal project, follow these steps:
1. Open the "User groups" tab.
2. Click "Add new user group".

If you have not yet logged in to the central user management yet, the "UMC Login" dialog
opens:
– Enter your UMC user name and the corresponding password.
– Click "OK".

3. If you are logged in to the central user management, the "Add new user group from UMC"
dialog opens. All available user groups from the central user management are displayed.
Already added user groups are activated and write-protected.

4. Activate the user groups that you want to add to the TIA Portal project. Click "OK".
5. The selected user groups are added as central user groups. Their data is write-protected, and

you cannot change the data within the TIA Portal project.

Deleting a user group
To delete a user group from the TIA Portal project, follow these steps:
1. Open the "User groups" tab.
2. Select one or more user groups.
3. In the shortcut menu, select the "Delete" command or press the key.

Adding central users
You can also import the individual central users into a TIA Portal project.
To add a central user from the central user management, follow these steps:
1. Open the "Users" tab.
2. Click "Add new user".
3. Click "Add global users" in the submenu.

If you have not yet logged in to the central user management yet, the "UMC Login" dialog
opens:
– Enter your UMC user name and the corresponding password.
– Click "OK".
If you are logged in to the central user management, the "Add new user from UMC" dialog
opens. All available users from the central user management are displayed. Already activated
users are activated and write-protected.

4. Activate the user that you want to add to the TIA Portal project. Click "OK".
5. The selected users are added as central users. Their data is write-protected, and you cannot

change the data within the TIA Portal project.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

System Manual, 11/2022 6905

Tips for effective procedure

• To find the required users, filter the table by the columns "Name" and "Long name". Enter the name in the first line. All users
with this name are displayed. To cancel filtering, click on the "Filter" button or select "*" in the drop-down list.

Deleting a central user
To delete a central user from the TIA Portal project, follow these steps:
1. Open the "Users" tab.
2. Select one or more central users.
3. In the shortcut menu, select the "Delete" command or press the key.

See also
Server ID (Page 6896)

13.2.4.4 Loading central user management
You have added at least one user group. Compile and load the central user management.

Compiling and loading central user management
To download all data of the central user management, follow these steps:
1. Select the device in the project tree.
2. Select "Download to device > Software (all)" from the shortcut menu.

The compilation of the project is checked and content that has not been compiled is
compiled. The compilation result is displayed in the Inspector window under "Info > Compile".

3. The "Load Preview" dialog is displayed.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

6906 System Manual, 11/2022

4. Check the displayed defaults and change the settings if necessary:
– Specify whether runtime should start on the target system after the download.
– Before the download, specify whether existing data is retained. When downloading for

the first time, select "Reset to start values".
– Specify whether all logs are reset in runtime.

The setting is only accepted when you have selected "Start runtime".

5. Click "Download".
The connection to the central user management is established after loading the settings.
Depending on the selected options, runtime is started during loading.

Note
For the first download of a TIA Portal project to a runtime device, select the option "Reset to start
values" when downloading the user data.
For all subsequent loading processes, select "Keep current values".
On the runtime device, the user configuration is not project-specific, but device-specific. The
defined user management is used in all projects in a device.
All system-defined roles are included in each runtime project.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

System Manual, 11/2022 6907

Note
Enter the settings loaded for the central user management:
• On the PC in the SIMATIC Runtime Manager
• On the Panel in the Control Panel.
Depending on the setting, data is overwritten during loading.

Keep current values during download
If you want to keep the current values during the next download, select "Keep current values"
during download.
The following user management data is kept:
• User name
• Password
• Password guidelines
• Comment
• Language
• Function rights
• User role
• User group
• User management mode - local or central
• Data of the central user management: Server address, server ID, identity provider address

Behavior of the runtime after the download
If all your entries are correct, runtime uses the downloaded settings.
If the entries are incomplete or incorrect, runtime exhibits the following behavior:
• If the data of the central user management has already been downloaded successfully once

before, runtime uses the user data that was downloaded last.
Enter missing settings for central user management:
– On the PC in the SIMATIC Runtime Manager
– On the Panel in the Control Panel.

• If the data of the central user management has never been downloaded, runtime does not
start.
Enter missing settings for central user management:
– On the PC in the SIMATIC Runtime Manager
– On the Panel in the Control Panel.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

6908 System Manual, 11/2022

13.2.5 HMI roles

13.2.5.1 Managing HMI roles
You assign users the roles with the function rights. You can manage the user-defined HMI roles
in your project.

System-defined roles relevant for HMI
System-defined HMI roles without engineering function rights are created in an unprotected
project:
• HMI Administrator
• HMI Operator
• HMI Monitor
• HMI Monitor Client
You cannot rename or delete system-defined HMI roles. Also, you cannot change the
assignment of the function rights to system-defined roles.

User-defined roles relevant for HMI
You can perform the following actions to manage the user-defined HMI roles in your project:
• Add a new user-defined role.
• Change the data of the user-defined role:

– Name
– Runtime timeout
– Comment

• Assign the function rights to the role.
• Change or delete the assignment of the function rights.
• Delete a role.

Requirement
• A project is open.
• A device has been created.
• The "Security Settings > Users and Roles" editor is open.
• The "Roles" tab is open.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

System Manual, 11/2022 6909

Adding a user-defined HMI role
To add a user-defined HMI role, follow these steps:
1. Double-click "Add new role".
2. Enter a name, runtime timeout and a comment, if required.
A user-defined HMI role has been created. Assign the function rights to the role.

Tips for effective procedure

• You can also create a user-defined HMI role by copying an existing HMI role. As a result, the assigned function rights are also
assigned to the copied HMI role.

Change the data of a user-defined role
To change the data of a user-defined role, follow these steps:
1. Click in the field whose data you want to change.
2. Change the role name, runtime timeout or comment.

Note
When setting the runtime timeout, observe the notes in the individual manuals.

Delete user-defined role
To delete a user-defined role, follow these steps:
1. Select the user-defined role.
2. In the shortcut menu, select the "Delete" command or press the key.

13.2.5.2 Assigning HMI roles
You can assign HMI roles with different function rights to local users and global user groups.

Requirement
• A project is open.
• A device has been created.
• Users and user groups have been created.
• The "Security Settings > Users and Roles" editor is open.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

6910 System Manual, 11/2022

Assigning HMI roles to local users
To assign roles to a user, follow these steps:
1. Open the "Users" tab.
2. Select the user.
3. Activate the desired HMI roles in the "Assigned roles" tab.

Assigning HMI roles to global user groups
To assign roles to a global user group, follow these steps:
1. Open the "User groups" tab.
2. Select the user group.
3. Activate the desired HMI roles in the "Assigned roles" tab.

Revoking role assignments for local users
To revoke a role for a user, follow these steps:
1. Open the "Users" tab.
2. Select the user.
3. In the "Assigned roles" tab, disable the roles that you no longer want to assign to the user.

Revoking role assignments for global user groups
To revoke a role assignment for a global user group, follow these steps:
1. Open the "User groups" tab.
2. Select the user group. Note that you cannot use multiple selection.
3. In the "Assigned roles" tab, clear the roles that you no longer want to assign to the user group.

13.2.5.3 HMI role "HMI Monitor Client"
The system-defined role "HMI Monitor Client" contains the function right "WinCC Unified Client
Monitor - Limited Access". No other function rights can be assigned to this role.
The "HMI Monitor Client" role allows you to monitor and analyze the production process
without influencing the processes in the PLC unintentionally or without authorization.
The following description applies to Unified PC and Unified Comfort Panel.

Note
To operate the "HMI Monitor Client", you need one or more "HMI Monitor Client" licenses
depending on the number of accesses.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

System Manual, 11/2022 6911

Important notes
The "HMI Monitor Client" HMI role is superior to all other roles and their function rights. A user
who is assigned the "HMI Monitor Client" role is only granted the functional rights of this role.
Function rights with a higher precedence, of other roles that are assigned to the user, are lost.

Restrictions of the "HMI Monitor Client" role
A user with the function right "WinCC Unified Client Monitor - Limited access" may monitor the
processes but only operate them to a limited extent.
The following table shows which operations the user cannot carry out:

Tags Transfer value changes from external tags (PowerTags) to the PLC
Data logging Clear logs

Write log values manually
Comment log values
Write correction values

Alarms Acknowledge active alarms
Reset active alarms
Disable alarms
Enable alarms

Alarm logging Delete alarm log
Comment logged alarms

Parameter set control

Process values cannot be written to the PLC with the "Write to PLC" button of the parameter set
control.
Process values cannot be written to the PLC with the system function "LoadAndWriteParame‐
terSet".
Process values cannot be written to the PLC with the snippet "Load Parameter Set from storage
and write to PLC".
Parameters sets cannot be loaded from the parameter set memory using control tags.
Process values cannot be written to the PLC using control tags.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

6912 System Manual, 11/2022

Visualization in Runtime
In Runtime, the Monitor Client mode is visualized by an orange frame around the root screen.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

System Manual, 11/2022 6913

Activating Monitor Client mode
To activate the Monitor Client mode, follow these steps:
1. Create a user or select an existing user.
2. Assign one of the following roles to the user:

– The system-defined role "HMI Monitor Client".
– A user-defined role that contains the function right "WinCC Unified Client Monitor -

Limited access".

3. The user logs on to Runtime.
4. The Monitor Client mode is activated.
The user is allowed to monitor the process but not to change any values that are relevant for
the process. These values are listed at the top of the table.

See also
System-defined function rights (Page 6914)
Managing HMI roles (Page 6909)

13.2.6 Function rights

13.2.6.1 System-defined function rights
You can assign the different function rights to the HMI roles. These function rights specify which
functions a user may use in Runtime.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

6914 System Manual, 11/2022

System-defined function rights
The following table shows an overview of the system-defined function rights in the TIA Portal.
The function rights are automatically checked and activate the associated functionality.
You cannot rename or delete the system-defined runtime rights.

Function right Description HMI roles
Importing and exporting
users

The user may import and export user management data in run‐
time.
The function right is not supported on a Unified Comfort Panel.

User-defined role

User management The user has permission to manage the existing users and add
and manage the new users in Runtime.

HMI Administrator

Enable HMI Monitor Client The user may observe the process on an HMI device to a limited
extent without unintentionally or unauthorizedly influencing the
processes in the PLC.

HMI Monitor Client

OPC UA read and write ac‐
cess

The user may access the data of a different device with read and
write permission via OPC UA.

HMI Administrator

Openness Runtime read
and write access

The user may access the data of a Unified runtime with read and
write permission via Openness.

HMI Administrator

Reset UMC password The user may reset the UMC password. User-defined role
Control Panel access The user may change the settings in the Control Panel of a Uni‐

fied Comfort Panel.
HMI Administrator

Additional function rights may be available that are associated with additional products and
options that are installed.

Function rights to the screen objects
The following table shows an overview of the function rights that are set on the screen objects.
These function rights have no pre-defined meaning.
The meaning of the function rights comes from the objects that are protected and trigger an
action.

Function right Example application HMI roles
Operate The user may operate access-protected objects in runtime. HMI Administrator

HMI Operator
Monitor The user may only monitor but not operate the objects. HMI Administrator

HMI Operator
HMI Monitor

Remote access The user may use Unified Collaboration to access an HMI device. HMI Administrator
Remote access - Monitor
only

The user may use Unified Collaboration to access an HMI device.
The user may only monitor but not operate the objects.

HMI Administrator
HMI Operator
HMI Monitor

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

System Manual, 11/2022 6915

See also
Protecting the Control Panel from being accessed (Page 6926)
HMI role "HMI Monitor Client" (Page 6911)

13.2.6.2 User-defined function rights
You can assign different runtime rights to the HMI roles. These function rights specify which
functions a user may use in WinCC Unified Runtime in Runtime.
You can implement your protection concepts with the user-defined runtime rights.

Restrictions
Please note the following restrictions:
• You can add a maximum of 999 user-defined Runtime rights.
• The name of the user-defined runtime right and the name of the group of runtime rights can

be up to 128 characters long.
• The comment may not exceed 1000 characters.

Note
You can use the following numbers, letters, and special characters for the names and groups of
the user-defined runtime rights:
• 0123456789
• A...Z a...z
• !#$%&()*+,-./:;<=>?@\\[]^_`{}~|
• Spaces within the user name or password

Requirement
• A project is open.
• A device has been created.
• The "Security Settings > Users and Roles" editor is open.
• The "Roles" tab is open.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

6916 System Manual, 11/2022

Adding a user-defined Runtime right
To add a user-defined runtime right, follow these steps:
1. Click on the "User defined runtime rights" tab.
2. In the "Function rights" area, double-click "Add new right" in the "Name" column.
3. Enter a name, a group and a comment, if required.

Note
The "Group" column is used to group the user-defined runtime rights in the engineering
system. The assignment of the runtime rights to a group has no effect on the runtime.

A user-defined runtime right has been created. Assign the runtime right to a role.

Tips for effective procedure

• You can also create a user-defined runtime right by copying an existing runtime right.

Changing the data of a user-defined runtime right
To change the data of a user-defined runtime right, follow these steps:
1. Click in the field whose data you want to change.
2. Change the name, the group or the comment.

Deleting a user-defined runtime right
To delete a user-defined runtime right, follow these steps:
1. Select the user-defined runtime right.
2. In the shortcut menu, select the "Delete" command or press the key.

13.2.6.3 Assigning function rights to an HMI role
You assign the function rights to the roles.

Assign function rights to a user-defined role
To assign the function rights to a user-defined role, follow these steps:
1. Select the user-defined role.
2. In the "Runtime rights" tab, open the category from which you want to assign the function

rights.
3. In the "Function rights" area, enable the function rights that you want to assign to the role.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

System Manual, 11/2022 6917

Changing or deleting the assignment of the function rights
To change or delete the assignment of the function rights to a user-defined role, follow these
steps:
1. Select the user-defined role.
2. In the "Runtime rights" tab, open the category from which you want to assign the function

rights or revoke the assignment:
– In the "Function rights" area, enable the function rights that you want to assign to the role.
– In the "Function rights" area, disable the function rights that you no longer want to assign

to the role.

Displaying assigned function rights of a local user
To display the assigned function rights of a local user, follow these steps:
1. Open the "Users" tab.
2. Select the user.
3. Open the "Assigned rights" tab in the lower area.
4. Expand the categories of function rights in the "Categories of function rights" column.

The assigned function rights are displayed in the "List of rights" column.
The roles by which the function rights are assigned to the user are displayed in the "Rights
derived from role" column.

Display assigned function rights of a global user group
To display the assigned function rights of a global user group, follow these steps:
1. Open the "User groups" tab.
2. Select the global user group.
3. The assigned function rights are displayed in the lower area of the "Assigned rights" tab.

13.2.7 Examples

13.2.7.1 Example: Setup of the local user management

Task
In the following example, you set up a user management for different users. The example
orientates itself to a typical requirement profile from manufacturing engineering.

Principle
Users with various roles are involved in a project. Create the users and assign them to the roles.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

6918 System Manual, 11/2022

You can reproduce different views through the roles.
Example:
• Organizational view: Commissioners, Operators, Shift I, Shift II.
• Technological view: Axis control, Tool changers, Plant North, Plant South.
The following example orientates itself to the organizational view.
Each user has function rights for specific applications.
In the example, you create Mr. Meier, Ms. Ramos, Ms. Greenwood, Messrs. Peters and
Santini. You assign roles to each user.

Requirements
• A new project has been created.
• The "Users and roles" editor in "Security settings" is open.

Procedures overview
To assign the users one or more roles, follow these steps:
1. Create the users.
2. Create the roles and assign the users one or more roles. Note the following information:

– The function rights have been defined for the system-defined roles.
– You assign the required function rights to the user-defined roles.

3. Configure a button with access protection.

Result
The goal is the following structure of the user management consisting of users, roles and
function rights:
The user "Meier" has the "HMI administrator" role.

Note
Not all function rights that have been specified for the system-defined "HMI Administrator" role
are displayed in the table.

Users Role Function rights
User management Operation Remote access

Meier HMI Adminis‐
trator

x x x

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

System Manual, 11/2022 6919

You assign the required roles to the other persons.

Users Role Function rights
Oper‐
ation

Moni‐
toring

Re‐
mote
access

User-de‐
fined run‐
time right
Screen
change

User-defined
runtime right
Toggle lan‐
guage

User-defined
runtime right
Change pa‐
rameter sets

User-defined
runtime right
Delete pa‐
rameter sets

User-defined
runtime right
Stop Run‐
time

Ramos HMI Op‐
erator

x x x

Green‐
wood

Opera‐
tor

 x x

Peters Line‐
Manag‐
er

 x x x x

Santini Service x x x x x

13.2.7.2 Example: Add user and assign to a role

Task
In the following example, you create the users and assign them to their roles. The users are
sorted alphabetically immediately after the name has been entered.

Procedure
1. Open the "Users" work area.
2. Double-click "Add new user" in the "Users" table.
3. Enter "Meier" as the user name.
4. Click the button in the "Password" column. The dialog box for entering the password is

opened.
5. Enter "Meier123" as the password. The password must meet the defined password policies.
6. To confirm the password, enter it a second time in the lower field.
7. Close the dialog box by using the icon.
8. Enable the "HMI Administrator" role in the "Assigned Roles" table.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

6920 System Manual, 11/2022

Interim result

Procedure
1. Double-click "Add new user" in the "Users" table.
2. Enter "Ramos" as the user name.
3. Click the button in the "Password" column. The dialog box for entering the password is

opened.
4. Enter "Ramos123" as the password.
5. To confirm the password, enter it a second time in the lower field.
6. Close the dialog box by using the icon.
7. Enable the "HMI Operator" role in the "Assigned Roles" table.
8. Repeat steps 2 to 6 for the users "Greenwood", "Peters" and "Santini".
9. Enable the user-defined roles "Operator", "LineManager" and "Service" of the individual users

in the "Assigned Roles" table.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

System Manual, 11/2022 6921

Result

13.2.7.3 Example: Add roles and assign function rights

Task
In the following example, you create the roles and assign the function rights to the roles.

Procedure
1. Open the "Roles" work area.
2. Double-click "Add new role" in the "Roles" table and enter a name for the role.
3. In the "Runtime rights" table, click on "Runtime rights > WinCC Unified devices > HMI_RT_1"

in the "Categories of function rights" column.
4. In the "Function rights" column, assign the desired function rights to the role.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

6922 System Manual, 11/2022

Result

13.2.7.4 Example: Configuring a button with access protection

Task
In the following example, you use a system function to create a button for a screen change. You
protect the "To Recipe view" button against unauthorized operation. To do so, you configure the
"Change parameter sets" function right at the "To Recipe view" button.

Requirements
• A "Change parameter sets" function right has been created.
• A "Recipes" screen has been created.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

System Manual, 11/2022 6923

• A "Start" screen has been created and opened.
• A button has been created and marked in the "Start" screen.

Procedure
1. In the Inspector window, click "Properties > Properties > General > Text".
2. Enter "To Recipe view" as the text.
3. Click "Properties > Events > Click left mouse button" in the Inspector window.
4. Click the "Add function" entry in the first line of the "Function list" table.
5. Select the system function "ChangeScreen" from the "Screen" group.
6. Click on the button in the "Screen name" row of the "Value" column. A dialog box for

selecting the screen opens.
7. Select the "Recipes" screen and use the button to close the dialog box.
8. Click "Properties > Properties > Security" in the Inspector window.
9. Select "Change parameter sets" as function right.

Result

Access to the "To Recipe view" button is protected. If the user "Greenwood" clicks the button
in Runtime, for example, the "Recipes" screen opens. Requirement:
• The user "Greenwood" has logged on correctly and has the required function right.
• The "Recipes" screen contains a recipe view and other screen objects.

Configuring users and roles
13.2 Configuring user management in the engineering system for Runtime

6924 System Manual, 11/2022

Note
If the logged-on user does not have the required function right or if no user is logged on, the
"Logon dialog box" is displayed. An alarm indicating that no operator authorization is available
for this user appears in Runtime.

13.3 Using the user management on the Unified Comfort Panel

13.3.1 Notes on commissioning

Commissioning with central user management
To ensure that the connection to the central user management is set up during initial
commissioning of the Panel, we recommend that you do not activate any access protection for
the Control Panel on the Panel.
If the access protection is not activated for the Control Panel, configure the connection to the
central user management in the Control Panel.
If the access protection for the Control Panel is activated and no connection could be set up
during commissioning for the central user management, you have the following options:
• Download the project and the settings for user management from the engineering system.
• Reset the Panel to the factory settings.

Note
Failure of the network connection
If the network connection to the central user management fails, all users who have already
logged on to the project once before can still log on for some time. When the connection to the
central user management has been restored, other users can log on once again as well.

13.3.2 User management on the Unified Comfort Panel
In the engineering system you specify whether you want to work with local or central users and
user groups from the central user management on a Unified Comfort Panel. By default, the use
of the local user management is specified in the engineering system.

Note
You can only switch between local and central user management in the engineering system.

Configuring users and roles
13.3 Using the user management on the Unified Comfort Panel

System Manual, 11/2022 6925

To manage users in Runtime, you require the "User management" function right. Configure a
user with the required rights in the engineering system and load the user into Runtime.

13.3.3 Protecting the Control Panel from being accessed
In the engineering system you can protect the Control Panel of a Unified Comfort Panel from
unauthorized access. You can assign a user the access right for changes on the Control Panel.

Requirement
• A project is open.
• A user has been created in the engineering system.
• A user-defined role has been created.
• A Unified Comfort Panel has been created.

Assign access right to Control Panel to a user
To assign a user the function right "Control Panel access" to access the Control Panel, follow these
steps:
1. Open the "Security settings" folder in the project tree.
2. Double-click on "Users and roles".

The "Users and roles" editor opens in the work area.
3. Open the "Roles" tab.
4. Select a user-defined role.
5. In the lower area "Function rights categories", open the category of the Runtime rights.
6. Click on the category of the Unified Comfort Panels.
7. In the lower area "Function rights", activate the function right "Control Panel access ".
8. Open the "Users" tab.
9. Select a user.
10.In the area "Assigned roles", activate the user-defined role to which you have assigned the

function right for access to the Control Panel.
The user receives the access right for the Unified Control Panel and is permitted to change
the Panel settings.

Activate access control for Control Panel
In addition, activate the access control in the Control Panel:
1. Start the Panel.
2. Open the Control Panel.
3. Under "Security > Control Panel Access", activate the access control for the Control Panel.

Configuring users and roles
13.3 Using the user management on the Unified Comfort Panel

6926 System Manual, 11/2022

Note
In contrast to the Unified PC Runtime, no login in required. When you open the protected Control
Panel, your user rights are checked. If you do not have the necessary rights, a login window is
displayed.

See also
System-defined function rights (Page 6914)
Using central user management in the Control Panel (Page 6940)

13.3.4 Managing local users

13.3.4.1 Options for local user management
To manage local users in Runtime, the user requires the "User management" function right on
the HMI device.

Managing local users
You have the following options for managing local users:
1. Control Panel of the Unified Comfort Panel. You can find all information in the "SIMATIC HMI

devices Unified Comfort Panels (https://support.industry.siemens.com/cs/ww/en/view/
109773257)" manual.

2. Via the "Browser" screen object in a project.
3. Using an Internet browser on a PC.

13.3.4.2 Using local user management in the Control Panel
If access protection is configured for the Control Panel in the engineering system, you need the
"Control Panel access" function right. If you do not have the necessary rights, a login window is
displayed.
You cannot make any changes to the user management in the Control Panel.

Local user management in the Control Panel
If you want to use the user management on the Unified Comfort Panel, follow these steps:
1. Select "Security" in the navigation.
2. Click "User management settings".
3. In the "Configuration of user management" dialog, you can see whether the local or central

user management is enabled.

Configuring users and roles
13.3 Using the user management on the Unified Comfort Panel

System Manual, 11/2022 6927

https://support.industry.siemens.com/cs/ww/en/view/109773257
https://support.industry.siemens.com/cs/ww/en/view/109773257

13.3.4.3 Opening local user management in the "Browser" screen object
In Runtime, you access local user management of a Panel by using the "Browser" screen object
in a screen.
The detailed description of the individual steps in Runtime can be found in the section
"Managing local users in Runtime (Page 6930)".

Note
The specific possible operations depend on the function right.

Requirement
• To access the user management, the user must have the "User management" or "Monitor"

function right.
• To access the Control Panel, the user must have the "Control Panel access" function right.
• A screen with the "Browser" screen object is displayed in Runtime.

Configuring users and roles
13.3 Using the user management on the Unified Comfort Panel

6928 System Manual, 11/2022

Managing local user in the "Browser" screen object
If you want to manage local users in the "Browser" screen object, follow these steps:
1. Enter the address "https://localhost/umc" in the "Browser" screen object. The "User login"

dialog is displayed.
2. Log in to the user management. The home page of the user management opens.

3. Select "Users" in the menu. The user list is displayed.
4. You manage the user information in the user list with the buttons "Add user", "Details", "Edit"

and "Delete".

Users without "User management" function right
If you do not have the "User management" function right, you can only select your own "User
profile" and change your own password.

13.3.4.4 Opening local user management in the Internet browser
From a PC, you access local user management of a Panel via an Internet browser.
The detailed description of the individual steps in Runtime can be found in the section
"Managing local users in Runtime (Page 6930)".

Note
The specific possible operations depend on the function right.

Requirement
• To access the user management, the user must have the "User management" or "Monitor"

function right.
• To access the Control Panel, the user must have the "Control Panel access" function right.
• Internet browser is open.

Configuring users and roles
13.3 Using the user management on the Unified Comfort Panel

System Manual, 11/2022 6929

Managing local users in the web browser
If you want to manage local users in the Internet browser, follow these steps:
1. In the address line of the browser, enter the IP address of the Unified Comfort Panel "https://

<UCP-IP>/umc". The "User login" dialog is displayed.
2. Log in to the user management. The home page of the user management opens.

3. Select "Users" in the menu. The user list is displayed.
4. You manage the user information in the user list with the buttons "Add user", "Details", "Edit"

and "Delete".

Users without "User management" function right
If you do not have the "User management" function right, you can only select your own "User
profile" and change your own password.

13.3.4.5 Managing local users in Runtime

Changing your password

Introduction
You can change your own password in the user management.

Configuring users and roles
13.3 Using the user management on the Unified Comfort Panel

6930 System Manual, 11/2022

Requirement
• You have the "User management" function right.
• The home page of the user management is open.

Procedure
To change the password, follow these steps:
1. Select "User profile" directly on the home page or in the menu.

The "Change Password" dialog is displayed.

2. Change the password and save the change with the "Change" button. The password must
meet the password policies.

Configuring users and roles
13.3 Using the user management on the Unified Comfort Panel

System Manual, 11/2022 6931

Changing the password of a different user

Introduction
In the user management you can change the password of a different user. You can also edit the
comment.

Requirement
• You have the "User management" function right.
• The home page of the user management is open.

Configuring users and roles
13.3 Using the user management on the Unified Comfort Panel

6932 System Manual, 11/2022

Changing the password and comment
To change the password or comment of a user in the user list, follow these steps:
1. Select "Users" in the menu.

The user list is displayed.

2. Select a user and click on "Edit" in the respective row.
3. Change the password or the comment and save the change with the "Update" button.

Configuring users and roles
13.3 Using the user management on the Unified Comfort Panel

System Manual, 11/2022 6933

Editing password, status or role

Introduction
In the user list you can edit the password, the status or the role of a user.

Requirement
• You have the "User management" function right.
• The home page of the user management is open.

Changing the password
To change the password of a user, follow these steps:
1. Select "Users" in the menu. The user list is displayed.
2. Select a user and click the "Details" button.

Configuring users and roles
13.3 Using the user management on the Unified Comfort Panel

6934 System Manual, 11/2022

3. Enter the new password in the "Password" tab and confirm the password.
4. Confirm your entries with the "Apply" button.

Save the settings with "OK".

Changing the status
To edit the status of a user, follow these steps:
1. Select "Users" in the menu. The user list is displayed.
2. Select a user and click the "Details" button.

Configuring users and roles
13.3 Using the user management on the Unified Comfort Panel

System Manual, 11/2022 6935

3. In the "Status" tab, you can disable the user or keep this user from changing the password.
You cannot change the "Locked" property.

4. Confirm your entries with the "Apply" button.
Save the settings with "OK".

Configuring users and roles
13.3 Using the user management on the Unified Comfort Panel

6936 System Manual, 11/2022

Changing the role
To edit the role of a user, follow these steps:
1. Select "Users" in the menu. The user list is displayed.
2. Select a user and click the "Details" button.
3. In the "Roles" tab, you can change the roles and thus the associated function rights of the user:

– Select a role from the "Available roles" or "Assigned roles" list.
– Change the assignment of this role using the buttons between the two lists.
– Confirm your entries with the "Apply" button.

Save the settings with "OK".
The figure below shows you how to assign the "HMI Monitor" role to a user in addition to the
"HMI Operator" role.

Note
Note that at least one user in the project has the "HMI Administrator" role and at least one user
has access to the Control Panel. If access to the user management or the Control Panel is not
possible, a complete download from the TIA Portal is necessary.

Configuring users and roles
13.3 Using the user management on the Unified Comfort Panel

System Manual, 11/2022 6937

Adding users

Introduction
You can add a new user in the user list.

Requirement
• You have the "User management" function right.
• The home page of the user management is open.

Adding a new user
To add a new user, follow these steps:
1. Select "Users" in the menu. The user list is displayed.
2. In the user list, click "Add User".

3. A new row is displayed for the new user in the user list. Enter the information of the new user
in the row.

Configuring users and roles
13.3 Using the user management on the Unified Comfort Panel

6938 System Manual, 11/2022

4. Click "Details" in the user list. Assign roles to the new user.

5. Confirm your entries with the "Apply" button.
Save the settings with "OK".

Deleting users

Introduction
You can delete a user in the user list.

Requirement
• You have the "User management" function right.
• The home page of the user management is open.

Configuring users and roles
13.3 Using the user management on the Unified Comfort Panel

System Manual, 11/2022 6939

Deleting users
To delete a user, follow these steps:
1. Select "Users" in the menu. The user list is displayed.
2. Select the user.
3. Click the "Delete" button in the row. The user is deleted.
Deleting the user from the user list will become effective once the user logs off in Runtime.

13.3.5 Using central user management

13.3.5.1 Using central user management in the Control Panel
In the engineering system you specify whether you want to work with local or central users and
user groups from the central user management on a Unified Comfort Panel. By default, the use
of the local user management is specified in the engineering system.

Note
You can only switch between local and central user management in the engineering system.

Requirement
• User management has been configured in the engineering system.
• A user with the access right to the Control Panel "Access Control Panel" has been created.
• A Unified Comfort Panel has been started.

Note
In contrast to the Unified PC Runtime, no login in required. When you open the protected Control
Panel, your user rights are checked. If you do not have the necessary rights, a login window is
displayed.

Using the user management on the Unified Comfort Panel
If you want to use the user management on the Unified Comfort Panel, follow these steps:
1. Select "Security" in the navigation.
2. Select the "User management settings" tile.
3. In the "Configuration of user management" dialog, you can see whether the local or central

user management is enabled. You can only switch between local and central user
management in the engineering system.

Configuring users and roles
13.3 Using the user management on the Unified Comfort Panel

6940 System Manual, 11/2022

Establishing a connection to the central user management
If you have not entered any information in the engineering system, follow these steps:
1. Enter the server address.
2. The "Connect to server" button is activated.
3. Enter the server ID manually or click the "Connect to server" button. The server ID is read in

from the central user management.
4. In the "Verify user management server" dialog, confirm the displayed server.

All input fields are filled in and write-protected. Status of the connection is "Connected".
– The "Connect to server" button is changed to "Check connection".
– You can check or reset the connection.

Configuring users and roles
13.3 Using the user management on the Unified Comfort Panel

System Manual, 11/2022 6941

Adapting the connection to the central user management
If you have only entered some information in the engineering system, the input field for the
missing information is marked in red. Proceed as follows in this case:
1. Enter the missing information.
2. The "Connect to server" button is activated.
3. Click "Connect to server". The server ID is read in from the central user management.
4. In the "Verify user management server" dialog, confirm the displayed server.

All input fields are filled in and write-protected. Status of the connection is "Connected".
– The "Connect to server" button is changed to "Check connection".
– You can check or reset the connection.

If the entered server ID is not the same as the online server ID, you can apply the online
server ID.
1. Confirm this in the "Verify user management server" dialog.

The online server ID is read in. All input fields are filled in and write-protected. Status of the
connection is "Connected".
– The "Connect to server" button is changed to "Check connection".
– You can check or reset the connection.

Verifying the connection to the central user management
You have entered all information in the engineering system. When the server ID in the
engineering system and on the Panel match, the Panel is automatically connected to the central
user management.
Status of the connection is not displayed. If you want to verify the central user management
on the Unified Comfort Panel, follow these steps:
1. Click "Check connection".
2. The connection to the central user management is established.
When the Panel is not connected to the central user management and no status is displayed,
change the server ID.
1. The "Check connection" button is changed to "Connect to server".
2. You can make or reset the connection.

Configuring users and roles
13.3 Using the user management on the Unified Comfort Panel

6942 System Manual, 11/2022

Resetting the connection to the central user management
If you have entered all information in the engineering system, the Panel is connected to the
central UMC server. If you want to reset the central user management, follow these steps:
1. Click "Reset configuration".
2. In the "Reset central user management" dialog, confirm the reset.
3. The default is set:

– The input field for the server address is empty and marked in red.
– The input field for the server ID is empty.
– The "Connect to server" button is hidden.
– The "Reset configuration" button is hidden.

13.3.5.2 Simulating a central user management
You want to simulate a project in which a central user management is configured for a customer.
You have two options if you do not have access to the central user management of the customer:
• Configure your own central user management.
• Configure a local user management.

Requirement
• You know which groups and their function rights are contained in the central user

management of the customer.

Configuring a central user management
Configure a central user management for the simulation project.
1. Create the users.
2. Create the user groups according to the customer project.
3. Assign the users to the groups.
4. Establish the connection to the central user management.
5. Start the simulation.
6. Log on in runtime.
Changes can be downloaded.

Configuring a local user management
Configure a local user management.
1. Create one or more users.
2. Assign the roles to the users.
3. Start the simulation.

Configuring users and roles
13.3 Using the user management on the Unified Comfort Panel

System Manual, 11/2022 6943

Changes cannot be downloaded.

See also
Simulate Unified Comfort Panel (Page 7205)

13.4 Using user management on the WinCC Unified PC

13.4.1 Notes on commissioning

Commissioning with central user management
To establish the connection to the central user management, configure the connection to the
central user management on the PC with SIMATIC Runtime Manager.

Note
Failure of the network connection
If the network connection to the central user management fails, all users who have already
logged on to the project once before can still log on for some time. When the connection to the
central user management has been restored, other users can log on once again as well.

See also
SIMATIC Runtime Manager users (Page 6947)

13.4.2 Setting the user management with WinCC Unified Configuration
The "WinCC Unified Configuration" application is installed with the installation of WinCC
Unified. A link is automatically created on your desktop for "WinCC Unified Configuration".
You can change the setting made during setup at any time.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

6944 System Manual, 11/2022

Local user management
If you only edit projects with local user management in the TIA Portal, use the setting "Use
configuration downloaded via TIA Portal".

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

System Manual, 11/2022 6945

Central user management
If you only edit projects with central user management in the TIA Portal, use the setting
"Configure connection to user management on the computer".

Using local and central user management
When you edit projects with local as well as central user management, note the following special
features:
Setting "Use configuration downloaded via TIA Portal":
• You cannot simulate projects with central user management.
• Groups and users of the central server cannot be imported into projects with central user

management.
Setting "Configure connection to user management on the computer":
• You cannot simulate projects with local user management.

13.4.3 Managing multiple projects in the SIMATIC Runtime Manager
The SIMATIC Runtime Manager is installed with the installation of WinCC Unified Runtime. A link
for the SIMATIC Runtime Manager is automatically created on your desktop.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

6946 System Manual, 11/2022

You manage the Runtime projects in the SIMATIC Runtime Manager. Multiple projects can be
available on one PC. In SIMATIC Runtime Manager, you enable the matching configuration of
the user data for a selected project or you adapt the configuration.
You cannot switch between local and central user management in the Runtime Manager.

See also
Checking local user management in the SIMATIC Runtime Manager (Page 6947)
Setting central user management in the SIMATIC Runtime Manager (Page 6966)

13.4.4 SIMATIC Runtime Manager users

Groups for the user management
Groups are created during the installation of WinCC Unified that enable a user to access specific
WinCC Unified functions:
• **umcd_domain_manager**
• **umcd_um**
• **umcd_dsso**
To log in with single sign-on (SSO), the user must be added to the following group:
• **umcd_dsso**

Groups for the Runtime Manager
For a Windows user to be able to change user data in the Runtime Manager, add the user to the
following groups:
• **umcd_domain_manager**
• **umcd_um**
• “SIMATIC HMI”

See also
Notes on commissioning (Page 6944)

13.4.5 Managing local users

13.4.5.1 Checking local user management in the SIMATIC Runtime Manager
Multiple projects can be available on one PC. In SIMATIC Runtime Manager, you can activate the
matching configuration of the user data for a selected project.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

System Manual, 11/2022 6947

You cannot switch between local and central user management.

Requirement
• At least one project with user management is loaded on the Runtime PC.
• WinCC Unified Runtime is installed.
• SIMATIC Runtime Manager has been started.

Checking local user management in the SIMATIC Runtime Manager
You cannot configure the local user management in the SIMATIC Runtime Manager.
1. In the SIMATIC Runtime Manager, click "Settings" on the home page.

2. Select the "User management" tab.
3. When multiple projects are available on the PC, select the configuration of the user

management of a project under "Select configuration".

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

6948 System Manual, 11/2022

4. To activate the local user data of the selected project, click "Load user management".
Note
When you click "Load user management", the changes of the user management that you
have made in runtime are overwritten by the configuration of the last download.

5. The status of the local user management is displayed. You check the status of the local user
management with the "Check status" button.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

System Manual, 11/2022 6949

See also
Managing multiple projects in the SIMATIC Runtime Manager (Page 6946)

13.4.5.2 Managing local users in Runtime

User logon

Introduction
From a PC, you access local user management via an Internet browser.
To manage the local users on a Unified PC, you require the "User management" function
rights. Configure a user with the required rights in the engineering system and load the user
into Runtime.

Note
The specific possible operations depend on the function right.

Requirement
• The user has the "User management" function rights.
• Internet browser is open.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

6950 System Manual, 11/2022

Logging on to the user management
To log on to the user management in Runtime, follow these steps:
1. In the browser, enter the IP address of the Runtime PC "https://<PC-IP>/umc". If runtime is

installed on the same PC as the browser, enter the address "https://localhost/umc".
The start page of Runtime is displayed.

2. Click the "User management" button. The "User login" dialog is displayed.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

System Manual, 11/2022 6951

3. Type in the user name and password.
4. If required, use the selection list to change the displayed language.
5. Click "Login".

The user management start page opens in Runtime.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

6952 System Manual, 11/2022

See also
Managing local users in Runtime (Page 6950)

Structure of the start page

Introduction
In menu on the start page, select whether you want to manage the users, change the password
or language, or log out. You can find the menu via the drop-down list in the upper right corner.

Note
Users with the "User management" function right have access to all functions.
Users without the "User management" function right can change their password under "User
profile".

Menu
The following options are available to you under the symbols in the menu:
• "Home"

This takes you to the start page of the user management.
• "Users"

You can create new users or manage the existing users.
• "User profile"

You can change your password and switch the language.
• "Logoff"

You will be logged out directly and can log in again.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

System Manual, 11/2022 6953

Changing your password

Introduction
You can change your own password in the user management.

Requirement
• You have the "User management" function right.
• The home page of the user management is open.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

6954 System Manual, 11/2022

Procedure
To change the password, follow these steps:
1. Select "User profile" directly on the home page or in the menu.

The "Change Password" dialog is displayed.

2. Change the password and save the change with the "Change" button. The password must
meet the password policies.

Managing the user list

Introduction
In the user list you can manage the data of the other users.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

System Manual, 11/2022 6955

Requirement
• You have the "User management" function right.
• The home page of the user management is open.

Opening a user list
To display the user list, click "Users" in the menu on the homepage.
The user list is displayed.

Options in the user list
In the user list you can manage the data of the user via the following buttons:
• "Add users"
• "Details"

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

6956 System Manual, 11/2022

• "Edit"
• "Clear"
In the user list, you can:
• Sort users by user name or comment.
• Filter users by user name or comment.
• Display 20 users on one page. Additional users are displayed on a new page. You can switch

between the pages.

Changing the password of a different user

Introduction
In the user management you can change the password of a different user. You can also edit the
comment.

Requirement
• You have the "User management" function right.
• The home page of the user management is open.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

System Manual, 11/2022 6957

Changing the password and comment
To change the password or comment of a user in the user list, follow these steps:
1. Select "Users" in the menu.

The user list is displayed.

2. Select a user and click on "Edit" in the respective row.
3. Change the password or the comment and save the change with the "Update" button.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

6958 System Manual, 11/2022

Editing password, status or role

Introduction
In the user list you can edit the password, the status or the role of a user.

Requirement
• You have the "User management" function right.
• The home page of the user management is open.

Changing the password
To change the password of a user, follow these steps:
1. Select "Users" in the menu. The user list is displayed.
2. Select a user and click the "Details" button.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

System Manual, 11/2022 6959

3. Enter the new password in the "Password" tab and confirm the password.
4. Confirm your entries with the "Apply" button.

Save the settings with "OK".

Changing the status
To edit the status of a user, follow these steps:
1. Select "Users" in the menu. The user list is displayed.
2. Select a user and click the "Details" button.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

6960 System Manual, 11/2022

3. In the "Status" tab, you can disable the user or keep this user from changing the password.
You cannot change the "Locked" property.

4. Confirm your entries with the "Apply" button.
Save the settings with "OK".

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

System Manual, 11/2022 6961

Changing the role
To edit the role of a user, follow these steps:
1. Select "Users" in the menu. The user list is displayed.
2. Select a user and click the "Details" button.
3. In the "Roles" tab, you can change the roles and thus the associated function rights of the user:

– Select a role from the "Available roles" or "Assigned roles" list.
– Change the assignment of this role using the buttons between the two lists.
– Confirm your entries with the "Apply" button.

Save the settings with "OK".
The figure below shows you how to assign the "HMI Monitor" role to a user in addition to the
"HMI Operator" role.

Note
Note that at least one user in the project has the "HMI Administrator" role and at least one user
has access to the Control Panel. If access to the user management or the Control Panel is not
possible, a complete download from the TIA Portal is necessary.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

6962 System Manual, 11/2022

Adding users

Introduction
You can add a new user in the user list.

Requirement
• You have the "User management" function right.
• The home page of the user management is open.

Adding a new user
To add a new user, follow these steps:
1. Select "Users" in the menu. The user list is displayed.
2. In the user list, click "Add User".

3. A new row is displayed for the new user in the user list. Enter the information of the new user
in the row.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

System Manual, 11/2022 6963

4. Click "Details" in the user list. Assign roles to the new user.

5. Confirm your entries with the "Apply" button.
Save the settings with "OK".

Deleting users

Introduction
You can delete a user in the user list.

Requirement
• You have the "User management" function right.
• The home page of the user management is open.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

6964 System Manual, 11/2022

Deleting users
To delete a user, follow these steps:
1. Select "Users" in the menu. The user list is displayed.
2. Select the user.
3. Click the "Delete" button in the row. The user is deleted.
Deleting the user from the user list will become effective once the user logs off in Runtime.

Logging a user out

Introduction
You can log out from the user management.

Logging out
To log out, proceed as follows:
1. Close all open pages.
2. Select "Logout" from the menu.

You are logged out from runtime and from the user management.
Newly loaded data from the TIA Portal will not be applied until the next time you log in.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

System Manual, 11/2022 6965

13.4.6 Using central user management

13.4.6.1 Setting central user management in the SIMATIC Runtime Manager
Multiple projects can be available on one PC. In SIMATIC Runtime Manager, you can activate the
matching configuration of the user data for a selected project.
You cannot switch between local and central user management.

Requirement
• At least one project with user management is loaded on the Runtime PC.
• WinCC Unified Runtime is installed.
• SIMATIC Runtime Manager has been started.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

6966 System Manual, 11/2022

Checking central user management in the SIMATIC Runtime Manager
When you have entered all information in the engineering system and the connection to the
central user management can be established, all information is write-protected.
1. In the SIMATIC Runtime Manager, click "Settings" on the home page.
2. Select the "User management" tab.

3. When multiple projects are available on the PC, select the configuration of the user
management of a project under "Select configuration".

4. Check the information in the area "Connection to UMC server".
5. Click the "Connect to server" button.
6. If the connection was successfully established, the status of the connection changes to

"Connected" and the "Connect to server" button changes to "Check connection". You can
reset the connection via "Reset configuration".

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

System Manual, 11/2022 6967

Configuring central user management
When the connection to the central user management could not be established, you can
complete the information in the SIMATIC Runtime Manager.
1. In WinCC Unified Runtime, click "Settings" on the start page.
2. Select the "User management" tab.
3. When multiple projects are available on the PC, select the configuration of the user

management of a project under "Activate configuration".
4. Complete the information. The setting "Authenticate server using server ID" is not

changeable.
5. Click the "Connect to server" button.
6. If the connection was successfully established, the status of the connection changes to

"Connected" and the "Connect to server" button changes to "Check connection". You can
reset the connection via "Reset configuration".

See also
Managing multiple projects in the SIMATIC Runtime Manager (Page 6946)

13.4.6.2 Simulating a central user management
You want to simulate a project in which a central user management is configured for a customer.
You have two options if you do not have access to the central user management of the customer:
• Configure your own central user management.
• Configure a local user management.

Requirement
• You know which groups and their function rights are contained in the central user

management of the customer.

Configuring a central user management
Configure a central user management for the simulation project.
1. Create the users.
2. Create the user groups according to the customer project.
3. Assign the users to the groups.
4. Establish the connection to the central user management.
5. Start the simulation.
6. Log on in runtime.
Changes can be downloaded.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

6968 System Manual, 11/2022

Configuring a local user management
Configure a local user management.
1. Create one or more users.
2. Assign the roles to the users.
3. Start the simulation.
Changes cannot be downloaded.

13.4.6.3 SwacLogin: Errors after complete download
After complete download of a project to a Unified PC, an error can occur when you open the
WinCC Unified home page. The error can occur regardless of whether you open the home page
locally on the PC or from a different device.
A possible cause of the error is the deletion of the browser cache.

Error description
In "Chrome" and "MS Edge", the error is displayed with the following alarm:

In "Firefox", the error is displayed with the following alarm:

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

System Manual, 11/2022 6969

After accepting the warning of a potential security risk, the page remains empty in Firefox.
Only the background screen is visible.

Remedy the error in "Chrome" and "MS Edge"
To fix the error in "Chrome" and "MS Edge", proceed as follows:
1. Open a new tab.
2. Enter the URL address of the identity provider of the UMC server in the address line of the

browser. The URL is the same as the one in the error message without "/swaclogin", for
example, "https://uadtbf-01.asrd-lab.net/umc-sso".

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

6970 System Manual, 11/2022

3. The page with a warning regarding the secure connection is displayed.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

System Manual, 11/2022 6971

4. Accept the warning by clicking on "Proceed to uadtbf-01.asrd-lab.net (unsafe)".
5. The home page with the "User login" dialog is displayed.

Remedy the error in "Firefox"
To remedy the error in "Firefox", follow these steps:
1. Open a new tab.
2. Enter the URL address of the identity provider of the UMC server (ring server) in the address

line of the browser, for example, "https://uadtbf-01.asrd-lab.net/umc-sso".
3. A blank page opens. Close the page.
4. Refresh the home page with the function key <F5>. The home page with the "User login"

dialog is displayed.

Configuring users and roles
13.4 Using user management on the WinCC Unified PC

6972 System Manual, 11/2022

Connectivity 14
14.1 Basics

14.1.1 Basics of communication

14.1.1.1 Communication between devices

Communication
The data exchange between two devices is known as communication. The devices can be
interconnected directly or via a network. The networked devices in communication are referred
to as communication partners.

Data transferred between the communication partners is used for various purposes:
• Display processes
• Operate processes
• Output alarms
• Archive process values and alarms
• Document process values and alarms
• Administer process parameters and machine parameters

System Manual, 11/2022 6973

Communication partners in the automation system
An automation system consists of the following communication partners:
• PLC

The PLC controls a process by means of a user program.
• HMI device

The HMI device is used to operate and monitor the process.
Communication between the communication partners PLC and HMI device is described
below.
Additional information on other forms of communication is available in the online help of the
TIA Portal in the section "Editing devices & networks".
If the following requirements are met, the PLC and HMI device form an automation system:
– PLC and HMI device are linked to each other
– Network between PLC and HMI device is configured

Network configuration
The basis for all types of communication is a network configuration.
• Every device in a network has a unique address.
• The devices carry out communication with consistent transmission characteristics.

Data exchange using tags
Process values such as temperatures and levels are transferred by tags in Runtime. Process values
are stored in the memory of one of the connected automation systems.
To access the process data with the HMI device, link the external HMI tags to the PLC tags.
For additional information on configuring tags, refer to "Configuring tags (Page 607)".

Communication via a uniform and vendor-neutral interface
With OPC UA (Open Platform Communications Unified Architecture), WinCC has a uniform and
manufacturer-independent software interface. This interface enables standardized data
exchange between industrial, office, and manufacturing applications.
For more detailed information, refer to the documentation for OPC UA.

See also
Supported PLCs and communication channels (Page 6981)
Configuring communication (Page 6975)

Connectivity
14.1 Basics

6974 System Manual, 11/2022

14.1.1.2 Configuring communication

Introduction
To configure an automation system, you configure the connections in the "Devices & networks"
editor. Connections of devices that are within the same project and were created with the
"Devices & networks" editor are referred to as integrated connections. Connections of devices
that were created with the "Connections" editor are referred to as non-integrated connections.
The devices do not all have to be within the same project.
You use the graphic and table network view for the configuration.

Requirement
• The network configuration is complete.
• HMI device and PLC are available in the hardware catalog.

Note
Non-integrated configuration
If integrated configuration of the HMI connections is not possible, create non-integrated HMI
connections of the HMI device using the "Connections" editor.

Procedure
To set up an automation system, always follow the steps below:
1. Inserting devices

You drag a PLC and an HMI device from the hardware catalog to the network view of the
"Devices & networks" editor.

2. Configuring devices
Depending on the HMI device used, you add the required communications modules to your
PC station.

3. Networking devices
In the networking step, you configure the physical connection of the devices.
To connect the devices, you connect the interfaces of the devices with communications
capability using drag and drop.

4. Connecting devices
To set up a logical communication connection between the communication partners, you
create an HMI connection between the networked devices.
The tabular network overview supplements the graphical network view.
In addition, the created HMI connection is also visible in the "Connections" editor of the HMI
device where it can be configured.

Connectivity
14.1 Basics

System Manual, 11/2022 6975

See also
Supported PLCs and communication channels (Page 6981)
Networking the HMI device and PLCs (Page 6985)
Creating an integrated HMI connection (Page 6988)
Creating a non-integrated HMI connection (Page 6992)
Communication between devices (Page 6973)

14.1.1.3 Secure communication and certificates
Runtime Unified supports secure communication to PLCs of the S7 series, for example, S7-1200
and S7-1500.
Each connection is encrypted by the TLS protocol.
In the TIA Portal you configure secure communication to the PLCs with a PLC certificate.

Note
Encryption with TLS
Always use the most current version of TLS. Disable the older version.
The use of older versions (TLS 1.0 und 1.1) is at your own risk.

Also observe the instructions in SiePortal:
• Making use of Runtime by using certificates (https://

support.industry.siemens.com/cs/ww/en/view/109806850)
• Security guidelines for SIMATIC HMI operator devices and SIMATIC WinCC Unified (https://

support.industry.siemens.com/cs/ww/en/view/109481300)

Connection establishment
Establishing an unencrypted connection
The connection establishment to PLCs, such as S7-1200 and S7-1500, for example, with
older firmware or without PLC certificates is still possible.
Establishing an encrypted connection with secure communication
Current firmware allows for a connection with secure communication via the TLS protocol.
Certificates of a certificate authority, end unit certificates (self-signed or trusted) and
certificate revocation lists, if available, are transferred to create an encrypted session.
The session is set up when the certificates match. If the certificates do not match, setup of
the session is rejected, and a system alarm is generated.

Creating a connection with secure communication from Runtime Unified to the PLC
The certificates for Runtime Unified are automatically handled by the engineering system and
sent to the device.

Connectivity
14.1 Basics

6976 System Manual, 11/2022

https://support.industry.siemens.com/cs/ww/en/view/109806850
https://support.industry.siemens.com/cs/ww/en/view/109806850
https://support.industry.siemens.com/cs/ww/en/view/109481300
https://support.industry.siemens.com/cs/ww/en/view/109481300

However, if certificates are modified in the PLC and the HMI device is not reloaded, the
following scenarios can be created.
Connection of the Runtime Unified without certificates to a PLC without certificate
• The connection is established during the next connection.
Connection of the Runtime Unified to a PLC with the same certificate
• The connection is established during the next connection.
Connection of the Runtime Unified without certificates to a PLC with certificate
• When the PLC is configured so that HMI connections with and without secure communication

are permitted, the connection is established.
• If the PLC only permits connections with secure communication, the connection is denied.

The PLC certificate is saved in
"%PROGRAMDATA%/Siemens/Automation/device-certificate-store/untrusted/certs"
. The certificate file contains the IP address of the PLC and a fingerprint of the certificate.

• The HMI device tries every 30 seconds to set up the connection again. The PLC accepts the
certificate during the next attempt and the connection is established.

Connection of the Runtime Unified to a PLC with different certificates
• If the HMI connection has a certificate, an attempt is made to set up a connection to this

certificate. If the certificate of the HMI connection does not match the one of the PLC, the
connection is denied. The PLC certificate is saved in
"%PROGRAMDATA%/Siemens/Automation/device-certificate-store/untrusted/certs"
. The certificate file contains the IP address of the PLC and a fingerprint of the certificate.

• The HMI device tries every 30 seconds to set up the connection again. The PLC accepts the
certificate during the next attempt and the connection is established.

Certificate revocation list (CRL)
A certificate revocation list contains certificates that were revoked before they expired and,
therefore, are no longer trusted. A certificate revocation list is provided as a CERT file (encoded
in PEM or DER format). More than one certificate revocation list can exist.
Certificate revocation lists are saved in the path
"%PROGRAMDATA%/Siemens//Automation//device-certificate-store//trusted//crl/"
.
While the HMI connection to a PLC is being established, the PLC certificate is compared with
the certificate revocation list. If the certificate is listed there, the connection is denied. An
alarm is output.

Connectivity
14.1 Basics

System Manual, 11/2022 6977

14.1.1.4 Networks and connections

SIMATIC communication networks

Communication networks

Overview
Communication networks are a central component of an automation solutions. Industrial
networks fulfill special requirements:
• Coupling of automation systems as well as simple sensors, actuators, and PCs
• Error-free transfer of information at the right time
• Robustness against electromagnetic interference, mechanical stresses and soiling
• Flexible adaptation to the production requirements
Industrial networks belong to the LANs (Local Area Networks) and allow communication
within a limited area.
Industrial networks fulfill the following communication functions:
• Process and field communication of the automation systems including sensors and actuators
• Data communication between automation systems
• IT communication for integrating information technology

HMI devices in the plant network
You connect an HMI device in the network to SIMATIC S7 modules that have an integrated
interface of the corresponding communication channel.
You can connect multiple HMI devices to one SIMATIC S7 PLC and multiple SIMATIC S7 PLCs to
one HMI device. The maximum number of communication partners that you can connect to
an HMI device is dependent on the HMI device used.
Additional information is available in the documentation for the respective HMI device.

See also
PROFINET Industrial Ethernet (Page 6978)

PROFINET Industrial Ethernet

PROFINET
PROFINET is an open standard for industrial automation defined by IEEE 61158 and based on
Industrial Ethernet. PROFINET makes use of IT standards all the way to the field level and enables
plant-wide engineering.

Connectivity
14.1 Basics

6978 System Manual, 11/2022

With PROFINET, you realize automation solutions, the high performance and communication
in real-time requirements.

Industrial Ethernet
Industrial Ethernet, which is based on IEEE 802.3, enables you to connect your automation
system to your office networks. Industrial Ethernet provides IT services that you can use to access
production data from the office environment.

See also
Communication networks (Page 6978)

Connections

HMI connection

Definition
An HMI connection is a logical connection between an HMI device and a PLC. The HMI
connection enables communication between the communication partners.
 Unlike an S7 connection, the HMI connection is assigned to the HMI device.

Layout
The HMI connection defines the following within the plant network:
• Communication partners

The HMI connection identifies the devices in the plant configuration.
• Communication channel over which these communication partners communicate.

The HMI connection requires a configured network.
• Communication path

The HMI connection defines the interface parameters and the network addresses of the
communication partners.

Connectivity
14.1 Basics

System Manual, 11/2022 6979

HMI connection types
The options for addressing external tags depend on the type of HMI connection between WinCC
and the PLC in question. The TIA Portal supports the following types of connection:
• Integrated HMI connection

In the TIA Portal you configure integrated HMI connections between the devices in the
"Devices & Networks" editor. An integrated HMI connection enables an optimized data
exchange.

• Non-integrated HMI connection
In the case of a non-integrated connection, the PLC program can be created outside the
WinCC project. You configure the PLC and the WinCC project independently each other. For
configuration in WinCC, you only need to know the addresses used in the PLC and their
function.
You use a non-integrated HMI connection, for example, in the following application cases:
– You configure a WinCC project for external PLCs.
– You do not have access to the device configuration of a SIMATIC PLC, for example, because

you are working without a STEP 7 license.
You configure a non-integrated HMI connection for the HMI device in the "Connections"
editor of the WinCC project.

See also
Creating an integrated HMI connection (Page 6988)
Creating a non-integrated HMI connection (Page 6992)
Additional connection types (Page 6980)
Setting up switch on/switch off of a connection in runtime (Page 6993)

Additional connection types

Overview
The following table provides an overview of the connection types that you can use in addition
to the HMI connection for communication to specific device types and areas of application.
Additional information on connection types is available in the online help of the TIA Portal in
the section "Editing devices & networks".

Connection
type

Description Application

S7 connections Connection type can be used
in all S7 devices

Data exchange between SIMATIC S7 stations

FDL connection Fieldbus Data Link
Security layer
Based on PROFIBUS

Communication with a partner that supports sending and receiving ac‐
cording to the SDA function (Send Data with Acknowledge), e.g. SIMATIC
S5 or PC.

Connectivity
14.1 Basics

6980 System Manual, 11/2022

Connection
type

Description Application

ISO transport
connection

Suitable for large amounts of
data
Based on ISO transport

Communication with a partner that supports sending and receiving data in
accordance with ISO transport, e.g. SIMATIC S5 or PC.

ISO-on-TCP con‐
nection

Transmission Control Proto‐
col/Internet Protocol with the
extension RFC 1006
Corresponds to the standard
TCP/IP

Communication with a partner that supports sending and receiving of data
in accordance with ISO-on-TCP, e.g. PC or external system.

TCP connection Transmission Control Proto‐
col/Internet Protocol
Corresponds to the standard
TCP/IP

Communication with a partner that supports sending and receiving data in
accordance with TCP/IP, e.g. PC or external system.

UDP connection User Datagram Protocol
Subnet: Industrial Ethernet

Unsecured transmission of related data fields between two nodes

Email connection In the case of an email con‐
nection, the mail server via
which all emails sent by an IT-
CP are delivered is defined.

For example, enables the sending of process data, for example, from data
blocks via email using a CP with IT functionality (IT-CP);

P2P connection Peer-to-Peer
Communication between
two equal devices

Communication with external devices. e.g. a printer.

See also
HMI connection (Page 6979)

Supported PLCs and communication channels

Overview
Your HMI device can communicate with the following SIMATIC PLC families via integrated HMI
connections:

SIMATIC PLC family Supported communication channels Comment
SIMATIC S7-1200/1500 Industrial Ethernet Parallel communication with several

PLCs is possible
SIMATIC S7-300/400 Industrial Ethernet Parallel communication with several

PLCs is possible

Connectivity
14.1 Basics

System Manual, 11/2022 6981

Communication drivers
In the case of non-integrated connections, the HMI devices, PC systems and PLCs communicate
via the following communication drivers:

Communication driv‐
ers

Interface/Communication channel HMI de‐
vice/
Panel

PC system Comment

SIMATIC S7-1200/1500 Industrial Ethernet/PROFINET x Parallel communication with
several PLCs is possibleEthernet

MPI/DP
 x

SIMATIC S7-300/400 Industrial Ethernet/PROFINET x Parallel communication with
several PLCs is possibleEthernet

MPI/DP
 x

SIMATIC HMI HTTP Ethernet ⇒ http/https x
Allen-Bradley Ethernet
IP

Industrial Ethernet x Parallel communication with
several PLCs is possible

Allen Bradley DF1 COM interface x
Mitsubishi FX COM interface x Parallel communication with

several PLCs is possible
Mitsubishi iQr/iQF Industrial Ethernet x
Mitsubishi MC TCP/IP Industrial Ethernet x Parallel communication with

several PLCs is possibleEthernet x
Modbus RTU COM interface x
Modbus TCP/IP Industrial Ethernet x Parallel communication with

several PLCs is possibleEthernet x
Omron Ethernet/IP Industrial Ethernet x Parallel communication with

several PLCs is possible
Omron Host Link COM interface x
OPC UA OPC x x Parallel communication via

OPC UA connections possible
LOGO! Ethernet x

See also
Communication between devices (Page 6973)
Configuring communication (Page 6975)

Connectivity
14.1 Basics

6982 System Manual, 11/2022

14.1.1.5 Synchronization

Time synchronization on the S7-1200/1500
1. To make settings for the time synchronization, select the "Online & Diagnostics" node of the

PLC in the project tree.
2. In the Inspector window, select "Properties > General > Time of day".

Note
Example of window
Different settings are available depending on the configured PLC.

3. Select the time zone where the device is located.
4. Enable the time synchronization for the device by selecting how the NTP server is accessed

under "Time synchronization".
5. Specify at least one NTP server.
6. Complete the settings for

– Update interval
– Daylight saving time
– Start of standard time

Connectivity
14.1 Basics

System Manual, 11/2022 6983

Time synchronization on the S7-300/400
1. To make settings for the time synchronization, select the "Online & Diagnostics" node of the

PLC in the project tree.
2. In the Inspector window, select "Properties > General > Time of day".

Note
Example of window
Different settings are available depending on the configured PLC.

3. Select the synchronization type for the interfaces.
4. Specify a correction factor.

Time synchronization for PROFINET interfaces on Panels

Note
Activating this service reduces security against unauthorized access to functions and data of the
PLC from the outside and via the network.

Connectivity
14.1 Basics

6984 System Manual, 11/2022

1. To make settings for the time synchronization, select the "Online & Diagnostics" node of the
panel in the project tree.

2. Select "Properties > PROFINET interface [x] > Time synchronization" in the Inspector window.

3. Enable the time synchronization.
4. Specify at least one NTP server.

14.1.2 Configuring an HMI connection

14.1.2.1 Configuring an integrated HMI connection

Networking the HMI device and PLCs

Introduction
You can network an HMI device to several PLCs. The networking of devices is depicted by lines
that are colored depending on the interface type.
The number of available interfaces and interface types depends on the device. To make
additional interfaces available on the device, add a communications module to the device.

Requirement
• The "Devices & Networks" editor is open.
• The networks are configured.

Connectivity
14.1 Basics

System Manual, 11/2022 6985

• An HMI device is configured in the "Devices & Networks" editor.
• The PLC is configured in the "Devices & Networks" editor.

Connectivity
14.1 Basics

6986 System Manual, 11/2022

Procedure
To network an HMI device and a PLC, follow these steps:
1. Open the network view of the "Devices & Networks" editor.
2. Enable the "Networking" mode.
3. Use a drag-and-drop operation to interconnect the interfaces of the desired communication

network of the devices.
A connection is shown as graphic and table in the network view.

The tabular network overview supplements the graphical network view with the following
additional functions:
– You obtain detailed information on the structure and parameter settings of the devices.

Connectivity
14.1 Basics

System Manual, 11/2022 6987

– Using the "Subnet" column, you can connect communication-capable components to
subnets that have been created.

See also
Creating an integrated HMI connection (Page 6988)
SIMATIC communication networks (Page 6978)

Creating an integrated HMI connection

Introduction
An integrated HMI connection connects an HMI device and a SIMATIC S7 PLC within your project.

Connection resources
Each connection requires connection resources for the end point or transition point on the
devices involved. The number of connection resources is device-specific.
If all connection resources of a communication partner are allocated, no new connection can
be configured.

Requirement
• The networks are configured.
• An HMI device and a SIMATIC PLC are configured and networked.
• The network view is open in the "Devices & Networks" editor.

Connectivity
14.1 Basics

6988 System Manual, 11/2022

Create an integrated HMI connection
1. Enable the "Connections" mode.
2. Select the "HMI connection" connection type.

The devices available for connection are highlighted in color.

3. Use a drag-and-drop operation to interconnect the interfaces of the desired communication
channel of the HMI device and PLC with each other.
The HMI connection is shown as graphic and table in the network view.
In the table area of the editor, the HMI connection is displayed on the "Connections" tab.
Note
Change local connection names
You can change the local name for the connection only in the tabular area of the editor.

4. Change the connection parameters in the tabular area according to the requirements of your
project.

Connectivity
14.1 Basics

System Manual, 11/2022 6989

Open the graphic view of the connection partners
1. Select the HMI connection.
2. Click "Highlight HMI connection" and select the HMI connection.

The connection path is shown in the Inspector window under "Properties > General >
General".

Change the connection path
1. Open the graphic view display of the connection partners.
2. Select a different interface in the Inspector window under "Properties > General > General >

Interface".
The existing connection parameters are highlighted as invalid.

3. To validate the connection parameters, click on "Find connection path".
The connection parameters are reassigned and validated.

Create an integrated HMI connection in the "Tags" editor
1. Double-click on "HMI tags" below your HMI device in the project tree.
2. Select a tag table.

The "HMI tags" editor opens.
3. Create an HMI tag.
4. Connect the HMI tag to an existing PLC tag of the matching data type.
5. The integrated HMI connection to the PLC is established automatically.

Connectivity
14.1 Basics

6990 System Manual, 11/2022

See also
HMI connection (Page 6979)
Networking the HMI device and PLCs (Page 6985)
S7-1500 | Integrated HMI connection (Page 6999)
S7-300/400 | Integrated HMI connection (Page 7004)

14.1.2.2 Configuring a non-integrated HMI connection

Configuring non-integrated connections

Introduction
A non-integrated HMI connection requires a communication driver and a good understanding
of the address structure of the communication partner.

Addressing with non-integrated connections
In the case of a project with a non-integrated connection, you always configure a tag connection
exclusively with absolute addressing.
Select the valid data type yourself. If the address of a PLC tag changes in a project with a
non-integrated connection during the course of the project, you also have to perform the
change in WinCC. The tag connection is not checked for validity in Runtime. No alarm is
displayed.

Communication drivers
A communication driver is a software component that establishes a connection between a PLC
and an HMI device. The communication driver thus enables the assignment of process values to
HMI tags.
Depending on the HMI device used and the connected communication partner, you select
the interface used as well as the profile and transmission speed.

Basic procedure
The following steps are required to work in your project in a non-integrated connection:
1. Create an HMI connection
2. Select communication drivers and interfaces
3. Address the communication partners
4. Assign the communication network
5. Close the connection

Connectivity
14.1 Basics

System Manual, 11/2022 6991

See also
Creating a non-integrated HMI connection (Page 6992)
Supported PLCs and communication channels (Page 6981)

Creating a non-integrated HMI connection

Introduction
A non-integrated connection connects an HMI device to a PLC that is configured outside your
project. You create the non-integrated HMI connection in the "Connections" editor of the HMI
device.

Requirements
• A project is open.
• An HMI device has been created.

Procedure
To create a non-integrated connection, follow these steps:
1. Double-click "Connections" in the project tree below your HMI device.

The "Connections" editor opens.
Existing integrated connections are identified with .
Existing non-integrated connections are identified with .

2. Create a new connection with "Add".
3. Select the communication driver. Use the communication driver of the required PLC family.
4. Select the required interface of the HMI device in the graphic area of the editor under

"Parameters > [HMI device type] > Interface".
The number of available interfaces on the HMI device depends on the communication driver.

5. Change the connection parameters according to the requirements of your project.

See also
HMI connection (Page 6979)
Configuring non-integrated connections (Page 6991)
Supported PLCs and communication channels (Page 6981)
S7-1500 | Non-integrated HMI connection (Page 7000)
S7-300/400 | Non-integrated HMI connection (Page 7005)

Connectivity
14.1 Basics

6992 System Manual, 11/2022

14.1.2.3 Setting up switch on/switch off of a connection in runtime

Introduction
If an HMI device and a PLC do not have to always be connected, terminate the connection in
Runtime and establish it again when necessary. This reduces the load on the communication
channel.
Configure a Runtime script for enabling/disabling a connection in runtime.

Note
Alarm system and system diagnostics
After switching off the connection to a PLC, the alarms from this PLC continue to be displayed.
The system diagnostics for this PLC is also available.

Requirement
• An HMI connection is configured.
• A button is configured in the HMI device of the HMI connection.
• The "Screens" editor is open.

Procedure
To configure enabling/disabling of a connection in Runtime, follow these steps:
1. Select a button.
2. Select the event that is to trigger enabling/disabling in runtime under "Properties > Events"

in the Inspector window.
3. Program a script to the event which enables or disables the connection via the "Set

Connection mode" snippet.

Result
Pressing this button triggers enabling/disabling of the connection in Runtime.

See also
Introduction to runtime scripting (Page 969)
HMI connection (Page 6979)

Connectivity
14.1 Basics

System Manual, 11/2022 6993

14.1.3 Device configuration

14.1.3.1 HMI devices
Panels and PC systems are used as HMI devices.

Definition
An HMI device visualizes the plant process, shows the process values and enables access to the
plant control system via operator inputs.
The HMI device needs a runtime software for process visualization and operation. The device
must have the corresponding interfaces and communication drivers to connect the HMI
device to the plant network and the PLC.

Structure in the device navigation
Edit further components, to configure a PC system:
• PC station

The hardware basis of a PC system is an industrial PC.
The PC provides the operating system, the firmware and the hardware equipment.

• WinCC Runtime software
The Runtime software visualizes your WinCC Runtime project and enables process operation.
The runtime software is available in the hardware catalog.

• Communications modules
If the PC station does not have the required interfaces, install the required communications
modules in the PC station.

A Panel is a complete integrated HMI device which does not require further components.

See also
Inserting a HMI device into the project (Page 6994)

14.1.3.2 Inserting a HMI device into the project

Requirements
• The networks are configured.
• HMI device and PLC each support the communication channel of the respective network.
• The network view is open in the "Devices & Networks" editor.
• A corresponding interface is required at both ends to connect the HMI device to the PLC.

Connectivity
14.1 Basics

6994 System Manual, 11/2022

Configuring a SIMATIC WinCC Unified PC
1. Drag the SIMATIC WinCC Unified PC from the hardware catalog to the work area.

A SIMATIC PC system with the WinCC Unified PC RT is created.

2. Select a communication module for the required interface type in the hardware catalog.
3. Drag the communication module onto the SIMATIC WinCC Unified PC.

The communication module is added.

4. Drag a PLC from the hardware catalog to the work area.
The PLC is created.

5. Network the devices.

Configuring a SIMATIC Unified Comfort Panel
1. Drag a SIMATIC Unified Comfort Panel from the hardware catalog to the work area.

The SIMATIC Unified Comfort Panel is created.
2. Drag the matching PLC from the hardware catalog to the work area.

The PLC is created.
3. Network the devices.

See also
HMI devices (Page 6994)

Connectivity
14.1 Basics

System Manual, 11/2022 6995

14.2 Communication with SIMATIC PLCs

14.2.1 Communicating with SIMATIC S7-1200/1500

14.2.1.1 Communication with S7-1200/1500

Overview
You can configure the following communication channel for communication between an HMI
device and the SIMATIC S7-1200/1500 PLC.
• PROFINET

See also
Permitted data types for SIMATIC S7-1200/1500 (Page 6996)
Symbolic addressing (Page 6997)

14.2.1.2 Permitted data types for SIMATIC S7-1200/1500

Permitted data types for connections with SIMATIC S7-1500
The table below lists the data types that can be used when configuring tags.

Data type Length
BOOL 1 bit
BYTE 1 byte
CHAR 1 byte
DATE 2 bytes
DATE_AND_TIME 8 bytes
DINT 4 bytes
DTL 12 bytes
DWORD 4 bytes
INT 2 bytes
LDT 8 bytes

The value range of the data type LDT of an S7-1500 stretches from
1970-1-1 00:00:00.000000000 to 2262-04-11
23:47:16.854775807.

LINT 8 bytes
LREAL 8 bytes
LTIME 8 bytes
LTIME_OF_DAY 8 bytes
REAL 4 bytes

Connectivity
14.2 Communication with SIMATIC PLCs

6996 System Manual, 11/2022

Data type Length
S5TIME 2 bytes
SINT 1 byte
STRING (2+n) bytes, n = 0 to 254
TIME 4 bytes
TIME_OF_DAY 4 bytes
UDINT 4 bytes
UINT 2 bytes
ULINT 8 bytes
USINT 1 byte
WCHAR 2 bytes
WORD 2 bytes
WSTRING (2+n) 2 bytes, n = 0 to 254

See also
Communication with S7-1200/1500 (Page 6996)
Symbolic addressing (Page 6997)

14.2.1.3 Symbolic addressing

Introduction
Data are exchanged between the HMI device and the PLC via tags.
Depending on the addressed data blocks, these tags are addressed as absolute or symbolic in
the PLC.
• Symbolic addressing

For symbolic addressing, a validity check of the tag connection is performed in runtime. If an
address is changed in the PLC, the change is registered and an error message is issued.
For symbolic addressing, select the PLC tag via its name and connect it to an external HMI tag.
The valid data type for the external HMI tag is automatically selected by the system.

• Absolute addressing
The linking of tags is not checked in runtime. You select the valid data type of the tags. If the
tag address changes in the PLC, compile and load the HMI device again so that the change is
registered in Runtime.

Data blocks and symbolic access
Data blocks with optimized access support only symbolic addressing.
During the symbolic addressing of a data block, the address of an element in the data block is
dynamically assigned and is automatically adopted in the HMI tag in the event of a change.
Neither the connected data block nor the WinCC project must be compiled.

Connectivity
14.2 Communication with SIMATIC PLCs

System Manual, 11/2022 6997

For symbolic addressing of elements in a data block, you need to recompile and reload the
WinCC project only in case of the following changes:
• Name or data type of the connected data block element or of the global PLC tag
• Name or data type of a higher-level structure node of the connected element in the data

block element or global PLC tag
• Number of the connected data block

HMI connections and symbolic access
With symbolic addressing of tags, you create an integrated HMI connection:
• Integrated connection

You address the tags symbolically as well as absolutely over an integrated connection.
• Non-integrated connection

You address the tags only absolutely over a non-integrated connection.
A non-integrated connection is available for all supported PLCs.

Disabling symbolic access
In WinCC, symbolic addressing is the default method.
To change the default setting, follow these steps:
1. Select "Options > Settings > Visualization > HMI tags" in the menu.
2. Activate the "Symbolic access" option.

See also
Communication with S7-1200/1500 (Page 6996)
Permitted data types for SIMATIC S7-1200/1500 (Page 6996)

Connectivity
14.2 Communication with SIMATIC PLCs

6998 System Manual, 11/2022

14.2.1.4 Interface and communication parameters

S7-1500 | Integrated HMI connection

PROFINET interface parameters
The following table shows the interface parameters of an integrated HMI connection:

Table 14-1 PROFINET parameters of the HMI device
Parameters Description
Subnet Specifies the subnet of the HMI connection via which the HMI device is connected to the network.
MAC address Specifies the MAC address for the connection type "ISO connection".

This option is only available when the "Use ISO protocol" option is selected.
IP address Specifies the IP address of the communication partner.

This property is only available when the "Set IP address in the project" option is selected.
Subnet mask Specifies the subnet mask.

This property is only available when the "Set IP address in the project" option is selected.
The subnet mask determines which part of the IP address addresses the network and which part of
the IP address addresses the device.

Router address Specifies the router address.
This property is only available when the "Use router" option is selected.

Table 14-2 PROFINET parameters of the PLC
Parameters Description
Subnet Specifies the subnet of the HMI connection via which the HMI device is connected to the network.
IP address Specifies the IP address of the communication partner.

This property is only available when the "Set IP address in the project" option is selected.
Subnet mask Specifies the subnet mask.

This property is only available when the "Set IP address in the project" option is selected.
The subnet mask determines which part of the IP address addresses the network and which part of
the IP address addresses the device.

Router address Specifies the router address.
This property is only available when the "Use router" option is selected.

PROFINET device name Shows the PROFINET device name or specifies it.
This property is only available when the "Generate PROFINET device name automatically" option is
deactivated.

Converted name Shows the name that is automatically generated from the PROFINET device name and satisfies the
DNS conventions.

Device number Shows the device number by which an IO device can be identified.

Connectivity
14.2 Communication with SIMATIC PLCs

System Manual, 11/2022 6999

S7-1500 | Non-integrated HMI connection

PROFINET interface parameters
The following table shows the interface parameters of a non-integrated HMI connection:

Table 14-3 PROFINET parameters of the HMI device
Parameters Description
Interface Specifies the communication channel.
Address Specifies the IP address of the device.
Access point Defines a logical device name through which the communication partner can be reached.

Table 14-4 PROFINET parameters of the PLC
Parameters Description
Address Specifies the IP address of the device.

14.2.1.5 Troubleshooting for SIMATIC S7-1200/1500

Causes of a faulty connection

Causes for a connection not getting established
If communication between the PLC and the HMI device cannot be established, the causes could
be the following:
• Integrated connection not configured
• Hardware fault: Cable not plugged in, PLC switched off, network component interrupted
• Connection is not online
• Erroneous network configuration, for example. wrong access point, Invalid IP address of a

device
• Failed authentication on the PLC side (wrong or invalid password)
• Wrong or invalid connection certificate
• A connection that has already been established is broken as a result of a system function call.
• Connection resources exhausted

Connection not online
The connection can be set to not 'Online' In the Engineering System. In this case, connection
establishment does not take place.

Connectivity
14.2 Communication with SIMATIC PLCs

7000 System Manual, 11/2022

Breaking and switching the connection with a system function
A connection can be broken, established and switched by calling a system function in a script.
• "SetConnectionMode": The specified connection is established or disconnected.
• "ChangeConnection": Changes the connection parameters of an HMI connection.

Is used to switch between PLCs at runtime.
When "SwitchConnection" (ChangeConnection) is used, the current connection to the PLC is
disconnected and an attempt is made to establish a connection to another PLC. Connection
establishment to the other PLC can be rejected or the connection may later be lost.

Procedure if there is no connection
The connection is established at the start of Runtime.
If a connection cannot be established, Runtime issues a system alarm.

Requirement
Configure a screen with a screen object "Alarm view" that is shown on the HMI device in Runtime.
The system alarm for a failed connection establishment is displayed here.

Note
If a connection is configured as not "online" or is not established by calling a system function, a
system alarm is not issued. This is not an error; it is configured behavior.

The system alarm provides information on the cause of the faulty connection establishment.

Finding the cause of the error
1. Check the cable and the plug-in connections.
2. Check whether the connection has been configured as "online".

3. Check whether a script has called the system functions "SetConnectionMode"
(SetConnectionMode) or "SwitchConnection" (ChangeConnection).
More information: Setting up switch on/switch off of a connection in runtime (Page 6993)

Connectivity
14.2 Communication with SIMATIC PLCs

System Manual, 11/2022 7001

4. Check the network configuration.
IP addresses within a subnet must be unique.

If required, select the function "Find connection path" to assign the optimum connection
path to the connection.

5. Check the availability and validity period of the certificate in the TIA Portal.
The alarm text contains the name of a lapsed certificate.
More information: Introduction to the WinCC Unified Certificate Manager (Page 7517)
Connection establishment is not possible with PLCs that do not provide a certificate.

6. The password given for the PLC in "Device configuration > Properties > General > Access
protection" must match the password that is specified for the connection.

Error messages SIMATIC S7-1200/1500
The following alarms are output if the connection cannot be established:

ID Cause
536870948 The connection to the PLC could not be established.
537526273 The connection to an S7-1200/1500 PLC could not be established.
537526274 The S7-1200/1500 PLC is not in RUN mode.
537526275 The runtime settings of the WinCC Unified Device for controller alarms are configured

for "Automatic Update", but the PLC S7-1200/1500 PLC does not support full text
alarms.

537526276 The S7-1200/1500 PLC communication resources for HMI tags are overloaded.

You can find the configured alarm texts under [HMI device] > "HMI alarms > System events".

Connectivity
14.2 Communication with SIMATIC PLCs

7002 System Manual, 11/2022

More information: Reference to system events (Page 798).
The following alarms can be displayed for certificates.

ID Cause
536870941 The certificate was not found in the certificate memory.
536870942 Certificate expires soon.
536870943 Certificate has expired.

The alarms specify the relevant device, the name of the certificate and if applicable, the date.

14.2.2 Communicating with SIMATIC S7-300/400

14.2.2.1 Communication with SIMATIC S7-300/400

Introduction
The combined designation for the PLCs S7-300 and S7-400 is SIMATIC S7-300/400.
You can configure the following communication channel for communication between an HMI
device and the SIMATIC S7-300/400 PLC:
• PROFINET

See also
Permissible data types for SIMATIC S7-300/400 (Page 7003)
Cyclic operation (Page 7007)

14.2.2.2 Permissible data types for SIMATIC S7-300/400

Permitted data types for connections with SIMATIC S7-300/400
The table lists the data types that can be used when configuring tags.

Data type Length
BOOL 1 bit
BYTE 1 byte
CHAR 1 byte
DATE 2 bytes
DATE_AND_TIME 8 bytes
DINT 4 bytes
DWORD 4 bytes
INT 2 bytes
REAL 4 bytes

Connectivity
14.2 Communication with SIMATIC PLCs

System Manual, 11/2022 7003

Data type Length
S5TIME 2 bytes
STRING (2+n) bytes, n = 0 to 254

• With SIMATIC S7-300:
– Read access: 220 characters
– Write access: 210 characters

• ASCII
• Characters from the Windows 1252 code page

TIME 4 bytes
TIME_OF_DAY, TOD 4 bytes
WORD 2 bytes

See also
Communication with SIMATIC S7-300/400 (Page 7003)
Cyclic operation (Page 7007)

14.2.2.3 Interface and communication parameters

S7-300/400 | Integrated HMI connection

PROFINET interface parameters
The following table shows the interface parameters of an integrated HMI connection:

Table 14-5 PROFINET parameters of the HMI device
Parameters Description
Subnet Specifies the subnet of the HMI connection via which the HMI device is connected to the network.
MAC address Specifies the MAC address for the connection type "ISO connection".

This option is only available when the "Use ISO protocol" option is selected.
IP address Specifies the IP address of the communication partner.

This property is only available when the "Set IP address in the project" option is selected.
Subnet mask Specifies the subnet mask.

This property is only available when the "Set IP address in the project" option is selected.
The subnet mask determines which part of the IP address addresses the network and which part of
the IP address addresses the device.

Router address Specifies the router address.
This property is only available when the "Use router" option is selected.

Connectivity
14.2 Communication with SIMATIC PLCs

7004 System Manual, 11/2022

Table 14-6 PROFINET parameters of the PLC
Parameters Description
Subnet Specifies the subnet of the HMI connection via which the HMI device is connected to the network.
IP address Specifies the IP address of the communication partner.

This property is only available when the "Set IP address in the project" option is selected.
Subnet mask Specifies the subnet mask.

This property is only available when the "Set IP address in the project" option is selected.
The subnet mask determines which part of the IP address addresses the network and which part of
the IP address addresses the device.

Router address Specifies the router address.
This property is only available when the "Use router" option is selected.

PROFINET device name Shows the PROFINET device name or specifies it.
This property is only available when the "Generate PROFINET device name automatically" option is
deactivated.

Converted name Shows the name that is automatically generated from the PROFINET device name and satisfies the
DNS conventions.

Device number Shows the device number by which an IO device can be identified.

S7-300/400 | Non-integrated HMI connection

PROFINET interface parameters
The following table shows the interface parameters of a non-integrated HMI connection:

Table 14-7 PROFINET parameters of the HMI device
Parameters Description
Interface Specifies the communication channel.
Address Specifies the IP address of the device.
Access point Specifies the device name through which the

communication partner can be reached.

Table 14-8 PROFINET parameters of the PLC
Parameters Description
Address Specifies the IP address of the device.
Expansion slot Specifies the number of the expansion slot of the PLC to be addressed.
Rack Specifies the rack number of the PLC to be addressed.
Cyclic operation Enables/disables cyclic operation.

Connectivity
14.2 Communication with SIMATIC PLCs

System Manual, 11/2022 7005

14.2.2.4 Configuring a connection via "Named connections"

Introduction
For setting up a logical connection, one of the symbolic connection names listed in the
"Connection name" field is assigned to a selected application name.
The symbolic connection names and application names are configured in STEP 7.
NAMED CONNECTIONS can only be configured for integrated connections.

Note
With routed HMI connections between WinCC RT Unified and the S7-300/400 PLCs, the use of
"Named Connection" is mandatory, independent of the router.

Requirements
A "Named connection" has been created in STEP 7.
The following communication partners are configured in the "Devices & Networks" editor:
• SIMATIC PC with WinCC RT Professional
• SIMATIC S7-300/400

Procedure
1. Double-click the "Devices & Networks" item in the project tree.

The available communication partners in the project are displayed in the network view.
2. Click on the HMI device in the "Network view".
3. Select the entry "S7RTM is installed" in the Inspector window under "Parameters > XDB

configuration".

If you have not installed S7RTM, select "Generate XDB file". Then select the path in which the
XDB file will be stored.

4. Click the "Connections" button and select "HMI connection" for the connection type.
5. Click the PROFINET interface of the PLC and drag and drop a connection to the PROFINET

interface of the PC.

Connectivity
14.2 Communication with SIMATIC PLCs

7006 System Manual, 11/2022

6. Click the connecting line.
7. Click "Highlight HMI connection" and select the HMI connection.

The connection is displayed graphically in the Inspector window.
8. Select the "NAMED CONNECTION" interface in the Inspector window under "Properties >

General > Connection path > Interface" of WinCC RT Professional.
Note
The application and connection name can also be entered manually, for e.g. if an XDB file
does not exist for the symbolic connection name or if the project is to be transferred to
another computer. It is necessary to check the correct writing of the name in STEP 7 because
there is no name validation in CS mode.

14.2.2.5 Cyclic operation

Basics of cyclic operation

Operating principle of cyclic operation
When the "Cyclic operation" option is enabled, the HMI device sends a telegram to the PLC at the
beginning of communication indicating that certain tags are required on a recurring basis.
The PLC then always transmits the data at the same cyclic interval. This saves the HMI device
from having to output new requests for the data.
When cyclic operation is disabled, the HMI device sends a request whenever information is
required.

Advantages and properties of cyclic operation
The list below shows the advantages and properties of "Cyclic operation" option:
• Cyclic operation reduces the data transmission load at the HMI device. The PLC resources are

used to reduce the load on the HMI device.
• The PLC only supports a certain number of cyclic services. The HMI device handles the

operation if the PLC cannot provide any further resources for cyclic services.
• The HMI device generates the cycle if the PLC does not support cyclic operation.
• Screen tags are not integrated into cyclic operation.
• Cyclic operation is only set up at the restart of Runtime.
• The HMI device transfers several jobs to the PLC if cyclic operation is enabled, depending on

the PLC.
• The HMI device only transfers one job at a time to the PLC if cyclic operation is disabled.

Connectivity
14.2 Communication with SIMATIC PLCs

System Manual, 11/2022 7007

See also
Configuring cyclic operation (Page 7008)

Configuring cyclic operation

Introduction
You configure cyclic operation for an HMI connection at an HMI connection in the "Connections"
editor of the HMI device.

Requirement
• The devices and networks are configured.
• An HMI connection is created in the "Connections" editor.

Procedure
To enable an HMI connection for cyclic operation, follow these steps:
1. Double-click "Connections" in the project tree below your HMI device.

The "Connections" editor opens.
2. Select the desired HMI connection.

The parameters of the connection are displayed in the graphic overview.
3. Activate "PLC > Cyclic operation".

Result
The PLC then always transmits the required data at the same cyclic interval.

See also
Basics of cyclic operation (Page 7007)

14.2.2.6 Troubleshooting for SIMATIC S7-300/400

Causes of a faulty connection

Causes for a connection not getting established
If communication between the PLC and the HMI device cannot be established, the causes could
be the following:
• Integrated connection not configured
• Hardware fault: Cable not plugged in, PLC switched off, network component interrupted

Connectivity
14.2 Communication with SIMATIC PLCs

7008 System Manual, 11/2022

• Connection is not online
• Fault network configuration, for example, invalid IP address of a device
• Failed authentication on the PLC side (wrong or invalid password)
• A connection that has already been established is broken as a result of a system function call.
• Connection resources exhausted

Connection not online
The connection can be set to not 'Online' In the Engineering System. In this case, connection
establishment does not take place.

Breaking and switching the connection with a system function
A connection can be broken, established and switched by calling a system function in a script.
• "SetConnectionMode": The specified connection is established or disconnected.
• "ChangeConnection": Changes the connection parameters of an HMI connection.

Is used to switch between PLCs at runtime.
When "SwitchConnection" (ChangeConnection) is used, the current connection to the PLC is
disconnected and an attempt is made to establish a connection to another PLC. Connection
establishment to the other PLC can be rejected or the connection may later be lost.

Procedure if there is no connection
The connection is established at the start of Runtime.
If a connection cannot be established, Runtime issues a system alarm.

Requirement
Configure a screen with a screen object "Alarm view" that is shown on the HMI device in Runtime.
The system alarm for a failed connection establishment is displayed here.

Note
If a connection is configured as not "online" or is not established by calling a system function, a
system alarm is not issued. This is not an error; it is configured behavior.

The system alarm provides information on the cause of the faulty connection establishment.

Connectivity
14.2 Communication with SIMATIC PLCs

System Manual, 11/2022 7009

Finding the cause of the error
1. Check the cable and the plug-in connections.
2. Check whether the connection has been configured as "online".

3. Check whether a script has called the system functions "SetConnectionMode"
(SetConnectionMode) or "SwitchConnection" (ChangeConnection).
More information: Setting up switch on/switch off of a connection in runtime (Page 6993)

4. Check the network configuration.
IP addresses within a subnet must be unique.

If required, select the function "Find connection path" to assign the optimum connection
path to the connection.

5. The password given for the PLC in "Device configuration > Properties > General > Protection"
must match the password that is specified for the connection.

SIMATIC S7-300/400 error messages
The following alarms are output if the connection cannot be established:

ID Cause
536870948 The connection to the PLC could not be established.
537526273 The connection to a S7-300/400 PLC could not be established.

Connectivity
14.2 Communication with SIMATIC PLCs

7010 System Manual, 11/2022

ID Cause
537526274 The S7-300/400 PLC is not in the RUN mode.
537526275 The runtime settings of the WinCC Unified Device for controller alarms are configured

for "Automatic Update" but the PLC S7-300/400 PLC does not support full text alarms.
537526276 The communication resources of the S7-300/400 PLC for HMI tags are overloaded.

You can find the configured alarm texts under [HMI device] > "HMI alarms > System events".
More information: Reference to system events (Page 798).

14.3 Communication with other devices

14.3.1 Communication with WinCC Unified Open Pipe
WinCC Unified Open Pipe is an Openness concept based on pipe technology to connect a
customer application to WinCC Unified RT.
The documentation is available on the Online Support: SIMATIC HMI WinCC Unified Open
Pipe (https://support.industry.siemens.com/cs/ww/en/view/109803794/143390792203).

14.4 OPC UA - Open Platform Communications

14.4.1 Introduction

14.4.1.1 Principle
OPC is a standardized manufacturer-independent software interface for data exchange in
automation engineering.
OPC UA is the technology succeeding OPC. OPC UA is platform-independent and supports
different protocols as communication medium.

14.4.1.2 OPC UA specifications and compatibility

Overview
OPC UA specifies interfaces to gain access to the following objects in WinCC Unified:
• Process values (OPC UA 1.04)
• Tag-based alarms (OPC UA 1.04)
For detailed information about the individual OPC specifications, refer to the website of the
OPC Foundation (http://www.opcfoundation.org).

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7011

https://support.industry.siemens.com/cs/ww/en/view/109803794/143390792203
http://www.opcfoundation.org

Compatibility
Interoperability with OPC products from other manufacturers is guaranteed by participation in
"OPC Interoperability Workshops".

14.4.2 Using OPC UA certificates

14.4.2.1 Introduction to OPC UA certificates

Introduction
Communication between an OPC UA server and its OPC UA clients that is protected by
certificates requires the following:
• A valid OPC UA server certificate is installed on the server and a valid OPC UA client certificate

is installed on the clients.
• The client devices trust the OPC UA server certificate and vice versa.
The type of the certificate used determines how the trust is established between OPC UA
server and OPC UA clients:
• When a communication partner uses a certificate issued by a certificate authority (CA) and

the other communication partners trust the root certificate of the certificate authority, they
automatically trust the OPC UA certificate.
Note
Support of external certificate authorities
The OPC UA certificate of a Unified device cannot be issued by an external certificate
authority. The WinCC Unified Certificate Manager tool is required to create the root
certificate and the OPC UA certificate.

• When a communication partner uses a self-signed OPC UA certificate, the other
communication partners must explicitly trust this certificate.
Note
Restriction for self-signed Unified OPC UA server and client certificates
A self-signed default certificate is generated for the Unified OPC UA server:
• Unified PC: When installing Runtime on the PC
• Unified Comfort Panel: When starting Runtime if no OPC UA server certificate is found in

the certificate store
In order not to use a certificate issued by a certification authority for a Unified OPC UA server,
use this certificate.
The use of a self-signed OPC UA client certificate is not possible for Unified OPC UA clients.

How you proceed to create the trust relationship on a Unified device also depends on
whether you are using the Unified device as an OPC UA server or client.

Connectivity
14.4 OPC UA - Open Platform Communications

7012 System Manual, 11/2022

If you are using a Unified device as a client, the engineering system also acts as an OPC UA
client during configuration of the device.

Provision of the certificates
The following sections describe how to provide the certificates:

 Used as Section
Unified PC OPC UA server Using root certificates (Unified PC as OPC UA server) (Page 7014)

Using self-signed certificates (Unified PC as OPC UA server) (Page 7016)
OPC UA client Using root certificates (Unified PC as OPC UA client) (Page 7017)

Unified Comfort Panel OPC UA server Using root certificates (UCP as OPC UA server) (Page 7019)
Using self-signed certificates (UCP as OPC UA server) (Page 7021)

OPC UA client Using root certificates (UCP as OPC UA client) (Page 7022)
Using self-signed certificates (UCP as OPC UA client) (Page 7024)

Engineering System OPC UA client Providing certificates for the engineering systems as OPC UA client
(Page 7025)

Unified tools
When you use certificates issued by a certificate authority, the following tools support you in
providing the certificates:

Task Device Tool
Creating the root certificate of the Unified
OPC UA device (if not already done)

Unified PC that is used as certifi‐
cation authority for the Unified
OPC UA device

WinCC Unified Certificate Manager

Creating a Unified OPC UA certificate

Installing the
• Unified root certificate (if not yet done)
• Unified OPC UA certificate

Unified PC that is used as OPC UA
device

WinCC Unified Certificate Manager

Unified Comfort Panel that is
used as OPC UA device

Control Panel > Security > Certificates

Distribute Unified root certificate and its CRL
file to the OPC UA communication partners

Unified PC that is used as certifi‐
cate authority for the Unified
OPC UA device1

 WinCC Unified Certificate Manager

Import the root certificate of the OPC UA
communication partner and its CRL file

Unified PC that is used as OPC UA
device

SIMATIC Runtime Manager

Unified Comfort Panel that is
used as OPC UA device

Control Panel > Security > Certificates

1 If the OPC UA device is a Unified PC, you can alternatively distribute the root certificate and CRL file directly on the device using
SIMATIC Runtime Manager.

When you use self-signed OPC UA certificates, the following tools support you in providing
the certificates:

Task Device Tool
Importing or trusting the certificate of the
communication partner

OPC UA Unified PC SIMATIC Runtime Manager
OPC UA Unified Comfort Panel Control Panel > Security > Certificates

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7013

Note
Operation of the Certificate Manager and Runtime Manager
For more detailed information on operating the Certificate Manager and the Runtime Manager,
refer to the Runtime online help.

Certificate store of Unified devices
The OPC UA certificates are stored in the certificate store of the Unified device.
For Unified PC: C:\ProgrammData\SCADAProjects\certstore

14.4.2.2 Providing certificates on a Unified PC

Using a Unified PC as OPC UA server

Using root certificates (Unified PC as OPC UA server)
This section describes how you provide the certificates for the following case:
• A Unified PC is used as OPC UA server.

Note
Operating Certificate Manager and Runtime Manager
For more detailed information on operating the Certificate Manager and the Runtime Manager,
refer to the Runtime online help.

Requirement
• A root certificate was generated on the Unified PC that serves as certificate authority.

Sequence
The following steps are included in providing the certificates:
1. Generate the OPC UA server certificate and export its certificate configuration.
2. Install the certificate configuration on the Unified OPC UA server.
3. Trust the OPC UA client on the Unified OPC UA server.
4. Trust the Unified OPC UA server on the OPC UA client.

Connectivity
14.4 OPC UA - Open Platform Communications

7014 System Manual, 11/2022

Generating the server certificate and exporting the certificate configuration
1. Open the Certificate Manager on the Unified PC that serves as certificate authority.
2. Generate a OPC UA server certificate for the Unified PC that is used as OPC UA server.
3. Export the certificate configuration to an external data storage medium.

This step can be omitted when the device that serves as certificate authority is also used as
OPC UA server.

Installing the certificate configuration on the Unified OPC UA server
1. Connect the Unified PC that is used as OPC UA server to the external data storage medium.

This step can be omitted when the device that serves as certificate authority is also used as
OPC UA server.

2. Install the certificate configuration on the PC using the Certificate Manager.
The following certificates are installed:
• The root certificate including CRL file
• The OPC UA server certificate

Trusting the OPC UA client on the Unified OPC UA server
1. Save the root certificate of the OPC UA client and its CRL file (Certificate Revocation List) to an

external data storage medium.
2. Connect the Unified PC that is used as OPC UA server to the external data storage medium.
3. Open the Runtime Manager on the Unified PC.
4. Import the root certificate of the OPC UA client.

The root certificate is imported and classified as trusted.
5. Import the associated CRL file.
The Unified OPC UA server trusts the OPC UA client certificate when the next connection
attempt is made.

Trusting the Unified OPC UA server on the OPC UA client
1. Ppen the Certificate Manager on the Unified PC that serves as the certification authority of the

Unified OPC UA server.
2. In the Certificate Manager, export the root certificate and its CRL file (Certificate Revocation

List) to an external data storage medium.
Note
Alternative
On the Unified PC that is used as OPC UA server, use the Runtime Manager to export the root
certificate and CRL file.

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7015

3. Connect the OPC UA client to the external data storage medium.
4. Copy both files in the certificate store of the OPC UA client into the folder for trusted

certificates. To do this, proceed as described in the application help of the client.
The OPC UA client accepts the Unified OPC UA server certificate when the next connection
attempt is made.

Using self-signed certificates (Unified PC as OPC UA server)
This section describes how you provide the certificates for the following case:
• A Unified PC is used as OPC UA server.
• The OPC UA certificates of the OPC UA server and the client are self-signed.

Note
Operating the Runtime Manager
For more detailed information on operating the Runtime Manager, refer to the Runtime online
help.

Sequence
1. Trust the OPC UA client on the Unified PC.
2. Trust the self-signed default certificate of the Unified OPC UA server on the OPC UA client.

Trusting the OPC UA client on the Unified OPC UA server
After the first connection attempt
If a connection attempt has already been made between the client and server, the self-
signed OPC UA client certificate is available on the Unified PC in the certificate store in the
"untrusted" folder.
Follow these steps:
1. Open the Runtime Manager on the Unified PC.
2. Trust the OPC UA client certificate in the Runtime Manager.
The certificate is moved to the "trusted" folder in the certificate store of the Unified PC. The
Unified PC accepts the OPC UA client certificate when the next connection attempt is made.

Before the first connection attempt
To trust the self-signed certificate before a connection has been established between server
and client, follow these steps:
1. Save the certificate of the OPC UA client to an external data storage medium.
2. Connect the Unified PC to the external data storage medium.
3. Open the Runtime Manager on the Unified PC.
4. Import the OPC UA client certificate.

Connectivity
14.4 OPC UA - Open Platform Communications

7016 System Manual, 11/2022

During the import, the certificate is automatically copied to the "trusted" folder of the
certificate store. The Unified PC trusts the OPC UA client certificate when the next connection
attempt is made.

Trusting the Unified OPC UA server on the OPC UA client
You use the self-signed default certificate of the Unified OPC UA server.

After the first connection attempt
If a connection attempt has already been made between the client and server, the self-signed
OPC UA server certificate is available on the client in the certificate store in the rejected
certificates.
Copy the certificate to the certificate store for trusted certificates. To do this, proceed as
described in the application help of the client.
The OPC UA client accepts the Unified OPC UA server certificate when the next connection
attempt is made.

Before the first connection attempt
To trust the self-signed certificate before a connection has been established between server
and client, follow these steps:
1. Copy the self-signed OPC UA server certificate on the Unified PC from the following folder to

an external data storage medium:
<Certificate store>own\certs

2. Connect the OPC UA client to the external data storage medium.
3. Copy the certificate to the certificate store for trusted certificates. To do this, proceed as

described in the application help of the client.
The OPC UA client accepts the OPC UA server certificate when the next connection attempt is
made.

Using a Unified PC as OPC UA client

Using root certificates (Unified PC as OPC UA client)
This section describes how you provide the certificates for the following case:
• A Unified PC is used as OPC UA client.
• The OPC UA certificates of the OPC UA server and the client are issued by a certificate

authority.

Note
Operating Certificate Manager and Runtime Manager
For more detailed information on operating the Certificate Manager and the Runtime Manager,
refer to the Runtime online help.

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7017

Requirement
• A root certificate was generated on the Unified PC that serves as certificate authority.

Sequence
The following steps are included in providing the certificates:
1. Generate the OPC UA client certificate and export its certificate configuration.
2. Install the certificate configuration on the OPC UA client.
3. Trust the OPC UA server on the Unified OPC UA client.
4. Trust the Unified OPC UA client on the OPC UA server.

Generating the client certificate and exporting the certificate configuration
1. Open the Certificate Manager on the Unified PC that serves as certificate authority.
2. Generate a OPC UA client certificate for the Unified PC that is used as OPC UA client.
3. Export the certificate configuration to an external data storage medium.

This step can be omitted when the device that serves as certificate authority is also used as
OPC UA client.

Installing the certificate configuration on the Unified OPC UA client
1. Connect the Unified PC that is used as OPC UA client to the external data storage medium.

This step can be omitted when the device that serves as certificate authority is also used as
OPC UA client.

2. Install the certificate configuration on the PC using the Certificate Manager.
The following certificates are installed:
• The root certificate including CRL file
• The OPC UA client certificate.

Trusting the OPC UA server on the Unified OPC UA client
1. Save the root certificate of the OPC UA server and its CRL file (Certificate Revocation List) to

an external data storage medium.
2. Connect the Unified PC that is used as OPC UA client to the external data storage medium.
3. Open the Runtime Manager on the Unified PC.
4. Import the root certificate of the OPC UA server.
5. Import the associated CRL file.
The Unified OPC UA client trusts the OPC UA server certificate when the next connection
attempt is made.

Connectivity
14.4 OPC UA - Open Platform Communications

7018 System Manual, 11/2022

Trusting the Unified OPC UA client on the OPC UA server
1. Open the Certificate Manager on the Unified PC that serves as the certificate authority of the

Unified OPC UA client.
2. In the Certificate Manager, export the root certificate and its CRL file (Certificate Revocation

List) to an external data storage medium.
Note
Alternative
On the Unified PC that is used as OPC UA client, use the Runtime Manager to export the root
certificate and CRL file.

3. Connect the OPC UA server to the external data storage medium.
4. Copy both files to the certificate store for trusted certificates. To do this, proceed as described

in the application help of the server.
The OPC UA server accepts the Unified OPC UA client certificate when the next connection
attempt is made.

14.4.2.3 Providing certificates on a Unified Comfort Panel

Use the Unified Comfort Panel as an OPC UA server

Using root certificates (UCP as OPC UA server)
This section describes how you provide the certificates for the following case:
• A Unified Comfort Panel is used as OPC UA server.
• The OPC UA certificates of the OPC UA server and the client are issued by a certificate

authority.

Note
Operating the Certificate Manager
For more detailed information on operating the Certificate Manager, refer to the Runtime online
help.

Requirement
• A root certificate was generated on the Unified PC that serves as certificate authority.

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7019

Sequence
The following steps are included in providing the certificates:
1. Generate the OPC UA server certificate and export its certificate configuration.
2. Install the certificate configuration on the Unified OPC UA server.
3. Trust the OPC UA client on the Unified OPC UA server.
4. Trust the Unified OPC UA server on the OPC UA client.

Generating the server certificate and exporting the certificate configuration
1. Open the Certificate Manager on the Unified PC that serves as certificate authority.
2. Generate an OPC UA server certificate for the Unified Comfort Panel that is used as OPC UA

server.
3. Export the certificate configuration to an external data storage medium.

The root certificate, its CRL file and the OPC UA Server certificate are exported in encrypted
format.

Installing the certificate configuration on the Unified OPC UA server
1. If Runtime starts on the Panel that is used as OPC UA server and no OPC UA server certificate

is found, a self-signed default certificate is generated.
Delete the default certificate. Follow these steps:
– Select "Security > Certificates" in the Control Panel on the Panel.
– Select the "My Certificates" entry from the "Certificate store" list.
– Select the OPC UA server default certificate.
– Click "Delete".

2. Connect the Panel to the external data storage medium onto which you have exported the
certificate configuration.

3. Install the root certificate and the OPC UA server certificate.
For both certificates, follow these steps:
– Select "Security > Certificates" in the Control Panel on the Panel.
– Click the "Import" button.
– In the "Import certifcates" dialog, select the certificate from the external storage medium.
– Enter the password and the iteration specified during the export in the Certificate

Manager.
– Confirm your entries.

The following certificates are installed:
• The root certificate including CRL file
• The OPC UA server certificate

Connectivity
14.4 OPC UA - Open Platform Communications

7020 System Manual, 11/2022

Trusting the OPC UA client on the Unified OPC UA server
1. Save the root certificate of the OPC UA client and its CRL file (Certificate Revocation List) to an

external data storage medium.
2. Connect the Unified Comfort Panel to the external data storage medium.
3. Select "Security > Certificates" in the Control Panel on the Panel.
4. Click the "Import" button.
5. In the "Import certifcates" dialog, select the certificate from the external storage medium.
6. Confirm your entries.
The root certificate and its CRL are imported and classified as trusted.
The Unified OPC UA server trusts the OPC UA client certificate when the next connection
attempt is made.

Trusting the Unified OPC UA server on the OPC UA client
1. Open the Certificate Manager on the Unified PC that serves as the certificate authority of the

panel.
2. In the Certificate Manager, export the root certificate and its CRL file (Certificate Revocation

List) to an external data storage medium.
3. Connect the OPC UA client to the external data storage medium.
4. Copy both files to the certificate store for trusted certificates. To do this, proceed as described

in the application help of the client.
The OPC UA client accepts the Unified OPC UA server certificate when the next connection
attempt is made.

Using self-signed certificates (UCP as OPC UA server)
This section describes how you provide the certificates for the following case:
• A Unified Comfort Panel is used as OPC UA server.
• The OPC UA certificates of the OPC UA server and the client are self-signed.

Sequence
1. Trust the OPC UA client on the Unified Comfort Panel.
2. Trust the self-signed default certificate of the Unified OPC UA server on the OPC UA client.

Trusting the OPC UA client on the Unified OPC UA server
After the first connection has been established between server and client, the self-signed OPC
UA client certificate is available on the Unified Comfort Panel. The Panel does not yet trust the
certificate. Follow these steps:
1. Select "Security > Certificates" in the Control Panel on the Panel.
2. Select the "Other Certificates" entry from the "Certificate store" list.

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7021

3. Select the OPC UA client certificate.
The certificate has the status "Untrusted".

4. Click "Trust".
The Unified Comfort Panel accepts the OPC UA client certificate when the next connection
attempt is made.

Trusting the Unified OPC UA server on the OPC UA client
You use the self-signed default certificate of the Unified OPC UA server.
After the first connection is established between the server and client, the self-signed
certificate of the OPC UA server is available on the OPC UA client. The client does not yet
trust the certificate.
Trust the Unified OPC UA server certificate on the OPC UA client.
The client accepts the server certificate the next time it attempts to connect.

Use the Unified Comfort Panel as an OPC UA client

Using root certificates (UCP as OPC UA client)
This section describes how you provide the certificates for the following case:
• A Unified Comfort Panel is used as OPC UA client.
• The OPC UA certificates of the OPC UA server and the client are issued by a certificate

authority.

Note
Operating the Certificate Manager
For more detailed information on operating the Certificate Manager, refer to the Runtime online
help.

Requirement
• A root certificate was generated on the Unified PC that serves as certificate authority.

Sequence
The following steps are included in providing the certificates:
1. Generate the OPC UA client certificate and export its certificate configuration.
2. Install the certificate configuration on the Unified OPC UA client.
3. Trust the OPC UA server on the Unified OPC UA client.
4. Trust the Unified OPC UA client on the OPC UA server.

Connectivity
14.4 OPC UA - Open Platform Communications

7022 System Manual, 11/2022

Generating the client certificate and exporting the certificate configuration
1. Open the Certificate Manager on the Unified PC that serves as certificate authority.
2. Generate an OPC UA client certificate for the Unified Comfort Panel that is used as OPC UA

client.
3. Export the certificate configuration to an external data storage medium.

Installing the certificate configuration on the Unified OPC UA client
1. Connect the Panel to the external data storage medium onto which you have exported the

certificate configuration.
2. Install the root certificate and the OPC UA Client certificate.

For both certificates, follow these steps:
– Select "Security > Certificates" in the Control Panel on the Panel.
– Click the "Import" button.
– In the "Import certifcates" dialog, select the certificate from the external storage medium.
– Enter the password and the iteration specified during the export in the Certificate

Manager.
– Confirm your entries.
The following certificates are installed:
– The root certificate including CRL file
– The OPC UA client certificate.

Trusting the OPC UA server on the Unified OPC UA client
1. Save the root certificate of the OPC UA server and its CRL file (Certificate Revocation List) to

an external data storage medium.
2. Connect the Unified Comfort Panel that is used as Unified OPC UA client to the external data

storage medium.
3. Select "Security > Certificates" in the Control Panel on the Panel.
4. Click the "Import" button.
5. In the "Import certificates" dialog, select the certificate from the external storage medium.
6. Confirm your entries.
The root certificate and its CRL are imported and classified as trusted.
The Unified OPC UA client trusts the OPC UA server certificate when the next connection
attempt is made.

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7023

Trusting the Unified OPC UA client on the OPC UA server
1. Open the Certificate Manager on the Unified PC that serves as the certificate authority of the

panel.
2. In the Certificate Manager, export the root certificate and its CRL file (Certificate Revocation

List) to an external data storage medium.
3. Connect the OPC UA server to the external data storage medium.
4. Copy both files to the certificate store for trusted certificates. To do this, proceed as described

in the application help of the server.
The OPC UA server accepts the Unified OPC UA client certificate when the next connection
attempt is made.

Using self-signed certificates (UCP as OPC UA client)
This section describes how you provide the certificates for the following case:
• A Unified Comfort Panel is used as OPC UA client.
• The OPC UA server certificate is self-signed.
• The OPC UA client certificate is issued by a certificate authority.

Note
No use of self-signed Unified OPC UA client certificates
The use of a self-signed OPC UA client certificate is not possible for a Unified OPC UA client.

Sequence
1. Generate your own self-signed OPC UA client certificate for the Unified Comfort Panel.
2. Install the self-signed certificate on the Panel.
3. Trust the OPC UA server on the Unified OPC UA client.
4. Trust the Unified OPC UA client on the OPC UA server.

Trusting the OPC UA server on the Unified OPC UA client
After the first connection has been established between the server and client, the self-signed
OPC UA server certificate is available on the Unified Comfort Panel. The Panel does not yet trust
the certificate. Follow these steps:
1. Select "Security > Certificates" in the Control Panel on the Panel.
2. Select the "Other Certificates" entry from the "Certificate store" list.
3. Select the OPC UA server certificate.

The certificate has the status "Untrusted".
4. Click "Trust".
The Unified Comfort Panel accepts the OPC UA server certificate when the next connection
attempt is made.

Connectivity
14.4 OPC UA - Open Platform Communications

7024 System Manual, 11/2022

Trusting the Unified OPC UA client on the OPC UA server
1. Open the Certificate Manager on the Unified PC that serves as the certificate authority of the

panel.
2. In the Certificate Manager, export the root certificate and its CRL file (Certificate Revocation

List) to an external data storage medium.
3. Connect the OPC UA server to the external data storage medium.
4. Copy both files to the certificate store for trusted certificates. To do this, proceed as described

in the application help of the server.
The OPC UA server accepts the Unified OPC UA client certificate when the next connection
attempt is made.

14.4.2.4 Providing certificates for the engineering systems as OPC UA client

Engineering system as an OPC UA client
If the engineering system acts as an OPC UA client, provide the certificates as follows:
• When the connection is first established, the client certificate is created automatically and

transferred to the server.
Note
Trust the client certificate
Move the client certificate on the server from the "untrusted" folder to the "trusted" folder.

• The engineering system automatically receives the server certificate and trusts it without
your having to take any action.

14.4.3 WinCC Unified OPC UA server

14.4.3.1 General information about Unified OPC UA servers

Using the WinCC Unified OPC UA server

Introduction
Servers are available for the following OPC UA interfaces in WinCC Unified:
• OPC Unified Architecture: Access to the data management of WinCC Unified.

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7025

OPC UA communications concept of WinCC Unified
The figure below shows the OPC UA communication concept of WinCC Unified:

Customer-specific

OPC UA client

WinCC OPC UA

Process values (tags)

Alarms and conditions

W
in

C
C

Ethernet/TCP/IP

Licensing
OPC server Licensing
WinCC OPC UA Server A valid Runtime license for WinCC Unified

Requirements for use

Windows firewall settings (Unified PC as OPC UA server)
After installation of WinCC Unified, the Windows firewall settings of the OPC UA servers of WinCC
Unified are correctly configured.
If OPC UA clients access OPC UA servers in different subnets, you must adapt the
configuration of the permitted network areas to the OPC UA servers.

TIA Portal settings
In order to work with OPC UA in WinCC Unified, the OPC UA server must be enabled in the TIA
Portal.
To do to this, select the "Operate as OPC UA server" option in the runtime settings under "OPC
UA server > General". As soon as the option is selected, you can make additional settings.

Connectivity
14.4 OPC UA - Open Platform Communications

7026 System Manual, 11/2022

More information is available under Configuring a Unified OPC UA server (Unified PC)
(Page 7039) and Using the Unified Comfort Panel as OPC UA server (Page 7042).

Operating principle of the OPC UA server

How it works
The OPC UA server provides the following values:
• Process values
• Tag-based alarms
The OPC UA server supports only the "UA-TCP UA-SC UA Binary" communication profile. The
used port number is adjustable.
You can find more information about configuration of the OPC UA server here:
• For Unified PC: In the section "Configuring a Unified OPC UA server (Unified PC) (Page 7039)"
• For Unified Comfort Panel: In the section "Configuring the Unified OPC UA server (UCP)

(Page 7042)"

Supported specifications
OPC UA Architecture is a specification for the transmission of process values and alarms. The OPC
UA server supports the OPC UA specification 1.04.
For more information about supported OPC UA functions, refer to "OPC UA specifications and
compatibility (Page 7011)".

Starting the OPC UA server
The OPC UA server is run automatically when Runtime is started after successful configuration
in the TIA Portal.

URL of the OPC UA server
You can reach the OPC UA server via the following URL:
• "opc.tcp://[HostName]:[Port]"

Parameter Description
HostName Placeholder for the computer name. Is used automatically.
Port Specifies the port number. "4890" is set by default. Do not use a port number

that is already assigned to another application.

Discovery Server (Unified PC as OPC UA server)
The "Discovery Server" is available by the OPC foundation. The "Discovery Server" is by default
installed on the HMI device as Windows service.

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7027

The "Discovery Server" makes information available to UA clients about OPC UA servers that
are subscribed to the "Discovery Server".
The OPC UA server registers itself at the start of Runtime to no, one or more configured and
available "Discovery Servers" depending on its configuration. Registration is then repeated
cyclically. When you end Runtime, the OPC UA server is automatically logged off from the
"Discovery Server".
You can find information on disabling the OPC UA Local
Discovery Server in Siemens Industry Online Support (https://
support.industry.siemens.com/cs/document/109749461/how-do-you-disable-the-opcua-local-
discovery-server-service-for-wincc-v7-and-wincc-tia-portal-?dti=0&lc=en-WW) (Entry ID
109749461).

Supported languages in the WinCC Unified address area
The OPC UA server supports the WinCC Unified address area in the following languages:
• English

Security concept of OPC UA

Introduction
The OPC UA security concept is based on:
• Authentication and authorization of the participating applications and users
• Ensuring the integrity and confidentiality of messages exchanged between the applications.

Certificates
Certificates represent the authentication mechanism of OPC UA applications. Each application
has its own instance certificate and thereby identifies itself within the public key infrastructure.

Instance certificate of the OPC UA server
Each OPC UA server for secure operation requires a separate instance certificate with a private
key. The certificate is only valid on the respective computer and may be used only by the OPC UA
server installed there.
When you install the server, a self-signed instance certificate of the server is created and
stored in the certificate folder of the server.
The private key for this certificate is only stored in the certificate store. Access to the folder
with the private key must be restricted to:
• The server itself (account of the local system)
• The system administrator

Connectivity
14.4 OPC UA - Open Platform Communications

7028 System Manual, 11/2022

https://support.industry.siemens.com/cs/document/109749461/how-do-you-disable-the-opcua-local-discovery-server-service-for-wincc-v7-and-wincc-tia-portal-?dti=0&lc=en-WW
https://support.industry.siemens.com/cs/document/109749461/how-do-you-disable-the-opcua-local-discovery-server-service-for-wincc-v7-and-wincc-tia-portal-?dti=0&lc=en-WW
https://support.industry.siemens.com/cs/document/109749461/how-do-you-disable-the-opcua-local-discovery-server-service-for-wincc-v7-and-wincc-tia-portal-?dti=0&lc=en-WW

NOTICE
Restricted access to the private key folder
Except for the server and the system administrator, no other users and applications may have
access to the private key of the OPC UA server for security reasons.
Restricted access to the private key is therefore pre-configured after installing WinCC Unified.

The instance certificate generated during installation and the associated private key can be
replaced by the system administrator. In accordance with the respective security concept
of the plant, the new instance certificate may be self-signed or created by a certification
authority.
The certificate and the private key are stored under this folder:
"C:\ProgramData\SCADAProjects\Certstore\own".
The private key is stored in the subfolder "private".

Validation of the server instance certificate
The instance certificate of the server is validated during the start of the OPC UA server. If the
public key or the private key cannot be found or if the certificate is invalid (for example, because
it has expired or is corrupt), the server stops and an appropriate entry is made in the trace log.

Trusted client certificates
The OPC UA server supports secure communication to trusted clients only. A client is trusted:
• when the client has a valid self-signed certificate that is located in the certificate store of

trusted certificates of the OPC UA server
• or if the valid client certificate was issued by a certification authority. The valid certificate of

the certification authority must be located in the certificate store of the trustworthy
certification authorities of the OPC UA server. In this case, only the certificate from the
certification authority is required. The instance certificate of the client does not need to be in
the certificate store of trusted certificates.

Note
Certificates from the memory of the certification authorities are not automatically trusted.
For a certification authority to be trusted, its certificate must be located in the memory for
trusted certificates.

Trusted certificates are stored in the directory
"C:\ProgramData\SCADAProjects\Certstore\Trusted\certs".
The certificates from certificate authorities that are required for the verification of a client
certificate chain are also stored in the certificate store of the certificate authorities.

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7029

Client certificates not accepted
When a OPC UA client accesses the OPC UA server without its trusted certificate, the OPC UA
server rejects secure communication and copies the client certificate to the folder for rejected
certificates. These certificates are stored in the directory
"C:\ProgramData\SCADAProjects\Certstore\Trusted\untrusted".
To enable secure communication with this client, you will have to move the rejected
certificate to the certificate memory for trusted certificates.

Supported OPC UA services and profiles

OPC UA services
The following table sets out the functionality supported by OPC UA server 1.04:

OPC UA Service Sets Services Comment
Discovery Service Set FindServers

GetEndpoints
-

Secure Channel Service
Session Service Set

All -

View Service Set Browse
BrowseNext

Determination of the WinCC Unified data shown: Process values
and archived data

Attribute Service Set Read
Write

only WinCC Unified tags
only WinCC Unified tags

Subscription Service Set CreateSubscription
SetPublishingMode
Publish
RePublish
DeleteSubscription

MonitoredItem Service Set CreateMonitoredItems
SetMonitoringMode
DeleteMonitoredItems

only "Value" attribute of the WinCC Unified tags
.EventNotifier during access to WinCC Unified alarms

OPC UA profiles and Conformance Units
The OPC UA server supports the following OPC UA 1.03 profiles without restrictions:
• 6.5.5 Base Server Behavior Facet
• 6.5.16 Standard Event Subscription Server Facet
• 6.5.131 UA TCP UA SC UA Binary
• 6.5.148 SecurityPolicy - Basic128Rsa15
• 6.5.149 SecurityPolicy - Basic256
• 6.5.150 SecurityPolicy - Basic256SHA256

Connectivity
14.4 OPC UA - Open Platform Communications

7030 System Manual, 11/2022

The OPC UA server supports the following OPC UA profiles shown in the following table with
restrictions:

Profile "Group" Not supported "Conformance Unit"
6.5.11 Standard DataChange Subscription
Server Facet

Subscription Server Facet

Monitored Item Services ModifyMonitoredItems

DeadBand Filter
Monitor MinQueueSize_02

6.5.12 Enhanced DataChange Subscrip‐
tion Server Facet

Monitored Item Services Monitor MinQueueSize_05

6.5.2 Core Server Facet Attribute Services Attribute Write Index
6.5.14 Data Access Server Facet Data Access Data Access Analog

Data Access Multistate
Data Access PercentDeadBand
Data Access Semantic Changes
Data Access Two State

6.5.55 Standard UA Server Profile Attribute Services Attribute Write StatusCode & TimeStamp
6.5.55 Standard UA Server Profile Attribute Services Attribute Write StatusCode & Timestamp
6.5.16 Standard Event Subscription Server
Facet

Event Access Base Info EventQueueOverflowEventType
Base Info Progress Events
Base Info SemanticChange
Base Info System Status
Base Info System Status underlying system
Base Info Device Failure

6.5.17 Address Space Notifier Server Facet Event Access
6.5.18 A & C Base Condition Server Facet Alarms and Conditions
6.5.20 A & C Address Space Instance Serv‐
er Facet

Alarms and Conditions

6.5.21 A & C Enable Server Facet Alarms and Conditions
6.5.22 A & C Alarm Server Facet Alarms and Conditions A & C Comment

A & C Discrete
A & C OffNormal
A & C SystemOffNormal
A & C Trip

6.5.23 A & C Acknowledgeable Alarm Serv‐
er Facet

Alarms and Conditions

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7031

Address space of the OPC UA server

Introduction
A WinCC Unified device that is used as an OPC UA server makes the following runtime data of its
system available to its OPC UA clients in its address space:
• Process values (WinCC Unified tags)
• Alarms (tag-based WinCC Unified alarms)
The address space of the OPC UA server is added below "Root > Objects" and has the
following hierarchical structure:

① The folder for the Runtime system node
Folders for the alarm conditions and tags of the system are located under the node.
The structure in the tags folder corresponds to the structure of the tags in WinCC Unified.

② The server node

Mapping of the WinCC Unified tag
Connections are displayed by OPC UA objects of the "HMIConnectionType" type.
Internal and external WinCC Unified tags are displayed by OPC UA tags of the
"HMISimpleTagType" type.
The following table shows the most important attributes of the OPC UA tags that represent a
WinCC Unified tag. You can find the complete list of attributes in the "OPC UA Part 3 - Address
Space Model 1.03 Specification" under paragraph "5.6":

Attribute Description Comment
NodeId Unique designation of the WinCC Unified tag -
BrowseName Name of the WinCC Unified tag -
DisplayName Name of the WinCC Unified tag -
Value Tag value and status -

Connectivity
14.4 OPC UA - Open Platform Communications

7032 System Manual, 11/2022

Attribute Description Comment
DataType OPC UA data type that corresponds to the

WinCC Unified tag type, for example:
• Int32; signed 32 bit value
• UInt32; unsigned 32 bit value

-

AccessLevel "CurrentRead" / "CurrentWrite" • Correspondingly to the WinCC
Unified tag configuration.

• System tags "CurrentRead" only.
ValueRank Always "Scalar" -

Mapping of the WinCC Unified alarms
Depending on their state machine, the alarms are mapped to the following OPC UA types:

State machine of the alarm OPC UA type
RaiseClear
RaiseClearRequiresReset

HmiConditionType

RaiseOptionalClearOrAcknowledgment
RaiseClearOptionalAcknowledgement
RaiseClearOptionalAcknowledgementAndReset
RaiseRequiresAcknowledgement
RaiseClearRequiresAcknowledgement
RaiseClearRequiresAcknowledgementAndReset

HmiAlarmType

Priority
For the configuration of the alarms in WinCC Unified, you select a priority between "0" and
"255". The OPC UA specification defines a value range between "1" for the lowest severity and
"1000" for the highest severity.
The value of the priority must therefore be selected to match the OPC UA severity. In a
standard mapping, the priority "0" is assigned to the OPC UA severity "1", and the priority
"255" to the OPC UA severity "1000". All other values are interpolated linearly between "0"
and "1000".

Mapping the OPC UA properties
The alarm condition consists of OPC UA event properties and WinCC Unified alarm properties.
The properties of the alarm condition may vary depending on the OPC UA event type.
The following table provides the most important properties of the OPC UA events and shows
how the WinCC Unified alarm system provides the information.

Note
Optional properties
Optional properties are not disclosed in the server address space.

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7033

OPC UA property Description/Mapping
For all event types:
EventId A unique identifier for event notification.
EventType The NodeId of the HmiConditionType node or

HmiAlarmType node
SourceNode NodeId of the Runtime object
SourceName Name of the Runtime object
Time RAISETIME of the WinCC Unified alarm

Time stamp when the alarm was triggered at the
source.

ReceiveTime When the server has received the event from the
underlying system.

LocalTime Information about the local time from which the
event originated.

Message EVENTTEXT of the WinCC Unified alarm, multilin‐
gual text for messages and alarms.

Severity PRIORITY of the WinCC Unified alarm that is map‐
ped to the OPC UA severity.

For the HmiConditionType and HmiAlarmType event types:
ConditionId NodeId of the condition instance
ConditionClassId NodeId of the ProcessConditionClassType node
ConditionClassName ProcessConditionClassType
ConditionName NAME of the WinCC Unified alarm
BranchId Not relevant
Retain RETAIN of the WinCC Unified alarm

TRUE for pending alarms
EanbledState/Id ENABLESTATE of the WinCC Unified alarm

TRUE for active alarms
Quality VALUEQUALITY of the WinCC Unified alarm when

the alarm became active
LastServerity Not relevant
Comment COMMENTS of the WinCC Unified alarm provided

by the operator
ClientUserId USER that is related to the WinCC Unified alarm
For the HmiAlarmType event type:
AckedState Mapped to STATE of the WinCC Unified alarm

TRUE for acknowledged alarms
ConfirmedState/Id1 Mapped to STATE of the WinCC Unified alarm

TRUE for confirmed alarms
ActiveState/Id Mapped to STATE of the WinCC Unified alarm

TRUE for active alarms
InputNode NodeId of the tag assigned to the alarm
SupressedState/Id Mapped to SUPPRESSIONSTATE of the WinCC Uni‐

fied alarm
TRUE for suppressed alarm

Connectivity
14.4 OPC UA - Open Platform Communications

7034 System Manual, 11/2022

OPC UA property Description/Mapping
SupressedOrShelved Mapped to SUPPRESSIONSTATE of the WinCC Uni‐

fied alarm
TRUE for reset or suppressed alarms

MaxTimeShelved Not supported
1 Only for alarms with the state machine RaiseClearRequiresAcknowledgmentAndReset
The following table provides the configurable properties of the WinCC Unified alarms. The
properties are mapped one-to-one to OPC UA event properties.
The table applies to all event types:

Optional Property Description
- INSTANCEID Instance index used to reference an active

multi-instance alarm within the (configured)
HmiAlarm.

- ALARM Pointer to the corresponding HmiAlarm
- ALARMCLASS Pointer to the alarm class

May differ from the alarm class reference of
the associated HmiAlarm.

- ALARMCLASSSYMBOL Symbol (abbreviation) of the referenced
alarm class

- TEXTCOLOR Text color
- BACKCOLOR Background color
- FLASHING Flashing
- SUPPRESSIONSTATE Indicates whether the alarm is reset, sup‐

pressed or not suppressed.
✓ ALARMTEXT1

...
ALARMTEXT9

Additional multi-lingual texts (Text 1 to
Text 9)

✓ ALARMPARAMETERVALUES1
...
ALARMPARAMETERVALUES16

Parameter value 1 to parameter value 16

- INVALIDFLAGS Indicator of invalid property values
Bit-by-bit interpretation

✓ ORIGIN Dynamic alarm-instance-specific name of
the alarm-triggering object.

✓ AREA Dynamic alarm-instance-specific name of
the area to which the alarm-triggering object
belongs.

✓ LOOPINALARM Function that is called to navigate from the
alarm control, for example, to the screen
that shows the source of the alarm or to an
application that provides more information.

✓ COMPUTER Name of the machine that hosts the origina‐
tor of the alarm.

✓ USERNAME Name of the user associated with the event
(operator alarms only).

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7035

Optional Property Description
✓ VALUE Current value at the time when the alarm

became active.
Updated value at the time the alarm became
inactive.

✓ VALUEQUALITY Current quality at the time when the alarm
became active.

✓ VALUELIMIT Current limit at the time when the alarm be‐
came active.
For dynamic limits: Updated limit at the time
the alarm became inactive.

✓ DEADBAND Dead zone value of the alarm condition of an
analog alarm at the time when the alarm be‐
came active.

✓ CONNECTION Reference to the corresponding HMI connec‐
tion

✓ SYSTEMSEVERITY Severity for alarm-based system voting (re‐
dundancy)

- SOURCETYPE Defines the alarm generation method
- STATE The change of the current alarm condition,

including history.
- STATETEXT Textual representation of the alarm condi‐

tion
- CHANGEREASON Reason for the change time, see Enumera‐

tion definition.
- ACKTIME Time stamp of the time when the alarm was

acknowledged at the source (or the service
in case the alarm source does not provide an
acknowledgment).

- CLEARTIME Time stamp of the time when the alarm at
the source became inactive (or the service,
in case the alarm source does not provide
date and time information).

- RESETTIME Time stamp of the alarm reset time (or serv‐
ice, in case the alarm source does not pro‐
vide date and time information).

✓ LOCALTIME Information about the local time from which
the alarm originated.

- USERRESPONSE The type of tag that represents a property of
another node.

✓ DURATION Returns the time interval in nanoseconds be‐
tween triggering of the alarm and its previ‐
ous status change.

Connectivity
14.4 OPC UA - Open Platform Communications

7036 System Manual, 11/2022

OPC UA Data Access

Tags
The WinCC Unified tags are displayed by OPC UA tags of the "HMISimpleTagType" type. Other
DataAccess tag types such as "AnalogItem" or "DiscreteType" are not supported.
The OPC UA server supports read access to the OPC UA tag attributes such as "DataType" or
"AccessLevel". Writing access and subscriptions are only supported for the "Value" attribute.

Inverse browsing on the OPC UA client
The functionality for inverse browsing of tags is not supported in the OPC UA server.

Alarm conditions
Communication between a WinCC Unified device which is used as an OPC UA server and its OPC
UA clients includes tag-based alarms.

Availability in the address space
Based on their state machine, the configured alarms of the system running on the WinCC
Unified device are mapped to OPC UA types and loaded with their properties into the address
space of the OPC UA server. See section Address space of the OPC UA server (Page 7032).
OPC UA clients have read access to the alarms and their properties in the address space.

Monitoring alarms
OPC UA clients can monitor changes to the WinCC Unified alarms by subscribing to the server
object or directly to the runtime system for monitoring. A client can subscribe to one object
(server or runtime system) or several objects for monitoring.
When a configured alarm becomes active or a property of an active alarm changes, the OPC
UA client is automatically notified.
OPC UA clients can perform the following actions for monitored alarms:

Action Availability Result
Acknowledge For alarms of the OPC UA type

HmiAlarmType
The alarm state is updated ac‐
cordingly in the address space in
the properties of the alarm. The
runtime system reflects this
change.

Confirm For alarms of the OPC UA type
HmiAlarmType

Activate For alarms of the OPC UA types
HmiConditionType and HmiA‐
larmTypeDisable

Shelve
Unshelve alarm For alarms of the OPC UA type

HmiAlarmType

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7037

Managing OPC UA server certificates
If you use a WinCC Unified device as an OPC UA server and the OPC UA communication is
protected by certificates, the following applies:
• An OPC UA server certificate must be installed on the Unified device.
• The OPC UA clients must trust the OPC UA server certificate.
• The Unified device must trust the OPC UA client certificates.
Section Introduction to OPC UA certificates (Page 7012) describes how you proceed to
provide the certificates required for communication.

14.4.3.2 Using the Unified PC as OPC UA server

Exporting tags

Offline export of tags using the OPC UA server
SIMATIC Runtime Manager allows you to export the tags configured for the active Runtime
project to an OPC UA Nodeset using the OPC UA server. The exported data can be imported into
another application, e.g. the TIA Portal, without the need for a connection to the OPC UA server.
The export makes it easier to apply an existing configuration to a new Runtime system.

Requirement
• The OPC UA server for WinCC Unified is running.
• A WinCC Unified Runtime project is running on the server.
• The following applies to the user who started the export:

– The user has the role "SIMATIC HMI".
– The user has the function right for read and write access to OPC UA.

• The OPC UA server certificate and the WinCC Unified OPC UA exporter certificate trust each
other.
If you have generated and installed the certificates again via the Certificate Manager, this is
automatically the case.
If you want to use the default certificates created during the Runtime installation, move the
certificates so that they trust each other:

Source directory Target directory
C:\SCADAProjects\certstore\own\certs C:\SCADAProjects\certstore\trusted\certs

Connectivity
14.4 OPC UA - Open Platform Communications

7038 System Manual, 11/2022

Procedure
Follow these steps to export the tags of the active Runtime using the OPC UA server:
1. Start "SIMATIC Runtime Manager".
2. Click the button in the toolbar.
3. Configure the export settings in the "OPC UA Export" tab:

– Select the name and the folder of the output file.
– Type in the user name and password of the user who started the export.

4. Click "Export".

Result
You can see whether the export was successful in the "Status" field.
If the export is successful, the file is written to the specified folder.
For diagnostic purposes, a trace file is written to the following folder: [ProgramData]/Siemens/
Automation/Logfiles

See also
Requirements for use (Page 7026)

Configuring a Unified OPC UA server (Unified PC)

OPC UA server

General
OPC is a standardized manufacturer-independent software interface for data exchange in
automation engineering. OPC UA is the technology succeeding OPC. OPC UA is platform-
independent and supports different protocols as communication medium.
To work with OPC UA in WinCC Unified, the OPC UA server must be enabled in the TIA Portal
in the Runtime settings of the HMI device.

Read/write tags and register tags/alarms
When you enable the "Operate as OPC UA server" option in the HMI device, the protection for
unauthorized internal and external access is downgraded.
• Enable the "Operate as OPC UA server" option.

A security note is displayed.
After enabling the option, all other settings of the OPC UA Server will become available.

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7039

Alarms and Conditions
• To display alarm conditions in the address range of the server, select the option "Enable

Alarms and Conditions on the OPC UA server".
• To disable or acknowledge alarms on the OPC UA Client, for example, select the option "Allow

operation of alarms on the OPC UA Client". To enable this option, the "Enable Alarms and
Conditions on the OPC UA server" option must be enabled.

Options

General
Define the following settings:
• Port

Default value: 4890
Do not use a port number that is already assigned to another application.

• Maximum session timeout (s)
Default value: 600000 s

• Maximum number of OPC UA sessions
Default value: 100

Subscriptions
Define the following settings:
• Minimum publication interval (ms)

Default value: 100 ms
• Maximum number of monitored items

Default value: 0

Security

Secure connection

Security policies

CAUTION
Reduced security
When the option "No OPC UA Server Security" is enabled, any OPC UA client can connect to the
OPC UA server regardless of the following settings.

The following section contains a list of all security policies available on the server.
• Activate the required security policies.

Connectivity
14.4 OPC UA - Open Platform Communications

7040 System Manual, 11/2022

User authentication

Guest authentication
• To allow access by anonymous users to the OPC UA server, enable the option "Enable guest

authentication".
An authentication by means of user name and password is not required for guests.
Security is restricted to the degree that you determine by assigning rights to this user.

Authentication by means of user name and password
• To allow access by users with user name and password to the OPC UA server, enable the

option "Authentication with user name and password".
If access to the OPC UA server is to require the user name and password, the user must be
assigned the role "HMI Administrator". The "HMI Administrator" role has the system-defined
"OPC UA - read and write access" function right. The settings made must then be
synchronized with the user management in runtime.

Trace
WinCC Unified provides trace logging for error analysis. The OPC UA traces including SDK can be
logged for test purposes and for troubleshooting.

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7041

TraceViewer
The log files can be viewed with the TraceViewer. This tool is available in the installation directory
of WinCC Unified under "WinCCUnified\bin". Start the file "RTILtraceViewer.exe".

14.4.3.3 Using the Unified Comfort Panel as OPC UA server

Configuring the Unified OPC UA server (UCP)

OPC UA server

General
OPC is a standardized manufacturer-independent software interface for data exchange in
automation engineering. OPC UA is the technology succeeding OPC. OPC UA is platform-
independent and supports different protocols as communication medium.
To work with OPC UA in WinCC Unified, the OPC UA server must be enabled in the TIA Portal
in the Runtime settings of the HMI device.

Connectivity
14.4 OPC UA - Open Platform Communications

7042 System Manual, 11/2022

Read/write tags and register tags/alarms
When you enable the "Operate as OPC UA server" option in the HMI device, the protection for
unauthorized internal and external access is downgraded.
• Enable the "Operate as OPC UA server" option.

A security note is displayed.
After enabling the option, all other settings of the OPC UA Server will become available.

Alarms and Conditions
• To display alarm conditions in the address range of the server, select the option "Enable

Alarms and Conditions on the OPC UA server".
• To disable or acknowledge alarms on the OPC UA Client, for example, select the option "Allow

operation of alarms on the OPC UA Client". To enable this option, the "Enable Alarms and
Conditions on the OPC UA server" option must be enabled.

Options

General
Define the following settings:
• Port

Default value: 4890
Do not use a port number that is already assigned to another application.

• Maximum session timeout (s)
Default value: 600000 s

• Maximum number of OPC UA sessions
Default value: 100

Subscriptions
Define the following settings:
• Minimum publication interval (ms)

Default value: 100 ms
• Maximum number of monitored items

Default value: 0

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7043

Security

Secure connection

Security policies

CAUTION
Reduced security
When the option "No OPC UA Server Security" is enabled, any OPC UA client can connect to the
OPC UA server regardless of the following settings.

The following section contains a list of all security policies available on the server.
• Activate the required security policies.

User authentication

Guest authentication
• To allow access by anonymous users to the OPC UA server, enable the option "Enable guest

authentication".
An authentication by means of user name and password is not required.
Security is restricted to the degree that you determine by assigning rights to this user.

Authentication by means of user name and password
• To allow access by users with user name and password to the OPC UA server, enable the

option "Authentication with user name and password".
If access to the OPC UA server is to require the user name and password, the user must be
assigned the role "HMI Administrator". The "HMI Administrator" role has the system-defined
"OPC UA - read and write access" function right. The settings made must then be
synchronized with the user management in runtime.

14.4.4 WinCC Unified OPC UA client

14.4.4.1 Using the WinCC Unified OPC UA client
As OPC UA clients, WinCC Unified devices can integrate the following data from OPC UA servers
into their projects:
• Alarm instances received from the OPC UA server
• OPC UA server tags

Connectivity
14.4 OPC UA - Open Platform Communications

7044 System Manual, 11/2022

When configuring this data in the engineering system, the engineering system also becomes
the OPC UA client.

14.4.4.2 Defining connection settings to the OPC UA server

Requirement
• In the engineering system, a WinCC project is open that has had a Unified device added to it.
• The "Connections" editor is open.

Procedure
Double-click in the "Add" cell and define the connection settings:
• "Communication driver": OPC UA
• Set the following parameters in the "Parameters" tab under "OPC server":

– "UA server discovery URL": Enter the OPC UA server IP and port
Use the following notation: opc.tcp://<IP>:<Port>
Alternatively, you can also determine the server via "Select OPC server".

– Select the desired security settings.
See also Defining the security settings for communication with the OPC UA server
(Page 7045).

Result
The Unified OPC UA client uses the settings to establish a connection to the OPC UA server.

14.4.4.3 Defining the security settings for communication with the OPC UA server

Requirement
A connection with the communication driver "OPC UA" is configured in a WinCC project on a
Unified device. See also section Defining connection settings to the OPC UA server (Page 7045).

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7045

Procedure
Select the security settings that meet the requirements of the OPC UA server:
1. Open the "Connections" editor.

You make the security settings in the "OPC UA Server" area.
2. To protect the connection with a security policy, follow these steps:

– Select the security policy.
The communication with the server is protected by a certificate.
Note
Make OPC UA certificates available
Make sure that the required certificates are available on the OPC UA server and client. See
also Introduction to OPC UA certificates (Page 7012).

Note
Connection without security policy
If you do not select a security policy, it is urgently recommended that the OPC UA server
and client are installed on the same device.

– Select whether communication is signed or signed and encrypted.
3. To protect communication with the OPC UA server by a user name and password, follow

these steps:
– Disable the "Anonymous" option.
– Enter the user name and password of a user account configured on the OPC UA server.

4. For anonymous communication, select the option "Anonymous".

14.4.4.4 Integrating OPC UA server alarm instances into a Unified client
You have the option of integrating alarm instances from an OPC UA server into your Runtime
project.

Note
Restrictions
• The OPC UA server is a SINUMERIK device.
• The OPC UA server is based on the OPC UA specification 1.03.

Requirement
• The OPC UA server alarm instances are available in a NodeSet XML file.
• You have access to the XML file on the device on which the engineering system is installed.

Connectivity
14.4 OPC UA - Open Platform Communications

7046 System Manual, 11/2022

Procedure
1. In the engineering system, add a Unified HMI device to a WinCC project.
2. Set the connection settings to an OPC UA server for the HMI device.

See also section Defining connection settings to the OPC UA server (Page 7045).
3. Import the XML file with the OPC UA server alarm instances into the WinCC project.

See also section Importing OPC UA server alarm instances (Page 7047).
4. Generate HMI alarms for the OPC UA server alarm instances.

See also section Generating HMI alarms for OPC UA server alarm instances (Page 7048).
5. Add a screen to the HMI device.
6. Place an alarm display on the screen.
7. Compile the HMI device in a Runtime project, load the Runtime project onto the HMI device

and start the project in Runtime.
Note
Loss of the ability to compile and load changes
If you load the OPC UA server alarm instances on the HMI device and then update the alarm
instances in the engineering, because the alarm class has been changed for example, you
lose the option in the engineering to compile and load only the changes to the project. The
project must now be fully compiled and loaded.

Result
In Runtime, the alarm instances received from the OPC UA server are displayed in the alarm
display. The following attributes are mapped to each other:

Attributes of an OPC UA server alarm instance Attribute of an HMI alarm
"Message" "Alarm text"
"SourceName" "Origin"

If alarm archiving is activated, the alarms are archived.
Status changes to the alarm instances on the OPC UA server are reflected in Runtime. The
Runtime OPC UA client can request status changes on the server. The status change is always
done on the server.

Importing OPC UA server alarm instances

Requirement
• In the engineering system, a WinCC project is open that has had a Unified device added to it.
• The OPC UA server alarm instances are available in a NodeSet XML file.
• You have access to the XML file on the device on which the engineering system is installed.

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7047

Procedure
 To import OPC UA server alarm instances into a WinCC project, follow these steps:
1. Open the "HMI alarms" editor.
2. Select the "OPC UA A&C" tab.
3. Under "Connection" in the right area, select the OPC UA connection.
4. Click "Import" next to "Connection":

5. Select the XML file.
6. Click "Import".

Result
The content of the XML file is imported into the "OPC UA browser" area. It contains the
hierarchical OPC UA NodeSpace with the OPC UA server alarm instances.
Then generate HMI alarms for the OPC UA server alarm instances.

See also
Generating HMI alarms for OPC UA server alarm instances (Page 7048)

Generating HMI alarms for OPC UA server alarm instances

Requirement
• In the engineering system a WinCC-project is open, to which a HMI device has been added.
• The "HMI alarms" editor of the device is open.
• An XML file with the OPC UA server alarm instances was imported into the editor.

Procedure
1. Select the "OPC UA A&C" tab.
2. Expand the objects in the "OPC UA browser" area up to the node under which the OPC UA

server alarm instances are located.
3. Press and hold the left mouse button to drag the node to the "Node ID" cell of the "Add" row

of the table in the "OPC UA types" area.
An entry for an alarm type is added to the table. The table provides detailed information on
the properties of the alarm type.

Connectivity
14.4 OPC UA - Open Platform Communications

7048 System Manual, 11/2022

4. Select an alarm class that matches the alarm type of the OPC UA server alarm instances and
supports the state machine "Alarm without status active with acknowledgment".

5. In the "OPC UA types" area, click the button to generate and update the alarm instances:

Note
Loss of the ability to compile and load changes
If you load the OPC UA server alarm instances on the HMI device and then update the alarm
instances in the engineering, because the alarm class has been changed for example, you
lose the option in the engineering to compile and load only the changes to the project. The
project must now be fully compiled and loaded.

Result
HMI alarms are generated for the OPC UA server alarm instances.
When loading the project into a Runtime, the mapping between the HMI alarms and the OPC
UA server alarm instances are loaded into the target device.

See also
Importing OPC UA server alarm instances (Page 7047)

Connectivity
14.4 OPC UA - Open Platform Communications

System Manual, 11/2022 7049

Connectivity
14.4 OPC UA - Open Platform Communications

7050 System Manual, 11/2022

Configuring plant hierarchies 15
15.1 Basics

15.1.1 Introduction

Object-oriented configuration
The option of object-oriented configuration is available to you with SIMATIC WinCC Unified PC RT.
Define reusable plant object types and assign the associated plant object instances in
hierarchical plant views.
In this way, you can model the plant view of your machine or unit/plant, for example, based
on user-defined or standardized technological objects.
The plant structure is created from individual objects, each of which represents a specific
component or unit. You configure each object in the context of the operator control and
monitoring solution.
In plant object types, you combine all required configuration elements for visualization, such
as faceplates, tags, alarms, scripts, etc. Changes to the plant object type automatically affect
all instances. This translates into real time savings, especially for plants with a high degree of
standardization.
You can start object-oriented plant modeling based on the engineering data, if necessary,
and can derive the configuration of the HMI devices and automation systems from this.
Break the machine or unit/plant up into reusable technological units and arrange them
hierarchically in a technological plant view according to the plant structure.

System Manual, 11/2022 7051

The following options are available to you in technology-oriented and object-oriented
configuration:
• Creating various hierarchical plant views: technological view, building view, independent of

the HMI device that is used.
• Configuration of plant objects and plant object types with data elements for mapping the

actual plant configuration
• Access to plant objects (data elements, HMI alarms, logs, screens, etc.)
• Generation of the screen hierarchy
• Expansion of configured plant objects and types using Plant Intelligence options, e.g. WinCC

Unified Performance Insight or WinCC Unified Sequence Execution

Software requirements
You acquire the following products to use technology- and object-oriented configuration:
• TIA Portal V16 or higher with WinCC Unified
The "Plant objects" area is visible under Project tree after the installation of WinCC Unified.

Configuring plant hierarchies
15.1 Basics

7052 System Manual, 11/2022

Supported devices
The following SIMATIC S7 controllers are supported:
• SIMATIC S7-1500 with the exception of the SIMATIC S7-1500 Software Controller

See also
Applications (Page 7053)
Overview (Page 7065)
Type/instance concept in object-oriented configuration (Page 7055)

15.1.2 Applications

Overview
You use technology-oriented and object-oriented configuration for automation solutions to
increase overall effectiveness.
In particular, in plants with high level of standardization, the object-oriented approach
increases the configuration efficiency through the reuse of objects, the capability of changing
objects centrally, and the integration of manufacturing execution system functionalities such
as the calculation of individual key indicators for separate machines.
Technology-oriented and object-oriented configuration supports you in the following
operating phases:
• Planning phase: Efficient plant configuration and simple plant expansion through integration

of part models from other projects
• Plant maintenance: Transparency through mapping of the exact plant structure
• Quality management: Continuous optimization of your projects

Advantages
• Creation and generation of modular projects based on standardized plant objects
• Reduced engineering workloads and fewer inconsistencies with a shared model in

Engineering and Runtime
• Simple plant expansion through integration of part models from other projects
• Creating the screen hierarchy
• Transparent access to all objects and their properties and methods, independent of device

assignment
• Targeted corrective measures through transparent relationships of individual plant objects
• Intelligent use of information from the entire manufacturing environment in combination

with Plant Intelligence options

Configuring plant hierarchies
15.1 Basics

System Manual, 11/2022 7053

Operation in runtime
Depending on your configuration, the following possibilities are available to you in runtime:
• Display hierarchy path of alarm source
• Filter alarm control by plant objects
• Display alarm status of a line and navigation to the alarm source
• Display the most frequently occurring alarms, filtered by plant object or plant object type
• Area-based access protection
• Screen navigation via the plant model
• Determine the energy consumption of a line and compare with another line
• Analysis based on plant objects
The plant hierarchy is also available for scripting in runtime.

Requirements on the configuration engineer
The following prior knowledge is required for using technology-oriented and object-oriented
configuration:
• You have experience performing configuration in STEP 7 and WinCC.

Configuring plant hierarchies
15.1 Basics

7054 System Manual, 11/2022

See also
Introduction (Page 7051)
Type/instance concept in object-oriented configuration (Page 7055)
Configuration concept (Page 7058)

15.1.3 Type/instance concept in object-oriented configuration

Introduction
The object-oriented approach of WinCC based on the type-instance concept. In types, you create
central properties for an object. The instances represent local places of use for the types.
Plant objects are instances of a plant object type.
The plant object type is the central, object-oriented definition of a reusable plant component
(such as conveyor robot). As instances of the plant object type, the plant objects generally
map concrete, physically existing plant components (e.g. conveyor robot_A and conveyor
robot_B).
If you change a property of a plant object type, the property is saved centrally and also
changed in all instances.

Effect of the type instance concept on object-oriented configuration
The use of a type is called an instance. The common plant model is generated from instances.
Each instance inherits all the properties of the type. The Common Plant Model with high level
of standardization is characterized by the use of many instances of few types in the model.
The general types of the plant units are configured and these are reused when required
in the configuration and adapted to the specific plant objects. The plant structure hereby
specifies the addressing of the plant objects.

Configuring plant hierarchies
15.1 Basics

System Manual, 11/2022 7055

In the object-oriented approach of WinCC the following correspondences apply:
• Type = Plant object type
• Instance = Plant object
The following figure shows the basic structure of a plant model:

Plant objects and plant object types
A plant object is a technological unit. In a plant object, the components are stored in a typical
form which is required for modeling a plant.
A valid plant object must be created from a plant object type. The plant structure is created
from plant objects.
The definition of a plant object type consists of the data structure and context information:
• Alarms
• Logging
• Visualization
• Data member (internal and external)
• Facets (e.g. performance indicators)

Configuring plant hierarchies
15.1 Basics

7056 System Manual, 11/2022

Type definition in terms of high reuse
A plant object type is used to describe a plant object independently of its use in the Common
Plant Model. Define a plant object type as generally as possible and as specifically as required.
Take into account the following aspects:
• Identical data structure in PLC (function block or PLC UDT)

Example: Pumps that have different performance ranges are installed in a plant. The data
structure in the PLC is identical for each pump. Map these pumps with a common plant object
type. At each instance you configure the specific value ranges for the respective performance
ranges.
A pump function block (standard FB for a pump) is available on the control side. The customer
defines the plant object type "Pump" based on this function block. The data structure of the
plant object type is taken over directly from the block. Only the HMI relevant properties from
the function block are hereby transferred. They are automatically updated when the block
changes. Simply parameterize an instance of the function block as process connection of the
plant objects.

• Similarity
When you have similar plant object types, check if it possible to map these with a common
plant object type:

① Example: A pump is installed in a plant in two different variants:
• Variant 1 only measures the flow rate.
• Variant 2 measures the temperature in addition to the flow rate.
Effects on the definition of the plant object types:
• You map each of the two pumps with a single plant object type. The representation in the

Common Plant Model hereby corresponds to reality.
• There is more configuration work.

② The common intersection of the two pumps is measuring the flow.
③ If, for example, you can do without measuring the temperature for operation, define only one

plant object type:
• There is less configuration work.
• The two variants of the pumps are not fully represented in the Common Plant Model.

Configuring plant hierarchies
15.1 Basics

System Manual, 11/2022 7057

Effects of changes on plant object types
The following figure shows how changes to the plant object type affect its instances, i.e. plant
objects:

See also
Overview (Page 7065)
Options for creating plant objects (Page 7068)
Introduction (Page 7051)
Applications (Page 7053)
Configuration concept (Page 7058)
Plant model and target systems (Page 7060)

15.1.4 Configuration concept

Requirements
• You have experience in configuring with WinCC and STEP 7.
• The TIA Portal project has been created.
• The WinCC Unified PC RT HMI device has been created.
• A SIMATIC S7-1500 PLC has been created.
• Data blocks are configured in the PLC.

Workflow for configuration
The starting point for the definition of a standardized object-oriented plant model in object
oriented configuration is the existing plant structure.

Configuring plant hierarchies
15.1 Basics

7058 System Manual, 11/2022

If you want to create a plant structure, use the following sequence of steps as a guide:
• Analyze the plant structure and break it down into units and components (plant objects)
• Identify required plant object types
• Define data of the plant object types based on FBs and PLC UDTs
• Define hierarchical plant view using instances
• Create a target system
• Map the plant structure
• Position plant objects in the plant structure
• Add functional facets to object types, e.g. assign shift calendars for all machines of a line or

plant

Tips for an efficient procedure
If you are using pre-planning and automation engineering tools, you can have your plant structure automatically created via TIA Portal
Openness. Next, set up the process connection of the plant objects via TIA Portal Openess.

Differences between device-oriented and object-oriented configuration
In technology- and object-oriented configuration, you work with objects with relevant names
instead of individual tags or faceplates, for example.
You have access to all objects and their properties, methods, etc. in the hierarchy,
independent of HMI device assignment.
The equipment from different products and versions is integrated in the object-oriented
configuration.

Configuring plant hierarchies
15.1 Basics

System Manual, 11/2022 7059

Using multiuser engineering
If you use multiuser engineering in object oriented configuration, you can save your changes
only in the server project view. You cannot check the changes you make in the local session into
the server project.
You can find more information on Multiuser Engineering in "Using Multiuser Engineering".

See also
Creating plant objects (Page 7072)
Structure of a plant model (Page 7061)
Creating plant object types (Page 7071)
Configure plant object types (Page 7073)
Creating a plant hierarchy (Page 7069)
Type/instance concept in object-oriented configuration (Page 7055)
Plant model and target systems (Page 7060)
Applications (Page 7053)

15.1.5 Plant model and target systems

Configuration of the plant model
When the configuration of a visualization solution begins, the development of the automation
solution often takes place in the final phase. Initially, only the actual plant structure is relevant
for mapping the plant model. Whether this involves one or multiple target systems is initially
irrelevant.
There are always two views in a WinCC project:
• Device view with configured target systems
• Object-oriented view (common plant model)
You can perform configuration independently in both views.

Process connection of the plant model
The target systems are the interface between the common plant model and the process. One or
more connections to PLCs are configured on each target system. The plant objects communicate
with the PLCs over the target systems.
Your project must meet the following conditions for productive use:
• Each plant view is assigned to a HMI device.
• Each plant object with a process connection is also connected to a PLC.
The following figure shows a schematic representation of the mapping of plant objects to the
configured target systems and PLCs:

Configuring plant hierarchies
15.1 Basics

7060 System Manual, 11/2022

Plant objects without a process connection as representation of a unit

Plant objects with process connection

Runtime server (target system)

PLC

See also
Type/instance concept in object-oriented configuration (Page 7055)
Configuration concept (Page 7058)

15.1.6 Structure of a plant model

Basic principles
With object oriented configuration, a configured plant object corresponds to a real plant object.
Basically, the number of plant objects is determined by the plant hierarchy.
Whether you need to map each plant object with a plant object type is determined by the
following factors:
• Relevance of the plant object type for the process visualization
• Depth of the plant hierarchy that is to be mapped
• Degree of reuse
The specific function of a plant object is clear from its position in the plant hierarchy.
For example, the function of a "Drive" plant object is only revealed in the plant hierarchy:

Configuring plant hierarchies
15.1 Basics

System Manual, 11/2022 7061

① Process for filling beer into bottles
② Drive for conveyor belt
③ Drive for robot

Depth of the plant hierarchy
Define any depth of the plant hierarchy The depth of the plant hierarchy depends essentially on
the number of plant objects. A deep plant hierarchy leads to a precise fault localization. You can
then, for example, formulate the concise alarm text.
The context of the plant object is also taken into account in runtime, for example, in the
localization of faults. The following figure uses the example of the "Temperature exceeded"
alarm to show the advantage a deep hierarchy offers in runtime:

① Representation of the message in an alarm control:
"Brewery.Filling.Paletting.Robots.Drive.Temperature exceeded"
The Common Plant Model with deeper hierarchy leads to a precise fault localization. You can
therefore formulate the alarm text concisely.

② Since the drive for the robot is based on the same plant object type, the context of the alarm is
automatically correct when a fault occurs:
"Brewery.Filling.Paletting.Robots.Drive.Temperature exceeded"

Configuring plant hierarchies
15.1 Basics

7062 System Manual, 11/2022

Configuration data at the plant object type
The following configuration data are created during the definition of a plant object type:
• Properties through which data is exchanged inside and outside of WinCC Unified PC RT.
• HMI visualization: Alarms, logs
• KPIs

See also
Configure plant object types (Page 7073)
Configuration concept (Page 7058)

15.1.7 Contexts
Contexts allow you to view plant units according to a certain viewpoint, e.g. according to a
certain customer, product, job or shift.

Principle
Contexts always belong to a plant object. They are indicated as follows:
• User-defined contexts:

Using a program created with the ODK API
• System-generated contexts:

For installed Performance Insight and Calendar option packages: Automatically in Runtime
Example: When a shift starts in Calendar, an archived context value is created with the shift
ID

Each time a context (e.g. "Product") is executed, a log entry is generated in the context log.
The logged context saves:
• The context value (e.g. "orange lemonade")
• Start time and end time of the execution time
• The quality code

Contexts in the trend control and alarm control
You can filter the content of these controls so that only data that has been generated in a
specific plant unit and for the context you have selected is displayed. To do this, select a plant
object, a context and one of its logged context values.
Example:

Configuring plant hierarchies
15.1 Basics

System Manual, 11/2022 7063

A press house produces juices for various beverage brands. Using contexts, employees can
display in Runtime which alarms have occurred:
• During the production of a specific product (e.g. natural apple juice, clear apple juice, pear

juice)
• For orders for a specific customer (e.g. Johnson, Smith or Miller).
• During a specific shift (e.g. early shift, late shift, night shift).

Contexts in the "Reports" control
You have the option of linking the generation of reports to the execution of contexts.
If the templates are configured appropriately, the reports available in the control can also
contain information about contexts. If a report was generated as an Excel file and reads both
contexts and alarms or tag values, you can then use the Excel filter function to filter the
alarms and tags by context.

See also
Display process data of the plant objects in a trend control (Page 7116)

Configuring plant hierarchies
15.1 Basics

7064 System Manual, 11/2022

15.2 Elements and basic settings

15.2.1 Overview

"Plant objects" area
To access object-oriented configuration, click on "Plant objects" in "Project tree".

① "Plant objects" area for object-oriented configuration
② Plant object specific tabs, e.g. "Interface", "Visualization", etc.
③ "Plant object types" task card
④ Tabs for the configuration of alarms and logs for plant objects
Create the plant view under "Project tree > Plant objects". You can create a plant view in a
project. The plant view is filled with plant nodes and thus maps your plant. Plant nodes act
as structural elements. Create plant objects based on the plant object types created in the
project.
In the "Plant objects" area you assign an HMI device to the plant view.

Configuring plant hierarchies
15.2 Elements and basic settings

System Manual, 11/2022 7065

"Plant object types" task card
Under "Plant object types", create the plant object types from which you create plant objects.

"Interface" tab
Plant object types are edited in "Interface" create tags for the communication between a PLC and
an HMI device, create members for plant object types, and create alarms and logging tags.

"Visualization" tab of the plant object types
In the "Visualization" tab of a plant object type, you link a faceplate type with the plant object
type.

Configuring plant hierarchies
15.2 Elements and basic settings

7066 System Manual, 11/2022

"Visualization" tab of the plant objects
Under "Visualization", you configure a screen for each plant object. In the Inspector window you
edit the properties and events of the screen.
The faceplate type associated with the plant type is displayed. The configured tags of the
interface are displayed, but cannot be edited.

If you open a screen under "Visualization" by double-clicking, the view is identical to the view
on an HMI device. The "Toolbox" and "Layout" task cards are also identical.
Use the "Toolbox" task card to configure in predefined objects in your screens, with which you
map your plant, display process sequences and define process values.

See also
Introduction (Page 7051)
Options for creating plant objects (Page 7068)
Type/instance concept in object-oriented configuration (Page 7055)

Configuring plant hierarchies
15.2 Elements and basic settings

System Manual, 11/2022 7067

15.2.2 Options for creating plant objects

Basics
You have several options for creating plant objects on the basis of plant object types:
• Creation of plant object types from the function blocks or PLC user data types of an S7-1500

and creation of plant objects from the instance data blocks

• Creation of plant object types within WinCC without an S7-1500

See also
Overview (Page 7065)
Type/instance concept in object-oriented configuration (Page 7055)

Configuring plant hierarchies
15.2 Elements and basic settings

7068 System Manual, 11/2022

15.3 Object- and technology-oriented configuration

15.3.1 Working with plant views

15.3.1.1 Creating a plant hierarchy

Introduction
Create a plant view to map the structure of your plant. You fill the plant view with plant objects
and plant nodes and thus map your plant. Plant nodes act as structural elements.
Assign the plant view to a HMI device.

Requirement
• The TIA Portal project has been created.

Procedure
1. Under "Project tree > Plant objects", click on "Add new plant view".

An empty plant view is created.
Note
A plant view is supported in each project.

2. Rename the plant view accordingly.
Note
The following options are not available for the "Plant view" object:
• Paste
• Cut
• Drag-and-drop

See also
Assigning a plant hierarchy to a HMI device (Page 7070)
Creating plant objects (Page 7072)
Configure plant object types (Page 7073)
Configuration concept (Page 7058)

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7069

15.3.1.2 Assigning a plant hierarchy to a HMI device

Introduction
To operate the plant in runtime, always assign a plant view to an HMI device.
A plant view can only be assigned to a HMI device.

Requirement
• A plant view has been created.
• The WinCC Unified PC RT HMI device has been created.

Procedure
1. Select the "Plant view" node.
2. Select the "Assign HMI device" entry from the shortcut menu.

A "Select an HMI device for assignment" dialog appears.

3. Select the HMI device.
The plant view and all lower-level plant objects are assigned to the HMI device.
If a plant view was assigned to a HMI device, the assignment is visible under "Project tree >
Plant objects".

See also
Creating plant objects (Page 7072)
Creating plant object types (Page 7071)

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7070 System Manual, 11/2022

Configure plant object types (Page 7073)
Creating a plant hierarchy (Page 7069)

15.3.1.3 Creating plant nodes

Introduction
Plant nodes help you structure your plant.

Requirement
• The plant view has been created and is displayed.

Procedure
1. Open the shortcut menu in the plant view.
2. Select "Add new node".

The plant node is created.
3. Rename the plant node.

15.3.2 Working with plant objects and plant object types

15.3.2.1 Creating plant object types

Introduction
You create plant object types.
Then define the "Communications driver" property of the interface:
• "<Internal communication>": Create data members for internal communication.
• "SIMATIC S7 1200/1500": Use either function blocks or the PLC user data types of an S7-1500.

You can add further data members to the linked structure.

Requirement
• A project is open.
• A SIMATIC S7-1500 PLC has been created.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7071

Procedure
Create plant object types in the "Plant object types" task card.
1. To display the "Plant object types" task card, click the "Show plant object types" button under

"Project tree > Plant objects".
2. To create a plant object type, click "Add new plant object type".

An empty plant object type is created.
3. Rename the created plant object type accordingly.
4. To edit the plant object type or create lower-level objects and members for the plant object

type, double-click the plant object type in the "Plant object types" tab.
The plant object type appears under "Interface".
Note
The "Communications driver" property is editable for the plant object types. The property
"PLC tag" can only be edited with the communications driver "SIMATIC S7 1200/1500".

See also
Configure plant object types (Page 7073)
Example: Determine plant object type (Page 7098)
Assigning a plant hierarchy to a HMI device (Page 7070)
Configuration concept (Page 7058)

15.3.2.2 Creating plant objects

Introduction
You create plant objects from a plant object type using drag-and-drop operation.
Plant objects are specific versions or instances of a plant object type.

Requirement
• A project is open.
• A plant object type has been created.

Procedure
1. Open the "Plant objects" tab in the "Project tree" area.
2. Open the "Plant object types" task card.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7072 System Manual, 11/2022

3. Drag the plant object type from the task card to the plant view.
An empty plant object is created.

4. Rename the plant object accordingly.
Note
The name of a plant object must only be assigned once within a project.

See also
Configuration concept (Page 7058)
Configure plant object types (Page 7073)
Assigning a plant hierarchy to a HMI device (Page 7070)
Creating a plant hierarchy (Page 7069)

15.3.2.3 Configure plant object types

Introduction
Configure the plant object types either from the function blocks and PLC user data types of an
S7-1500 or create the properties and the external and internal data members for the plant object
types.
In both cases you can extend the structure the created plant object types with additional
internal or external data members.
Configuration without using function blocks is described below.

Requirement
• The WinCC Unified PC RT HMI device has been created.
• A plant view has been created and assigned to the HMI device.
• A plant object type has been created.
• A SIMATIC S7-1500 PLC has been created.
• Tags have been configured in the S7-1500.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7073

Procedure
1. Double-click the plant object type in the "Plant object types" editor.

An empty plant object type with the "Struct" data type appears under "Interface".
2. To add data members to the plant object type, select the plant object type and click "Insert

object".

The created data member inherits all properties from the higher level plant object type.
"Internal communication" is selected by default in the column "Communications driver" for
the newly created data members of the plant object types.

3. If you want to configure an external data member, select "SIMATIC S7-1500" in the
"Communication driver" column.

4. Assign a PLC tag to the external data member in the "Tag" column.

Note
If an HMI device is assigned to the plant view, it is possible to view the data members in the "HMI
tags" editor in the "Plant object tags" tab. You also have write rights for the "Comment" column.
You can also use the configured data members in screens of an assigned HMI device, e.g., for
dynamization instead of tags.

Tips for an efficient procedure
• Differentiate between identically named plant objects and plant object types using the "Insert object" button in the "Interface" tab. If the

"Insert object" button is enabled, you have selected a plant object type. If you have selected a plant object, the "Insert object" button is
disabled.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7074 System Manual, 11/2022

See also
Creating plant object types (Page 7071)
Structure of a plant model (Page 7061)
Creating plant objects (Page 7072)
Assigning a plant hierarchy to a HMI device (Page 7070)
Configuration concept (Page 7058)
Creating a plant hierarchy (Page 7069)
Configuring plant object types from the data blocks of an S7-1500 (Page 7075)
Assigning process data to plant objects (Page 7076)

15.3.2.4 Configuring plant object types from the data blocks of an S7-1500

Introduction
Configure the plant object types either from the data blocks of an S7-1500 or define the
properties and the external and internal data members for the plant object types without
connection to a PLC.
In both cases you can extend the structure the created plant object types with additional
internal or external data members.
Configuration from the data blocks of an S7-1500 PLC is described below.
Configure plant object types from the configured program blocks of an S7-1500 PLC using
drag-and-drop operation.

Requirement
• The WinCC Unified PC RT HMI device has been created.
• A plant view has been created and assigned to the WinCC Unified PC RT.
• A plant object type has been created.
• A SIMATIC S7-1500 PLC has been created.
• A function block is configured in the SIMATIC S7-1500 PLC.

Procedure
1. Open the plant object type in the "Interface" tab.
2. Set the "Communication driver" parameter to the SIMATIC S7-1500 PLC that contains a

configured function block.
3. Navigate to the function block in the PLC.
4. Select the function block.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7075

5. Drag the function block to the "PLC tags" field in the "Interface" tab.
The corresponding structure with data members based on the function block is created in the
"Interface" tab.
When you edit the blocks of the PLC, these changes are automatically transferred to the plant
object types.

6. To add additional data members to the plant object type, select the plant object type and click
"Insert object".
Note
You can create additional data member for each plant object type.
Function blocks (FBs) or PLC user data types act as basis for the configuration of the plant
object types and their data members.
A member structure can also be connected to a PLC type, for example, function block (FB) or
PLC user data type.
"Raw" data types and arrays are also supported.
An assignment of the controller blocks to the external data members of the plant object types
is only possible if names and data types are identical in the PLC and in the plant object type.

7. If necessary, adjust the data type of the data member.
8. To clear the connection between of a controller and the data members object, delete the

block in the "PLC tag" column or select "None".

Tips for an efficient procedure
• Differentiate between identically named plant objects and plant object types using the "Insert object" button in the "Interface" tab. If the

"Insert object" button is enabled, you have selected a plant object type. If you have selected a plant object, the "Insert object" button is
disabled.

Note
If an HMI device is assigned to the plant view, it is possible to view the data members in the "HMI
tags" editor in the "Plant object tags" tab. You also have write rights for the "Comment" column.
You can also use the configured data members in screens of an assigned HMI device, e.g., for
dynamization instead of tags.

See also
Configure plant object types (Page 7073)
Assigning process data to plant objects (Page 7076)

15.3.2.5 Assigning process data to plant objects

Introduction
To establish the communication between a S7-1500 controller and a WinCC Unified PC RT device,
connect a plant object with a PLC tag or a data block of the PLC.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7076 System Manual, 11/2022

Requirement
• An S7-1500 PLC and a WinCC Unified PC RT HMI device are configured and connected.
• At least one plant object type in the project contains PLC user data types or function blocks

(FBs).

Procedure
1. Drag a plant object type to the plant view.

The plant object is created based on the plant object type.
2. Double-click the plant object.
3. In the "Interface" tab, in the "Connection" column, select the configured HMI connection for

all external data members of the plant object type.
Select only between the HMI connections that are created for the S7-1500 controllers
available in the project.

4. In the "PLC tag" column, select a PLC tag.

Note
In the "Interface" tab, similar to in the "HMI tags" editor, you can view or edit the properties in the
following areas:
• "General"
• "Settings"
• "Range"
• "Linear scaling"
• "Values"
• "Comment"

See also
Configure plant object types (Page 7073)
Configuring plant object types from the data blocks of an S7-1500 (Page 7075)

15.3.3 Configuring screens

15.3.3.1 Basic information on configuring screens

Overview
The configuration of screens for operating and monitoring is also available to you in object-
oriented configuration. This means that you are working in two areas, under "Project tree>
Devices" and "Project tree > Plant objects > Visualization". Here you work with both screens and
faceplates that also support the type-instance concept.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7077

In the area "Project tree > Devices", configure screens for HMI devices as usual. In the screens,
also configure companion controls that are relevant for the display of screens of the plant
objects.
In the "Project tree > Plant objects > Visualization" area, you configure screens for plant
objects.
In the "Plant object types > Visualization" area, configure faceplates for plant object types.
In the areas under "Project tree > Devices" and "Project tree > Plant Objects > Visualization",
the same predefined screen objects are available in the "Toolbox" task card.
When configuring faceplates, a minimized tool area is available under "Toolbox".

Configuration options
Under "Project tree > Devices", you configure a screen for the created HMI device with the "Plant
overview" control and one of the companion controls, such as a screen window. In runtime,
navigate the plant structure to the plant objects via the "Plant overview" control. The screen
windows in the plant overview display the screens that you have previously configured for the
plant object.
The companion controls are connected to one another and supplement one another in
displaying the data values.
The following controls can act as companion control for the plant overview:
• Alarm control
• Screen window
• Calendar control (when using the WinCC Unified Calendar option)

When required, configure controls as usual, e.g. screen windows, alarm control, or trend
control. Select the specific plant object in the plant hierarchy as data source for the alarm
control and trend control. Configure the alarm control and trend control for plant objects on
the basis of the data members of the plant object types. The procedure for configuring these
controls does not differ from the procedure for the device-specific configuration.
The following options are available in runtime:
• Display the hierarchy path of the alarm source
• Display the hierarchy path of the trend values
• Filter the alarm control by plant objects
• Display process values for the selected plant object
Use the "Visualization" tab for the direct visualization of plant objects and plant object types.
You can create one screen for each plant object, and you can link one faceplate type for each
plant object type. The type-instance concept is used for configuring the screens for plant
objects and plant object types. All relevant elements are contained in the faceplate type of
a plant object type. Drag a plant object into the screen. A faceplate container is created. For
example, several faceplates can be integrated into one visualization of a higher-level plant
object.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7078 System Manual, 11/2022

Configuration steps
In general, proceed in the following order when configuring the screens for your plant:
1. Configure plant object types.
2. Configure faceplates for plant object types.
3. Create plant objects from plant object types.
4. Create screens for plant objects.
5. For the display in runtime, configure the "Plant hierarchy" and "Screen window" controls in a

screen of the HMI device.

Displaying plant objects and plant object types
In general, you do not have to create a screen for each plant object. Create an overview for the
higher-level plant object. Then create faceplates for the plant object types and drag them to the
overview screen of the higher-level plant object using drag-and-drop.
If the screens of the plant objects need to differ from the screens used for the plant object
types, you can use the faceplates of the plant object types as a basis and configure additional
elements.
In runtime, select a plant object in the "Plant overview" control to display its screen.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7079

See also
Configuring screens for plant objects (Page 7080)
Example: Configuring screens for brewery production lines (Page 7103)
Configuring faceplates (Page 524)

15.3.3.2 Configuring screens for plant objects

Introduction
You configure an overview screen for the higher-level plant object with multiple faceplate
containers for lower-level plant objects, for example, for a station that has lower-level objects
motor and conveyor belt.
For each plant object you can configure a screen in which all lower-level plant objects are
visible. To do this, use the faceplate containers of the plant object types.
If necessary, you also configure basic objects, elements and controls in the screen. For
example, you use I/O fields to display process values such as status, temperature and rate.
In the following, you will obtain the data to be processed, such as temperature
measurements or speed values from the data blocks of a controller.
You represent lower-level plant objects using faceplates in the overview screen of the higher-
level plant hierarchy.
In runtime, the screen window technology assists you in switching between plant objects
and representing multiple plant objects in a screen.
You can also use the "Plant overview" control to set up screen navigation via the plant. In
runtime, you monitor the plant in this manner and see the overall progress at a glance.

Requirement
• A SIMATIC S7-1500 has been configured in the project.
• WinCC Unified Runtime is configured in the project.
• A plant object type has been created.
• The plant view has been created with the plant objects and assigned to WinCC Unified PC RT.
• The interface tags of the plant object types are linked to the S7-1500.

Procedure
1. Open the plant object editor.
2. In the "Visualization" tab, click "Add new screen".

A screen is created.
3. If necessary, edit the width and height of the screen under "Properties" in the inspector

window.
4. If necessary, configure the required elements and controls for the plant object, such as I/O

fields and text fields.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7080 System Manual, 11/2022

5. Change to the "Libraries" task card.
6. Open the project library.
7. Create a faceplate type.
8. Configure the required screen objects, interface tags and interface properties in the faceplate

type and release the version.
9. Open the editor of the plant object type.
10.In the "Visualization" tab, drag the faceplate type from the project library to the "Drop

faceplates here" button.
11.Connect the faceplate tags to the interface tags of the plant object type.
12.Create a plant object from the plant object type using a drag-and-drop operation.
13.Open the plant object editor.
14.Assign the plant object a PLC tag under "Interface" in the "PLC tag" column:
15.To display the faceplate container of the plant object type in the screen, drag the plant object

from the plant view to the configured screen.

Tips for an efficient procedure
• Adjust the position of the faceplate container in the overview screen using the mouse or the corresponding icons on the toolbar.
• You can zoom in and out of the faceplate container in the overview screen.
• You can at any time delete and reconfigure the overview screen which contains the faceplate container for lower-level plant objects. You

can reuse the faceplate types at any time.

Note
If the screen area is not sufficient for all faceplate containers, the faceplate containers are
superimposed on each other in runtime.

Note
If additional basic objects, elements and controls are required specifically for a plant object, you
can use the faceplates of the plant object types as a basis and configure additional objects.

Note
Note that interface mapping is deleted during updates of faceplate types used in plant objects.

Result
You have created a screen with a faceplate instance for the plant project.

See also
Operating "Plant overview" in runtime (Page 7114)
Basic information on configuring screens (Page 7077)

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7081

Example: Configuring screens for brewery production lines (Page 7103)
Configuring an alarm control for plant objects (Page 7084)

15.3.4 Configuring the controls

15.3.4.1 Configuring "Plant overview" control and companion controls

Introduction
You require the control "Plant overview" when you want to navigate through the plant.
The companion controls are connected to one another and supplement one another in
displaying the data values.
You require the companion controls for the following displays:
• Display plant object screens and screen windows using the navigation option throughout the

entire plant (plant overview and screen windows)
• Display alarms for plant objects using the navigation option throughout the entire plant

(plant overview and alarm view)
The following controls can act as companion control for the plant overview:
• Alarm control
• Screen window
• Calendar view (when using the WinCC Unified Calendaroption)

Requirement
• A screen is open.
• The "Toolbox" task card is open.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7082 System Manual, 11/2022

Procedure
1. Insert the "Plant overview" control from the "Toolbox > My controls" task card into the screen.

2. Add a companion control.
Select from the following controls:
– Alarm control
– Screen window
– Calendar control

Note
As companion controls, you can only select controls already configured in the screen.

3. Select the "Plant overview" control.
4. Open the Inspector window under "Properties > Properties > Miscellaneous > Interface >

Companion control".
The "Companion control" editor opens on the right-hand side of the Inspector window.

5. Click "Add".
An element (starting with 0) is created.

6. Create an element for each companion control:
7. Specify the control type for each element:

– Alarm control
– Display window (for screen windows)
– Calendar control (for calendar control)

8. Define the respective companion control as control reference for each element.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7083

9. Specify a filter:
– No filters: You see all plant objects
– By plant objects for which alarms are available
– By plant objects for which screen windows are configured

10.Specify the navigation type:
– Static: The plant tree is displayed completely in runtime.
– Dynamic: In runtime, you specify as of which level the plant tree is displayed by double-

clicking a plant object.
The levels below the selected plant object are available and are expanded.
You can always navigate to the next higher level in runtime.

The buttons of the toolbar and the filter bar relate to the displayed area.
11.Specify the root node. You have the following options:

– In the "Static value" column, specify the path of the plant object according to the following
schema "HMI_device.hierarchy::Plant view/Plant object", for example,
"HMI_RT_1.hierarchy::Brewery/Bottling".

– Specify the root node dynamically using a tag or a script.
If a root node is configured, the root node and all objects below the root node are available
in the plant overview.

12.Specifies whether the toolbar is shown.
13.Specifies whether the menu bar is shown.

Result
In runtime you see the screen with the "Plant overview" control and the companion controls.
When you navigate to the respective plant object in the "Plant overview" control, the content of
this plant object is displayed in the companion controls.
If you have configured the screen window as companion control, navigate in runtime in the
"Plant overview" control through the plant and display the screens you have configured for
the respective plant object.
If you have configured the alarm control as companion control, navigate in runtime in
the "Plant overview" control through the plant and have the alarms for the plant objects
displayed in the alarm view.

15.3.4.2 Configuring an alarm control for plant objects

Overview
Configure an alarm control, as in the device-specific configuration in a HMI device screen. In
order that the alarm control can display the alarms of the plant objects, assign the plant
hierarchy to your HMI device.
To directly jump to the alarms of the plant objects in runtime, configure the alarm control is
companion control to the "Plant overview" control.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7084 System Manual, 11/2022

To filter by plant object alarms in the alarm control, configure a filter with the criterion "Area"
with one of the following two conditions:
• "Equal" - only shows the alarms of the selected plant object in runtime.
• "Begins with" - shows the alarms of the underlying objects of the selected plant object in

runtime.

Configuring a filter for plant objects
To filter by plant object alarms in the alarm control, configure a filter as follows:
1. In the Inspector window under "Properties > Filter", click in the "Static value" column.

The "Alarm filter configuration" dialog opens.
2. Select the "Area" criteria.
3. Select the condition "Equal"
4. Click on the selection list in the "Operand" column.
5. Select the plant object whose alarms you want to display in runtime.

Note
You can also create filter criteria directly in runtime and use them as filters.

Result
Alarms for the selected plant object are displayed in runtime.

See also
Configuring screens for plant objects (Page 7080)
Configuring an alarm control (Page 753)
Displaying alarms for plant objects in runtime (Page 7120)

15.3.4.3 Configuring trend control for plant objects

Overview
A trend control, as in the device specific configuration in a HMI device screen. Assign the plant
view to your HMI device in order that the trend control can graphically represent the values of
the data members of the individual plant objects in runtime.
The trend control allows you to display current and logged values for a specific time window,
for example.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7085

As with device-specific configuration, when you configure the trend control for the display of
the data values you define the sources from which the values are obtained on the HMI device
in runtime. The following sources are available:
• Current process values from data members of the plant object types
• Archived values from logging tags

The path of the plant object is shown in the trend control when displayed in runtime.

See also
Configuring the logging of plant object types (Page 7094)
Configuring a trend control (Page 680)
Display process data of the plant objects in a trend control (Page 7116)

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7086 System Manual, 11/2022

15.3.5 Configuring alarms

15.3.5.1 Basic information on configuring alarms

Overview
In object-oriented configuration, as in device-specific configuration via the alarming, events
from the monitoring function in WinCC are displayed in form of alarms. The alarms can be
acknowledged by the operator and, if necessary, logged. To do this, configure alarms that are
separated into alarm classes.
For plant objects you can configure the following alarms that are used to monitor the plant:
• Discrete alarms: Display status changes
• Analog alarms: Display limit value violations (value changes),
Configure bit or analog alarms for plant object types on the basis of internal or external data
members. From these plant object types you create plant objects.
If you have configured an alarm system for plant objects you can display the hierarchy path
of the alarm source and the alarm status of a line or a machine in runtime, filter the alarm
control by plant objects and navigate to the alarm source.
You can also filter the most frequently occurring alarms by plant object and only permit the
alarm of the respective object and all lower-level objects to be displayed.

Configuration steps
In general, proceed in the following order when configuring the alarms for the plant objects:
• Configure plant object types
• Configuring bit or analog alarms for plant object types on the basis of data members.
• Creating plant objects from plant object types
• Configuring alarm control in a screen
• Configuring "Plant view" control as companion control for the alarm control.

Note
An alarm is linked to the respective plant object type. If you delete the plant object type the alarm
will also be deleted.

Configuring an alarm view
The alarm view is configured for a screen. Current or logged alarms are displayed in the alarm
view in runtime. More than one alarm can be displayed simultaneously, depending on the
configured size. Configure the criteria for alarm filtering.
You can also configure multiple alarm views with different contents and in different screens.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7087

See also
Configure discrete alarms for plant objects (Page 7088)
Configuring analog alarms for plant objects (Page 7091)

15.3.5.2 Configure discrete alarms for plant objects

Introduction
If you have configured an alarm system for plant objects you can display the hierarchy path of the
alarm source and the alarm status of a line or a machine in runtime, filter the alarm control by
plant objects and navigate to the alarm source.
You can also filter the most frequently occurring alarms by plant object and only permit the
alarm of the respective object and all lower-level objects to be displayed.
An alarm is linked to the respective plant object type. If you delete the plant object type the
alarm will also be deleted.

Requirement
• A plant object type with associated external or internal data members (with elementary data

types) has been created.
• The plant structure has been assigned to a device.

Procedure
1. Select the respective data member of the plant object type on the basis of which you want to

configure an alarm.
2. To create a new discrete alarm, double-click on "<Add>" under "Discrete alarms" in the table.

A new discrete alarm is created.
3. Assign a name for the alarm.

Note
The name of a discrete alarm can contain up to 128 characters.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7088 System Manual, 11/2022

4. To configure the alarm, select "Properties > General" in the Inspector window:
– Enter the alarm text.
– Change the name of the alarm as required.
– Select the alarm class.
– Configure the priority of the alarm (a value of between "0" and "16").

Note
The alarm text must be unique in the context of the plant object type. Hierarchical
information is not permitted in the alarm text.

Note
You can use the priority to sort or filter the alarms in the alarm control. With sorting by
priority, you can ensure that the most important alarm (high priority) is shown in the display
area in a single-line alarm control.
If you filter the alarm control by priority "16", only the alarms with priority "16" will appear.

5. Select "Properties > Trigger" in the Inspector window to select the tag and the bit that triggers
the alarm.
Note
Only the data member of the plant object type is permitted as trigger tag.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7089

6. Select "Trigger mode" to specify whether to trigger the alarm at a rising or falling edge.
7. To configure the alarm text, select "Properties > General > Alarm text".

– Enter the text for the alarm under "Alarm text".

See also
Configuring analog alarms for plant objects (Page 7091)
Basic information on configuring alarms (Page 7087)
Displaying alarms for plant objects in runtime (Page 7120)

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7090 System Manual, 11/2022

15.3.5.3 Configuring analog alarms for plant objects

Introduction
If you have configured an alarm system for plant objects you can display the hierarchy path of the
alarm source and the alarm status of a line or a machine in runtime, filter the alarm control by
plant objects and navigate to the alarm source.
You can also filter the most frequently occurring alarms by plant object and only permit the
alarm of the respective object and all lower-level objects to be displayed.
An alarm is linked to the respective plant object type. If you delete the plant object type the
alarm will also be deleted.

Requirement
• A plant object type with associated external or internal data members (with elementary data

types) has been created.
• The plant structure has been assigned to a device.

Procedure
1. Select the respective data member of the plant object type on the basis of which you want to

configure an alarm.
2. Enter the alarm text under "Properties > General".
3. To create a new analog alarm, double-click in the table on "<Add>" under "Analog alarms" in

the table.
A new alarm is displayed.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7091

4. To configure the alarm, select "Properties > General" in the Inspector window:
– Enter the alarm text.
– Change the name of the alarm as required.
– Select the alarm class.
– Configure the priority of the alarm (a value of between "0" and "16").

Note
The alarm text must be unique in the context of the plant object type. Hierarchical
information is not permitted in the alarm text.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7092 System Manual, 11/2022

Note
You can use the priority to sort or filter the alarms in the alarm control. With sorting by
priority, you can ensure that the most important alarm (high priority) is shown in the display
area in a single-line alarm control.
If you filter the alarm control by priority "16", only the alarms with priority "16" will appear.

5. In the Inspector window, select the tag that triggers the alarm, e.g. a data member, under
"Properties > Trigger".
Note
Only the data member of the plant object type is permitted as trigger tag.

6. In the Inspector window under "Properties > Trigger", enter a limit in the "Value" field in the
"Limits" area.

7. Select the trigger mode in the "Mode" field:
– "Lower": The alarm is triggered if the limit is undershot.
– "Upper": The alarm is triggered if the limit is exceeded.
– "Equal": The alarm is triggered when the limit is reached.
– "Not equal": The alarm is triggered if the limit is not reached.
– "Lower or equal": The alarm is triggered if the limit is undershot or reached.
– "Greater or equal": The alarm is triggered if the limit is exceeded or reached.

8. You can create additional limits for the alarm, if necessary. Note the following:
– A tag is monitored using only one alarm type. You should therefore create either analog

alarms or discrete alarms for a tag.
– If the object included in the selection does not yet exist, create it in the object list and

change its properties later.
9. Select the analog alarm to which you want to assign the limits.

See also
Configure discrete alarms for plant objects (Page 7088)
Example: Configuring analog alarms for temperature monitoring (Page 7106)
Basic information on configuring alarms (Page 7087)
Displaying alarms for plant objects in runtime (Page 7120)

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7093

15.3.6 Configuring the logging of plant object types

Introduction
Save the values of the data members of the plant object types in logs for later evaluation. Alarm
logging can be used to analyze error states, to optimize maintenance cycles, and to document
the process.
Create a logging tag for each data member of the plant object type. These logging tags are
saved in the data log of the assigned device.
You can analyze the logged tag values directly in your project, such as in a trend view, or in
another user program, such as Excel.
The logging tags are created for the plant object types. This means that the plant objects are
automatically supplied with the logging tags of the plant object types.

Requirement
• The plant hierarchy has been created and assigned to a device.
• A plant object type with associated external or internal data members (with elementary data

types) has been created.

Procedure
1. Under "Interface", jump to the "Logging tags" tab in the middle part of the work area.
2. Under "Interface", select a data member of a plant object type that you want to log.
3. Click "Add" under "Logging tags".

A logging tag is created.
The logging tag is linked to the tag. The data type of the logging tag corresponds to the data
type of the connected tag.
Note
A logging tag is automatically assigned to a data log. This assignment cannot be changed.
The assignment is only possible if the plant hierarchy is assigned to a HMI device.

4. Specify the logging mode.
Note
Depending on the configuration, the database can grow very quickly. This can occur, for
example, when you select a short cycle without smoothing and without compression.

5. When the "Cyclic" logging mode is set, define the logging mode and the factor under
"Properties > Properties > Cycle".

6. Define the tag trigger depending on the logging mode.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7094 System Manual, 11/2022

7. Define the limit values.
Note
Process values that are outside the set limit range will not be logged.

8. Define the smoothing.
9. If you have selected the "Cyclic" logging mode, define the compression.
Logging tags and logging is available under "Visualizing processes with Runtime Unified".

See also
Configuring trend control for plant objects (Page 7085)

15.3.7 Good Manufacturing Practice
Traceability and therefore the documentation of production data is becoming increasingly
important in many sectors such as the pharmaceutical industry, the food and beverage industry,
and the related mechanical engineering industry.
Therefore, sector-specific and cross-industry standards have been developed for the
electronic documentation of production data.
The most important set of regulations is the FDA guideline 21 CFR Part 11 for electronic data
records and electronic signatures issued by the FDA, the US Food and Drug Administration. In
addition, different EU regulations apply, such as EU 178/2002, depending on the industry.
Requirements for production systems in these industries have been developed on the basis
of 21 CFR Part 11 and the corresponding layout to comply with GMP (Good Manufacturing
Practice). They are also required for other industries.
The following main requirements are derived from these directives and regulations:
• Creation of an Audit Trail or operating trace in runtime

Based on this document, it is possible to trace the user who carried out the operator action
on the machine at what time.

• Important process steps must also be assigned to a clear responsibility, for example, via an
electronic signature.

GMP (Good Manufacturing Practice)
If necessary, activate the GMP-compliant configuration in the Runtime settings.
GMP is also displayed in the properties of a tag of a PLC user data type used in an HMI device
even if it is not enabled in the specific device but the tag is used in an additional device that
uses GMP. The menu command "GMP" is grayed out in this case and cannot be edited.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7095

15.3.8 Example

15.3.8.1 Example: Scenario
The production lines "Bottling" and "Packaging" exist alongside other lines in a brewery and are
connected to one another in the production chain. The production lines consist of multiple units.
You configure plant objects in the plant view from the plant object types based on the data
blocks.
Screens must be configured for all plant objects relevant for the monitoring. In addition,
a screen navigation should be set up so that the user can navigate from one plant object
screen to another in runtime using the "Plant overview" control. The production value should
also be monitored, for example the temperature in the filling tank or the weight of the
product after the filling. Make sure to notify the operator in case of deviations.
The relevant production values must be logged for quality assurance purposes and for Food
Authority audits.
The "Bottling" production line consists of the following units:
• Conveyor belt 1 ("Conveyor_1")
• Robot 1 ("Robot_1"): Places the bottles on the conveyor.
• Filling tank ("Filling Tank"): Fills the bottles, the temperature in the filling tank is monitored.
• Robot 2 ("Robot_2"): Closes the bottles.
• Robot 3 ("Robot_3"): Performs quality checks (weight and light barrier)

The bottles are sorted from the conveyor belt into beverage crates on the "Packaging"
production line.
The "Packaging" production line consists of the following units:
• Conveyor belt 2 ("Conveyor_2"): Makes the filled bottles available.
• Conveyor belt 3 ("Conveyor_3"): Conveys filled crates.
• Robot 4 ("Robot_4"): Places the crates on the conveyor belt.
• Robot 5 ("Robot_5"): Places the bottles in the crates.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7096 System Manual, 11/2022

• Robot 6 ("Robot_6"): Places the crates on the pallet.
• Robot 7 ("Robot_7"): Performs quality checks (weight and light barrier)

15.3.8.2 Example: Implementation concept

Creating a plant view
They map the plants, units and production lines of the brewery in the plant view. To do this, you
first create the plant object types that you can reuse for plant objects. Based on the plant object
types, you then create the "Brewery" plant view from the plant objects. The two production lines
"Bottling" and "Packaging" contain the units according to the following concept:
• Bottling

– Robot_1
– Robot_2
– Robot_3
– Conveyor_1
– Filling Tank_1

• Packaging
– Robot_4
– Robot_5
– Robot_6
– Robot_7
– Conveyor_2
– Conveyor_3

Visualization
You create faceplate types for the "Conveyor", "Robot" and "Filling Tank" plant object types.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7097

The faceplate types of the plant object types are instantiated in the screens of the plant
objects.
According to the structure of the production line, the "Robot" faceplate type is reused three
times in the "Bottling" production line and four times in the "Packaging" production line.
You also configure an overview screen called "Overview" with the "Plant overview" control.
The plant overview gives you direct access to the unit data in runtime.

Temperature monitoring
You want to monitor the temperature in the filling container and to notify the operator if changes
occur.
To monitor the temperature, configure a trend control and an alarm control for the filling
tank as companion controls for the plant overview.
Because a specific temperature must not be exceeded during the bottling of beverages,
configure analog alarms for the filling tank that can be output via the alarm view.
The trend view provides you with an overview of the temperature trend of the filling tank.

Logging
The production values are logged for the Food Authority inspections. It must be verified that the
temperature was complied with and that quality checks were regularly performed. To this end,
configure logging tags for the relevant plant objects.

15.3.8.3 Example: Determine plant object type

Scenario
For a new brewery location, two employees of an engineering office configure the process
visualization and plant-specific parameters. The employees develop a configuration concept for
this.
The following examples shows how process visualization and object-oriented configured
mesh with each other.

Determining plant object types
How you determine plant object types by analyzing the plant structure depends on the context:
• In the WinCC Runtime Unified context, you view the plant "from the bottom" in the process

view. Functional units are in the background compared to plant objects of the field and
process levels. The functional units are still necessary for a complete mapping of the plant.

• In the context of plant-specific KPIs, look at the plant "from the top" in the plant view. Plant
objects of the field and process levels may no longer be relevant.

The following figure is a schematic representation of the analysis sequence of the plant
structure for defining the plant object types:

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7098 System Manual, 11/2022

① Analyze the plant structure: The brewery consists of the three plant units, "Delivery/Storage",
"Processing" and "Bottling". Various processes run in the plant sections.

② Determining relevant plant objects for monitoring process and productivity: These plant objects
are the basis for mapping the plant hierarchy.

③ Defining plant object types: Plant objects used multiple times are mapped using a common plant
object type. The data structure and context information is configured for each plant object type.

 Brewery
• Plant-specific parameters: Cumulative characteristics of productivity

 Unit for delivery and storage of ingredients
• Plant-specific parameters: Characteristics for duration of delivery

 Tank for storage of ingredients
• Process visualization: Monitoring temperature and fill level

 Unit for processing
• Plant-specific parameters: Characteristics of productivity

 "Mashing"
• "Batches taken out of mash" Process visualization: Monitoring temperature and

pressure
• "Pump back batches taken out of mash", check: "Iodine test": Process visualization:

Monitoring temperature and pressure
 "Purifying" Process visualization: Monitoring temperature and pressure

 "Wort boiling" Process visualization: Monitoring temperature and pressure
• Whirlpooling
• Addition of yeast and fermenting
• Storage

 Unit for bottling and packaging
• Plant-specific parameters: Characteristics for period of change in production, un‐

planned downtime and produced quantities

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7099

 Bottling process
• Process visualization: Monitoring temperature / control of filling

 Process for packaging the beer bottles on pallets
• Process visualization: Monitoring packaging

Note
The data structure of a plant object type is often reflected in the function blocks of the user
program. In such a case you can create plant object types automatically. Consultation with the
programmer is recommended especially for plant object types with strong links to the PLC.

See also
Creating plant object types (Page 7071)

15.3.8.4 Example: Creating a plant view

Task
You map the brewery plant with its units and production lines with the plant view and make the
unit data available for the entire project.
You create the "Brewery" plant view and assign it to the HMI device.

Requirement
• A project has been created.
• An HMI device has been created.

Introduction
1. Under "Project tree > Plant objects", click "Add new plant view".

An empty plant view is created.
2. According to our example, call the plant view "Brewery".
3. Assign the plant view to the HMI device.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7100 System Manual, 11/2022

Result
You have created the "Brewery" plant view and assigned it to the HMI device:

15.3.8.5 Example: Creating plant objects and plant object types

Task
You create plant object types from which you will create plant objects in the plant view in the
next step. The plant objects represent the units and production lines of the brewery. These are
the following elements in our example:
• Filling tank (unit)
• Conveyor (unit)
• Robot (unit)
• Bottling (production line)
• Packaging (production line)
Next, you define the "Communication driver" property of the interfaces.

Requirement
• The project is open.
• A SIMATIC S7-1500 PLC has been created.
• At least one program block is configured in the PLC.
• The "Brewery" plant view is created, assigned to an HMI device and open.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7101

Procedure
1. To display the "Plant object types" task card, click the "Show plant object types" button under

"Project tree > Plant objects".
2. Create a plant object type for each unit and assign the following names:

– Conveyor
– Robot
– Filling Tank
– Bottling
– Packaging

3. Specify "SIMATIC S7 1200/1500" as communication driver for each plant object type.
4. As PLC tag, specify the function block that contains tags which match the unit.
5. Now create the following plant objects from the plant object types by dragging the respective

plant object type to the plant view and adapting the name:
– Packaging
– Bottling

6. In the "Bottling" plant object, create the following lower-level plant objects by dragging the
respective plant object type to the "Bottling" plant object:
– Robot_1
– Robot_2
– Robot_3
– Conveyor_1
– Tank_1

7. In the "Packaging" plant object, create the following lower-level plant objects by dragging the
respective plant object type to the "Packaging" plant object:
– Robot_4
– Robot_5
– Robot_6
– Robot_7
– Conveyor_2
– Conveyor_3

8. Under "Connection", assign each plant object the HMI connection and an instance data block
as PLC tag.

Result
You have created plant object types for the units and production lines of the brewery. From the
plant object types, you have created plant objects in the plant view.
The plant view should have the following structure:

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7102 System Manual, 11/2022

15.3.8.6 Example: Configuring screens for brewery production lines

Task
To visualize the plant objects, configure faceplate types for each plant object type.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7103

Procedure
1. Under "Project tree > Plant objects", configure the screens for the "Bottling" and "Packaging"

production lines.
– Open the "Bottling" plant object and switch to the "Visualization" tab.
– You press the "Add new screen" button to create a new screen.
– Repeat the procedure for the "Packaging" plant object.

2. In the project library, you create a faceplate type for the plant object type "Robot" and release
it.
The faceplate could look as follows according to the example scenario:

3. Under "Project tree > Plant objects", open the plant object type "Robot" and drag the created
faceplate type to the "Save faceplates here" button in the "Visualization" tab.

4. Create faceplate instances for all the robots you need for the two production lines:
– Open the "Bottling" screen.
– Then drag all lower-level plant objects that are based on the "Robot" plant object type one

after the other to the screen.
– Repeat the procedure for the "Packaging" screen.

5. In the project library, you create a faceplate type for the plant object type "Conveyor" and
release it.
The faceplate could look as follows according to the example scenario:

6. Create faceplate instances for all the conveyors you need for the two production lines:
– Open the "Bottling" screen.
– Then drag all lower-level plant objects that are based on the "Conveyor" plant object type

one after the other to the screen.
– Repeat the procedure for the "Packaging" overview screen.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7104 System Manual, 11/2022

7. In the project library, you create a faceplate for the plant object type "Filling tank" and release
it.
The faceplate could look as follows according to the example scenario:

8. Under "Project tree > Plant objects", open the plant object type "Filling tank" and drag the
created faceplate type to the "Drop faceplates here" button in the "Visualization" tab.

9. From the "Filling tank" plant object, create a faceplate instance for the filling container:
– Open the "Bottling" overview screen.
– Then drag the plant object that is based on the "Tank" type to the screen.

Result
You have successfully configured screens and faceplates for the plant objects of the brewery and
can display the plant objects in the runtime.

See also
Configuring screens for plant objects (Page 7080)
Basic information on configuring screens (Page 7077)

15.3.8.7 Example: Configuring plant overview and companion controls

Task
To access the unit data directly from the "Overview" screen in runtime, configure a plant
overview control in the overview screen.
To directly jump to the alarms of the "Filling Tank" plant object in runtime, create the alarm
control as companion control to the "Plant overview" control. The alarm control is configured
in the next step.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7105

Procedure
1. Change to the project tree.
2. Under "Project tree > Devices", create an "Overview" screen.
3. Configure the "Plant overview" control in the "Overview" screen.
4. Also add the "Alarm control" and "Screen window" controls as companion controls to the

"Overview" screen.

Result
You have configured an overview screen and added a screen window and an alarm control. Next,
configure the alarm control.

15.3.8.8 Example: Configuring analog alarms for temperature monitoring

Task
The temperature of the beer brewing ingredients in the brewery must be strictly maintained.
One of your tasks is to configure the temperature monitoring of the filling tank.
The following requirements apply to temperature monitoring of the filling tank:
• The setpoint for the temperature is 5 °C.
• When the temperature rises above 5 °C, the operator of the plant is notified.
• If the temperature reaches 7 °C, the operator is notified immediately. The operator has to

confirm the notification.
Temperature deviations of the filling tank should be output on the HMI device.
You plan several escalation levels for the alarms to be output according to the requirements:
• Temperature is at 5 °C.
• Temperature is above 5 °C: An alarm that does not require acknowledgment is output.
• Temperature exceeds the critical temperature of 7 °C: An alarm that requires

acknowledgment is output.
The temperature sensor of the filling tank returns analog values. Use these values to specify
the triggers. The triggers determine when an alarm is triggered.

Requirement
• A trigger tag is configured for temperature monitoring, for example, "temperature".
• The "Filling Tank" plant object type is open.
• The "Analog alarms" editor is open.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7106 System Manual, 11/2022

Procedure for creating an alarm for exiting the setpoint range
1. Create a new alarm and call it "Critical Temperature", for example.
2. Select the alarm class "Notification".

Alarms of this alarm class do not require acknowledgment.
3. Select the trigger tag.
4. Define the trigger with a limit "5".

This corresponds to the setpoint of 5 °C. Limits are always without units. The physical unit
depends on the plant component which delivers the values.

5. Configure "Not equal" as the mode limit.
When the value of the trigger tag is not equal to 5, an alarm is output.

Procedure for creating an alarm for exceeding the critical temperature
1. Create the "Action required" alarm.
2. Select "Alarm" as the alarm class.

Alarms of this alarm class are displayed flashing in red on the HMI device and require
acknowledgment.

3. Define the trigger with limit "7".
This corresponds to a critical temperature of 7 °C.

4. Configure "Higher" as the mode limit.
When the value of the trigger tag is higher than 7, an acknowledgeable alarm is output.

Result
You have configured alarms for the temperature monitoring:

See also
Configuring analog alarms for plant objects (Page 7091)

15.3.8.9 Example: Configuring the alarm control for fill level monitoring

Task
The configured alarms for temperature monitoring are to be output in an alarm control in
runtime.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7107

To filter by plant object alarms in the alarm control, configure a filter with the criterion "Area"
with one of the following two conditions:
• "Equal" - only shows the alarms of the selected plant object in runtime.
• "Begins with" - shows the alarms of the underlying objects of the selected plant object in

runtime.

Requirement
• The "Overview" screen is created and open for editing.
• Configure a "Plant overview" control in the "Overview" screen.
• The "Alarm control" control is created as companion control of the plant overview.

Configuring a filter for the "Filling Tank" plant object
To filter by alarms of the "Filling Tank" plant object in the alarm control, configure a filter as
follows:
1. In the Inspector window under "Properties > Filter", click in the "Static value" column.

The "Alarm filter configuration" dialog box opens.
2. Select the "Area" criterion.
3. Select the condition "Equal".
4. Click on the selection list in the "Operand" column.
5. Select the "Filling Tank" plant object whose alarms are to be displayed in runtime.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7108 System Manual, 11/2022

Result
You have configured an alarm control for alarms of the "Filling Tank" plant object. The alarms of
the plant object can be displayed in runtime.

15.3.8.10 Example: Configuring a trend view for temperature monitoring

Introduction
To visualize the tag values of the temperature monitoring in runtime, you have added a trend
view in the "Overview" screen. You can display the current temperature of the "Filling Tank" plant
object with the trend view.

Requirement
• The HMI tag for temperature measurement has been configured, for example "temperature".
• The "Overview" screen is open for editing.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7109

Configuring the trend area and axes
1. Create a trend view in the "Overview" screen by dragging the control from the "Tools" task

card to the screen.
2. Go to "Properties" and set the required height, width and position of the trend view.
3. Open the "Trend areas" group under "Properties".

The index numbers of the trend area are displayed.
4. Expand the index number of the trend area.

The properties of the trend area are displayed.
5. Define the colors for displaying the trend area and the reference lines.
6. Configure the time axis and value axis settings under "Bottom time axis" and "Left value axis".

Configuring trends
1. Go to "Properties > Properties > General > Trend areas > [0] trend areas > Trends" and click on

the selection button in the "Static value" column.
A dialog opens.

2. Click "Add" in the "Index" column.
This adds another trend. Close the dialog.

3. Expand the index number of the trend [0]. The trend settings are displayed.
4. Specify the name of the trend under "Display name", for example "Temperature".
5. Under "Data source Y > Source", select the "temperature" tag in the "Static value" column.
6. Configure the line color for the trend, for example, blue.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7110 System Manual, 11/2022

Result
The trend control is now configured. In runtime, you monitor the temperature changes over time
based on the trend.
Configure an additional value display if you want to evaluate the data of the trend control in
runtime. You can also configure the value display as a "Ruler".

15.3.8.11 Example: Configuring the logging of production values

Task
You want to log the temperature values of the "Filling Tank" plant object to be able to use them
later for controls, for example.
To this end, you create a logging tag for the data member you want to log. This logging tag is
saved in the data log of the assigned device.
You can analyze the logged tag values directly in your project, such as in a trend view, or in
another user program, such as Excel.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

System Manual, 11/2022 7111

Logging tags are created for the plant object types. This means that the plant objects are
automatically supplied with the logging tags of the plant object types.

Requirement
• The "Brewery" plant view has been created and assigned to a device.
• The "Filling Tank" plant object type is created, and the "temperature" member has been

configured.

Procedure
1. Open the "Conveyor" plant object type.
2. Under "Interface", jump to the "Logging tags" tab in the middle part of the work area.
3. Under "Interface" select the "Rate" data member, for example, to log it.
4. Click "Add" under "Logging tags".

A logging tag is created.
The logging tag is linked to the tag. The data type of the logging tag corresponds to the data
type of the connected tag.

5. Specify the logging mode, for example, "Upon change".
6. Define the tag trigger depending on the logging mode.
7. Define the limit values.
8. Define the smoothing.
Additional information on logging tags and logging is available under "Visualizing processes
with Runtime Unified".

Result
You have created a logging tag that logs tag values for the defined period and within the
parameters you have specified.

Configuring plant hierarchies
15.3 Object- and technology-oriented configuration

7112 System Manual, 11/2022

15.4 Visualizing plant objects in runtime

15.4.1 Displaying plant objects in runtime

Overview
Depending on your configuration, the following possibilities are available to you in runtime:
• Screen navigation via the plant model
• Analysis based on plant objects
• Filter alarm control by plant objects
• Display alarm status of a line and navigation to the alarm source
• Display the most frequently occurring alarms, filtered by plant object or plant object type
• Area-based access protection
• Determine the energy consumption of a line and compare with another line

You can display the configured plant hierarchy in runtime using the "Plant overview" control.
If a screen window was configured as companion control for the "Plant overview", you can
navigate between the screens of the plant objects and show them alternately in the screen
window.
Display process data of the plant objects in a trend control. Switch between the following
display modes directly in runtime:
• Device view and plant hierarchy
• Online values and log values
You can view alarms on plant objects in an alarm control.

Configuring plant hierarchies
15.4 Visualizing plant objects in runtime

System Manual, 11/2022 7113

See also
Operating "Plant overview" in runtime (Page 7114)
Display process data of the plant objects in a trend control (Page 7116)
Displaying alarms for plant objects in runtime (Page 7120)

15.4.2 Operating "Plant overview" in runtime

Introduction
Display the configured plant view in runtime using the "Plant overview" controls.
You use it to navigate to the plant objects within the plant structure and get an overview of
your plant at one glance.
If you have configured screens or alarms for the lower-level plant objects and have linked
them to the "Plant overview" control, display these screens and alarms in runtime.
If you have configured events for the "Plant overview" control and linked these to scripts, the
scripts are called when the events occur.

Configuring plant hierarchies
15.4 Visualizing plant objects in runtime

7114 System Manual, 11/2022

An event can, for example, be linked to the operation of the buttons in the control.

Requirement
• The plant view has been created and assigned to a device.
• The "Plant overview" control and the corresponding companion controls are configured in

the screen of the assigned device.
• Runtime is active.

Procedure
The plant view is displayed in the "Plant overview" control.
1. To display all lower-level plant objects, click [[ICON]] "Expand all".
2. To display the configured screen or screen window for a selected plant object, click on the

respective plant object in the "Plant overview" control.
3. In case of an alarm, the plant path of the alarm source is displayed in the "Range" column of

the connected alarm view.
The alarm icon only appears an alarm has actually occurred at the respective plant object. The
alarm icon disappears again when the alarm is no longer present.

See also
Configuring screens for plant objects (Page 7080)
Displaying alarms for plant objects in runtime (Page 7120)

Configuring plant hierarchies
15.4 Visualizing plant objects in runtime

System Manual, 11/2022 7115

Display process data of the plant objects in a trend control (Page 7116)
Displaying plant objects in runtime (Page 7113)

15.4.3 Display process data of the plant objects in a trend control

Introduction
The process data or the logging data of the plant objects are displayed graphically in a trend
control in runtime.
You switch between the following display modes in runtime:
• Device view and plant hierarchy
• Online values and log values

Requirement
• The plant hierarchy has been created and assigned to a device.
• A trend control is configured in the screen by the assigned device.
• The "Select data connection" button is displayed in the control.
• The "Select context" button is displayed in the control.
• Runtime is active.

Configuring plant hierarchies
15.4 Visualizing plant objects in runtime

7116 System Manual, 11/2022

Display process data of the plant objects
1. Click "Select data connection" in the trend control.

A "Selection of logs/tags" dialog opens.
2. To open the list of available tags, click "Tag".

The "Browser view" dialog opens.

3. To jump to the plant view dialog, click on the "CPM" icon in the toolbar.
The plant objects and the available data members for the plant objects are displayed.
Note
If you have assigned a descriptive display name for the trend when you configured the trend
control, only the display name is shown in runtime. All plant objects are visible at a glance in
the selection list.

4. Select the respective plant object whose process data you want to display in the trend control.

Configuring plant hierarchies
15.4 Visualizing plant objects in runtime

System Manual, 11/2022 7117

5. Select the data members that you want to display as trend in the trend control.
6. Confirm with "OK".

The process values for the selected plant object are displayed in the trend control.

Display context data of the plant objects in a trend control
For analysis purposes, display the value range of the resulting data using the context data.
The evaluation is relevant, for example, in connection with WinCC Unified Performance
Insight to analyze the effectiveness or the fault rate of the plant.
1. In the trend control, click "Select context".

The "Trend context" dialog opens.
2. In the "Plant objects" selection list, select the respective plant object whose data you want to

display in the trend control.
3. In the "Context" selection list, select the data assigned to the plant object.

The list of the data appears under "Logged context values".

Configuring plant hierarchies
15.4 Visualizing plant objects in runtime

7118 System Manual, 11/2022

4. Select the value that you want to display.
5. Confirm with "OK".

The trend control displays the trends for the selected data.

See also
Operating "Plant overview" in runtime (Page 7114)
Displaying alarms for plant objects in runtime (Page 7120)
Configuring trend control for plant objects (Page 7085)
Displaying plant objects in runtime (Page 7113)
Contexts (Page 7063)

Configuring plant hierarchies
15.4 Visualizing plant objects in runtime

System Manual, 11/2022 7119

15.4.4 Displaying alarms for plant objects in runtime

Introduction
The "Alarm control" object displays alarms that occur during the production process in a plant.
Depending on your configuration, the following possibilities are available to you in runtime:
• Display hierarchy path of the alarm source
• Filter alarm control by plant objects
• Display alarm status of a line
• Navigate to the alarm source
• Display the most frequently occurring alarms, filtered by plant object or plant object type

Requirement
• The plant hierarchy has been created and assigned to a device.
• An alarm control with the filter "Range" is configured in the screen by the assigned device.
• Runtime is active.
• The alarm view has been configured.
• Runtime is active.

Configuring plant hierarchies
15.4 Visualizing plant objects in runtime

7120 System Manual, 11/2022

Filter alarms by plant objects
1. If you want to filter alarms by plant objects, click "Selection display" in runtime.

The "Selection" dialog opens.
2. Under "Criterion", select the criterion "Range".

All plant objects of the plant hierarchy are displayed.
3. Select the respective plant object to which you want to display the alarms.

Only alarms for the selected plant object are displayed in the alarm control.

Display alarm context of the plant objects
For analysis purposes, display the value range of the resulting data using the context data.
The evaluation is relevant, for example, in connection with the WinCC Unified Performance
Insight to analyze the effectiveness or the fault rate of the plant.
1. In the alarm control, click "Select context".

The "Alarm context" dialog box opens.
2. In the "Plant objects" selection list, select the respective plant object whose data you want to

display in the alarm control.
3. In the "Context" selection list, select the data assigned to the plant object.

The list of the logging data appears under "Logged context values".

Configuring plant hierarchies
15.4 Visualizing plant objects in runtime

System Manual, 11/2022 7121

4. Select the value that you want to display.

5. Confirm with "OK".
The alarm control displays the alarms that match your selection.
Note
Make sure that the filter settings match the setting of the alarm context.
If no alarms appear in the alarm control, check your settings by clicking "Selection display".

See also
Operating "Plant overview" in runtime (Page 7114)
Display process data of the plant objects in a trend control (Page 7116)
Configuring an alarm control for plant objects (Page 7084)
Configuring analog alarms for plant objects (Page 7091)

Configuring plant hierarchies
15.4 Visualizing plant objects in runtime

7122 System Manual, 11/2022

Configure discrete alarms for plant objects (Page 7088)
Displaying plant objects in runtime (Page 7113)

15.5 Options

15.5.1 Plant Intelligence Options

Overview
The Plant Intelligence options offer optional enhancements to the WinCC Unified Basic System.
These can be combined freely in line with your requirements.
The options allow you to plan production processes and analyze and optimize the overall
effectiveness of your plant. In addition, you can design flexible production processes and
coordinate complex and interlinked production processes.

Plant Intelligence options

• WinCC Unified Performance Insight
Define, calculate and analyze plant-specific key performance indicators (KPIs) for individual
aggregates, machines or entire production lines in machine-oriented or line-oriented
manufacturing plants.

• WinCC Unified Calendar
Plan, configure and manage events and actions together in a shared calendar in WinCC and
combine these with WinCC tags or scripts.

• WinCC Unified Sequence
Control step-based and sequence-based processes, define the production steps of the
production units and adapt the production processes flexibly in runtime.

• WinCC Unified Line Coordination
Coordinate and supervise processes in the production line in your plant. Control and manage
recipes, processes and jobs for the production of various end products.

Note
The Plant Intelligence options are successively released as add-on packages. To use the Plant
Intelligence options, you require the relevant software packages and licenses.

Configuring plant hierarchies
15.5 Options

System Manual, 11/2022 7123

You can find information on the licenses in the TIA Portal installation instructions in the
section "Licensing of Plant Intelligence options".

Requirements
Please note the following requirements for using the options:
• SIMATIC WinCC Runtime Unified is installed.
• STEP7 Professional is installed.
• Plant Intelligence option, including license, is installed.
• The plant hierarchy is configured.
• License for the respective option is available.
• The configuration engineer has WinCC experience.

Configuring plant hierarchies
15.5 Options

7124 System Manual, 11/2022

Compiling and loading 16
16.1 Basics

16.1.1 Overview

Introduction
To generate an executable runtime project from the configuration data of an HMI device, you
must compile the project. You can then transfer the runtime project to the HMI device. This
section explains the terms used in this context.

Project
In the context of compiling and downloading, the term "project" is used as follows:
• WinCC project: Contains the configuration data of one or more HMI devices in the

engineering system
• Runtime project: Contains the compiled configuration data of an HMI device.

Runtime
In runtime, you execute the project in process mode.
A distinction is made depending on the HMI device:
• Runtime on a panel

The runtime software for process visualization runs on the HMI device.
Before you run a runtime project on a panel, you have to transfer the runtime project to the
panel.

• Runtime on a PC
WinCC Unified PC RT is the runtime software for process visualization.
If Runtime has been installed on the configuration PC, you can execute the runtime project
directly on the configuration PC.
If you want to execute the runtime project on a different PC, you have to transfer the runtime
project to the PC.

Compiling and loading
To compile a project means generating a runtime project from the WinCC project.
Downloading a project means transferring the runtime project from WinCC to an HMI device.

System Manual, 11/2022 7125

Simulation
With a simulation, you test the configuration, for example, configured internal tags or a screen
change. You simulate the project on the configuration PC.

See also
Using WinCC version compatibility (Page 187)

16.1.2 Power Tags
Tags that have a connection to the PLC are called Power Tags.
Information on the Power Tags used is helpful to
• Know when the limits of the system are reached
• Be able to estimate the performance
• Be able to estimate the system load through communication

Information on Power Tags used
The number of Power Tags used is displayed in the Inspector window during the following
operations:
• A device is compiled.
• Only changes for a device are compiled.
• A device is loaded.
• Only changes for a device are loaded.

16.1.3 Workflow

Introduction
This section provides an overview of the work steps from creating the WinCC project to
displaying runtime on the HMI device.
They work with various applications:
• WinCC Engineering System in the TIA Portal
• WinCC Runtime system on a Unified PC or Unified Comfort Panel

Compiling and loading
16.1 Basics

7126 System Manual, 11/2022

• If the HMI device is Unified PC:
– SIMATIC Runtime Manager

You manage the Runtime projects in Runtime Manager.
You can find additional information in the runtime help in the "SIMATIC Runtime Manager"
manual.

– WinCC Unified - Configuration
In WinCC Unified - Configuration, you check and manage the settings for secure
communication in Runtime.

• If the HMI device is a Unified Comfort Panel:
– Control Panel

In the Control Panel, you can start and stop the Runtime project or define a time interval
after which the Runtime project starts automatically. You manage the transfer settings in
the Control Panel.

Configuration in the engineering system
You start the configuration in the engineering system.
1. Create a project.
2. Add one of the following HMI devices:

– PC General with the HMI application WinCC Unified PC
– Industrial PC with the HMI application WinCC Unified PC
– SIMATIC Unified Comfort Panel

3. Configure the required contents of the HMI device.
4. Check the runtime settings of the HMI device, especially the settings for secure

communication.

Compiling and loading
Then compile your WinCC project into a runtime project and download it to the target HMI
device. Before you start the download, check to ensure that the settings for secure
communication in the Engineering System and runtime are compatible.
1. Compile the WinCC project.
2. Download the runtime project directly to the HMI device:

– When you first download the project, set up the connection to the HMI device before you
start downloading.

– When you download the project again, you can either download it completely or changes
only.

For Unified PC, you can also copy the project onto an external storage medium and transfer
it to the HMI device via the storage medium. You can download the complete project or
download only changes.

Compiling and loading
16.1 Basics

System Manual, 11/2022 7127

Note
Not all changes can be loaded in Runtime with the option "Download to device > Software (only
changes)". A list of changes and actions that require complete compiling and complete
download can be found under "Restrictions in compiling and loading changes (Page 7132)".

The configuration data are compiled.

The runtime project is loaded.

Starting the runtime project
Before you start downloading the project, you specify in the "Load preview" dialog whether the
project is started in runtime after the download.
Depending on the HMI device, you have the following options to start the project at a later
time:
• Unified PC: To start the runtime of the project later, use the SIMATIC Runtime Manager.
• Unified Comfort Panel: Depending on the configuration, the project starts automatically after

the delay time specified in the Control Panel.
If the project does not start automatically, click "Start Runtime" in the Control Panel.

Displaying screens in runtime
Depending on the HMI device, runtime is displayed as follows:
• Unified PC: You can see Runtime in the browser. The user must be logged on in runtime.
• Unified Comfort Panel: Runtime is displayed on the HMI device after the start.

Compiling and loading
16.1 Basics

7128 System Manual, 11/2022

See also
Loading project encrypted (Page 7130)
Loading project unencrypted (Page 7131)

16.1.4 Secure communication

Introduction
You download your Runtime projects encrypted and password protected using secure
communication.
The following components are involved:
• Engineering System on the configuration PC: You manage the "Encrypted transfer" option

under "Runtime settings" of the created HMI devices.
• Runtime on the HMI device

– Unified PC: You manage the "Secure download" option during the installation of the
runtime software or in the "WinCC Unified - Configuration" application.

– Unified Comfort Panel: You set the password for encrypted transfer to the HMI device in
the Control Panel under "Service and Commissioning > Transfer".

• SIMATIC Runtime Manager (only for Unified PC): The password is specified in the settings of
the Runtime Manager under "General > Secure connection".
If the "Secure download" option is enabled in Runtime, data exchange is only possible if the
identical password is stored in the Runtime Manager.
You can find more information in the runtime help in the "SIMATIC Runtime Manager"
manual.
Note
If the passwords in the Runtime Manager and Runtime do not match, the project cannot be
managed in the Runtime Manager.

Runtime is encrypted and password-protected when the "Secure download" option is
selected. The data exchange with Runtime is only possible in the engineering system if
authentication was successful. The password must be available in the runtime settings of the
HMI device and it must match the password in runtime.

Password
The password must meet the following criteria:
• A length of 8 to 120 characters
• At least one special character
• At least one number
• At least one lowercase letter
• At least one uppercase letter

Compiling and loading
16.1 Basics

System Manual, 11/2022 7129

Settings for encrypted transfer in the Engineering System
By default, the encrypted transfer is enabled in the runtime settings of the HMI device.
In the runtime settings of the HMI device under "General > Encrypted transfer", make the
following settings:
• Entering a password in the engineering system
• Allow transfer of initial password via unencrypted loading
• Deactivate encrypted transfer

Multiple runtime projects in one runtime
When you download multiple runtime projects to one runtime with WinCC Unified PC, assign the
same password in the runtime settings of the created HMI devices in the engineering system.
This password must match the password stored in runtime.

See also
Loading project encrypted (Page 7130)
Loading project unencrypted (Page 7131)

16.1.5 Loading project encrypted

Introduction
If you want to use secure communication, the encrypted transfer must be enabled in the
runtime settings of the HMI device. The password must be entered once and confirmed.
Depending on the configuration of runtime, we distinguish between two cases:
• "Secure download" is configured in runtime.
• "Secure download" is not configured in runtime.

"Secure download" is configured in runtime
If the password was configured in WinCC Unified Configuration or during the installation of the
runtime software, the option "Allow transfer of initial password via unencrypted loading" is not
needed.

Compiling and loading
16.1 Basics

7130 System Manual, 11/2022

If the password in the engineering system matches the password configured in runtime, the
project is loaded encrypted.

Note
Deviating passwords
If the passwords in the runtime settings of the HMI device and in runtime are different, you will
have the opportunity to enter the password stored in runtime in the "Load preview" dialog before
you download the project. If the input was successful, the password in runtime is replaced by the
password in the runtime settings of the HMI device.
The project is loaded encrypted.
To use the Runtime Manager, update the password in the settings of the Runtime Manager.

"Secure download" is not configured in runtime
If the option "Secure download" is not configured in runtime, you can activate the option "Allow
transfer of initial password via unencrypted loading":
• The runtime project is initially loaded unencrypted.
• Secure download is activated.

The password entered in the runtime settings of the HMI device is written to the runtime
configuration.
The change can be verified in WinCC Unified Configuration.

• The runtime project is loaded encrypted for all subsequent download operations. The option
"Allow transfer of initial password via unencrypted loading" is no longer taken into account.

• To use the Runtime Manager, update the password in the settings of the Runtime Manager.
If the option "Allow transfer of initial password via unencrypted loading" is not enabled, the
runtime project is not loaded. An error message is displayed in the "Load preview" dialog.

See also
Secure communication (Page 7129)
Loading project unencrypted (Page 7131)

16.1.6 Loading project unencrypted
If encrypted transfer is disabled in the runtime settings of the HMI device, a distinction is made
between two cases, depending on the configuration:
• "Secure download" is configured in runtime.

The project is not loaded.
An error message is displayed in the "Load preview" dialog.
The encrypted transfer must be enabled in the runtime settings of the HMI device.

• "Secure download" is not configured in runtime.
The project is loaded unencrypted.

Compiling and loading
16.1 Basics

System Manual, 11/2022 7131

See also
Secure communication (Page 7129)
Loading project encrypted (Page 7130)

16.1.7 Restrictions in compiling and loading changes

Compiling and loading changes
Many changes to the configuration can be compiled and loaded in Runtime with the options
"Compile > Software (only changes)" or "Download to device > Software (only changes)". After
some changes or actions, however, the project must be completely compiled or completely
loaded.

NOTICE
Option to compile and load changes is lost
Please note the following instructions for compiling and loading changes:
• A dialog is often displayed when the option to compile only changes is about to be lost. The

change can be confirmed or rejected. When you reject the change, the option to compile
and load changes is retained.

• When you use the "Undo" button to undo a change that requires complete compiling or
loading, the project must still be completely compiled or loaded.

• For the relevant changes and actions, an alarm is displayed in the Inspector window when
the option to load changes is already lost. The project must be downloaded completely.

Complete compilation or loading may be necessary under the following circumstances:
• Creating, changing or deleting configuration data
• Actions that directly affect the compiling and loading (e.g. starting a simulation)
• System-dependent conformity errors (for example, through the installation of an update that

must update the resultant compilation data or owing to the compilation crashing)

Note
Complete compilation always requires complete loading.

Compiling and loading
16.1 Basics

7132 System Manual, 11/2022

The following changes or actions require complete compilation or complete loading:

Area of the change or
action

Complete compilation required Complete download required

Tags • All changes to the configuration of com‐
plex tags of the Array or Struct data type

• Renaming simple tags
• Changing the data type for simple tags

Styles • Creating styles
• Changing styles
• Deleting styles

-

Connections • Creating connections
• Changing connections
• Deleting connections

-

Cycles • Creating cycles
• Changing cycles
• Deleting cycles

-

Plant objects and plant
views

• Creating plant objects and the plant
view

• Changing plant objects or the plant
view

• Deleting plant objects or the plant view

-

Logging • Creating the first data log by creating
system tags

• Changing a data log
• Deleting a data log
• Creating an alarm log
• Changing an alarm log
• Deleting an alarm log

• Changing a log name
• Changing the path when using the backup
• Changing the data type of the tag to which the

logging tag is linked.
• Changing the logging mode
• Changing the compression mode
• Changing the source for using compression

Audit • Changing the Audit Trail • Activating the GMP-compliant configuration
• Deactivating the GMP-compliant configuration
• Changing the Audit Trail name
• Changing the Audit Trail storage medium
• Changing the Audit Trail storage directory

Unified Collaboration • All changes in the Runtime settings un‐
der "Collaboration"

-

Language & font • All changes in the runtime settings un‐
der "Language & Font"

-

Identification • Renaming the WinCC Unified PC RT:
Renaming changes the Runtime ID. The
Runtime ID can be viewed in the Run‐
time settings under "General".

-

Compiling and loading
16.1 Basics

System Manual, 11/2022 7133

Area of the change or
action

Complete compilation required Complete download required

UMC (User Manage‐
ment Component)

 • Creating a local user
• Changing a local user
• Deleting a local user
• Creating a role
• Changing a role
• Deleting a role
• Switching between local and central user manage‐

ment
Alarms - • All changes to alarm classes

• Changing the alarm class for discrete alarms or an‐
alog alarms

• Changing the name, alarm class or the range for
alarms from OPC UA A&C

Resource lists - • Renaming text lists
• Renaming Graphic lists

Simulation - • When you load the project in runtime mode and
then load the same project in simulation mode, the
simulation must be loaded completely.

• When you load the project in simulation mode and
then load the same project in runtime mode, the
project must be loaded completely.

Reporting • Changing the Runtime settings for reporting
Dynamic SVG types • Manual assignment of a version number to a type

See also
Compiling a project (Page 7145)

16.2 Unified Comfort Panel

16.2.1 Specifying runtime settings

16.2.1.1 Introduction
Before you compile and download a project, update the runtime settings of the HMI device. You
specify the Runtime languages, for example, or activate collaboration.
To edit the runtime settings for an HMI device, open "Runtime settings" in the project tree
below the HMI device.

Compiling and loading
16.2 Unified Comfort Panel

7134 System Manual, 11/2022

16.2.1.2 General

Identification
The runtime ID is the unique identification of a runtime project. Based on the runtime ID, you can
determine whether a project has already been downloaded to the HMI device.

Encrypted transfer
To download the project encrypted, the same password must be stored in the runtime settings
and in runtime. Alternatively, transfer the password unencrypted during the initial download.

Screen
Under "Screen", you specify the start screen and the style of the HMI device.
The start screen is displayed after runtime start.
Select the screen resolution. The setting of the HMI device is used by default.

Note
Display of a changed start screen
You have defined a start screen in the project and started runtime. When you define another start
screen and download only changes to the device, the last active screen is displayed in runtime.
After reloading the project, refresh the screen in Runtime.

See also
Secure communication (Page 7129)

16.2.1.3 Alarms

Controller alarms and diagnostics

Note
WinCC only supports controller alarms of a SIMATIC S7-1500. WinCC only supports controller
alarms that are automatically updated by the central alarm management in the PLC.

One or several HMI connections to a PLC are shown in "Controller alarms".

Compiling and loading
16.2 Unified Comfort Panel

System Manual, 11/2022 7135

You can manage the following options:
• "Display classes":

You filter the controller alarms via display classes. You specify for each connection which
display classes are displayed on the HMI device.

• "Automatic update":
Controller alarms are automatically updated on the HMI device.
Requirement: The option "Central alarm management in the PLC" must be enabled.

• "System diagnostics":
System diagnostic alarms can be displayed in runtime.
Requirement: The "Automatic update" option must be enabled.

• "Security events":
Security events can be displayed in runtime.
Requirement: The "Automatic update" option must be enabled.

State texts
You specify the state texts of alarms in the runtime settings. The state texts are displayed in
runtime in the alarm control.
Specify the state texts in other languages under "Languages & Resources > Project texts".

See also
Configuring the display of security events (Page 795)
Configuring state texts of alarms (Page 733)
Configuring the display of system diagnostic alarms (Page 767)
Filtering controller alarms via display classes (Page 748)

16.2.1.4 Services

SMTP communication
SMTP communication enables automatic sending of e-mails when events occur.
Specify the port for SMTP communication.

16.2.1.5 Language & font

Runtime language and font selection
You configure project languages that are available as runtime languages for the respective
device. You also define the order in which the languages are switched.
At Runtime start, the language that has the lowest number in the "Order" column under
"Runtime settings > Language & font" in the TIA Portal is used. You change the order with

.

Compiling and loading
16.2 Unified Comfort Panel

7136 System Manual, 11/2022

The fixed font 1 is always provided for the respective HMI device.
When you enable the option "Enable for logging" for a language, alarm texts are logged in
the respective language. To keep the size of the log relatively small, log only alarm texts in
the required languages.

See also
Editing log contents with scripts and system functions (Page 850)
Enabling the runtime language (Page 246)

16.2.1.6 Remote access

Collaboration

General settings
• Select the "Enable collaboration" check box.

Identification
The following information must be unique for all devices participating in a collaboration:
• System ID:

The system ID must be unique for each device participating in Unified Collaboration, as this
ID is used for communication between the devices.

• Collaboration name:
Assign a collaboration name or select "Generate collaboration name automatically".

• IP address / Host name

Connect actively to
A list of all HMI devices available for collaboration with system ID and IP address / host name is
displayed. You select the HMI devices to which the current HMI device provides collaboration.

Note
Collaboration is enabled in both directions
The HMI device that you selected under "Connect actively to" can display screens of the current
HMI device and vice versa. Collaboration is always enabled in both directions, even if you only
have the connection activated for one collaboration device.

See also
Defining collaboration settings (Page 7572)

Compiling and loading
16.2 Unified Comfort Panel

System Manual, 11/2022 7137

Web Client

Web client configuration
When you activate access via web client, you can access the runtime of the Unified Comfort Panel
from any browser.

Smart Server

Smart Server configuration (only available for Unified Comfort Panel)
When you activate the Smart Server, you enable remote access to the Unified Comfort Panel via
the Smart Client application.

Users
You set passwords for up to two users and enable the users for remote access to the control panel
of the Unified Comfort Panel.

Communication
• You enable or disable the use of self-signed certificates by selecting or clearing the check

mark.
• Port configuration

You enable or disable the automatic port configuration by selecting or clearing the check
mark.
If you want to specify a manual port for access from desktop applications, enter the port
number.

See also
WinCC Smart Server (Page 7606)

16.2.1.7 Storage system

Introduction
You specify the storage locations of the following databases:
• Database for tag persistency
• Database for data logging
• Database for alarm logging

Compiling and loading
16.2 Unified Comfort Panel

7138 System Manual, 11/2022

NOTICE
Different storage locations cannot be used for Unified Comfort Panel
When you specify a different storage location for a log in the "Logs" editor other than the main
database storage location defined in the runtime settings of the HMI device, the log cannot be
used.

You have the option of saving parameter set types on external storage media. If the
databases for data logs or alarm logs and the parameter set types are stored on the
same storage medium and the storage medium is changed while runtime is running, the
parameter set types can be affected.

Note
Use different storage media for parameter set types and logging.

Database type
Unified Comfort Panel supports the "SQLite" database type.

Database storage location for tag persistency
You can specify tag persistency for internal tags. The last values of the persistent tags are used
after Runtime has been started.
A separate database is used for tag persistency. The values of the tags are available again
after restarting runtime or restarting or switching off the HMI device.
Specify the storage location of the database:
• Off
• SD-X51
• USB-X61
• USB-X62
If no storage medium is connected to the respective interface, an alarm is displayed in the
alarm control.
If the log databases and the database for tag persistency are stored on the same storage
medium and the storage medium is changed while runtime is running, tag persistency can
be affected.

Note
Use different storage media for tag persistency and logging.

Compiling and loading
16.2 Unified Comfort Panel

System Manual, 11/2022 7139

Location of the main database for data logging
Specify the storage location of the databases for data logging:
• Off
• SD-X51
• USB-X61
• USB-X62
You have the option of specifying a path on the storage medium.
If no storage medium is connected to the respective interface, an alarm is displayed in the
alarm control.

Location of the main database for alarm logging
Specify the storage location of the databases for alarm logging:
• Off
• SD-X51
• USB-X61
• USB-X62
You have the option of specifying a path on the storage medium.
If no storage medium is connected to the respective interface, an alarm is displayed in the
alarm control.

See also
Specify tag persistency (Page 636)
Storage locations of logs (Page 843)

16.2.1.8 Settings for tags
You have the option of synchronizing HMI tags with the connected PLC tags. The position of a
data value in the structure of a data block is thus mapped in the HMI tag name. If necessary, the
PLC name is set as a prefix. You synchronize the tags in the "HMI tags" editor.
You specify before the synchronization whether and under which conditions the names are
synchronized.

Compiling and loading
16.2 Unified Comfort Panel

7140 System Manual, 11/2022

Synchronization of the name of the PLC tag in the engineering station
To avoid conflicts within complex tag types, configure how the delimiters of the path
specification from STEP 7 are replaced in WinCC during name synchronization:
• Replace delimiters

Depending on your selection, the delimiters of all hierarchy levels are replaced during
synchronization.

• Replace invalid characters
• PLC prefix

The PLC name is set as a prefix to the HMI tag name. You set the option for each HMI
connection.

Note
Duplicate tag names
If the generated tag name is already in use, a number is added in parentheses, e.g.
Datablock_1_Static_2{1}(1).

Example
The "PLC1" controller contains the structured data block "DB1". The "Db1.a[1].b.c[3]" data block
element is used in a picture. Depending on your settings, the HMI tag name is generated as
follows:

Selected option HMI tag name
PLC prefix Plc1.Db1.a[1].b.c[3]
Replace dot and parenthesis with ; () Db1;a(1);b;c(3)
Replace dot and parenthesis with _ { }
PLC prefix

Plc1_Db1_a{10}_b_c{3}

See also
Synchronizing tags (Page 640)

16.2.1.9 Good Manufacturing Practice
Traceability and therefore the documentation of production data is becoming increasingly
important in many sectors such as the pharmaceutical industry, the food and beverage industry,
and the related mechanical engineering industry.
Therefore, sector-specific and cross-industry standards have been developed for the
electronic documentation of production data.
The most important set of regulations is the FDA guideline 21 CFR Part 11 for electronic data
records and electronic signatures issued by the FDA, the US Food and Drug Administration. In
addition, different EU regulations apply, such as EU 178/2002, depending on the industry.

Compiling and loading
16.2 Unified Comfort Panel

System Manual, 11/2022 7141

Requirements for production systems in these industries have been developed on the basis
of 21 CFR Part 11 and the corresponding layout to comply with GMP (Good Manufacturing
Practice). They are also required for other industries.
The following main requirements are derived from these directives and regulations:
• Creation of an Audit Trail or operating trace in runtime

Based on this document, it is possible to trace the user who carried out the operator action
on the machine at what time.

• Important process steps must also be assigned to a clear responsibility, for example, via an
electronic signature.

GMP (Good Manufacturing Practice)
1. Enable GMP-compliant configuration.
2. If necessary, select a text list entry that contains the reason for the GMP-relevant tags.

16.2.1.10 User management
You specify whether you are using a local or a central user management. By default, the use of
the local user management is specified in the engineering system.
Local users are only valid for this project.
You manage central users in the TIA User Management Component (UMC).

User administration configuration
• When you activate the local user management, you use the users and user roles that you have

created under "Security settings > Users and roles" for management.
• When you activate the central user management, the users, user roles and their rights are

applied from the TIA User Management Component (UMC). To access the UMC, you must
specify the server address and the server ID.

See also
Local and central user management (Page 6889)

16.2.1.11 OPC UA server

General
OPC is a standardized manufacturer-independent software interface for data exchange in
automation engineering. OPC UA is the technology succeeding OPC. OPC UA is platform-
independent and supports different protocols as communication medium.
To work with OPC UA in WinCC Unified, the OPC UA server must be enabled in the TIA Portal
in the Runtime settings of the HMI device.

Compiling and loading
16.2 Unified Comfort Panel

7142 System Manual, 11/2022

Read/write tags and register tags/alarms
When you enable the "Operate as OPC UA server" option in the HMI device, the protection for
unauthorized internal and external access is downgraded.
• Enable the "Operate as OPC UA server" option.

A security note is displayed.
After enabling the option, all other settings of the OPC UA Server will become available.

Alarms and Conditions
• To display alarm conditions in the address range of the server, select the option "Enable

Alarms and Conditions on the OPC UA server".
• To disable or acknowledge alarms on the OPC UA Client, for example, select the option "Allow

operation of alarms on the OPC UA Client". To enable this option, the "Enable Alarms and
Conditions on the OPC UA server" option must be enabled.

Options

General
Define the following settings:
• Port

Default value: 4890
Do not use a port number that is already assigned to another application.

• Maximum session timeout (s)
Default value: 600000 s

• Maximum number of OPC UA sessions
Default value: 100

Subscriptions
Define the following settings:
• Minimum publication interval (ms)

Default value: 100 ms
• Maximum number of monitored items

Default value: 0

Compiling and loading
16.2 Unified Comfort Panel

System Manual, 11/2022 7143

Security

Secure connection

Security policies

CAUTION
Reduced security
When the option "No OPC UA Server Security" is enabled, any OPC UA client can connect to the
OPC UA server regardless of the following settings.

The following section contains a list of all security policies available on the server.
• Activate the required security policies.

User authentication

Guest authentication
• To allow access by anonymous users to the OPC UA server, enable the option "Enable guest

authentication".
An authentication by means of user name and password is not required.
Security is restricted to the degree that you determine by assigning rights to this user.

Authentication by means of user name and password
• To allow access by users with user name and password to the OPC UA server, enable the

option "Authentication with user name and password".
If access to the OPC UA server is to require the user name and password, the user must be
assigned the role "HMI Administrator". The "HMI Administrator" role has the system-defined
"OPC UA - read and write access" function right. The settings made must then be
synchronized with the user management in runtime.

16.2.1.12 Layers

Default names of the layers
Adjust the default names of the layers.

Compiling and loading
16.2 Unified Comfort Panel

7144 System Manual, 11/2022

16.2.1.13 Reporting

Report system
For Unified Comfort Panels with device version V18, you make the settings for Reporting here.

"Enable Reporting" You can create report templates based on this project or project report jobs and generate
reports in Runtime only if reporting is enabled.

"Storage location for the Reporting
database"

The Reporting database stores the actions and settings made in Runtime in the "Reports"
control.
"Storage location" Select a storage medium.
"Folder" Enter the path to a folder of the storage medium. Use an exist‐

ing folder. Use the Linux notation.
The Reporting database is stored in the folder.
Default folder: The project folder

"Storage location for reports" Select the local main storage location for the generated reports.
"Storage location" Select a storage medium.
"Folder" Enter the path to a folder of the storage medium. Use an exist‐

ing folder. Use the Linux notation.
The reports are stored in the folder.
Default folder: "media/simatic/<storage medium>/
Reports"

Note
Devices with a device version lower than V18
Unified Comfort Panels with a device version of lower than V18 always have the same settings:
• Reporting is enabled.
• The storage locations are predefined:

Storage location for reports: media/simatic/X51/Reports folder on the SD card
inserted in the panel.
Storage location of the reporting database: The respective project folder under media/
simatic/X51 on the SD card plugged into the panel.

You cannot change the settings.

16.2.2 Compiling a project

Basics
Compilation results in a runtime project that is executable on the respective HMI device.

Compiling and loading
16.2 Unified Comfort Panel

System Manual, 11/2022 7145

A project can be compiled explicitly or implicitly:
• Explicit: The compilation is started manually. Compile the entire project or only changes.

Explicit compiling is described in the following section.
• Implicit: The project is downloaded without previous manual compilation.

The project is compiled in the background even as you are configuring it in WinCC.
This reduces the compilation times before downloading the project.

Note
Changes to S7 blocks are not automatically compiled in the background. If you are using HMI
tags in the project that are connected to PLC tags, you should also compile all changed S7 blocks
before you compile the HMI device.

Requirement
• A project is open.

Compiling changes of a project
1. Select an HMI device in the "Project tree".
2. There are two ways to start compiling the changes:

– Press the "Compile" button in the toolbar.
– Select "Compile > Software (only changes)" from the shortcut menu.

Compiling a project completely
1. Select an HMI device in the "Project tree" area.
2. Select "Compile > Software (rebuild all)" from the shortcut menu.

Note
When a project was compiled completely, the project must also be downloaded completely
afterward.

Compiling projects of multiple HMI devices simultaneously
1. Select the HMI devices using multiple selection in the project tree.
2. To compile the changes to the projects, select the "Compile" button in the toolbar.

Alternatively, select "Download to device > Software (only changes)" from the shortcut
menu.

3. To compile the projects completely, select "Download to device" > "Software (rebuild all)"
from the shortcut menu.

Compiling and loading
16.2 Unified Comfort Panel

7146 System Manual, 11/2022

Result
The configuration data of the selected HMI devices is being compiled. If errors occur during
compilation, the errors are shown in the Inspector window under "Info > Compile". Correct the
errors and recompile the project.
Load the compiled project.

See also
Restrictions in compiling and loading changes (Page 7132)
Simulate Unified Comfort Panel (Page 7205)
Downloading projects (Page 7147)

16.2.3 Downloading projects

16.2.3.1 Basics for downloading projects

Introduction
During downloading, the compiled project is transferred to an HMI device. Only one project can
be in runtime on an HMI device at a time.
Before the download, use the "Load preview" dialog to determine whether existing data is
retained and whether logs are reset. The following data can be retained or overwritten:
• Runtime values:

Tag values, active alarms and user data
• Logs:

Data logs, alarm logs, Audit Trails and context logs
The HMI device name entered in the project tree is used for PROFINET communication.
The use of the name corresponds to the default setting of the PROFINET interface of the
HMI device. For devices with more than one PROFINET interface, the name of the IE CP is
automatically added to the device name with a separating period. The name is written to
the HMI device during download. If a device name for PROFINET communication has already
been entered in the HMI device, it will be overwritten.
You can find additional information about these settings in the information system in the
"Assigning a device name and IP address" section.

Compiling and loading
16.2 Unified Comfort Panel

System Manual, 11/2022 7147

When TIA Portal detects incompatible Runtime versions during online loading, you have the
option in the "Load Preview" dialog to install an image with a compatible, installed Runtime
version to the Panel before the download.

NOTICE
Changing the installed Runtime version deletes all data from the HMI device.
Data is deleted on the target system when you change the installed Runtime version.
When the operating system is updated, the project, parameter sets and user administration on
the HMI device are deleted.
Before updating the operating system, save the data on the HMI device, if required.
When the operating system is updated with a reset to factory settings, all data on the HMI
device is deleted and all settings in the control panel are reset to the factory settings.

The compilation of the project is checked before downloading and missing content is
compiled. This ensures that the latest version of the project is always downloaded.
When you download a project again, you can decide whether you want to download only
changes or the complete project. If you want to download only changes, a compilation of
changes must be possible beforehand.

Note
No data loss when loading is interrupted
Existing data on the HMI device is only deleted when the transfer is complete.

Runtime ID
At the start of the configuration, each project receives a runtime ID which is transferred to the
HMI device during downloading. If you have already downloaded a project, the download
process recognizes the project using the Runtime ID. If the HMI device name is changed in the
configuration, the Runtime ID also changes.

Note
Existing runtime projects on the HMI device
If a runtime project with the same Runtime ID is already available on the HMI device, the project
is overwritten. In this case, the options "Software (only changes)" and "Software (all)" are
available for loading.
If a runtime project with a new runtime ID is downloaded to the HMI device, the existing runtime
project is replaced by the new project. In this case, only the option "Software (all)" is available for
the download.
In both cases, existing project data on the HMI device is overwritten.

Compiling and loading
16.2 Unified Comfort Panel

7148 System Manual, 11/2022

Controlling the transfer behavior on the HMI device
You enable the transfer on the HMI device in the Control Panel under "Transfer". When the
transfer is activated, the project can be downloaded.

Note
Disable transfer after commissioning
Disable the transfer after the commissioning phase so that no project can be loaded
inadvertently.
An inadvertent transfer mode can trigger unwanted responses in the plant.
In order to restrict access to the transfer settings and thus avoid unauthorized changes, enter a
password in the Control Panel.

For more information on the transfer settings, refer to the documentation of the HMI device.

Transferring Runtime add-ons in WinCC
Projects may contain Runtime add-ons in the form of controls or CSP (Communication Support
Packages). These Runtime add-ons are automatically transferred with the project.

See also
Complete reloading of a project (Page 7152)
Compiling a project (Page 7145)
Initial download of a project (Page 7150)
Secure communication (Page 7129)
Restrictions in compiling and loading changes (Page 7132)
Simulate Unified Comfort Panel (Page 7205)
Compiling and loading with team engineering (Page 7157)
Basics on version compatibility (Page 187)

Compiling and loading
16.2 Unified Comfort Panel

System Manual, 11/2022 7149

16.2.3.2 Initial download of a project

Introduction
The first download of a project is different from any subsequent download processes:
• The connection to the HMI device must be set up before the download.
• The project is always downloaded completely during the first download.

Note
Runtime is stopped during a complete download
The project running in runtime is stopped when a project is executed in runtime while you
are completely downloading the project.

Requirement
• The project has been compiled without errors.
• A user is configured.
• The HMI device is connected to the configuration PC.
• The Control Panel is started on the HMI device.
• The protocol by which the project is loaded is set on the HMI device in the Control Panel under

"Settings".
• The transfer is activated on the HMI device.

Editing connection parameters before download
1. Select the HMI device in the project tree.
2. Select "Online > Extended download to device" in the menu.

The "Extended download" dialog opens.
3. Configure the interface.
4. Click "Connect" and load the project.

The Runtime project is downloaded with changed connection parameters.

Options when initially loading a project
Runtime values: Tag values, active alarms and user data
Select whether you want to keep the current values or reset the values to the start values.
Select "Reset to start values" at the time of initial loading.
Reset logs: Data logs, alarm logs, Audit Trails and context logs
Select whether you want to reset all logs or no log in Runtime.

Compiling and loading
16.2 Unified Comfort Panel

7150 System Manual, 11/2022

Initial loading of a project
1. Select the HMI device in the project tree.
2. In the toolbar, select the "Download to device" button or select "Download to device" >

"Software (all)" from the shortcut menu.
Note
When you select "Download to device" > "Software (only changes)" from the shortcut menu,
the project is still downloaded completely during the initial download.
The "Extended download" dialog opens.

3. Configure the interface. Make sure that the settings match the transfer settings in the HMI
device:
– Select the protocol used, for example, Ethernet.
– Configure the relevant interface parameters on the configuration PC.
– Make any interface-specific or protocol-specific settings required on the HMI device.

4. Click "Connect".
The connection is established and a dialog is displayed.

5. Select "Load".
The compilation of the project is checked and missing content is compiled.
The compilation result is displayed in the Inspector window under "Info > Compile".
The "Load Preview" dialog is displayed.

6. Check the displayed default settings and change the settings as necessary:
– Specify whether runtime should start on the target system after the download.
– Select "Reset to start values".
– Specify whether all logs are reset in runtime.

The setting is only accepted when you have selected "Start runtime".
7. Click "Download".

Result
The project is downloaded to the selected HMI device with the runtime extensions it contains.
If errors or warnings occur during the download, corresponding alarms are output under
"Info > General" in the Inspector window.
On completion of the successful download of the project, you can execute it on the HMI
device.

Note
No data loss when loading is interrupted
Existing data on the HMI device is only deleted when the transfer is complete.

Compiling and loading
16.2 Unified Comfort Panel

System Manual, 11/2022 7151

See also
Loading projects of multiple HMI devices simultaneously (Page 7155)
Specify tag persistency (Page 636)
Basics for downloading projects (Page 7147)
Secure communication (Page 7129)
Compiling a project (Page 7145)

16.2.3.3 Complete reloading of a project

Options when reloading a project
Runtime values: Tag values, active alarms and user data
Select whether you want to keep the current values or reset the values to the start values.
With the "Keep selected" option, you can specify which values you want to keep.
• Current values of tags and pending alarms
• Current user management data
Reset logs: Data logs, alarm logs, Audit Trails and context logs
Select whether you want to reset all logs or no log in Runtime.

Requirement
• The project has been compiled without errors.
• The project has been downloaded at least once before.

Reloading a project
1. Select the HMI device in the project tree.
2. Select "Download to device > Software (all)" from the shortcut menu.

The compilation of the project is checked and content that has not been compiled is
compiled.
The compilation result is displayed in the Inspector window under "Info > Compile".
The "Load Preview" dialog is displayed.
Note
Runtime is stopped during a complete download
The project running in runtime is stopped when a project is executed in runtime while you
are completely downloading the project.

Compiling and loading
16.2 Unified Comfort Panel

7152 System Manual, 11/2022

3. Check the displayed default settings and change the settings as necessary:
– Specify whether runtime should start on the target system after the download.
– Specify whether tag values, active alarms, and user data are retained.

The setting is only accepted when you have selected "Start runtime".
To retain internal tags, the persistency must be enabled in the settings of the respective
tag.

– Specify whether all logs are reset in runtime.
The setting is only accepted when you have selected "Start runtime".

– Specify whether the IDs of objects in the Engineering System and their relevant Runtime
data should be synchronized.

4. Click "Download".

Note
To prevent the users created in the user management from being overwritten in runtime by the
complete download of the project, activate the "Keep current user administration data in
runtime" option.
When this option is selected, role assignments and function rights from the user management
of the engineering system are loaded to Runtime, but not user data such as user name and
password.

Result
The project with the Runtime add-ons it contains is downloaded to the selected HMI devices.
If errors or warnings occur during the download, corresponding alarms are output under
"Info > General" in the Inspector window.
On completion of the successful download of the project, you can execute it on the HMI
device.

Note
No data loss when loading is interrupted
Existing data on the HMI device is only deleted when the transfer is complete.

See also
Updating the operating system of the HMI device (Page 7167)
Error messages during loading of projects (Page 7159)
Basics for downloading projects (Page 7147)

Compiling and loading
16.2 Unified Comfort Panel

System Manual, 11/2022 7153

16.2.3.4 Download changes only

Introduction
When you only download changes to a project, the relevant project must be executed in
runtime. Runtime is not closed when loading.

Requirement
• The project has been compiled without errors.
• The project has been downloaded at least once before.
• A compilation of changes must be possible or have been executed.
• The project that contains the changes is being executed in runtime.

Procedure
1. Select the HMI device in the project tree.
2. Select "Download to device" in the toolbar.

Alternatively, select "Download to device > Software (only changes)" from the shortcut
menu.
The compilation of the project is checked and content that has not been compiled is
compiled.
The compilation result is displayed in the Inspector window under "Info > Compile".
The "Load Preview" dialog is displayed.

3. Click "Download".

Result
The project with the Runtime add-ons it contains is downloaded to the selected HMI devices.
If errors or warnings occur during the download, corresponding alarms are output under
"Info > General" in the Inspector window.
Runtime continues to be executed.

Note
No data loss when loading is interrupted
Existing data on the HMI device is only deleted when the transfer is complete.

See also
Basics for downloading projects (Page 7147)
Restrictions in compiling and loading changes (Page 7132)

Compiling and loading
16.2 Unified Comfort Panel

7154 System Manual, 11/2022

16.2.3.5 Loading projects of multiple HMI devices simultaneously

Requirement
• Multiple HMI devices are configured.
• The individual projects have been compiled without errors.
• A user is configured.
• The HMI devices are connected to the configuration PC.
• The Control Panel has started on the Unified Comfort Panels.
• The protocol by which the project is loaded is set on the Unified Comfort Panel in the

Control Panel under "Settings".
• "Automatic" or "Manual" is set as the transfer mode on the Unified Comfort Panels.

Connecting HMI devices to the configuration PC
1. Select an HMI device in the project tree.
2. Select "Online > Extended download to device".

The "Extended download" dialog opens.
3. Configure the interface. Make sure that the settings match the transfer settings in the HMI

device:
– Select the protocol used, for example, Ethernet.
– Configure the relevant interface parameters on the configuration PC.
– Make any interface-specific or protocol-specific settings required on the HMI device.

4. Click "Connect".
The connection is established and a dialog is displayed.

5. To connect additional HMI devices and load several projects at the same time, select "Cancel".
6. Repeat steps 1 to 5 for additional HMI devices.

Loading projects
1. Select the HMI devices using multiple selection in the project tree.
2. To download the changes to the projects, select the "Load" button in the toolbar.

Alternatively, select "Download to device > Software (only changes)" from the shortcut
menu.

Compiling and loading
16.2 Unified Comfort Panel

System Manual, 11/2022 7155

3. To download the projects completely, select "Download to device" > "Software (all)" from the
shortcut menu.
The compilation of the projects is checked and content that has not been compiled is
compiled.
The result of the compilations is displayed in the Inspector window under "Info > Compile".
The "Load Preview" dialog is displayed. All selected projects are listed in the dialog.
Note
Runtime is stopped during a complete download
The project running in runtime is stopped when a project is executed in runtime while you
are completely downloading the project.

4. Check the displayed default settings and adjust the settings for each device:
– Specify whether runtime should start on the target system after the download.
– Specify whether tag values, active alarms, and user data are retained.

Only available if you have selected "Start runtime".
– Specify whether all logs are reset in runtime.

Only available if you have selected "Start runtime".
5. Click "Download".

See also
Initial download of a project (Page 7150)
Basics for downloading projects (Page 7147)

16.2.3.6 Using external storage medium

Introduction
If you cannot establish a direct connection from the configuration PC to the HMI device, load the
compiled runtime project onto an external storage medium. For example, use a USB flash drive
or SD card.
As soon as you have connected the external storage medium to your HMI device, transfer the
project to the HMI device.

Requirement
• An HMI device has been created.
• The project has been compiled without errors.

Loading project to external storage medium
1. Jump to the "Devices" tab in the project tree.
2. Double-click on

Compiling and loading
16.2 Unified Comfort Panel

7156 System Manual, 11/2022

3. "Add user-defined card reader" in the "Card reader/USB storage" folder.
A selection dialog opens.

4. Select a target directory to save the project.
5. Drag and drop the folder of the HMI device (e.g. "HMI_1 [<Device type>]") to the added

folder.
Alternatively, use copy and paste.
The project is checked. If the project has contents that have not yet been compiled, a compile
is performed.
The "Load Preview" dialog opens.

6. Select the options for loading.
7. Click "Load" to confirm.

Result
Your project is stored as a compressed ZIP folder in the directory "[<Target directory>]
\Simatic.HMI\RT_Projects". The file name is made up of the name of the HMI device, the project
name and the time stamp, for example "HMI_RT_1[Project1] - Full 2020-04-03 - 14.51.41.zip".
If errors or warnings occur during the download, corresponding alarms are output under
"Info > General" in the Inspector window.
You can find information about loading the project from the external storage medium to the
Unified Comfort Panel in the operating instructions for the Unified Comfort Panel.

16.2.4 Compiling and loading with team engineering

16.2.4.1 Compiling and loading with team engineering (overview)

Introduction
You can compile and download to an HMI device in the server project view, in the exclusive
session and the local session.

Note
Unified objects cannot be selected in a local session
To edit an object using Multiuser Engineering, it must first be "selected". Only objects marked for
check-in can be transferred into the server project after editing.
Unified objects cannot be marked in a local session. Changes to these objects are not applied to
the server project during check-in.
You can edit unmarked objects in the server project view.

Compiling and loading
16.2 Unified Comfort Panel

System Manual, 11/2022 7157

Basics
The options for compiling and downloading in the server project view, in the exclusive session
or the local session are no different from the options in a single-user project. The most recent
project is always compiled or loaded from the currently active view.
In principle, you can execute all commands for compiling and downloading in multiuser
engineering and exclusive engineering:
• "Software (rebuild all)"
• "Compile > Software (only changes)"
• "Software (all)"
• "Download to device > Software (only changes)"

Rules
The following rules apply to compiling and downloading in multiuser engineering and exclusive
engineering:
• The project that was changed in a local session always remains local and is not uploaded to

the multiuser server.
Note
A Unified project that was created or changed in a local session cannot be saved in the
multiuser server project.
Use the local session to test your configuration. When you update your local session, all
changes to Unified objects are overwritten by the server project.

• Only projects that were created or changed in the server project view or in the exclusive
session can be saved in the multiuser server project.

See also
Compiling in the server project view (Page 7158)
Downloading projects (Page 7147)

16.2.4.2 Compiling in the server project view

Basics
Compiling and downloading of projects in the server project view and the exclusive session is no
different from compiling and downloading in a single-user project.
While you are compiling a project in the server project view or the exclusive session, the
server project is blocked. Other users cannot edit the server project in the meantime. The
compiled runtime project is saved with the WinCC project on the central server. Blocking

Compiling and loading
16.2 Unified Comfort Panel

7158 System Manual, 11/2022

the server project ensures that the configuration data and the runtime project remain
synchronized.

Note
When you compile and save in the server project view or in the exclusive session, other users
then obtain the Runtime project you have updated along with the WinCC project when they
"refresh" their local session. Other users do not have to recompile the changes you have made
after an update.

See also
Compiling and loading with team engineering (overview) (Page 7157)

16.2.5 Error messages during loading of projects

Possible problems during the download
When a project is being downloaded to the HMI device, status messages regarding the download
progress are displayed in the output window.
Problems arising during the download of the project to the HMI device are usually caused by
one of the following errors:
• Wrong version of operating system on the HMI device
• Incorrect settings for downloading to the HMI device
• Incorrect HMI device type in the project
• The HMI device is not connected to the configuration PC.
Download failures and possible causes and remedies are listed below.

Compiling and loading
16.2 Unified Comfort Panel

System Manual, 11/2022 7159

The download is canceled due to a compatibility conflict
Possible cause Remedy
Conflict between versions of the configuration soft‐
ware used and the operating system of the HMI
device

• Synchronize the operating system of the HMI
device with the version of the configuration
software.

• To update the operating system of the HMI de‐
vice, select the command "Update operating
system" in WinCC in the menu "Online > HMI
device maintenance" or in the "Load preview"
dialog.
You can also use ProSave.

For additional information, refer to the operating
instructions for the HMI device.

The configuration PC is connected to a wrong de‐
vice, e.g. a PLC.

• Check the cabling.
• Correct the communication parameters.

Project download fails
Possible cause Remedy
Connection to the HMI device cannot be establish‐
ed (alarm in the output window)

• Check the physical connection between the
configuration PC and the HMI device.

• Check that the HMI device is in transfer mode.
Exception: Remote control

The configuration is too complex
Possible cause Remedy
The configuration contains too many different ob‐
jects or options for the HMI device selected.

• Reduce the project size.

See also
Reducing the project size (Page 7162)

16.2.6 Starting runtime

Introduction
You can start the project in runtime as soon as you have downloaded the project to the HMI
device. By default, the project is started automatically on the HMI device.

Compiling and loading
16.2 Unified Comfort Panel

7160 System Manual, 11/2022

The project settings defined in the "Runtime settings" of the HMI device are activated when
the project is started in runtime.

Note
Response of runtime when the HMI device is restarted
When the HMI device is restarted, the project is automatically restarted even if the project was
stopped before the restart.

Note
Closing Runtime automatically
If the transfer is activated on the HMI device and a transfer is started on the configuration PC, the
running project is automatically terminated.
The HMI device then automatically switches to "Transfer" mode.
After the commissioning phase, disable the transfer so that the HMI device does not
inadvertently switch to the "Transfer" mode.
"Transfer" mode can trigger unwanted reactions in the plant.
To restrict access to the transfer settings and thus avoid unauthorized changes, enter a password
for access to the Control Panel.

Requirement
• The project has been downloaded to the HMI device.
• The Control Panel has been started.

Starting runtime on an HMI device
The Control Panel is displayed when the HMI device is switched on. Depending on the
configuration, the loaded project starts automatically after the defined delay time.
If the project does not start automatically, click "Start" in the Control Panel.
Refer to the documentation for the HMI device for additional information on startup of
projects.

Result
Runtime is started on the HMI device.

Compiling and loading
16.2 Unified Comfort Panel

System Manual, 11/2022 7161

16.2.7 Reducing the project size

Introduction
When loading a large project to an HMI device, the HMI device may not have enough memory
for the project.

Options for reducing the project size
There are several ways to reduce the size of the project and save space:
• Reduce the number of available runtime languages

Check if all selected runtime languages are needed.
If necessary, you can disable the languages that you do not need under "Runtime settings >
Language & Font > Runtime language and font selection".

• "Software (rebuild all)"
In order to optimize the project data and to clean up obsolete changes, compile the entire
project using the "Compile > Software (rebuild all)" command from the shortcut menu of the
HMI device.

• Reduce the number of fonts loaded
Check if the number of user-defined downloaded fonts can be minimized.
To save memory space, use fewer font groups for the configuration.

• Reduce the size of the graphics
High-resolution graphic objects require a lot of memory and cause long loading times. They
also reduce performance in Runtime.
Check the size of the graphics that you use in the project. If necessary, reduce the size of the
graphics by reducing the resolution or choose a higher compression format without
noticeable loss of quality for the project graphics. Note the display resolution of the target
device and the size in which the graphic object is displayed on the display of the target device.
Select appropriate graphic formats for your screens: Use PNG images for drawings that are
not vector graphics and JPEG images for photos.

See also
Complete reloading of a project (Page 7152)

Compiling and loading
16.2 Unified Comfort Panel

7162 System Manual, 11/2022

16.2.8 Maintenance of the HMI device

16.2.8.1 Overview of the service for Unified Comfort Panels

Structure
The following figure shows the software components of an HMI device and their relation to the
engineering system.

Logging data
Tags and alarms can be saved to logs. The log databases are stored on an external storage
medium.

Runtime values
The runtime data is created during operation of the plant and stored on the HMI device. This data
includes, for example, parameter sets and data for the user administration.

Runtime project
The runtime project contains the compiled configuration data for an HMI device.

Operating system and runtime software
The operating system of the HMI device is provided together with the runtime software in the
form of an HMI device image. Suitable HMI device images are supplied with each WinCC version.
Depending on the configuration, download the appropriate image along with the runtime
project to the HMI device as required.

Compiling and loading
16.2 Unified Comfort Panel

System Manual, 11/2022 7163

Firmware and hardware
The HMI device is delivered with preconfigured firmware and hardware.

16.2.8.2 ProSave

Introduction
The "ProSave" service tool is included in the WinCC installation. The ProSave functions are
accessed in WinCC with the menu "Online > HMI Device maintenance".

Functional scope
ProSave offers numerous functions for data transfer between the configuration PC and HMI
device:
• Backing up and restoring data of the HMI device
• Updating the operating system of the HMI device
• Communication settings (transferred from WinCC)

16.2.8.3 Data backup of the HMI device

Introduction
Data backup is used to create a backup of the data on the HMI device, e.g. before the update of
the operating system. You can restore the backed-up data at a later time.
If an HMI device is connected to the configuration PC, you can back up and restore the data
of the HMI device from the configuration PC using WinCC.
Alternatively, you can back up the data to an external storage medium supported by the HMI
device. If the HMI device is networked, you can also back up the data to a server.

Scope of data backup
You have the option of performing a complete backup.
The following components are saved with this:
• Runtime
• Firmware
• Operating system
• Configuration
• Parameter sets
• User management
• Options

Compiling and loading
16.2 Unified Comfort Panel

7164 System Manual, 11/2022

A backup includes several files. The master file has the extension ".brf". The number of
additional files is variable, these files have the file name of the master file and a consecutive
number (".0", ".1", ".2", ...) as extension.

Note
Scope of data backup
The selected content of the flash memory is saved during data backup. Alarm logs and data logs
are stored on the external storage medium and are therefore not saved using the "Save"
function. If necessary, back up the contents of the memory card separately.
Note the following for a complete backup and restore of the dataset:
• A full backup includes all options installed. All data of the option that are still present after

"Power off" are saved.
• If the data is completely restored, all data previously on the device, including the operating

system, will be irrevocably deleted.
• If the recovery process cannot be completed due to a power failure or an interrupted data

connection, for example, the HMI device starts in maintenance mode and must be reset to
factory settings.

Use an interface with high bandwidth, such as Ethernet, to back up and restore data via WinCC.

See also
Backing up and restoring data of the HMI device (Page 7165)

16.2.8.4 Backing up and restoring data of the HMI device

Note
Use the restore function for project data only on HMI devices which were configured using the
same configuration software.

Requirement
• The HMI device is connected to the configuration PC.
• The HMI device is selected in the project tree.
• If a server is used for data backup: The configuration PC has access to the server.

Compiling and loading
16.2 Unified Comfort Panel

System Manual, 11/2022 7165

Backing up data of the HMI device
To back up the HMI device data, follow these steps:
1. Select "Online > HMI device maintenance > Save" in the menu.

The "Create backup" dialog box opens.
2. Select the type of the PG/PC interface and the target device, and click "Create".

The "SIMATIC ProSave" dialog box opens.
3. Under "Data type", select the data to backup for the HMI device.
4. Enter the name of the backup file under "Save as".
5. Click "Start Backup".
This starts the data backup. The backup operation takes some time, depending on the
connection selected.

Restoring data of the HMI device
To restore the data of the HMI device, follow these steps:
1. Select "Online > HMI device maintenance > Restore" in the menu.

The "Restore backup" dialog box opens.
2. Select the type of the PG/PC interface and the target device, and click "Load".

The "SIMATIC ProSave" dialog box opens.
3. Enter the name of the backup file under "Open...".

Information about the selected backup file is displayed under "File information".
4. Click "Start Restore".
This starts the restoration. This operation takes some time, depending on the connection
selected.

Backup/restore from the "Backup/Restore" dialog in the Control Panel of the HMI device
The "Backup / Restore" function is enabled for SD memory cards and USB memory media.
For more information, refer to the operating instructions of the HMI device.

See also
Data backup of the HMI device (Page 7164)

16.2.8.5 Updating the operating system

Introduction
If the image of an HMI device has a version status that does not match the configuration, update
the image of the HMI device. The version of the image matches the installed Runtime version.

Compiling and loading
16.2 Unified Comfort Panel

7166 System Manual, 11/2022

Update the operating system and the runtime software of the HMI device using the installed
Runtime version. Depending on the protocol used, you may be prompted to run an automatic
update of the installed Runtime version while loading the project.
Loading will then continue.

Update of the installed Runtime version
To update the installed Runtime version, connect the HMI device to the configuration PC. If
possible, use the interface providing the highest bandwidth for this connection, e.g. Ethernet.

See also
Updating the operating system of the HMI device (Page 7167)

16.2.8.6 Updating the operating system of the HMI device
If possible, use the interface providing the highest bandwidth for this connection, e.g. Ethernet.
When you update the operating system, the runtime software on the HMI device is also updated
and the installed Runtime version is changed.

NOTICE
Updating the operating system deletes all data on the HMI device
When you update the operating system you delete data on the target system. For this reason,
you should back up the following data beforehand:
• User management
• Parameter sets
• Project data

Requirement
• The HMI device is connected to the configuration PC.
• The HMI device is selected in the project tree.

Updating the operating system
Proceed as follows to update the operating system:
1. Select "Online > HMI device maintenance > Update operating system" in the menu.

The "Update operating system" dialog box opens.
2. Select the type of the PG/PC interface and the target device, and click "Update".

The "SIMATIC ProSave [OS-Update]" dialog opens. The path to the image is preset.
3. If required, you can select a different path for the image that you want to transfer to the HMI

device.
4. Click "Update OS".

Compiling and loading
16.2 Unified Comfort Panel

System Manual, 11/2022 7167

This starts the update. The update operation can take time, depending on the connection
selected.

Resetting the HMI device to factory settings
To reset the HMI device to factory settings, follow these steps:
1. Switch off the power supply for the HMI device.
2. Connect the HMI device to the configuration PC.
3. Select the "Update operating system" command from the menu under "Online > HMI Device

maintenance" on the configuration PC in WinCC.
The "Update operating system" dialog box opens.

4. Select the type of the PG/PC interface and the target device, and click "Update".
The "SIMATIC ProSave [OS-Update]" dialog opens. The path to the image is preset.

5. If required, you can select a different path with a different image that you want to transfer to
the HMI device.

6. Activate "Reset to factory settings".
7. Click "Update OS".
8. To reset to factory settings, switch on the power supply to the HMI device again.

This operation can take time.

Result
The operating system of the HMI device is operational and up to date.

See also
Updating the operating system (Page 7166)
Backing up and restoring data of the HMI device (Page 7165)
Basics for downloading projects (Page 7147)

Compiling and loading
16.2 Unified Comfort Panel

7168 System Manual, 11/2022

16.2.8.7 Updating the operating system of the HMI device from a data storage medium

Introduction
You can update the operating system using a data storage medium. You can find the HMI device
image files, for example, in the installation directory of WinCC under:
"\Siemens\Automation\Portal V1x\Data\Hmi\Transfer\<HMI device image version>\Images".

NOTICE
Data loss
All data on the HMI device, including the project and HMI device password, is deleted during a
restore operation.
Back up data before the restore operation.

Requirement
• The HMI device image file is located in the "SIMATIC.HMI\Firmware\" directory on your data

storage medium, e.g. a SIMATIC HMI Memory card or an industry-grade USB stick.
• The data storage medium with the relevant HMI devices image file including operating

system is inserted in the HMI device.

Procedure
1. Open the Control Panel on the HMI device.
2. Select "Service & Commissioning > Update OS".
3. Select a storage medium under "Select storage media for OS update".

Note
If there is no storage medium or a defective storage medium in the HMI device, the "0 devices
found" alarm is displayed. Insert the storage medium or replace the storage medium.

4. Select the required HMI device image file under "Firmware files on external storage".
5. Press "Update OS".

The "Update OS Image" dialog opens.
6. To start restoring the operating system, press "Yes".

The "Transfer" dialog opens. A progress bar shows the course of the restore. The HMI device
then restarts.

Note
After the restore, it may be necessary to recalibrate the touch screen.

Compiling and loading
16.2 Unified Comfort Panel

System Manual, 11/2022 7169

See also
Updating the operating system of the HMI device (Page 7167)

16.3 WinCC Unified PC

16.3.1 Specifying runtime settings

16.3.1.1 Introduction
Before you compile and download a project, update the runtime settings of the HMI device. You
specify the Runtime languages, for example, or activate "Collaboration".
To edit the runtime settings for an HMI device, select "Runtime settings" in the project tree
below the HMI device.

16.3.1.2 General

Identification
The runtime ID is the unique identification of a runtime project. The runtime ID is also stored in
the SIMATIC Runtime Manager. Based on the runtime ID, you can determine whether a project
has already been downloaded to the HMI device.

Note
When you rename the WinCC Runtime of the Unified PC in the Engineering System, the Runtime
ID changes. The project must be downloaded completely during the next download.

Encrypted transfer
To download the project encrypted, the same password must be stored in the runtime settings
and in runtime. Alternatively, transfer the password unencrypted during the initial download.
When you manage an encrypted project in the Runtime Manager, the password must be
stored in the Runtime Manager.

Screen
Under "Screen", you specify the start screen and the style of the HMI device.
The start screen is displayed after runtime start.

Compiling and loading
16.3 WinCC Unified PC

7170 System Manual, 11/2022

Select the screen resolution. The setting of the HMI device is used by default.

Note
Display of a changed start screen
You have defined a start screen in the project and started runtime. When you define another start
screen and download only changes to the device, the last active screen is displayed in runtime.
After reloading, refresh runtime in the browser with the <F5> key or the "Update" button.

See also
Secure communication (Page 7129)

16.3.1.3 Alarms

Controller alarms and diagnostics

Note
WinCC only supports controller alarms of a SIMATIC S7-1500. In addition, WinCC only supports
controller alarms that are automatically updated by the central alarm management in the PLC.

One or more HMI connections to a PLC are shown in "Controller alarms and diagnostics".
You can manage the following options:
• "Display classes": You filter the controller alarms via display classes. You specify for each

connection which display classes are displayed on the HMI device.
• "Automatic update": Controller alarms are automatically updated on the HMI device.

Requirement: The "Central message management in the PLC" option is enabled.
• "System diagnostics": System diagnostic alarms can be displayed in runtime.

Requirement: The "Automatic update" option is enabled.
• "Security events": Security events can be displayed in runtime.

Requirement: The "Automatic update" option is enabled.

State texts
You specify the state texts of alarms in the runtime settings. The state texts are displayed in
runtime in the alarm control.
Specify the state texts in other languages under "Languages & Resources > Project texts".

See also
Configuring state texts of alarms (Page 733)
Configuring the display of system diagnostic alarms (Page 767)

Compiling and loading
16.3 WinCC Unified PC

System Manual, 11/2022 7171

Configuring the display of security events (Page 795)
Filtering controller alarms via display classes (Page 748)

16.3.1.4 Process diagnostics

General
Indicates whether the device participates in process diagnosis.

16.3.1.5 Services

SMTP communication
SMTP communication enables automatic sending of e-mails when events occur.
Specify the port for SMTP communication.

16.3.1.6 Language & font

Runtime language and font selection
You configure project languages that are available as runtime languages for the respective
device. You also define the order in which the languages are switched.
When using central user management, runtime is displayed in the language that a user
selected in the "User login" dialog during login. If this language is not configured in the
runtime settings of the HMI device or if the language setting in the central user management
was not set, runtime is displayed in the language that has the lowest number in the "Order"
column in the runtime settings. You change the order with .
If users do not select a language in the "User login" dialog, runtime is displayed in the
language that is set for the browser.
The fixed font 1 is always provided for the respective HMI device.
When you enable the option "Enable for logging" for a language, alarm texts are logged in
the respective language. To keep the size of the log relatively small, log only alarm texts in
the required languages.

See also
Enabling the runtime language (Page 246)
Editing log contents with scripts and system functions (Page 850)

Compiling and loading
16.3 WinCC Unified PC

7172 System Manual, 11/2022

16.3.1.7 Collaboration

General settings
• Select the "Enable collaboration" check box.

Identification
The following information must be unique for all devices participating in a collaboration:
• System ID:

The system ID must be unique for each device participating in Unified Collaboration, as this
ID is used for communication between the devices.

• Collaboration name:
Assign a collaboration name or select "Generate collaboration name automatically".

• IP address / Host name

Connect actively to
A list of all HMI devices available for collaboration with system ID and IP address / host name is
displayed. You select the HMI devices to which the current HMI device provides collaboration.

Note
Collaboration is enabled in both directions
The HMI device that you select under "Connect actively to" can display screens of the current HMI
device and vice versa. Collaboration is always enabled in both directions, even if you only have
the connection activated for one collaboration device.

See also
Defining collaboration settings (Page 7572)

16.3.1.8 Storage system
You specify the storage locations of the following databases:
• Database for tag persistency
• Database for data logging
• Database for alarm logging

Compiling and loading
16.3 WinCC Unified PC

System Manual, 11/2022 7173

Note
Logging on network drives
Do not save databases directly on a network drive. Power supply can be interrupted at any time.
Reliable operation is therefore not guaranteed.
For example, save the logs on your local hard drive or a USB stick.

If you have defined a storage location in the runtime settings of the HMI device, you can
specify the database storage location for individual logs in the "Logs" editor under "Storage
medium". You have the following options:
• Default:

The database is saved according to the runtime settings of the HMI device.
• Local:

Specify a path.

Database type
Specify the database type. WinCC Unified PC supports the following database types:
• SQLite
• Microsoft SQL

A separate installation is required for using Microsoft SQL. After installing Microsoft SQL,
SQLite logging is no longer possible.

Database storage location for tag persistency
You can specify tag persistency for internal tags. The last values of the persistent tags are used
after Runtime has been started.
A separate database is used for tag persistency. The values of the tags are available again
after restarting runtime or restarting or switching off the HMI device.
Specify the storage location of the database:
• Off:

Tag persistency is not used.
• Local:

Specify a path.
• Project folder:

The database is stored in a subfolder of the runtime project folder.

Note
Use different storage media for tag persistency and logging.

The tag persistency can be affected if the log databases and the database for tag persistency
are stored on the same storage medium and the storage medium is changed while runtime is
running.

Compiling and loading
16.3 WinCC Unified PC

7174 System Manual, 11/2022

Location of the main database for data logging
Specify the storage location of the databases for data logging:
• Off:

Tags are not logged.
• Local:

Specify a path.
• Project folder:

The logs are stored in the "TLGDB" subfolder of the runtime project folder.
• Default:

In WinCC Unified Configuration you store the path at which the logs are saved under "Log
settings".

Location of the main database for alarm logging
Specify the storage location of the databases for alarm logging:
• Off:

Alarms are not logged.
• Local:

Specify a path.
• Project folder:

The logs are stored in the "ALGDB" subfolder of the runtime project folder.
• Default:

In WinCC Unified Configuration you store the path at which the logs are saved under "Log
settings".

See also
Specify tag persistency (Page 636)
Storage locations of logs (Page 843)

16.3.1.9 Settings for tags
You have the option of synchronizing HMI tags with the connected PLC tags. The position of a
data value in the structure of a data block is thus mapped in the HMI tag name. If necessary, the
PLC name is set as a prefix. You synchronize the tags in the "HMI tags" editor.
You specify before the synchronization whether the names are matched and under which
conditions.

Compiling and loading
16.3 WinCC Unified PC

System Manual, 11/2022 7175

Synchronization of the name of the PLC tag in the engineering station
To avoid conflicts within complex tag types, configure how the delimiters of the path statement
from STEP 7 are replaced in WinCC similar to name matching:
• Replace delimiters

Depending on your selection, the delimiters of all hierarchy levels are replaced during
synchronization.

• Replace invalid characters
• PLC prefix

The PLC name is set as a prefix to the HMI tag name. You set the option for each HMI
connection.

Note
Duplicate tag names
If the generated tag name is already in use, a number is added in parentheses, e.g.
Datablock_1_Static_2{1}(1).

Example
The "PLC1" controller contains the structured data block "DB1". The "Db1.a[1].b.c[3]" data block
element is used in a picture. Depending on your settings, the HMI tag name is generated as
follows:

Selected option HMI tag name
PLC prefix Plc1.Db1.a[1].b.c[3]
Replace dot and parenthesis with ; () Db1;a(1);b;c(3)
Replace dot and parenthesis with _ { }
PLC prefix

Plc1_Db1_a{10}_b_c{3}

See also
Synchronizing tags (Page 640)

16.3.1.10 Good Manufacturing Practice
Traceability and therefore the documentation of production data is becoming increasingly
important in many sectors such as the pharmaceutical industry, the food and beverage industry,
and the related mechanical engineering industry.
Therefore, sector-specific and cross-industry standards have been developed for the
electronic documentation of production data.
The most important set of regulations is the FDA guideline 21 CFR Part 11 for electronic data
records and electronic signatures issued by the FDA, the US Food and Drug Administration. In
addition, different EU regulations apply, such as EU 178/2002, depending on the industry.

Compiling and loading
16.3 WinCC Unified PC

7176 System Manual, 11/2022

Requirements for production systems in these industries have been developed on the basis
of 21 CFR Part 11 and the corresponding layout to comply with GMP (Good Manufacturing
Practice). They are also required for other industries.
The following main requirements are derived from these directives and regulations:
• Creation of an Audit Trail or operating trace in runtime

Based on this document, it is possible to trace the user who carried out the operator action
on the machine at what time.

• Important process steps must also be assigned to a clear responsibility, for example, via an
electronic signature.

GMP (Good Manufacturing Practice)
1. Enable GMP-compliant configuration.
2. If necessary, select a text list entry that contains the reason for the GMP-relevant tags.

16.3.1.11 User management
You specify whether you are using a local or a central user management. By default, the use of
the local user management is specified in the engineering system.
Local users are only valid for this project.
You manage central users in the TIA User Management Component (UMC).

Configuration of user management
• When you activate the local user management, you use the users and user roles that you have

created under "Security settings > Users and roles" for management.
• When you activate the central user management, the users, user roles and their rights are

applied from the TIA User Management Component (UMC). To access the UMC, you must
specify the server address and the server ID.

See also
Local and central user management (Page 6889)

16.3.1.12 OPC UA server

General
OPC is a standardized manufacturer-independent software interface for data exchange in
automation engineering. OPC UA is the technology succeeding OPC. OPC UA is platform-
independent and supports different protocols as communication medium.
To work with OPC UA in WinCC Unified, the OPC UA server must be enabled in the TIA Portal
in the Runtime settings of the HMI device.

Compiling and loading
16.3 WinCC Unified PC

System Manual, 11/2022 7177

Read/write tags and register tags/alarms
When you enable the "Operate as OPC UA server" option in the HMI device, the protection for
unauthorized internal and external access is downgraded.
• Enable the "Operate as OPC UA server" option.

A security note is displayed.
After enabling the option, all other settings of the OPC UA Server will become available.

Alarms and Conditions
• To display alarm conditions in the address range of the server, select the option "Enable

Alarms and Conditions on the OPC UA server".
• To disable or acknowledge alarms on the OPC UA Client, for example, select the option "Allow

operation of alarms on the OPC UA Client". To enable this option, the "Enable Alarms and
Conditions on the OPC UA server" option must be enabled.

Options

General
Define the following settings:
• Port

Default value: 4890
Do not use a port number that is already assigned to another application.

• Maximum session timeout (s)
Default value: 600000 s

• Maximum number of OPC UA sessions
Default value: 100

Subscriptions
Define the following settings:
• Minimum publication interval (ms)

Default value: 100 ms
• Maximum number of monitored items

Default value: 0

Compiling and loading
16.3 WinCC Unified PC

7178 System Manual, 11/2022

Security

Secure connection

Security policies

CAUTION
Reduced security
When the option "No OPC UA Server Security" is enabled, any OPC UA client can connect to the
OPC UA server regardless of the following settings.

The following section contains a list of all security policies available on the server.
• Activate the required security policies.

User authentication

Guest authentication
• To allow access by anonymous users to the OPC UA server, enable the option "Enable guest

authentication".
An authentication by means of user name and password is not required for guests.
Security is restricted to the degree that you determine by assigning rights to this user.

Authentication by means of user name and password
• To allow access by users with user name and password to the OPC UA server, enable the

option "Authentication with user name and password".
If access to the OPC UA server is to require the user name and password, the user must be
assigned the role "HMI Administrator". The "HMI Administrator" role has the system-defined
"OPC UA - read and write access" function right. The settings made must then be
synchronized with the user management in runtime.

16.3.1.13 Layers

Default names of the layers
Adjust the default names of the layers.

Compiling and loading
16.3 WinCC Unified PC

System Manual, 11/2022 7179

16.3.1.14 Reporting

Report system
For Unified PCs with device version V18, you make the settings for Reporting here.

"Enable Reporting" Enables Reporting.
You can create report templates based on this project or project report jobs and generate
reports in Runtime only if reporting is enabled.

"Storage location for the Reporting
database"

Configure the storage location of the Reporting database.
The Reporting database stores the actions and settings made in Runtime in the "Reports"
control.
"Storage location" "Default"

The database is in the folder that is selected during installation
or later in the "Reporting" step in WinCC Unified Configuration.
"Project folder"
The database is in the project folder of the Runtime project.
"Local"
The database is in the device folder you entered under "Folder".

"Folder" If you have selected the value "Local" under "Storage location",
enter the path to the local folder here.

"Storage location for reports" Configure the local main storage location for the generated reports.
In Runtime, the local main storage location is one of the possible storage locations for
reports with the "File system" target type.
"Storage location" "Default"

The folder defined during installation or later in WinCC Unified
Configuration in "Reporting" step is used as the main local stor‐
age location.
"Project folder"
The project folder of the Runtime project is used as the main
local storage location.
"Local"
The device folder you entered under "Folder" is used as the main
local storage location.

"Folder" If you have selected the value "Local" under "Storage location",
enter the path to the local folder here.

Note
Devices with a device version lower than V18
Unified PCs with a device version of lower than V18 always have the same settings:
• Reporting is always enabled.
• The folder configured during the installation of Unified Runtime or later with

WinCC Unified Configuration is always used as local main storage location for reports.
• The Reporting database is always in the project folder.

Compiling and loading
16.3 WinCC Unified PC

7180 System Manual, 11/2022

16.3.2 Compiling a project

Basics
Compilation results in a runtime project that is executable on the respective HMI device.
A project can be compiled explicitly or implicitly:
• Explicit: The compilation is started manually. Compile the entire project or only changes.

Explicit compiling is described in the following section.
• Implicit: The project is downloaded without previous manual compilation.

The project is compiled in the background even as you are configuring it in WinCC.
This reduces the compilation times before downloading the project.

Note
Changes to S7 blocks are not automatically compiled in the background. If you are using HMI
tags in the project that are connected to PLC tags, you should also compile all changed S7 blocks
before you compile the HMI device.

Requirement
• A project is open.

Compiling changes of a project
1. Select an HMI device in the project tree.
2. There are two ways to start compiling the changes:

– Press the "Compile" button in the toolbar.
– Select "Compile > Software (only changes)" from the shortcut menu.

Compiling a project completely
1. Select an HMI device in the "Project tree" area.
2. Select "Compile > Software (rebuild all)" from the shortcut menu.

Note
When a project was compiled completely, the project must also be downloaded completely
afterward.

Compiling and loading
16.3 WinCC Unified PC

System Manual, 11/2022 7181

Compiling projects of multiple HMI devices simultaneously
1. Select the HMI devices using multiple selection in the project tree.
2. To compile the changes to the projects, select the "Compile" button in the toolbar.

Alternatively, select "Download to device > Software (only changes)" from the shortcut
menu.

3. To compile the projects completely, select "Download to device" > "Software (rebuild all)"
from the shortcut menu.

Result
The configuration data of the selected HMI devices is being compiled.
If errors occur during compilation, the errors are shown in the Inspector window under "Info
> Compile".
1. Correct the errors and recompile the projects.
2. Load the compiled projects.

See also
Overview (Page 7125)
Basics of downloading projects (Page 7182)
Complete reloading of a project (Page 7187)
Restrictions in compiling and loading changes (Page 7132)

16.3.3 Downloading projects

16.3.3.1 Basics of downloading projects

Introduction
During downloading, the compiled project is transferred to an HMI device. The project can be
downloaded either locally to the Unified Runtime of the configuration PC or a connected HMI
device. If there is no connection, an external storage medium can be used for the transfer.
Before the download, use the "Load preview" dialog to determine whether existing data is
retained and whether logs are reset. The following data can be retained or overwritten:
• Runtime values: Tag values, active alarms and user data
• Logs: Data logs, alarm logs, Audit Trails and context logs
The compilation of the project is checked before downloading and missing content is
compiled. This ensures that the latest version of the project is always downloaded.

Compiling and loading
16.3 WinCC Unified PC

7182 System Manual, 11/2022

When you download a project again, you can decide whether you want to download only
changes or the complete project. If you want to download only changes, a compilation of
changes must be possible beforehand.

Ethernet connection
You download the project to the HMI device via an Ethernet connection. The connection uses
Ethernet port 20008.

Note
Ethernet port 20008
If an application already occupies Ethernet port 20008, loading is not possible.
If no connection to the target can be established, check the port assignments. If another
application is using Ethernet port 20008, close this application.

Runtime ID
At the start of the configuration, each project receives a runtime ID which is transferred to the
HMI device during downloading. If you have already downloaded a project, the download
process recognizes the project using the Runtime ID. When you rename the WinCC Runtime of
the Unified PC, the Runtime ID changes as well.

Note
Existing runtime projects on the target HMI device
If a runtime project with the same Runtime ID is already available on the HMI device, the project
is overwritten.

Synchronization of IDs:
In runtime, objects and their relevant Runtime data are identified by IDs. If the Engineering data
and Runtime data are not synchronized, conflicts may arise, which may lead to undesired
reactions at runtime. This is the case, if, for example:
• the Engineering process is not linear, i.e. an earlier project version is enhanced with new

objects and loaded to the device that is already running with a newer project version, for
example, when using a backup or if the project was not saved after loading.

• the process of compiling and loading a project gets aborted unexpectedly.
• the Runtime data are reset.

Compiling and loading
16.3 WinCC Unified PC

System Manual, 11/2022 7183

To detect and rectify such application cases, the dialog "Load Preview" contains setting
options for synchronizing IDs.

Note
Synchronization is not necessary when downloading changes since the linearity has already
been selected.

Downloading various runtime projects onto one HMI device
If the runtime software "WinCC Unified PC RT" is installed on the PC, you can download multiple
projects directly to the configuration PC. But you are only executing one runtime project in
runtime. You can use the SIMATIC Runtime Manager to start and stop projects.
Example: The "Mixing" project is loaded to the configuration PC and is being executed in
runtime. When you change the "Mixing" project, download the changes using "Download to
device > Software (only changes)". Runtime continues running.
When you then download the "Bottling" project completely, the "Mixing" project Runtime is
stopped. If you have selected the "Start runtime" option, the "Bottling" project is started.

Downloading a runtime project to multiple HMI devices
You can download a runtime project to several connected HMI devices one after the other and
start runtime at the same time. Changes can only be downloaded for the first device.

See also
Complete reloading of a project (Page 7187)
Overview (Page 7125)
Compiling a project (Page 7181)
Secure communication (Page 7129)
Download changes only (Page 7190)
Loading projects of multiple HMI devices simultaneously (Page 7191)
Restrictions in compiling and loading changes (Page 7132)
Using external storage medium (Page 7192)
Compiling and loading with team engineering (Page 7194)
Basics on version compatibility (Page 187)

Compiling and loading
16.3 WinCC Unified PC

7184 System Manual, 11/2022

16.3.3.2 Initial download of a project

Introduction
The first download of a project is different from any subsequent download processes:
• The connection to the HMI device must be set up before the download.
• The project is always downloaded completely during the first download.

Note
Runtime is stopped during a complete download
The project running in runtime is stopped when a project is executed in runtime while you
are completely downloading the project.

Requirement
• The project has been compiled without errors.
• A user is configured.
• The HMI device is connected to the configuration PC or the configuration PC is the HMI device.
• The Runtime version of the target device corresponds to the configured Runtime version.
• Ethernet port 20008 in the network configuration is not allocated.

Editing connection parameters before download
1. Select the HMI device in the project tree.
2. Select "Online > Extended download to device".

The "Extended download" dialog opens.
3. Enter the IP address or device name of the new target device.
4. Click "Connect" and load the project.

The Runtime project is downloaded with changed connection parameters.

Options when initially loading a project
Runtime values: Tag values, active alarms and user data
Select whether you want to keep the current values or reset the values to the start values.
Select "Reset to start values" at the time of initial loading.
Reset logs: Data logs, alarm logs, Audit Trails and context logs
Select whether you want to reset all logs or no log in Runtime.
Synchronizing IDs

Compiling and loading
16.3 WinCC Unified PC

System Manual, 11/2022 7185

Select whether the IDs of objects in the Engineering System and their relevant Runtime data
should be synchronized.

Note
At the time of initial loading, the IDs of objects in the Engineering System and their relevant
Runtime data are not synchronized, regardless of the selected option.

• Synchronize: The synchronization of IDs is verified before loading. If inconsistencies are
reported during the verification of the IDs, the IDs are synchronized. Then the project is
completely loaded.

• Verifying the synchronization: The synchronization of IDs is verified before loading. If
inconsistencies are reported during the verification of the IDs, loading is cancelled. The IDs
are then not synchronized.

• Do not Sync: Synchronization of the IDs is not verified. The system cannot guarantee that the
data loaded from the Engineering System match the data present in Runtime.
Note
Restart Runtime
To prevent data inconsistencies, restart Runtime when you select "Do not Sync".

Initial loading of a project
1. Select the HMI device in the project tree.
2. In the toolbar, select the "Download to device" button or select "Download to device" >

"Software (all)" from the shortcut menu.
Note
When you select "Download to device" > "Software (only changes)" from the shortcut menu,
the project is still downloaded completely during the initial download.
The "Extended download" dialog opens.

3. Enter the address or the name of the target device. You have the following options:
– "Configured IP address"
– "Use other IP address"
– "Use device name (DNS)"
If you use your configuration PC as an HMI device, enter the IP address 127.0.0.1 or the device
name "localhost".

4. Click "Connect".
The connection is established and a dialog is displayed.

5. Select "Load".
The compilation of the project is checked and missing content is compiled.
The compilation result is displayed in the Inspector window under "Info > Compile".
The "Load Preview" dialog is displayed.

Compiling and loading
16.3 WinCC Unified PC

7186 System Manual, 11/2022

6. Check the displayed default settings and change the settings as necessary:
– Select the "Full download" option under "Load Runtime".
– Under "Runtime start", specify whether Runtime should start on the target system after

the download.
– Under "Runtime values", select "Reset to start values" in the Options menu.
– Under "Reset logs", specify whether all logs are reset in Runtime.

The setting is only accepted when you have selected "Start runtime".
7. Click "Download".

Result
The project is downloaded onto the selected HMI device under the file path
"C:\ProgramData\SCADAProjects".
If errors or warnings occur during the download, corresponding alarms are output under
"Info > General" in the Inspector window.
On completion of the successful download of the project, you can execute it on the HMI
device. If you have activated the start of runtime on the target system in the "Load Preview"
dialog, the project is started in runtime after loading.

See also
Specify tag persistency (Page 636)
Basics of downloading projects (Page 7182)
Compiling a project (Page 7181)
Secure communication (Page 7129)
Overview (Page 7125)
Loading projects of multiple HMI devices simultaneously (Page 7191)

16.3.3.3 Complete reloading of a project

Options when reloading a project
Make the following settings in the "Load preview" dialog during reloading:
• Load Runtime: Full download

You cannot download if you keep the "No action" option.
• Runtime start: Specify whether Runtime should start on the target system after the

download.

Compiling and loading
16.3 WinCC Unified PC

System Manual, 11/2022 7187

• Runtime values: Select whether you want to keep the current values for tags, active alarms
and user administration data or if you want to reset the values to the start values.
With the "Keep selected" option, you can specify the values you want to keep.
– Current values of tags and pending alarms
– Current user administration data: Disable "Keep current user administration data in

runtime" during initial download.
• Reset logs: Select whether you want to reset data logs, alarm logs, Audit Trails and context

logs or no log in Runtime.
• Synchronize IDs: Specifies the process to be followed for synchronizing the IDs of objects in

the Engineering System and their relevant Runtime data.
The following options are available:
– Synchronize: The synchronization of IDs is verified before loading. If inconsistencies are

reported during the verification of the IDs, the IDs are synchronized. Then the project is
completely loaded.

– Verifying the synchronization: The synchronization of IDs is verified before loading. If
inconsistencies are reported during the verification of the IDs, loading is cancelled. The
IDs are then not synchronized.

– Do not Sync: Synchronization of the IDs is not verified. The system cannot guarantee that
the data loaded from the Engineering System match the data present in Runtime.
Note
Restart Runtime
To prevent data inconsistencies, restart Runtime when you select "Do not Sync".

Requirement
• The project has been compiled without errors.
• The project has been downloaded at least once before.

Procedure
1. Select the HMI device in the project tree.
2. Select "Download to device > Software (all)" from the shortcut menu.

The compilation of the project is checked and content that has not been compiled is
compiled.
The compilation result is displayed in the Inspector window under "Info > Compile".
The "Load Preview" dialog is displayed.
Note
Runtime is stopped during a complete download
The project running in runtime is stopped when a project is executed in runtime while you
are completely downloading the project.

Compiling and loading
16.3 WinCC Unified PC

7188 System Manual, 11/2022

3. Check the displayed default settings and change the settings as necessary:
– Select the "Full download" option under "Load Runtime".
– Specify whether Runtime should start on the target system after the download.
– Specify whether tag values, active alarms, and user data are retained.

The setting is only accepted when you have selected "Start runtime".
To retain internal tags, the persistency must be enabled in the settings of the respective
tag.
Note
To prevent the users created in the user administration from being overwritten in runtime
by the complete download of the project, activate the "Keep current user administration
data in runtime" option.
When this option is selected, role assignments and function rights from the user
administration of the Engineering System are loaded to Runtime, but not user data such
as user name and password.

– Specify whether all logs are reset in runtime.
The setting is only accepted when you have selected "Start runtime".

– Select the desired option under "Synchronize IDs" in the selection menu.
4. Click "Download".

Result
The project is downloaded onto the selected HMI device under the file path
"C:\ProgramData\SCADAProjects".
If errors or warnings occur during the download, corresponding alarms are output under
"Info > General" in the Inspector window.
After the successful download of the runtime project, you can execute it. If you have
activated the start of runtime on the target system in the "Load Preview" dialog, the project is
started in runtime after loading.

See also
Basics of downloading projects (Page 7182)
Overview (Page 7125)
Compiling a project (Page 7181)
Specify tag persistency (Page 636)
Secure communication (Page 7129)

Compiling and loading
16.3 WinCC Unified PC

System Manual, 11/2022 7189

16.3.3.4 Download changes only

Introduction
When you only download changes to a project, the relevant project must be executed in
runtime. Runtime is not closed when loading.

Requirement
• The project has been compiled without errors.
• The project has been downloaded at least once before.
• A compilation of changes must be possible or have been executed.
• The project that contains the changes is being executed in runtime.

Procedure
1. Select the HMI device in the project tree.
2. Press the "Download to device" button in the toolbar.

Alternatively, select "Download to device > Software (only changes)" from the shortcut
menu.
The compilation of the project is checked and content that has not been compiled is
compiled.
The compilation result is displayed in the Inspector window under "Info > Compile".
The "Load Preview" dialog is displayed.

3. Click "Download".

Result
The changes are downloaded onto the selected HMI device under the file path
"C:\ProgramData\SCADAProjects".
If errors or warnings occur during the download, corresponding alarms are output under
"Info > General" in the Inspector window.
Runtime continues to be executed.
Update Runtime in the browser with the <F5> key or by pressing the "Update" button to see
the changes in runtime.

See also
Basics of downloading projects (Page 7182)
Restrictions in compiling and loading changes (Page 7132)

Compiling and loading
16.3 WinCC Unified PC

7190 System Manual, 11/2022

16.3.3.5 Loading projects of multiple HMI devices simultaneously

Requirement
• Several WinCC Unified PCs are configured.
• The individual projects have been compiled without errors.
• A user is configured.
• Ethernet port 20008 in the network configuration is not allocated.

Connecting WinCC Unified PCs to the configuration PC
1. Select a WinCC Unified PC in the project tree.
2. Select "Online > Extended download to device".

The "Extended download" dialog opens.
3. Enter the address or the name of the target device. You have the following options:

– "Configured IP address"
– "Use other IP address"
– "Use device name (DNS)"

4. Click "Connect".
The connection is established and a dialog is displayed.

5. To connect additional HMI devices and load several projects at the same time, select "Cancel".
6. Repeat steps 1 to 5 for additional WinCC Unified PCs.

Loading projects
1. Select the WinCC Unified PCs using multiple selection in the project tree.
2. To download the changes to the projects, select the "Load" button in the toolbar.

Alternatively, select "Download to device > Software (only changes)" from the shortcut
menu.

3. To download the projects completely, select "Download to device" > "Software (all)" from the
shortcut menu.
The compilation of the projects is checked and content that has not been compiled is
compiled.
The result of the compilations is displayed in the Inspector window under "Info > Compile".
The "Load Preview" dialog is displayed. All selected projects are listed in the dialog.
Note
Runtime is stopped during a complete download
The project running in runtime is stopped when a project is executed in runtime while you
are completely downloading the project.

Compiling and loading
16.3 WinCC Unified PC

System Manual, 11/2022 7191

4. Check the displayed default settings and adjust the settings for each device:
– Specify whether runtime should start on the target system after the download.
– Specify whether tag values, active alarms, and user data are retained.

The setting is only accepted when you have selected "Start runtime".
– Specify whether all logs are reset in runtime.

The setting is only accepted when you have selected "Start runtime".
5. Click "Download".

See also
Initial download of a project (Page 7185)
Basics of downloading projects (Page 7182)

16.3.3.6 Using external storage medium

Loading project to external storage medium

Introduction
If you cannot establish a direct connection from the configuration PC to the HMI device, load the
compiled runtime project onto an external storage medium. For example, use a USB flash drive
or SD card.
You load either the complete runtime project or only changes of a runtime project.
As soon as you have connected the external storage medium to your HMI device, transfer the
project to the HMI device.

Requirement
• An HMI device has been created.
• The project has been compiled without errors.
• A user is configured.

Procedure
1. Jump to the "Devices" tab in the project tree.
2. Double-click "Add user-defined card reader" in the "Card reader/USB storage" folder.

A selection dialog opens.
3. Select a target directory to save the project.

Compiling and loading
16.3 WinCC Unified PC

7192 System Manual, 11/2022

4. Drag and drop the HMI device (e.g. "HMI_1 [<Device type>]") to the added folder.
Alternatively, use copy and paste.
The project is checked. If the project has contents that have not yet been compiled, a compile
is performed.
The "Load Preview" dialog opens.

5. In the selection menu you specify which project contents are downloaded:
– "Full download": The project is downloaded completely.
– "Delta download": Only changes of the project are downloaded.

6. Click "Load" to confirm.

Result
Your project is stored as a compressed ZIP folder in the directory "[<Target directory>]
\Simatic.HMI\RT_Projects". The file name is made up of the name of the HMI device, the project
name and the time stamp:
• Projects that were created with the option "Full download" receive as file name e.g.

"HMI_RT_1[Project1] - Full 2020-04-03 - 14.51.41.zip".
• Projects that were created with the option "Delta download" receive as file name e.g.

"HMI_RT_1[Project1] - Delta 2020-04-03 - 14.53.45.zip".
If errors or warnings occur during the download, corresponding alarms are output under
"Info > General" in the Inspector window.

See also
Basics of downloading projects (Page 7182)

Load project from external storage medium
Use the SIMATIC Runtime Manager to download a project from an external storage medium.

See also
Adding a project (Page 7497)

Compiling and loading
16.3 WinCC Unified PC

System Manual, 11/2022 7193

16.3.4 Compiling and loading with team engineering

16.3.4.1 Basics on compiling and loading with team engineering

Introduction
You can compile and download to an HMI device in the server project view, in the exclusive
session and the local session.

Note
Unified objects cannot be selected in a local session
To edit an object using Multiuser Engineering, it must first be "selected". Only objects marked for
check-in can be transferred into the server project after editing.
Unified objects cannot be marked in a local session. Changes to these objects are not applied to
the server project during check-in.
You can edit unmarked objects in the server project view.

Basics
The options for compiling and downloading in the server project view, in the exclusive session
or the local session are no different from the options in a single-user project. The most recent
project is always compiled or loaded from the currently active view.
You can execute all commands for compiling and downloading in multiuser engineering and
exclusive engineering:
• "Software (rebuild all)"
• "Compile > Software (only changes)"
• "Software (all)"
• "Download to device > Software (only changes)"

Compiling and loading
16.3 WinCC Unified PC

7194 System Manual, 11/2022

Rules
The following rules apply to compiling and downloading in multiuser engineering and exclusive
engineering:
• The project that was changed in a local session always remains local and is not uploaded to

the multiuser server.
Note
A Unified project that was created or changed in a local session cannot be saved in the
multiuser server project.
Use the local session to test your configuration. When you update your local session, all
changes to Unified objects are overwritten by the server project.

• Only projects that were created or changed in the server project view or in the exclusive
session can be saved in the multiuser server project.

See also
Compiling in the server project view and in the exclusive session (Page 7195)
Downloading projects (Page 7182)
YouTube (https://www.youtube.com/watch?v=n4oTZ2Gzg6U)

16.3.4.2 Compiling in the server project view and in the exclusive session

Basics
Compiling and downloading of projects in the server project view and the exclusive session is no
different from compiling and downloading in a single-user project.
While you are compiling a project in the server project view or the exclusive session, the
server project is blocked. Other users cannot edit the server project in the meantime. The
compiled runtime project is saved with the WinCC project on the central server. Blocking
the server project ensures that the configuration data and the runtime project remain
synchronized.

Note
When you compile and save in the server project view or in the exclusive session, other users
then obtain the Runtime project you have updated along with the WinCC project when they
"refresh" their local session. Other users do not have to recompile the changes you have made
after an update.

See also
Basics on compiling and loading with team engineering (Page 7194)

Compiling and loading
16.3 WinCC Unified PC

System Manual, 11/2022 7195

https://www.youtube.com/watch?v=n4oTZ2Gzg6U

16.3.5 Error messages during loading of projects

Possible problems during the download
When a project is being downloaded to the HMI device, status messages regarding the download
progress are displayed in the output window.
Problems arising during the download of the project to the HMI device are usually caused by
one of the following errors:
• Wrong version of operating system on the HMI device
• Incorrect settings for downloading to the HMI device
• Incorrect HMI device type in the project
• The HMI device is not connected to the configuration PC.
The most common download failures and possible causes and remedies are listed below.

The download is canceled due to a compatibility conflict
Possible cause Remedy
The configuration PC is connected to a wrong de‐
vice, e.g. a PLC.

Check the cabling.
Correct the communication parameters.

The database of the configured HMI device in the
engineering system differs from the database type
in runtime.

Runtime of the Unified PC uses Microsoft SQL.
Change the database type in the runtime settings
of the HMI device under "Storage System" to "Mi‐
crosoft SQL".

Project download fails
Possible cause Remedy
The connection to the HMI device cannot be estab‐
lished.

Check the physical connection between the config‐
uration PC and the HMI device.

See also
Downloading projects (Page 7182)

Compiling and loading
16.3 WinCC Unified PC

7196 System Manual, 11/2022

16.3.6 Starting and stopping runtime

Introduction
You have two options for starting a project Runtime:
• Select the "Start runtime" option in the "Load preview" dialog before you download a runtime

project.
Runtime is started automatically after downloading the Runtime project.

• Use the "SIMATIC Runtime Manager".

Requirements
• The runtime project is downloaded to the HMI device.

Starting runtime
To start the Runtime of the downloaded Runtime project with the SIMATIC Runtime Manager,
follow these steps:
1. Start the "SIMATIC Runtime Manager" tool.
2. Click on the project in the project list.
3. Click the "Start" button.
4. Define whether project data is reset on startup.

– To start the project in a state that existed when the project was first started, activate the
options "Reset login data" or "Reset Runtime data".

– Disable these options to start the project in a state that existed before the last project stop.
5. Select "Start".

Stop runtime
You have two options for stopping a project Runtime:
• Select the "Online > Stop runtime/simulation" button in the Engineering System.
• Select the "Stop" button in the "SIMATIC Runtime Manager".

See also
Downloading projects (Page 7182)

Compiling and loading
16.3 WinCC Unified PC

System Manual, 11/2022 7197

16.3.7 Managing users in Runtime

Requirement
• An administrator has been created.
• The IP address or the fully qualified name (name and domain) of the PC on which Runtime is

installed is entered in the browser.
If Runtime is installed on the same PC as the browser, the "localhost" designation can also be
used.

Procedure
1. Select "User management".
2. Log on as an administrator.
3. Expand the selection menu at the top right.

4. Select "Users".
5. You have the following options:

– Create new users.
– Change the properties of the users.

Changing your password
1. Expand the selection menu at the top right.
2. Select "User profile".
3. Enter your current password.
4. Assign a new password.
5. Enter the new password again.
6. Select "Change". The password is changed.

Compiling and loading
16.3 WinCC Unified PC

7198 System Manual, 11/2022

16.4 Simulating control with PLCSIM

16.4.1 Using PLCSIM

Introduction
With PLCSIM you can test the configuration of your HMI device without the PLC required for it.
PLCSIM simulates a PLC to which you connect the HMI device. Process parameters can be
changed, or specific hardware behavior can be triggered to test the reaction of the HMI device.
With PLCSIM, you can test the following functions of your HMI device:
1. Communication between HMI device and PLC

– Read
– Write

2. Process behavior
– Changing PLC parameters
– Sequential change of recorded changes to PLC parameters

3. Hardware behavior
– Hardware alarm
– Diagnostic error alarm
– Pulling or plugging modules
– Rack/station failure

Compiling and loading
16.4 Simulating control with PLCSIM

System Manual, 11/2022 7199

Requirements for using PLCSIM
Requirements in the software
PLCSIM is installed during the installation of WinCC. This requires you to select the
corresponding check box during installation.

Requirements in the project
No special preparations are necessary to use PLCSIM. You complete their configuration in the
usual way. When you start the simulation, the communication runs with PLCSIM instead of a
real CPU.

16.4.2 Starting simulation and simulating behavior

Requirement
The configuration is completed.

Compiling and loading
16.4 Simulating control with PLCSIM

7200 System Manual, 11/2022

Procedure
To test the configuration in runtime, follow these steps:
1. Select the PLC in the project tree and select "Online > Start simulation" in the menu.

PLCSIM starts and the "Extended download to device" dialog is displayed.
2. Start the search with "Start search".

The simulated PLC is displayed as target device.
3. Select the simulated PLC and select the "Download" command.

PLCSIM is now ready for operation.
4. Select the HMI device in the project tree and select "Online > Start simulation" in the menu.

The "Load Preview" dialog is displayed.
5. Select the desired settings and load the project into the HMI device.
6. Start runtime.
7. Use the editors of the project view of PLCSIM to test the behavior of the HMI.

16.4.3 Preparing simulation with PLCSIM

Requirement
• The engineering project is open.
• PLCSIM has started.

Procedure
To prepare a project with PLCSIM, follow these steps:
1. Switch from the compact view to the project view of PLCSIM by clicking on the button in the

upper right-hand corner.
2. Open the "New" command via the "Project" menu and create a new project via the dialog.
3. Load and organize the PLC tags from the project in the SIM tables.

You can load all PLC tags from an active project using the "Load project tags" button.
4. If desired, create sequences by recording the parameter changes in the SIM tables or create

events in the event table.
5. Save the project.

Result
The PLCSIM project is prepared and can be used.

Compiling and loading
16.4 Simulating control with PLCSIM

System Manual, 11/2022 7201

16.4.4 Working with PLCSIM

User interface of PLCSIM
With PLCSIM, you can choose between two different user interfaces: Compact view and project
view. The view you select depends on how you want to use PLCSIM in combination with TIA
Portal.

Compact view - Operate PLC
You operate the CPU exclusively in the compact view. The basic operating functions of a CPU are
available with the operator controls of the compact view: "RUN", "STOP", "PAUSE" and "MRES".
The status displays inform you about the state of the CPU.

Project view - Simulate process behavior and hardware behavior
The project view offers the same functions as the compact view. Additionally, simulation
projects are created and stored in the project view. In the simulation project, you define the CPU
behavior that you want to simulate. Several editors are available for this:
• You import PLC parameters from the automation project in Sim tables. The parameters can

be written and read there.
• You simulate the behavior of external processes in sequences. To do this, you start a

recording and record parameter changes that you make in the SIM table. You can edit the
recorded sequence afterwards and test your process with it.

• In result tables, you select from a list of hardware actions that you want to simulate.
Triggerable events are alarms, pulling and plugging of modules as well as the failure of
modules or stations.

Compiling and loading
16.4 Simulating control with PLCSIM

7202 System Manual, 11/2022

Further information
You can find more information on this topic in the PLCSIM user documentation.

Compiling and loading
16.4 Simulating control with PLCSIM

System Manual, 11/2022 7203

Compiling and loading
16.4 Simulating control with PLCSIM

7204 System Manual, 11/2022

Runtime and simulation 17
17.1 Simulate runtime

17.1.1 Simulate Unified Comfort Panel

17.1.1.1 Basics of simulation

Introduction
You can use the simulator to test the performance of your runtime project on the configuration
PC. This allows you to quickly locate any logical configuration errors before productive operation.
The simulation is compiled like a real project and loaded into the Runtime installed on
the configuration PC. To shorten the process, you can hide the "Load preview" dialog for a
simulation.
The project is downloaded as follows:
• The project is fully downloaded if the simulation of the project is not executed in runtime.
• If the simulation of the project is executed in runtime and changes can be compiled and

downloaded, only changes are downloaded.
You recognize a simulation in the SIMATIC Runtime Manager by the "Simulation" type. A
runtime project can be downloaded to the PC as a real project and as a simulation at the
same time.
With an installed Runtime as of version V17, backward compatibility is also supported for
simulations.
You can simulate runtime projects with a configured Runtime version of V16 or V17.

Field of application
You can use the simulator to test the following functions, for example:
• Screen change and screen navigation
• Internal tags
• Screen display
• Configured alarms which are not triggered by a PLC

System Manual, 11/2022 7205

See also
Simulating a project (Page 7207)
Restrictions in compiling and loading changes (Page 7132)
Using PLCSIM (Page 7199)

17.1.1.2 Skip "Load preview" dialog

Skip "Load preview" dialog
To permanently skip the "Load preview" dialog when simulating projects, follow these steps:
1. Open the settings under "Options > Settings".
2. Select "Simulation".
3. In the "HMI Simulation" area, clear the check box "Show 'Load preview' dialog during

download to simulation".

Note
Settings of the "Load preview" dialog
The following settings are applied from the previous loading process with displayed "Load
preview" dialog:
• Settings for keeping tag values, active alarms and user data (default value: enabled).
• Settings for resetting logs (default value: "No reset")
If the "Load preview" dialog was hidden before the first loading of the project, the default values
are used.
If other settings are required, the "Load preview" dialog can be opened via the "Online >
Download to device" command.

Result
• The "Load preview" dialog is no longer displayed.
• The simulation is downloaded directly.
• The simulation is opened automatically in the standard browser.
Download messages that occur are displayed in the Inspector window in the "Info > Load" tab.

See also
Simulating a project (Page 7207)

Runtime and simulation
17.1 Simulate runtime

7206 System Manual, 11/2022

17.1.1.3 Simulating a project

Introduction
You simulate a project on the configuration PC and download the simulation via an Ethernet
connection. The connection uses Ethernet port 20008.

Note
Ethernet port 20008
If an application already occupies Ethernet port 20008, loading is not possible.
If no connection to the target can be established, check the port assignments. If another
application is using Ethernet port 20008, close this application.

Requirement
• The "SIMATIC WinCC Unified Runtime" component is installed on the configuration PC.
• The project is open in the configuration PC.
• The PLC and the HMI device have been compiled successfully.
• A user is configured.

Runtime and simulation
17.1 Simulate runtime

System Manual, 11/2022 7207

Procedure
To start the simulation with enabled "Load preview" dialog, follow these steps:
1. Select one of the following buttons:

– From the shortcut menu of the HMI device: "Start simulation"
– In the "Start simulation" toolbar
– In the "Online > Simulation > Start" menu
– In the portal view "Visualization > Simulate device".
The compilation result is displayed in the Inspector window under "Info > Compile".
The "Load Preview" dialog is displayed.
NOTICE
Running runtime is stopped during complete download of a simulation
The project running in runtime is stopped when a project is executed in runtime on the
configuration PC and a simulation is downloaded completely.

2. When the simulation is downloaded completely, check the displayed default settings and
change the settings as necessary:
– Specify whether runtime should start after the download.
– Specify whether tag values, active alarms, and user data are retained.

Only available if you have selected "Start runtime".
To retain internal tags, the persistency must be enabled in the settings of the respective
tag.

– Specify whether all logs are reset in runtime.
Only available if you have selected "Start runtime".

3. Click "Download".
If you have selected the "Start runtime" option, Runtime is started after the download.

4. Open the browser.
5. Call the URL "https://localhost" in the browser.

Instead of the name "localhost", you can use the PC name.
6. Select "WinCC Unified RT".
7. Enter the user name and password.

The configured screen is displayed as start screen in the browser.
8. Test, for example:

– Screen change and screen navigation
– Layout
– Internal tags

9. To stop the simulation, you have these options:
– Select "Online > Stop runtime/simulation" in the menu bar.
– Select "Stop runtime/simulation" in the shortcut menu of the HMI device.
While the simulation is running, the project is always loaded in simulation mode.

Runtime and simulation
17.1 Simulate runtime

7208 System Manual, 11/2022

Note
Simulation and license
If no license is found for Runtime, an alarm appears and the simulation runs in demo mode. After
1 hour, you will be reminded that no license was found.

See also
Basics of simulation (Page 7205)
Managing users in Runtime (Page 7198)

17.1.1.4 Simulating a central user management
You want to simulate a project in which a central user management is configured for a customer.
You have two options if you do not have access to the central user management of the customer:
• Configure your own central user management.
• Configure a local user management.

Requirement
• You know which groups and their function rights are contained in the central user

management of the customer.

Configuring a central user management
Configure a central user management for the simulation project.
1. Create the users.
2. Create the user groups according to the customer project.
3. Assign the users to the groups.
4. Establish the connection to the central user management.
5. Start the simulation.
6. Log on in runtime.
Changes can be downloaded.

Configuring a local user management
Configure a local user management.
1. Create one or more users.
2. Assign the roles to the users.
3. Start the simulation.
Changes cannot be downloaded.

Runtime and simulation
17.1 Simulate runtime

System Manual, 11/2022 7209

17.1.2 Simulating Unified PC

17.1.2.1 Basics of simulation

Introduction
You can use the simulator to test the performance of your runtime project on the configuration
PC. This allows you to quickly locate any logical configuration errors before productive operation.
The simulation is compiled and downloaded just like a real project. To shorten the process,
you can hide the "Load preview" dialog for a simulation.
The project is downloaded as follows:
• The project is fully downloaded if the simulation of the project is not executed in runtime.
• If the simulation of the project is executed in runtime and changes can be compiled and

downloaded, only changes are downloaded.
You recognize a simulation in the SIMATIC Runtime Manager by the "Simulation" type. A
runtime project can be downloaded to the PC as a real project and as a simulation at the
same time. You cannot run the real project and the simulation at the same time in runtime.
With an installed Runtime as of version V17, backward compatibility is also supported for
simulations.
You can simulate runtime projects with a configured Runtime version of V16 or V17.

Field of application
You can use the simulator to test the following functions, for example:
• Screen change and screen navigation
• Internal tags
• Layout
• Configured alarms which are not triggered by a PLC

See also
Simulating a project (Page 7211)
Restrictions in compiling and loading changes (Page 7132)
Using PLCSIM (Page 7199)

Runtime and simulation
17.1 Simulate runtime

7210 System Manual, 11/2022

17.1.2.2 Skip "Load preview" dialog

Skip "Load preview" dialog
To permanently skip the "Load preview" dialog when simulating projects, follow these steps:
1. Open the settings under "Options > Settings".
2. Select "Simulation".
3. In the "HMI Simulation" area, clear the check box "Show 'Load preview' dialog during

download to simulation".

Note
Settings of the "Load preview" dialog
The following settings are applied from the previous loading process with displayed "Load
preview" dialog:
• Settings for keeping tag values, active alarms and user data (default value: enabled).
• Settings for resetting logs (default value: "No reset")
If the "Load preview" dialog was hidden before the first loading of the project, the default values
are used.
If other settings are required, the "Load preview" dialog can be opened via the "Online >
Download to device" command.

Result
• The "Load preview" dialog is no longer displayed.
• The simulation is downloaded directly.
• The simulation is opened automatically in the standard browser.
The Inspector window displays any download messages that occur in the "Info > Load" tab.

See also
Simulating a project (Page 7211)

17.1.2.3 Simulating a project

Requirement
• The "SIMATIC WinCC Unified Runtime" component is installed on the configuration PC.
• The project is open in the configuration PC.
• The PLC and the HMI device have been compiled successfully.
• A user is configured.

Runtime and simulation
17.1 Simulate runtime

System Manual, 11/2022 7211

Always start the simulation in WinCC and then S7-PLCSIM.
If you have not installed the TIA Portal or S7-PLCSIM yourself, you must be a member in the
following Windows user groups:
• PlcSimUsers
• RTIL Tracing Users
• Siemens TIA Engineer
• SIMATIC HMI
• SIMATIC HMI VIEWER

Procedure
To start the simulation with enabled "Load preview" dialog, follow these steps:
1. Select one of the following buttons:

– From the shortcut menu of the HMI device: "Start simulation"
– In the toolbar: "Start simulation"
– Menu command "Online > Simulation > Start"
– Under "Visualization > Simulate device" in the portal view.
The compilation result is displayed in the Inspector window under "Info > Compile".
The "Load Preview" dialog is displayed.
NOTICE
Running runtime is stopped during complete download of a simulation
A project running in runtime is stopped when a simulation is completely loaded.

2. When the simulation is downloaded completely, check the displayed default settings and
change the settings as necessary:
– Specify whether runtime should start after the download.
– Specify whether tag values, active alarms, and user data are retained.

The setting is only accepted when you have selected "Start runtime".
To retain internal tags, the persistency must be enabled in the settings of the respective
tag.

– Specify whether all logs are reset in runtime.
The setting is only accepted when you have selected "Start runtime".

3. Click "Download".
If you have selected the "Start runtime" option, Runtime is started after the download.

4. Open the browser.
5. Call the URL "https://localhost" in the browser.

Instead of the name "localhost", you can use the PC name.
6. Select "WinCC Unified RT".
7. Enter the user name and password.

The configured screen is displayed as start screen in the browser.

Runtime and simulation
17.1 Simulate runtime

7212 System Manual, 11/2022

8. Test, for example:
– Screen change and screen navigation
– Layout
– Internal tags

9. You have several options for stopping the simulation:
– Select "Online > Stop runtime/simulation" in the menu bar.
– Select "Stop runtime/simulation" in the shortcut menu of the HMI device.
As long as the simulation is running, the project is always loaded in simulation mode.

Note
Simulation and license
If no license is found for Runtime, an alarm appears and the simulation runs in demo mode. After
1 hour, you will be reminded that no license was found.

See also
Basics of simulation (Page 7210)
Skip "Load preview" dialog (Page 7211)
Specify tag persistency (Page 636)

17.1.2.4 Simulating a central user management
You want to simulate a project in which a central user management is configured for a customer.
You have two options if you do not have access to the central user management of the customer:
• Configure your own central user management.
• Configure a local user management.

Requirement
• You know which groups and their function rights are contained in the central user

management of the customer.

Configuring a central user management
Configure a central user management for the simulation project.
1. Create the users.
2. Create the user groups according to the customer project.
3. Assign the users to the groups.
4. Establish the connection to the central user management.

Runtime and simulation
17.1 Simulate runtime

System Manual, 11/2022 7213

5. Start the simulation.
6. Log on in runtime.
Changes can be downloaded.

Configuring a local user management
Configure a local user management.
1. Create one or more users.
2. Assign the roles to the users.
3. Start the simulation.
Changes cannot be downloaded.

See also
Specifying local or central user management (Page 6894)
Managing local users (Page 6900)

17.2 Operating Unified Panel

17.2.1 Users in runtime

Introduction
To protect your project, create users and assign roles to them. You can create local users or
central users in the UMC (User Management Component). To access the runtime of a project, a
user must be configured before loading. You configure the user administration in the
engineering system.

Local user administration
To transfer the local user administration from the engineering system to the HMI device, the HMI
device "Keep current user administration data in the runtime" must be disabled in the "Load
preview" dialog before loading.
Runtime starts after loading the local user administration settings.

Central user administration in the UMC
The connection to the central UMC server is established after loading the settings of the central
user administration. Runtime starts and you log on in Runtime.

Runtime and simulation
17.2 Operating Unified Panel

7214 System Manual, 11/2022

See also
Using central user management in the Control Panel (Page 6940)
Protecting the Control Panel from being accessed (Page 6926)

17.2.2 Viewing memory card data

17.2.2.1 Basics
WinCC provides you with the possibility of viewing data stored on your memory card. The
function supports the use of memory cards of the HMI device and of the PLC.
You have the following options:
• Viewing a backup (Page 7215)
• Renaming and deleting backups (Page 7217)

See also
Viewing a backup (Page 7215)
Renaming and deleting backups (Page 7217)

17.2.2.2 Working with backups

Viewing a backup

Introduction
If you have stored the backup of an HMI device on a memory card, this backup can also be viewed
in the TIA Portal.

Requirements
• WinCC is installed.
• A memory card with a backup is available.
• The card reader is connected to the configuration PC.
• The project view is open.

Backup on the memory card in the card reader
1. Insert the memory card into the card reader.
2. Open "Card Reader/USB storage" in the project tree.

Runtime and simulation
17.2 Operating Unified Panel

System Manual, 11/2022 7215

3. Select the card reader drive.
The "Online card data" folder is displayed.

4. Open the "Online card data" folder.
5. Click the backup to open the shortcut menu.
6. Select "Properties".

Backup on the memory card of the PLC
Proceed as follows if the backup is stored on the memory card of the PLC:
1. Connect the PLC with the configuration PC.
2. Click on the PLC in the project navigation.
3. Select "Connect online" from the shortcut menu.

A connection to the PLC is established.
Once the PLC is connected, the "Online card data" folder is displayed.

4. Open the "Online card data" folder.
Note
Accessing a password-protected PLC
When you attempt to access a PLC that is protected by a password, you will be prompted to
enter the password.
You need at least read access rights in order to view the data that is stored on the memory
card.

5. Click the backup to open the shortcut menu.
6. Select "Properties".

Result
The backup properties are displayed in a separate dialog:
• General properties

– Date and time when the backup was created
– Software version with which the backup was created.

• Supported HMI devices with which the backup is compatible

See also
Renaming and deleting backups (Page 7217)

Runtime and simulation
17.2 Operating Unified Panel

7216 System Manual, 11/2022

Renaming and deleting backups

Introduction
You can rename and delete backups from a memory card in the project navigation of the TIA
Portal.

Requirements
• WinCC is installed.
• The card reader is connected to the configuration PC.

Or The PLC is connected online with the configuration PC.
• A memory card with a backup is available.
• The project view is open.
• The backup is displayed in the project navigation.

Note
Accessing a password-protected PLC
When you attempt to access a PLC that is protected by a password, you will be prompted to
enter the password.
You need write access rights to rename or delete memory card data.

Procedure
1. Click on the backup in the project navigation.
2. Open the shortcut menu.
3. Select "Rename" to rename the file.
4. Enter a new name.
5. Select "Delete" to delete the file.

Result
The backup file is now renamed or deleted.

See also
Viewing a backup (Page 7215)

Runtime and simulation
17.2 Operating Unified Panel

System Manual, 11/2022 7217

17.2.3 Operation in Unified Runtime

17.2.3.1 Overview

Operating options for an HMI device
The following operating options are available:
• Operation via touch screen

The HMI device has a touch-sensitive touch screen. Use your finger or a suitable touch pen to
operate the touch screen.

• Operation via mouse and keyboard
You can use the mouse and keyboard to operate the device like a PC.

Adhere to the instructions for operating the device in the relevant operating instructions.

Individually configured operation
The configuration engineer has various options available for setting up operation.
Examples of actions whose execution is always determined on a project-specific basis:
• Screen change
• Reporting
• Changing runtime language
There are no specific operating elements to execute certain functions. The configuration
engineer specifies the project-specific execution. The screen change can be triggered, for
example, via a button.
Information on project-specific operations can be found in the system documentation.

17.2.3.2 Operation with the touch screen

Overview of operation with the touch screen
You use the touchscreen to operate the HMI device or the project running on your HMI device.

Special features when operating using the touch screen
Operation with the touch screen is characterized by the following special features:
• Enable

To enable the operator control, use your finger or a suitable touch pen to operate the touch
screen. To generate a double-click, touch the operator control twice in rapid succession.

• Value input
You enter numbers and letters on the touch screen with a screen keyboard.

Runtime and simulation
17.2 Operating Unified Panel

7218 System Manual, 11/2022

Input using the screen keyboard
The screen keyboard is displayed when you select a screen item that requires input. The screen
keyboard is hidden again when input is complete.
Further information on the screen keyboard can be found in the operating instructions of the
HMI device.

Placing the focus on objects
You have the following options:
• Click or tap on the object.

Note
Giving focus to objects with a transparent background
If an object has a transparent background, click on a visible area of the object.

• Press <Tab> until the object has the focus.

Operating objects with transparent fill
The objects displayed on a screen can have transparent ranges.
Example: Sliders, bars and pointer instruments are enclosed by a transparent rectangle.

Requirement
An event which is triggered by operating actions such as typing or clicking has been configured
for the object in the engineering.

Trigger event
To trigger the event, proceed as follows:
• If the object does not have the focus, click a visible part of the object, e.g. its border.
• If the object already has the focus, the event is also triggered by clicking in the transparent

area.

Runtime and simulation
17.2 Operating Unified Panel

System Manual, 11/2022 7219

Using multi-touch functions

Supported gestures

Definition
Various touch gestures are available for the runtime operation. Some touch gestures have
different effects in the process pictures than in the controls.

Note
No operation with three or more fingers.
Only use one or two fingers when operating with touch gestures.
If you use more than two fingers with touch gestures, this can cause incorrect operation.
In the case of multitouch operation with several fingers, you only operate the respectively
configured objects.

Supported touch gestures in process pictures
Icon Gesture Function

Tap To select an object, tip on the corresponding position in the
process screen.

Drag with one fin‐
ger

To move objects with a window, drag the object by its title
bar in the desired direction.

Scale To zoom in or zoom out, drag simultaneously with two fin‐
gers.

Wiping To switch between two process screens, swipe horizontally
or vertically with one finger. A touch area must be config‐
ured for this function.

Keep pressed The function corresponds to a right-click.
To trigger the event configured for the right-click, press for
longer than a second on the object or the link.

Runtime and simulation
17.2 Operating Unified Panel

7220 System Manual, 11/2022

Supported touch gestures in controls
Icon Gesture Behavior Supported

WinCC controls

Tap • To select a row, tap the row.
• With corresponding configu‐

ration of the control: To se‐
lect a cell.

• To sort a column, click on the
column header.

• In trend controls: Zooms in
on the trend area along the
X/Y axis.
Requirement: The "Zoom
+/-", "Zoom time axis +/-" or
"Zoom value axis +/-" button
is pressed.

• Alarm control
• Process con‐

trol
• Trend control
• Function

trend control
• Ruler window
• System diag‐

nostics control
• Parameter set

control

Tap with two fingers Zooms out of the trend control.
Requirement: The "Zoom +/-",
"Zoom time axis +/-" or "Zoom
value axis +/-" button is pressed.

• Trend control
• Function

trend control

Drag with two fingers To move window contents, such
as zoomed-in tables or trends,
drag with two fingers in the op‐
erating element window.

• Trend control
• Process con‐

trol
• Ruler window
• Browser

Drag with one finger • Moves the ruler.
• Moves the X axis or Y axis.

Requirement: The "Move
trend area" or "Move axes
area" button is pressed or the
control is zoomed in.

• Trend control
• Function

trend control

To select multiple rows, tap a
row and drag your finger up or
down.
With corresponding configura‐
tion of the control: To select mul‐
tiple cells.

• Alarm control
• Process con‐

trol
• Ruler window
• System diag‐

nostics control
• Parameter set

control

To adapt the column width, tap a
column grid line and drag your
finger to the right or left.
To change the order of the col‐
umns, tap a column header and
drag your finger to another col‐
umn header.
To move zoomed-in window con‐
tents, drag with one finger.

Browser

Runtime and simulation
17.2 Operating Unified Panel

System Manual, 11/2022 7221

Icon Gesture Behavior Supported
WinCC controls

Double tap To edit a cell value, double-tap
the cell.
Requirement:
• Process control: The "Edit"

button is pressed.
• Parameter set control: A pa‐

rameter set is selected.

• Process con‐
trol

• Parameter set
control

Scale To zoom in or out in an operating
element, drag with two fingers
in the operating element win‐
dow.

Trend control,
browser

Two-hand operation
Hold the release button
with one finger, and oper‐
ate an object with the sec‐
ond finger

An operating element can be configured for two-
hand operation, that is, the object can only be oper‐
ated when a release button is being pressed at the
same time.
For two-hand operation in WinCC you configure:
• A button that is defined as a release button in the

security settings of a plant screen.
• The security property "Require explicit unlock" at

all operating elements that can only be operated
when the release button is pressed.

See also
Special features for multi-touch operation (Page 7222)

Special features for multi-touch operation

Scrolling in lists and controls
You can scroll through lists and controls by dragging.

Special features of the trend view
You enlarge or reduce the view in "Trend view" and "f(x) trend view" objects by pinch-to-zoom
with two fingers.
Double tap to switch from the magnified trend view back to the normal view.
The zooming function is limited to the time axis in the "Trend view" object.
If you have enabled the option "Range > Auto-size" during configuration of the value axes in
f(x) trend view, the axes are constantly calculated during zooming.

Runtime and simulation
17.2 Operating Unified Panel

7222 System Manual, 11/2022

Horizontal scrolling is not supported in the "Trend view" object.

Note
Current view is not persistent
The changes of zoom factor and position changed by scrolling are not saved.
The trend view is reset to the default setting during a screen change.

See also
Supported gestures (Page 7220)

Two-hand operation of operator controls

Two-hand operation of operator controls

Introduction
WinCC supports two-hand operation of operator controls for Unified Comfort Panel. It ensures
safe operation of operator controls which are used to change critical system settings, for
example, control tags with machine limits.

Locked and unlocked operator controls
You define specific operator controls as "locked operator controls" for two-hand operation of
operator controls. Locked operator controls usually cannot be operated in runtime. Operators
can only operate the locked operator controls when they press a release button at the same time.
In runtime, locked operator controls can only be accessed with the tab sequence when a
release button is pressed at the same time.

Locked operator controls and release buttons
You can configure all operator controls as locked.
You must configure at least one button in the screens as release button. This can be any
unlocked button. The unlocking of locked operator controls by pressing the release button
has an effect on all open screens.

Display in runtime
The locked operator controls are displayed as dimmed in runtime. The locked operator controls
are completely visible when they are unlocked by means of the release button.

Runtime and simulation
17.2 Operating Unified Panel

System Manual, 11/2022 7223

Simulation of projects with multi-touch functions
WinCC supports the simulation of configured multi-touch functions. Requirement is that your
monitor supports multi-touch operation.

Locking and unlocking operator controls
You can lock and unlock operator controls in projects for multi-touch devices. Locked operator
controls can only be operated in runtime when the operator presses a release button at the same
time.
You can lock and unlock individual operator controls or several operator controls
simultaneously.

Procedure
1. Configure operator controls of the type I/O field, button or slider.
2. Select the required operator control(s).

Runtime and simulation
17.2 Operating Unified Panel

7224 System Manual, 11/2022

3. To lock the operator controls, enable the "Require explicit unlock" option under "Properties >
Properties > Security".

4. To unlock the operator controls, disable the "Require explicit unlock" option under "Properties
> Properties > Security".

In runtime, locked operator controls can only be operated when a release button is pressed at
the same time.

Note
Locking of operator controls is an add-on to the existing security settings of the operator control.
This means that in case of locked operator controls - in addition to pressing the release button
- the general operability ("Allow operator control" option) and the required operator control
("Authorization" property) must be present so that the operator control can be operated in
runtime.

Runtime and simulation
17.2 Operating Unified Panel

System Manual, 11/2022 7225

Defining the release button
To use the locked operator controls, you must configure at least one release button in one of the
displayed screens.

Configuring the release button in the screen
So that you can operate locked operator controls on multi-touch devices, configure a release
button.

Runtime and simulation
17.2 Operating Unified Panel

7226 System Manual, 11/2022

Procedure
1. Select the screen.
2. Select the desired button of the screen under "Properties > Security" under "Enable explicit

unlock".

3. To turn a release button back into a normal button, select a different button or "None" under
"Properties > Security" under "Enable explicit unlock".

Runtime and simulation
17.2 Operating Unified Panel

System Manual, 11/2022 7227

17.2.3.3 Triggering an action

Introduction
Triggering an action at an operator control can mean the following:
• A command is executed.

Example: Touch a button to trigger a script or perform a predefined function.
• An object is enabled.

Example: Touch a table cell to enter a value in a list.

Requirement
• You have navigated to the operator control on which you want to trigger the action.
• The operator control has the focus.

Procedure
• Touch the operator control on the touch screen once or twice in rapid succession.

Result
The following results are possible:
• The requested command is executed.
• The screen keyboard is opened and/or the cursor blinks in the input area of the operator

control.
• The element is selected and can be moved.

17.2.3.4 Entering a value

Introduction
Depending on the input format, you enter numeric or alphanumeric values in an input field using
the screen keyboard.

Requirement
• The object is an input field or table field.
• The operator control is enabled.

Runtime and simulation
17.2 Operating Unified Panel

7228 System Manual, 11/2022

Entering a value
1. Enter the desired value.
2. To confirm the value and exit the field, press the <Enter> key.
3. To discard the value and exit the field, press the <Esc> key.

Result
A value is entered or discarded. You navigate as needed to the next operator control.
For more detailed information, refer to the operating instructions for your HMI device.

17.2.3.5 Moving operator controls

Introduction
You operate movable operator controls of a screen item in Runtime via the touchscreen, such as
a slider.

Requirement
• A movable operator control is selected.

Procedure
1. Use a corresponding gesture to move the operator control, e.g. "drag" for a slider.
2. To finish the movement, navigate to another screen object or operator control.

Result
The position of the movable operator control and the display in the screen object have changed.

17.2.3.6 Changing Runtime language

Introduction
The project on the HMI device can be multilingual. A corresponding operating element which
lets you change the language setting on the HMI device has been configured in runtime.
The project always starts with the language set in the previous session.

Requirement
• The desired language for the project is available on the HMI device.
• The language switching function is linked to an operating element, for example, to a button.

Runtime and simulation
17.2 Operating Unified Panel

System Manual, 11/2022 7229

Selecting a language
You can change project languages at any time. The language-specific objects are displayed in the
selected language when the language switching function is called.
You can switch the language in Runtime in one of the following ways:
• Use a configured operating element to switch from one language to the next in a list.
• Use a configured operating element to directly set the required language.

17.2.3.7 Web browser of WebKit engine

Introduction
If the "Browser" object is configured for an HMI device, then the "Browser" operating object is
displayed in the corresponding runtime screen. Only the web browser of the WebKit engine is
available on HMI devices. This web browser offers many HTML5 features, but no Active X
support.

HTML5 functions
The following HTML5 standard functions are fully or partly supported by the Web browser of the
WebKit engine:
• Parsing rules
• Elements
• Forms and fields
• Output
• Communication
• User interactions
• Performance
• Security
• History and Navigation
• 2D graphics
• Memory
• Animations
• Web applications
• Files and file systems

Runtime and simulation
17.2 Operating Unified Panel

7230 System Manual, 11/2022

Note
Functions not supported in the WebKit engine web browser
• Microdata
• Enter
• Peer to peer
• Position and orientation
• Video, audio
• Responsive images
• 3D graphics
• Streams
• Web components

The following tables show the availability of the HTML5 functions in the web browser of the
WebKit engine in detail:

Parsing rules Available
<!DOCTYPE html> triggers the standard mode Yes
HTML5 tokenizer Yes
HTML 5 tree building Yes
Parsing Inline SVG Yes
Parsing Inline MathML Yes

Elements Available
Embedded invisible data Yes
New or modified elements
Section elements Yes
Grouping content elements that belong together Partly
Semantic elements of the text level Partly
Interactive elements Partly
Global attributes and methods
Hidden attributes Yes
Inserting dynamic markups Yes

Forms and fields Available
Field types
type = text Yes
type = search Yes
type = tel Yes
type = URL Yes
type = email Yes
type = date No

Runtime and simulation
17.2 Operating Unified Panel

System Manual, 11/2022 7231

Forms and fields Available
type = month No
type = week No
type = time No
type = datetime No
type = datetime-local No
type = number Yes
type = range Yes
type = color Yes
type = checkbox Yes
type = image Yes
type = file Yes
textarea Yes
select Yes
fieldset Yes
datalist Yes
keygen Yes
output Yes
progress Yes
meter Yes
Fields
Field validation Yes
Assignment of forms and controls Yes
Other attributes Yes
CSS sectors Yes
Events Yes
Forms
Form validation Yes

Output Available
Full-screen support No
Web notifications Yes

Communication Available
Server-sent events Yes
Web beacons No
XML HttpRequest Level 2
File upload Yes
Response type Yes
WebSocket
Basic Socket Communication Yes
ArrayBuffer and Blob Yes

Runtime and simulation
17.2 Operating Unified Panel

7232 System Manual, 11/2022

User interactions Available
Drag-and-drop
Attributes Yes
Events Yes
Editing HTML
Editing elements Yes
Editing documents Yes
CSS sectors No
APIs Yes
Clipboard
Clipboard for API and events No
Spell check
Spelling attributes Yes

Performance Available
Native binary data Yes
Workers
Web workers Yes
Shared workers Yes

Security Available
Web Cryptography API No
Content Security Policy 1.0 Yes
Content Security Policy 1.1 No
Cross-Origin Resource Sharing Yes
Cross-Document Messaging Yes
iFrames
Sandboxes iFrame Yes
Seamless iFrame Yes
iFrame with inline contents Yes

History and Navigation Available
Session history Yes

2D graphics Available
Canvas 2D graphics Yes
2D primitives
Text input in graphics Yes
Path input in graphics No
Drawing an ellipse in graphics No

Runtime and simulation
17.2 Operating Unified Panel

System Manual, 11/2022 7233

2D graphics Available
Drawing a dashed line in graphics Yes
System focus ring No
Functions
Hit testing No
Aperture mode No
Formats for image export
PNG Yes
JPEG Yes
JPEG-XR No
WebP No

Animation Available
window.requestAnimationFrame Yes

Web applications Available
Offline resources
Application cache Yes
Service workers No
Content and scheme handlers No

Memory Available
Key value storage
Session memory Yes
Local storage No
Database storage
IndexedDB No
Blob object store No
ArrayBuffer object store No
Web SQL database Yes

Files and file systems Available
Reading files
Basic support for reading files Yes
Creating a blob from a file Yes
Creating a data URL from a blob Yes
Creating an ArrayBuffer from a blob Yes
Creating a blob URL from a blob Yes
Accessing a file system

Runtime and simulation
17.2 Operating Unified Panel

7234 System Manual, 11/2022

Files and file systems Available
API file system No
File API: Folders and system No

Additional functions Available
Styles
Style items No
Scripts
Asynchronous script execution Yes
Signaling script errors in Runtime Yes
Events for script execution No
Base 64 encoding and decoding Yes
JSON coding and decoding Yes
URL API Yes
MutationObserver "Yes" (pre-selected)
Promises No
Page visibility "Yes" (pre-selected)
Text selection Yes
Scrolling (Scroll into view) Yes

17.2.4 Entering barcodes via handheld readers

Introduction
Optical handheld readers enable you to optically identify components, machines and other
objects and to transfer the read-out data on your HMI device directly to certain operating objects.
Optical handheld readers capture codes such as two-dimensional data matrix codes, one-
dimensional barcodes and postal barcodes.
Supported optical handheld readers can be found at the following entry on the Internet:
FAQ 19188460 (https://support.industry.siemens.com/cs/ww/en/view/19188460)
You can find templates for the settings and instructions on configuration in the manual for
your optical handheld reader.

Procedure
You use the connected optical reader to read a code into the object that has the focus.
After the read-in, confirm the value with the Enter key or with the "Suffix - Enter" that you
have previously configured in the settings of your optical reader.

Runtime and simulation
17.2 Operating Unified Panel

System Manual, 11/2022 7235

https://support.industry.siemens.com/cs/ww/en/view/19188460

Objects for input with optical handheld reader
The following objects support input via an optical handheld reader:

Object Preconditions for input
IO field
Clock

The corresponding data type is selected.
The object and the tag length are configured accordingly.
The operating object has the cursor focus.

Parameter set control The parameter set has the cursor focus.
Browser The operating object has the cursor focus.
Runtime dialogs which support key‐
board entry

The dialog is open and the corresponding input field has the
cursor focus.

File browser The field "File path" has the cursor focus.

Result
The code is read and entered into the corresponding input field.

17.3 Operating Unified PC

17.3.1 Basics

17.3.1.1 Process screens

Behavior of process screens
Process screens are static and dynamic representations of the plant, plant units or processes. You
use the process screens to operate and monitor the plant or areas within it.
A project on an HMI device consists of multiple process screens. When you start Runtime,
the process screen that was defined as the start screen is displayed. You navigate between
process screens according to a sequence, navigation or link that was defined by the
configuration engineer.
The process screen contains static and dynamic screen objects. Screen objects visualize the
current process values from the controller memory and record operator inputs that influence
the process. Dynamization is realized through the connection of tags to the screen object
during configuration.
Process values and operator inputs are exchanged between the controller and the HMI device
by means of tags.
A process screen can be opened and operated by several operating stations simultaneously in
Runtime.

Runtime and simulation
17.3 Operating Unified PC

7236 System Manual, 11/2022

Note
Displaying a start screen changed by reloading
A start screen was defined for a project, and the project was started in Runtime. If another start
screen is then defined in engineering and the project is loaded into the device again, the last
active screen is displayed in Runtime after the connection is established again.
After reloading the project, refresh the screen in Runtime. If your HMI device is a computer, use
the F5 key or the browser "Refresh" button to do this.

Screen navigation
Process visualization is generally split between multiple process screens, for example on the
basis of functional or technological aspects. Changing between process screens is referred to as
screen navigation.

Popup window
With corresponding configuration in the engineering system, clicking on a screen area opens a
popup window containing additional information on the screen area.
Example: A screen represents a pump with its valves. When you click on a valve, a popup
window opens with detailed information on the valve as well as input fields. You can check
the state of the valve in the pop-up window and edit using the input fields.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7237

Predefined styles
The following predefined styles are available for the process screens of the HMI devices:
• Light style
• Dark style
• Expanded style

Note
Compact mode in light and dark style
If the following elements in light or dark style fall below specific dimensions, they are
automatically displayed in compact mode:
• Bar
• Slider
• Gauge
• Clock

17.3.1.2 Tags

Behavior of tags
Tags correspond to defined memory areas to which values are written and/or from which values
are read. In runtime, tags are output in trends or tables, for example.
External tags correspond to the process values from the memory of an automation system.
They are connected to the tags of a connected PLC.
Internal tags transport values within the HMI device. The internal tag values are only
available as long as runtime is running.

Value changes to external tags
Value changes to external tags are triggered as follows in runtime:
• By a PLC

The PLC changes the value of the connected PLC tags.
During the next update of the external tags, the new value is written to the HMI process
image.

• By operator actions or by a script running on the HMI device
The value change requested in runtime is not directly applied from the HMI process image.
Runtime transfers the value to the PLC. The PLC writes the value to the linked PLC tag after
successful verification.
During the next update of the external tags, the new tag value is written to the HMI process
picture.

Acquisition mode and acquisition cycle for updating the tags are specified during
configuration.

Runtime and simulation
17.3 Operating Unified PC

7238 System Manual, 11/2022

Executing the script of a trigger tag
The script defined for a trigger tag in engineering is executed in Runtime in the following cases:
• During start of Runtime

The start value of the trigger tag is reported to Runtime.
• When the condition defined for the trigger tag occurs

For example if the trigger tag changes its state or exceeds a limit value.

Floating point numbers in the web client
Since the web client is implemented via JavaScript, tag values for floating point numbers can
only be displayed with a mantissa of up to 54 bits. This leads to rounding of values with a
mantissa greater than 54 bit in Runtime.

Note
Values with a mantissa of up to 64 bits are correctly displayed by I/O fields.

Restricted scope of validity "local session"
By default, internal tags apply "system-wide".
As an option, the scope of validity of an internal tag can be limited to "local session". Data
related to a session in a multi-user environment is processed independently in each local
session.
The use of local session tags is supported in Unified Collaboration and in the web client.
Local session tags permit, for example:
• Individual navigation in screen windows or in different menu structures
• Session-related disabling/enabling of the user
• Session-related position, alignment and rotation of objects in a screen
The values of a local session tag are not saved and will be lost at the end of a session.

17.3.1.3 Alarms

Behavior of alarms in Runtime
Depending on the configuration, PLC alarms and HMI alarms from various areas of the plant are
displayed in Runtime.
Depending on the configuration, the alarms are labeled according to importance or type and
are represented and displayed differently. For example, a pending alarm can be displayed as
follows:

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7239

17.3.1.4 Logs

Data log
In Runtime, the data logging functions on the server as a log server. On the clients, the data
logging functions as a log client. Only the log server accesses the database and compiles and
logs the process data. The clients receive log data from the log server.
The log data is visualized in tabular or graphic format on all clients running tag logging in
Runtime. The data to be displayed always comes from the log server. All operations on the
client are transmitted to the server and the result of the processing is transferred back to the
client.

Alarm log
Alarms in the project indicate fault states and operating states of a process. They are generally
triggered by the controller. Alarms are displayed on the HMI device in screens. All the data
associated with an alarm and configuration data are saved in an alarm log, for example, alarm
class, time stamp and alarm text. Each alarm class can be logged separately. Alarms are logged
either automatically or by operator intervention.

17.3.1.5 Contexts
Contexts allow you to view plant units according to a certain viewpoint, e.g. according to a
certain customer, product, job or shift.

Runtime and simulation
17.3 Operating Unified PC

7240 System Manual, 11/2022

Principle
Contexts always belong to a plant object. They are indicated as follows:
• User-defined contexts:

Using a program created with the ODK-API
• System-generated contexts:

For installed Performance Insight and Calendar option packages: Automatically in Runtime
Example: When a shift starts in Calendar, an archived context value is created with the shift
ID

A log entry is generated each time a context (e.g. "Product") is executed. The logged context
saves:
• The context value (e.g. "orange lemonade")
• Start time and end time of the execution time
• The quality code

Contexts in the trend control and alarm control
You can filter the content of these controls so that only data that has been generated in a
specific plant unit and for the context you have selected is displayed. To do this, select a plant
object, a context and one of its logged context values.

Example
A press house produces juices for various beverage brands. Using contexts, employees can
display in runtime which alarms have occurred:
• During the production of a specific product (cloudy apple juice, clear apple juice, pear juice

etc.).
• For orders for a specific customer (Schmitt, Schulze, Meier).
• During a specific shift (early shift, late shift, night shift).

Contexts in the "Reports" control.
You have the option of linking the generation of reports to the execution of contexts.
If the templates are configured appropriately, the reports available in the control can also
contain information about contexts. When a report was generated as an Excel file and reads
both contexts and alarms or tag values, you can then use the Excel filter function to filter the
alarms and tags by context.

See also
Display context-dependent alarms of a plant object (Page 7291)
Display context data of the plant objects in a trend control (Page 7329)
Adding contexts (Page 7421)

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7241

17.3.2 Starting and displaying runtime

17.3.2.1 Internet browsers for WinCC Unified PC
Ensure you have the latest operating system and browser version if you want to access Runtime
Unified with this device.
WinCC Unified displays the runtime elements in HTML5. The browser used also has to
support this standard. Since the browsers interpret HTML5 differently, it is possible that
objects are displayed differently depending on the browser and the browser version used. For
example, browsers sometimes display fonts differently.
Compatibility tests were performed for the following browsers. The focus of the compatibility
tests was on the browsers marked with *:

Operating system Browser
Microsoft Windows • Google Chrome*

• Microsoft Edge
• Mozilla Firefox, Mozilla Firefox ESR

Android • Google Chrome*
• Firefox
• Edge

iOS, Mac • Safari*
• Google Chrome
• Firefox
• Edge

Browser recommendation
In view of the performance and support of the Runtime standard elements, Google Chrome
has proven to be the preferred browser. Its memory requirements are slightly higher than
those of the other browsers.

Note
Operating system and browser version
For Runtime operation via Android or iOS, always use the latest operating system.
Use the latest browser version.

Note
Performance differences in different versions of individual browsers
The browser versions can differ from each other, which can result in different behavior regarding
the memory requirements and speed.

Note
Suitability for continuous operation
MS Edge and Mozilla Firefox have proven to be problematic in continuous operation.

Runtime and simulation
17.3 Operating Unified PC

7242 System Manual, 11/2022

Known browser problems
The following restrictions apply to the following browsers:

Internet browser Limitation
MS Edge • High memory capacity utilization in continuous op‐

eration
Mozilla Firefox • High memory capacity utilization in continuous op‐

eration
Mozilla Firefox ESR • Support of touch gestures for touch panels as of Fire‐

fox ESR V59
Google Chrome • High memory capacity utilization in uninterrupted

duty depending on the version.
• On Android: Grid lines with a line width ≤1 are not

displayed correctly. This is due to the browser's own
line thickness representation. As a solution, it is help‐
ful to use a line width ≥1.

• No correct representation of elements that use an
SVG graphic as background graphic scaled in the En‐
gineering System.

Restrictions to the various functions can also occur, such as the availability of the before and
after buttons in the controls.

Current information on browser problems
You can find up-to-date information on display problems in browsers at the Siemens Online
Support under the entry ID 109757952.

17.3.2.2 Displaying runtime

Introduction
Use a web browser (web client) to display and operate the Runtime project running on the HMI
device. The following options are available to access and display Runtime:
• From the same device (local web client)

The web browser is installed on the same device as Runtime.
• Remote access from the same network

The device on which the web browser is installed belongs to the same network as the HMI
device.

• Remote access from a foreign network
The device on which the web browser is installed does not belong to the same network as the
HMI device.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7243

Requirement
• The Runtime project is loaded on the HMI device.
• The project runs in runtime.
• The user management configuration of the project is active.
• When using the central user management:

– At least one user is created in the UMC system.
– The user created in the UMC system has been imported into the TIA Portal project before

the loading.
– The user has function rights via his/her roles to monitor or monitor and operate the

Runtime project.
• When using the local user management:

– Before the loading, at least one user has been created in TIA Portal.
– The user has been assigned at least one role. The user has function rights via his/her roles

to monitor or monitor and operate the Runtime project.
– At least one user has the "HMI Administrator" role.

Runtime and simulation
17.3 Operating Unified PC

7244 System Manual, 11/2022

Procedure
1. To view the Unified start page, enter the Unified URL in the browser address bar:

"https://<IP address of the HMI device or its FQDN or device name>"
To display the Unified Runtime page directly, append the following string to the URL: "/
WebRH"
Step 5 is omitted.
Example: "https://141.73.65.245/WebRH"
Note
Whether you enter the IP address, the FQDN (fully qualified domain name) or the device
name in the URL depends on how the web server certificate has been bound to the HMI
device. This is defined during Runtime installation or later in the "Website settings" step of
WinCC Unified Configuration.
If needed, ask your administrator.
The following restrictions apply to entering the URL:
• FQDN: Only if the HM device belongs to a domain
• IP address: Not when using dynamic IP addresses
• Device name: Only when accessing from the same network

Note
When using a local web client, you can also enter the "localhost" command.
Example: "https://localhost/WebRH"
Regardless of whether the web server certificate is already installed in the browser, you will
first see a security warning. Bypass this warning by clicking "Advanced" and "Continue to
<link> (unsecure)".

2. Press Enter.
3. If you are accessing the Runtime of the HMI device from this device for the first time and there

is no corresponding certificate, install the certificate in the browser. Then reload the page.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7245

4. The start page of Runtime is displayed.
Note
If you experience display problems in the web client, completely delete the browser data
(history, form entries, etc.).

If WinCC Unified Online Engineering is installed on the device, the "WinCC Unified
Configuration" button also appears.

5. Select "WinCC Unified RT".
The login page of WinCC Unified Runtime is displayed.
Note
After a complete download of a project, an error (SwacLogin) may occur when opening the
WinCC Unified Runtime page.
You can find more information at SwacLogin: Errors after complete download (Page 7253).

6. Specify the user name and password of a runtime user.
7. (Optional) Select the language in which runtime is displayed.
8. Confirm your entry.

The Runtime project that is running is displayed in the web browser.
Note
Displayed runtime language
When using central user management, runtime is displayed in the language you have
selected in the "User login" dialog during login.
If this language is not available for the current project or if the language setting was not set
in the central user management, the following language is displayed:
• Engineering with TIA Portal: The language for which the lowest number was configured

in the runtime settings.
• Engineering with Online Engineering: The language set as default language in the

"Languages" tab in the "Languages and Resources" editor.
If you do not select a language in the "User login" dialog, runtime is displayed in the language
that is set for the browser.

Runtime and simulation
17.3 Operating Unified PC

7246 System Manual, 11/2022

See also
Changing users in runtime (Page 7257)
Starting and stopping a project (Page 7259)
Installing a certificate when accessing via web client (Unified PC) (Page 7247)
Activating user management (Page 7508)

17.3.2.3 Installing a certificate when accessing via web client (Unified PC)

Using root certificates
To enable web browsers to establish a secure connection to WinCC Unified, the root certificate
with which the web server certificate of WinCC Runtime was issued must be known in the web
browser as a trusted certification authority.
By installing the web server certificate on the PC device, the public root certificate is made
available as a download for installation in web browsers on the WinCC Unified home page.
The procedure for installing the root certificate differs depending on your web browser.

Use of self-signed certificates
As an alternative to the root certificate, you can use a self-signed certificate.

NOTICE
Security risk from self-signed certificate
A self-signed certificate is not issued by a trusted certification authority.
If you use a self-signed certificate from an untrustworthy source, the data transfer is not
protected from attacks.
Before using self-signed certificates, check the source.
Depending on the firewall and network settings, the use of self-signed certificates may be
prohibited.

The installation of self-signed certificates is not supported by all web browsers. Depending on
the web browser, it is possible to define exceptions.
For more detailed information, refer to the operating instructions of the web browser.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7247

Installing the root certificate for Chrome and Microsoft Edge
Chrome and Microsoft Edge use the Windows system certificate store.
• On devices with WinCC Unified installation that have been configured with the Certificate

Manager, these web browsers can immediately establish a secure connection to the WinCC
Unified web pages because the root certificate has already been installed in the system
certificate store.

• On devices without WinCC Unified Installation the root certificate must be installed
manually.

To install manually, follow these steps (for example, Microsoft Edge):
1. Open the WinCC Unified home page via the URL https://<host name>

At first, an error message appears:

2. Open the field with the error details and confirm that you want to open the web page.
3. On the WinCC Unified home page, select the field "Certificate Authority" and confirm "Open

file" in the download dialog.
The root certificate is downloaded to the default download directory.

Runtime and simulation
17.3 Operating Unified PC

7248 System Manual, 11/2022

4. Open the downloaded file.
The root certificate is opened with the Windows standard form.

5. To import the root certificate into Windows, select "Install Certificate".
6. In the certificate import wizard, select "Local Machine" as the storage location, "Trusted Root

Certification Authority" as the certificate store and start the import process.

Installing the root certificate for Firefox
Firefox uses its own certificate store and must therefore be configured manually on each device
once:
1. Open the WinCC Unified home page via the URL https://<host name>

At first, an error message appears.
2. Open the field "Advanced" and confirm the field "Accept the Risk and Continue".

An exception is entered for this page in the Firefox certificate management.
3. On the WinCC Unified home page, select the field "Certificate Authority".

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7249

4. Save the root certificate. To do this, click "Save file" in the Firefox dialog that follows.
5. Store the certificate in the Firefox certificate store. Proceed as follows:

– Open the "Settings" page of Firefox.
– Select "Privacy & Security". There you will find the "Certificates" area further down. Open

"Show certificates...".
– In the "Certificate Management" window, select the "Certification authorities" tab:

– Click "Import" and select the root certificate you saved in step 3.
– In the window that opens, select the option "This certificate can identify websites" and

confirm your selection.
The connection to Runtime is now secure. In the Firefox address bar it is still displayed as
unsecure.

– To show the connection as secure in the address bar, click "Server" and remove the
exception created by step 2.

Runtime and simulation
17.3 Operating Unified PC

7250 System Manual, 11/2022

Installing the root certificate on iOS devices
iOS uses its own certificate store and must therefore be configured manually on each device
once. An error message also appears when the WinCC Unified home page is opened.
1. Open the field "Advanced" and confirm the field "Accept the Risk and Continue".
2. On the WinCC Unified home page, select the field "Certificate Authority".

3. Select "Install".

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7251

4. Select "Install" again.

You see the entry "Trusted".

Runtime and simulation
17.3 Operating Unified PC

7252 System Manual, 11/2022

5. Select "General > Info > Certificate Trust Settings".

6. Enable "WinCC Unified CA" and select "Next".

17.3.2.4 SwacLogin: Errors after complete download
After complete download of a project to a Unified PC, an error can occur when you open the
WinCC Unified home page. The error can occur regardless of whether you open the home page
locally on the PC or from a different device.
A possible cause of the error is the deletion of the browser cache.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7253

Error description
In "Chrome" and "MS Edge", the error is displayed with the following alarm:

In "Firefox", the error is displayed with the following alarm:

After accepting the warning of a potential security risk, the page remains empty in Firefox.
Only the background screen is visible.

Runtime and simulation
17.3 Operating Unified PC

7254 System Manual, 11/2022

Remedy the error in "Chrome" and "MS Edge"
To fix the error in "Chrome" and "MS Edge", proceed as follows:
1. Open a new tab.
2. Enter the URL address of the identity provider of the UMC server in the address line of the

browser. The URL is the same as the one in the error message without "/swaclogin", for
example, "https://uadtbf-01.asrd-lab.net/umc-sso".

3. The page with a warning regarding the secure connection is displayed.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7255

4. Accept the warning by clicking on "Proceed to uadtbf-01.asrd-lab.net (unsafe)".
5. The home page with the "User login" dialog is displayed.

Remedy the error in "Firefox"
To remedy the error in "Firefox", follow these steps:
1. Open a new tab.
2. Enter the URL address of the identity provider of the UMC server (ring server) in the address

line of the browser, for example, "https://uadtbf-01.asrd-lab.net/umc-sso".
3. A blank page opens. Close the page.
4. Refresh the home page with the function key <F5>. The home page with the "User login"

dialog is displayed.

See also
Displaying runtime (Page 7243)

Runtime and simulation
17.3 Operating Unified PC

7256 System Manual, 11/2022

17.3.2.5 Logging out user
If you want to end your Runtime session, you have the following options to log out completely:
• Use the "Logout" system function.
• Log out in the user management.
• Close all instances, i.e. open windows, of the browser in use.

Requirement
• You are logged in to Runtime.
• When you want to log out in the Runtime project, the system function "Logout" is

configured, for example, to the event "Click left mouse button".

Logging out in the Runtime project with the system function "Logout"
• Select the button at which the system function "Logout" is configured.

Logging out in the user management
• Select "Logout" from the menu.

Your session is ended.

New data downloaded from the TIA Portal is applied during the next login.

17.3.2.6 Changing users in runtime

Introduction
In Runtime, the users that are created in the engineering system can log on.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7257

Requirement
• The IP address or the fully qualified name (name and domain) of the PC on which Runtime is

installed is entered in the browser.
If Runtime is installed on the same PC as the browser, the "localhost" designation can also be
used.

• A user is logged into runtime.
You log in by selecting "WinCC Runtime RT" or "User management".

Procedure
To log off a user and then log on a different user, proceed as follows:
1. Select "User management" on the start page of Runtime.
2. Expand the menu at the top right.
3. Select "Logout".
4. Log in with a different user.

Change logged-on user via RFID card
For local Web clients, WinCC Unified Runtime supports login with RFID and PM-LOGON.
Requirement
• Runtime uses local user management.
• Logon via RFID is active for the HMI device.

This setting is made during installation of Runtime or later in WinCC Unified Configuration in
the "User management" step.

• PM-LOGON is installed on the HMI device.
• The teach-in of the used RFID card with PM-LOGON is completed.
• An RFID reader supported by PM-LOGON is connected to the HMI device.
• The local web client is opened and connected to Runtime.
• A user is logged into runtime.
Procedure
1. Hold the RFID card in front of the reader or insert the card into the reader.
2. If the entry of a PIN was set in PM-LOGON during the teach-in of the card, enter the PIN.
Result
After successful validation of the credentials stored on the card, the user logged-on in
Runtime is changed.

Runtime and simulation
17.3 Operating Unified PC

7258 System Manual, 11/2022

If the card requires PIN entry and an incorrect PIN is entered, the previously logged-on user
remains logged on.

Note
There is no system feedback about the user change. If required, process screens can be
configured in engineering to display the logged-on user.

Note
Additional information on PM-LOGON
See the PM-LOGON user help for information:
• For licensing and installation of PM-LOGON
• To the card readers supported by PM-LOGON
• To the teach-in of the RFID cards.
You can find the PM-LOGON user help at https://support.industry.siemens.com/cs/document/
109810587/pm-logon-manual?dti=0&lc=en-DE (https://support.industry.siemens.com/cs/
document/109810587/pm-logon-manual?dti=0&lc=en-DE).

17.3.2.7 Starting and stopping a project
A project must be running on the HMI device for Runtime to be displayed.
If no project is running, follow these steps:
1. Start the SIMATIC Runtime Manager tool on the HMI device.
2. Use the tool to get an overview of which projects are loaded on the HMI device.
3. Start the desired project.
You can find more information about the functions of the SIMATIC Runtime Manager and its
operation, in the "SIMATIC Runtime Manager" user help.

See also
Exporting tags (Page 7038)
Functions in the SIMATIC Runtime Manager (Page 7491)

17.3.2.8 Switching the Runtime language

Introduction
The project running on the HMI device can be configured in multiple languages. If a
corresponding operating element has been configured, you have the option of switching the
language set on the HMI device during ongoing operation.
The project always starts with the language set in the previous session.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7259

https://support.industry.siemens.com/cs/document/109810587/pm-logon-manual?dti=0&lc=en-DE
https://support.industry.siemens.com/cs/document/109810587/pm-logon-manual?dti=0&lc=en-DE

Requirement
• The desired language for the project is available on the HMI device.
• An operating element is configured, for example, a button that is linked to the language

switching function.

Procedure
You can switch between the languages at any time in runtime. Language-specific objects are
immediately displayed on the screen in the new language when you switch languages.
Depending on the configuration, you have the following options:
• Use a configured operating element to switch from one language to the next in a list.
• Use a configured operating element to directly set the required language.

17.3.3 Runtime operation

17.3.3.1 Overview

Operating variants
The following operating options for Runtime are available:
• Operation with the touch screen

The device of the web client has a touch-sensitive touchscreen. Use your finger or a suitable
touch pen to operate the touch screen.

• Mouse and keyboard operation
The device of the web client has a mouse and keyboard.

Adhere to the instructions for operating the device in the operating instructions.

Individually configured operation
The configuration engineer has various options available for setting up operation.
Examples of actions whose execution is always determined on a project-specific basis:
• Screen change
• Reporting
• Change the Runtime language
There are no specific operating elements to execute certain functions. The configuration
engineer specifies the project-specific execution. The screen change can be triggered, for
example, via a button.
Information on project-specific operations can be found in the system documentation.

Runtime and simulation
17.3 Operating Unified PC

7260 System Manual, 11/2022

17.3.3.2 Operation with the touch screen

Overview of operation with the touch screen

Special features when operating using the touch screen
Operation with the touch screen is characterized by the following special features:
• Enable

To enable the operating element, use your finger or a suitable touch pen to operate the touch
screen. To generate a double-click, touch the operating element twice in rapid succession.

• Value input
You enter numbers and letters on the touch screen with a screen keyboard.

Input using the screen keyboard
The screen keyboard is displayed when you select a screen object that requires input. The screen
keyboard is hidden again when input is complete.
Further information on the screen keyboard can be found in the operating instructions of the
HMI device.

Supported gestures

Definition
Various touch gestures are available for Runtime operation on mobile devices. Some touch
gestures have different effects in the process pictures than in the controls.

Note
No operation with three or more fingers.
Only use one or two fingers when operating with touch gestures.
If you use more than two fingers with touch gestures, this can cause incorrect operation.
In the case of multi-touch operation with several fingers, you only operate the respectively
configured objects.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7261

Supported touch gestures in process pictures
Icon Gesture Function

Tap To select an object, tap on the corresponding position in the process picture.

Zoom To zoom in or out, drag two fingers simultaneously in an area where there are no
operating elements. (Zooming)
The fingers form the zoom center.
With the exception of pop-up windows opened in the process screen, the entire con‐
tent of the process screen is zoomed.

Drag with one
finger

After zooming in a screen, you can move the screen section. To do this, drag a finger
in the desired direction in an area where there are no operating elements.
Pop-up windows open in the process screen are not moved with it.

Keep pressed To call the shortcut menu, press for longer than a second on the object or the link.
The function corresponds to a right-click.

Supported touch gestures in screen windows
The following gestures in the screen window only affect the screen window, not the screen:

Icon Gesture Function
Drag with one
finger

After zooming into a screen window, you can move the screen window section. To do
this, drag a finger in the desired direction in an area where there are no operating
elements.

Drag with two
fingers

With corresponding configuration in engineering, you can also move the screen win‐
dow section with two fingers.

Zoom With corresponding configuration in the engineering, you can enlarge or reduce the
screen window section independent of the zoom factor of the screen. Drag simulta‐
neously with two fingers (zooming).
If the screen window section is smaller than the content configured for the screen
window due to zooming, the fingers serve as zoom center, otherwise the upper left
corner of the screen window.

The following gestures work analogously to the gestures supported in the screen:
• Tap
• Keep pressed

Runtime and simulation
17.3 Operating Unified PC

7262 System Manual, 11/2022

Supported touch gestures in controls
Icon Gesture Behavior Supported WinCC

controls

Tap • To select a row, tap the row.
• With corresponding configuration of the control: To se‐

lect a cell.
• To sort a column, click on the column header.
• In trend controls: Zooms into the trend area along the

X/Y axis.
Requirement: The "Zoom +/-", "Zoom time axis +/-" or
"Zoom value axis +/-" button is pressed.

• Alarm control
• Process control
• Trend control
• f(x) trend control
• Ruler window
• System diagnos‐

tics view
• Parameter set con‐

trol
Tap with two
fingers

Zooms out in the trend control.
Requirement: The "Zoom +/-", "Zoom time axis +/-" or "Zoom
value axis +/-" button is pressed.

• Trend control
• f(x) trend control

Drag with
two fingers

To scroll vertically or horizontally in the table of the control,
drag in the control window with two fingers in the desired
direction.

• Alarm control
• Process control
• Ruler window
• System diagnos‐

tics view
• Parameter set con‐

trol
Drag with
one finger

• Moves the ruler.
• Moves the x-axis or y-axis.

Requirement: The "Move trend area" or "Move axis area"
button is pressed or the control is zoomed in.

• Trend control
• f(x) trend control

To select multiple rows, tap a row and drag your finger up or
down.
With corresponding configuration of the control: To select
multiple cells.

• Alarm control
• Process control
• Ruler window
• System diagnos‐

tics view
• Parameter set con‐

trol

To adapt the column width, tap a column grid line and drag
your finger to the right or left.
To change the order of the columns, tap a column header
and drag your finger to another column header.

Double tap To edit a cell value, tap the cell twice.
Requirement:
• Table view: The "Edit" button is pressed.
• Parameter set control: A parameter set is selected.

• Process control
• Parameter set con‐

trol

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7263

Icon Gesture Behavior Supported WinCC
controls

Zoom To zoom in or out in the trend control, drag with two fingers
in the control window.
Requirement: Trend control is paused and no zoom button is
active. Or "Move trend area" is active.

Trend control

Swiping (hori‐
zontally and
vertically)

To quickly scroll left or right or up or down within the table of
the control, swipe in the corresponding direction.

• Alarm control
• Process control
• Ruler window
• System diagnos‐

tics view
• Parameter set con‐

trol

Special features of touch operation

Multi-touch operation of process pictures
WinCC Unified supports multi-touch operation in screens.

Simulation of projects with multi-touch functions
WinCC Unified supports the simulation of configured multi-touch functions. Requirement is that
your monitor supports multi-touch operation.

Restrictions for touch gestures
Do not start moving on the following objects with one-finger as well as two-finger gestures:
• Release buttons
• Buttons with configured "Release" or "Press" event.
• "Browser" controls
• Custom web controls
• Touch area
• Elements and controls that manage touch gestures themselves (e.g. sliders and trend

control)

Releasing locked operator controls by two-hand operation
Unified supports safe operation of controls that can be used to change critical system settings,
such as control variables with machine limits. Such operator controls can be configured as
locked.
Locked operator controls are displayed dimmed in runtime. To operate them, simultaneously
press the release button provided for this purpose.

Runtime and simulation
17.3 Operating Unified PC

7264 System Manual, 11/2022

Releasing the locked operator controls by pressing the release button has a cross-screen
effect on all open screens.
In Runtime, locked operator controls can only be accessed with the tab sequence if a release
button is pressed at the same time.

Scrolling in lists and controls
You can scroll through lists and controls by dragging.

Special features of the trend control
You enlarge or reduce the view in "Trend control" and "function trend control" objects by pinch-
to-zoom with two fingers.
Double tap to switch from the magnified trend control back to the normal view.
The zooming function is limited to the time axis in the "Trend control" object.
If you have enabled the option "Range > Auto-size" during configuration of the value axes in
function trend control, the axes are constantly calculated during zooming.
Horizontal scrolling is not supported in the "Trend control" object.

Note
Current view is not persistent
The changes of zoom factor and position changed by scrolling are not saved.
The trend control is reset to the default setting during a screen change.

17.3.3.3 Triggering an action

Introduction
Triggering an action at an operating element can mean the following:
• A command is executed.

Example: Click a button to trigger a script or to execute a pre-defined function.
• An object is enabled.

Example: To enter a value in a list, click in a table cell.

Requirement
• You have navigated to the operating element on which you want to trigger the action.
• The operating element has the focus.

Procedure
• Tap the operating element on the touchscreen once or twice in quick succession.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7265

Result
The following results are possible:
• The requested command is executed.
• The cursor flashes in the input area of the operating element.

When accessing via touch devices: The screen keyboard opens.
• The element is selected and can be moved.

17.3.3.4 Entering a value

Introduction
Depending on the input format, you enter numerical or alphanumerical values in an input box.

Requirement
• The object is an input field or table field.
• The operating element is enabled.

Entering a value
1. Enter the desired value.
2. To confirm the value, press the <Enter> key or click on a blank area of the screen.
3. To discard the value, press the <Esc> key.

Result
The input is accepted or discarded.
The input box still has the focus.

17.3.3.5 Moving operator controls

Introduction
There are screen objects with movable operator controls, e.g. a slider.

Requirement
• A movable operating element is selected.

Runtime and simulation
17.3 Operating Unified PC

7266 System Manual, 11/2022

Procedure
1. To move the operating element, move it while holding down the mouse button or use a

corresponding touch gesture, e.g. "Drag" for a slider.

Result
The position of the movable operating element and the display in the screen object have
changed.

17.3.3.6 Placing the focus on objects
You have the following options:
• Click on the object.

Note
Giving focus to objects with a transparent background
If an object has a transparent background, click on a visible area of the object.

• Press <Tab> until the object has the focus.

See also
Operating objects with transparent fill (Page 7267)

17.3.3.7 Operating objects with transparent fill
The objects displayed on a screen can have transparent ranges.
Example: Sliders, bars and pointer instruments are enclosed by a transparent rectangle.

Requirement
An event which is triggered by operating actions such as typing or clicking has been configured
for the object in the engineering.

Trigger event
To trigger the event, proceed as follows:
• If the object does not have the focus, click a visible part of the object, e.g. its border.
• If the object already has the focus, the event is also triggered by clicking in the transparent

area.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7267

17.3.3.8 Flashing

Flashing in Runtime
You can display the objects flashing in Runtime. Scripts can be used to switch flashing on and off
and influence the properties of the flashing.
Configure the flashing behavior of an object property in the engineering system for each
color setting of an object that supports flashing.

Note
The flashing in Runtime does not change the color value of the property.

17.3.4 Controls

17.3.4.1 Overview of controls
Runtime has operable controls in process pictures.
The following controls are available depending on the configured access rights:

Icon Control Brief description
Screen window Displays other screens of the object.

Trend control Displays graphical representations of
tag values from the current process or
from a log in the form of trends with
values over time from the controller or
a log.

f(x) trend control Represents the values of a tag as a func‐
tion of another tag.

Browser Displays HTML pages.

Media Player Enables video and audio files to be
played.

Alarm control Shows currently pending alarms or
alarm events from the alarm buffer or
alarm log.

Process control Represents current or logged process
data in a table.

Trend companion Displays evaluated data and statistics in
a table.

Parameter set control Shows the parameter sets with which
the PLC is set up for production.

System diagnostics view Shows the diagnostic status of multiple
PLCs via traffic light SVGs.

Runtime and simulation
17.3 Operating Unified PC

7268 System Manual, 11/2022

Icon Control Brief description
GRAPH overview Provides an overview of the current sta‐

tus of the configured monitoring.
PLC code view Displays the current program status of

user programs.

17.3.4.2 Operating alarms

Basics of alarms

Alarm system

Introduction
Alarms show events, operating modes or faults that occur in runtime in the plant.
You can use alarms for diagnostic purposes, for example, when troubleshooting. They will
help you to immediately locate the cause of the fault. You can adjust your processes through
targeted intervention so that compliant products continue to be produced despite the fault,
or the process is stabilized, and the fault only causes a minimal loss of production.
The acquired alarms are displayed on the HMI device in screens. The alarm system logs
the alarms from the ongoing process. Targeted access to the alarms combined with
supplementary information about individual alarms ensures that faults are localized and
cleared quickly. This reduces stoppages or even prevents them altogether.

The alarm system in WinCC Unified Scada
The alarm system distinguishes between the following alarms:

User-defined
alarms

Analog alarms Display limit value violations (value changes)
They are used to monitor the plant.

Discrete alarms Display status changes
They are used to monitor the plant.

User-defined PLC
alarms

Displays the status values of the PLC.
They are used to monitor the plant and are configured in STEP 7.

System-defined
alarms

System alarms Are included in the HMI device.
They are used to monitor the HMI device.

System-defined
PLC alarms

They consist of system diagnostic alarms and system errors.
They are used to monitor the PLC.
The types of system-defined PLC alarms depend on the PLC used.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7269

See also
Analog alarms (Page 7271)
Discrete alarms (Page 7271)
User-defined PLC alarms (Page 7271)
System alarms (Page 7272)
System-defined PLC alarms (Page 7272)
Alarm control overview (Page 7280)

Runtime and simulation
17.3 Operating Unified PC

7270 System Manual, 11/2022

Alarms

User-defined alarms

Analog alarms

Description
Analog alarms display limit violations. An analog alarm is triggered when the value of the trigger
tag meets the trigger condition defined on the analog alarm.
Depending on the selected trigger condition, the alarm is triggered, for example, when the
condition value is higher than, lower than, or the same as the defined value.

Example
When the motor speed reaches a critical range as defined in the engineering, an alarm with
matching alarm text is displayed. The alarm text can provide the operator with specific
instructions on how to check and remedy the situation.

Discrete alarms

Description
A discrete alarm is triggered when the value of a specific bit of a tag changes. The discrete alarms
indicate status changes in a plant and are triggered by a controller.

Example
Imagine that the state of a valve is to be monitored during operation. The state of the valve is
"open" or "closed".
A discrete alarm is configured for each state of the valve. If the status of the valve changes, a
discrete alarm is output, containing for example the following alarm text: "Valve closed".

User-defined PLC alarms

Example of an alarm
"The temperature in Tank 2 is too high."

Description
A user-defined PLC alarm maps the status values of a PLC, for example, time stamp and process
values. It is created by a PLC project engineer in STEP 7.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7271

The PLC alarms configured in STEP 7, are applied into the integrated WinCC operation as soon
as a connection is established to the PLC.

Note
Automatic update of new or modified PLC alarms on the HMI device
If PLC alarms are configured in STEP 7 and an HMI connection to a SIMATIC S7-1500 controller
(firmware version 2.0 or higher) is established, and the PLC and HMI device are configured
accordingly in the engineering, the PLC alarms are sent to the HMI device and updated
automatically. You can find more information in the TIA Portal help for WinCC Unified.

Note
WinCC only supports PLC alarms of a SIMATIC S7-1500 controller. In addition, WinCC only
supports PLC alarms that are automatically updated by the central alarm management in the PLC.

System-defined alarms

System alarms

Description
A system alarm indicates the status of the system and communication errors between the HMI
device and the system. System alarms are output in runtime in the configured alarm control.
System alarms are output in the language currently set on your HMI device.
The time format (AM/PM or 24-hour format) is based on the selected language. If no
translation of the alarm texts exists in this language, English is used as replacement and
the corresponding time format is displayed.

Example of an alarm
"Memory is full!"

System-defined PLC alarms

Note
Device dependency
System-defined PLC alarms are not available for all HMI devices.

Description
System-defined PLC alarms are installed with STEP 7 and are only available if WinCC is operated
in the STEP 7 environment.

Runtime and simulation
17.3 Operating Unified PC

7272 System Manual, 11/2022

System-defined PLC alarms are used to monitor states and events of a PLC. System-defined
PLC alarms consist of system diagnostic alarms and system errors (RSE)

Note
Automatic update of system diagnostic alarms on the HMI device
When an HMI connection to a SIMATIC S7-1500 controller (firmware version 2.0 or higher) is
established, and the PLC and the HMI device were configured accordingly in the engineering, the
system diagnostic alarms are sent to the HMI device and updated automatically. You can find
more information in the TIA Portal help for WinCC Unified.

Note
Note the following restrictions:
• WinCC only supports system diagnostic alarms of a SIMATIC S7-1500 controller.
• WinCC only supports system diagnostic alarms that are automatically updated by the central

alarm management in the PLC.

Example of an alarm
"CPU maintenance required"

Alarm blocks

Overview
In Engineering you configure which columns you can see in runtime and which alarm blocks the
columns are evaluating. The following section provides an overview of some important alarm
blocks.
Example of alarm blocks output in runtime:

Alarm
class

Alarm
number

Time
of oc‐
cur‐
rence

State ma‐
chine

Alarm text Information Value Limit val‐
ue

Warning 1 08/27/
2017
11:09:
14 AM

Alarm with
single-mode
acknowledg‐
ment

Maximum speed
reached

This alarm is... 50 27

Alarm class
The alarm class controls, for example, the display and the acknowledgment concept of the
alarm.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7273

Alarm number
You identify an alarm by its number (ID).
Change the alarm number, if necessary; for example, with a consecutive alarm number to
mark alarms that belong together in your project.

Note
The alarm number of a system alarm has a higher priority than the number of a user-defined
alarm. Do not use numbers that are used by system alarms for user-defined alarms.

Alarm blocks with time and date
These alarm blocks show the time at which the alarm was active, acknowledged or became
inactive, etc.

Note
Time zones
By default, the time stamp in the alarm display is converted into the time zone used by the HMI
device.
If the alarm display is configured accordingly, the time stamp can be converted to another time
zone in Runtime via the "Time base configuration" button.

State machine
An alarm has the state machine or the acknowledgment concept of the alarm class.
The state machine is the way an alarm is displayed in various states and processed by the
system.
See section Acknowledgment model (Page 7276).

Alarm state
An alarm always has a specific alarm state in runtime, for example, active or active/
acknowledged. Based on the alarm state, you can understand the process that the alarm went
through.

Alarm text
The alarm text (event text) describes the cause of the alarm.
The alarm text can contain output fields for current values. The value is retained at the time
at which the alarm status changes.

Runtime and simulation
17.3 Operating Unified PC

7274 System Manual, 11/2022

Priority
Displays the priority of individual alarms.

Note
A priority configured on the alarm has precedence in runtime over the priority configured on the
alarm class.

Limit value
Analog alarms display limit violations. Depending on the configuration, WinCC outputs the
analog alarm as soon as the trigger tag exceeds or undershoots the configured limit value.

Computer
Operator input alarms have the "Computer" column in the alarm summary. The computer name
is displayed for local alarms and the IP address for alarms from the web client.

Users
When an empty user name is passed to an alarm, it will display its formatting string instead of
the user name, for example, "@S2%s@".

Duration
Returns the time interval in nanoseconds between triggering of the alarm and its previous status
change.

See also
Alarm classes (Page 7275)

Alarm classes

Introduction
Many alarms occur in a plant; these are all of different importance. To make it clear to you, which
alarms are most important, alarms are assigned to alarm classes.
Assignment of the alarms to alarm classes and configuration of the alarm classes takes place
in the engineering system.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7275

Purpose
The alarm class of an alarm defines the following:
• State machine/acknowledgment model
• Appearance in alarm control (e.g. color)
• Priority

Note
The priority configured on the alarm has precedence in runtime over the priority configured
on the alarm class.

• Logging

Examples of how to use alarm classes
• The alarm class of the alarm "Fan 1 speed in upper tolerance range" is "Warning". The alarm

is displayed with a yellow background. The alarm does not require acknowledgment.
• The alarm "Speed of fan 2 has exceeded upper warning range" is assigned to the "Alarm"

alarm class. The alarm is displayed with a red background and flashes at high frequency in
runtime. The alarm is displayed until you have acknowledged it.

User-defined and predefined alarm classes
The alarms use user-defined or predefined alarm classes:
• Number and configuration of user-defined alarm classes depend on the configuration of the

runtime project in the engineering.
• The number and configuration of predefined alarm classes are provided by the system.

You can find more information on predefine alarm classes in the TIA Portal help for WinCC
Unified as well as in the user help for WinCC Unified Online Engineering.

See also
Acknowledgment model (Page 7276)
Logging basics (Page 7298)

Acknowledgment model

Introduction
The state machine of an alarm class regulates which statuses the alarms of this alarm class can
have. From this it is derived which events can occur for them and whether and how they are
acknowledged.

Runtime and simulation
17.3 Operating Unified PC

7276 System Manual, 11/2022

State machines
The following state machines are available for HMI alarm classes:

State machine Description Use in predefined alarm classes
Active Alarm without inactive state without acknowledg‐

ment
This alarm is displayed until the event that triggered
the alarm is no longer pending. The alarm will then
no longer be displayed in the alarm control.

Information
OperatorInputInformation
SystemInformation

Active and inac‐
tive

Alarm without acknowledgment
This alarm becomes active and inactive without hav‐
ing to be acknowledged.

Notification
SystemNotification

Active, requires
acknowledg‐
ment

Alarm without inactive state with acknowledgment
This alarm must be acknowledged as soon as the
event that triggers the alarm occurs. The alarm is
pending until it is acknowledged.

AlarmWithoutClearEvent
SystemAlarmWithoutClearEvent
SystemWarningWithoutClearEvent

Active and inac‐
tive, requires ac‐
knowledgment

Alarm with a single acknowledgment
This alarm must be acknowledged as soon as the
event that triggers the alarm occurs. The alarm is
pending until it is acknowledged and inactive.

Alarm
Critical
OperatorInputRequest
SystemAlarm
SystemWarning
Warning

Active and inac‐
tive, requires ac‐
knowledgment
and reset

Alarm with acknowledgment and confirmation
The alarm requires acknowledgment once the event
that triggers, the alarm has occurred, or the alarm
has been reset. In addition, the alarm requires con‐
firmation when the event that triggers the alarm is no
longer pending. The alarm is pending until it is ac‐
knowledged and confirmed.

AlarmWithReset
CriticalWithReset
WarningWithReset

The following state machines are available for HMI alarm classes that are associated with
common alarm classes:
• Alarm with a single acknowledgment
• Alarm without acknowledgment

Alarms requiring acknowledgment
Alarms that indicate critical or hazardous states in the process must be acknowledgeable. Every
change in the status of an alarm that requires acknowledgment is logged.
By acknowledging an alarm, you confirm the processing of the state that triggered the alarm.
You acknowledge the alarm using the buttons in the alarm control.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7277

Acknowledgment and confirmation of alarms
• Group acknowledgment of alarms in the alarm control

With the "Group acknowledgement" button you acknowledge all alarms pending in the alarm
control that are visible and require acknowledgment.

• Single acknowledgment of alarms in the alarm control
With the "Single acknowledgment" button you acknowledge a single alarm that is selected in
the alarm control.

• Single acknowledgment of alarms with acknowledgment and confirmation in the alarm
control
With the "Single acknowledgment" button you acknowledge a single alarm with the state
machine "Alarm with acknowledgment and confirmation" after it was previously
acknowledged via group acknowledgment or single acknowledgment and was inactive.

Note
If the "Show recent" button is active, the most recent alarm is always displayed first and is
selected.
Group acknowledgment is only carried out for the visible alarms.

See also
Alarm states (Page 7278)

Alarm states

Description
Each alarm has an alarm state. Alarm states are made up from the following events:
• Active

The condition for triggering an alarm is fulfilled. The alarm is displayed, such as "Boiler
pressure too high".

• Inactive
The condition for triggering an alarm is no longer fulfilled. The alarm is no longer displayed
as the boiler was vented.

• Acknowledged
The operator has acknowledged the alarm.

The alarm state of an alarm at any given time depends on the following factors:
• Which state machine has its alarm class.

The state machine of an alarm class regulates which events can occur for alarms of this alarm
class. From this it is derived which states the alarms can have and whether and how they are
acknowledged.
For an overview of the available state machines, see Acknowledgment model (Page 7276).

• Which events occurred for the alarm.

Runtime and simulation
17.3 Operating Unified PC

7278 System Manual, 11/2022

Note
The display texts of the alarm states are different depending on the language and
configuration. The texts displayed in runtime can deviate from the texts shown here.

Alarms without acknowledgment
The following table shows the alarm states for alarms without acknowledgment:

Icon Alarm state Description
Active The condition of an alarm is fulfilled.

The alarm does not need to be acknowledged.
Inactive The condition of an alarm is no longer fulfilled.

The alarm is no longer pending.

Alarms with acknowledgment
The following table shows the alarm states for alarms with acknowledgment:

Icon Alarm state Description
Active The condition of an alarm is fulfilled.

Active/inactive The condition of an alarm is no longer fulfilled.
The operator has not acknowledged the alarm.

Active/inactive/acknowledged The condition of an alarm is no longer fulfilled.
The operator has acknowledged the alarm after this
time.

Active/acknowledged The condition of an alarm is fulfilled.
The operator has acknowledged the alarm.

Active/acknowledged/inactive The condition of an alarm is no longer fulfilled.
The operator acknowledged the alarm while the
condition was still fulfilled.

Disabled alarms
Operators disable an alarm to, for example, prevent a nuisance alarm from impairing the
effectiveness of the system.
• Disabled: The alarm has been deactivated (locked). The alarm transitions to its final state

without any further state transitions.
• Not disabled: The alarm is activated (enabled). The alarm is visible again in its last state.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7279

Shelved alarms
The display of specific alarms is shelved (suppressed) in order, for example, not to overload the
operator with information. Manually reset: The alarm was manually reset by the operator.
Shelved due to design: The alarm was automatically shelved due to a condition and is
automatically hidden in runtime.

Alarm control overview

Introduction
The alarm control displays PLC alarms and HMI alarms that occur during the process in a plant.
The alarm control helps prevent faults in the plant or localize and remedy the causes of a fault.

User interface

① Columns for the output alarm blocks
② Alarm summary

Each alarm is displayed in a separate line.
The alarms that are displayed depend on the view or list selected and whether filters are applied.

③ Toolbar for operating the alarm control
④ Information bar

Note
Selection of alarm blocks, column titles and localization depend on the configuration in
engineering.

Runtime and simulation
17.3 Operating Unified PC

7280 System Manual, 11/2022

Note
An alarm appears in the alarm control with the date and time stamp crossed out in the following
situations:
• A disabled alarm is enabled again.
• An alarm is reloaded after a power failure. This applies only to chronological alarming.
• The automation system is restarted. This applies only to chronological alarming.

Views and lists
Depending on the configuration of the alarms and the situation in the system, a large number
of alarms can occur in runtime.
The alarm control offers various views and alarm lists that filter the alarm summary and thus
provide a better overview:

View Description
Alarm view Shows the alarms of the currently selected alarm list.

Available alarm lists:
Display active alarms Shows the pending alarms.

If the toolbar is configured accordingly, you use the "Display
options setup" button to set the alarms that are displayed in
this list.
Default setting: Displays all alarms that are not suppressed.

Show logged alarms Shows the logged alarms.
The display is not updated immediately when new incoming
alarms occur.

Show and update logged alarms Updates the logged alarms and shows them.
The display is updated immediately when new incoming
alarms occur.

Display defined alarms Displays the defined alarms.
If the toolbar is configured accordingly, you use the "Display
options setup" button to set the alarms that are displayed in
this list.

Alarm statistics Displays statistical calculations of logged alarms.

You enable a view or list using the corresponding button in the toolbar.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7281

Information bar
The information bar shows the different states related to the alarm servers. The information bar
contains the following icons:

Icon Meaning
Shows the status to the alarm servers:
No faulty connections
Shows the status to the alarm servers:
Faulty connections
Shows the status to the alarm servers:
All connections are faulty

With the corresponding configuration in engineering, the information bar shows the number
of alarms that are not acknowledged in runtime. The counter includes all connected servers,
but no filters.
When a context is selected, the information bar shows the values of the selected context.

Icons for the alarm state
The column for the alarm state can contain the following icons:

Icon Meaning
In "Show and update logged alarms" list:

Alarm is active

Alarm is inactive

Alarm acknowledged

In the other lists:
Alarm is active

Alarm is active/inactive

Alarm is active/acknowledged

Performance data for SIMATIC Unified PC
Number of controller alarms 160000
Number of OPC UA A&C alarms 20000
Number of alarms per second (continuous load) 20
Number of pending alarm events Unlimited
Number of alarms per 10 seconds (alarm burst) 8000

Runtime and simulation
17.3 Operating Unified PC

7282 System Manual, 11/2022

The maximum number of alarms that can be displayed in Runtime depends on the selected
view:

View Maximum number of alarms that can be dis‐
played.

Display active alarms No limit
Display defined alarms
Alarm statistics
Show logged alarms 1000
Show and update logged alarms 100

See also
Buttons of the alarm control (Page 7283)

Buttons of the alarm control
You operate the alarm control using the buttons on the toolbar. The buttons that are available
depend on the configuration:

Button

Description

Display active alarms Displays the currently pending alarms.
With the ""Active alarms" setup" button, you set which alarms belong to the active
alarms.

Show logged alarms Shows the logged alarms.
The display is not updated immediately when new incoming alarms occur.

Show and update log‐
ged alarms

Updates the logged alarms and shows them.
The display is updated immediately when new active alarms occur.

Alarm statistics Visualizes statistical information of logged alarms, such as frequency and display
duration.

Alarm statistics setup Setting options for calculating the alarm statistics.

Display defined
alarms

Shows the alarms configured in the system.

Alarm signaling
equipment

Shows all alarms for which the alarm signaling equipment was configured. The
alarm signaling equipment is a visual or acoustic signal, such as a horn or warning
light, that is displayed in addition to the alarm control in the system.

First line Selects the first of the displayed alarms. The visible area of the alarm control is
moved, if required.
This button is only operable if the "Show recent" function is disabled.

Previous line Selects the previous alarm, starting from the currently selected alarm. The visible
area of the alarm control is moved, if required.
This button is only operable if the "Show recent" function is disabled.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7283

Button

Description

Next line Selects the next alarm, starting from the currently selected alarm. The visible area
of the alarm control is moved, if required.
This button is only operable if the "Show recent" function is disabled.

Last line Selects the last of the displayed alarms. The visible area of the alarm control is
moved, if required.
This button is only operable if the "Show recent" function is disabled.

Skip to the next alarm
that requires acknowl‐
edgment

Selects the next alarm that requires acknowledgment, starting from the currently
selected alarm. The visible area of the alarm control is moved, if required.
This button is only operable if the "Show recent" function is disabled.

Previous page Navigates to the previous page.

Next page Navigates to the next page.

Single acknowledg‐
ment

Acknowledges the selected alarm.
If using the multiple selection, the selected alarms which require single acknowl‐
edgment are not acknowledged.
A counter shows how many alarms are not acknowledged. The counter includes
all connected servers, but no filters.

Group acknowledg‐
ment

Acknowledges all pending, visible and acknowledgeable alarms in the alarm con‐
trol if they are not individually acknowledgeable.

Single confirm Resets the alarm. Relevant for alarms with the state machine "Alarm with ac‐
knowledgment and confirmation", which were already acknowledged and inac‐
tive.

Show recent Defines whether it is always the latest alarm that is selected in the alarm control.
Button not pressed: The "Show recent" function is active.
• The most recent alarms are always shown first in the alarm control.

Alarms that have been filtered out of the alarm control are not displayed.
• The visible area of the alarm control moves automatically, if necessary.
• You cannot select the alarms individually or sort them by column.
Button pressed: The "Show recent" function is paused.

Info text setup Opens a dialog that shows a help text configured for the selected alarm.

Comments setup Opens a dialog for adding a comment.

Disable alarm Disables an alarm.

Enable alarm Enables a disabled alarm.

Shelve alarm Resets an alarm, for example, to prevent a nuisance alarm from impairing the
effectiveness of your system.

Runtime and simulation
17.3 Operating Unified PC

7284 System Manual, 11/2022

Button

Description

Unshelve alarm Cancels the reset of the respective alarm.

Copy lines Copies the selected alarms.

Time base setup Opens a dialog for setting the time zone for the time information shown in alarms.

Selection display Opens a dialog for filtering alarms. Define your own filter criteria or change or
remove filters defined in the engineering system.

Sorting setup Opens a dialog for setting custom sorting criteria for displayed alarms.

Display options setup Opens a dialog in which you set which alarms the currently displayed alarm list
displays.

Configuration of the
disabled alarms

Opens a dialog for configuring the display options of the disabled alarms.

Export Starts exporting the alarms to a CSV file.

Select context For context-based filtering of alarms.
The alarm control only shows alarms that fall within the time period of the selec‐
ted context entry.

Operate alarm control

Note
Displayed alarms
The alarms that you see in the alarm control depend on which alarm view or alarm list you have
selected in the toolbar.

Operation using the mouse
Selecting and operating alarms
• Click on an alarm.
• Click a button in the toolbar.
The function of the button is applied to the alarm.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7285

Rearranging columns
You can change the column arrangement configured in the engineering here. See section
Rearranging columns at runtime (Page 7451).

Sorting alarms by column
You can sort the alarms by column. See section Sorting alarms (Page 7292).

Operation using the keyboard
Press <Shift + Enter> until the focus is on the alarm control. Then select the alarm to be edited
and operate it using the toolbar.
Use the following buttons for this:

Buttons Description
<PgUp> Selects the previous alarm.
<PgDn> Selects the next alarm.
<Ctrl + Up>
or
<Home>

If multiple rows were selected, the first row of the selection is selected.

<Ctrl + Down>
or
<End>

If multiple rows were selected, the last row of the selection is selected.

<Ctrl + Left> If multiple columns were selected, the first column of the selection is selected.
<Ctrl + Right> If multiple columns were selected, the last column of the selection is selected.
<Tab> Selects the next button in the toolbar.
<Shift + Tab> Selects the previous button in the toolbar.
<Enter> Executes the currently selected button.
<Shift + Page
Up>

Scrolls to the left column-by-column.

<Shift + Page
Down>

Scrolls to the right column-by-column.

Alternative operation
• Depending on the configuration, you can also operate the alarm control via the function keys.
• If the alarm control is configured accordingly, all information about the alarm is displayed in

a pop-up for a selected alarm. To do this, the function "Show recent" (Autoscroll) must be
switched off.

See also
Supported gestures (Page 7261)

Runtime and simulation
17.3 Operating Unified PC

7286 System Manual, 11/2022

Filtering alarms

Introduction
You can use filters to control which alarms you see in the alarm view in runtime. To do so, define
filter conditions.
The following settings are available in the "Alarm filter" dialog:

Setting Description
"AND/OR" col‐
umn

Adds additional criteria to the existing criteria with the Boolean operations AND or OR.

"Criterion" col‐
umn

Selection list with the available criteria.
Criteria correspond to the alarm blocks in the alarm control.

"Operator" col‐
umn

Selection list with the available relational operators.

"Setup" column Free text field
"Remove" but‐
ton

Removes the selected filter criterion.

"Up/down" but‐
ton

Moves the selected filter criterion.

"Filter" area Free text area for direct input and editing of filter criteria.

Requirement
The "Selection display" button is configured in the alarm control.

Procedure
The following example describes how to define a filter. In the example, a filter is defined that
filters for alarms that contain the alarm text "Motor on" and have a priority less than or equal to
5:
1. Click the "Selection display" button.

The "Alarm filter" dialog opens.
2. Click in the "Criterion" column and select the "Alarm text" entry.
3. Click in the "Operator" column and select the "Equal to" entry.
4. In the free text field of the "Setup" column, enter the value "Motor on".
5. In the next row in the "And / Or" column, click "Add" and select the AND logic operation.
6. Click in the "Criterion" column and select the "Priority" entry.
7. Click in the "Operator" column and select the entry "Less than or equal to".
8. Enter the value "5" in the free text field of the "Setting" column.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7287

9. Confirm your entries.
10.Close the dialog.
With some alarm blocks, for example, you can define the start and end times or search texts
for "Date" and "Time". Your input must be in the format required in the dialog.

Note
In multi-user systems, make sure that contents displayed in the "Alarm filter" dialog on a client
have the same names on all servers.
When filtering by time, the start and stop values are not adjusted automatically when the time
base of the alarm control is changed.
Example: At the PC location with the time zone "UTC + 1h", the alarm control has the "Local time
zone" time base. You should filter by the time 10:00 to 11:00. Change the time base from "Local
time zone" to "UTC". If you want to display the same alarms, change the filter to 9:00 to 10:00 hrs.

Result
The filter is applied to all alarm lists in the alarm view.

Time-based filtering
Define the filter period
During time-based filtering of the alarm control, always define two filter conditions linked via
"And". For these conditions, use the operators "Greater than", "Greater than or equal to" and
"Less than or equal to".
Do not use the "Equal to" operator. When filtering, you specify the filter period down to the
millisecond. Internally, the time stamp of alarms is stored precisely down to the nanosecond
and the missing information for nanoseconds is supplemented by 0. A search with "Equal to"
will therefore only find alarms whose time stamp has the nanosecond value 0.
Examples:
You can use the following filter conditions to filter for alarms that were triggered between
12:00 and 12:01:
• Filter condition 1: "Raise time", "Greater than or equal to", 12:00:00.000
• Filter condition 2: "And", "Raise time", "Less than or equal to", 12:01:00.001
You can use the following filter conditions to filter for alarms that were triggered at
12:00:00.000 hrs:
• Filter condition 1: "Raise time", "Greater than or equal to", 12:00:00.000
• Filter condition 2: "And", "Raise time", "Less than or equal to", 12:00:00.000

Change time base
If the time base of the alarm control is changed, the start value and stop value are not
automatically adjusted when you filter by time.
Example: At the location of the PC with the time zone "UTC + 1h", the time base "Local time

Runtime and simulation
17.3 Operating Unified PC

7288 System Manual, 11/2022

zone" was selected for the alarm control. If you filter for the time 10:00 to 11:00 and then
change the time base to "UTC", you need to change the start value and stop value of the filter
to 9:00 and 10:00 to display the same alarms as before.

See also
Display alarms for plant objects (Page 7289)

Display alarms for plant objects

Introduction
In the case of the corresponding configuration, the alarm control shows the alarms of the plant
objects that are configured in the plant hierarchy:
• Automatic display

When the HMI device is assigned to a plant hierarchy or a plant object, and a plant overview
and an alarm control are configured for the screen, the alarm control automatically shows the
alarms of the plant object selected in the plant overview.

• Manual display through filters
If no plant overview is configured in the screen, filter the alarm control to display alarms of
a plant object.

The alarm control offers the following options for plant object alarms:
• Display the hierarchy path of the alarm source
• Filter the alarm control by plant objects
• Display alarm log of a plant object
• Context-dependent display of plant object alarms

General requirements
• The plant hierarchy has been created and a device assigned in the engineering system.
• An alarm control with the column "Area" has been configured in the screen of the assigned

device.
• Runtime is active.

Filter alarm control by plant objects
Additional requirements
• Alarms are available for a plant object from the plant hierarchy.

Procedure
1. In Runtime, click the "Selection display" button in the alarm control.
2. Select "Area" as the criterion in the "Alarm filter" dialog.
3. Click the cell of the "Setting" column

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7289

4. Click "...".
A tree of the plant hierarchy is displayed.

5. Select a plant object and confirm your selection.

6. Under "Operand", select one of the following operators:
– To display the alarms of the selected plant object, select "Same as".
– To output the alarms of the lower-level plant objects, select "Begins with".

The alarm control shows its setting according to the alarms of the selected plant object or its
lower-level plant objects. The "Area" column shows the complete path of the plant object.

Note
Display of the filter string for filters configured in engineering
The plant view is based on a type/instance architecture. When a filter has been configured in
engineering that filters the alarm view by plant objects, you will first see a filter string with
information from the type level in the "Filter" field of the "Alarm filter" dialog.
If you select an operand under "Operand" or a plant object under "Setting", the filter string
changes to the instance level and adopts the device ID.

Display alarm log for a plant object
Additional requirements
• The alarm log contains entries for a plant object from the plant hierarchy.

Procedure
1. In runtime, click on the "Display logged alarms" button.

Runtime and simulation
17.3 Operating Unified PC

7290 System Manual, 11/2022

The alarm control shows the logged alarms of the plant object.

See also
Filtering alarms (Page 7287)
Plant overview (Page 7342)

Display context-dependent alarms of a plant object
This section describes how to show alarms that occurred on a plant object that you selected for
a context that you selected.

Requirement
• An HMI device has been configured.
• An alarm control is configured in the device screen.
• The plant hierarchy has been created and assigned to the HMI device.
• There are alarms for the plant object.
• Contexts and context entries are available for the plant object.
• The "Select context" button is configured in the alarm control.

Procedure
1. In the alarm control, click the "Select context" button.

The "Alarm context" dialog opens.
2. Click "..." and select the plant object whose data you want to display in the alarm control.
3. Select one of the contexts assigned to the plant object in the "Context" drop-down list.

A list of the entries logged for the context appears under "Logged context values".
4. Select an entry.
5. Click "OK".
The alarm control shows the alarms of the plant object that fall within the time period of the
selected entry. The information bar shows the values of the selected context.

Note
"AND" link with other filters
When a filter is defined for the alarm control, the filter condition and the context conditions are
linked via "AND".
When no alarms appear in the alarm control, check your filter settings by clicking "Selection
display".

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7291

See also
Contexts (Page 7240)

Sorting alarms

Introduction
You can control the columns according to which the alarm control sorts the alarms in runtime.
Examples for sorting alarms:
• In descending order by date, time, and alarm number. The latest alarm appears at the top.
• By priority

You must have defined the priority of the alarms in the "HMI alarms" editor and configured the
"Priority" alarm block in the alarm control. As a result, in a single-line alarm control, only the
top-priority alarm appears in the alarm window. A lower-priority alarm is not displayed, even
if it is more recent. The alarms are displayed in chronological order.

• The "Alarm state" alarm block is sorted by the type of state and not by the configured status
texts. For an ascending sort order, the following order is used:
– Active
– Inactive
– Acknowledged
– Disabled
– Activated
– Automatic acknowledgment
– Emergency acknowledgment
– Active/Inactive

When sorting the alarm control by columns, define the sort order over up to four columns.
An arrow and a number are shown on the right in the column header. The arrow indicates
the sort order (ascending or descending). The number beside the arrow indicates the sort
order of the column headers.

Requirement
• "Allow sorting" is enabled for the respective columns in the configuration of the alarm

control.
• The "Show recent" function is paused in the alarm control.

Runtime and simulation
17.3 Operating Unified PC

7292 System Manual, 11/2022

Procedure
To filter alarms in the alarm control by column, follow these steps:
1. Click the column header by which you want to sort the alarms first.

The number "1" is displayed with an arrow pointing upwards for ascending sort order or an
arrow pointing downwards for descending sort order.

2. Optional:
– To reverse the sort order for this column, click the column header again.
– To cancel the sorting for this column, click the column header a third time.

3. If you want to sort by several columns, click the column header in the required order.
Alternatively, click the "Sorting setup" button and configure the sorting in the "Sorting" dialog.

Disabling individual alarms

Note
No locking and unlocking of PLC alarms
Locking and unlocking of PLC alarms for an S7-1500 PLC is not supported.

Introduction
If you disable an alarm, the alarm is not checked to determine whether the alarm condition
applies. The alarm is not logged.

Note
Disabled alarm
Disabled alarms are no longer disabled after a restart of Runtime. Only alarms that are disabled
directly in the automation system via data blocks remain disabled (disabled at source).

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7293

Requirement
• The "Visibility" and "Allow operator control" settings have been enabled for the following

buttons in the engineering:
– "Disable alarm"
– "Enable alarm"

• The user is authorized to disable and enable alarms.
Note
The "Disable alarms" and "Enable alarms" authorizations must be configured directly one
below the other. This is necessary because the authorization level used automatically for the
"Enable alarms" authorization is directly below the "Disable alarms" authorization.

• An alarm is displayed on the HMI device.

Disable alarm
1. Select one of the following alarm lists in the alarm control:

– "Show logged alarms"
– "Show and update logged alarms"
– "Show defined alarms"

2. Select the alarm.
3. Click "Disable alarm".

Result
The alarm is removed from the "Show active alarms" alarm list. Its alarm condition is no longer
checked.
The alarm is visible in the alarm lists for logged alarms and defined alarms and has the status
"Removed".

Enable alarm
To enable a disabled alarm, follow these steps:
1. In the alarm control, select an alarm list for logged alarms or defined alarms.
2. Select the alarm in the alarm list.
3. Click "Enable alarm".
The alarm condition of the alarm is checked again.

Runtime and simulation
17.3 Operating Unified PC

7294 System Manual, 11/2022

Shelving alarms

Introduction
You shelve an alarm for a specific period of time, for example, to prevent that a conformity error
alarm affects the efficiency of your system.
Shelving can be canceled at any time. To do so, you use the buttons "Shelve alarm" and
"Unshelve alarm" in the alarm control in runtime.

Requirement
• The "Visibility" and "Allow operation" settings have been activated for the following buttons

in the engineering system:
– "Shelve alarm"
– "Unshelve alarm"
– "Show active alarms"
– "Display options setup"

• To unshelve: An alarm is displayed on the HMI device.

Procedure
To shelve an alarm, follow these steps:
1. Select one of the following alarm lists in the alarm control:

– "Show active alarms"
– "Show logged alarms"
– "Update and display logged alarms"
– "Show defined alarms"

2. Select the alarm.
3. Click the "Shelve alarm" button.

Result
The alarm is shelved. Its status remains unchanged.
The shelving creates a log entry. Shelved alarms are still available and logged in the system.

Note
Display of shelved alarms in the alarm list "Show active alarms"
Whether shelved alarms are visible in the alarm list for active alarms depends on the settings in
the alarm list.
By default, the alarm list for active alarms does not display any shelved alarms.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7295

Display shelved alarms
To display the currently shelved alarms, follow these steps:
1. In the alarm control, select the "Show active alarms" alarm list.
2. Click the "Display options setup" button.
3. Activate the option for shelved alarms.

Unshelve an alarm
To unshelve an alarm, follow these steps:
1. Display the shelved alarms.
2. Select the alarm in the "Show active alarms" alarm list.
3. Click the "Unshelve alarm" button.
4. If required, hide the shelved alarms from the "Show active alarms" alarm list.
Unshelving is canceled. Canceling the unshelving creates a log entry.

Acknowledging

Acknowledging alarms
The number of alarms to be acknowledged is indicated by a counter at the "Single
acknowledgment" button or, if the alarm control was configured accordingly in engineering, by
the information bar.

Introduction
You can acknowledge alarms in runtime according to your project configuration settings. You
acknowledge alarms as follows:
• In the alarm control with the buttons "Single acknowledgment" and "Group

acknowledgment", and for alarms with dual-mode acknowledgment also with the button
"Single confirm".

• With customized buttons
When an operator authorization is configured for the buttons, the alarms can only be
acknowledged by authorized users.

Runtime and simulation
17.3 Operating Unified PC

7296 System Manual, 11/2022

Acknowledgment variants
You acknowledge individual alarms or multiple alarms together in Runtime. The following
options are possible:
• Single acknowledgment

Acknowledgment of an alarm using the "Single acknowledgment" button of the alarm
control.

• Group acknowledgment
Acknowledgment of all pending, visible alarms that require acknowledgment in the alarm
control using the "Group acknowledgment" button in the alarm control.

• Dual-mode acknowledgment
When an alarm requires dual-mode acknowledgment, you must acknowledge both the
enabling and disabling of the alarm. Or you acknowledge the alarm and reset it with the
"Single confirm" button in the alarm control. The alarm status changes from "Active/
Acknowledged" to "Inactive".

Requirement
• The "Visibility" and "Allow operator control" settings have been enabled in the engineering

for the following buttons of the alarm control:

Single acknowledgment

Group acknowledgment

Single confirm

Show recent

• For the single acknowledgment: An alarm that requires acknowledgment is pending.
• For the group acknowledgment: Several alarms that require acknowledgment are pending.

The alarms do not require single acknowledgment.

Acknowledge alarms individually
To acknowledge an alarm, follow these steps:
• Read the alarm texts of the pending alarm and perform corrective measures, if necessary.
• Pause "Show recent".
• Select the alarm.
• Click "Single acknowledgment" in the alarm control.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7297

Result
The alarm status is set to "Acknowledged". When the trigger condition for an alarm no longer
applies, the alarm status is set to "Inactive" and no longer displayed on the HMI device.

Acknowledging alarms collectively
For group acknowledgment of alarms, follow these steps:
1. Read the alarm texts of the pending alarms and perform corrective actions, if necessary.
2. In the alarm control, click "Group acknowledgment".

Result
All pending alarms with the following properties are acknowledged:
• Requires acknowledgment
• Does not require single acknowledgment
• Visible
When the trigger condition for an alarm no longer applies, the alarm status is set to "Inactive"
and no longer displayed on the HMI device.

Logging alarms

Logging basics

Introduction
An alarm log documents the alarms that occurred in the monitored process. You can use alarm
logging to analyze error states and to document the process. When you analyze the logged
alarms, you can extract important business and technical information regarding the operating
mode of the plant.
With the appropriate configuration in engineering, logging alarms are created in runtime. If
an error or limit violation occurs, for example, an alarm is output in runtime.
The alarm events are saved in a log database and/or printed out. The alarms logged in the
database can be output in runtime if required, for example, in an alarm control.
The logged alarms are stored in a circular log that consists of multiple single segments.
With the appropriate configuration of the HMI device and a PLC connected to it, the alarms of
the connected PLC are logged as well and made available in all configured languages.

Operating principle
An alarm is only logged if logging has been configured for its alarm class. The alarm logs are
automatically created by the system in runtime.

Runtime and simulation
17.3 Operating Unified PC

7298 System Manual, 11/2022

Each alarm event of an alarm that has occurred is logged, for example, the status change
from "Active" to "Active, acknowledged".

Note
Alarm classes for pure logging
Alarms of the alarm classes "Information", "OperatorInputInformation" and "SystemInformation"
are only used for logging. In runtime, they are only displayed in the alarm lists "Show logged
alarms" and "Show and update logged alarms".

Content of the alarm log
The alarm logs are used to store all alarm data, including configuration data. You can read all
properties of an alarm from the logs, for example, alarm class, time stamp and alarm texts.
A new log segment with the new configuration data is generated whenever you edit
configuration data of an alarm. This function prevents any change from influencing alarms
logged previously.
The possible number of logged alarms depends on the database used.

Note
The time stamp of a logged alarm is always specified in standard UTC format (Universal Time
Coordinated).

Because the alarm configuration is language-specific, the logs contain a configuration data
table for each language configured.

Storage location and storage media
Log data are stored in a database. You can further process the saved data in other programs for
analysis purposes, for example.

Backup for log segments
Take backups of your log segments to ensure complete documentation of your process.

Note
Backups can only be created if the Microsoft SQL Server is used.

Note
Segments from logs for which a backup was created can be restored in runtime. To do so, open
SIMATIC Runtime Manager on the HMI device. See also section Restoring and deleting log
segments (Page 7499).

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7299

Display of logged data
You can view the logged data on the HMI device with the buttons "Show logged alarms" and
"Show and update logged alarms".

No logging due to overload
When an alarm cannot be written to the log after the configured number of attempts and within
the defined time interval, the alarm is lost. The memory state is set to
"StorageSystemWriteDataLost" internally. This documents that the number of alarms in the
queue exceeds the configured high limit. No more alarms can be written to the log.
The alarm "SystemOverloadAlarm" of the alarm class "ALCL@%SystemInformation" is
triggered. It is displayed in the alarm control but not logged.
Possible reasons for the overload:
• There are more alarms in the queue than can be processed.
• The alarms in the queue cannot be processed due to additional error conditions or memory

states, for example, because the storage space is used up (memory state
"StorageSpaceExceeded").

See also
Alarm classes (Page 7275)

Connecting and disconnecting the alarm log backup

Introduction
When you want to access the data of an archived alarm log, connect the log backup to the
project. You can configure an automatic connection or connect the alarm log to the project via
a script. The logged alarms are displayed in the alarm control.
If you no longer want to access the backup of a log segment, disconnect the log backup from
the project.

Requirement
The relevant backup files in "*. ldf" and "*.mdf" format are stored locally.

Display Time Range
Alarms are only displayed if you have configured the time range in the alarm control accordingly.

Example
You have configured the time range so that only the alarms of the past 24 hours are displayed.
When you connect to a log backup containing alarms that are older than 24 hours, these alarms
are not included in the alarm control.

Runtime and simulation
17.3 Operating Unified PC

7300 System Manual, 11/2022

Automatically connecting to an alarm log
To automatically connect to the alarm log backup, follow these steps:
1. Insert the log backup files in the "RuntimeProjectPath\ProjectName\CommonArchiving"

folder.
2. In runtime, the alarm log is automatically connected to the project.
If signing is enabled, signed log backup files that are changed will not be connected
automatically. A WinCC system alarm is generated and an entry is added to the Windows
event log in the "Application" section.

Connecting to the alarm log using a script
Using the "AlarmLogs" VBS object, you can link the log backup files to the project using a script.
The log segments are then copied with the "Restore" VBS method to the "Common Archiving"
folder of the Runtime project.

Automatically disconnecting the alarm log
To automatically disconnect the alarm log backup from the project, follow these steps:
1. Go to the folder "RuntimeProjectPath\ProjectName\CommonArchiving".
2. Remove the log backup files from the folder.

Disconnecting from the alarm log using a script
Using the "AlarmLogs" VBS object, you can disconnect the log backup files from the project using
a script. The log segments are then removed with the "Remove" VBS method from the "Common
Archiving" folder of the Runtime project. For additional information, see the description of the
"AlarmLogs" VBS object and the "Remove" VBS method.

Display logged alarms

Introduction
You can display the logged alarms with the buttons "Show logged alarms" and "Show and update
logged alarms".

Requirements
• An alarm log is configured.
• All logged data that is to be displayed must be stored locally on the logging server. The SQL

server does not allow access to backup files held elsewhere, such as another computer on the
network.

• The buttons "Show logged alarms" and "Show and update logged alarms" are configured in
the alarm control.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7301

Procedure
1. To display only logged alarms, click the "Show logged alarms" button in the alarm control:

The alarm control shows the logged alarms. The display is not updated immediately when
new incoming alarms occur.
Each page shows a maximum of 1000 alarms. Use the "Previous page" and "Next page"
buttons to change pages.

2. Click the "Show and update logged alarms" button in the alarm control to display logged and
current alarms:

The alarm control shows the logged alarms. The display is updated immediately when new
active alarms occur.
The alarm control shows a maximum of 100 alarms.

Restriction for the alarm list "Show logged alarms"
For log alarms with identical time stamp, it is possible in rare cases that log alarms are skipped
when paging forwards and backwards.
To display the skipped alarms, page again, this time in the opposite direction.

Note
In the case of more than 1000 log alarms with identical time stamp, not all skipped alarms can
be displayed by scrolling in the opposite direction.

Example
• The alarm log contains several 1000 log alarms. Ten alarms of the log have an identical time

stamp. The first five are shown at the end of the current page.
The alarm control is sorted by time stamp in ascending order.

• Click "Next page".
You see the next 1000 alarms whose time stamp is higher than the time stamp of the last
alarm shown on the previous page.
The remaining five alarms with identical time stamp are skipped on the page change.

• Click "Previous page".
You will see all ten alarms with identical time stamp as well as the next 990 alarms with lower
time stamp.

Runtime and simulation
17.3 Operating Unified PC

7302 System Manual, 11/2022

Displaying alarm statistics

Introduction
The alarm statistics represent statistical calculations of logged alarms.

You can use a button in the alarm control to export the alarm statistics to an Excel file.

Note
Filter
A filter set in the alarm control is not effective in the alarm statistics.

Note
Display options
Display options selected via the "Configuration of the defined alarms" button in the alarm control
are not effective in the alarm statistics.

Requirement
• Alarms are logged.
• For the following button of the alarm control, the "Visibility" and "Allow operator control" are

enabled in the engineering system:

Alarm statistics

Procedure
To display the alarm statistics in Runtime, proceed as follows:
1. Click the "Alarm statistics" button in the alarm control.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7303

Result
The alarms to be displayed in the alarm statistics are specified in the engineering system.
Depending on the engineering system, the following columns are displayed:

Column Description
Number Configured number of the alarm.
Frequency Frequency of an alarm. The system counts the number of occurrences of

an alarm with "active" status in the log. If the alarm number is not found,
this alarm number is not included in the statistics.

Sum active active Total display time of an alarm in seconds. The time period between the
alarm states "active" and "active" is calculated.

Sum active inactive Total display time of an alarm in seconds. The time period between the
alarm states "active" and "inactive" is calculated.

Sum active acknowledged Total display time of an alarm in seconds. The time period between the
alarm states "active" and "acknowledged" is calculated.

Average active active Average display time of an alarm in seconds. The time period between
the alarm states "active" and "active" is calculated.

Average active inactive Average display time of an alarm in seconds. The time period between
the alarm states "active" and "inactive" is calculated.

Average active acknowledged Average display time of an alarm in seconds. The time period between
the alarm states "active" and "acknowledged" is calculated.

The calculation of the time of acknowledgment includes the "acknowledged" alarm state.
This "acknowledged" alarm state includes the acknowledgment by the controller.

Note
For the calculation, alarms with the status "acknowledged" and "inactive" are only used if a
suitable alarm with the status "active" is found in the result set beforehand.
If an alarm from the controller is pending and runtime is disabled and enabled several times, the
alarm is entered into the log several times with the state "active". The alarm is also included
multiple times in the calculation.

Operating alarm statistics

Introduction
Using the statistics setup, you can change the settings for calculating the alarm statistics. The
following settings are available:

Setting Description
Time range start • Now

The current time is displayed as the start time of the calculation.
• Fixed

The start time of the calculation can be changed as required.
Start time Start time for the calculation. If the "Now" option is selected under "Time

range start", the start time cannot be changed.

Runtime and simulation
17.3 Operating Unified PC

7304 System Manual, 11/2022

Setting Description
Time range base Unit of time for the calculation. The following settings are available:

• Undefined
The default time unit "Minute" is used with this setting.

• Millisecond
• Second
• Minute
• Hour
• Day
• Month
• Year

Time range factor The time range factor depends on the "Time range base" setting. For
example, if the number 4 is set for the time range factor and "Minutes" is
set for the time range base, all alarms that are logged within this period
will be evaluated.

Requirement
• Alarms are located in the alarm log.
• For the following button of the alarm control, the "Visibility" and "Allow operator control" are

enabled in the engineering:

Statistics setup

• The alarm statistics are selected in the alarm control.

Procedure
To display the statistics setup in Runtime, follow these steps:
1. Click the "Statistics setup" button in the alarm control.

Setup opens.
2. Change the settings as required.
3. Click the "OK" button.

Result
The calculation of the alarm statistics is displayed according to the changed settings.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7305

17.3.4.3 Displaying tags in Runtime

Outputting the tag values

Overview
With WinCC you can output tag values in the HMI screen with different screen objects and
change them.
• The I/O field is used for the input and output of process values.
• Bars are used for graphic display of the process values in form of a scale.
• Sliders are used for the input and output of process values within a defined range.
• The gauge is used to display the process values in form of an analog gauge.
In runtime you can also output tag values as table or as trend. You can use either process
values or logged values as source for the tag values.
• Use a trend for the graphic display of tag values. Trends allows you to display the change in

motor temperature, for example.
• Use a table to compare tag values. In the table you can, for example, compare fill levels of

supply tanks.

Controls for displaying tag values
To display tag values as a trend, use the trend control. The versions of trend views are available:
• "Trend control": You display a tag value over time, for example, the change in temperature.

You can compare the current values and logged values or monitor the change in current
values on the HMI device.

• "Function trend control": You display a tag value against a second tag value, for example, the
engine speed against the heat produced.

You can use the "Trend companion" to create statistics, for example, from the displayed
values. Furthermore, you can use the trend companion as reading assistance for the trend
control.
To display tag values in a table, use the process control.

Runtime and simulation
17.3 Operating Unified PC

7306 System Manual, 11/2022

Displayed values
When configuring the trend control, specify which tag values are to be displayed.
• "Online": The trend is continued with current individual values from the PLC.
• "Log": In runtime, the trend control displays the values of a tag from a data log. The trend

shows the logged values in a particular window in time. The operator can move the time
window in runtime to view the desired information from the log.

Operating controls

Starting and Stopping Update

Introduction
You can continue the update of the data contained in the control with the "Start/Stop" buttons.
Some buttons stop the update automatically, e.g. "Define statistics area"

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7307

The appearance of the button indicates whether the update is stopped or not:

The update has been stopped. To continue the update, click on the button.
 The update has been started. To stop the update, click on the button

Creating statistics for Runtime data

Introduction
You can generate an analysis of the process data for the Runtime data in the trend or process
control. You can display the evaluated data in the trend companion.

Overview
Use the following buttons to create statistics of runtime data:

"Start/stop"

"Select time range"

"Statistics area"

Requirement
• A trend control or process control is configured.
• A trend companion is configured and connected to the trend or process control.
• Runtime is enabled.

Displaying data in a statistics area window
Requirement:
The "Statistics area window" display mode is enabled in the trend companion.
To display data in the statistics area window of the trend companion, proceed as follows:
1. In the trend control or process control, click "Stop".

The updated display is stopped, the process data continues being logged.
2. If you wish to evaluate data outside the displayed time range:

– Click "Select time range".
The "Time - Selection" dialog opens.

– Enter the required time range.
The data for the defined time range is displayed.

Runtime and simulation
17.3 Operating Unified PC

7308 System Manual, 11/2022

3. If you are using a trend control:
– Click on the "Statistics area".

In the trend control, two vertical lines are displayed on the right and left margin.
– To define the statistics area, move the two lines to the desired position.

4. If you are using a process control:
– Use the mouse to select the rows for the desired time range in the table.

For different time columns with different time frames, you can select different time ranges
for the calculation of statistics.

– Click on "Statistic area" in the toolbar.
The evaluated data is displayed in the columns that you have configured in the statistics area
window.
To continue with the display of Runtime data, click "Start".

Note
For additional statistical analysis of process data and logging of results, you can write the scripts
yourself.

Displaying logged values

Introduction
Scroll through the displayed data of a log using the buttons in the toolbar of a trend or process
control. If key combinations are configured, you can also use these for scrolling.
The buttons for browsing in logs are available only if data is supplied through logging tags.
The logged values of a tag are displayed within a time range in the trend or process control.

Overview
Use the following buttons to display logged values:

"First data record"

"Previous data record"

"Next data record"

"Last record"

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7309

Requirement
• Time range is configured.

Buttons for Archived Values
To scroll in archived values, proceed as follows:
1. To display the first data record of the time range, click on .
2. To display the previous data record of the time range, click on .
3. To display the next data record of the time range, click on .
4. To display the last data record of the time range, click on .

Elements of the information line

Elements of the information bar
The information bar of the trend control or process control can contain the following elements:

Icon Name Description
Connection status1 No faulty data connections.

Faulty data connections exist.

All data connections are faulty.

"Line 1"2 Selected line Shows the number of the selected line.
"Column 2"2 Selected column Shows the number of the selected column.
"23.02.2010" Date Shows the system date.
"23:59:59" Time Shows the system time.

Time base Shows the time base used in the display of times.

1: If you double-click on the "Connection status" icon, the "Status of the data connections" window opens.
The following properties of each data connection are listed in the window:
• Name
• Status
• Tag name
2: Only in the process control

Basics of time range
The time range is the range from which the values at the HMI device are shown. The time range
is determined by the start time and the end time. The time range is always in the past. If the end
time is later than the current system time, the current system time is used as a temporary end
time.

Runtime and simulation
17.3 Operating Unified PC

7310 System Manual, 11/2022

A distinction is made between the following time ranges:
• Static time range
• Dynamic time range

Static time range
The static time range is determined by fixed start and end times. The values are displayed within
this time range.

Dynamic time range
The dynamic time range is determined by a period of time beginning with a fixed start time. The
end time thus corresponds to the conclusion of the time period.
You set the time period as follows:
• Duration, e.g. 30 minutes
• The number of measurement points multiplied by the update cycle also produces a duration.

Configuring time range
Configure the time range for all controls. Configure the time range in the time column or in the
time axis for the process control and the f(t) trend control. For the function trend control,
configure the time range directly at the trend.

Exporting values

Requirement
• The "Export" button is configured in the control.

Procedure
1. Optional: For the export of a trend control, check the time format for the time axis

configured in the control.
The time axis of the export file takes on the time format configured in the control.

2. Click "Export" in the control.
3. Enter the name of the target file.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7311

4. For the trend companion and process control: Choose whether all values are exported or just
the values selected in the control.

5. Optional: Using "Select format", determine which separator and which character set the
target file uses.
Note
Displaying Asian languages correctly in MS Excel
If Runtime is running in an Asian language, select the character set "UTF-8".

Trend companion

Trend companion basics

Function
The trend companion displays values or statistics from a control. The content of the trend
companion is specified during its configuration.

Overview of the trend companion
The trend companion is connected to one of the following controls:
• Trend control
• Function trend control
In the trend companion, a "display mode" is specified during configuration. The display mode
determines which data are shown in the trend companion.

Runtime and simulation
17.3 Operating Unified PC

7312 System Manual, 11/2022

Display mode
Three different display modes are available in the trend companion.
• Ruler window

The ruler window shows the coordinate values of the trends on a ruler or values of a selected
line in the table.

• Statistics area window
The statistics area window shows the values of the low limit and high limit of the trends
between two rulers or the selected area in the table. You can only connect the statistics area
view to the trend control or the process control.

• Statistics window
The statistics window displays the statistical evaluation of the trends. Among other things,
the statistics include:
– Minimum
– Maximum
– Average
– Standard deviation
– Integral

All windows can also display additional information on the connected trends or columns,
such as time stamps.

Overview of trend companion

Note
With version V16, the "Trend companion" control is supported only for Unified PC. If you use the
control under Unified Comfort Panel, an error message of the compiler is returned. Existing
projects under Unified Comfort Panel in which the control is configured must delete the control
before compilation to version V16.

With the "Trend companion", you display evaluated data and statistics of a control in a table.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7313

Buttons of the trend companion
The toolbar contains buttons for executing specific functions. Depending on the configuration,
the following buttons are available for operator input:

Icon Name Function
Statistical analy‐
sis

Displays the statistical values from a defined "statistics range" of the
trend or process controls in the statistics window of the trend com‐
panion.
Only available with a configured trend companion.

Statistics area Specifies the period for calculation of statistics.

Ruler window Displays a ruler that shows the coordinates of the intersection point
with a trend in the trend companion.
Requirement: The trend companion is configured with "Ruler win‐
dow" display mode.

Print Reserved for future versions.

Export Exports all or selected data to a *.CSV file.
Depending on the configuration and authorizations, the following
options may be available:
• Display export settings and start export
• Select file name and directory

Rearranging columns
You can change the column arrangement configured in the engineering here. See
section Rearranging columns at runtime (Page 7451).

Runtime and simulation
17.3 Operating Unified PC

7314 System Manual, 11/2022

Trend control

Overview of trend control
With the trend control, you show the currently pending process values or logged values as a
trend over time. You design the trend display according to your wishes.

Note
Trend display in future time range
The trend area located in the future continues the last drawn value.

Buttons of the trend controls
The toolbar contains buttons for executing specific functions. Depending on the configuration,
the following buttons are available for operator input:

Icon Name Function
First record Shows the trend direction starting with the first logged value.

Requirement: The values come from a process value log.

Previous record Shows the trend direction of the previous time range.

Start/stop Stops and starts the trend update.
Started: The trend is continuously updated. It always shows the lat‐
est values.
Stopped: New values are buffered and updated as soon as you start
the trend update again.

Next record Shows the trend direction of the next time range.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7315

Icon Name Function
Last record Shows the trend direction up to the last logged value.

Requirement: The values come from a process value log.

Previous trend Displays the previous trend in the foreground.

Next trend Displays the next trend in the foreground.

Ruler Displays a movable ruler that shows the coordinates of the intersec‐
tion point with a trend in the trend companion.
With stopped trend update, the trend values are also displayed in
tooltips.
Requirement: The trend companion is configured with "Ruler win‐
dow" display mode.

Zoom time axis +/- Zooms into or out of the time axis in the trend control.
Left-click: Zoom in

Zoom value axis
+/-

Zooms in or out of the value axis in the trend control.

Zoom area Zooms in on the section of the trend control. You define the section
by dragging with the mouse.
Use the "Original view" button to return to the original view.

Zoom +/- Enlarges or reduces the view in the trend window.

Move trend area Moves the display in the trend area.

Move axes area Moves the display in the axes area.

Original view Returns to the original view from the zoomed display.

Select time range Opens a dialog in which you configure the time range.

Select trends Opens a dialog in which you set the visibility and sorting of trends.

Select data con‐
nection

Opens a dialog in which you select the data source:
• Process value log
• Tag
• Recipe (only function trend control)

Statistics area Enables you to define a time range for which statistical values are
determined. Vertical lines which you use to set the time range are
displayed in the trend window.

Runtime and simulation
17.3 Operating Unified PC

7316 System Manual, 11/2022

Icon Name Function
Statistical analysis Opens a statistics window to display the minimum, maximum, aver‐

age, and standard deviation for the selected time range and the
selected trend.

Print Starts printing the trends shown in the trend window.

Export Opens the dialog for saving the trend data in CSV format.
The time axis in the export file takes on the time format configured
in the control. If necessary, change the configuration of the time
format in the control before the export.

Select context Shows the value range of the resulting data for analysis purposes

Overview of function trend control
With the function trend control, you display active or logged process values as a function of
another tag in a trend. You design the trend display according to your wishes.

Note
Trend display in future time range
The trend area located in the future continues the last drawn value.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7317

Button of the function trend control
The toolbar contains buttons for executing specific functions. Depending on the configuration,
the following buttons are available for operator input:

Icon Name Function
Start/Stop Stops and starts the trend update.

Started: The trend is continuously updated. It always shows the latest
values.
Stopped: New values are buffered and updated as soon as you start
the trend update again.

Zoom X axis +/- Zooms into or out of the time axis in the trend control.
Left-click: Zoom in
<Shift + Left-click>: Zoom out
Use the "Original view" button to return to the original view.

Zoom area Zooms in on the section of the trend control. You define the section
by dragging with the mouse.
Use the "Original view" button to return to the original view.

Zoom X axis plus
minus

Zooms into or out of the time axis in the trend control.
Left-click: Zoom in
<Shift + Left-click>: Zoom out
Use the "Original view" button to return to the original view.

Zoom Y axis plus
minus

Zooms in or out of the value axis in the trend control.
Left-click: Zoom in
<Shift + Left-click>: Zoom out
Use the "Original view" button to return to the original view.

Original view Returns to the original view from the zoomed display.

Previous trend Displays the previous trend in the foreground.

Next trend Displays the next trend in the foreground.

Ruler Displays a ruler that shows the coordinates of the intersection point
with a trend in the trend companion.
Requirement: The trend companion is configured with "Ruler win‐
dow" display mode.

Move trend area You can move the trends in the trend window along the X axis and the
Y axis using the button.
Values from the future trend area apply the last displayed value.

Move axes area You can move the trends in the trend window along the value axis
using the button.

Select time range Opens a dialog in which you configure the time range.

Runtime and simulation
17.3 Operating Unified PC

7318 System Manual, 11/2022

Icon Name Function
Select trends Opens a dialog for setting the visibility of trends.

Select data con‐
nection

Opens a dialog in which you select the data source:
• Process value log
• Tag
• Recipe

Print Click this button to print the trend shown in the trend window. The
print job used during printing is defined in the configuration dialog in
the "General" tab.

Export data This button is used for exporting all or the selected runtime data to a
csv file.

Value aggregation

Introduction
If the number of process values or archive values to be displayed for the selected time range in
a trend control is larger than the number of pixels available for the trend, they will be aggregated.
Which values are aggregated to a trend value depends on the loading time of the trend
control. For this reason, screen changes can result in a change of the trend line.

Avoid aggregation
To avoid that values are aggregated, select a shorter time range or enlarge the width of the trend
control.

Example
• Pixels available for the trend: 600
• Measuring interval of the tag set as the data source: 10 times per s
• Time range: 10 minutes,
i.e. in the selected time range, 6000 values are measured or logged. When drawing the
trend, 10 values are aggregated to each trend value.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7319

The trend displays different values depending on the loading time. The following graphics
illustrate how the last two aggregated trend values change when the loading time is
11:00:0019 instead of 11:00:0024.
• Loading time 11:00:0019:

• Loading time 11:00:0024:

Runtime and simulation
17.3 Operating Unified PC

7320 System Manual, 11/2022

Using the trend control

Online configuration of the trend control

Introduction
In Runtime, you configure online and thus change the appearance of the trend control.
During the configuration of the trend control, it is specified whether online configurations are
retained or discarded during a screen change or after Runtime is ended.

Overview
Use the following buttons to configure the trend control in Runtime:

"Select data con‐
nection"

Opens a dialog in which you can set the source from which a con‐
figured trend is supplied.
Possible sources are the tags or logging tags of an HMI device or
plant object and UDTs.

"Select trends" Opens a dialog in which you set the visibility and sorting of trends.

"Select time
range"

Opens a dialog in which you configure the time range.

See also
Select data connection of a trend (Page 7325)

Using the zoom functions in trend windows

Note
Scrolling in a zoomed in trend control
When the trend control is zoomed in, you can scroll using the mouse wheel:
• Move the mouse wheel to scroll up or down.
• Press <Shift> and move the mouse wheel to scroll to the left or right.

Introduction
Key functions can be used for zooming in on, zooming out of and returning to the original view
for trends, axes and various zoom areas of the trend window.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7321

Overview
The following zoom functions are available in the trend window:

Zoom time axis +/- Zooming in or out of time axis

Zoom value axis +/- Zooming in or out of value axis

Zoom area Zooming in on a trend control area

Zoom +/- Zooming in or out on trend

Original view Returning to the original view

Requirement
• The trend control is open
• Buttons with zoom functions are configured
• Runtime is enabled

Zooming in on a trend control area
Via the toolbar
1. Click "Zoom area" in the toolbar.

The updated display is stopped.
2. Drag with the mouse to draw a box around the area to be zoomed.

If there are at least two measured values within this area, the area of the trend is zoomed.
3. To return to the original view of the trend, click "Original view".
4. To restart the update, click "Start/Stop".
The default values are used for the axis.

Using the mouse wheel
Requirement: No zoom button was clicked in the toolbar.
1. Pause the update of the trend control.
2. Press <Ctrl> and move the mouse wheel.

Zooming in or out on trends
If you zoom in or out on a trend, the 50% value of the trend is always in the middle of the value
axes.

Runtime and simulation
17.3 Operating Unified PC

7322 System Manual, 11/2022

Proceed as follows to zoom in or out on a trend:
1. Click "Zoom +/-".

The updated display is stopped.
2. To zoom in on a trend, click on the trend with the left mouse button.
3. To zoom out on a trend, hold down the <Shift> key and click on the trend with the left mouse

button.
4. To return to the original view of the trend, click "Original view".
5. To restart the update, click "Start/Stop".
The default values are used for the axis.

Note
If you change the value area of a value axis on the "Value Axis" tab in the configuration dialog
while zooming, the visible zoom area is set to the new value area.

Zooming in on the time axis or value axis
While zooming with time or value axes, the 50% value of the trend is always in the middle of the
axes.
Proceed as follows to zoom the time axis or value axis:
1. To zoom in or out on the time axis, click on "Zoom time axis +/-".

The updated display is stopped.
2. To zoom in or out on the value axis, click on "Zoom value axis +/-".

The updated display is stopped.
3. To zoom in on an axis, click on the trend control with the left mouse button.
4. To zoom out on an axis, hold down the <Shift> key and click on the trend control with the left

mouse button.
5. To return to the original view of the trend, click "Original view".
6. To restart the update, click "Start/Stop".
The default values are used for the axis.

Zooming using touch gestures
Refer to the section Supported gestures (Page 7261).

Sorting trends
If a trend area contains multiple trends, you can select the order of the trends.
You have the following options:
• Specify the top trend
• Specify the order of all trends

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7323

Specify the trend order
Requirement
The "Select trend" button is configured in the toolbar.

Procedure
1. Click "Select trend" in the toolbar.
2. Click on a trend.
3. Move the trend to the selected position using the buttons.
4. Repeat these steps for the other trends.

Note
The trend at the top position is displayed in the trend area as the top trend.

Specify the top trend
In the drop-down list of the trend area, select the trend that you want to display as top trend.
Alternatively, use the "Select trend" button in the toolbar and move the desired trend to the
top position.

Hiding and showing trends

Requirement
The "Select trend" button is configured in the toolbar.

Procedure
1. Click "Select trend" in the toolbar.
2. Disable the trend option to hide a trend.
3. Enable the trend option to show a trend.

Determining the coordinates of a point

Introduction
The "Ruler" button is used to determine the coordinates of a point on the trend by means of a
ruler. You can zoom in on an area of the trend to make coordinate finding easier. If you display
the ruler in the trend control, you can move the ruler at any time.
If you click on the trend with the mouse, several trend parameters are shown in the tooltip
for the trend control.

Runtime and simulation
17.3 Operating Unified PC

7324 System Manual, 11/2022

Requirement
• A trend control is configured
• A trend companion is configured and connected with the trend control
• The "Ruler window" display mode is activated in the trend companion
• Runtime is activated

Procedure
Proceed as follows to determine the coordinates of a point:
1. Click "Ruler" in the trend control.

The ruler is shown.
2. Move the ruler to the desired position with the mouse.
3. If you want to zoom in on an area, click on "Zoom area".

– Move the ruler to the desired position with the mouse.
– To return to the original view, click "Original view".

Result
In the ruler window of the trend companion, besides the X value/time stamp and the Y value, the
data that you have configured in the trend companion is shown in the columns.
In the trend companion, the indices "i" and "u" can be displayed in addition to the values:
• "i.": The displayed value is an interpolated value.
• "u.": The displayed value has an uncertain status:

– The start value after Runtime activation is unknown
– A substitute value is used

Note
You can also display the "uncertain" status of a value in the displayed trend curve. You
must activate the "Value with uncertain status" option on the "Trends" tab under "Limits".

Alternative procedure
Alternatively, you can also connect the trend companion to the process control. In the "ruler
window" display mode, the values of the selected row are displayed in the trend companion.

Select data connection of a trend
You have the option to set in Runtime the source from which a trend is supplied.
Possible sources:
• Tags and logging tags of an HMI device, plant object or PLC
• UDTs

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7325

Requirement
• An HMI device has been configured.
• A trend control is configured in the screen of the device.
• To display logging tags: A data log has been configured.
• To display the tags of a plant object: The plant hierarchy has been created and assigned to the

HMI device.
• Runtime is active.

Procedure
1. Click on "Select data connection" in the toolbar of the trend control.

The "Selection of logs/tags" dialog opens.
2. Click "Trend:" and select a trend.
3. Click "Tag".

The "Browser view" dialog opens in which you specify how the selected trend is supplied with
data.

4. (Optional) Define in a filter.
5. Use the toolbar to configure the display in the dialog:

"Small icons"

"List"

"Details"

Runtime and simulation
17.3 Operating Unified PC

7326 System Manual, 11/2022

6. Use the toolbar to configure the contents of the dialog:

"Online tags" Shows the device and its tags.

"Logging tags" Shows the device and its logging tags.

"CPM" Shows the plant hierarchy and the plant object tags.

"UDT" Shows the device and its UDTs.

"CPM logging tags " Shows the plant hierarchy and the logging tags of the plant ob‐
jects.

7. In the tree, select the object whose data you want to display in the trend control.
8. Select a tag as the data source.
9. Confirm your entries.
The values of the tags are displayed in the trend control. If the path belongs to a plant object,
the path of the plant object is also shown in the trend control.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7327

Changing the time range of a trend

Procedure
To configure the time range, follow these steps:
1. Click "Select time range" in the toolbar of the trend control.

The "Time selection" dialog opens.
2. Under "Time axes", select the time axis with the time range you want to adjust.

Under "Trend area", you can see to which trend area the selected time axis belongs.
If the trends in a trend control are to be displayed with a common time axis, the specified time
range applies to all trends.

3. Configure the time range as described below.

Note
The format of date and time depends on the Runtime language used.

Configure time range
1. Select the "Time interval" entry in "Setting".
2. Select date and time of the start time.
3. Set the duration of the time range. To do this, enter a factor and select the time unit.

Example: "90" as the factor and "Seconds" as the time unit for a duration of one and a half
minutes.

4. Confirm your entries.
The time range of the time axis is adjusted:
• If the preset start time has been changed:

– The trend update is paused.
– The time axis starts with the selected start time.

• If the preset start time has been retained: The trend update continues. The preset start time
is not included in the time axis.

• The duration of the time axis results from the factor and time unit.

Configure start time and end time
1. Select the "Start time and end time" entry in "Setting".
2. Select the date and time of the start time and end time.
3. Confirm your entries.

Runtime and simulation
17.3 Operating Unified PC

7328 System Manual, 11/2022

The time range of the time axis is adjusted:
• If the preset start time and/or end time has been changed:

– The trend update is paused.
– The time axis starts with the start time.

• If the preset start time and end time have been retained: The trend update continues. The
preset start time and end time are not included in the time axis.

• The duration of the time axis results from the start time and end time.

Configure number of measuring points
1. Select the "Measuring points" entry in "Setting".
2. Select date and time of the start time.
3. Enter the number of desired measuring points under "Measuring points".
4. Confirm your entries.
The time range of the time axis is adjusted:
• If the preset start time has been changed:

– The trend update is paused.
– The time axis starts with the start time.

• If the preset start time has been retained: The trend update continues. The preset start time
is not included in the time axis.

• The duration of the time axis results from the number of measuring points multiplied by the
update cycle.

See also
Basics of time range (Page 7310)

Display context data of the plant objects in a trend control

This section describes how to show context-dependent data of a plant object in the trend
control.
The evaluation is relevant, for example, in connection with the WinCC Performance Insight in
order to analyze the effectiveness or the fault rate of the plant.

Requirement
• A trend control is configured in the screen of an HMI device.
• The plant hierarchy has been created and assigned to the HMI device.
• The data source of one of the trends in the trend control is a plant object.
• To display the logging tags of the plant object: A data log has been configured.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7329

• Contexts are available for the plant object.
• The "Select context" button is configured for the trend control.

Procedure
1. In the trend control, click "Select context".
2. Select the plant object set as data source.
3. Select one of the contexts assigned to the plant object in the "Context" drop-down list.

A list of the entries logged for the context appears under "Logged context values".
4. Select an entry.
5. Click "OK".

Runtime and simulation
17.3 Operating Unified PC

7330 System Manual, 11/2022

Result
The time period of the selected entry is applied to the time axis of the trend area. The trend
represents the data that falls within the time period of the selected entry.

Note
Effect on other trend areas
If the plant object selected as data source has multiple interface tags and trends from other trend
areas of the trend control display these tags, their time axes are also updated accordingly.

See also
Select data connection of a trend (Page 7325)
Contexts (Page 7240)

Process control

Overview of process control
With the process control, you display active or logged process values in a table. You design the
display of the table as you wish.
You create statistics from selected data. You also export the data for further use.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7331

Buttons of the process control
The following table shows the buttons that are available in the process control:

Icon Name Function ID
"First data record" Displays the history of a tag within a specified time range

starting with the first logged value.
Requirement: Values come from a process value log.

0

"Previous data re‐
cord"

Displays the history of a tag within the previous time
interval, based on the currently displayed time interval.
Requirement: Values come from a process value log.

1

"Start/stop" Stops and starts the column update. The values are buf‐
fered and updated as soon as you start the column up‐
date again.

2

"Next data record" Displays the history of a tag within the next time interval,
based on the currently displayed time interval.
Requirement: Values come from a process value log.

3

"Last record" Displays the history of a tag within a specified time range
ending with the last logged value.
Requirement: Values come from a process value log.

4

"Edit" Activates editing of table entries. To edit a value, double-
click in the desired table cell.
Requirement: Updated display is stopped.

5

"Previous column" Moves the value column in front of the previous value
column.
The function refers to the value columns that are as‐
signed to a time axis.

6

"Next column" Moves the value column to behind the next value col‐
umn.
The function refers to the value columns that are as‐
signed to a time axis.

7

"Select time range" Opens a dialog in which you configure the time range. 8

"Select data connec‐
tion"

Opens the dialog for selecting the logs and tags of an
HMI device, plant object or PLC that serve as data source
for this table view.

9

"Create archive val‐
ue"

Creates a table entry for a log value.
Enter the log value manually. Its time stamp corresponds
to the time at which you added the table entry.

10

"Delete archive val‐
ue"

Deletes a logged value. 11

"Export" Exports all or selected data to a *.CSV file.
Depending on the configuration and authorizations, the
following options may be available:
• Display export settings and start export
• Select file name and directory

12

Runtime and simulation
17.3 Operating Unified PC

7332 System Manual, 11/2022

Using the process control

Online configuration of the process control

Introduction
In Runtime, you configure online and thus change the layout of the process control. The process
control configuration specifies whether online configurations are retained or discarded on a
screen change or after Runtime is ended.

Overview
The following buttons make online configuration possible in process control:

"Select data connection"

"Select time range"

Changing the data connection
The following table shows the configuration options for data connection:

Field Description
Value column Choose the configured value column for which you want to change the data con‐

nection.
Data Source Define whether the selected value column is supplied with a logging tag or online

tag.
Tag name Select the tag name for the data connection.

Proceed as follows to change the data connection:
1. Click "Select data connection" in the toolbar.

The "Log/tag selection" dialog is opened.
2. Choose the "Value column" for which you want to change the data connection.
3. Select the "Data supply" and the "Tag name".

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7333

Changing a time range
The following table shows the configuration options for the time range:

Field Description
Time column Select the configured time column for which you want to define a time range.
Time range Set the time range:

• If you want to define a fixed time interval, select the setting "Start to end time". Enter
the date and time for each.

• If you want to define a time period, select the setting "Time range". Define the date
and time for the start time. The length of the time interval to be displayed is deter‐
mined by multiplying the "Factor" by the "Unit of time".

• If you want to display a certain number of values, select the setting "Number of
measuring points". Define the date and time for the start time. Enter the desired
number of measuring points in the input field.

To configure the time range, follow these steps:
1. Click "Select time range" in the toolbar of the process control.

The "Time - Selection" dialog opens.
2. Choose the "Time column" for which you want to adapt the time range.

If the columns of a process control are to be displayed with a common time axis, the
specified time range applies to all columns.

3. Configure the time range.
The entry format of the date and time depends on the Runtime language used.

Editing a table field

Introduction
You change the values displayed in the process control manually using the "Edit" button.

Overview
The following buttons allow you to edit the table fields:

"Start/stop"

"Edit"

Requirement
• The process control is configured
• The "Edit" button is configured
• Runtime is activated

Runtime and simulation
17.3 Operating Unified PC

7334 System Manual, 11/2022

Procedure
Proceed as follows to edit a table field in Runtime:
1. Click "Stop" in a process control.

The updated display is stopped, the process data continues being logged.
2. Click "Edit".
3. Double click on the desired table field of a value column.
4. Enter the new value.

The changed value is logged.
5. To continue with the display of Runtime data in the process control, click on "Start".

Moving value columns
You can rearrange the value columns assigned to a time axis.

Via the toolbar
1. Click on a column.
2. To move a column to the left, select "Previous column" in the toolbar

The column is shifted one position to the left.
If you have selected the first column, it is moved to the end of the value columns.

3. To move a column to the right, select "Next column" in the toolbar.
The column is shifted one position to the right.
If you selected the last column, it is moved to the beginning of the value columns.

With the mouse
See section Rearranging columns at runtime (Page 7451).

17.3.4.4 Screen window

Use
The "Screen window" object is used to display other screens of the project in the current screen.
To continuously update the content of a screen window, for example, the object must be
dynamized. Custom menus and toolbars can add specific buttons to the screen window.
You can also use independent screen windows independently of the screen in question. With
appropriate hardware equipment and support by the operating system, you can also control
multiple monitors and map processes in a more comprehensive and differentiated manner.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7335

Layout
The settings for the position, geometry, style and color of the object are made during
configuration.
In particular, the following properties are changed:
• Zoom factor: Defines the size of the embedded screen.
• Screen section: Defines the section of the embedded screen that is displayed in the screen

window. If the embedded screen is larger than the screen window, you configure scroll bars
for the screen window.

• Independent screen windows: Specified that the screen windows are displayed
independently from the screen in which they were configured.

Note
Cascading screen windows
Screen windows can also display screens which, in turn, contain screen windows. Up to 14
cascaded screen windows can be displayed.

17.3.4.5 Web control

Introduction
The "Browser" control is designed for the visualization of simple HTML pages. It allows creation
of centrally stored machine-specific descriptions, which are displayed from different HMI
devices.
You have access to the data of the local user management in Runtime via a browser.

Runtime and simulation
17.3 Operating Unified PC

7336 System Manual, 11/2022

Note
Switching the functionality of the web control as a file explorer, in the following ways, for
example, is not enabled in WinCC:
• Entry of a folder or drive, e.g. "\" or "C:", or
• Connection to an FTP server, for example, "ftp://"
One reason this function is not implemented is to prevent inadvertent changes to files, their
deletion or execution.
When configuring, ensure that the operator can only enter valid Internet addresses, for example,
by using symbolic I/O fields. Configure a password-protected input for service purposes.

Note
Page navigation in the web control
Whether you can navigate back and forth between the pages that you have viewed in the web
control depends on the browser and browser versions in which Runtime is running. If the
browser or browser versions do not support page navigation, the buttons in the web control are
disabled.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7337

Displayed content
Remember the following notes when using the control:
• The "Browser" control only shows contents that are supported by the browser in which

Runtime is open.
• The control is implemented as IFrame. Pages with X-Frame option settings that prevent the

display in an IFrame are not displayed in the control.
• As compared to a standard browser, the "Browser" control has limited functionality:

– Navigation from the "Browser" control is not supported (top-level navigation).
– Calls of queries and dialogs (pop-ups and modal dialogs) are only supported if they were

activated in the file <Path for the WinCC Unified installation
directory>WinCCUnified\WebRH\public\content\custom\CustomSettings.json:
{"CustomSettings": {"HmiWebControl" : {"AllowPopups" :
true,"AllowModals" : true}}}
Note
Pop-ups and modal dialogs stop the update.

– Links to embedded files, for example, *.pdf or *.xls, are not supported.
– Queries and dialogs that are conducted during the access of, for example, protected

pages are not supported.

17.3.4.6 Media player

Use
In Runtime, the media player is used to play multimedia files via an https connection.

Runtime and simulation
17.3 Operating Unified PC

7338 System Manual, 11/2022

Layout
The settings for the position, style and color of the object are made during configuration.
In particular, the following properties are changed:
• Display operator controls: Specifies the buttons in runtime.
• Show tracker: establishes, whether a slider is available for the operation.

Supported file formats
The media player supports all formats that support the HTML5 video tag.

Restrictions

Note
Play restrictions
• The web control security settings do not allow local files to be played.
• Playing multimedia files in the Runtime control system depends on factors such as the

installed operating system, the browser used and video and audio codecs installed on the
machine.
Examples:
– Internet Explorer does not play any video file with an embedded .wav audio file.
– Most browsers do not support .avi files.

• The browser determines which video formats are supported.
You can find an overview of the video formats supported by popular browsers here (https://
www.w3schools.com/html/html5_video.asp).
You can find a detailed overview of the browser version used or between browsers here
(https://html5test.com/compare/browser/index.html).

• iOS guidelines for the <video autoplay> element are available here (https://webkit.org/blog/
6784/new-video-policies-for-ios/).

Note
Requirements for video files
To play video files in the Windows Server 2008 R2 SP1 and 2012 R2, install the Microsoft feature
"Desktop Experience". You will find more detailed information on this topic on the Internet in the
Microsoft documentation.

Note
Data loss when copying the project
If you copy the project to another PC, keep the following in mind:
Files indicated in the WinCC Media Control are not copied along with the other files if they are
dynamically linked and no UNC path is specified. You have to load the files into the project again.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7339

https://www.w3schools.com/html/html5_video.asp
https://www.w3schools.com/html/html5_video.asp
https://html5test.com/compare/browser/index.html
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://webkit.org/blog/6784/new-video-policies-for-ios/

17.3.4.7 System diagnostics view
The "System diagnostics control" object shows the diagnostic status of several PLCs via traffic
light SVGs. The diagnostic status contains the overall status of all relevant PLCs. Navigation
buttons can be used to navigate to the next PLC. The merged state is always the worst state of
all PLCs.

Layout
In Runtime, the diagnostic messages of the selected PLC are displayed in the "System diagnostics
control". The selected PLC can be changed using the buttons ④. Once Runtime has started, the
events of the PLC with the most serious error are displayed.

3 74 5 6

2

1

① Grid view
② Detail view
③ Update the view of the diagnostics event
④ Switch to the next or previous PLC
⑤ Navigation buttons for the grid view:

jump to the first line
jump to the previous line
jump to the next line
jump to the last line

⑥ Enable/disable detail view
⑦ Information bar

Runtime and simulation
17.3 Operating Unified PC

7340 System Manual, 11/2022

The diagnostic buffer displays the diagnostics events of a PLC in a grid view ①. The grid view
shows the last 200 diagnostics events of the PLC.
The first column shows the number of the entry.
The symbols in the second column indicate the event type of the PLC:

Device in operation

Maintenance required

Maintenance necessary

Error in the device

You can see the symbols of the incoming or outgoing status in the third column:

Incoming event

Outgoing event

Incoming event for which there is no independent outgoing event

User-defined diagnostics event

The fourth column shows the date and time of the event. You can see the event message in
the last column.
Below the grid view, the detail view ② of the selected row from the grid view is displayed.
You can enable or disable the detail view with the button ⑥.
When the screen is loaded, the "System diagnostics control" shows the PLC with the most
severe error. If several PLCs are configured for system diagnostics, you can use the toolbar
buttons ④ to switch to the next or previous PLC.
To update the "System diagnostics control", select the toolbar button ③. For performance
reasons, no automatic update is performed.
At the bottom of the window, an information bar ⑦ is displayed with the diagnostic status
and the name of the station/PLC.

Note
Rearranging columns
You can change the preconfigured column arrangement.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7341

Languages in runtime
The alarms are displayed in the RT language selected by the user in the screen logon dialog. The
Runtime language and the PLC language should be identical.
The PLC supports only three languages, which can be configured by the user in the
engineering. If the PLC language and the Runtime language are different, the event text
is displayed as follows according to the fallback mechanism:
• English US
• English UK
• the standard text "## text is missing ##"

See also
Rearranging columns at runtime (Page 7451)

17.3.4.8 Plant overview

Introduction

Note
With version V17, the "Plant overview" control is supported only for Unified PC. If you use the
control under Unified Comfort Panel, an error message of the compiler is returned. If the control
is configured for the Unified Comfort Panels, it must be deleted before the compile.

The "Plant overview" object shows you the configured plant hierarchy in Runtime. In the plant
overview, you can navigate through the system to the plant objects and see the plant at a
glance.
With the corresponding configuration of the lower-level plant objects and the assigned HMI
device during the engineering, the plant overview also offers you the following options:
• Obtaining an overview of the plant objects for which alarms are available
• Displaying the alarms of a plant object
• Display of configured screens of a plant object.

Runtime and simulation
17.3 Operating Unified PC

7342 System Manual, 11/2022

Overview of the Plant overview

1 Toolbar
2 Menu bar
3 Filter bar
4 Plant tree
5 Alarm icon

Alarms are available for the plant object or one of its lower-level plant objects.

The following buttons are available in the toolbar and in the filter bar:

Icon Name Function
Expand all Expands all lower-level plant objects of the plant object selected in

the control.
Collapse all Recursively collapses all lower-level plant objects of the selected

plant object.
Expand or collapse the filter
bar

Opens or closes the filter bar.

 Filters the plant overview:
• No filter: You see all plant objects
• For plant objects for which alarms are available
• According to plant objects for which screen windows are con‐

figured
Search field Filters according to the entered text.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7343

When configuring in the engineering system, you can hide the toolbar and menu bar.

Requirement
• The plant view has been created and assigned to an HMI device.
• The "Plant overview" object is configured in the screen of the assigned HMI device.
• Optional:

– The "Dynamic" navigation type is configured in the engineering system for the plant
overview.

– A root node is configured in the engineering system for the plant overview.
• Runtime is active.

Operation
Expand and collapse plant tree
• To show all lower-level plant objects of a plant object, click the "Expand all" button.

To collapse the plant tree, click "Collapse all".
• To expand only the lower-level objects of the next level, click the button with the triangle next

to the plant object.
To collapse the level again, click again on the button with the triangle.
Alternatively, you can double-click the plant object to expand or collapse lower-level objects.

Runtime and simulation
17.3 Operating Unified PC

7344 System Manual, 11/2022

Select plant objects
• To select a plant object, click on the plant object in the plant tree.

The path to the selected plant object appears in the menu bar of the "Plant overview" object:

• To see which lower-level objects a plant object displayed in the menu bar has at the next level,
click the arrow in the menu bar next to the plant object.

• To go from the menu bar to the overview, click on one of the plant objects shown in the menu
bar.

Dynamic navigation
If dynamic navigation is enabled in the engineering system, specify the level from which the
plant tree is displayed.
The buttons of the toolbar and the filter bar relate to the displayed area.
• To select a plant object, click on the object in the menu bar or double-click on the object in

the plant tree.
The levels below the selected plant object are available.

• To navigate up one level, click on the up arrow next to the plant object.

Root node
You have the option of defining a root node in the engineering system.
If a root node is configured, the root node and all objects below the root node are available in
the plant overview.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7345

See also
Display alarms for plant objects (Page 7289)

17.3.4.9 Plant overview with companion controls

Requirement
• The plant view has been created and assigned to a device.
• The "Plant overview" object is configured in the screen of the assigned device.
• The objects "Alarm control" and "Screen window" are configured in the screen of the assigned

device and configured as companion controls of the plant overview.
• Screens are configured at the plant objects.
• Runtime is active.

Display alarms
To display the alarms of a plant object, click on the alarm icon.
The alarm control shows the alarms of the plant object.

Note
The alarm icon only appears when an alarm has occurred at the respective plant object or one
of its lower-level objects. The alarm icon disappears again when the alarm is no longer present.

Show a screen of a plant object
To show the screen of a plant object, click on the plant object.
The screen window shows the screen of the assigned HMI device.
If you have not configured any screen window, a screen of the plant object with text box
"$POName$" appears.

Note
"$POName$" is an expression with which the name of the plant object is resolved.

Runtime and simulation
17.3 Operating Unified PC

7346 System Manual, 11/2022

17.3.4.10 Parameter set control

Overview of parameter set control

Introduction

Note
With version V16, the "Parameter set control" is supported only for Unified PC. If you use the
control under Unified Comfort Panel, an error message of the compiler is returned. Existing
projects under Unified Comfort Panel in which the control is configured must delete the control
before compilation to version V16.

Set up the machine for production in Runtime using parameter sets. The elements in a
parameter set are defined in engineering by defining its parameter set type.
In Runtime, the parameter sets are displayed in the parameter set control. In the control, you
manage the parameter sets and load a parameter set into the PLC to set up a machine for
production.

Example
A bakery generates the following parameter set types in the engineering system:
• Bread
• Bread rolls
• Cake
The elements of the parameter set types define the ingredients of these products. For
example, the parameter set type "Bread" has the following elements:
• Flour
• Salt
• Syrup
• Yeast
• Water
In Runtime, the bakery creates parameter sets for the "bread" parameter set type for the
bread types to be produced:
• White bread
• Wholewheat bread
• French bread
The quantities required for this type of bread are entered in the elements.
During production, an operator selects the parameter set to be produced next and writes it to
the PLC.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7347

User interface

① Area for selecting the parameter set types and parameter sets
② Parameter table

Displays the values of the selected parameter set or parameter set type. The columns in the table
depend on the configuration in engineering.

③ Toolbar
④ Information bar

The elements in the information bar depend on the configuration in engineering.

Note
Fixed parameter set type
The parameter set control in the engineering system can be configured so that you are only
offered the parameter sets of a certain parameter set type and cannot select any other parameter
set types.

Runtime and simulation
17.3 Operating Unified PC

7348 System Manual, 11/2022

Parameter set control buttons
The toolbar contains buttons for executing specific functions. Depending on the configuration,
the following buttons are available for operator input:

 Button Function
Create Creates a new parameter set.

Save Saves a parameter set.

Save as Opens the selection dialog for the storage path of the
selected parameter set.

Rename Renames the selected parameter set.
The new name must be unique.

Write to PLC Save the parameter set and writes it to the PLC.

Read from PLC Reads a Parameter set type or parameter set from the PLC.

Import Imports parameter sets to a CSV file.

Export Exports parameter sets to a CSV file.

Cancel Cancels the process.

Delete Deletes the selected parameter set.
The table shows the default values at the parameter set
type.

Rearranging columns
You can change the column arrangement configured in the engineering here. See
section Rearranging columns at runtime (Page 7451).

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7349

Operate parameter set control

Create parameter sets

Requirements
• Parameter set types were configured in the engineering system.
• The parameter set control is configured in the screen of the device that is active in Runtime.

Create a new parameter set
To create a new parameter set, follow these steps:
1. Select a parameter set type in the parameter set control in "Parameter set type".

The parameter table loads the columns and default values predefined at the parameter set
type.

2. Click the "Create" button.
Note
Cancel creation
Another parameter set parameters set type cannot be selected until you have saved the new
parameter set or clicked on "Cancel".

3. Optional: Enter the name of the new parameter set in "Parameter set name".
The name must be unique for the parameter set type.

4. Optional: Enter the ID of the parameters set in "Number".
The number must be unique for the parameter set type.

5. The find the values of the parameters set by clicking in a table cell and modifying the value
predefined by the parameter set type.

6. Confirm.
The parameter set is created and saved.

Create a version of the existing parameter set
To create a new parameter set based on an existing parameter set, follow these steps:
1. Select a parameter set type in the parameter set control in "Parameter set type".
2. Select a parameter set in "Parameter set".

The parameter set table loads the columns and values defined for the parameter set.
3. Click the "Save as" button.

The "Save parameter set as" dialog opens.
4. Optional:

– Overwrite the automatically generated name in "Parameter set name".
The name must be unique.

– Overwrite the ID in "Number".

Runtime and simulation
17.3 Operating Unified PC

7350 System Manual, 11/2022

5. Confirm.
The new parameter set is created.

6. To change the values taken over from the original parameter set, click in a table cell and enter
a new value.

7. Click the "Save" button.
The parameter set is created and saved.

Edit parameter sets

Requirements
• Parameter set types were configured in the engineering system.
• The parameter set control is configured in the screen of the device that is active in Runtime.
• A parameter set was created in Runtime.

Procedure
1. In the parameter set control, select a parameter set type under "Parameter set type".
2. Select a parameter set in "Parameter set".

The parameter set table loads the columns and values defined for the parameter set.
3. The new parameter set is created.
4. Click in a table cell and enter a new value.
5. Click the "Save" button.

Exchanging data with the PLC

Requirements
• Parameter set types are configured in the engineering system.
• The parameter set control is configured in the screen of the device that is active in Runtime.
• Write to the PLC: Parameter sets are available in Runtime.

Write parameter sets to the PLC
1. Select a parameter set and a parameter set type in the parameter set control.
2. Click "Write to PLC".

Result
• Unsaved data of the parameter set is saved.
• The parameter set is written to the PLC of the parameter set type.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7351

Reading parameter sets or parameter set types from PLC
Reading a parameter set
1. To read a parameter set from a PLC, select the parameters set type of the parameter set and

the parameter set.
2. Click "Read from PLC".
3. Select one of the following options:

– Overwrite parameter set
– Create new parameter set

Define the name and the number.

Reading a parameter set type
1. To read a parameter set type from a PLC, select the parameter set type.
2. Click "Read from PLC".
3. A parameter set is created for the parameter set type during import. Define the name and the

number of the parameter set.

Result
• The parameter set or the parameter set type and a parameter set are read in.
• The parameter table is updated.
• The parameter set that is created for the imported parameter set type has the default values

defined in the type.

Note
A parameter set cannot be read from the PLC if minimum and/or maximum values are defined
for a parameter set type element and the value in the parameter set to be transferred is outside
this range. A message is output.

Importing and exporting parameter sets

Requirements
• Parameter set types are configured in the engineering system.
• The "Parameter set control" control is configured in the screen of the device that is active in

Runtime.
• For the export: Parameter sets are available in Runtime.

Import
1. Click "Import" in the parameter set control.
2. In the dialog "Import - Parameter set", select a TSV file with parameter sets.

Runtime and simulation
17.3 Operating Unified PC

7352 System Manual, 11/2022

3. To overwrite parameter sets in the parameter set control that have the same IDs as the
imported parameter sets, activate the "Overwrite" option.
Note
If you deactivate overwriting and if a parameter set with the same ID or the same parameter
set name exists in the parameter set control, the import of parameter sets is not possible.
Any added parameter sets whose IDs and parameter set names deviate from the existing
parameter sets are imported regardless of the "Overwrite" option.

4. Select "Check checksum" when importing a parameter data record that was exported with
the "Generate checksum" option.

5. Click "OK".

Result
• The parameter sets from the file is stored in the database.
• In selecting your parameter set type, you will be prompted to select under "Parameter set".
• If the currently loaded parameter set was part of the import, it will be updated accordingly

in the parameter set control.

Export
1. Select a parameter set type in the parameter set control.
2. Click the "Export" button.
3. In the "Export - Parameter set" dialog, select a storage location for the file with parameter sets.
4. Set the formatting settings:

– Select the file format.
– Select the list separator.
– Select the decimal character.
– Select "Generate checksum" to export the parameter data record with a checksum.

Parameter data records with a checksum cannot be imported if they have been
manipulated in the meantime.

5. Click "OK".

Result
All parameters of the parameter set type are exported.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7353

Updating the UDTs
Parameter set types are linked to UDTs. If the UDT of a parameter set type is replaced or edited
in the engineering system, the derived parameter sets are updated accordingly in Runtime after
the next compilation and loading:
• Replacement of the UDT

The parameter sets created in Runtime are retained. You adopt the elements and default
values of the new UDT.

• Assignment of another UDT version
The parameter sets created in Runtime are retained. New elements are assigned default
values, deleted elements are removed.

17.3.4.11 Reports

Basics

Reporting in Runtime

Note
Restriction for Unified Comfort Panel
Contexts are not supported in V17 for Unified Comfort Panel. This option is not available in a
report template with a Unified Comfort Panel as data source. When you generate a report on a
Unified Comfort Panel whose report template uses this option, error entries are generated in the
"ErrorLog" worksheet of the report.

Introduction
With WinCC Unified Reporting, you can generate tabular production reports (reports) in Runtime
for the following project data:
• Logging tags and tags
• Log alarms
• Contexts:

– User-defined contexts:
These contexts are created and executed by a program created with the ODK API.

– System-generated contexts
When the Performance Insight and Calendar option packages are installed, these
contexts are executed by the system during Runtime.

• Audit Trail of the Runtime device
• If Plant Intelligence options are installed, you can use the WinCC Unified Local Reporting

option to generate production logs for additional project data.
You can find more information in the Help for the respective Plant Intelligence option.

Runtime and simulation
17.3 Operating Unified PC

7354 System Manual, 11/2022

The production reports can be generated as XLSX file or PDF file and sent automatically as an
email to a specified group of recipients. For example, you can generate an XLSX report that
outputs all alarms occurring in a production line. You then distribute or archive the report for
analysis purposes.

Functional scope
In the "Reports" control in Runtime, you configure report jobs that use the report templates
defined in the Excel add-in. To do so, Reporting offers the following functions in Runtime:
• Maintenance of the global email settings (contact data and SMTP server configuration)
• Maintenance of job parameters, especially import and export of report templates
• Creating new report jobs and managing existing report jobs
• Overview of the generated reports
• Download or deletion of the reports

Basics of Reporting

Report templates
A report template is an Excel file (.xslx) that was created with the WinCC Unified Excel add-in. The
report template has access to the data of the data source with which the add-in is connected.
For each report template, you define which segments are contained in the reports using the
template and which data source items are evaluated by the segments.
After you have imported report templates into the "Reports" control in Runtime, you can
select them for configuring report jobs.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7355

Data sources
The data source is the source from which you select data source items when you configure the
report template.
The following connection modes and data sources are available:
• Connection mode: Online

The data source is the project that is running on the Runtime server to which the add-in is
connected.

• Connection mode: Offline
Data source is a configuration file. You generate the configuration file by exporting the data
source items of the project to a file in the "Reports" control in Runtime. You can use this file
to create additional report templates without connecting to a runtime server.

Options and data source items
Options control the types of data source items to which the report template has access.
Data source items are the specific objects whose data is read from the Runtime project during
report generation.
The following options and types of data source items are available in Reporting, depending
on the installed software:

Software Option Types of data source items
WinCC Unified ba‐
sic installation

Alarms Logging alarms
Alarm statistics for logging alarms

WinCC Unified ba‐
sic installation

Logging tag Logging tags

WinCC Unified ba‐
sic installation

Tag Tags

WinCC Unified ba‐
sic installation

User-defined col‐
umn

User-defined texts or Excel formulas

WinCC Unified ba‐
sic installation

Context User-defined contexts
Not available for Unified Comfort Panel

WinCC Unified ba‐
sic installation

Audit Audit

Performance In‐
sight option pack‐
age

Performance In‐
sight

Local KPIs and operands of the PI option Performance Insight:
• KPIs
• Logged KPIs
• Operands (counters and numerical operands)
• Machine states
• System-generated contexts

Line Coordination
option package

Line Coordination Jobs

Calendar option
package

Context System-generated contexts

Runtime and simulation
17.3 Operating Unified PC

7356 System Manual, 11/2022

Report jobs and job parameters
A report job is a job for generating reports in Runtime. A new report is generated each time the
report job is performed.
The job parameters of the report order determine the details of its execution, such as which
trigger it has, which report template it uses and the format of the report.
Report jobs are executed automatically when their trigger event occurs or manually by the
user.

Reports
A report (production report) is an XLSX file or PDF file that is generated when a report job is
executed in Runtime. The data source items from the Runtime project defined in the report
template are read during generation, and their data are imported into a table in the report.

Using general Excel functions
In addition to the specific add-in functions, you also have access to the standard Excel functions
in a report template. These include:
• Layout functions
• Functions for graphical preparation or analysis of the data imported from Runtime, such as

charts, pivot tables and formulas
See also Tips on design and layout (Page 7449).

General requirements and restrictions

Installing the Excel add-in
The installation of the Reporting add-in on a computer requires that the operating system and
the local MS Excel installation are regularly updated.
If there are problems with the installation, check the version of the local MS Excel
installation. Lengthy maintenance intervals between the operating system and Excel can
cause problems during installation of the add-in.
Update the operating system and the Excel version if necessary.
To install the add-in with a local Excel installation, MS Excel with build 16.0.6769 or higher is
required.

Note
Note the Microsoft upgrade restrictions
If you have an Excel installation that cannot be upgraded to Build 16.0.6769 or higher (for
example, because Excel was installed using a single Office license), purchase a current Office
version or use Online Office.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7357

IIS settings for standalone installation of the Excel Add-In
To install the Excel Add-In on a PC without Unified Runtime, the same IIS (Internet Information
Services) settings must be active in Windows that are required to install WinCC Unified Runtime
on a PC.
You can find additional information in the "SIMATIC Unified PC Installation" user help section
on the software and hardware requirements.

Unified Comfort Panel
The following restrictions apply to generating reports on Unified Comfort Panels:

Contexts Contexts are not supported in V17 for Unified Comfort Panel. This option is not available in a report
template with a Unified Comfort Panel as data source. When you generate a report on a Unified
Comfort Panel whose report template uses this option, error entries are generated in the "ErrorLog"
worksheet of the report.

Storage location of the
Reporting database

The following folder on the SD card plugged into the panel is preconfigured as the storage location
of the reporting database:
• Device version V18: media/simatic/X51/Reports

You can configure and load another storage location in TIA Portal in the Runtime settings of the
Panel.

• Device version <V18: media/simatic/X51
Storage location for re‐
ports

The "Reports" folder on the SD card inserted in the Panel is permanently pre-configured as the local
main storage location for reports: media/simatic/X51/Reports
For Panels with device version V18, you can configure and load a different local main storage location
in the Runtime settings of the Panel in TIA Portal.

Enable Reporting
The use of Reporting requires that the Reporting functionality was enabled:
• For configuring report templates:

Reporting must be enabled for the Runtime project that serves as the data source.
• For configuring report jobs and generating reports in Runtime as well as in a simulation:

Reporting must be enabled for the Runtime project that is running on the HMI device or is
being simulated.

The reporting functionality of a Runtime project is enabled in TIA Portal in the Runtime
settings of its HMI device with the option "Enable reporting".

Note
Devices with a device version lower than V18
Reporting is always enabled for HMI devices with a device version lower than V18.

See also
Version compatibility (Page 7359)

Runtime and simulation
17.3 Operating Unified PC

7358 System Manual, 11/2022

Version compatibility

Introduction
When loading a Runtime project for which the "Reports" control has been configured, the
general rules for version compatibility of WinCC Unified apply.
The rules described here also apply for the interaction between add-in, data source, report
template and runtime version of the project in which reports are generated.

Compatibility between add-in and data source
The add-in can use the following data sources:

Add-in Online data source Offline data source
V16 Runtime project V16 Configuration file generated with a Runtime

project V16
V17 Runtime project V16 or V17 Configuration file generated with a Runtime

project V16 or V17

Compatibility between add-in and report template
The following report templates can be opened and edited in the add-in:

Add-in Report template
V16 Created with a V16 add-in
V17 • Created with a V17 add-in

• Created with a V16 add-in
If the add-in is connected to a V17 data source when you open the report template, you
will be prompted to migrate the report template to V17.
If the add-in is connected to a V16 data source when the report template is opened, no
migration is necessary.

Note
Migration of report templates
The migration of the report template is not reversible. A report template migrated from V16 to
V17 can no longer be opened in a V16 add-in.
If migration is not desired, connect the add-in to a V16 data source before opening the report
template.

Note
Scope of functions of report templates
The functions available in the configuration of the report template in the add-in depend on the
version of the data source used by the add-in.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7359

Compatibility between report template and runtime project
In a runtime project, reports can be generated using the following report templates:

Report template Version of the runtime project
V16 V16 and V17
V17 V17

Workflow for working with reports in Runtime

Introduction
The following workflow describes which works are required in the "Reports" control so that
production reports are generated in Runtime.
The reports can be stored as file in the file system and sent as an attachment to an e-mail.
Alternatively, an e-mail without attachment can also be sent about the generation of the
report. In this way, employees from management and production can be informed about the
production situation promptly, regardless of their location.
You can send the e-mail using a secure SMTP server (authentication with user name and
password or via certificate) or an unsecured SMTP server, for example, an internal company
mail server.

Requirement
• Requirements in TIA Portal:

– The necessary project data were configured for the HMI device for which reports are to be
created.

– The "Reports" control was placed on an HMI screen of the device.
– The "Enable Reporting" option was enabled in the Runtime settings of the device.
– (Optional) The storage locations for reports and the Reporting database were configured

in the Runtime settings of the device.
• The HMI device has been compiled, uploaded to the Runtime server and its project is running.
• When using contexts: Contexts have been defined and executed in Runtime for the project.
• The Runtime server has access to report templates.
• For cross-project and cross-Runtime use of report templates: The data sources used in the

report template can also be found on the HMI device. Make sure that the names and plant
hierarchy are consistent.

Runtime and simulation
17.3 Operating Unified PC

7360 System Manual, 11/2022

Procedure
1. To send reports by e-mail, configure the global e-mail settings:

– When one of the servers requires a certificate for sending e-mails, upload the certificate.
– Create contacts for the e-mail receivers and e-mail senders.
– Create the required SMTP server configurations.

2. Configure job parameters for report templates, triggers and targets.
These job parameters will then be available to you for selection when configuring the report
jobs.

3. Configure report jobs.
Reports are generated in Runtime when the report jobs are executed.

4. (Optional) Perform report orders manually.
5. In the control, get an overview of which reports have been generated.
6. Download the reports, if necessary.
7. (Optional) To reuse the configuration of the "Reports" control, such as on a device in another

network, transfer the existing configuration from the control from one device to the control
of the other device.

Configuring job parameters
First, you configure which job parameters are available for selection during the configuration of
the report jobs. You configure the following job parameters:
• The available report templates

The report template defines which data the report outputs. Import and/or delete templates,
if required.

• The available triggers
The trigger defines when a report job is executed. Add triggers, edit triggers or delete them.

• The available targets
Targets define whether reports are made available to users in the file system or via e-mails.
Add targets, edit triggers, or delete them.

You set further job parameters while configuring a report job in the "Report jobs" tab.

Configuring a report job
You configure the following for each report job:
• Name of the report job
• Used report template

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7361

• Name of the reports generated by this template
Note
Texts through dynamic placeholders
Placeholders are available to you when defining the report name. The placeholders are
evaluated and replaced by text during execution of the report.
See also Dynamic placeholder (Page 7386).

• Targets of the generated report
To send e-mails, select a target of the type "E-mail".

• Per target: The target format of the generated report
Possible formats: .XLSX and .PDF

• Trigger
• Comment
• Activate

See also
Setting global email settings (Page 7365)
Configuring job parameters (Page 7367)
Configuring report jobs (Page 7374)
Running a report job manually (Page 7382)
Downloading reports (Page 7382)
Transferring the control configuration (Page 7384)
Configuring report templates in the add-in (Page 7389)

The user interface of the "Reports" control

Note
Automatic data transfer
Changes in the "Reports" control are saved automatically.

Layout
You create and manage report jobs in the "Reports" control. You also have access to the reports
generated by the report jobs.
The control has the following structure:

Runtime and simulation
17.3 Operating Unified PC

7362 System Manual, 11/2022

1 Tab for the configuration and management of reports, report jobs, job parameters and global settings
2 Toolbar

The buttons you see depend on the tab.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7363

3 Work area
On the "Reports", "Report jobs" and "Job parameters" tabs: List of elements available on the tab
On the "Global settings" tab: The settings

4 Options for selecting the elements
You can select elements individually or all at once.

5 Detail area
Shows the properties of the selected element.

6 Information bar

Tab
"Reports" tab
Here you can see which reports have been generated. You can download or delete reports via
the toolbar.
The "Status" column shows Information:
• On the status of the generated report files (XLSX and PDF)
• On the status of the targets (File system and E-mail)
Overview of the status icons:

Status Description
Execution has been successfully completed.

An error occurred during execution.

Execution is in progress.

A click on an icon opens a detailed status message.

"Report jobs" tab
Here you create new report jobs, manage existing report jobs or start a report job manually.

"Job parameters" tab
Here you manage the parameters with which you configure the report jobs in the "Report
jobs" tab.

"Global settings" tab
Here you make the following settings:
• For sending e-mails
• For transfer of the control configuration
• For creating an offline configuration file
• For configuring paging

Runtime and simulation
17.3 Operating Unified PC

7364 System Manual, 11/2022

Toolbar
The following buttons are available in the toolbars of the tab:

Icon Button
Delete Deletes the elements whose option is enabled in the work area.

• Add new
• Import

• Creates a new element.
• "Job parameters > Templates" tab: To import a report template into Run‐

time
Run In the "Report jobs" tab.

Manually creates a report for the report job whose option is enabled in the
work area.

Export • In the "Job parameters > Templates" tab:
To export report templates

• In the "Reports" tab:
To download reports to the client

Information bar
The button in the information bar displays general information sent by the reporting service, for
example, on whether a report job has been executed.

Setting global email settings
If configured accordingly, an e-mail is sent automatically after a report job is executed. The e-
mail can include the report as an attachment.
Maintenance of the basic settings for sending e-mails is carried out in the "Global settings"
tab:
• If necessary: The certificates that the e-mail sender uses to authenticate itself at the SMTP

servers.
• The contact information of the e-mail senders and e-mail receivers.
• The configuration of the SMTP server via which the e-mails are sent.

Upload certificates
Store the certificates of the SMTP servers that require authentication via certificate.

Requirement
• You have access to the storage location of a valid certificate file.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7365

Procedure
1. In the "Reports" control, click on the "Global settings > Certificates" tab.
2. Click "Add new" in the toolbar.

Alternative: In the work area, click "Add new".
3. In the dialog that opens, select the certificate file.
4. Confirm your input.
5. Optional: Select the uploaded certificate in the work area and enter a comment on the

certificate in the detail area.

Result
The certificates uploaded here are available in the "Contacts" tab.

Maintaining contacts
Store the data of the e-mail senders and email recipients.

Procedure
To create a new contact, follow these steps:
1. In the "Reports" control, click on the "Global settings > Contacts" tab.
2. Click "Add new".
3. Enter the name of the contact.
4. Enter the e-mail address of the contact.
5. To use the contact as a sender for an SMTP server that requires authentication with a

certificate, select the appropriate certificate under "Certificate".
6. To use the contact as a sender for an SMTP server that requires authentication with a user

name and password, enter the password.
The e-mail address is used as the user name.

7. (Optional) Enter a comment relating to the contact.

Result
The contacts configured here are available:
• As the e-mail sender in the SMTP server configuration.
• As an e-mail recipient when configuring "target" job parameters with the target type e-mail

Maintenance of the SMTP server configuration
Store the data of the SMTP servers via which the e-mails are sent.

Runtime and simulation
17.3 Operating Unified PC

7366 System Manual, 11/2022

Requirement
Contacts that are suitable as senders have been entered in the "Global Settings > Contacts" tab.

Procedure
To create a new SMTP server configuration, follow these steps:
1. In the "Reports" control, click on the "Global settings > SMTP" tab.
2. Click "Add new".
3. Specify the following:

Field Description
"Name" Enter the name of the SMTP server configuration.
"Address" Enter the URL of the SMTP server.

Servers without authentication (e.g. company-
internal mail servers) and with authentication are
permitted.
Example: URL of a company mail
server: mail.<Company name>.com

"Port" Enter the port number of the SMTP server.
Default setting: 25

"Sender" In the list, select the contact that is used as the
sender for this SMTP server configuration.
All contacts maintained under "Contacts" are of‐
fered to you for selection. Select a sender that
meets the respective requirements of the server.

"Comment" (Optional) Enter a comment relating to the SMTP
server configuration.

Result
The servers configured here are available when configuring the "Target" job parameters with the
target type email.

Configuring job parameters
Job parameters define the details of a report job.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7367

You configure the following parameters on the "Job parameters" tab:
• Templates
• Trigger

Define trigger when a report job is executed.
• Targets

Targets define how a report is made available to users. The following target types are
available:
– "E-mail"

An e-mail is sent after a report job is executed. The report generated by the report job can
be included with the e-mail as an attachment.

– "File system"
The reports generated by the report job are stored in the file system.

The parameters configured here are available to you for selection when configuring the
report jobs in the "Report jobs" tab.
You define the remaining job parameters while configuring a report job in the "Report jobs"
tab.

See also
Importing and exporting report templates (Page 7368)
Deleting templates (Page 7369)
Configure trigger (Page 7369)
Add target with target type "E-mail" (Page 7372)

Importing and exporting report templates

Requirement
• The "Reports" control is placed on a screen of the project.
• The "Job parameters > Templates" tab is visible in the control.
• Import: You have access to the storage location of the report template.
• Export: Report templates have been imported into the control.

Importing report template
1. Click "Add new" in the toolbar.

Alternative: In the work area, click "Add new".
2. In the dialog that opens, select the file of a report template.

Runtime and simulation
17.3 Operating Unified PC

7368 System Manual, 11/2022

3. Confirm your input.
Note
No validation
The template is not validated during import.

4. Optional: In the work area, select the imported report template in the work area and enter a
comment describing the template in the detail area.

Exporting report templates
1. In the work area, select the options next to the report templates you want to export.
2. Click "Export" in the toolbar.
The report templates are downloaded to the download folder or a user-defined directory
according to the device settings.

Deleting templates

Requirement
• The "Reports" control is placed on a screen of the project.
• The "Job parameters > Templates" tab is visible in the control.
• Templates have been imported into the control.

Procedure
1. In the work area, select the options next to the templates you want to delete.
2. Click "Delete" in the toolbar.

Deleting used templates
The "In use" column shows whether the template is used by a report job.
If you delete a template that is used by a report job, the report job is marked as inconsistent
and no longer executed.

Configure trigger

Introduction
In the "Job Parameters > Triggers" tab you configure which automatic triggers are available for
selection when configuring report jobs.
Report jobs with automatic triggers are executed if the report jobs on the "Report jobs" tab
are set to active and their trigger event occurs. Users can also start the execution manually.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7369

Requirement
• The "Reports" control is placed on a screen of the project.
• The "Job parameters > Trigger" tab is visible in the control.
• To use the trigger type "Context trigger": Contexts are available in the project.

Add trigger
1. In the work area of the tab, click "Add new".

A new trigger is created and displayed in the detail area.
2. Assign a unique name to the trigger.
3. Select the trigger mode:

Trigger type Triggering the trigger
"Tag trigger" Automatically when the configured value condition occurs at the tag

defined in the trigger.
"Serial trigger" Automatically within the user-defined interval when the time defined by

the series has been reached.
"Context trigger" Automatically when the selected context is started or stopped.

Optional: By using a condition, you can also limit the triggering of the
trigger to specific context values.

4. Depending on the selected trigger type, set the settings for the new trigger as described
below.

5. Optional: Enter a comment for the trigger.

Settings for tag trigger
1. Click "Select tag".
2. Click "Load".
3. Select the required tag and click "OK".
4. Set the condition and the condition value.

Example:

Set tag <tag name>
Condition >
Condition value 100

The trigger will be initiated when the tag receives a value greater than 100.

Runtime and simulation
17.3 Operating Unified PC

7370 System Manual, 11/2022

Settings for serial triggers
1. Select the serial pattern.

The series pattern defines the occurrence and time at which the trigger is initiated.
Example: Weekly > Every 2 weeks > Fridays

2. Select the series area.
The series range defines the period in which the trigger is initiated.

"Start" Specify the start date
"Time" Specify the time at which the trigger is initiated.
"End on" Specify the end date. The trigger will be executed for the last time on this

day.
"End after" Determine the number of dates after which the series ends.
"No end date" The series runs indefinitely.

Settings for context triggers
1. Click "Select context".
2. In the "Context selection" dialog, click "Select plant object".
3. In the "Browser view" dialog, select a plant object and confirm your input.

In the "Context selection" dialog you can see all contexts that have been defined for the
selected plant object.

4. Select a context and confirm your input.
5. Under "Context status", select when the trigger will be triggered:

"Started" When starting the context.
"Stopped" When stopping the context.

6. Optional: To bind the execution of the report order to certain context values, you define a
condition:

"Condition" Select an operator.
"Value" Select a context value.

Example:

Plant object "MyPlant.hierarchy::PlantView/Bottling"
Context "Product"
Context state "Started"
Condition =
Value "Orange lemonade"

Report jobs with this trigger are always executed when the context "Product" defined on the
plant object "Bottling" is started with the value "Orange lemonade".

Delete trigger
Select the option of the desired trigger in the work area of the "Job Parameters > Triggers" tab
and click "Delete" in the toolbar.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7371

Edit trigger
1. Enable the option of the desired trigger in the work area of the tab.
2. In the detail area, edit the settings of the trigger.

Note
No change of the trigger type
The trigger type can only be set when adding the trigger.

Add target with target type "E-mail"

Requirement
• The "Reports" control is placed on a screen of the project.
• The receivers of the e-mails are maintained as contacts in the "Global settings > Contacts" tab.
• An SMTP server, with which the e-mail is to be sent, has been configured in the "Global

settings > SMTP" tab.

Procedure
1. In the "Reports" control, click on the "Job parameters > Targets" tab.
2. In the work area of the tab, click "Add new".
3. Select "E-mail" as target type.

A new target is created and displayed in the detail area.
4. Assign a unique name to the target.
5. Select an SMTP server configuration.
6. Add the desired receivers and CC receivers:

– To do so, select a contact from the list "Add receiver" or "Add CC receiver".
– Add the contact by clicking "+".

7. Enter the e-mail subject.
To integrate the report name into the subject line, use the placeholder {ReportName}.

8. Enter the e-mail text.
To integrate the report name into the email text, use the placeholder {ReportName}.

9. (Optional) Enter a comment.

Result
The target is available for selection when configuring report jobs.
An e-mail is sent after a report job is executed with this target. The e-mail can include the
report as attachment.

Runtime and simulation
17.3 Operating Unified PC

7372 System Manual, 11/2022

See also
Dynamic placeholder (Page 7386)

Add a target with "File system" target type

Introduction
A reporting job with a target of the "File system" target type saves reports to a file system.
When configuring the report jobs, you can choose from pre-configured and user-defined
targets of this target type.
Preconfigured targets
The following targets with "File system" target type are pre-configured:

Local project storage location The reports are stored in the following folder: <Project folder of the
Runtime project>\Reports

Local main storage location The reports are stored in the local main storage location for reports. The local main
storage location is configured in TIA Portal in the Runtime settings of the HMI device.
If this setting has not been set in TIA Portal, the reports are stored as follows:
• Unified PC:

In the folder configured during installation of Runtime or later in the "WinCC Unified
Configuration" tool

• Unified Comfort Panel:
In the "Reports" folder on the SD card inserted in the Panel: media/simatic/X51/
Reports

You can select these targets in the "Report jobs" tab. You cannot edit or delete these targets
in the "Job parameters > Targets" tab.
User-defined targets
In the "Reports" control, you can create user-defined targets of the "File system" target type.
These user-defined targets are always subfolders of the local main storage location.

Requirement
• The "Reports" control is placed on a screen of the project.
• Unified Comfort Panel: The panel contains the storage media configured in the TIA Portal

Runtime settings as storage locations for reports and for the reporting database.

Procedure
To add user-defined targets of the "File system" target type, follow these steps:
1. In the "Reports" control, click on the "Job parameters > Targets" tab.
2. In the work area of the tab, click "Add new".

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7373

3. Select "File system" as target type.
A new target is created and displayed in the detail area.
Under "Destination path", you can see the path to the local main storage location for reports.

4. Assign a unique name to the target.
5. Under "Subfolder", enter the path to the subfolder in which the report is to be saved.

Use the following notation: <folder name> or <folder name>\<folder name>\...
Note
Relative path information
The path specification is relative to the local main storage location for reports.

6. (Optional) Enter a comment.

Result
The target is available for selection when configuring report jobs.
When a report job with this target is being executed, the generated report is stored in the
subfolder of the local main storage location defined as the target. If the folder entered under
"Target path" does not exist, it is created by the system.

Note
Change of the local main storage location for reports
When the local main storage location for reports changes, the targets are automatically adapted.
New reports are stored relative to the new local main storage location. The old folders are not
deleted.

Configuring report jobs

Creating a report job

Introduction
A report job is a job for generating reports in Runtime. The configuration of a report job controls
the details of the generation.

Requirement
• The "Reports" control is configured on a screen of the project.
• The following job parameters were configured in the control:

– At least one template has been imported.
– To automatically execute a report job: Triggers are configured in the "Job parameters >

Trigger" tab.

Runtime and simulation
17.3 Operating Unified PC

7374 System Manual, 11/2022

• For sending an email after execution of the report job:
– Email contacts were configured in the global settings.
– An SMTP server was configured in the global settings.
– A target of the target type "E-mail" was configured in the "Job parameters > Targets" tab.

• For a report job with the target format PDF:
– Microsoft Office Excel or LibreOffice is installed on the runtime server.
– Depending on whether Excel or LibreOffice is installed, the information required for PDF

creation was provided during the Runtime installation or in the "WinCC Unified
Configuration" tool.

Procedure
1. Select the "Report jobs" tab in the "Reports" control.
2. Select "Add new" in the work area or click "Add new" in the toolbar.
3. In the detail area, enter a name for the report job.
4. Select a report template.
5. Configure the report name. See section Configuring report names (Page 7377).

The configuration is applied to all reports generated by the report job.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7375

6. Under "Targets", you determine how the reports are to be made available to users. Follow
these steps:
– Click "Add target".

You see the targets configured in the tab "Job parameters > Targets".
– Select a target.
– Add the target by clicking "+".

The target is added to the table to define the target formats.

– Determine the formats in which the reports generated by the report job are provided for
the target. In the table, activate the options of the desired formats for each target.
Note
Sending emails without a report
If you deactivate both options for targets with "E-mail" target type, an email without
attachment is sent after the report job has been executed.

Note
PDF as target type
Generating PDFs with Excel is significantly slower than with LibreOffice. To generate large
PDF reports, it is therefore recommended that you install LibreOffice.
A PDF report created by LibreOffice can deviate in content or layout from a PDF report
generated with Excel, for example, if the report template uses common Excel features
that LibreOffice does not support, such as special fonts or chart types.

– To remove a target from the report job, click the "Remove" button in the table.
7. Under "Trigger", select which event triggers the execution of the report job:

– If the report job is only to be executed manually, select "Manual".
– If the report job is to be executed automatically, select one of the other triggers

configured under "Trigger".
Note
You can also execute the report job manually.

8. (Optional) Enter a comment for the report job.
9. Specify whether the automatic execution of the report job is active or paused. To do this, set

the slider "Enabled" or "Disabled".
Note
You can still execute disabled report jobs manually.

Runtime and simulation
17.3 Operating Unified PC

7376 System Manual, 11/2022

Result
The report job is saved automatically.
When its trigger occurs, the report job is executed. A report is generated and made available
as configured under "Targets".

See also
Execution of report jobs (Page 7381)
Configure trigger (Page 7369)
Add a target with "File system" target type (Page 7373)
Add target with target type "E-mail" (Page 7372)
Tips on design and layout (Page 7449)

Managing report jobs

Requirement
• The "Reports" control is configured on a screen of the project.
• Report jobs have been configured in the control.

Procedure
1. Select the "Report jobs" tab in the "Reports" control.
2. To edit a report job, proceed as follows:

– Select the report job in the work area.
– In the detail area, edit the settings of the report job.

You have the same options as when creating a report job.
3. To delete report jobs, proceed as follows:

– In the work area, enable the options next to the report job.
– Click "Delete" in the toolbar.

Configuring report names

Note
Make sure that the generated report name does not violate the policy of the operating system
regarding the maximum length of file names.

Introduction
The default name of reports is Report_{NNN}.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7377

To use different report names, enter one or more placeholders at the report job. The
placeholders are combined to form the report name during execution of the report.

Placeholder types
Placeholders have one of the following types:

Placeholder type Description
Text For user-defined fixed texts
Counter On automatic numbering Dynamic placeholders

The placeholders are bro‐
ken down into values dur‐
ing execution of the re‐
port.

Date format For outputting the generation time
Tag To output the process value of an online tag

Unique report names
If the report name uses counter or date format placeholders, the report job generates unique
report names.

Requirement
• The "Reports" control contains a screen of the runtime project that is running.

Procedure
You can enter the placeholders manually in the "Report name" field or you can have the software
help you configure the report name.
To have the software help configure the report name, follow these steps:
1. Select the "Report jobs" tab in the "Reports" control.
2. Select a report job in the work area.

You can see the settings for the report job in the detail area.

Runtime and simulation
17.3 Operating Unified PC

7378 System Manual, 11/2022

3. Next to "Report name", click "Configure".
You see the following operator controls:

① List for selection of the placeholder type
② Button for adding a placeholder of the selected type
③ Table for configuring or removing the placeholder

Note
For the default report name, the "Report name" has the value Report_{NNN} and the table
shows the placeholders "Report_" and "NNN".
To swap the order of placeholders or to add a placeholder in the center, delete the
placeholders and then add them in the desired order.

4. Optional: To delete the default placeholders, click "x" in the placeholder table.
5. Select the desired type under "Select placeholder type".

Note
A report name can contain only one counter.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7379

6. Click "+".
An empty placeholder of the corresponding type is added at the end of the table.

7. Enter the placeholder under "Value" in the placeholder table.

Placeholder type Description Example
"Text" Enter the text. Report_
"Date format" Enter a date placeholder. A list of permitted placeholders and

examples can be found in section Dy‐
namic placeholder (Page 7386)."Counter" Enter a counter placeholder.

"Tag" Enter the full name of an online tag. RT1_Brewery::BatchNo

Note
Enter the dynamic placeholders without any markup characters.
Alternatively, you can select an online tag via the user interface. Follow these steps:
– Click the "..." button on the tag placeholder.
– In the "Tag selection" dialog, click the "Search" button.

You can see all the tags of the Runtime project that is running.
Note
Scrolling and filtering
Use the page navigation buttons to scroll forward or backward.
To filter the displayed tags, enter a filter string in "Filter" and click "Search".
You use the wildcard "*" to filter by partial strings.
For example:
• *T* returns all tags with a "T" in their name.
• *T returns all tags that end in "T".
• T* returns all tags that start with "T".
When filtering for structures, the separators must be part of the filter string.

– Click the desired tag.

Runtime and simulation
17.3 Operating Unified PC

7380 System Manual, 11/2022

– Confirm with "OK".
 In the "Report name" field, the placeholder you added is appended to the end of the report
name.

Alternative procedure
To enter the placeholders manually, proceed as follows:
1. Select the "Report jobs" tab in the "Reports" control.
2. Select a report job in the work area.

You can see the settings for the report job in the detail area.
3. Enter the desired combination of fixed texts and dynamic placeholders manually in the

"Report name" field.
Use markup characters for the dynamic placeholders. See section Dynamic placeholder
(Page 7386).

Example:

"Report name" value Generated report name
Report_{yyyymmdd}_{HHMMss}_{@PC1_Brewery::Ba
tchNo}

Report_20190101_170001_BatchNo_87002314

Result
When generating a report, the dynamic placeholders are resolved and all placeholders are
merged to form the report name.
If a process value contains a character that is not permitted in file names, it is replaced by an
underscore.
If there is an error resolving the name, e.g. because the tag is not found in runtime, the tag
placeholder in the name is replaced by ERR. The process is logged in the generation status of
the report.

Execution of report jobs

Automatic and manual execution
Automatic execution
Report jobs that have a tag trigger, serial trigger or context trigger and are set to active on
the "Report jobs" tab are automatically executed when their trigger occurs.

Manual execution
Report jobs with a trigger of the "Manual" type must always be executed manually.
In addition, you can at any time manually execute report jobs that have a tag trigger, serial
trigger or context trigger.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7381

System response to errors
• Error adding the report job to the queue

The execution of the report job is discarded. A system alarm documents the error.
• Error executing the job

In the "Reports" control, "Reports" tab, the status icon indicates the error. A click on the icon
opens a detailed status message.
A system alarm documents the error.

See also
Running a report job manually (Page 7382)
Configure trigger (Page 7369)

Running a report job manually
You can execute report jobs manually at any time, regardless of their trigger type. This also
applies to report jobs that were disabled in the "Report Jobs" tab and whose automatic execution
is therefore paused.

Requirement
Report jobs have been configured in the "Reports" control.

Procedure
1. Select the "Report jobs" tab in the "Reports" control.
2. In the work area, enable the option next to the report job that you want to execute manually.
3. Click "Execute" in the toolbar.

Result
The report is generated. You can download it in the "Reports" tab.

Downloading reports
You can download the reports stored by the report job in the file system to your device.
Depending on which file formats have been set in the report job, you can download the
report as an XLSX file and as a PDF file.

Requirement
• Report jobs with the target type "File system" have been configured and executed in the

"Reports" control.

Runtime and simulation
17.3 Operating Unified PC

7382 System Manual, 11/2022

Procedure
1. Select the "Reports" tab in the "Reports" control.
2. In the work area, select the option in the left column for each report that you want to

download.
3. Enable the desired target formats in the "Files" column.

Note
Generation status
You are only offered successfully generated formats.
In the "Status" column you can check whether the generation for a format has failed. For a
detailed status message click on the icon of a target format.

4. Click "Export" in the toolbar.

Result
The reports are downloaded into the download directory of the browser.
You can edit, distribute, or log the reports.

See also
Installation of the Reporting add-in (Page 7391)

Exporting an offline configuration file
An offline configuration file is required to configure reporting templates in the Reporting Excel
add-in without an online connection to the Runtime server.

Requirement
• The "Reports" control is placed on a screen of the project.
• The Runtime project has data that can serve as data source elements in the reporting

template, such as alarms and logging tags.

Procedure
1. In the "Reports" control, click on the "Global settings > Configuration" tab.
2. Enter the name of the offline configuration file under "Offline-configuration".
3. Click "Export offline configuration".

Result
A JSON file with the data source elements of the Runtime project is created. The file is
downloaded to the download folder or a user-defined directory according to the device settings.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7383

You can select the configuration file in the Reporting Excel add-in as data source for an offline
connection.

Transferring the control configuration
You have the option of reusing the settings in the "Reports" control, for example, on a device in
another network. To do this, export the existing configuration on the one device from the control
to a ZIP file. Then import the file into a "Reports" control on the other device.

Scope
The transfer covers the following data:
• Global settings, without passwords and certificates
• Job parameters, including the report templates available in the control
• Report jobs
Reports are not transferred.

Requirement
• The "Reports" control is placed on a screen in the project running in Runtime.
• Export: Settings have been made, e.g. contacts maintained, report templates imported, and

report jobs created in the "Reports" control.
• Import: You have access to the ZIP file generated by the export on the device on which

Runtime is installed.

Export configuration
1. In the "Reports" control, select the "Global settings > Configuration" tab.
2. Enter the name of the export file under "Export/import configuration > Export".
3. Click "Export configuration".
The configuration is exported to a ZIP file and downloaded to the default download directory
of the device.

Import configuration
1. In the "Reports" control, select the "Global settings > Configuration" tab.
2. Click "Select import file" under "Export/import configuration".
3. Select the ZIP file in File Explorer and confirm your selection.
4. Runtime checks whether the control already contains configurations:

– No: The configuration is imported.
– Yes:

Select "OK" to import the configuration. The existing configuration is overwritten.
Select "Cancel" to cancel the import.

Runtime and simulation
17.3 Operating Unified PC

7384 System Manual, 11/2022

Configuring enable paging
To set how many entries the lists in the work area of the "Reports" control display per page, follow
these steps:
1. In the "Reports" control, click on the "Global settings > Configuration" tab.
2. Under "List Settings", select the number of entries.
If a list has more entries, these are split over several pages. Use the buttons below the list to
switch pages.

Note
The setting is lost through a screen change.

Inconsistencies and error diagnostics

Note
Inconsistent report jobs are not executed.
The templates available in the "Reports" control are not validated.

Display of inconsistencies and errors
Errors and inconsistencies are displayed as follows:

In the control If job parameters are affected.
Examples:
• No template is set for a report job.
• A tag that triggers a report job is deleted in the engineering system. The project

is reloaded into the device.
In the "Error log"
worksheet of the
report

Errors or inconsistencies affecting the content of the report.
Example: The report evaluates data from a tag that is no longer available in runtime.

As system alarm For errors and inconsistencies that do not affect job parameters or the contents of the
report.
Example: The ExecuteReport system function transfers a report job that does not
exist.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7385

Job parameters
The following values lead to errors and inconsistencies:

Parameter Invalid values Default setting
"Name" Zero, empty or already assigned

name
"New report job"

"Template" Zero, empty or "None".
Name of a template that is not
imported

"None"

"Target name" Zero or empty "NewReportJob[NN]"

Dynamic placeholder

Introduction
Dynamic placeholders are evaluated when the report job is executed and replaced with text in
runtime.
The following job parameters can contain placeholders:
• Report name
• Targets with the target type "E-mail": Subject and text of the email

Dynamic placeholders for report names
Use dynamic placeholders for counters and/or dates to generate unique report names:

Counter place‐
holder

Description Example Area
Configuration Result

{N} Automatic number‐
ing

Rep_{N} Rep_1 0...9
{NN} Rep_{NN} Rep_01 00...99
{NNN} Rep_{NNN} Rep_001 000...999

Date place‐
holder

Description Example Area
Configuration Result

{yy} Current year

Rep_{yy} Rep_18 Valid year with 2 digits
{yyyy} Rep_{yyyy} Rep_2018 Valid year with 4 digits
{m} Current month Rep_{m} Rep_1 Valid month, no prefixed 0 for months in single-

digit range
{mm} Rep_{mm} Rep_01 Valid month, prefixed 0 for months in single-digit

range
{mmm} Rep_{mm} Rep_Jan Month abbreviation with 3 characters
{mmmm} Rep_{mmmm} Rep_Janu‐

ary
Month with full name

Runtime and simulation
17.3 Operating Unified PC

7386 System Manual, 11/2022

Date place‐
holder

Description Example Area
Configuration Result

{d} Current day of the
month

Rep_{d} Rep_1 Valid day, no prefixed 0 for days in single-digit
range

{dd} Rep_{dd} Rep_01 Valid day, prefixed 0 for days in single-digit range
{ddd} Rep_{ddd} Rep_Mon Day abbreviation with 3 characters
{dddd} Rep_{dddd} Rep_Mon‐

day
Day with full name

{h} Current hour

Rep_{h} Rep_1 Current hour (12-hour clock), no prefixed 0 for sin‐
gle-digit values

{hh} Rep_{hh} Rep_01 Current hour (12-hour clock), prefixed by 0 for sin‐
gle-digit values

{H} Rep_{H} Rep_13 Current hour (24-hour clock), no prefixed 0 for sin‐
gle-digit values

{HH} Rep_{HH} Rep_13 Current hour (24-hour clock), prefixed by 0 for sin‐
gle-digit values

{M} Current minute

Rep_{M} Rep_6 Valid minute, no prefixed 0 for single-digit values
{MM} Rep_{MM} Rep_06 Valid minute, prefixed by 0 for single-digit values
{s} Current second

Rep_{s} Rep_41 Valid second, no prefixed 0 for single-digit values

{ss} Rep_{ss} Rep_41 Valid second, prefixed by 0 for single-digit values

Use a dynamic placeholder for tags to integrate process values in the report name:

Tag placehold‐
er

Description Example Area
Configuration Result

{@<Full
Tag name>}

Process value of an
online tag

Rep_{@PC1_Lin‐
eA::MyTag1}

Rep_On Process value of the online tags
If the value contains a character that is not permit‐
ted in file names, it is replaced by an underscore.
If there is an error resolving the name, e.g. because
the tag is not found in runtime, the tag placeholder
in the name is replaced by ERR. The process is log‐
ged in the generation status of the report.

Examples:

Definition with placeholder Generated report name
LineA_{yyyymmdd}_{HHMMss} LineA_20190101_170001
LineA_{yymmmd}_{hhMMss} LineA_19Jan1_050001
LineA_{NNN} LineA_014
LineA_{yyyymmdd}_{HHMMss}_BatchNo_{@PC1_Brew‐
ery::BatchNo}

LineA_20190101_170001_BatchNo_87002314

Placeholder for email subject and email text
To integrate the report name into the subject line or the email text, use the following dynamic
placeholder {ReportName}.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7387

Markup
Use the following markup characters for dynamic placeholders:
• Placeholders for counter and date: {}
• Placeholders for tags: {@}

Note
There is no markup in the placeholder table for defining the report name. See also
section Configuring report names (Page 7377).

Reporting system events

Reporting system events
The most important system events are listed below.

ID Alarm text Effect/causes Solution
538640385 Initialization of the reporting serv‐

ice failed
Initialization of the reporting serv‐
ice fails.

Contact Siemens customer service.

538640386 Report Data Provider cannot be
started

The data provider for reports could
not be started.

Contact Siemens customer service.

538640387 The report cannot be started for
the job [name].

The Report Creator for report jobs
cannot be started.

Check the report job settings.
If you use the "ExecuteReport" sys‐
tem function, check the name of
the report job and the parameters
passed when calling the function.

538640388 An error occurred during commu‐
nication with the database server

The reporting database cannot be
found or access is not possible for
other reasons.

Check whether the reporting data‐
base is available at the storage lo‐
cation configured in the Runtime
settings in engineering.
Example for panel:
• Is the SD card plugged in?
• Does the folder specified as

storage location in the Run‐
time settings exist?

• Has the folder been specified in
the correct notation?

538640389 The creation of the report job
[name] failed

The Report Creator is missing in‐
formation about the report job.
A possible reason for this are prob‐
lems with processing the report
template.

Check the report job settings and
the report template.

538640390 Report failed Report Creator reports an error
while generating the report.

Check the detailed error message
for the report:
Control "Reports" > "Reports" tab >
"Status" column.

Runtime and simulation
17.3 Operating Unified PC

7388 System Manual, 11/2022

Configuring report templates in the add-in

Requirements

General requirements and restrictions

Installing the Excel add-in
The installation of the Reporting add-in on a computer requires that the operating system and
the local MS Excel installation are regularly updated.
If there are problems with the installation, check the version of the local MS Excel
installation. Lengthy maintenance intervals between the operating system and Excel can
cause problems during installation of the add-in.
Update the operating system and the Excel version if necessary.
To install the add-in with a local Excel installation, MS Excel with build 16.0.6769 or higher is
required.

Note
Note the Microsoft upgrade restrictions
If you have an Excel installation that cannot be upgraded to Build 16.0.6769 or higher (for
example, because Excel was installed using a single Office license), purchase a current Office
version or use Online Office.

IIS settings for standalone installation of the Excel Add-In
To install the Excel Add-In on a PC without Unified Runtime, the same IIS (Internet Information
Services) settings must be active in Windows that are required to install WinCC Unified Runtime
on a PC.
You can find additional information in the "SIMATIC Unified PC Installation" user help section
on the software and hardware requirements.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7389

Unified Comfort Panel
The following restrictions apply to generating reports on Unified Comfort Panels:

Contexts Contexts are not supported in V17 for Unified Comfort Panel. This option is not available in a report
template with a Unified Comfort Panel as data source. When you generate a report on a Unified
Comfort Panel whose report template uses this option, error entries are generated in the "ErrorLog"
worksheet of the report.

Storage location of the
Reporting database

The following folder on the SD card plugged into the panel is preconfigured as the storage location
of the reporting database:
• Device version V18: media/simatic/X51/Reports

You can configure and load another storage location in TIA Portal in the Runtime settings of the
Panel.

• Device version <V18: media/simatic/X51
Storage location for re‐
ports

The "Reports" folder on the SD card inserted in the Panel is permanently pre-configured as the local
main storage location for reports: media/simatic/X51/Reports
For Panels with device version V18, you can configure and load a different local main storage location
in the Runtime settings of the Panel in TIA Portal.

Enable Reporting
The use of Reporting requires that the Reporting functionality was enabled:
• For configuring report templates:

Reporting must be enabled for the Runtime project that serves as the data source.
• For configuring report jobs and generating reports in Runtime as well as in a simulation:

Reporting must be enabled for the Runtime project that is running on the HMI device or is
being simulated.

The reporting functionality of a Runtime project is enabled in TIA Portal in the Runtime
settings of its HMI device with the option "Enable reporting".

Note
Devices with a device version lower than V18
Reporting is always enabled for HMI devices with a device version lower than V18.

See also
Version compatibility (Page 7359)

Runtime and simulation
17.3 Operating Unified PC

7390 System Manual, 11/2022

Installation of the Reporting add-in

Note
Regular updates of operating system and MS Excel
The installation of the Reporting add-in on a computer requires that the operating system and
the local MS Excel installation are regularly updated.
If there are problems with the installation, check the version of the local MS Excel installation.
Lengthy maintenance intervals between the operating system and Excel can cause problems
during installation of the add-in.
Update the operating system and the Excel version if necessary.
To install the add-in with a local Excel installation, MS Excel with build 16.0.6769 or higher is
required.

Note
Note the Microsoft upgrade restrictions
If you have an Excel installation that cannot be upgraded to Build 16.0.6769 or higher (for
example, because Excel was installed using a single Office license), purchase a current Office
version or use Online Office.

Procedure
1. Install the Excel manifest on the computer.
2. Set up read access to the installation path of the Excel manifest.
3. Add the add-in to Excel.

See also
Installing the Excel manifest (Page 7392)
Setting up read access to the Excel manifest (Page 7392)
Adding the Reporting add-in in Excel (Page 7393)

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7391

Installing the Excel manifest

Procedure
1. In the installation package of WinCC Unified on "DVD_2", double-click the file

"Support\Reporting\SIMATIC_WinCC_Unified_Reporting_<Version number>.exe".
2. Select the target directory to which the underlying ZIP file is extracted and confirm your input.

The ZIP file is extracted and setup starts automatically.
Note
Start setup manually
To start the setup manually after the file was extracted, select the option "Extract the setup
files without being installed".
Start the setup later by running the "Setup.exe" file as administrator in the target directory.

3. Follow the setup instructions.
4. In the "Configuration" step, select the option for the Excel add-in.
5. Click "Next" and follow the setup instructions.

See also
Installation of the Reporting add-in (Page 7391)

Setting up read access to the Excel manifest

Requirement
The Excel manifest is installed.

Procedure
Give the users that create templates with the Excel add-in read access to the installation path of
the Excel manifest: <target directory>\WinCCUnifiedReporting\Excelmanifest

Note
This step is also necessary if the user belongs to a group in the user management with general
read permission.

See also
Installing the Excel manifest (Page 7392)
Installation of the Reporting add-in (Page 7391)

Runtime and simulation
17.3 Operating Unified PC

7392 System Manual, 11/2022

Adding the Reporting add-in in Excel

Requirement
• The Excel manifest is installed on the PC.
• Read access to the installation path of the Excel manifest is set up.
• The following software is available on the computer:

– Local Excel
MS Excel (Build 16.0.6769 or higher)
Note
Regular updates of operating system and MS Excel
The installation of the Reporting add-in on a computer requires that the operating system
and the local MS Excel installation are regularly updated.
If there are problems with the installation, check the version of the local MS Excel
installation. Lengthy maintenance intervals between the operating system and Excel can
cause problems during installation of the add-in.
Update the operating system and the Excel version if necessary.

Note
Note the Microsoft upgrade restrictions
If you have an Excel installation that cannot be upgraded to Build 16.0.6769 or higher (for
example, because Excel was installed using a single Office license), purchase a current
Office version or use Online Office.

– Or Office online

Procedure
1. Open Microsoft Excel.
2. Open the "Trust Center" under "File" > "Options".
3. Click "Trust Center Settings".
4. Click "Catalogs of trusted add-ins".

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7393

5. Add the catalog using the URL "\\<Computer name>\Excelmanifest".

6. Make sure that the check mark in the "Show in Menu" column is set.
7. End and restart Excel.

Runtime and simulation
17.3 Operating Unified PC

7394 System Manual, 11/2022

8. In the "Insert" menu, click "My Add-ins".

In the "Office Add-ins" dialog box, the Siemens add-in is displayed under "Shared folders".
9. Select the add-in and click "Add".

See also
Installing the Excel manifest (Page 7392)
Setting up read access to the Excel manifest (Page 7392)
Installation of the Reporting add-in (Page 7391)

Configuring Internet Explorer and Edge
The Reporting Excel add-in uses the certificate that was selected during installation of WinCC
Unified Runtime or later in "WinCC Unified Configuration".
Some browsers do not recognize self-signed certificates as trusted. If you use a self-signed
certificate for WinCC Unified Runtime, you must add the certificate to the list of trusted
certificates in Internet Explorer or Edge on the device on which the Excel add-in is installed.
You can find detailed information on handling certificates here.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7395

Trusting self-signed certificates
The following section describes the procedure for adding a self-signed certificate to the list of
trusted certificates, using Internet Explorer as an example:
1. Start Internet Explorer.
2. In the address line, enter the host name entered when creating the certificate.

You will receive a security warning.
3. Click "Continue to this website (not recommended)".
4. Click "View Certificates".
5. Click "Install Certificate".
6. Click "Place all certificates in the following store" and "Browse".
7. Click "Trusted Root Certification Authorities" followed by "OK".

Note
Do not use the preset options for automatic selection of the certificate store.

8. Exit the dialog.
9. If you receive a security warning as to whether you want to trust the certificate, confirm it

with "Yes".
10.Load the page again.

Login
A login dialog opens in the Excel add-in in the following cases:
• After start of Excel and the add-in
• When using an online connection: When the connection to the Runtime server must be re-

established.
Examples:
– Runtime has been reloaded.
– The security token has expired due to a timeout.

Requirement
• The add-in is installed.
• When using an online connection:

– A Runtime server is accessible.
– A Runtime project is running on the server.

Runtime and simulation
17.3 Operating Unified PC

7396 System Manual, 11/2022

Procedure
In order to use an online connection, log onto a Runtime server:
1. Under "Server", enter the name of the server on which the project that is to serve as data

source for the report template is running.
Use the same spelling as when the Runtime server certificate was created.
Note
If Runtime is installed on the same computer as the add-in, use of the name "localhost" is not
permitted.

2. Enter the user name and password of a user that is registered on the server in the Runtime
user management.

3. Click "Login".
In order to use an offline connection, click "Go offline".

Result
Online connection
The add-in is connected to the Runtime server and the options available there are loaded.
You can now create report templates.

Offline connection
Before you create report templates, set up the offline connection.

See also
Installation of the Reporting add-in (Page 7391)
Setting up an offline connection (Page 7400)

Setting up a data source

Using an online connection
When an online connection is present, the add-in establishes a connection to a Runtime server.
The project running on the server serves as data source for the add-in.
The connection settings allow you to:
• Change the connected Runtime server to another Runtime server
• When a report template that was created with a different Runtime server than the currently

connected server is reused: check the options available on the server and delete the options
that were not loaded

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7397

Setting up an online connection

Requirements
• A Runtime server is accessible.
• A Runtime project is running on the server.

Procedure
1. In the "Data sources" group on the "WinCC Unified" tab, click on "Connections".
2. Click "Online" under "Connections" in the add-in.
3. Under "Server", enter the server name.

Use the same spelling as when the Runtime server certificate was created.
Note
If Runtime is installed on the same computer as the add-in, use of the name "localhost" is not
permitted.

4. Click "Load".

Result
• A server node is created.
• The add-in is connected to the Runtime server and its options are loaded.

Data source items of these options can be added to report templates. Their data can be read
in from Runtime to Excel.
Note
To check which options were loaded, click on the server node.
Options that are being used in the currently open report template but are not available on the
connected server have a red icon. You can remove the option:

• If no connection can be established or an incorrect server name has been entered, the add-
in will display a corresponding error message.

See also
Removing options (Page 7398)

Removing options

Introduction
If you reuse report templates across servers, e.g. in order to adapt an existing template for
another project, it may be necessary to remove unavailable options from the connection
settings.

Runtime and simulation
17.3 Operating Unified PC

7398 System Manual, 11/2022

The procedure for this is presented using the Performance Insight option as an example.

Requirement
• The add-in was connected to a server on which the Performance Insight (PI) option is

installed.
• A report template that uses KPIs was created with the add-in.
• The add-in was then connected to a server without the Performance Insight option installed

for the purpose of adapting the template to the project running there.

Removing an option
1. In the "Data sources" group on the "WinCC Unified" tab, click on "Connections".
2. Under "Connections", click on "Online".
3. Select the server node.

You see the loaded options under the server node:

Available options
The following applies to data source items of these options:
• They can be added to the report template.
• Their data can be read in from Runtime to Excel in the add-in.
Unavailable options
In the example: Performance Insight
The following applies to data source items of these options:
• They cannot be added to the report template.
• If the report template already has a data source element of this option, its data

cannot be read in from Runtime to Excel.

4. Select the "Performance Insight" option under the server node.
5. Click the "Delete" button next to the option.
6. Confirm your input.

Result
The option is removed from the connection settings.
Next, remove all data source items of this option from the report template.

Reloading an option
When the add-in is connected to a Runtime server, all options available on the server are loaded.
To reload an option that was deleted in the connection settings but is available on the server,
select the server node and click "Load".

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7399

Using an offline connection
With the offline connection, the add-in uses a configuration file as data source.
The connection settings allow you to:
• Change the configuration file used
• When reusing a report template with a configuration based on a Runtime server different to

that of the currently selected configuration file: Check the available options and delete the
options that were not loaded.

Setting up an offline connection

Requirement
An offline configuration file was created in the "Reports" control in Runtime. The configuration
file is available on the device.

Procedure
1. In the "Data sources" group on the "WinCC Unified" tab, click on "Connections".
2. Under "Connections", click on "Offline".
3. Click "Open offline configuration".
4. Select the desired file in the window that opens and confirm your entries.
5. Click "Load".
6. Select the desired options.
7. Confirm your entries.

Result
• A server node is created. The node bears the name of the server on which the configuration

file is based.
• The configuration file, together with its options, is loaded into the add-in. The data of the

configuration file is available for configuring the report template.
Note
To check which options were loaded, click on the server node.
Options that are being used in the currently open report template but are not available in the
configuration file have a red icon. You can remove the option:

See also
Removing options (Page 7401)
Exporting an offline configuration file (Page 7383)

Runtime and simulation
17.3 Operating Unified PC

7400 System Manual, 11/2022

Removing options

Introduction
If you reuse report templates across servers, e.g. in order to adapt an existing template for
another project, it may be necessary to remove unavailable options from the connection
settings.
The procedure for this is presented using the Performance Insight option as an example.

Requirement
• The add-in was changed over to an offline connection whose configuration file does not

include Performance Insight.
• A report template was opened in the add-in whose configuration is based on a connection to

a Runtime server on which Performance Insight is installed.

Removing an option
1. In the "Data sources" group on the "WinCC Unified" tab, click on "Connections".
2. Under "Connections", click on "Offline".
3. Select the server node.

You see the loaded options under the server node:

Available options
The following applies to data source items of these options:
• They can be added to report templates.
• Their data can be read in from the configuration file to Excel.
Unavailable options
In the example: Performance Insight
The following applies to data source items of these options:
• They cannot be added to the report template.
• If the report template already has a data source element of this option, its data

cannot be read in from the configuration file to Excel.

4. Select the "Performance Insight" option under the server node.
5. Click the "Delete" button next to the option.
6. Confirm your input.

Result
The option is removed from the connection settings.
Next, remove all data source items of this option from the report template.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7401

Reloading an option
When a configuration file is loaded, all options available in the file are loaded.
To reload an option that was deleted in the connection settings but is available in the
configuration file, select the server node and click "Load".

Configuring report templates

Requirement
An online connection or offline connection has been established.

Procedure
To create a new report template, proceed as follows:
1. Open a new Excel file.
2. Add a segment.

You can choose between time series segments and single value segments.
3. Add data source items to the segment.

The exact procedure depends on the type of the data source item.
4. Optional: If you do not want a data source item to use the default configuration, determine its

configuration.
You have the following options:
– Select an existing configuration.
– Create a new configuration and select it.
– Define a local configuration.

5. Optional: To define additional segments, repeat steps 2 to 4.
6. Optional: When using an online connection, test the template by reading the runtime data

of selected segments or all segments.

See also
Setting up a data source (Page 7397)

User interface of the add-in

Requirement
• The "WinCC Unified" tab is visible in Excel.

Runtime and simulation
17.3 Operating Unified PC

7402 System Manual, 11/2022

Structure
If you click on "Segments" in the "Configuration" group, you see the following interface:

① Toolbar
② Work area

Toolbar buttons:

Button Tooltip Description
"Segment configuration" Loads the interface to add and edit segments

in the work area.
"Data source item configuration" Loads the interface for adding and editing the

configuration of a data source item in the
work area.

"Basic settings" Loads the interface for setting the language
settings in the work area.

"Update all" Reads the Runtime data of the connected da‐
ta source into the data tables of the segments.

"Delete Runtime data" Removes all Runtime data from the report
template.

Logoff Logs out the user currently logged in to the
add-in.

Help Opens the user help for the add-in.

See also
The segment user interface (Page 7408)

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7403

Working with segments

Basic information on segments

Definition
A report template consists of any number of segments. Each segment is a container to which you
can add any number of data source items. The segment reads the data from its data source items.
There are time series segments and single value segments.

Note
Hierarchical segments of PI options
Hierarchical segments are also available with PI Options installed. For more information on this,
refer to the PI Options help.

Time series segments
A time series segment documents the data of its data source items in a defined time period.
It has a legend table and a data table.

Data source items
Time series segments can have the following data source items:
• Logging alarms
• Alarm statistics
• Logging tags
• User-defined columns
• Contexts
• Audit

Note
Data source items of the PI options
If PI options are installed, additional data source items can be added. For more information on
this, refer to the PI Options help.

Legend table
The table header row provides general information about the segment and its data source
items.
You decide which type of information is provided when you create or edit the segment.

Runtime and simulation
17.3 Operating Unified PC

7404 System Manual, 11/2022

Data table
The data table outputs the data of the data source items. It documents how the data source
items have changed in the defined time period.
The data table of a time series segment has the following columns:

Columns Description
Time stamp column Always output

Always output as the first column
Per data source
item

Standard column The standard column provides the standard property of the data source item. This
property depends on the type of data source item.
For a data source item of the Tag type, e.g. the tag value

Optional col‐
umns

Provide more information about the data source item. What information this is depends
on the type of the data source item.
For a data source item of the Tag type, e.g. the quality code of the tag value
You change the default settings for visibility, column title and order of these columns
in the configuration of the data source item.

In the default setting, the data source items in the data table have the order in which they
were added to the segment.

Note
When the standard columns and optional columns provide numerical values, you can have the
actual values replaced with texts or graphics from a text list or graphic list when importing the
Runtime data.

Single value segments
A single value segment documents exactly one value for its data source items.

Data source items
Single value segments can have the following data source items:
• Logging tags
• Tags

Note
Data source items of the PI options
If PI options are installed, additional data source items can be added. For more information on
this, refer to the PI Options help.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7405

Data table
The data table of a single value segment has the following columns per data source item:

Columns Description
Standard column The standard column provides the standard property of the data source item.

For tags and logging tags: the tag value
Optional columns Provide more information about the data source item.

For tags and logging tags:
• Time stamp
• Data source item
• Quality code of the tag value
You change the default settings for the visibility of these columns in the configuration of the data source
item.

The data table of a single value segment shows the data source items in the order in which
they were added to the segment.

Note
When the standard columns and optional columns provide numerical values, you can have the
actual values replaced with texts or graphics from a text list or graphic list when importing the
Runtime data.

Single row segments do not have a table header row. However, in the configurations of
their data source items, you can determine whether a caption is inserted for the displayed
columns and the position at which this occurs.

See also
Standard column (Page 7406)

Standard column

Introduction
For each data source item of a segment, a standard column is added in the data table of the
segment.

Content of the standard column
The standard column provides the standard property of the data source item and depends on the
type of the data source item:

Data source item type Default column title Value
Logging alarm "Alarm ID" Alarm IDs of the displayed alarms
Alarm statistics "Alarm statistics [ID]" Alarm IDs of the alarms displayed in the alarm sta‐

tistics

Runtime and simulation
17.3 Operating Unified PC

7406 System Manual, 11/2022

Data source item type Default column title Value
Tag or logging tag "<Name of the tags or

logging tags>"
Value of the tag or logging tag

Context "<Name of the context
object>"

Context name

Audit "Audit [<object name>]" The name of the object monitored by the Audit Trail
User-defined column Name entered when cre‐

ating the data source
item

As set in the configuration of the data source item:
• A fixed string.

Or
• A dynamically calculated string

Changing the column title
You can replace the default column title with a localizable display name. See Setting a display
name for standard column (Page 7443).

Replacing numerical values
If the standard column provides numeric values, you have the option to have the actual values
replaced with texts or graphics from a text list or graphic list when the Runtime data is read in.
See Assigning text lists and graphic lists (Page 7440).
User-defined columns are excluded from this.

See also
Basic information on segments (Page 7404)

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7407

The segment user interface

Structure
The interface for creating and editing segments has the following structure:

① Filter
Filters the list of segments by name.

② Button for creating a segment
③ List of segments

Each segment has buttons for reading in, editing and deleting the segment.
The following configuration is displayed for each segment:
• Segment name
• Number of data source items
• Insertion location of the segment in the Excel file
• Time span
• If context filters have been configured: The filter string
A click on the segment opens the area with the data source items.

Runtime and simulation
17.3 Operating Unified PC

7408 System Manual, 11/2022

Create segments

Requirement
• The "WinCC Unified" tab is visible in Excel.
• The data source is set up.
• To filter the time interval of the time series segment depending on the context: There are

contexts in the project that run on the connected Runtime server or are the basis of the
configuration file.

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Click "New segment".
3. Select "New time series segment" or "New single value segment".
4. Enter a segment name.

Note
Note the Excel restrictions for naming tables (for example, do not use blanks).
Change the segment name only via the add-in, not via the Excel property "Table name".
Do not change the name of the worksheet after creating the segment. The add-in addresses
the segment by the segment name and the worksheet name.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7409

5. For a time series segment, make the following settings in addition:
– Under "File location" you determine where the segment will be inserted in the file. Enter

the name of the worksheet and the cell.
Alternatively, click "Select a cell" and use the cell currently selected in the Excel file:

– Under "Start" and "End", you determine the time period for which values are read into the
segment.

"Absolute date/
time"

Select a date and a time.
The information is absolute to the current date.

"Relative date/
time"

Select a reference time and a time interval.
The information is relative to the current date.
See also Formats for relative time information (Page 7413).

"Date/Time of the
cell"

Applies the value of the cell currently highlighted in the Excel file.
Make sure that the cell supplies a valid time.

"Date/Time of the
tag"

Applies the value of the set tag.
Make sure that the tag supplies a valid time.
Possible data types:
• DateTime
• String
• Integer

Runtime and simulation
17.3 Operating Unified PC

7410 System Manual, 11/2022

– (Optional) Under "Properties of the legend table", you configure the contents to be
displayed in the table header row of the segment:

"Name"
"Start"
"End"
"State"

General information on the segment

"Context filter" If the segment time was limited by a context filter: The filter string is
output.
See step 6.

"Audit status" If the segment has an audit data source item, the field shows the
overall status of the audit data:
• Green field: No manipulations of the Audit Trail were found in the

queried time range.
• Red field: Manipulations of the Audit Trail were found in the

queried time range. Single or multiple entries have been deleted,
added or changed.

"Header" The table header row includes a list of the segment's data source
items showing general information about these data source items.
The information displayed for the data source items depends on their
type.
Example of contexts: Display name of the context, context provider,
hierarchy path, short name of the context, full name of the context,
option

Use the check boxes to remove information from or add information to the legend table.
To change the sorting in the table header row, move the mouse pointer to a row and shift
it using the arrow buttons or drag-and-drop.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7411

6. (Optional) You can filter the time interval of the time series segment depending on the
context. You can define up to two filter conditions.
Proceed as follows:
– Under "Context filter", click "+" or "Add new condition row".

The condition line is added.
– Click on "+" in the condition line.
– Under "Select context", select the root of the common plant model.

In the next row, you see the top level of the common plant model.
– Navigate through the common plant model to plant objects with contexts.

Plant objects and contexts can be recognized by the following icons:

Plant object

Context

– Select a context.
– Select an operator.
– Enter a value.
– (Optional) Use "+" or "Add new condition row" to create a second condition and select

whether the two conditions are to be linked with a logical AND or OR.
7. (Optional) Under "Autofit", configure whether the column width and row height of the data

table is automatically adapted to the text read from Runtime.
8. Confirm your entries with "OK".

Result
The segment is created and added to the list of segments:
Next, add data source items to the segment. Your procedure depends on the type of the new
data source item.

See also
Tips on design and layout (Page 7449)
Adding data source items (Page 7415)
Working with configurations (Page 7427)

Runtime and simulation
17.3 Operating Unified PC

7412 System Manual, 11/2022

Formats for relative time information

Definition of a relative time information
The relative times are entered using a reference time and a time interval.

Reference time
Use one of the following characters for the reference time:
• "*" - Now
• "t" (today) - Today at midnight
• "y" (yesterday) - Yesterday at midnight
• "1-31" - Specific day of the current month

Time interval
• "y" (year): +1y = plus 1 year
• "mo" (month): +1mo = plus 1 month
• "w" (week): +1w = plus 1 week
• "d" (day): +1d = plus 1 day
• "h" (hour): +1h = plus 1 hour
• "m" (minute): +1m = plus 1 minute
• "s" (second): +1s = plus 1 second
• "ms" (milliseconds): +250ms = plus 250 milliseconds

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7413

Examples
• *-1y: One year ago today
• t+8h: Today at 8:00 am
• y+8h: Yesterday at 8:00 am
• 1+8h: The first day of the current month at 8:00 am
• *-1d: One day ago
• *-2h-30m-30s: 2 hours, 30 minutes and 30 seconds ago

See also
Create segments (Page 7409)

Edit segments

Requirement
• The "WinCC Unified" tab is visible in Excel.
• A segment is available.

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Click "Edit" next to a segment in the list of segments.
3. Edit the segment.

You can make the same settings as when creating the segment.

Delete segments

Requirement
• The "WinCC Unified" tab is visible in Excel.
• A segment is available.

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Click "Delete" next to a segment in the list of segments.
3. Confirm your entries with "OK".

Runtime and simulation
17.3 Operating Unified PC

7414 System Manual, 11/2022

Adding data source items

Adding log alarms

Requirement
• There are logging alarms in the project that runs on the connected Runtime server or is the

basis of the configuration file.
• The "Alarm" option is enabled in the connection settings.
• The "WinCC Unified" tab is visible in Excel.
• A time series segment is available.

Adding logging alarms
1. Click on "Segments" in the "Configuration" group.

The list with the segments already created is loaded into the add-in.
2. Select a segment.

The segment is extended by the area for the data source items.
3. Click "+".
4. Select the "Alarms" option.
5. Select the "Alarm" entry under "Select alarms".
6. Under "Select alarms", select the entry "Alarm [ID]".

Note
Change selection criteria
After you have added alarms, you can change the selection criteria and add more data source
items to the segment.
For example: Output tags and alarms in the same segment.

7. To cancel your selection, select the entry "Alarm [ID]" under "Selected data source items" and
click "Delete".

8. Confirm with "OK".

Result
• The data source item for logging alarms is added to the add-in below the segment.
• The configuration of the data source item controls which data is added when importing the

runtime data into the data table.
Note
With the default setting, the data source item uses the default configuration. It shows all
logging alarms of the project.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7415

To display data that deviates from the default configuration, select one of the following
options:
• Select a different matching configuration.
• Create your own configuration.
• Edit a configuration.
• Overwrite a configuration locally.

See also
Creating or editing configurations for log alarms (Page 7427)
Select configuration (Page 7438)
Working with configurations (Page 7427)

Adding alarm statistics

Introduction
To output statistical calculations for logging alarms in a report, add alarm statistics to a report
template. The following calculations are available:
• Frequency of an alarm
• Average display time per state machine
• Total display time per state machine
• Maximum display time per state machine
• Minimum display time per state machine
The alarm statistics add columns with statistical calculations and columns with general alarm
properties of the recorded alarms to the reports.
You can find more information about calculations in alarm statistics in the help for the alarm
control.

Requirement
• The "Alarm" option is enabled in the connection settings.
• The "WinCC Unified" tab is visible in Excel.
• A time series segment is available.

Procedure
1. Click on "Segments" in the "Configuration" group.

The list with the segments already created is loaded.
2. Select a time series segment.

The segment is extended by the area for the data source items.

Runtime and simulation
17.3 Operating Unified PC

7416 System Manual, 11/2022

3. Click "+".
4. Select the "Alarm" option.
5. Under "Select alarms", select the entry "Alarm statistic [ID]".
6. Under "Select alarm statistic" select the entry "Alarm statistic [ID]".

Note
Change selection criteria
After adding the alarm statistics, you can change the selection criteria and add more data
source items.

7. (Optional) To cancel your selection, select the entry "Alarm statistic [ID]" under "Selected data
source items" and click "Delete".

8. Confirm with "OK".

Result
The added data source item for alarm statistics is displayed below the segment and inserted into
the data table.
First, the data table shows the contents configured in the default configuration for alarm
statistics. To output other contents, select or create a configuration.

Add logging tags

Requirement
• The project on which the connected Runtime server runs or the basis of the configuration file

has logging tags.
• The "Logging tag" option was selected while setting up of the connection.
• The "WinCC Unified" tab is visible in Excel.
• A single value segment or time series segment is available.

Procedure
1. Click on "Segments" in the "Configuration" group.

The list of segments is loaded.
2. Select a segment.

The segment is extended by the area for the data source items.
3. Click "+".
4. Select the "Logging tag" option.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7417

5. Optional: To reduce the load time, filter which tags are loaded to the selection under "Add
filter".
The preset filters "*" return all logging tags of the project.
– "Tag name": Enter the name of the tag whose logging tags you want to add.
– "Logging tag name": Enter the name of the logging tags you want to add.
Note that the entry is case-sensitive.
Note
Filter by partial string
You use the wildcard "*" to filter by partial strings.
For example:
• *T* returns all tags with a "T" in their name.
• *T returns all tags that end in "T".
• T* returns all tags that start with "T".
When filtering for structures, the separators must be part of the filter string.
For example: The following filters return the logging tags for all tags of the device
"HMI_RT_1":
• Filter for tag: "HMI_RT_1::*"
• Filter for logging tag: "*"

6. Click "Load".
The logging tags of the project are filtered and provided under "Select tags".

7. Optional: Further reduce the number of tags that are offered for selection by clicking next to
"Select logging tags" and entering another filter string.
The list of tags you are being offered is filtered while you type.

8. Select one or more tags under "Select logging tags".
The tags are added to the "Selected data source items" list.
Note
Change selection criteria
After you have added a tag, you can select a different option or a different filter and add
additional data source items.
For example: Output KPIs and logging tags in the same segment.

9. To remove one or more data source items from "Selected data source items", select them and
click "Delete".

10.Confirm with "OK".
The added logging tags are shown below the segment and added to the Excel table.

11.If you have added the logging tag to a single value segment:
– In the Excel worksheet, select the cell in which the logging tag is to be inserted.
– Click the "Select a cell" button on the data source item of the logging tag.

Alternatively, enter the name of the worksheet and the cell.

Runtime and simulation
17.3 Operating Unified PC

7418 System Manual, 11/2022

See also
Create or edit configurations for logging tags (Page 7429)
Working with configurations (Page 7427)

Adding tags

Requirement
• The project on which the connected Runtime server runs or the basis of the configuration file

has tags.
• The "Tag" option was enabled when the connection was set up.
• The "WinCC Unified" tab is visible in Excel.
• A single value segment is available.

Procedure
1. Click on "Segments" in the "Configuration" group.

The list of segments is loaded.
2. Select the single value segment.

The segment is extended by the area for the data source items.
3. Click "+".
4. Select the "Tag" option.
5. Optional: To reduce the load time, filter which tags are loaded to the selection under "Add

filter".
Under "Tag name", enter a filter, e.g. the name of the tag. Note that the entry is case-sensitive.
The default filter "*" returns all tags of the project.
Note
Filter by partial string
You use the wildcard "*" to filter by partial strings.
For example:
• *T* returns all tags with a "T" in their name.
• *T returns all tags that end in "T".
• T* returns all tags that start with "T".
When filtering for structures, the separators must be part of the filter string.
For example: The filter "HMI_RT_1::*" returns all tags of the device "HMI_RT_1".

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7419

6. Click "Load".
The tags of the project are filtered and provided under "Select tags".
You can recognize structs and arrays in the list by the following items:

① Button to display the members of the struct or array
② "Select all included data source items"

Button that adds all members with a simple data type to the list of selected data source items

7. Optional: Further reduce the number of tags that are offered for selection by clicking next to
"Select tags" and entering another filter string.

The list of tags you are being offered is filtered while you type.
8. Select which tags will be added to the segment. You have the following options:

Target Procedure Result
Show the members of
a struct or array.

Click the button with
the arrow next to the
struct or array.

A second "Select tags" list is added, in which you
can see all the members of the struct or array.
You can add to the segment any members that
have a simple data type, e.g. bool, float or string.

Add all members of a
struct or array.

Next to the struct or ar‐
ray, click "Select all in‐
cluded data source
items".

All members with a simple data type are added to
the "Selected data source items" list and marked
as selected under "Select tags":

Select tags with simple
data type.

Under "Select tag", click
the required tags.

The tags are added to the "Selected data source
items" list and marked as selected under "Select
tags":

Note
Automatic filtering when displaying the members or selection of all members
If you click the button to display the members of a struct or array or activate the option to
select their members, the struct or array is set as a filter:
• The list under "Select tags" only shows the struct or array.
• A second "Select tags" list is added below this, in which you can see all members of the

struct or array.
To see all available tags again, delete the filters.

Note
Change selection criteria
After you have added a tag, you can select a different option or a different filter and add
additional data source items.

Runtime and simulation
17.3 Operating Unified PC

7420 System Manual, 11/2022

9. To remove tags from the segment, click on the tags in "Selected data source items" and click
"Delete".

10.Confirm with "OK".
The added tags are added to the segment.
When the report template is updated in the add-in and when the report is generated in
runtime, the tag values are inserted into the data table.

See also
Creating or editing configurations for tags: (Page 7432)
Working with configurations (Page 7427)

Adding contexts

Introduction
To display in a report which contexts are to run during a certain time period, add only contexts
to a segment in the report template.
To display which process data has been accumulated during the runtimes of a context, add
the context and other data source items, such as logging tags or logging alarms, to the
segment.

Requirement
• There are contexts in the project that run on the connected Runtime server or are the basis

of the configuration file.
• The "Context" option is enabled in the connection settings.
• The "WinCC Unified" tab is visible in Excel.
• A time series segment is available.

Adding a context to a segment
1. Click on "Segments" in the "Configuration" group.

The list with the segments already created is loaded.
2. Select a segment.

The segment is extended by the area for the data source items.
3. Click "+".
4. Select the "Context" option.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7421

5. Select a context:
– Under "Select a context definition", select the root of the plant model.

In the next row, you see the top level of the common plant model.
– Navigate through the common plant model to plant objects with contexts.

Plant objects and contexts can be recognized by the following icons:

Plant object

Context

– Select the desired contexts.
All selected contexts are included in the "Selected data source items" list

Note
Change selection criteria
After you have added a context, you can select a different option and add additional data
source items.
For example: Context and logging tags in the same segment.

6. To remove one or more data source items from "Selected data source items", select them and
click "Delete".

7. Confirm with "OK".

Result
The selected contexts are displayed below the segment and inserted into the data table.
If you do not want a context to use the default configuration, select its configuration next.

Content of the data table after executing the segment
In segments to which only contexts or contexts and user-defined columns have been added:
• A line is inserted for each context whose runtime falls within the time period of the segment.
• "Time stamp" column: The time at which the context was started
In segments that combine contexts with logging tags or logging alarms:
• All logged values with the same time stamp are displayed per row.
• "Time stamp" column: The logging event
• "Start time" column: The time at which the context was started
• "Context " <Context name>"" column: The value passed to the context at start
• If no context was started at the time of logging, the context cells remain empty.

Runtime and simulation
17.3 Operating Unified PC

7422 System Manual, 11/2022

Example
The following data source items were added to a segment:
• The "Product" context

Runtime of the context: 15:00:00 to 19:59:59 hours
The context was started with the "Orange lemonade" value.

• The "Logged_Rotation" logging tag
Logging cycle: 2s

• The "Logged_Temperature" logging tag
Logging cycle: 5s

• The user-defined "Unit" column
It contains the unit for "Logged temperatures".

Content of the data table after execution of the segment:

Lines 2 to
6

Values were logged for "Logged_Rotation" and "Logged_Temperature", while the "Product" context ran with the
"Orange lemonade" value.

Line 8 A value was logged for "Logged_Rotation" while no context was running.

See also
Contexts (Page 7240)

Adding user-defined columns

Introduction
User-defined columns supplement the data of the other data source items of a time series
segment with additional information:
• With a fixed string

The string appears in each cell of the column.
Example: Display measurement unit of the tag values in report

• With a formula
The formula is calculated during generation for each cell in the dynamic column.
Example: The sum of the tag values output in the report.

The configuration of the user-defined column controls which string or formula it uses.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7423

Requirement
• The "User-defined column" option was enabled when the connection was set up.
• The "WinCC Unified" tab is visible in Excel.
• A time series segment is available.

Procedure
1. Click on "Segments" in the "Configuration" group.

The list of segments is loaded.
2. Select a segment.

The segment is extended by the area for the data source items.
3. Click "+".
4. Select the option "User-defined column".
5. Enter the name of the column under "name".
6. Click "Select" or press <ENTER>.

The column is included in the list "Selected data source items".
Note
Change selection criteria
After you have added a column, you can select a different option or a different filter and add
additional data source items.

7. Select a configuration for the user-defined column.
8. To remove one or more data source items from "Selected data source items", select them and

click "Delete".
9. Confirm with "OK".
The added columns are displayed below the segment and inserted into the data table.

See also
Creating and editing configurations for user-defined columns (Page 7433)
Select configuration (Page 7438)
Working with configurations (Page 7427)

Add Audit

Introduction
To output the Runtime device Audit Trail in a report, add an Audit data source item to a report
template.
You can find more information about the Audit option in WinCC Unified in the TIA Portal help.

Runtime and simulation
17.3 Operating Unified PC

7424 System Manual, 11/2022

Requirement
• The Audit option was activated in the engineering for the Runtime device.
• The "Audit" option is activated in the connection settings of the Excel add-in.
• The "WinCC Unified" tab is visible in Excel.
• A time series segment is available.

Procedure
1. Click on "Segments" in the "Configuration" group.

The list with the segments already created is loaded.
2. Select a time series segment.

The segment is extended by the area for the data source items.
3. Click "+".
4. Select the "Audit" option.
5. Select the Audit Trail.
6. (Optional) To undo your selection, select the Audit Trail under "Selected data source items"

and click "Delete".
7. Confirm with "OK".

Result
The Audit data source item is displayed below the segment.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7425

If an Audit Trail is configured for the data source, the Audit data is inserted into the report
when the Runtime data is read into Excel and when it is generated in Runtime:
• In the legend table: Identifier of the overall status of the Audit Trail for the queried time range

in the "Audit Status" field

Value Description
Green No manipulations of the Audit Trail were found in

the queried time range.
Red Manipulations of the Audit Trail were found in the

queried time range. Single or multiple entries
have been deleted, added or changed.

Requirement: The "Audit status" option is activated on the segment under "Header
properties".
Note
Overall status for check mode "None"
If the check mode "None" is set in the configuration of the audit data sources item, the "Audit
status" field is always green.

• In the data table of the segment: Identifier of manipulations

Type of manipulation Identifier in the data table
Value of entries changed Directly at the entries
Entries added
Entries deleted The manipulated time range receives a start and

end entry.

First, the data table shows the contents configured in the standard configuration for Audit. To
output other contents, select or create a configuration.

Delete data source elements

Requirement
• The "WinCC Unified" tab is visible in Excel.
• A segment with a data source element is available.

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Expand a segment by clicking on it.

The area for adding and editing data source elements appears.
3. Move the mouse pointer over a data source element and click "Delete".

Runtime and simulation
17.3 Operating Unified PC

7426 System Manual, 11/2022

Working with configurations

Basics of configuration
The configuration of a data source item defines the values of a data source element that are
displayed in a segment or how they are calculated and displayed.
There are specific configuration settings for each data-source-item type.
Data source items used in time series segments use a different configuration than data
source items used in single-value segments.
You have the following options:
• Use standard configuration.

There is a standard configuration for all types of data source items. Once added, data source
items use the default configuration of their type.
You can edit the standard configurations.

• Use user-defined configuration.
You can create any number of user-defined configurations for all types of data source items.
You can select one of the user-defined configurations on the data source item.

• Overwrite a configuration locally.
You can overwrite the configuration selected at the data source item locally.

Creating or editing configurations for log alarms

Requirement
• The "WinCC Unified" tab is visible in Excel.

Creating a configuration
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click "New Configuration > Logging alarm configuration".
4. Enter the name of the configuration under "Configuration name".
5. (Optional) Enter texts or graphics from a text list or graphic list in the standard column

instead of the alarm IDs.
See Assigning text lists and graphic lists (Page 7440).

6. (Optional) Change the default settings of the optional columns. The optional columns are
used to display the alarm properties.
See Configuring optional columns (Page 7439).

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7427

7. (Optional) Filter the logging alarms to be displayed. You define a filter query for this purpose.
The filter query can consist of up to two conditions.
Proceed as follows:
– Under "Filter", click "+" or "Add new condition row".
– Select an alarm property, an operator, and enter a value.
– Optional: Use "+" or "Add new condition row" to create additional conditions. Select

whether the conditions are to be linked with a logical AND or OR.
8. Enable the option "Use system colors" so that the alarms are highlighted with the same colors

as in the alarm control.
9. Confirm your entries with "OK".

Note
To not use the default column title for the standard column, set a display name in the local
configuration of the data source item. See Setting a display name for standard column
(Page 7443).

Editing a configuration
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click a configuration for logging alarms.
4. Edit the configuration settings. You have the same options as when creating the

configuration.
5. Confirm your entries with "OK".
The changes are applied the next time you read in the Runtime data.

Creating or editing configurations for an alarm statistics

Requirement
• The "WinCC Unified" tab is visible in Excel.

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click "New Configuration > Alarm statistics configuration".

Runtime and simulation
17.3 Operating Unified PC

7428 System Manual, 11/2022

4. Enter the name of the configuration under "Configuration name".
5. (Optional) Enter texts or graphics from a text list or graphic list in the standard column

instead of the alarm IDs.
See Assigning text lists and graphic lists (Page 7440).

6. (Optional) Change the default settings of the optional columns. The optional columns are
used to display the statistical calculations and alarm properties.
See Configuring optional columns (Page 7439).

7. (Optional) Filter the contents to displayed in the alarm statistics. You define a filter query for
this purpose. The filter query can consist of up to two conditions.
Proceed as follows:
– Under "Filter", click "+" or "Add new condition row".
– Select an alarm property, an operator, and enter a value.
– Optional: Use "+" or "Add new condition row" to create additional conditions. Select

whether the conditions are to be linked with a logical AND or OR.
8. Enable the option "Use system colors" so that the alarms are highlighted with the same colors

as in the alarm control.
9. Confirm your entries with "OK".

Note
To not use the default column title for the standard column, set a display name in the local
configuration of the data source item.
See Setting a display name for standard column (Page 7443).

Editing a configuration
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click a configuration for alarm statistics.
4. Edit the configuration settings. You have the same options as when creating the

configuration.
5. Confirm your entries with "OK".
The changes are applied the next time you read in the Runtime data.

Create or edit configurations for logging tags

Requirement
• The "WinCC Unified" tab is visible in Excel.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7429

Creating a configuration
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click "New Configuration".
4. To create a configuration for logging tags in a time series segment, select the entry "Logging

tag configuration".
To create a configuration for logging tags in a single value segment, select the entry "Single
value configuration logging tag".

5. Enter the name of the configuration under "Configuration name".
6. Under "Calculation mode", select the data to be written if no current value is available.
7. (Optional) If the configuration is for logging tags with the numeric data type, you can output

texts or graphics from a text list or graphic list in the standard column instead of the tag value.
See Assigning text lists and graphic lists (Page 7440).

8. Set the other settings as described below.
9. Confirm your entries with "OK".

Note
To not use the default column title for the standard column, set a display name in the local
configuration of the data source item. See Setting a display name for standard column
(Page 7443).

Editing a configuration
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click a configuration for logging tags.
4. Edit the configuration settings.
5. Confirm your entries with "OK".
The changes are applied the next time you read in the Runtime data.

Runtime and simulation
17.3 Operating Unified PC

7430 System Manual, 11/2022

Additional settings for time series segments
In time series segments, the following additional settings are available for logging tags:

Setting Description
"Interval" Only for the "Stepped" and "Interpolated" calculation modes.
"Columns" > "Quality Code" (Optional) Change the default settings of the optional "Quality Code" col‐

umn.
See Configuring optional columns (Page 7439).

Additional settings for single value segments
In single value segments, the following additional settings are available for logging tags:

Setting Description
"Time stamp" Determine the date and time for which the value is read.

Proceed as described below.
"Show captions" Define whether a header is displayed in the columns for the time stamp,

the data source item and the quality code.
"Show time stamp" Determine whether and where this information is displayed in the table.

The information is always in relation to the value cell."Show data source item"
"Show quality code"

To set the "Time stamp", select one of the following options:

 Absolute time information Select a date and a time.
The information is absolute.

 Relative time information Select a reference time and a time interval.
The information is relative to the current date.

 Read time information from cell Applies the value of the cell currently highligh‐
ted in the Excel file.
Make sure that the cell supplies a valid time.

 Read time information from tag Applies the value of the set tag.
Make sure that the tag supplies a valid time.
Possible data types:
• DateTime
• String
• Integer

See also
Calculation modes for data source elements (Page 7447)

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7431

Creating or editing configurations for tags:

Requirement
• The "WinCC Unified" tab is visible in Excel.

Creating a configuration
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":
3. Click "New Configuration> Tag single value configuration".
4. Enter the name of the configuration under "Name".
5. (Optional) If the configuration is for tags with the numeric data type, you can output texts or

graphics from a text list or graphic list in the standard column instead of the tag value.
See Assigning text lists and graphic lists (Page 7440).

6. Set the other settings as described below.
7. Confirm your entries with "OK".

Note
To not use the default column title for the standard column, set a display name in the local
configuration of the data source item. See Setting a display name for standard column
(Page 7443).

Editing a configuration
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration".
3. Click a configuration for tags.
4. Edit the configuration settings.
5. Confirm your entries with "OK".
The changes are applied the next time you read in the Runtime data.

Settings for single value segments
In single value segments, the following settings are available for tags:

Setting Description
"Show captions" Select whether a header is displayed in the columns for the time stamp,

the data source item and the quality code.
"Show time stamp" Select whether the time stamp is output with the value.
"Show data source item" Select whether the quality code is output with the value.
"Show quality code" Select whether the quality code is output with the value.

Runtime and simulation
17.3 Operating Unified PC

7432 System Manual, 11/2022

Creating or editing configurations for contexts

Requirement
• The "WinCC Unified" tab is visible in Excel.

Core statement
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click "New Configuration".
4. Select the entry "Configuration context".
5. Enter the name of the configuration under "Configuration name".
6. (Optional) Change the default settings of the optional columns. The optional columns are

used to display important contextual information.
See Configuring optional columns (Page 7439).

7. Confirm your entries with "OK".

Note
To not use the default column title for the standard column, set a display name in the local
configuration of the data source item. See Setting a display name for standard column
(Page 7443).

Editing a configuration
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click a configuration for contexts.
4. Edit the configuration settings.
5. Confirm your entries with "OK".
The changes are applied the next time you read in the Runtime data.

Creating and editing configurations for user-defined columns

Requirement
• The "WinCC Unified" tab is visible in Excel.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7433

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click "New Configuration > User-defined column configuration".
4. Enter the name of the configuration under "Configuration name".
5. Under "Formula", select one of the following options:

– Enter a fixed string.
The string is transferred into each cell of the column.

– Enter an Excel formula.
The formula is copied into each cell of the user-defined column and adapted to the
respective row.
To prevent a part of the formula from being adjusted, place the character "$" in front of
it.
Example

Formula in configuration =B2+C2 =B$2+C2
Adapting the formula in the
report

in line 2 =B2+C2 =B2+C2
in line 3 =B3+C3 =B2+C3
in line 4 =B4+C4 =B2+C4

Note
No validity check
The formula is not tested for correctness during either input or dynamic adaptation.

6. Confirm your entries with "OK".

Adding or editing configurations for audit

Introduction
Check mode
The check mode of the configuration of an audit data source item determines
• Whether an integrity check is performed when the Runtime data is read, and what is checked.

You can output the overall result of the check in the table header row in the "Audit status"
field.

• Which audit data records are provided in the data table.

Runtime and simulation
17.3 Operating Unified PC

7434 System Manual, 11/2022

Possible check modes:

"None" Provides the data for all audit data records that fall within the requested time range. No
integrity check is performed.
Default setting

"Check only" Checks all audit data records that fall within the requested time range without providing their
data.
It is tested whether data records have been manipulated, deleted or added.

"Check entries" Check the audit data records and provides their data that fall within the queried time range
and that have not been deleted from the Audit Trail or subsequently added.
It is checked whether data records have been manipulated.

"Check all" Checks all audit data records and provides their data that fall within the queried time range.
It is tested whether data records were manipulated, deleted from the audit trail or subse‐
quently added.

Filter type
An Audit data record consists of two entries:
• An entry for the user expectation
• An entry for the system response.
User expectation and system response may differ. In addition, there are situations in which
only one of the two data records is created.
The filter type controls which data records and which entries are included in the report.
Possible filter types:

Filter type User expectation equals sys‐
tem response

User expectation does not
equal system response

Data record entry for user
expectation or system re‐
sponse is missing

"Show all data in detail" Both data record entries are inserted. The existing data record entry
is inserted."Show data and conformity

errors"
The data record entry with
the user expectation is inser‐
ted.

Both data record entries are
inserted.

"Show only data with con‐
formity errors"

No data record entry inserted.

Requirement
• The "WinCC Unified" tab is visible in Excel.

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click "New Configuration > Audit configuration".
4. Enter the name of the configuration under "Name".

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7435

5. Select a check mode:
6. Specify a filter type.

Preset value: "Show data and conformity errors"
7. (Optional) Change the default settings of the optional columns. The optional columns are

used to display the audit attributes.
See Configuring optional columns (Page 7439).

8. (Optional) To further filter the inserted content, define a filter query.
The filter query can consist of up to two conditions. Proceed as follows:
– Under "Filter", click "+" or "Add new condition row".
– Select an Audit attribute, an operator and enter the value of the attribute.
– Optional: Use "+" or "Add new condition row" to create additional conditions. Select

whether the conditions are to be linked with a logical AND or OR.
9. Confirm your entries with "OK".

Note
To not use the default column title for the standard column, set a display name in the local
configuration of the data source item. See Setting a display name for standard column
(Page 7443).

Editing a configuration
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click a configuration for Audit.
4. Edit the configuration settings. You have the same options as when creating the

configuration.
5. Confirm your entries with "OK".
The changes are applied the next time you read in the Runtime data.

Examples of the configuration of the filter type
The following table contains examples of data records that were generated in Runtime through
changes to tags monitored by Audit:

Data record
ID

Tag name Modified by Old value New value Description

1A Mo‐
tor1_Speed

User1 0 10 An operator changes the speed of a motor in
an I/O field of an HMI screen.
User expectation and system response are
identical.

1B Mo‐
tor1_Speed

System 0 10

Runtime and simulation
17.3 Operating Unified PC

7436 System Manual, 11/2022

Data record
ID

Tag name Modified by Old value New value Description

2A ValvePercen‐
tile

User1 0 100 An operator opens a valve using a slider on
an HMI screen.
The valve has a physical blockage and cannot
be opened. Therefore, no data record entry
for the system response is generated.

3A ValvePercen‐
tile

User1 0 99 A physical block has been removed and the
operator repeats the entry. The valve reacts,
but cannot be fully opened.
User expectation and system response differ.

3B ValvePercen‐
tile

System 0 49

4B Mo‐
tor2_Speed

System 0 20 An operator changed the speed of another
motor. The resulting data record was manip‐
ulated, and the user expectation entry was
deleted.
There is only one entry for the system re‐
sponse.

The following table shows which data record entries are inserted into the data table
depending on the filter type selected when generating the report:

Data record ID Tag name Modified by Old value New value
Filter type "Show all data in detail"
1A Motor1_Speed User1 0 10
1B Motor1_Speed System 0 10
2A ValvePercentile User1 0 100
3A ValvePercentile User1 0 99
3B ValvePercentile System 0 49
4B Motor2_Speed System 0 20
Filter type "Show data and conformity errors"
1A Motor1_Speed User1 0 10
2A ValvePercentile User1 0 100
3A ValvePercentile User1 0 99
3B ValvePercentile System 0 49
4B Motor2_Speed System 0 20
Filter type "Show only data with conformity errors"
2A ValvePercentile User1 0 100
3A ValvePercentile User1 0 99
3B ValvePercentile System 0 49
4B Motor2_Speed System 0 20

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7437

Select configuration

Requirement
• The "WinCC Unified" tab is visible in Excel.
• A segment with a data source item is available.
• There is a user-defined configuration for the type of the data source item.

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Select the segment.

The segment is extended by the area for the data source items.
3. Select the desired configuration from a data source item in the drop-down list.
4. Click "OK".

Result
The changes are applied the next time you read in the runtime data.

Overwrite a configuration locally
A local configuration overwrites the configuration selected at the data source item. It applies
only to the data source item for which it was entered.

Requirement
• The "WinCC Unified" tab is visible in Excel.
• A segment with a data source item is available.

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Select the segment.

The segment is expanded to include the plant complex for the data source items.
3. Move the mouse over a data source item and click "Edit".

You create a local configuration that first adopts the values of the original configuration.
4. Enter a name for the local configuration.
5. (Optional) Set a display name. See Setting a display name for standard column (Page 7443).
6. Make the remaining settings as required.

You can make the same settings as in the default and custom configurations.
7. Confirm your entries with "OK".

Runtime and simulation
17.3 Operating Unified PC

7438 System Manual, 11/2022

Result
The changes are applied the next time you read in the Runtime data.

Delete configuration

Requirement
A configuration is available.

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration".
3. Move the mouse to a configuration.

Note
Default configurations cannot be deleted
You can edit default configurations but not delete them.

4. Click "Delete".

Result
• The configuration is deleted.
• Data source items with this configuration obtain a local configuration with the same settings.

Configuring optional columns

Introduction
In time series segments, data source items of the following types have optional columns:
• Logging tag
• Logging alarm
• Alarm statistics
• Audit
• Context
The optional columns of a data source item depend on its type. The configuration of the data
source items controls whether and how the data table shows these columns.
This section describes how to configure the optional columns.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7439

Requirements
The data source item configuration is open. The configuration must apply to a time series
segment.

Showing and hiding columns
1. To show an optional column in the data table, enable the option for the desired column in the

"Columns" area.
2. To hide a column, disable its option.

Changing the column title
The data table uses as default column titles the identifiers you see in the "Columns" area. To
change the default column titles, do the following.
1. In the "Columns" area, move the mouse pointer to an optional column.
2. Click the button with the pin.
3. Assign a unique column title.

Note
Localization
The column title is stored in the Runtime language currently set in the basic settings of the
add-in.
To localize the column title, change the Runtime language and repeat your entry in the new
language.

Changing the column sequence
To change the order of the optional columns in the data table, proceed as described in Changing
the column sequence (Page 7444).

Assigning text list or graphic list
The values of numeric columns can be replaced by texts or graphics when the Runtime data is
read in.
To assign a suitable text list or graphic list to the property, proceed as described in Assigning
text lists and graphic lists (Page 7440).

Assigning text lists and graphic lists

Introduction
If standard columns and optional columns of data source items output numerical values, you can
assign text lists and graphic lists to these columns. When the Runtime data is read in, the cell
values of these columns are replaced by texts or graphics from the assigned lists.

Runtime and simulation
17.3 Operating Unified PC

7440 System Manual, 11/2022

This function improves the readability of the report and helps to draw the reader's attention
to important information.

Note
Restrictions
• Tags/logging tags

Assign a text list or graphic list to the standard column of data source items with a Tag or
Logging tag type only if the tag or logging tag has a numeric data type.
You can assign a text list or graphic list to the optional "Quality Code" column regardless of
the data type of the tag.

• User-defined columns
It is not possible to assign a text list or graphic list for data source items with the User-defined
column type.

• Context and audit
Usually, the names of context objects and audit objects displayed in the standard column do
not contain purely numerical values. It is not recommended to assign a text list or graphic list.

Example
Add two data source items with the same logging tag to a time series segment.
For the first data source item, use the default configuration. This causes the report to output
the tag value in the standard column.
For the second data source item, select a configuration in which a graphic list is assigned to
the standard column. The graphic list contains representational graphics staggered by value
range. As a result, the report outputs a graphic in the standard column.
After reading in the Runtime data, the standard column of the second data source item
makes readers of the report aware of limit violations. Readers can get the exact tag value
from the standard column of the first data source item.

Requirements
• A segment with a data source item was created in the add-in.
• Suitable text lists or graphic lists have been configured in engineering for the connected data

source.

Assigning text lists and graphic lists to the standard column
1. Click on "Segments" in the "Configuration" group.
2. Select the segment.

The data source items of the segment are displayed.
3. Move the mouse over a data source item and click "Edit".

The local configuration of the data source item opens.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7441

4. Select a suitable list under "Assign text/graphic list".
5. To preview the selected list and its graphics or texts, click the "i" button.

To hide the preview, click the "i" button again.

Assigning optional columns to text lists and graphic lists
1. Click on "Segments" in the "Configuration" group.
2. Select one of the following options:

To make the assignment apply to a specific data source item, follow these steps:
– Select the segment.

The data source items of the segment are displayed.
– Move the mouse over the data source item and click "Edit".

The local configuration of the data source item opens.
To make the assignment apply to multiple data source items of the same type, follow these
steps:
– Click "Data source item configuration":

You can see all default and custom configurations.
– Click on the desired configuration.

The configuration opens.
3. In the "Columns" area, click the following button next to the desired optional column:

An interface for assigning a text list or graphic list is loaded into the add-in.
4. Select the desired graphic list or text list from the drop-down list.
5. To preview the selected list and its graphics or texts, click the "i" button.

To hide the preview, click the "i" button again.
Note
If you are connected offline to the data source, no preview of graphic lists is available.

6. Confirm your entries.

Result
When the Runtime data is read in, the assigned lists are searched for an entry that matches the
actual cell value:
• If a matching entry is found, the corresponding text or graphic is inserted into the data table.
• If no matching entry is found, the actual cell value is inserted.

Note
The assignment of graphic lists slows down the import of the Runtime data into the Excel add-
in.

Runtime and simulation
17.3 Operating Unified PC

7442 System Manual, 11/2022

See also
Standard column (Page 7406)
Basic information on segments (Page 7404)

Setting a display name for standard column

Introduction
You can assign a display name for the standard column of a data source item. When a display
name is set, it is used in the data table instead of the default column title and is listed in the table
header row.
Display names make reports clearer, for example, when data source items for contexts or
tags have very long names.
You set the display name in the local configuration of the data source item.

Requirement
• The "WinCC Unified" tab is visible in Excel.
• There is a segment with a matching data source item.

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Expand a segment by clicking on it.

The area for adding and editing data source elements appears.
3. Move the mouse pointer to the data source item and click "Edit".

The local configuration of the data source item opens.
4. Enter the desired column title in "Display name".

The column title must be unique within the segment.
Note
Localization
The column title is stored in the Runtime language currently set in the basic settings of the
add-in.
To localize the column title, change the Runtime language and repeat your entry in the new
language.

5. Confirm your entry with "OK".

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7443

Result
• The data table uses the display name as the column title for the standard column of the data

source item.
• As long as the following conditions are met, the "Display name" column is inserted into the

table header row:
– Display of the header row in table header row is enabled.

Make this setting at the segment.
– A display name is set for at least one data source item of the segment.
The column lists the display names of all data source items. If no display name is set for a data
source item, its cell remains empty.

Note
• If you assign a different configuration to the data source item, the display name is retained.
• To return to the display of the default column title after assigning a display name, enter the

name of the data source item under "Display name".

See also
Standard column (Page 7406)
Overwrite a configuration locally (Page 7438)

Changing the column sequence

Introduction
For a time series segment, you can change the default column order of the data table.
You have the following options:
• Specify the order which the data source items have in the data table.
• For each data source item: Set the order of its optional columns.

Note
The time stamp column always appears first.

Requirement
• The "WinCC Unified" tab is visible in Excel.
• A time series segment has been created.

Runtime and simulation
17.3 Operating Unified PC

7444 System Manual, 11/2022

Change the order of data source items
Procedure
1. Click on "Segments" in the "Configuration" group.
2. Click the time series segment in the list of time series segments.

The data source items of the segment are displayed.
3. Left-click a data source item and move it up or down using drag-and-drop operation.

Result
The order of data source items in the segment interface is changed.
The next time the Runtime data is read in, the data table outputs the data source items in
this order.

Changing the order of optional columns
Procedure
1. Select one of the following options:

To change the column order of a particular data source item, follow these steps:
– Select the segment.

The data source items of the segment are displayed.
– Move the mouse over the data source item and click "Edit".

The local configuration of the data source item opens.
To change the column order for all data source items that use the same configuration, follow
these steps:
– Click "Data source item configuration":

You can see all default and custom configurations.
– Click on the desired configuration.

The configuration opens.
2. Move the mouse pointer to a column under "Columns".

The columns you see depend on the type of data source item.
3. Move the column up or down using the arrow buttons or drag-and-drop.

Result
The order of the optional columns in the configuration is changed.
The next time the Runtime data is read in, the data table outputs the optional columns in the
changed order.

See also
Basic information on segments (Page 7404)
Configuring optional columns (Page 7439)

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7445

Reading Runtime data in Excel

Note
Reading in Runtime data in Excel is used for testing. It is not intended for mass retrieval of data,
as is the case when report jobs are executed in Runtime.

Requirement
An online connection is established.

Reading in all segments
1. Select "WinCC Unified > Segments".
2. Click "Update all":

Reading in individual segments
1. Select "WinCC Unified > Segments".
2. Next to a segment in the list of segments click, "Update":

Result
The segment or segments are run. The Runtime data of your data source items are read into
Excel.

Note
Controlling the column width and row height
When the automatic adjustment of the column width and row height is disabled in the segment
properties, the text read in may be truncated or the formula results are replaced with "#"
characters.
Check the column widths and row heights and adjust them manually, if required, or select
automatic adjustment. Manual adaptations only apply in the Excel add-in. They are not included
in the generated reports.

Runtime and simulation
17.3 Operating Unified PC

7446 System Manual, 11/2022

Note
Removing Runtime data from report template
Remove the Runtime data from the report template before you save the report template and
make it available for uploading to Runtime.
To do this, click the "Delete Runtime data" button in the toolbar of the Excel add-in.

Diagnostics during the data query
Successful execution of the data query is documented by the add-in with a status message in the
table.
If an error occurs during the data query, a general error message is displayed under status. In
addition, detailed error messages are displayed in the "ErrorLog" worksheet.

Calculation modes for data source elements
If there is no current value for a data source item for a requested point in time, the following
calculation modes are available.

Calculation modes for tags
The following calculation modes are available for tags of a time series segment:

Calculation mode Description
Raw The actual value available for the specified period. If no data are available, no value is

output.
Stepped If no data are available, the last value is used.

With this mode you can also use values with an invalid quality code.
Interpolate The values are interpolated linearly for the specified time period.

With this mode you can only use values with a valid quality code.

The following calculation modes are available for tags of a single value segment:

Calculation mode Description
Interpolate The values are interpolated linearly for the specified time period.

With this mode you can only use values with a valid quality code.
Left If no data is available, the last value before the specified period is used.
Right If no data is available, the last value after the specified period is used.

See also
Create or edit configurations for logging tags (Page 7429)

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7447

Making general settings

Adapting the work area

Undocking and moving the add-in
To enlarge your working area, you can undock the Excel add-in:
1. Open the drop-down list in the header of the add-in.
2. Click "Move".
3. Move the mouse pointer to the desired location and click the left mouse button.
4. To move the add-in again, keep the left mouse button pressed in the header of the add-in and

move the mouse.
5. To dock the add-in again, double-click in the header of the add-in.

Adapting the size of the add-in
1. Open the drop-down list in the header of the add-in.
2. Click "Resize".
3. Move the mouse pointer to the left to make the add-in wider or to the right to make it

narrower.
4. Left-click when you have reached the desired size.

Changing the language

Changing the add-in language
The Excel add-in automatically uses the same user interface language as Excel. If you are using
a language for Excel that is not included in the Unified options, English is used as the default
language.
You can select the language for the contents of the report independently of the interface. To
select another language, the language must be configured in Runtime.

Selecting the language for the report
1. Select "WinCC Unified > Segments".
2. Click "Basic settings":

3. Under "Runtime language", select the language of the report content.
4. Under "Query language" you select which language data queries have that require user input,

e.g. filter definitions.

Runtime and simulation
17.3 Operating Unified PC

7448 System Manual, 11/2022

Zooming in the add-in

Procedure
To zoom in or out of the display in the add-in, press <CTRL> and move the mouse wheel.

Undo and redo
The Excel functions "Undo" and "Redo" are not available in the add-in.

Tips on design and layout
This section includes tips on the visual design of reports. The apply for:
• Report templates
• Reports that were generated as XLSX file

Note
Deviating PDF results
A PDF report created by LibreOffice can deviate in content or layout from a PDF report generated
with Excel, for example, if the report template uses common Excel features that LibreOffice does
not support, such as special fonts or chart types.

Arranging segments
Always place the segments of a report template side by side or each in their own worksheet.
Because the data tables of the segments grow dynamically, tables can overlap when
segments are placed one below the other. In the add-in, this causes an error of the
OfficeExtension.Error class when reading in the Runtime data.

Changing the column sequence
See section Changing the column sequence (Page 7444).

Adapt column width and row height
For each segment of a report template, check whether the column widths and row heights of
your data table are wide or high enough for the values to be read. If this is not the case, texts in
the generated report are truncated or the formula results are replaced with "#" characters.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7449

To do this, select one of the following options:
• In the properties of the segments, select the options for automatic adjustment of the column

width and row height.
• Click "Update all" in the report template.

Values are imported to Excel from the data source. Check the column widths and row heights
and adjust them manually, if required.
Note
The manual adaptations apply only in the Excel add-in. They are not included in the
generated reports.

Replacing numerical values
If columns of a data source item output numeric values, you can assign text lists and graphic lists
to the columns. When the Runtime data is read in, the cell values of these columns are replaced
by texts or graphics from the assigned lists. This improves the readability of the report and helps
to draw the reader's attention to important information.
Example: Visualizing limit violations of tags with graphics
See section Assigning text lists and graphic lists (Page 7440).

Preparing imported Runtime data
Adjust the cell formatting of the Runtime data, for example, font, color, alignment, or number
format. The rows inserted when reading the Runtime data adopt the formatting.
Add diagrams, pivot tables or formulas that graphically visualize, structure or evaluate the
data imported from Runtime.

Note
If you have read Runtime data into the report template for better data preparation, remove it
before saving the report template and making it available for upload to Runtime.
To do this, click the "Delete Runtime data" button in the toolbar of the Excel add-in.

Set up page
Use "File > Print > Set up page" to define details for printing the report, for example:
• Alignment of the report (portrait format or landscape format)
• Scaling, for example, to print all columns on one page
• Inserting a user-defined header or footer
The print settings set in the report template are applied in Runtime when a report job is
executed for PDF generation.

Runtime and simulation
17.3 Operating Unified PC

7450 System Manual, 11/2022

Renaming worksheets and segments
When you add a segment to a report template in the add-in, a table is created in Excel. The add-
in addresses the table by the name of the worksheet and segment.
Do not rename worksheets after adding segments.
Do not change the table name of a segment using the Excel property "Table name". Edit the
segment in the add-in and rename it there.

17.3.4.12 Rearranging columns at runtime

Introduction
You can rearrange the table columns in the following table-based controls:
• Alarm control
• Trend companion
• Process control
• Parameter set control
• System diagnostics control

Requirement
Configuration of the control in the engineering requires rearrangement of the columns.

Procedure
To move a column, drag-and-drop its column header onto the column header of another column.

Note
The time column cannot be moved.

Result
The moved column is inserted at the position that the cursor had when the drag-and-drop
movement ended.
The new arrangement only applies to the current client. If you change the page or refresh the
browser window, the arrangement is lost.

Note
If you move a column next to the hidden column and then unhide it, it is always shown to the
right of the moved column when it is unhidden.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7451

Example 1: Inserting columns to the left or the right
The procedure is illustrated based on the example of an alarm control. In the initial situation, the
table of the alarm control has the following column arrangement:

To insert the "Origin" column to the right of the "Alarm text" column, proceed as follows:
1. Use drag-and-drop to move the column header of "Origin" to the right half of the column

header of the "Alarm text" column.

2. The "Origin" column is inserted to the right of the "Alarm text" column.

Runtime and simulation
17.3 Operating Unified PC

7452 System Manual, 11/2022

To insert the "Origin" column to the left of the "Alarm text" column, proceed as follows:
1. Use drag-and-drop to move the column header of "Origin" to the left half of the column

header of the "Alarm text" column.

2. The "Origin" column is inserted to the left of the "Alarm text" column.

Example 2: Reordering of columns in combination with hidden columns
The example illustrates the rearrangement of columns in combination with hidden columns.
• The alarm view has the same column order as in Example 1.
• The alarm view has been configured in the engineering system in such a way that the display

of the "Origin" column is controlled dynamically in runtime by setting a tag.
To reorder the columns in combination with hidden columns, proceed as follows:
1. Hide the "Origin" column by setting the tag.
2. Insert the "Status text" column to the left of the "Area" column.
3. Unhide the "Origin" column by setting the tag.
The columns have the order "Alarm class", "Status text", "Origin", "Area", "Alarm text".

17.3.4.13 Process diagnostics

Basics of supervision with ProDiag

Introduction
The TIA Portal functionality, ProDiag (Process Diagnostics), is used to monitor and determine
errors that occur in your plant or machine. You can use ProDiag to show the type of error, the
cause of the error and the location of the error on the HMI device.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7453

Use
You can use ProDiag functions to monitor your plant and to visualize it on an HMI device. The
main objective of ProDiag is the reduction of downtime and loss of production after an error
occurs, and the avoidance of errors using timely warnings. Diagnostic and display objects
provide specific information for the operator for troubleshooting and show the processes on an
HMI device on site.

Principle
In STEP 7, you create operand supervisions and configure the settings according to your
requirements. When an error occurs, a supervision alarm is generated based on the criteria you
have configured. The configured supervision instances are stored in the preset ProDiag function
block. You can use the automatically generated ProDiag FBs or create and configure your own
ProDiag FBs.

Advantages
ProDiag enables you to configure supervisions and monitor your plant without changing the
user program code.
You perform plant diagnostics on your HMI device. The data is automatically synchronized in
order to keep the display on your HMI device always up-to-date.

Requirements and licensing

Introduction
You configure the ProDiag supervisions in TIA Portal with STEP 7 and create the screen objects
for monitoring and diagnostics with WinCC. You need a license to use the ProDiag functionality
and the corresponding screen objects.

Software requirements
To configure ProDiag supervisions, you need the following products:
• TIA Portal STEP 7 Professional
• WinCC Unified

Hardware requirements
ProDiag functionality is available for CPUs of the S7-1500 series with firmware version 2.0 or
higher.
The objects for the supervision and diagnostics of plants are available for the following HMI
devices:
• WinCC Unified

Runtime and simulation
17.3 Operating Unified PC

7454 System Manual, 11/2022

Note
Objects for supervision and diagnostics of plants can be used under the "Full access" and "Read
access" protection levels configured in the CPU.
ProDiag objects under the "HMI access" and "No access" protection levels cannot be used.

Licensing of ProDiag supervisions
The number of ProDiag monitors that you configure with STEP 7 is licensed. You do not need a
license for the first 25 supervisions, licenses must be used for additional supervisions.

Number of super‐
visions

<= 25 <= 250 <= 500 <= 750 <= 1000 > 1000

Number of licen‐
ses

None 1 2 3 4 5

Licensing of ProjDiag objects
To use the objects for the diagnostics and supervision in conjunction with the ProDiag
supervision in your program, you need a ProDiag license, specifically the WinCC Unified Runtime
license.

Enable process diagnostics
To activate process diagnostics on an HMI device, follow these steps:
1. Open the "Runtime settings" of the HMI device in the project tree.
2. Under Process diagnostics, select the "Enable process diagnostics" option.
The display of process diagnostic alarms is enabled in runtime.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7455

Objects for the supervision and diagnostics of plants

Introduction
WinCC offers the following objects for displaying the current monitoring status and for fault
diagnostics in the program code:
• GRAPH overview
• PLC code view

GRAPH overview
The "GRAPH overview" object is used to display the current program status for executed steps of
the GRAPH sequencer.

PLC code view
The "PLC code viewer" object is used to display the current program status of user programs that
have been programmed in the GRAPH programming language.

Runtime and simulation
17.3 Operating Unified PC

7456 System Manual, 11/2022

GRAPH overview

Use
The "GRAPH Overview" object is used to display the current program status for executed steps of
the GRAPH sequencer. Errors during execution of a program are displayed directly at the
corresponding step.

The following information is displayed in the "GRAPH Overview" object:
• Name and status of the function block
• Status of initial and simultaneous steps
• Number and name of the first step currently executed step
• Operating mode for running the GRAPH sequencer

WinCC supports the display of step names for the GRAPH blocks in multiple languages
starting from Version 6.0. The step names will then be displayed in the selected Runtime
language following a language changeover in Runtime. If the selected language is not
available in the GRAPH block, the names are displayed in the default language (English).

Note
Device dependency of the "GRAPH Overview" object
The "GRAPH overview" object is available for Unified PC.

Note
Requirement for display in GRAPH overview
For the display of the program status of an S7 GRAPH instance data block in the "GRAPH
overview" object to be possible, the instance-specific properties of the block must be set as
"Visible in HMI" and "Accessible from HMI".

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7457

Layout
In the Inspector window, you customize the position, style, colors and font types of the object.
You can adapt the following properties in particular:
• Assigned GRAPH DB tag
• Buttons of the toolbar

Operating mode
Four operating modes are available for running the GRAPH sequence:
• AUTO (default setting) - Automatically switches to the next step when the transition is

fulfilled.
• TAP - Automatically switches to the next step when the transition is fulfilled and there is an

edge change from "0" to "1" at the T_PUSH parameter.
• TOP - Automatically switches to the next step when the transition is fulfilled or there is an

edge change from "0" to "1" at the T_PUSH parameter.
• MAN - The next step is not automatically enabled when the transition is fulfilled. The steps

can be selected and deselected manually.

Note
You set the operating mode by modifying the interface parameters of the GRAPH block in your
control program.

In WinCC Unified Runtime, you have the option to customize the name for the operating
mode that is displayed in the GRAPH overview.

Configuring a compact view
You can also configure a slim GRAPH overview without toolbar buttons and operating mode
display.
To display a slim GRAPH overview in single-line compatibility mode, drag the control to the
desired size.

Runtime and simulation
17.3 Operating Unified PC

7458 System Manual, 11/2022

Symbols
The symbols displayed in the GRAPH overview are pre-defined:

Symbol Name Function
Error Indicates that an error has occurred during the execution of a step.

Initial step Indicates that the currently executing step is the first step in the GRAPH
block.

Simultaneous step Shows that there are other simultaneous steps in the GRAPH block in addi‐
tion to the current one.

Buttons
You specify the buttons that are displayed in the GRAPH overview under "Properties >
Miscellaneous > Toolbar > Elements".

Button Name Function
Next Step Jumps to the next step in parallel step. When you get to the last step, you can

jump back to the first step.

Jump to Alarm Control Opens the configured alarm view with the error alarm in WinCC Unified.
The button is intended to be populated with appropriate system functions/
scripts.

Jump To PLC Code Viewer Opens the configured PLC code view.
The button is intended to be populated with appropriate system functions/
scripts.
Ideally, use the "OpenViewerGraphFromOverview" system function.

Jump to TIA Portal Several system functions are available for opening the TIA Portal.

Configuring a GRAPH overview

Introduction
You can use the GRAPH overview to view the current program status for the executed steps of
a GRAPH sequencer.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7459

Requirement
• A PLC including a GRAPH instance data block has been created.
• GRAPH instance data block contains at least one tag which is visible in HMI and accessible

from HMI.
Note
The process tag you are using for the GRAPH overview must be visible in HMI and accessible
from HMI.
To identify the tags of the GRAPH data block as visible and accessible for HMI, open the GRAPH
function block, select the block in the work area, and select "Edit > Internal parameters visible/
accessible from HMI" in the menu bar. Then compile the program blocks.

• An HMI device has been created.
• You have created a screen.
• The Inspector window is open.

Procedure
1. Drag-and-drop the GRAPH overview from the toolbox view into the configured screen.
2. In the Inspector window, click "Properties > Properties > Miscellaneous".
3. Open the selection button under "PLC Source > Tag".

The "Add new object" dialog opens.
4. Select the corresponding PLC in the "Program blocks" folder.
5. Select the corresponding PLC tag of the GRAPH instance data block.

Note
If no connection was configured between the HMI device and the selected PLC, a connection
is set up automatically.
In addition, an HMI tag is created which is connected to the PLC tag.

6. To display the GRAPH overview in compatibility mode without toolbar buttons and operating
mode display, drag the control to the desired size, whereby several basic views are possible.

Runtime and simulation
17.3 Operating Unified PC

7460 System Manual, 11/2022

7. Under "Properties > Properties > Miscellaneous > Toolbar > Elements", specify the buttons to
be displayed in the object.

8. Under "Properties > Events" you can assign system functions or scripts to the buttons in the
GRAPH overview in order to jump to the alarm control and the PLC code display in runtime
and to open the TIA Portal.

Result
The GRAPH overview is inserted in the screen. The current status of the GRAPH step sequence is
displayed in Runtime.

PLC code view

Use
The "PLC code viewer" object is used to display the current program status of user programs that
have been programmed in the GRAPH programming language.
In the PLC code view, you display various items of information about the user program:
• Information area
• Toolbar
• Detail view
• Transition/Interlock view

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7461

Information area
The information area shows the GRAPH sequence in the left area and the details, e.g. for the step
or for the transition, in the right area.

Toolbar
The toolbar shows information about the first or the selected icon.

Buttons of the toolbar
The table below shows the buttons on the toolbar and their meaning.

Runtime and simulation
17.3 Operating Unified PC

7462 System Manual, 11/2022

Operating el‐
ement

Description Function

"Previous network" Navigates to the previous network.

"Next network" Navigates to the next network.

"Zoom in" Enlarges the information area.

"Zoom out" Reduces the information area.

"Step mode" Switches between manual and automatic step selection for
the active step.

"Transition or Interlock" Switches between the transition and interlock networks.

Configuring the PLC code view

Introduction
To display the PLC program networks in the GRAPH programming language in Runtime, insert a
PLC code viewer control into your project.

Requirement
• At least one PLC has been created.
• An HMI device has been created.
• An HMI connection has been established between the controller and HMI device.
• The system diagnostics is activated on all devices
• You have created a screen.

Procedure
1. Drag-and-drop the PLC code view from the toolbox view.
2. In the Inspector window, click "Properties > Properties > Toolbar".

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7463

3. Select the buttons that you require in Runtime, for example: Next network, Previous network,
Step mode.

4. Select an authorization for operator input in "Properties > Properties > Security".

Result
The PLC code view is inserted in the screen. In Runtime, PLC user programs that are programmed
in the GRAPH programming language can be displayed.
You can populate the PLC code viewer using system functions, e.g. jump from the GRAPH
overview, or you can select the corresponding parameters directly.

17.3.5 Elements

17.3.5.1 Overview of elements
Operable elements are available in process pictures in Runtime.
The following elements are available depending on the configured access rights:

Icon Element Brief description
Bar Represents tags graphically. The bar graph can be labeled with a value scale.

I/O field Used for entry and display of process values.
Symbolic I/O field A drop-down list with texts or graphics for display and input in runtime.

Runtime and simulation
17.3 Operating Unified PC

7464 System Manual, 11/2022

Icon Element Brief description
Check box Used for display and selection of multiple options.

List box Used for display and selection of multiple list entries.

Radio button Used for display and selection of various options of which only one can be selected.

Switch Used for toggling between two predefined states.

Button Executes a configured function.
Slider Used for monitoring and changing process values within a defined range and adjusts

them. By adjusting the slider, you intervene in the process and correct the displayed
process value.

Clock Used for display of date and time.

Gauge Represents numerical values in the form of an analog gauge. For example, it can be
seen at a glance whether the boiler pressure is in the normal range.

17.3.5.2 Using elements

Bar

Application
The tags are displayed graphically with the "Bar" object. The bar graph can be labeled with a
value scale.

Layout
The settings for the position, geometry, style, colors and fonts of the object are made during
configuration.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7465

In particular, the following properties are changed:
• Color transition: Specifies the change in color display when limit values are exceeded.
• Limit marking: Displays the configured limit value as an arrow.
• Bar segments: Defines the gradations on the bar scale.
• Scale gradation: Defines the position of the zero point on a bar scale.
If the object falls below a certain size in the light or dark style, it is automatically displayed in
compact mode.

Color transition
The display of the color change is specified during configuration.

Color transition Description
"Segmented" If a particular limit was reached, the bar changes color segment by segment.

With segmented display, for example, the limits exceeded by the displayed
value are visualized.

"Entire bar" If a particular limit was reached, the entire bar changes color.

IO field

Use
The "I/O field" object is used to enter and display process values.

Layout
The settings for the position, geometry, style, color and fonts of the object are made during
configuration.
In particular, the following properties are changed:
• Mode: Specifies the behavior of the object in Runtime.
• Display format: Specifies the display format in the I/O field for input and output of values.
• Hidden input: Specifies whether the input value is displayed normally or encrypted during

input.
Note
Reports
In reports, I/O fields only output data. "Output" mode is preset. Properties for configuring
input are not available, e.g. "hidden input".

Runtime and simulation
17.3 Operating Unified PC

7466 System Manual, 11/2022

Mode
The behavior of the I/O field is specified during configuration.

Mode Description
"Input/output" Values can be input and output in the I/O field.
"Output" The I/O field is used for the output of values only.

Layout
The "display format" for the input and output of values is specified during configuration.

Layout
"Binary" Input and output of values in binary form
"Date" Input and output of date information. The format depends on the language setting

on the HMI device.
"Date/time" Input and output of date and time information. The format depends on the lan‐

guage setting on the HMI device.
"Decimal" Input and output of values in decimal form
"Hexadecimal" Input and output of values in hexadecimal form
"Time" Input and output of times. The format depends on the language setting on the HMI

device.
"Character string" Input and output of character strings.

Hidden input
In Runtime the input can be displayed normally or encrypted, for example for hidden input of a
password. A "*" is displayed for every character during hidden input. The data format of the value
entered cannot be recognized.

Avoid overlaps in output fields
If several I/O fields are configured as output fields with a transparent background in a screen,
these I/O fields may overlap. The transparent part of the one field covers the digits of the other
field. This may cause display problems. In order to avoid such overlaps, the border of the I/O
fields must be set to zero during configuration.

Limits
During configuration, colors can be specified for the values that exceed or fall below limits.
When there is a limit violation, the background color of the I/O field changes according to the
configuration, even if the I/O field is in input mode.
A limit range can also be defined for the input in the I/O field for the configuration.
If you enter a numeric value outside this limit, it is not applied; for example, 80 with a limit
of 78. In this case, a system alarm is generated on the HMI device if an alarm window is
configured. The original value is displayed again.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7467

Decimal places for numerical values
The number of decimal places can be specified for a numerical input field during configuration.
The number of decimal places is checked when you enter a value in this type of I/O field. Decimal
places in excess of the limit are ignored. Empty decimal places are filled with "0".
In the exponential display, the displayed numerical value is represented with a maximum
precision of nine decimal places.

Setting an LTime PLC tag via HMI
S7-1500 tags with data type LTime have the unit nanoseconds (ns). IO fields that are linked with
such a PLC tag have the unit 100 ns.
HMI user inputs to the I/O field are converted to ns when the value is sent to the PLC.

Note
MAX_SAFE_INTEGER
Depending on the JavaScript engine of the web client, the actual value may lose accuracy during
communication between the HMI device and the controller due to rounding if it is outside the
value range of MAX_SAFE_INTEGER.
Additional information on MAX_SAFE_INTEGER can be found here (https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/
MAX_SAFE_INTEGER).

Behavior when switching between input fields
When you change from one input field to another within a screen due to an operator input and
the on-screen keyboard appears, the "Exit field" event is not immediately triggered for the
previous field. Rather, it is only triggered after the on-screen keyboard is closed.

No events during the input
While an I/O field is in input mode, no events are transmitted to the server for the I/O field.
Terminate the input mode with Enter or Esc so that the events configured for the I/O field in
engineering take effect again.

Symbolic IO field

Use
The "Symbolic I/O field" list is used for displaying texts and graphics in runtime as well as text
input, if configured.
The displayed texts or graphics are assigned to the potential tag values.

Runtime and simulation
17.3 Operating Unified PC

7468 System Manual, 11/2022

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER

Note
Selecting the default entry is not possible in runtime.

Layout
The settings for the position, geometry, style, color and fonts of the object are made during
configuration.
In particular, the following properties are changed:
• "Mode": Specifies the response of the object in runtime.
• "Resource list": Specifies the text or graphic list that will be associated with the object.

Mode
The behavior of the symbolic I/O field is specified during configuration.

Mode Description
"Output" The symbolic IO field is used for the output of values.
"Input/output" The symbolic IO field is used for the input and output of values.

Check box

Application
You use the "Checkbox" object to select multiple options. Checkboxes can be activated by default
so that the user changes the default values only as required. Multiple options can be selected if
the corresponding properties are dynamized.

Layout
The settings for the position, geometry, style, color and fonts of the object are made during
configuration.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7469

In particular, the following properties are changed:
• Number of the checkboxes: Defines the number of options.
• Selection of the checkboxes: Defines which options are displayed as activated by default.

Default setting of the checkboxes
Each option is represented by a bit in a 32-bit word. To activate a field, the corresponding bit must
have the value "1". The 32-bit word contains the information for all options of the checkbox list.
The value of the "Presetting enabled" property is specified in hexadecimal format.

List box

Application
You use the "List box" object to present and select multiple list entries. List entries are selected
by default so that the default setting can be changed only when necessary. If the list box is larger
than the selection rectangle, WinCC automatically adds a scroll bar to the right margin.

Layout
The settings for the position, geometry, style, color and fonts of the object are made during
configuration.
In particular, the following properties are changed:
• Number of entries: Defines the number of list entries.
• Selection of entries: Defines which entry is displayed as activated by default.

Default setting of the list boxes
Each option is represented by a bit in a 32-bit word. To activate a field, the corresponding bit must
have the value "1". The 32-bit word contains the information for all texts of the list of list boxes.
The value of the "Selected fields" property is given in hexadecimal notation.

Runtime and simulation
17.3 Operating Unified PC

7470 System Manual, 11/2022

Option buttons

Application
You use the "Option button" object for selection of various options. Options are selected by
default so that the default setting can be changed only when necessary. Only one option can be
selected if the corresponding property is dynamized.

Layout
The settings for the position, geometry, style, color and fonts of the object are made during
configuration.
In particular, the following properties are changed:
• Number of fields
• Selection of the fields: Specifies which fields are displayed as activated.

Switch

Application
With the "Switch" object you switch between two predefined states. The current state of the
"Switch" object is visualized with either a label or a graphic.

Layout
The settings for the position, geometry, style, color and fonts of the object are made during
configuration.
In particular, the following property is changed:
• Type: Defines the graphic representation of the object.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7471

Type
The display of the switch is specified during configuration.

Type Description
"Switch" The two states of the "Switch" are displayed in the form of a switch. The position

of the switch indicates the current state. The switch is switched by moving it.
"Switch with text" The switch is shown as a button. The current state is visualized with a label. The

switch is switched by clicking the button.
"Switch with graphic" The switch is shown as a button. The current state is visualized with a graphic.

The switch is switched by clicking the button.

Button

Use
With the "Button" object, you execute a configured function.

Layout
The settings for the position, geometry, style, color and font of the object are made during
configuration.
In particular, the following properties are changed:
• Mode: Defines the graphic representation of the object.
• Text / Graphic: Defines whether the Graphic view is static or dynamic.
• Define hotkey: Defines a key, or shortcut that the operator can use to actuate the button.

Note
You can only define a hotkey for HMI devices with keys.

Mode
The display of the button is specified during configuration.

Mode Description
"Invisible" The button is not visible.
"Text" The button is displayed with text. This text explains the function of the button.
"Graphic" The button is displayed with a graphic. This graphic represents the function of

the button.
"Graphic or text" The button is displayed with text or graphics.

If the graphic cannot be displayed, the corresponding text is displayed.
"Graphic and text" The button is displayed with text and graphic.

Runtime and simulation
17.3 Operating Unified PC

7472 System Manual, 11/2022

Different options are available depending on the device.

Text / Graphic
Depending on the "Mode" property, the display can be specified as a static or dynamic display.
The display is specified during configuration.
You can, for example, select the following options for the "Graphic" or "Text" type.

Type Option Description
"Graphic" "Graphic" With "Graphic when button "not pressed"", a graphic is specified that is

displayed in the button for the "OFF" state.
When "Graphic when button "pressed"" is selected, a graphic for the "ON"
state can be entered.

"Graphics
list"

The graphic in the button depends on the state. The corresponding entry
from the graphics list is displayed depending on the state.

"Text" "Text" With "Text when button "not pressed"", a text is specified that is displayed
in the button for the "OFF" state.
When "Text when button "pressed"" is selected, a text for the "ON" state can
be entered.

"Text list" The text in the button depends on the state. The entry from the text list
corresponding to the state is displayed.

Hotkey
A key or key combination that the operator can use to actuate the button can be defined during
configuration.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7473

Slider

Use
Process values are monitored and adapted within a defined range with the "Slider" object. The
monitored range is visualized in the form of a slider. By adjusting the slider, you intervene in the
process and correct the displayed process value.

Layout
The settings for the position, geometry, style, color and fonts of the object are made during
configuration.
In particular, the following properties are changed:
• Maximum Value and Minimum Value: Specifies the top and bottom values of the scale.
• Display current value: Specifies whether the current position of the controller appears below

the slider.
• Display of bars: The sliders above and below the bar can be hidden.
If the object falls below a certain size in the light or dark style, it is automatically displayed in
compact mode.

Runtime and simulation
17.3 Operating Unified PC

7474 System Manual, 11/2022

Limits/ranges
You can represent limits and ranges in different colors. The colors are defined during
configuration.

Note
If the "Show ranges from tag" option is selected, up to five ranges can be displayed in a slider. The
values of the ranges are specified using a process tag. The values for the ranges are defined with
a process tag that is connected to the screen object.
The option "Show ranges from tag" is available for Comfort Panels, KTP Mobile Panels and RT
Advanced.

Behavior during operation
The displayed value on the slider control may deviate from the actual value of the associated tag
in the following circumstances:
• The value range (minimum and maximum value) configured for the slider control does not

correspond to the configured limits for the slider control tag.
• An invalid password has been entered for a password-protected slider control.

Clock

Application
The "Clock" object displays the date and time.

By default, the "Clock" object displays the date and time of the client.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7475

If the "Process value" property of the clock is connected to a DateTime tag, the clock uses the
tag value as a start value and continues counting. When the tag value is changed the time is
synchronized and continues counting from the new value.

Note
Static display of a date-time value
If the image is supposed to display a static time of day, link a tag of the type DateTime with an I/O
field.

Layout
The settings for the position, geometry, style, color and fonts of the object are made during
configuration.
In particular, the following properties are adapted:
• Analog display: Specifies whether the clock is shown as an analog clock or digital clock.
• Display clock dial: Specifies whether hour marks of the analog clock will be displayed.
• Width and length of hands: Specifies the width and length of the hands.
If the object falls below a certain size in the light or dark style, it is automatically displayed in
compact mode.

Gauge

Use
The "Gauge" object shows numeric values in the form of an analog gauge. For example, it can
be seen at a glance whether the boiler pressure is in the normal range.

Note
The gauge is for display only and cannot be controlled by the operator.

Runtime and simulation
17.3 Operating Unified PC

7476 System Manual, 11/2022

Layout
The settings for the position, geometry, style, color and fonts of the object are made during
configuration.
In particular, the following properties are changed:
• Display peak value: Specifies whether the actual measuring range is indicated with a peak

indicator.
• Maximum Value and Minimum Value: Specifies the top and bottom values of the scale.
• Start value of the danger range and start value of the warning range: Specifies the scale value

from which the danger range and the warning range start.
• Display normal range: Specifies whether the normal range is shown in color on the scale.
• Color of individual ranges: Different operating modes, such as normal range, warning range

and danger range, are shown in different colors so that the operator can distinguish them
easily.

If the object falls below a certain size in the light or dark style, it is automatically displayed in
compact mode.

Note
The use of many differently sized "Gauge" objects can reduce the performance in Runtime. With
"Gauge", avoid minimally different heights and widths, for example, 48 pixels, 49 pixels, 51
pixels, etc. Use the same sizes instead.

Display peak value
The "Display peak value" property can be used to enable a marker function for the maximum and
minimum pointer movement in Runtime. The actual measuring range is shown with a min/max
pointer.

Color of individual ranges
The normal range, danger range and warning range can be displayed in different colors. The
colors are defined during configuration.

Note
If the "Show ranges from tag" option is selected, up to five ranges can be displayed in the gauge.
The values of the ranges are specified using a process tag. The values for the ranges are defined
with a process tag that is connected to the screen object.
The option "Show ranges from tag" is available for Comfort Panels, KTP Mobile Panels and RT
Advanced.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7477

17.3.6 Basic objects
In addition to controls and elements, HMI screens contain basic objects such as circles, polygons
or text boxes. Basic objects are often used for design purposes, but can also provide information
about the process.
Dynamically configured basic objects react to changes in the process or to operator actions.
Example: In engineering, a text box is linked to a text list that defines text entries for the
value range of a tag. In Runtime, the text box always shows the text assigned to the current
tag value. When the tag changes its value, the content of the text box changes.

Overview of basic objects
Depending on the configuration, screens can contain the following basic objects:
• Line
• Polyline
• Polygon
• Ellipse
• Ellipse segment
• Circle segment
• Elliptical arc
• Circular arc
• Circle
• Rectangle
• Text box
• Graphic view

Process values in text fields
If a text box has been connected to a tag in engineering, the text box shows the process value
of the tag in runtime.
If the text box was connected to a tag and a text list, the text box shows the text list entry
that corresponds to the tag value.

Note
If no default value is assigned to the text list and the tag value is outside the defined value range
of the text list, the last valid process value displayed by the text box is output.

Runtime and simulation
17.3 Operating Unified PC

7478 System Manual, 11/2022

17.3.7 Popup window
Popup windows are freely movable windows that open when an event configured in the
engineering system occurs. They show, for example, additional information on a partial area of
the process image.
You close a popup window using the button in the top right corner of the popup window.

Example
Runtime shows a screen with an overview graphic for a pump and its valves.

Configuration in the engineering system
A faceplate instance was positioned on the screen for each valve, which is displayed by the
graphic of the valve. The faceplate instances have a script that opens an additional faceplate
instance in a popup window in Runtime. This second instance shows detailed information on
the valve as well as input fields.

Behavior in Runtime
When you click on a valve in the overview graphic in the screen, a popup window opens. In
the popup window, you can check the state of the valve and edit the valve using the input
fields.

17.3.8 Tests and error analysis

17.3.8.1 Trace logs for function calls and tag values
WinCC Unified provides trace logging for error analysis. Tag values and function calls can be
logged for test purposes and for troubleshooting with the trace.
All trace outputs with "Fatal", "Error" or "Warning" severity are stored in LOG files (.log) in
the directory "%ProgramData%\Siemens\Automation\Logfiles\WinCC_Unified_SCADA_Vxx". In
case of problems you must send these files to SIEMENS Customer Support.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7479

TraceViewer
The LOG files can be viewed with the TraceViewer. It is located in the installation directory of
WinCC Unified under "WinCCUnified\bin". To open the Trace Viewer start the file
"RTILtraceViewer.exe".

17.3.8.2 Debugging scripts

Basics of debugging

Introduction
For example, you can use a debugger to test whether correct values are being transferred to tags
and whether abort conditions are being correctly implemented. Check the following in the
debugger:
• Source code of functions
• Function sequence
• Values

Runtime and simulation
17.3 Operating Unified PC

7480 System Manual, 11/2022

Note
Your code is displayed in the debugger but is write-protected.

Basic procedure
To find an error, check the script with the debugger.
The following options are available for your support:
• Setting breakpoints
• Step-by-step execution
• Viewing values parallel to execution of the script
You do not edit the code of your scripts directly in the debugger. When you find an error,
follow these steps:
1. Correct the error in the engineering system.
2. Compile the changed code.
3. Load the runtime.
4. Update the debugger.

Design and function of the debugger
Google Chrome provides the user interface of the debugger. Not all functions of the user
interface of the debugger are relevant for debugging WinCC Unified Scripts. Only the functions
that are needed to debug scripts in WinCC Unified are explained below.
You can find more information on Chrome DevTools under: https://
developers.google.com/web/tools/chrome-devtools/.
The debugger is divided into two areas:
• Debugger for screens
• Debugger for jobs
With the debugger for screens you view scripts at screens and screen objects. With the
debugger for jobs, you view scripts that you have configured in the Scheduler.

Start page of the debugger
After the debugger has been started, its start page is displayed.
The available contents differ depending on the selected area.
On the start page of the debugger for screens you can see two different contexts:
• Dynamizations (e.g. "UMCadmin@192.168.116.144 VCS_1 Dynamics")
• Events (e.g. "UMCadmin@192.168.116.144 VCS_1 Events")

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7481

The name of the contexts is composed as follows:
• UMCadmin: User name
• 192.168.116.144: IP address of the computer
• VCS: Name of the graphic component
• _1: Number of the open client
• Events/Dynamics: Scripts at events or dynamizations

Note
A client corresponds to a tab in Google Chrome in which the runtime is open. When you have
opened runtime in multiple tabs, multiple clients are used. The client opened first is given the
number 1. Numbering is reset when the runtime is restarted.

On the start page of the debugger for jobs you can see the context "JobsExecution".

User interface of the debugger

① Navigation area
② Code display area
③ Console
④ Debugging area

Navigation area
In the navigation area, the available contents for the screen shown in runtime are displayed in
groups. The available groups vary depending on the use of scripts and functions.

Runtime and simulation
17.3 Operating Unified PC

7482 System Manual, 11/2022

Groups in the debugger for screens
The debugger for screens can contain the following groups in the dynamizations context:
• A group for scripts that were configured for dynamizations.
• One group per screen window in which scripts were configured for dynamizations.
The debugger for screens can contain the following groups in the events context:
• A group for scripts that were configured for events.
• One group for functions that were configured for events using the function list.
• One group per screen window in which scripts were configured for events.
• One group per screen window in which functions were configured for events using the

function list.

Groups in the debugger for jobs
The debugger for jobs can contain the following groups:
• A group for scripts that were configured for tasks.
• One group for functions that were configured for tasks using the function list.

Code display area
Your code is displayed in the code display area. The rows are numbered.

Debugging area
The debugging area offers the following relevant options for WinCC Unified:
• Toolbar: Control for executing the script
• "Watch": Display of values
• "Callstack": Display of the current call stack
• "Scope": Available local values ("Local"), functions ("Module") and global values ("Global"),
• "Breakpoints": List of set breakpoints

Enabling the debugger

Requirement
• SIMATIC Runtime Manager is installed.
• The logged-on user belongs to the Windows user group "SIMATIC HMI".

Note
The debugger is only available locally.
Remote access from the debugger to other devices is not possible.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7483

Procedure
The debugger is disabled by default.

Note
The debugger should be disabled in production operation, as using the debugger can endanger
system stability and security. Actions can accumulate if the debugger is, for example, at a
breakpoint for a long time or the screen is not refreshed.

To enable the debugger, follow these steps:
1. Start the SIMATIC Runtime Manager application.
2. Click the button in the toolbar.
3. Switch to the "Scripts Debugger" tab.
4. To enable the debugger for screens, select the "Enable" check box in the "Screen debugger"

area.
5. To enable the debugger for scheduled tasks, select the "Enable" check box in the "Scheduler

debugger" area.
6. Assign an available port number to the debugger for screens (default port number: 9222).
7. Assign an available port number to the debugger for jobs (default port number: 9224).
8. Confirm your entries.

Note
Start Runtime after enabling the debugger.

Starting the debugger

Requirement
• Google Chrome (as of version 70) is installed.
• A project is opened in runtime.
• The debugger was activated in SIMATIC Runtime Manager.

Note
The debugger is only available locally.
Remote access from the debugger to other devices is not possible.

Runtime and simulation
17.3 Operating Unified PC

7484 System Manual, 11/2022

Procedure
1. In a new tab, call up the URL chrome://inspect in Google Chrome.
2. The home page of the Chrome DevTools is loaded in the tab.
3. Click "Devices".
4. Select the "Discover network targets" check box.
5. Click "Configure".
6. In the "Target discovery settings" dialog box, enter one of the following strings:

– 127.0.0.1:<Port number>
– localhost:<Port number>
Use the port entered for the Script Debugger in SIMATIC Runtime Manager.

7. Press <Enter>.
8. Click "Done".
9. Under "Remote Target", click "inspect" for the desired target.

The DevTools open in a separate window with the selected target.
10.In the DevTools, select "Sources".

The debugger is displayed.
11.Click "Toggle screencast".
12.In the navigation area under "Page", select the desired script module.

Updating the debugger
The debugger must be updated:
• After starting a new project
• After restarting a running project, for example, because you have reloaded the project in

engineering with "Download to device > Software (all)".
• After a screen change in Runtime
The connection to the debugger is lost in each case. Google Chrome therefore shows an error
message and asks whether you want to restore the connection.
To restore the connection, proceed as follows:
1. Close the DevTools window.
2. On the DevTools start page under "Remote Target", click "inspect" again for the desired target.

Stopping the debugger
Exit the debugger by closing the DevTools window and, if necessary, the DevTools homepage.
This does not stop runtime.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7485

Working with breakpoints
Set breakpoints to stop the execution of the script at certain points and thus localize errors step-
by-step. Previously set breakpoints are still available after updating the debugger.

Requirement
• Runtime has started.
• The debugger has been started.
• The group you want to debug is selected.

Pause script
To pause the execution of a script, you have 2 options:
• To pause the script immediately, click the "Pause script execution" button while the script

is being executed.
• Set a breakpoint in the desired line.

The script pauses when a breakpoint is reached.
To pause a script at a breakpoint that is configured to an event, follow these steps:
1. Set a breakpoint in the script.
2. Trip the respective event in runtime.

The script pauses at the breakpoint.

Setting breakpoints
You have several options to set a breakpoint in a line of the script:
• Click on the line number.
• Right-click the line number and select "Add Breakpoint".
All set breakpoints are displayed in the debugging area under "Breakpoints".

Linking breakpoints to conditions
To link a breakpoint to a condition, proceed as follows:
1. Open the shortcut menu of the relevant line.
2. Select the entry "Add conditional breakpoint".

Execution of the script is stopped at the breakpoint when the condition is fulfilled.
Edit conditions as follows:
1. Open the shortcut menu of the relevant line.
2. Select the entry "Edit breakpoint...".
To prevent the script from pausing at a selected line, proceed as follows:
1. Open the shortcut menu of the respective line.
2. Select the entry "Never pause here".

Runtime and simulation
17.3 Operating Unified PC

7486 System Manual, 11/2022

Showing and hiding breakpoints
When you hide a breakpoint, its position is retained. The script then ignores the hidden
breakpoint. When you need the breakpoint again, it can simply be shown.
In the debugging area, all breakpoints set in the selected group are displayed under
"Breakpoints".
You have several options to show a breakpoint:
• Set the check mark in front of the relevant breakpoint in the debugging area under

"Breakpoints".
• Alternatively, right-click the number of the respective line in the code display area and then

select "Enable breakpoint".
You have several options to hide a breakpoint:
• Remove the check mark in front of the relevant breakpoint in debugging area under

"Breakpoints".
• Alternatively, right-click the number of the respective line in the code display area and then

select "Disable breakpoint".
To show or hide all breakpoints, follow these steps:
1. Open the shortcut menu in the debugging area under "Breakpoints".
2. Select "Enable all breakpoints" or "Disable all breakpoints"

Enabling and disabling breakpoints
You can enable or disable all breakpoints independent of showing or hiding individual
breakpoints.
You have several options to enable or disable all breakpoints:
• Click on the "Deactivate breaktpoints" button in the debugging area.
• Open the shortcut menu of a breakpoint in the debugging area and select

"Activate breakpoints" or "Deactivate breakpoints".
• Press <Ctrl + F8>.

Deleting breakpoints
You have several options to delete a breakpoint:
• Click on the breakpoint in the code display area.
• Open the shortcut menu of the breakpoint in the code display area and select

"Remove breakpoint".
• Open the shortcut menu in the debugging area under "Breakpoints" and select

"Remove breakpoint"..
To delete breakpoints, the shortcut menu offers the following additional options in the
debugging area under "Breakpoints":
• Delete all breakpoints ("Remove all breakpoints")
• Delete all breakpoints except the selected breakpoint ("Remove other breakpoints")

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7487

Step-by-step execution of scripts

Introduction
The following options are available to execute your script step-by-step:
• Execute script to the next breakpoint
• Force execution of a script
• Execute script to the next function call
• Jump into a function
• Jump out of a function
• Execute script up to a selected line
• Pause at Exceptions
• Use call stack

Requirement
• The group you want to debug is selected.
• The script pauses at a breakpoint.

Execute script to the next breakpoint
To pause the continuation of a script, you have several options:
• Click on the "Resume script execution" button in the debugging area.
• Press the <F8> key.

The script is executed to the next breakpoint. If there is no other breakpoint, the script is
executed completely.

Force execution of a script
To ignore the following breakpoints when resuming execution of a paused script, proceed as
follows:
1. Click and hold down the "Resume script execution" button.

The "Force script execution" button appears.
2. Move the mouse pointer to the "Force script execution" button while keeping the mouse

button pressed.
3. Now release the mouse button.

The script is executed to the end.

Runtime and simulation
17.3 Operating Unified PC

7488 System Manual, 11/2022

Execute script to the next function call
If a line with a breakpoint contains a function that you are not interested in, you can suppress the
debugging of this function:
• Click on the "Step over next function call" button in the debugging area.
• Press the <F10> key.

The function is executed without the script pausing within the function.

Jumping into a function
If the script pauses in a line containing a function that interests you, you can pause the script in
that function:
• Click on the "Step into next function call" button in the debugging area.
• Press the <F11> key.

The script pauses in the first line of the function.

Note
You can only jump into functions that you have defined yourself.

Jump out of a function
If the script pauses within a function that you are not interested in, you can suppress further
debugging of this function:
• Click on the "Step out of current function" button in the debugging area.
• Press the key combination <Shift + F11>.

Note
You can only jump out of a function that you have defined yourself.

Execute script up to a selected line
To pause a paused script again at a selected line, proceeds as follows:
1. Right-click the number of the line in the code display area.
2. Select the entry "Continue to here".

The script pauses at the selected line.

Pause at Exceptions
• To pause the script at Exceptions, click on the "Pause on exceptions" button in the

debugging area.

Runtime and simulation
17.3 Operating Unified PC

System Manual, 11/2022 7489

Use call stack
• To jump into a function of the call stack, click on the corresponding entry under "Call Stack".

Note
You can only jump into functions that you have defined yourself.

Show values

Introduction
To identify errors in your script efficiently, have current values displayed while the script is being
executed. This way you can view properties of objects or parameters of functions, for example.
You can find additional information on objects and their properties under "WinCC Unified Object
Model".

Requirements
• The group you want to debug is selected.
• The script pauses at a breakpoint.

Procedure
You view values by moving the mouse over the label in the code display area.
You also have the following options to view values:
• In the debugging area under "Scope"
• In the debugging area under "Watch"
• In the console

"Scope" area
All local values ("Local"), functions ("Module") and global values ("Global") that are defined at this
time are displayed in the "Scope" area.
The values cannot be edited.

"Watch" area
In the "Watch" area, you view how values change in the course of a script.

Runtime and simulation
17.3 Operating Unified PC

7490 System Manual, 11/2022

The following buttons are available to you:
• "Add expression": Add a value
• "Refresh": Refresh the "Watch" area
• "Delete watch expression": Delete a value from the "Watch" area. Available when the

mouse pointer is located above the respective value.

Console
The values available at the current time can be called in the console.
• You show or hide the console with <Esc>.
Call the current values in the console as follows:
1. Enter the name of a local or global value in the console.
2. Press <Enter>.

17.4 SIMATIC Runtime Manager

17.4.1 Functions in the SIMATIC Runtime Manager

Introduction
The SIMATIC Runtime Manager offers the following options for WinCC Unified PC:
• Use the project list to get an overview of the projects loaded into the Runtime and their

properties.
See The Runtime Manager user interface (Page 7493).

• Manually start and stop a project loaded into the Runtime.
See Starting the project (Page 7495).

• Define a project that is started automatically when the HMI device starts up.
See Selecting an autostart project (Page 7499).

• Restore log segments in Runtime and delete restored segments.
See Restoring and deleting log segments (Page 7499).

Runtime and simulation
17.4 SIMATIC Runtime Manager

System Manual, 11/2022 7491

• Load a project from an external storage medium into Runtime.
See Adding a project (Page 7497).

• Make the following settings, if required:

Password Enter the password that is used by the Runtime
Manager for secure communication with Run‐
time.

 See Enter password
(Page 7500).

Autoscaling Enable automatic adaptation of the HMI
screens to the window size of the browser in
which the Runtime project is displayed (auto‐
scale).

See Setting general set‐
tings (Page 7501).

Language Change the user interface language of SIMAT‐
IC Runtime Manager.

Automatic login Enable automatic login for a local web client of
a Unified PC.

See Activating automatic
login (Page 7502).

Start external process‐
es

Enable the start of external processes from
runtime.

See Allowing start of exter‐
nal processes (Page 7503).

OPC UA Export Export the tags of the project running in Run‐
time into an XML file via the OPC UA server.

See Exporting tags via the
OPC UA server
(Page 7507).

User management Enable the user administration of the project
running in Runtime.

See Activating user man‐
agement (Page 7508).

Certificates Manage and distribute certificates of external
communication partners and manage and dis‐
tribute the root certificate of the Unified PC.

See Managing certificates
(Page 7504).

Runtime script debug‐
ger

Configure and enable the Runtime script de‐
bugger (screen debugger and scheduler de‐
bugger).

See Setting the Runtime
Script Debugger settings
(Page 7509).

17.4.2 Start Runtime Manager

Requirement
WinCC Unified Runtime for PC is installed on the device.

Procedure
Double-click the desktop link created during the installation of WinCC Unified Runtime.
Alternatively, start the Runtime Manager from a file explorer by double-clicking the following
file: "<Path to the Unified installation directory>\bin\SIMATICRuntimeManager.exe"

Runtime and simulation
17.4 SIMATIC Runtime Manager

7492 System Manual, 11/2022

For example C:\Program
Files\Siemens\Automation\WinCCUnified\bin\SIMATICRuntimeManager.exe

Note
Starting the Runtime Manager as administrator
Some settings under "Settings" require the Runtime Manager to be started as administrator.
Right-click on the .exe and select "Run as administrator".

17.4.3 The Runtime Manager user interface

Note
User interface language
Runtime Manager starts with the language configured in the general settings. You can change
the interface language. See also Setting general settings (Page 7501).

Runtime and simulation
17.4 SIMATIC Runtime Manager

System Manual, 11/2022 7493

Structure
The Runtime Manager has the following structure:

① Information about the server on which the Runtime is installed
② Toolbar
③ Project list
④ Button to start the project is selected in the project list
⑤ Button to stop the project is selected in the project list
⑥ Information bar
⑦ "Restore/remove database segments for logs" button
⑧ "SIMATIC Runtime Manager settings" button

Toolbar
The toolbar has the following buttons:

Icon Function
Loads a project from an external storage medium into the Runtime.

Deletes from the Runtime the project selected in the project list.
The project folder and the log folders are deleted.
Updates the project list.

Content of the project list.
The project list shows all projects loaded into the Runtime.

Runtime and simulation
17.4 SIMATIC Runtime Manager

7494 System Manual, 11/2022

The list provides the following information on the projects:

Project details Description
Project Project name
Autostart Indicates whether the "Autostart" option is enabled.
Device name Device name
State State of the associated Runtime service

Possible status values:
• Running
• Partly running
• Shutting down
• Stopped
• Unknown

Type Type of the Runtime service
Project: Runtime mode
Simulation: Simulation mode

ID Project-ID

17.4.4 Starting the project

Requirement
A project is loaded in runtime that does not have the "Running" state.

Start without reset
Proceed as follows to start the project in a state that existed before the last project stop:
1. Click on the project in the project list.
2. Click the "Start" button .
3. Select "Start".

Start with reset
Proceed as follows to start the project in a state that existed during the first project start:
1. Click on the project in the project list.
2. Click the "Start" button .
3. Select "Start with options".
4. Enable the options "Reset logging data" and/or "Reset Runtime data" in the "Start project

options" dialog.
5. Click "Start".

Runtime and simulation
17.4 SIMATIC Runtime Manager

System Manual, 11/2022 7495

"Partly running" status
If it is not possible to start the simulation or the Unified Runtime and the status of the project is
displayed as "partly running", check the following:
• Does the user currently logged on in Runtime have sufficient rights? Is the user registered in

the following Windows user groups:
– PlcSimUsers
– RTIL Tracing Users
– Siemens TIA Engineer
– SIMATIC HMI
– SIMATIC HMI VIEWER

• Is the computer name no longer than 15 characters?
• Is the "OPC UA" activated in the Runtime settings and is a certificate is available?
• Is "Runtime Collaboration" enabled in the Runtime settings of a Unified Panel and is a

certificate available?

Result
• The project is started.

Note
Activating user management
The login to the Runtime project requires that its user management is active in Runtime.
After starting a project manually, you have to activate its user management manually.

• If the "Reset logging data" option was enabled, the following data is deleted when Runtime
is started:
– Logging tags
– Log alarms
– Logged context values

• If the "Reset Runtime data" option was enabled, the following data originating from the last
runtime of the project is deleted when Runtime is started:
– The last values of internal, persistent tags
– The last alarm states
– The persistent attributes of the alarm system
– The persistent attributes for the last logging cycle of the logging tags.

See also
Activating user management (Page 7508)

Runtime and simulation
17.4 SIMATIC Runtime Manager

7496 System Manual, 11/2022

17.4.5 Adding a project
You have the option of loading projects from an external storage medium into Runtime with the
Runtime Manager.

Requirement
• The external storage medium with the Runtime project is connected to the computer.
• The Runtime Manager is open.
• To download a project for which only the changes to the project have been downloaded to

the external storage medium, the following additional requirements must be met:
– The project that is to receive the changes is running on the HMI device.
– The Runtime ID of the running project and the project on the external storage medium

match.

Procedure
1. In the toolbar, click "Add project from offline transmission":

The "Add projects" dialog box opens.
2. Under "Select project log", click "...".

A selection dialog opens.
3. Select the compressed ZIP folder of the Runtime project on the storage medium.
4. Click "Open".

Under "Project information" you can see details of the selected project.

Runtime and simulation
17.4 SIMATIC Runtime Manager

System Manual, 11/2022 7497

5. For a project that has been completely loaded onto the external storage medium, set the
following options:
– To start the project in Runtime after loading, select the "Start Runtime with project" option

under "Options".
Alternatively, you can start the project later in Runtime Manager.

– Define whether project data is reset on startup.
To start the project in a state that existed when the project was first started, activate the
options "Reset logging data" or "Reset Runtime data".
Disable these options to start the project in a state that existed before the last project stop.
For more information on which data is reset with these options, see section Starting the
project (Page 7495).

– Under "Check IDs", determine whether or not to check the synchronization of IDs between
engineering data and runtime data.
Check activated: If inconsistent IDs are reported, the download is canceled. The IDs are
then not synchronized.
Check not activated: The project is loaded without checking. The system cannot
guarantee that the data loaded from the Engineering System match the data present in
Runtime.
Note
Restart Runtime
To prevent data inconsistencies, restart Runtime when you select "Do not Sync".

6. To overwrite the Runtime UMC data with UMC data from the project, select the "Overwrite
UMC data with the context of the offline loading" option under "Options".

7. Confirm with "Add project".

Result
• The project is downloaded to Runtime and appears in the project list.
• When "Start Runtime with project" is activated: The running project is stopped and the

downloaded project is started. Depending on your settings, the Runtime data and log data
of the project is reset and the Runtime UMC data is overwritten by the UMC data from the
project.

Note
When you load a project from an external storage medium, the SIMATIC Runtime Manager
extracts the repository to a temporary folder on the target system. The transfer to Runtime takes
place from this folder, which is then deleted again.

Runtime and simulation
17.4 SIMATIC Runtime Manager

7498 System Manual, 11/2022

17.4.6 Selecting an autostart project

Requirements
• At least one project is loaded into Runtime.
• The Runtime Manager is open.

Procedure
In the project list for the desired project, select the option in the "Autostart" column.

Note
Restrictions
• You can only select one project for autostart at a time.
• The project must not have the "Simulation" project type.

Result
The project is started automatically when the device on which the Runtime is installed is started.

17.4.7 Restoring and deleting log segments
In Runtime you have the option of restoring segments from logs for which a backup was created.
You can visualize the restored data in a trend control, for example.

Note
Database type for backups
Backups can only be created if the Microsoft SQL database type is used.

You can find more information on logs in the help of the TIA Portal.

Requirement
• At least one backup of a tag or alarm log is available.
• A project is loaded into Runtime and is in the "Running" state.
• The Runtime Manager is open.

Restoring log segments
1. Select the project.
2. Click "Restore/delete database segments for logs".

A dialog opens.

Runtime and simulation
17.4 SIMATIC Runtime Manager

System Manual, 11/2022 7499

3. Select the log type:
– "Alarm" for alarm logs
– "Tag" for data log

4. If required, select the relevant log in the selection menu.
5. If required, define a start time or end time.

If you define a start time, all entries from this point in time are restored.
If you define an end time, all entries up to this point in time are restored.
If you define a start time and an end time, all entries between the defined points in time are
restored.

6. If you have moved the backup of the log to be restored, enter the changed storage path of the
backup under "Backup path".
Note
Only one log can be restored using the "Backup path" option.

7. Click "Restore segments".
The selected segments are restored.
If you have selected a time period, data may be restored beyond the selected period, as the
restoration is carried out segment by segment.
Information on the restoration can be found under "Status".

Delete log segments
To delete all previously restored segments of the tag logs or alarm logs, follow these steps:
1. Select the log type:

– "Alarm" for alarm logs
– "Tag" for data log

2. Click "Delete segments".
Note
All restored segments of the selected log type are deleted regardless of the log or the defined
period.
Information on the deletion process can be found under "Status".

17.4.8 Enter password
For secure communication with Runtime, the same password must be stored in the Runtime
Manager as in Runtime.

Runtime and simulation
17.4 SIMATIC Runtime Manager

7500 System Manual, 11/2022

Requirement
The Runtime uses secure communication.

Note
Enabling secure communication
Secure communication for Runtime can be enabled as follows:
• During the installation of the Runtime, in the step "Secure Download";

Or after the installation in the application "WinCC Unified Configuration".
• In the Engineering System, if encrypted transmission is configured in the Runtime settings of

a device and the option "Allow initial password transfer via unencrypted download" is
enabled when downloading the device to Runtime.
After the first, unencrypted transmission, the Runtime switches to secure communication.

Enter password for secure communication
1. Click the button in the toolbar.
2. Select the "General" tab.
3. Under "Secure connection", enter the same password that is used by Runtime for secure

communication.
For more information, refer to the "SIMATIC Unified PC Installation" user help under "Secure
download".

Note
If Runtime does not use secure communication, the password entered here is ignored during
communication with Runtime.

17.4.9 Setting general settings

Enable Autoscale
Proceed as follows to automatically adapt the size of HMI screens to the window size of the
browser in which a Runtime project is open:
1. Click the button in the toolbar.
2. Select the "General" tab.
3. Under "Autoscale", select the "Adapt screen to window" check box.
4. Restart the currently running project or start another project that is loaded into the Runtime.
When users zoom in or out of the browser window, the HMI screens automatically adapt.
Users always see the entire screen.

Runtime and simulation
17.4 SIMATIC Runtime Manager

System Manual, 11/2022 7501

Changing the user interface language
Proceed as follows:
1. Click the button in the toolbar.
2. Select the "General" tab.
3. Select a language under "Language > Select language".
4. Click "OK".

Changing the interface language requires you to restart the Runtime Manager. To restart the
Runtime Manager directly, confirm the message that opens with "OK".

17.4.10 Activating automatic login

Introduction
Automatic login to Runtime can be enabled for local web clients of a Unified PC.
A local web client is a web client located on the same HMI device as Unified Runtime.

Requirement
• The HMI device is a Unified PC.

Procedure
1. On the HMI device, open the SIMATIC Runtime Manager as administrator.
2. Click the button in the toolbar.
3. Select the "General" tab.
4. Under "Automatic login", activate the "Enable automatic login" option.
5. Enter the user name and password of the UMC user that automatic login is to use if no UMC

user is logged into Runtime via UMC Desktop Single Sign-on yet when the local web client is
started or on login to Runtime.

6. Confirm your entries with "OK".
7. Restart Runtime.

Runtime and simulation
17.4 SIMATIC Runtime Manager

7502 System Manual, 11/2022

Result
• On the start of a local web client or on connection to Runtime, the web client automatically

authenticates itself with the following user data:

A UMC user is already logged in on the HMI device via UMC Desktop Single Sign-on (DSSO)
Yes The logged-in user is used.
No The user configured in SIMATIC Runtime Manager is used.

If no user has been configured in SIMATIC Runtime Manager, a hard-coded de‐
fault user without function rights is used.

All local web clients use the same logged-in user.
• Operators see the start screen of the project running in Runtime.
• If the logged-in user does not have the authorization to operate a screen element, a login

dialog opens.
To operate the screen element, the operator must log in with a user with corresponding
function rights. The open process screens remain open.

• After logout of the user used for automatic login, for example, via the "LogOff" system
function, or after switchover to another user, automatic login is only possible again after
Runtime is restarted.
Logout takes effect in all applications that use DSSO. The local web client switches to the hard-
coded default user without function rights. The open process screens remain open.

17.4.11 Allowing start of external processes

Introduction
System functions that start an external process in runtime can be configured in the engineering.
Example: The OpenTIAPortalProject system function, which starts the TIA Portal, can be
called in runtime in the process diagnostics.

Procedure
To allow runtime to start an external process when such a system function is called, follow these
steps:
1. On the HMI device, open the SIMATIC Runtime Manager.
2. Click the button in the toolbar.
3. Select the "Security" tab.
4. Enable the "Allow start of external processes via Unified Runtime" option.

Runtime and simulation
17.4 SIMATIC Runtime Manager

System Manual, 11/2022 7503

17.4.12 Managing certificates
External communication partners are devices that exchange data with WinCC Unified Runtime
via a secured connection. These devices use certificates for authentication that are either self-
signed or issued by another certificate authority.
Examples: An S7PLUS device or an external OPC UA communication partner

Introduction
The "Certificates" tab provides you with the following options:
• Manage the trusted certificates of the external communication partners of the Unified HMI

device (certificates, root certificates, and CRL files).
• Export the certificates of the external communication partners to distribute them to other

Unified HMI devices (certificates, root certificates, and CRL files).
• Export the root certificate of the Unified HMI device and its CRL file (= Certificate Revocation

List) to distribute it to external communication partners.
Note
Alternative method
Export the root certificate and the CRL file of the Unified HMI device using the "WinCC Unified
Certificate Manager". You can find additional information here (Page 7543).

• Import the root certificate of the Unified HMI device and its CRL file separately from the
remaining certificate configuration.
The root certificate is installed by the import.
Note
Alternative method
Install the root certificate and the CRL file of the Unified HMI device together with the
remaining certificates configured for the device using the "WinCC Unified Certificate
Manager". You can find additional information here.

Note
Importing and exporting CRL files
The root certificate of the Unified HMI device and its CRL file must be imported separately.
When you export the root certificate of a CRL file, the CRL file is also exported. If required, you can
export the CRL file separately.

Runtime and simulation
17.4 SIMATIC Runtime Manager

7504 System Manual, 11/2022

Structure

① Button for importing a certificate or CRL file
By importing a certificate, you trust the certificate. You can later reject the certificate and trust it
again.

② List of certificates
The following certificates are displayed:
• The root certificate installed on the Unified HMI device.
• The imported third-party certificates:

– Application certificates (self-signed or issued by a certification authority).
– Root certificates issued by the issuing certification authority.

③ Shows whether the HMI device trusts a certificate.
④ List of CRL files

Requirement
• The Runtime Manager is open.
• The certificates and CRL files to be imported are located in a folder to which the HMI device

has access.

Runtime and simulation
17.4 SIMATIC Runtime Manager

System Manual, 11/2022 7505

Managing certificates
1. Click the button in the toolbar.
2. Select the "Certificates" tab.
3. You can perform the following actions:

Action Procedure
Import and trust 1. Click "Import new certificate or certificate revocation list

(CRL)":

2. Select the location where the certificate is stored, for example,
an external data carrier, and select the certificate.

3. Confirm your input.
The certificate is imported and copied to the "trusted" folder on the
HMI device.

Trust Right-click on a certificate and select "Trust".
The certificate is moved to the "trusted" folder on the HMI device.

Reject Right-click the certificate and select "Reject".
The certificate is moved to the "untrusted" folder on the HMI de‐
vice.

Display Right-click on a certificate and select "Show".
A window with detailed information on the certificate opens.

Delete Right-click on a certificate and select "Delete".
The certificate is deleted from the certificate store on the HMI
device.

Export 1. Right-click the certificate and select "Export".
2. If you have selected a root certificate, select the file format.
3. Select the target folder, for example, an external data storage

medium.
4. Confirm your input.
The certificate is copied to the target folder. If you have selected a
root certificate, its CRL file is also copied.
Distribute the files to the desired devices. To do this, proceed as
described in the application help of the device.

Runtime and simulation
17.4 SIMATIC Runtime Manager

7506 System Manual, 11/2022

Managing CRL files
1. Click the button in the toolbar.
2. Select the "Certificates" tab.
3. You can perform the following actions:

Action Procedure
Import 1. Click "Import new certificate or certificate revocation list

(CRL)":

2. Select the location of the CRL file, e.g. an external data storage
medium, and select the file.

3. Confirm your input.
The file is imported and copied to the "trusted" folder on the HMI
device.

Delete Right-click on a CRL file and select "Delete".
The file is deleted from the "trusted" folder on the HMI device.

Export 1. Right-click on the CRL file and select "Export".
2. Select the file format.
3. Select the target folder, for example, an external data storage

medium.
4. Confirm your input.
The CRL file is copied to the target folder.
Distribute the files to the desired devices. To do this, proceed as
described in the application help of the device.

See also
Introduction to the WinCC Unified Certificate Manager (Page 7517)

17.4.13 Exporting tags via the OPC UA server
In the "OPC UA Export" tab, you can export the tags of the project running in Runtime via the OPC
UA server into an XML file. The exported data can then be imported into another application, e.g.
the TIA Portal, without the need for a connection to the OPC UA server.
The export makes it easier for you to apply an existing configuration to a new Runtime
system.
You can find a detailed description in the help "OPC UA - Open Platform Communications".
To do this, open the following file after installing Runtime: "<Path to the Unified installation
directory>\Documentation\<Language folder>\OPCWCCU<Language code>.pdf"
For example C:\Program
Files\Siemens\Automation\WinCCUnified\Documentation\English\OPCWCCUenUS.pdf

Runtime and simulation
17.4 SIMATIC Runtime Manager

System Manual, 11/2022 7507

17.4.14 Activating user management

Introduction
Several projects can be loaded on one Unified PC. The configuration of their user management
may differ. For a successful login to a project in Runtime, the project must be running in Runtime
and the appropriate user management must be active.
In the "User administration" tab, activate the appropriate user administration. For a project
with central user management, you can also adapt the connection settings to the UMC
server, e.g. to add missing settings in the TIA Portal or to use different settings.

Configuring the user administration
The user management of a project is configured in the TIA Portal under "Runtime settings >
User management". In the Runtime Manager, it is not possible to switch a project from local
to central user management.
You can find information on configuring the user management in the TIA Portal in the TIA
Portal online help.
You can find information on how to configure the runtime system settings for user
management during runtime installation or later with WinCC Unified Configuration here.

Requirement
• In the Runtime system settings, it has been specified that Runtime uses the user

management configuration downloaded from the TIA Portal.
• At least one user has been configured with an HMI function right for the user management

active in Runtime.
• At least one user has been configured with an HMI function right for the user management

that you want to activate.
• The Runtime Manager is open.
• A project is running in Runtime, and:

– The active user management does not match the user management configured for the
project.

– For projects with central user management: The connection settings configured in the TIA
Portal for the project are incomplete, or you want to use different settings.

Procedure
1. Click the button in the toolbar.
2. Select the "User management" tab.
3. Under "Select configuration", in the "From" list, select the project whose user management

configuration you want to activate in Runtime.
Default setting after starting the Runtime Manager: The project running in Runtime

Runtime and simulation
17.4 SIMATIC Runtime Manager

7508 System Manual, 11/2022

4. Confirm the confirmation prompt.
The "Operating mode" area shows the operating mode of the user management of the
selected project. The displayed options are read-only.

5. If the project selected under "From" uses local user management, click "Load user
management".
User management is activated in Runtime:
– The user data pre-configured in the TIA Portal for the project is loaded into the local user

management.
– Runtime uses the local user management.
– The "Status" field shows the status of the user management.

NOTICE
Possible data loss
The user data configured in the TIA Portal overwrites the user data added or changed on the
HMI device in the local user management. Data loss can occur.

6. If the project selected under "From" uses central user management, proceed as follows:
– Add missing or incorrect information about the connection settings.

By default, the identity provider address is automatically generated based on the UMC
server address.
To enter the address of the identity provider manually, deactivate the option "Generate
the address of the identity provider automatically".
To set all fields to empty, click "Reset configuration".

– Click "Connect to server".
The system will notify you if the configured server ID and the server ID reported during the
connection attempt are different from each other. To continue with the ID reported
online, click "Yes"; to continue with the configured server ID, click "No".

User management is activated in Runtime:
– A connection to the UMC server is established using the connection settings from the

Runtime Manager.
– Runtime uses the UMC server for user management.
– If you later select the project under "From", the connection settings you entered are

loaded.

17.4.15 Setting the Runtime Script Debugger settings
The scripts of the screens and jobs of a Runtime project can be tested using the Google Chrome
script debugger.
To this end, the debugger must be configured and enabled in advance in the "Script
debugger" tab in the Runtime Manager.

Runtime and simulation
17.4 SIMATIC Runtime Manager

System Manual, 11/2022 7509

See also
Enabling the debugger (Page 7483)

17.4.16 Enabling telemetry service

Introduction
The telemetry service is used to analyze problems occurring in Runtime projects. It helps the
Siemens support team to support you in analyzing and correcting such problems in the best
possible way. The service generates an encrypted ECD file that combines the visual recording of
the process running in runtime with the recording of detailed internal system information about
the process.
The ECD file records the following information from the project running in runtime:
• Screen configuration of the visible screens
• User input with mouse and keyboard
• IO addresses of all connections
• Property values of the underlying CHROM objects

Note
• Enable the telemetry service only after being requested by the Siemens support team.
• The size of the ECD file depends on the length of the recording, the number of connections

and the events in the process.
• The ECD file contains machine-specific and user-specific data such as user names, but not

passwords.
This data is visible to the Siemens support team. The data is not processed or stored longer
than necessary.

Requirement
SIMATIC Runtime Manager has been started in admin mode.

Enabling telemetry service
1. Click the button in the toolbar.
2. Select the "Telemetry settings" tab.
3. Under "Storage directory", specify the path to the directory where the ECD file is to be stored.

Use an already existing directory.
4. Enable the "Enable telemetry" option.
5. Restart Runtime.
The telemetry service will be enabled for the currently running project.

Runtime and simulation
17.4 SIMATIC Runtime Manager

7510 System Manual, 11/2022

Next steps
1. Reproduce the error scenario in Runtime.
2. Stop the telemetry service by disabling the "Enable telemetry" option and restarting Runtime.
3. Submit the ECD file to the Siemens Support team.

17.4.17 Operation via command line
The Runtime Manager has an interface with which you can start numerous functions of the
Runtime Manager via a command line program:

Requirement
• Runtime and command line program are installed on the same device.
• For starting/stopping projects: Projects have been loaded into Runtime.

Runtime and simulation
17.4 SIMATIC Runtime Manager

System Manual, 11/2022 7511

Procedure
1. Start the command line program.
2. Enter the command line call. Separate the individual elements of the call with spaces.

– Enter the path to the SIMATIC Runtime Manager.exe:
"<Runtime installation directory>\bin> start /wait SIMATICRuntimeManager.exe"
Example: C:\Program Files\Siemens\Automation\WinCCUnified\bin> start /wait
SIMATICRuntimeManager.exe

– Enter the options with which the command line program calls the Runtime Manager.
The last option must be "-c".

Option Description
-s Option for starting the Runtime Manager in silent mode.

Without this option, the UI of the Runtime Manager is started when the
command line call is processed.

-u Option to enable help messages that assist you in operating the Runtime
Manager via the command line program.

-sim Only use this option if you call the option "-c" with the
command projectstate, start, stop or remove.

-quiet Option for calling the Runtime Manager without output.
-o Option for diverting the output into an Output.txt file that is stored parallel

to SIMATICRuntimeManager.exe.
You can redirect the output to another folder. The Unified Administrator
must have write access to the folder.
Example:
-o “C:\Program
Files\Siemens\Automation\WinCCUnified\bin\MyOutput.txt
"
If an error occurs during the write and -quiet is not set, the error indication
appears on the console.

-keepUmc Optional
Only in combination with the fulldownload command
Set the option to keep the Runtime UMC data.

-overwriteUmc Optional
Only in combination with the fulldownload command
Set this option to replace the UMC data of the Runtime with the UMC data
from the project.

-c Option for inputting the commands that are transmitted to the Runtime
Manager.

Runtime and simulation
17.4 SIMATIC Runtime Manager

7512 System Manual, 11/2022

– After the option "-c", enter the command that the Runtime Manager should run and the
argument that is transmitted to the command:

Command Argument Description
start <Project ID> Starts the project.
stop <Project ID> Stops the project.
projectlist [ALL] or [RUNNING]

Default: [ALL]
[ALL]: Returns a list of projects loaded in the
Runtime.
[RUNNING]: Returns the project running in
Runtime.

projectstate <Project ID> Returns the state of the project running in
Runtime.

remove <Project ID> Removes the project from Runtime.
If the autostart option was previously set for
the project: Removes the autostart option.

securemode <Password>

Sets the password for secure communication
with SCS.
Enter the same password that Runtime uses
for secure communication.

setautostart <Project ID> The project is started when the device is boo‐
ted.
The project must have the Project type.
The option can only be set for 1 project.

removeautostar
t

<Project ID> Removes the autostart of the project.

fulldownload <Log path> Starts the full download of a TIA Portal log.
If the project is already running in Runtime, it
is stopped first before the full download.
To start the project after successful down‐
load, use the command start.

deltadownload <Log path> Starts the change loading of a TIA Portal log.
Check in advance if the corresponding
project is downloaded and running in Run‐
time.

To run multiple commands, use multiple command line calls.
3. Press Enter.

Runtime and simulation
17.4 SIMATIC Runtime Manager

System Manual, 11/2022 7513

Result
• The command is executed.
• A return code with description is output in the console.

List of possible return codes:

Return code Description
0x00000000 Success
0x0080400b Project already running
0x0080400c Project started
0x0080400d Project already stopped
0x0080400e Project stopped
0x80000000 General error
0x80000001 Not supported (e. g. wrong command)
0x80000003 Timeout during communication with SCS
0x80000004 Invalid arguments
0x80000005 Access denied – password required for secure

connection
0x8000000C Another project is currently flagged as autostart

project, remove autostart from the other project
0x80000016 Unable to connect to SCS
0x80804019 Project not found
0x80B0412E Write output file error
0x80B0412F Autostart option cannot be set on simulation

project
0x80B04130 Empty command value
0x80B04131 archive target path could not be created
0x80B04132 project archive can not be extracted
0x80B04133 DownloadTask file can not be read
0x80B04134 Could not change UMC Data override option
0x80B04135 Missing config folder in archive
0x80B04136 Missing delta folder in archive

• An output is written to the console or to the output file.
Requirement: The command was called without the -quiet option.

Runtime and simulation
17.4 SIMATIC Runtime Manager

7514 System Manual, 11/2022

Examples
• Call a list of all projects loaded into Runtime:

– Input: C:\Program Files\Siemens\Automation\WinCCUnified\bin>
start /wait SIMATICRuntimeManager.exe -s -c projectlist [ALL]

– Example output:
[1]
 Project name: T1
 Device name: T1
 Project type: Project
 Project ID: 0B527D12-6BBD-4F2F-BEB9-23E3C37A8932
 Autostart: 0
[2]
 Project name: T2
 Device name: T2
 Project type: Project
 Project ID: 29DCBA1D-C615-4560-AFB4-94EB9565682C
 Autostart: 0
[3]
 Project name: T3
 Device name: T3
 Project type: Project
 Project ID: 96FE68D0-5337-4072-A96C-F7C1D7525CAF
 Autostart: 0

• Call the project running in Runtime:
Input:
C:\Program Files\Siemens\Automation\WinCCUnified\bin> start /wait
SIMATiCRuntimeManager.exe -s -c projectlist RUNNING

• Query project state:
Input:
C:\Program Files\Siemens\Automation\WinCCUnified\bin> start /wait
SIMATICRuntimeManager.exe -s -c projectstate 96FE68D0-5337-4072-
A96C-F7C1D7525CAF

• Start a project:
Input:
C:\Program Files\Siemens\Automation\WinCCUnified\bin> start /wait
SIMATICRuntimeManager.exe -s -c start 96FE68D0-5337-4072-A96C-
F7C1D7525CAF

• Stop a project:
Input:
C:\Program Files\Siemens\Automation\WinCCUnified\bin> start /wait
SIMATICRuntimeManager.exe -s -c stop 96FE68D0-5337-4072-A96C-
F7C1D7525CAF

• Remove a project from Runtime:
Input:
C:\Program Files\Siemens\Automation\WinCCUnified\bin> start /wait
SIMATICRuntimeManager.exe -s -c remove 96FE68D0-5337-4072-A96C-
F7C1D7525CAF

Runtime and simulation
17.4 SIMATIC Runtime Manager

System Manual, 11/2022 7515

• Example of a query regarding the state of a simulation project:
Input:
C:\Program
Files\Siemens\Automation\WinCCUnified\bin>SIMATICRuntimeManager.ex
e -s -sim -c projectstate 96FE68D0-5337-4072-A96C-F7C1D7525CAF

• Set password for secure communication with Runtime:
Input:
C:\Program Files\Siemens\Automation\WinCCUnified\bin> start /wait
SIMATICRuntimeManager.exe -s -c securemode <password>

• Enable autostart for a project:
Input:
C:\Program Files\Siemens\Automation\WinCCUnified\bin> start /wait
SIMATICRuntimeManager.exe -s -c setautostart 28AC5BD5-0741-42D1-
B3C6-503359F32B7E

• Disable autostart for a project:
C:\Program Files\Siemens\Automation\WinCCUnified\bin> start /wait
SIMATICRuntimeManager.exe -s -c removeautostart
28AC5BD5-0741-42D1-B3C6-503359F32B7E

• Perform a full download of a TIA Portal log:
Input:
C:\Program Files\Siemens\Automation\WinCCUnified\bin> start /wait
SIMATICRuntimeManager.exe -s -c fulldownload
"C:\Users\admin\Desktop\ HMI_RT_1[Project1] - Full 2019-10-21 -
08.00.22.zip"

• Download only the changes of a TIA Portal log (delta download):
Input:
C:\Program Files\Siemens\Automation\WinCCUnified\bin> start /wait
SIMATICRuntimeManager.exe -s -keepUmc -c fulldownload
"C:\Users\admin\Desktop\HMI_RT_1[Project1] - Full 2020-03-27 -
11.39.51.zip"

• Retain UMC data during full download:
Input:
C:\Program Files\Siemens\Automation\WinCCUnified\bin> start /wait
SIMATICRuntimeManager.exe -s -c deltadownload
"C:\Users\admin\Desktop\ HMI_RT_1[Project1] - Delta 2019-10-21 -
08.03.18.zip"

• Replace UMC data during full download:
Input:
C:\Program Files\Siemens\Automation\WinCCUnified\bin> start /wait
SIMATICRuntimeManager.exe -s -overwriteUmc -c fulldownload
"C:\Users\admin\Desktop\HMI_RT_1[Project1] - Full 2020-03-27 -
11.39.51.zip"

• Enable help messages:
Input:
C:\Program Files\Siemens\Automation\WinCCUnified\bin> start /wait
SIMATICRuntimeManager.exe -s – u

Runtime and simulation
17.4 SIMATIC Runtime Manager

7516 System Manual, 11/2022

See also
Enabling the debugger (Page 7483)

17.5 Certificate Manager

17.5.1 Basics

17.5.1.1 Introduction to the WinCC Unified Certificate Manager

Protection through certificates
Communication within the plant must be protected to secure plants, systems and networks
against cyber threats. Security-relevant components of WinCC Unified devices therefore use
encrypted communication protocols.
It is recommended to use certificates created with a certificate authority for this
communication. In this case, each communication partner is assigned a unique certificate
that is used for authentication and encryption.

Task of the WinCC Unified Certificate Manager
With WinCC Unified Certificate Manager you create a certificate authority. Then, with the
certificate authority, create the certificates of the Unified devices and distribute them.
On Unified PCs, you also install the certificates via Certificate Manager. On Unified Comfort
Panels, use the Control Panel to do this.

Note
No support for certificates from external certification authorities
The use of the Certificate Manager is required to issue certificates for Unified Runtime via a
certificate authority.

Functions
The Certificate Manager offers you the following functions for the creation, distribution and
installation of the certificates:
• Central creation of certificates for Unified devices in the network
• Creation of a certificate authority

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7517

• Creation of the application certificates for the following WinCC Unified components:
– WinCC Unified Runtime (Webserver (IIS))
– WinCC Unified OPC UA server
– WinCC Unified OPC UA exporter
– WinCC Unified OPC UA client
– WinCC Unified Runtime Collaboration
– WinCC Unified Audit Trail system

• Renewing existing certificates
• Encrypted export of the certificates for manual distribution to the Unified devices
• Encrypted import and installation of certificates on Unified PCs
• Encrypted export and import of the root certificate, CRL file, and private key, as well as all

device certificates for data backup and recovery.
• Export of the root certificate and its CRL file for distribution to external communication

partners
• Export an updated CRL file for distribution to Unified devices and external communication

partners.

Additional information
You can find more information about the deployment of certificates under "How to use
certificates" in the user help "SIMATIC Unified PC Installation".

17.5.1.2 Certificate authority

Total configuration of the certificate authority
The total configuration of the certificate authority (CA) includes:
• The private key

The certificate authority uses it to sign the application certificates. The private key remains on
the certificate authority device.

• The public key/root certificate (CA certificate) and a CRL file (Certificate Revocation List).
Root certificate and CRL file are distributed to the Unified devices and their external
communication partners.
Note
This help uses the runtime root certificate.

• The devices added to the certificate authority and their application certificates.

Runtime and simulation
17.5 Certificate Manager

7518 System Manual, 11/2022

CA container
The CA container (Certificate Authority container) includes:
• The root certificate
• The CRL file
• The application certificates of all devices added to the certificate authority

17.5.1.3 Required certificates

Introduction
You need the following certificates to use a Unified device:
• Root certificate of the certificate authority and its Certificate Revocation List (CRL file)
• The application certificates issued by the certificate authority
These certificates form the certificate configuration of the Unified device.

Root certificate and CRL file
The root certificate of the certificate authority and its CRL file must be distributed to the Unified
devices and the external communication partners.
The trust relationship between a Unified device and its communication partners is
established by the devices trusting each other's root certificates.
Unified devices whose certificates come from the same certificate authority automatically
trust each other after installing their certificate configuration.

Application certificates
The device requires the following application certificates:
• For accessing WinCC Unified Runtime via a web page:

The device with the Unified Runtime installation requires a web server certificate.
Note
A web server (IIS) must also be installed on the device.
The web clients can access the runtime web page only if the root certificate of the web server
certificate on the clients has been previously configured once as trusted in the browser.
See Installing root certificate for access via web client (Unified PC) (Page 7545).

• For data exchange between Unified devices (WinCC Unified Collaboration):
The devices require a Runtime Collaboration certificate.

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7519

• For OPC UA communication between devices:
– A Unified device used as OPC UA server requires an OPC UA Server certificate and an OPC

UA Exporter certificate.
Alternatively, you can use the self-signed default certificates generated for the OPC UA
server and OPC UA exporter.

– A Unified device that is to communicate with an OPC UA server requires an OPC UA client
certificate.

• For GMP-compliant use of a unified device:
The device requires an Audit Trail System certificate.

Example
Two Unified PCs and one Unified Comfort Panel are operated in the following example:
• The PCs provide web pages for runtime visualization. Therefore, you need a web server

certificate.
• A PC (192.168.0.100) runs an OPC UA server. Therefore it requires the Unified OPC UA Server

and OPC UA Exporter certificates.
• The panel (192.168.0.30) and a PC (192.168.0.40) should exchange runtime data. Both

devices require a Runtime Collaboration certificate.
• The root certificate is installed and classified as trustworthy on all devices.
• When accessing the Runtime web pages from external devices via a browser, the root

certificate must be installed in the browser's certificate store. The Unified Runtime start page
provides a corresponding download link.

Runtime and simulation
17.5 Certificate Manager

7520 System Manual, 11/2022

See also
Exporting root certificate and CRL file (Page 7543)

17.5.1.4 Password requirements
The passwords defined in the Certificate Manager must meet the following requirements:
• Length: At least 8 characters
• In each case at least one uppercase letter, one lowercase letter, one number and one special

character

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7521

17.5.2 Certificate Manager interface

17.5.2.1 Structure of the user interface

Overview
The interface of WinCC Unified Certificate Manager has the following structure:

① Menu bar
② Toolbar
③ Work area with the "CA configuration" and "Installed certificates" tabs
④ "Details" area (fixed)

The "Details" area shows you detailed information about the certificate selected in the work area.

Runtime and simulation
17.5 Certificate Manager

7522 System Manual, 11/2022

⑤ Information bar
⑥ "Output" area (hidden)

The "Output" area logs operator control actions.

You can customize the display of the interface to suit your needs. See also Customize surface
(Page 7525).

Menu bar
Menu Description
"File > Exit" Closes Certificate Manager.
"View" Configure which Certificate Manager interface elements you see.

You can open or close the following interface elements:
• "Output" area
• "Details" area
• "CA configuration" tab
• "Installed certificates" tab

"Help" "Certificate Manager Help"
Opens the user help in a browser.
"Info Certificate Manager"
Opens a dialog with information about the installed software version.

Toolbar
Button

To change the user interface language

To call the user help

Tab of the working area
See "CA configuration" tab (Page 7523) and "Installed certificates" tab (Page 7525).

17.5.2.2 "CA configuration" tab

On a certificate authority device
On a certificate authority device, you create and configure the certificate authority in the "CA
configuration" tab:
• You create the certificate authority and its root certificate.
• You add devices.
• You create the application certificates of the devices.

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7523

• You carry out exports:
– To make the certificates available on other devices
– To backup data

• You recreate certificates.
You have the following options:
– Recreating a root certificate
– Updating a CRL file
– Recreating a certificate configuration of a device
– Recreating a single application certificate of a device

• When the certificate authority device is used as a Unified PC: You install the application
certificates of the device.

Note
Content of the tab
After starting Certificate Manager, you will see the same data that the certificate authority had
when you last closed Certificate Manager:
• If no data has been generated yet, you will see the nodes "Open configuration ..." and "Create

certificate authority ..."
• If data has already been generated, you will see the root certificate and its CRL file, as well as

the configured Unified devices and their application certificates.
You can edit them.

On standard Unified PCs
On Unified PCs that do not serve as a certificate authority, you perform the following actions in
the tab:
• You import the certificate configuration of the device
• You install the entire certificate configuration or a single application certificate
• You delete installed certificates

Runtime and simulation
17.5 Certificate Manager

7524 System Manual, 11/2022

Note
Content of the tab
After launching Certificate Manager, you will see the nodes "Open new configuration ..." and
"Create certificate authority ..."
After opening a new configuration, you will see the root certificate of the certificate authority
and its CRL file, as well as the Unified devices configured at the certificate authority and their
application certificates.
You can install only the certificate configuration of the local device. The display of the certificate
configuration of the other devices is for information purposes. You cannot change their
certificate configuration.
Closing Certificate Manager also closes the configuration.

See also
Structure of the user interface (Page 7522)

17.5.2.3 "Installed certificates" tab
In the "Installed certificates" tab, you can see which application certificates are installed on the
local device.
You have the option to uninstall certificates by deleting them.

See also
Structure of the user interface (Page 7522)

17.5.2.4 Customize surface
Display and arrangement of the interface elements of WinCC Unified Certificate Manager are
configurable:

User interface
elements

Close / Open Move Undock / dock Fix / Unfix Show / Hide

"Details" area ✓ ✓ ✓ ✓ ✓
"Output" area ✓ ✓ ✓ ✓ ✓
Tab of the work‐
ing area

✓ ✓ - - -

Closing and opening
To close a user interface element, click the "X" button. Alternatively, disable it in the "View" menu.
To open a closed user interface element, enable it in the "View" menu.

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7525

Move
1. Move the title bar of the desired user interface element with the left mouse button pressed.

Possible insertion positions are displayed in the interface:

The offered insertion positions depend on which element you move and which elements the
application window already displays.

2. To see a preview of the new arrangement, move the mouse cursor to one of the positions and
keep the mouse cursor pressed:

3. Release the mouse cursor over the desired insertion position.
The user interface element is moved.

Undocking and docking
When you move the header of the "Details" or "Output" area, the area is undocked from the
application window and displayed as a standalone window. You can move the window freely.

Runtime and simulation
17.5 Certificate Manager

7526 System Manual, 11/2022

To dock the area back to the application window, move it to one of the suggested insertion
positions.

Fixing and unfixing
The following button fixes or unfixes the "Details" and "Output" areas:

Representation of the user inter‐
face

Status Changing setting

Fixed
The area is displayed even if it does
not have the focus.

Click the button to
switch the setting.

The area is hidden as soon as it loses
focus.

Showing and hiding
Requirement
The "Details" and "Output" areas are not fixed.

Procedure
To show an area, click on its text. The area is displayed.
It is automatically hidden when you click the mouse cursor outside the area.

17.5.2.5 Changing the user interface language

Procedure
1. Click the button with the arrow in the toolbar:

2. Select the desired language.

Result
Changing the user interface language

17.5.3 Making certificates available
This section describes which steps are required to provide certificates with WinCC Unified
Certificate Manager.

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7527

Generating a certificate configuration
On the device that serves as the certificate authority, do the following.
1. Create the certificate authority.

This creates the root certificate, CRL file and private key.
See Creating a certificate authority and root certificate (Page 7530).

2. Add the required Unified devices to the certificate authority.
See Adding devices (Page 7531).

3. Create the desired application certificates for the devices.
See Add application certificates (Page 7533).

Exporting the certificate configuration
After you complete the certificate configuration of the devices, export the certificate
configuration.
The procedures differ for PC devices and panel devices. See Exporting certificate
configuration (Unified PC) (Page 7536) and Exporting the certificate configuration (UCP)
(Page 7540).

Note
Distribution of the root certificate and CRL file
Root certificate and CRL file are part of the certificate configuration of a device. They are exported
or imported with the certificate configuration, installed and classified as trusted.
Certificate Manager also offers the option of exporting the root certificate and CRL file
individually, e.g. to distribute them to external communication partners.
On Unified PCs, you can also export the root certificate and CRL file via SIMATIC Runtime
Manager. You can find additional information here (Page 7504).

For an overview of all Certificate Manager export options, see Export options (Page 7535).

Making certificates available on the Unified devices
To make the certificates of a Unified HMI device available on the device, follow these steps:
1. Import the certificate configuration.

See Importing certificate configuration (Unified PC) (Page 7538) and Importing and installing
certificate configuration (UCP) (Page 7541).

2. Install the entire certificate configuration or individual certificates.
See Installing certificates (Unified PC) (Page 7539) and Importing and installing certificate
configuration (UCP) (Page 7541).

The procedures differ for PC devices and panel devices.
Depending on the device, use the following tool:
• Unified Comfort Panel: Control panel > "Security" function
• Unified PC: WinCC Unified Certificate Manager

Runtime and simulation
17.5 Certificate Manager

7528 System Manual, 11/2022

Trust communication partners
For successful communication, the Unified device must trust the root certificates of its
communication partners and vice versa.

Trust relationship between Unified devices
Unified devices whose certificate configuration comes from the same certificate authority
automatically trust each other after the certificate configuration is installed.

Relationship of trust with external communication partners
To establish the trust relationship with an external communication partner, follow these
steps:
1. On the certificate authority device or on the Unified device:

Export the root certificate and CRL file to an external data storage medium.
See Exporting root certificate and CRL file (Page 7543).

2. On the external communication partners:
– Connect the external communication partner to the external data storage medium.
– Copy the files and trust them. To do this, proceed as described in the user help of the

device.
– Export the root certificate of the external communication partner and its CRL file to the

external data storage medium.
3. Connect the external data storage medium to the Unified device.
4. Import the root certificate and CRL file of the external communication partner into the

Unified device and trust it:
– Unified PC: Use SIMATIC Runtime Manager.
– Unified Comfort Panel: In the control panel of the device, under "Security", use the

"Certificates" > "Import" function.
During the next connection attempt, the communication partners mutually accept their
application certificates.

Recreating certificates
You have the option to recreate certificates.
See Recreating certificates (Page 7551).

See also
Importing and installing certificates manually (UCP) (Page 7542)

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7529

17.5.4 Creating a certificate authority and root certificate

Requirement
On the Unified PC that is to serve as a certificate authority, no certificate authority is created in
WinCC Unified Certificate Manager.

Procedure
1. On your network, select the Unified PC that will be used as the certificate authority.
2. Open WinCC Unified Certificate Manager on this device.
3. Select the "CA configuration" tab.
4. In the work area, double-click "Create new certificate authority".
5. Enter the properties of the root certificate in the "New certificate authority" dialog. The fields

are freely editable.
Mandatory fields:
– "Name"
– Password fields for the private key

See also Password requirements (Page 7521).
If necessary, select a different cryptographic key length and runtime for the certificate.

6. Click "Create". 　

Result
• The private key is generated.
• The root certificate is generated.
• An empty CRL (Certificate Revocation List) file is generated.
• In the "CA configuration" tab, a node for the root certificate is created and below it one for the

CRL file.

Note
The private key is only available on the certificate authority device. The certificate authority uses
it to sign the application certificates of the Unified devices.
The root certificate and the CRL file are part of the certificate configuration of the Unified devices.
They are exported or imported when the certificate configuration is exported or imported.
During the installation of the certificate configuration on the device, they are automatically
installed and classified as trusted.

Runtime and simulation
17.5 Certificate Manager

7530 System Manual, 11/2022

Next steps
• Add the Unified devices to the root certificate and create their application certificates.

See Adding devices (Page 7531) and Add application certificates (Page 7533).
• To distribute the Unified root certificate and its CRL file without the certificate configuration

of the devices, for example, to external communication partners, export them individually.
See Exporting root certificate and CRL file (Page 7543).

Deleting certificate authority and root certificate

NOTICE
Data loss prevention
Delete the certificate authority and root certificate only in the following cases:
• After you have saved the data of the certificate authority.
• When you no longer need the certificate authority and its data.

Procedure
1. On the certificate authority device, open Certificate Manager.
2. Select the "CA configuration" tab.
3. Click the root certificate on the left and select "Delete".

Result
The certificate authority and all its data will be deleted from the device.

Note
If the certificate configurations were already installed on the Unified devices, the certificates are
still installed there. Delete them there if necessary.

17.5.5 Adding devices

Requirement
A certificate authority has been created in WinCC Unified Certificate Manager on the Unified PC
that is used as the certificate authority.

Procedure
1. On the certificate authority device, open Certificate Manager.
2. Select the "CA configuration" tab.

You see the root certificate and its CRL file, as well as all the devices that have already been
added and their application certificates.

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7531

3. Right-click the root certificate and select "Add device ...".
4. In the "New device" dialog, enter the device name, the IP address of the device, or both.

When creating application certificates for this device, these entries are inserted into the
certificates and used for the validation.
Note
Allowed device names
Either the host name or the fully qualified domain name can be used as the device name.
The use of the name "localhost" is not allowed and will be automatically replaced by
Certificate Manager with the device name of the local device.

Note
Required inputs
• For devices in a domain, enter the fully-qualified domain name as the device name.

This avoids validation errors when accessing the web pages.
• If the identity provider and Unified Runtime website are addressed by IP address, enter the

IP address.
• For devices that are used as OPC UA servers, enter the device name.
• For devices with dynamic IP addresses, enter only the device name.

Result
A node for the device is generated in the "CA configuration" tab.
Icons of the device nodes:

The local machine (if added)
Other devices

Next step
Create the application certificates of the added device.

Delete device
Procedure
To delete a device, click on the device on the left and select "Delete".

Runtime and simulation
17.5 Certificate Manager

7532 System Manual, 11/2022

Result
The device and its application certificates are deleted from the certificate authority.

Note
Deleting does not affect the certificate configuration installed on the device.
If necessary, delete the certificates from the device. On a Unified PC, you use Certificate Manager
to do this. On a Unified Comfort Panel, use the "Security" function in the Control Panel.

Handling a device after changing the IP address or the computer name
If the IP address or the computer name of a device added in Certificate Manager is changed later,
do the following:
1. Delete the device in Certificate Manager.
2. Create it again using the new IP or the new computer name.
3. Add the desired application certificates to the device.
4. Export the certificate configuration and distribute it.

See also
Creating a certificate authority and root certificate (Page 7530)
Add application certificates (Page 7533)

17.5.6 Add application certificates

Requirement
A device has been added to the certificate authority in WinCC Unified Certificate Manager.

Procedure
1. On the certificate authority device, open Certificate Manager.
2. Select the "CA configuration" tab.
3. Right-click on a device and select "Add <Certificate type> ..."

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7533

4. Enter the properties of the certificate in the "New certificate" dialog.
If necessary, select a different cryptographic key length and runtime for the certificate.
Note
Runtime
For web server certificates, the runtime is limited to a maximum of 27 months. Longer
runtimes are not accepted by some browsers.

Note
Use the "Fully qualified domain name" as name for web server certificates.

5. Click "Create".
6. Repeat the last three steps until the device has the required application certificates.

Result
The certificate configuration of the device is completed.

Next step
Export the certificate configuration.

Note
If the certificate authority device is used as a Unified device, no export is necessary. You can
install the certificate configuration or individual certificates directly.

Deleting an application certificate
Procedure
1. On the certificate authority device, open Certificate Manager.
2. Select the "CA configuration" tab.
3. Click on the application certificate under the desired device on the left and select "Delete".

Result
The application certificate is deleted.

Note
Deleting does not affect the certificate configuration installed on the device.
If necessary, delete the certificate from the device. On a Unified PC, you use Certificate Manager
to do this. On a Unified Comfort Panel, use the "Security" function in the Control Panel.

Runtime and simulation
17.5 Certificate Manager

7534 System Manual, 11/2022

Recreating an application certificate
You have the option to recreate application certificates, for example, when their runtime ends.
See section Recreating application certificates (Page 7553).

See also
Exporting certificate configuration (Unified PC) (Page 7536)
Exporting the certificate configuration (UCP) (Page 7540)
Adding devices (Page 7531)

17.5.7 Export options
The following table provides an overview of which export options WinCC Unified Certificate
Manager offers and how to use them:

Option Use Available on the cer‐
tificate authority de‐
vice

Available on the Uni‐
fied target device
(Unified PC)

Export of the CA container To provide the certificate configuration
from one or more Unified PCs.

✓ -

Exporting the certificate config‐
uration of a device

To make available the certificate configu‐
ration of a single Unified Comfort Panel.
Can also be used to make available the
certificate configuration of a single Uni‐
fied PC.

✓ -

Exporting a single application
certificate

To make available as a public certificate ✓ ✓

Exporting the root certificate
and CRL file

To establish the trust relationship be‐
tween a Unified device and its external
communication partners.
To make available an updated CRL file

✓ -

Exporting the complete config‐
uration of the certificate author‐
ity

To backup data of the certificate authority ✓ -

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7535

17.5.8 Exporting, importing and installing for Unified PCs

17.5.8.1 Exporting certificate configuration (Unified PC)

Introduction
Exporting the certificate configuration of a Unified PC is required in the following cases:
• After adding the device and configuring its application certificates for the first time
• After adding, deleting or recreating application certificates
• After the recreation of the root certificate
• After updating the CRL file

Note
If you only want to update the CRL file, exporting the certificate configuration is not
mandatory. You can also export the CRL file individually and import it to the PC device via
SIMATIC Runtime Manager.

Note
Exporting the certificate configuration is not necessary if the certificate authority device is used
as a Unified HMI device and you only want to provide the modified certificate configuration of
this device.
In this case, you can install the certificate configuration or individual certificates directly without
exporting and importing them first.

Export options
To export the certificate configuration of a Unified PC, you can select from the following options:
• Export CA container

The certificate configurations of all devices are exported.
• Export device

Export only the certificate configuration of a specific Unified PC.

Note
In both cases, you can only install the certificate configuration of this PC on the Unified PC.

Runtime and simulation
17.5 Certificate Manager

7536 System Manual, 11/2022

Tip for an efficient procedure

Recommended procedure:
• The certificate configuration of multiple devices was changed: Export the CA container.
• The certificate configuration of a single Unified PC was changed: Export the certificate configuration of this device.

Requirement
The certificate configuration of a Unified PC is completed.

Procedure
1. On the certificate authority device, open Certificate Manager.
2. Select the "CA configuration" tab.
3. Follow these steps:

To export the certificate configurations of all devices:
– Right-click on the root certificate.
– Select "Export > CA container ...".
To export only the certificate configuration of the Unified PC:
– Right-click on the Unified PC.
– Select "Export device > To PC".

4. Enter and repeat a password in the "Export" dialog to protect the export file.
See also section Password requirements (Page 7521).

5. Click "Export".
6. Click on "Save" and select the storage location and the file name.

Result
The certificate configuration of the Unified PC or the certificate configurations of all devices are
stored encrypted with the specified password in a secure storage file:

Next step
Import the certificate configuration to the device and install it.

See also
Importing certificate configuration (Unified PC) (Page 7538)
Add application certificates (Page 7533)
Installing certificates (Unified PC) (Page 7539)

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7537

17.5.8.2 Importing certificate configuration (Unified PC)

Note
Importing the certificate configuration is not necessary if the certificate authority device is used
as a Unified HMI device, and you only want to provide the modified certificate configuration of
this device.
In this case, you can install the certificate configuration or individual certificates directly without
exporting and importing them first.

Requirement
• On the certificate authority device, the CA container or the certificate configuration of the

device was exported.
• The Unified PC whose certificate configuration you want to import has access to the storage

location of the export file.

Procedure
1. Open the WinCC Unified Certificate Manager on the Unified PC.
2. Select the "CA configuration" tab.
3. Double-click "Open configuration ...".
4. Select the export file.
5. Enter the password selected during export.
6. Confirm your entries.

Result
The configuration file is loaded to the "CA configuration" tab. The content of the tab depends on
the selected export option:
• CA container exported:

You will see the certificate configurations of all devices of the certificate authority.
You can install only the certificates of the local device. The display of the other devices is for
information purposes. You cannot change their configuration.

• Certificate configuration of the device exported:
Display and installation are limited to the certificate configuration of the local device.

Exiting Certificate Manager closes the loaded configuration.

Next step
Install the certificates on the device.

Runtime and simulation
17.5 Certificate Manager

7538 System Manual, 11/2022

See also
Exporting certificate configuration (Unified PC) (Page 7536)
Installing certificates (Unified PC) (Page 7539)

17.5.8.3 Installing certificates (Unified PC)
You have the option to install the entire certificate configuration of the device or individual
application certificates.

Requirement
• WinCC Unified Certificate Manager is open on the Unified PC on which you want to install the

certificates.
• The certificate configuration of the device has been imported to the device using Certificate

Manager.
• The "CA configuration" tab is visible.

Procedure
Select one of the following options:
• To install the entire certificate configuration of the device:

– Right-click the node of the local machine.
The local machine has the following icon:

– Select "Install all certificates".
• To install a single application certificate of the device:

– Under the local machine node, right-click the certificate.
– Select "Install".

Result
Depending on what you have selected, the entire certificate configuration or the individual
application certificate is installed.
The following applies:
• The application certificates are installed in the certificate stores defined for the respective

application.
• The root certificate is trusted in each certificate store.
• The CRL file is installed in the designated certificate store.
• When a web server certificate is installed, it is automatically linked to the WinCC Unified

website. The web server certificate replaces the certificate, if any, selected during the
Runtime installation.
The web page will then be restarted to enforce the use of the new certificate. Any connected
web browsers will be disconnected as a result and will have to log in again.

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7539

Note
The following certificates only become effective after a restart of the WinCC Unified Runtime:
• OPC UA server certificate
• Runtime Collaboration certificate
• Audit Trail system certificate

See also
Importing certificate configuration (Unified PC) (Page 7538)
Exporting certificate configuration (Unified PC) (Page 7536)

17.5.9 Export, import and installation for Unified Comfort Panels

17.5.9.1 Exporting the certificate configuration (UCP)

Introduction
Exporting the certificate configuration of a Unified Comfort Panel is required in the following
cases:
• After adding the device and configuring its application certificates for the first time
• After adding, deleting or renewing individual application certificates
• After the recreation of the root certificate
• After updating the CRL file

Note
Alternatively, you can export the CRL file individually and import it into the Control Center of
the Unified Comfort Panel using the "Security" function.

Requirement
The certificate configuration of the device is completed.

Procedure
1. On the certificate authority device, open Certificate Manager.
2. Select the "CA configuration" tab.
3. Click on the desired device on the right and select "Export device > To Panel".

Runtime and simulation
17.5 Certificate Manager

7540 System Manual, 11/2022

4. In the dialog that opens, enter and repeat a password to protect the export file.
See also section Password requirements (Page 7521).

5. (Optional) Adjust the number of iterations for the encryption.
6. Click "Export".
7. Select the file path and file name and click "Save".

The data is stored in a TAR log and encrypted with the password.
8. Copy the TAR log to an external storage medium.

Next step
Import the certificate configuration to the device and install it.

See also
Add application certificates (Page 7533)
Importing and installing certificate configuration (UCP) (Page 7541)
Importing and installing certificates manually (UCP) (Page 7542)

17.5.9.2 Importing and installing certificate configuration (UCP)

Requirement
• On the certificate authority device, the certificate configuration of the Unified Comfort Panel

was exported to a TAR log via "Export device > To Panel".
See section Exporting the certificate configuration (UCP) (Page 7540).

• The TAR log was copied to an external storage medium.

Procedure
1. Connect the panel to the external storage medium.
2. Import the certificate configuration to the device.
3. Install the certificates by trusting them.
For the import and the installation, use the "Certificates" > "Import" function under "Security"
in the control panel of the device.
You can find a detailed description in the "SIMATIC HMI devices Unified Comfort Panels"
operating instructions.

Note
Manual importing and installing
Alternatively, you can import the certificates to the Panel manually and install them. See
section Importing and installing certificates manually (UCP) (Page 7542).

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7541

17.5.9.3 Importing and installing certificates manually (UCP)
You can also import and install the certificate configuration of a Unified Comfort Panel manually
instead of using the control panel of the device.

Requirement
• The certificate configuration of the Unified Comfort Panel was exported to a TAR log via

"Export device > To Panel".
See section Exporting the certificate configuration (UCP) (Page 7540).

• The TAR log was copied to an external storage medium.

Procedure
1. Decrypt the export file using OpenSSL.

openssl enc -d -aes256 -salt -iter <25000> -in <exportfilename>
-out <tarfilename.tar> -k <password>
The value for the parameter -iter must match the iteration count specified during export.
The decrypted TAR log contains the configured certificates in the respective application-
specific folder structure.

2. Copy the file to the Panel device.
3. Manually distribute the certificates to the specific repositories of the respective application.

17.5.10 Exporting a single application certificate
With WinCC Unified Certificate Manager, you can export application certificates individually as
public certificates.

Requirement
An application certificate has been added to a device in WinCC Unified Certificate Manager.

Exporting certificate to the certificate authority device
1. On the certificate authority device, open Certificate Manager.
2. Select the "CA configuration" tab.
3. Right-click on the application certificate under the device.
4. Select "Export certificate ...".
5. Select a file format.
6. Confirm your entries.
7. Select a target folder.
8. Confirm your entries.

Runtime and simulation
17.5 Certificate Manager

7542 System Manual, 11/2022

Result
The public key of the certificate is exported. Distribute it to the external communication partners.

Export certificate on the device
Additional requirements
• The device is a unified PC.
• The application certificate has been imported into the device.

Procedure
1. On the Unified PC, open Certificate Manager.
2. Select the "Installed certificates" tab.
3. Right-click on the application certificate.
4. Select "Export certificate ...".
5. Select a file format.
6. Confirm your entries.
7. Select a target folder.
8. Confirm your entries.

See also
Add application certificates (Page 7533)
Importing certificate configuration (Unified PC) (Page 7538)

17.5.11 Exporting root certificate and CRL file

Introduction
With WinCC Unified Certificate Manager you can export and distribute root certificate and CRL
file separately from the certificate configuration, as a public certificate. This is necessary in the
following cases, for example:
• To establish the trust relationship between a Unified device and its external communication

partners.
• To update an expired CRL file on a Unified device.
You can select between the following options:
• Exporting root certificate and CRL file
• Export the CRL file only

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7543

Note
Alternative path for Unified PCs
If the Unified device is a PC on which the root certificate and its CRL file are already installed, you
can also export both files via SIMATIC Runtime Manager.
You can find additional information here (Page 7504).

Requirement
A certificate authority has been created on the certificate authority device in Certificate Manager.

Exporting root certificate and CRL file
1. On the certificate authority device, open Certificate Manager.
2. In the "CA configuration" tab, click the root certificate on the right.
3. Select "Export > CA Certificate ...".
4. Select a file format.
5. Confirm your entries.
6. Select a target folder.
7. Confirm your entries.
The root certificate and its CRL file are exported to the target folder, each to a separate file.

Export CRL file only
1. On the certificate authority device, open Certificate Manager.
2. Select the "CA configuration" tab.
3. Under the root certificate, right-click the Certificate Revocation list.
4. Select "Export".
5. Select a file format.
6. Confirm your entries.
7. Select a target folder.
8. Confirm your entries.
The CRL file is exported to the target folder.

Runtime and simulation
17.5 Certificate Manager

7544 System Manual, 11/2022

Distribute files
After the export, distribute the files to the target devices:
• On a Unified PC you install the files with SIMATIC Runtime Manager.
• On a Unified Comfort Panel, install the files in the Control Panel under "Security" using the

"Certificates" > "Import" function.
• To distribute files to external communication partners, proceed as described in the user help

for the device.

See also
Creating a certificate authority and root certificate (Page 7530)

17.5.12 Installing root certificate for access via web client (Unified PC)

Using web certificates
To enable web browsers to establish a secure connection to WinCC Unified, the root certificate
with which the web server certificate of WinCC Runtime was issued must be known in the web
browser as a trusted certification authority.
By installing the web server certificate on the PC device, the public root certificate is made
available as a download for installation in web browsers on the WinCC Unified home page.
The procedure for installing the root certificate differs depending on your web browser.

Installing the root certificate for Chrome and Microsoft Edge
Chrome and Microsoft Edge use the Windows system certificate store.
• On devices with WinCC Unified installation that have been configured with the Certificate

Manager, these web browsers can immediately establish a secure connection to the WinCC
Unified web pages because the root certificate has already been installed in the system
certificate store.

• On devices without WinCC Unified Installation the root certificate must be installed
manually.

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7545

To install manually, follow these steps (for example, Microsoft Edge):
1. Open the WinCC Unified home page via the URL https://<host name>

At first, an error message appears:

2. Open the field with the error details and confirm that you want to open the web page.
3. On the WinCC Unified home page, select the field "Certificate Authority" and confirm "Open

file" in the download dialog.

The root certificate is downloaded to the default download directory.

Runtime and simulation
17.5 Certificate Manager

7546 System Manual, 11/2022

4. Open the downloaded file.
The root certificate is opened with the Windows standard form.

5. To import the root certificate into Windows, select "Install Certificate".
6. In the certificate import wizard, select "Local Machine" as the storage location, "Trusted Root

Certification Authority" as the certificate store and start the import process.

Installing the root certificate for Firefox
Firefox uses its own certificate store and must therefore be configured manually on each device
once:
1. Open the WinCC Unified home page via the URL https://<host name>

At first, an error message appears:
2. Open the field "Advanced" and confirm the field "Accept the Risk and Continue".

An exception is entered for this page in the Firefox certificate management.
3. On the WinCC Unified home page, select the field "Certificate Authority".

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7547

4. Save the root certificate. To do this, click "Save file" in the Firefox dialog that follows.
5. Store the certificate in the Firefox certificate store. Proceed as follows:

– Open the "Settings" page of Firefox.
– Select "Privacy & Security". There you will find the "Certificates" area further down. Open

"Show certificates...".
– In the "Certificate Management" window, select the "Certification authorities" tab:

– Click "Import" and select the root certificate you saved in step 3.
– In the window that opens, select the option "This certificate can identify websites" and

confirm your selection.
– Click "Server" and remove the exception that was created by step 2.

Runtime and simulation
17.5 Certificate Manager

7548 System Manual, 11/2022

Installing the root certificate on iOS devices
iOS uses its own certificate store and must therefore be configured manually on each device
once. An error message also appears when the WinCC Unified home page is opened.
1. Open the field "Advanced" and confirm the field "Accept the Risk and Continue".
2. On the WinCC Unified home page, select the field "Certificate Authority".

3. Select "Install".

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7549

4. Select "Install" again.

You see the entry "Trusted".

Runtime and simulation
17.5 Certificate Manager

7550 System Manual, 11/2022

5. Select "General > Info > Certificate Trust Settings".

6. Enable "WinCC Unified CA" and select "Next".

17.5.13 Recreating certificates
WinCC Unified Certificate Manager offers the option to recreate existing certificates.
You must recreate certificates in the following cases:

Expiry of an application certificate Recreate the application certificate.
Expiry of the root certificate Recreate the entire configuration of the certificate authority.

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7551

Expiry of the CRL file Update the CRL file.
Change to the IP address or the computer name of a Unified
device1

Recreate the application certificates of the device.

1 For a Unified PC that is used as an HMI device as well as a certificate authority device: If you have changed the computer name
or the IP address, recreate the entire configuration of the certificate authority. Distribute and install it.
When the certificate authority device is not used as an HMI device, there is no need to renew the certificate configuration.

See also
Recreating application certificates (Page 7553)
Recreating the entire configuration (Page 7552)
Updating a CRL file (Page 7553)
Create backup (Page 7554)

17.5.13.1 Recreating the entire configuration
The expiration of the root certificate requires that the entire configuration of the certificate
authority is created again.

Requirement
A certificate authority has been created and configured on the certificate authority device in
WinCC Unified Certificate Manager.

Procedure
1. On the certificate authority device, open Certificate Manager.
2. Select the "CA configuration" tab.

You will see the configuration of the certificate authority.
3. Right-click the root certificate and select "Recreate all".
4. The "Recreate certificate authority" dialog opens.

The properties of the previous certificate authority are taken over as default. Change them if
necessary.

5. Enter the same password as when you created the certificate authority and confirm it.
6. Click "Create".

Result
The configuration of the certificate authority is recreated:
• Private key
• Root certificate
• CRL file
• All devices and their application certificates

Runtime and simulation
17.5 Certificate Manager

7552 System Manual, 11/2022

Next steps
• Export the certificate configuration of the devices. Import and install them on the devices.
• Distribute the root certificate and CRL file to the external communication partners.

See also
Exporting root certificate and CRL file (Page 7543)
Exporting, importing and installing for Unified PCs (Page 7536)
Export, import and installation for Unified Comfort Panels (Page 7540)
Creating a certificate authority and root certificate (Page 7530)

17.5.13.2 Recreating application certificates
In the following cases, it is necessary to recreate application certificates:
• The lifetime of a certificate has expired.
• Entries for a valid certificate are to be edited, for example to correct entries.
• The IP address or computer name of the device has been changed.

Procedure
1. On the certificate authority device, open WinCC Unified Certificate Manager.
2. Select the "CA configuration" tab.
3. Right-click on the application certificate of the desired device and select "Recreate".

The "New <Certificate type> certificate" dialog opens. The entries of the old certificate are
downloaded into the dialog.

4. Change the desired properties.
5. Click "Confirm".

Result
A new certificate is created. Export the certificate configuration of his device and install the
certificate on the device.

See also
Exporting, importing and installing for Unified PCs (Page 7536)
Export, import and installation for Unified Comfort Panels (Page 7540)

17.5.13.3 Updating a CRL file
When the root certificate is created, the CRL file is given a lifetime of 24 months. When the
lifetime expires, it is necessary to update the CRL file.

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7553

Requirement
A certificate authority has been created on the certificate authority device in WinCC Unified
Certificate Manager.

Procedure
1. On the certificate authority device, open Certificate Manager.
2. Select the "CA configuration" tab.
3. Under the root certificate, click the "Certificate Revocation List" node on the right.
4. Select "Update".

Result
A new CRL file with a lifetime of 24 months is created.

Next step
Distribute and install the CRL file to the target devices:
• On a Unified PC, you install the file with SIMATIC Runtime Manager.
• On a Unified Comfort Panel, install the file in the Control Panel under "Security" using the

"Certificates" > "Import" function.
• To distribute files to external communication partners, proceed as described in the user help

for the device.

See also
Exporting root certificate and CRL file (Page 7543)
Creating a certificate authority and root certificate (Page 7530)

17.5.14 Create backup

Procedure
To create a backup copy of all the data of the certificate authority, follow these steps:
1. On the certificate authority device, open WinCC Unified Certificate Manager.
2. Select the "CA configuration" tab.
3. Click on the root certificate on the right and select "Export > Full backup".
4. To protect the backup file, enter and repeat a password in the "Export" dialog.

See also section Password requirements (Page 7521).

Runtime and simulation
17.5 Certificate Manager

7554 System Manual, 11/2022

5. Click "Export".
6. Click on "Save" and select the storage location and the file name.

Result
The entire configuration of the certificate authority is written to a backup file.

Loading the backup
1. Open Certificate Manager.
2. In the "CA configuration" tab, double-click the "Open configuration ..." entry.
3. Select the backup file and confirm with "Open".
4. Enter the password set when creating the backup and confirm with "Open".

Runtime and simulation
17.5 Certificate Manager

System Manual, 11/2022 7555

Runtime and simulation
17.5 Certificate Manager

7556 System Manual, 11/2022

Using distributed systems 18
18.1 Overview

Unified Collaboration
Unified Collaboration gives you the option to monitor and operate the runtime of an HMI device
within the runtime of another HMI device.
Both HMI devices must be configured accordingly and located in one network. Unified
Collaboration supports cross-project access.
To display the screens of the Collaboration device in runtime, use screen windows.

Web client
By using the web client you can access the runtime of an HMI device from any device.
Each web client is autonomous and independent of the runtime displayed locally on the HMI
device. We are distinguishing here between synchronous and asynchronous functions.

SmartServer
With the "SmartServer" option you can access a Unified Comfort Panel using an application.
You activate the SmartServer in the TIA Portal in the runtime settings of the
Unified Comfort Panel. You download the application to the device from which you want
to access the Panel and execute it.
The user interface of the Panel is mirrored. It will give you access to the entire device
including Control Panel and runtime. All actions that you are executing via the application
are immediately visible on the Unified Comfort Panel.

18.2 Unified Collaboration

18.2.1 Basics

18.2.1.1 Basics

Introduction
You can use Unified Collaboration to access Unified Runtime objects, such as screens of another
HMI device. You can display and operate the screens.

System Manual, 11/2022 7557

You use Unified Collaboration together with:
• SIMATIC WinCC Unified PC
• SIMATIC Unified Comfort Panel
The collaboration devices can be created in the same project or in different projects. The
configuration steps are different for both variants.

Certificates

Unified Comfort Panel contains: Unified Comfort Panel contains:

Unified PC, contains:
Certificate manager, created:

Certificate Authority (CA)

RT collaboration certificateRT collaboration certificate

Certificate Authority (CA)

RT collaboration certificate

Certificate Authority (CA)

Certificate Authority (CA)

RT collaboration cercificate

 Unified PC
 Unified Comfort Panel
 Screen window

Configuration steps for HMI devices in the same project
1. Create a project.
2. Add multiple HMI devices.
3. Create screens for the HMI devices.
4. Making certificates available.
5. Define collaboration settings.
6. Assign the screens to the screen windows.
7. Compile and load all HMI devices.

Using distributed systems
18.2 Unified Collaboration

7558 System Manual, 11/2022

Configuration steps for HMI devices in different projects
1. Creating multiple projects.
2. Add multiple HMI devices.
3. Create screens for the HMI devices.
4. Making certificates available.
5. Define collaboration settings.
6. Export screen references for Unified Collaboration.
7. Import screen references for Unified Collaboration.
8. Assign the screens to the screen windows.
9. Compile and load all HMI devices.

OPC UA Collaboration
If several HMI devices operate in collaboration as OPC UA servers, the collaboration devices can
read and write tags and alarms from the OPC UA servers.

See also
Restrictions (Page 7560)
Creating certificates (Page 7564)
Configuring a screen window within a project (Page 7575)
Defining collaboration settings (Page 7572)
Configuring screen windows from different projects (Page 7577)

18.2.1.2 Requirements
To use Unified Collaboration among several devices, the following requirements must be
fulfilled:
• The following software is installed on each participating device:

SIMATIC WinCC Unified Runtime V18 (basic package, license required)
Note
Cross-version use of collaboration
Screens of an HMI device with installed Runtime version V16 can be displayed in a screen
window of an HMI device with installed Runtime version V17 via Unified Collaboration.
In order that an HMI device with installed Runtime version V16 can participate in
collaboration, a collaboration certificate must be created with a Certificate Manager V17 and
transferred to the HMI device with installed Runtime version V16. Additional information is
available under Using WinCC version compatibility.

• All devices connected via Unified Collaboration must be on the same network and have
access to one another.

Using distributed systems
18.2 Unified Collaboration

System Manual, 11/2022 7559

• Firewall settings of the Unified PC: During TIA Portal setup, the components of the
Unified Collaboration are released to the firewall. The security release for the local subnet and
can be adapted manually if required. Note the firewall rules "WinCC RTIL dist" and "WinCC RTIL
proxy" in this regard.
The firewall settings are relevant for the collaboration between multiple Unified PCs and for
the collaboration between Unified PCs and Unified Comfort Panels.

• Local session tags are supported for V18 or later devices. In a multi-user environment,
session-related data is processed independently in each local session. Data from local session
tags is not saved after a session is closed.

See also
Introduction to the WinCC Unified Certificate Manager (Page 7517)
Creating certificates (Page 7564)
Using WinCC version compatibility (Page 187)

18.2.1.3 Restrictions
Note the following restrictions when using Unified Collaboration and associated Runtimes:

Screen objects
Unified Collaboration does not support all screen objects. The following screen objects cannot
be used in screens that are displayed in another Runtime via Unified Collaboration:
• My controls:

– Plant overview

System functions and scripts
Executing scripts and system functions depends on the objects used. You can find additional
information in the section System functions and scripts (Page 7561).

Subsequent changes to collaboration settings
The following data must not be changed after a connection has been established:
• System ID
• Collaboration name
• IP address / Host name

Synchronicity of the system times
The system times of the interconnected HMI devices must not differ by more than 180 seconds.
If the difference is greater, no connection is established between the devices.

Using distributed systems
18.2 Unified Collaboration

7560 System Manual, 11/2022

Configured languages
The configured and activated languages for Runtime must be the same for all participating
devices.

Audit
Audit is not supported in Unified Collaboration.

See also
Defining collaboration settings (Page 7572)
Configuring user management in the engineering system for Runtime (Page 6894)

18.2.1.4 User management
Collaboration supports the cross-project use of multiple users.

Note
Central user management (UMC)
If you want to use Unified Collaboration across projects, make use of central user management
and the following advantages:
• Low configuration effort
• Organization of users in user groups
• High security through consistency

You can restrict access to screen objects by using function rights. You configure and manage
function rights in the user management.
When you limit the operation of a screen object with a function right and make the screen
object available in another HMI device using Unified Collaboration, the user logged into
Runtime must have the function right through the assigned roles.
The name of the function right at the screen object is compared to the name of a function
right that can be assigned to the logged in user to see whether they match. Access is granted
as configured when there is an agreement. It does not matter in this case whether Unified
Collaboration is used in one project or across projects.
To avoid confusion, use the same roles and function rights within a system.

18.2.1.5 System functions and scripts

Introduction
You use system functions and scripts in Unified Collaboration in the usual way. Depending on the
object, there are some restrictions and special features.
Executing system functions and scripts depends on the objects used.

Using distributed systems
18.2 Unified Collaboration

System Manual, 11/2022 7561

The objects are arranged in four categories:
• Objects of the Runtime system with system name prefix
• Objects of the Runtime system without system name prefix
• Objects related to the current session
• System functions under "HMIRuntime.Device.SysFct"

"Screen name" parameter
In system functions and scripts, you specify the "Screen name" parameter of a collaboration
device in the format "Collaboration Name :: Screen name", e.g. "HMI_RT_1 :: Screen_1".

"SetPropertyValue" system function
The "SetProperty Value" system function, for example, can be used to change the "Screen"
property of a screen window. For the "Value" parameter, you can specify the screen of a
collaboration device in the format "Collaboration Name :: Screen name".

Note
The collaboration name and the associated screen name are not referenced in the
"SetPropertyValue" system function. If you change the collaboration name or the screen name,
you must adapt the system function.

Objects of the Runtime system with system name prefix
Scripts and system functions that use objects with a system name prefix are executed on the
local HMI device. The objects are read from the collaboration device or written to the
collaboration device.
The following objects have a system name prefix, for example:
• "Alarm"
• "AlarmLogging"
• "Tag"
• "TagLogging"
• "LoggedTag"
• "Connection"
• "PlantObject"
• "Report"
• "TextList"
• "Screen" and "ScreenItem"
• "FaceplateInterface"
• "ParameterSetTypes"

Using distributed systems
18.2 Unified Collaboration

7562 System Manual, 11/2022

Example: Objects of the Runtime system with system name prefix
You configure two HMI devices and activate Collaboration:
• "HMI_1" with a "Screen_1" screen
• "HMI_2" with a "Screen_Collaboration" screen and "Tag_1" tag
Configure a button in the "Screen_Collaboration" screen. Configure the "SetTagValue" system
function to an event of the button. Enter the following parameters:
• Tag: "Tag_1"
• Value: "1"
In the "Screen_1" screen, configure a screen window in which the "Screen_Collaboration"
screen is displayed.
If Runtime is operating and the event is triggered, the system function is executed on the
"HMI_1" HMI device. The value of the "Tag_1" tag changes on the "HMI_2" HMI device.

Objects of the Runtime system without system name prefix
No collaboration device can be addressed for objects without a system name prefix. The relevant
system functions and scripts are executed on the local HMI device. The objects are also obtained
from the local HMI device. The following objects have no system name prefix:
• "Database"
• "FileSystem"
• "Timers"
• "Traces"

Objects related to the current session
System functions and scripts that contain objects related to the current session are executed on
the local HMI device. When executing the scripts and system functions, the effects will show up
in the current session of the user currently logged on.
The following objects refer to the current session, for example:
• "DataSet"
• "Language"
The following system functions relate to the current session:
• "Logoff"

System functions under "HMIRuntime.Device.SysFct"
System functions under "HMIRuntime.Device" are disabled in Unified Collaboration. The
following system functions cannot be used:
• "CreateScreenshot"
• "EjectStorageMedium"
• "GetBrightness"

Using distributed systems
18.2 Unified Collaboration

System Manual, 11/2022 7563

• "GetDHCPState"
• "GetIPV4Address"
• "GetNetworkInterfaceState"
• "GetSmartServerState"
• "SetBrightness"
• "SetDHCPState"
• "SetIPV4Address"
• "SetNetworkInterfaceState"
• "SetSmartServerState"
• "ShowControlPanel"
• "ShowSoftwareVersion"
• "StartProgram"
• "StopRuntime"

See also
Restrictions (Page 7560)

18.2.2 Preparing Unified Collaboration
Below you will find out which steps are required to use Unified Collaboration. You create and
distribute certificates, configure system alarms and specify the settings for collaboration.
This section includes information on the following topics:
• Creating certificates (Page 7564)
• Distributing and installing certificates (Page 7567)
• Configuring system events for Unified Collaboration (Page 7570)
• Defining collaboration settings (Page 7572)
• Changing the collaboration settings (Page 7574)
For more information, refer to the online documentation for the "Certificate Manager".

18.2.2.1 Creating certificates

Introduction
To enable collaboration between different collaboration devices, the corresponding certificates
must be provided in advance. All certificates are issued by a common Certification Authority (CA)
to simplify the trust relationship between the communication partners.

Using distributed systems
18.2 Unified Collaboration

7564 System Manual, 11/2022

The root certificate of the CA is classified as trustworthy on each device for each application.
When accessing WinCC Unified Runtime via websites, the root certificate must be configured
as trustworthy once in the web browser.
To enable collaboration, you need a "Runtime Collaboration certificate" for each collaboration
device in addition to the root certificate.
You create and manage the certificates with the WinCC Unified Certificate Manager.

Note
Renewal of the Runtime Collaboration certificate after upgrading to V18
After a Runtime Collaboration device has been upgraded to V18, its Runtime Collaboration
certificate must be renewed.
Additional information is available under Using WinCC version compatibility (Page 187).

Note
Cross-version use of collaboration
Screens of an HMI device with installed Runtime version V17 can be displayed in a screen
window of an HMI device with installed Runtime version V18 via Unified Collaboration.
To allow an HMI device with installed Runtime version V17 to participate in collaboration, a
collaboration certificate must be created with a Certificate Manager V18 and transferred to the
HMI device with installed Runtime version V17.

Creating a root certificate
1. Select a WinCC Unified PC device in your network that is to serve as the certification authority.

The root certificate and the associated key are only available on this device. The
configuration of additional application certificates for other devices is only possible on this
device.

2. Open WinCC Unified Certificate Manager on this device.
3. Create a new root certificate. Double-click the "Create new certification authority" button.
4. Enter the properties of the root certificate in the "New certification authority" dialog. The

fields are freely editable.
Mandatory fields:
– "Certification authority"
– "Password" for the private key
If necessary, select a different key length and runtime for the certificate.

5. Click "Create".

Using distributed systems
18.2 Unified Collaboration

System Manual, 11/2022 7565

The root certificate and its key are stored on the device and used to generate the device
certificates.

Note
If the "WinCC Certificate Manager" is restarted on this device, the root certificate and the device
certificates generated with it are loaded automatically.

Adding devices
1. Right-click the root certificate and select "Add device ...".

2. Enter the name and/or IP address of the device in the "New device" dialog box.
The specification of the IP address is sufficient for Unified Comfort Panel.
For devices with dynamic IP addresses, enter only the host name.
Note
Permitted names
Either the host name or the "Fully qualified domain name" can be used as the name. The
name is inserted in the certificates created for the device and used for validation. To avoid
validation errors when accessing the web pages, the "Fully qualified domain name" must be
used within a domain.
Using the name "localhost" is not permitted and is automatically replaced with the name of
the local device by the Certificate Manager.

3. Repeat steps 1 and 2 until all collaboration devices have been added.

Using distributed systems
18.2 Unified Collaboration

7566 System Manual, 11/2022

Adding a "Runtime Collaboration certificate"
1. Right-click on a device and select "Add Runtime Collaboration certificate ...".

2. Enter the properties of the certificate in the dialog.
If necessary, select a different key length and runtime for the certificate.

3. Create a "Runtime Collaboration certificate" for each collaboration device.
4. If necessary, create additional certificates, e.g. web server certificates.

You can find additional information in the "WinCC Unified Certificate Manager" operating
manual.

Result
• You have created the root certificate.
• You have added all collaboration devices.
• You have added a "Runtime Collaboration certificate" for all collaboration devices.
• You have created additional certificates as required.

See also
Basics (Page 7557)
Requirements (Page 7559)
Using WinCC version compatibility (Page 187)

18.2.2.2 Distributing and installing certificates

Introduction
To distribute the configured certificates to the corresponding devices, the certificates must be
exported to a secure storage file. This file must be transferred manually to the respective device
and imported there. The procedure is different for Unified PC and Unified Comfort.

Using distributed systems
18.2 Unified Collaboration

System Manual, 11/2022 7567

Trust communication partners
For successful communication, the collaboration device must trust the root certificates of its
communication partners and vice versa.

Trust relationship between collaboration devices
Collaboration devices whose certificate configuration comes from the same certificate
authority automatically trust each other after the certificate configuration is installed.

Trust relationship with external communication partners
To establish the trust relationship with an external communication partner, follow these
steps:
1. On the certificate authority device or on the collaboration device:

Export the root certificate and CRL file to an external data storage medium.
2. On the external communication partners:

– Connect the external communication partner to the external data storage medium.
– Copy the files and trust them. To do this, proceed as described in the user help of the

device.
– Export the root certificate of the external communication partner and its CRL file to the

external data storage medium.
3. Connect the external data storage medium to the collaboration device.
4. Import the root certificate and the CRL file of the external communication partner into the

collaboration device and trust it:
– Unified PC: Use SIMATIC Runtime Manager.
– Unified Comfort Panel: In the Control Panel of the device, under "Security", use the

"Certificates" > "Import" function.
During the next connection attempt, the communication partners mutually accept their
application certificates.

Exporting the certificate configuration
After you have completed the certificate configuration of the devices, export the certificate
configuration.
The procedures differ for PC devices and Panel devices.

Note
Distribution of root certificate and CRL file
Root certificate and CRL file are part of the certificate configuration of a device. They are exported
or imported with the certificate configuration, installed and classified as trusted.
On Unified PCs, you can also export the root certificate and the CRL file via the SIMATIC Runtime
Manager.

Using distributed systems
18.2 Unified Collaboration

7568 System Manual, 11/2022

Exporting all certificates for Unified PC
1. Right-click the root certificate and select "Export..." > "CA container" in the menu.

2. Assign a password in the "Export all" dialog.

3. Click on "Export" and select the storage location and file name.
The data is stored encrypted with the specified password.

Exporting the certificate for a device
1. Right-click on the certificate and select "Export certificate" in the menu.

2. Select the format for the exported certificate.
3. Select the storage location.

Using distributed systems
18.2 Unified Collaboration

System Manual, 11/2022 7569

Making certificates available on the Unified devices
The procedures differ for PC devices and Panel devices.
Depending on the device, use the following tool:
• Unified PC: WinCC Unified Certificate Manager
• Unified Comfort Panel: Control Panel > "Security" function
To make the certificates of a Unified HMI device available on the Unified PC, follow these steps:
1. Transfer the CA container or the certificates to the Unified PC.
2. Open the Certificate Manager.
3. Import the certificate configuration.

To install an individual certificate of the device:
1. Under the local machine node, right-click the certificate.
2. Select "Install".

Result
You have distributed and installed the required certificates on all collaboration devices.
The Runtime Collaboration certificate only becomes effective after a restart of the WinCC
Unified Runtime.

18.2.2.3 Configuring system events for Unified Collaboration

Introduction
An alarm log must be configured in advance in order to display system events relating to
collaboration in the alarm view of a collaboration device. The alarm log supports you in
identifying connection problems, for example, when a connection cannot be established due to
an incorrect system ID.

Note
System events for collaboration
System events for collaboration are only available for the current HMI device and the HMI devices
that you select in the collaboration settings under "Connect actively to".

Requirement
• A Unified device has been configured.

Using distributed systems
18.2 Unified Collaboration

7570 System Manual, 11/2022

Procedure
1. Open the "Logs" editor in the project tree.
2. Switch to the "Alarm logs" tab.
3. Create an alarm log.
4. Make the required settings for the alarm log.
5. Open the "HMI alarms" editor in the project tree.
6. For the alarm class "SystemNotification", define the alarm log created in the "Log" column.
7. If required, you can define the alarm log for other classes.

Result
System events for collaboration are displayed in Runtime as logged alarms in the alarm view of
the collaboration device.
The system events contain, for example, information on the connection status. Alarms for
each connected device are displayed.

See also
Log basics (Page 837)
Logging alarms (Page 769)

Using distributed systems
18.2 Unified Collaboration

System Manual, 11/2022 7571

18.2.2.4 Defining collaboration settings
A device must be uniquely identifiable in order for it to participate in Unified Collaboration. You
make the settings in the "Collaboration" or "Remote access > Collaboration" area of the Runtime
settings of the HMI device.

Identification

Note
The following information must be different for all devices participating in Unified Collaboration:
• System ID
• Collaboration name
• IP address / Host name
If a collaboration device cannot be uniquely identified in all of its information, the configuration
is invalid. Errors can occur during the further configuration.

Using distributed systems
18.2 Unified Collaboration

7572 System Manual, 11/2022

• System ID
This ID is used for communication between the devices.
The value can be between 1 and 2046. The system ID must be unique for devices within the
project.

• Collaboration name
If "Generate collaboration name automatically" is enabled, the collaboration name
corresponds to the device name. Changes to the device name are transferred automatically.
If "Generate collaboration name automatically" is disabled, assign the collaboration name
manually. The assigned name must be unique across the system and can consist of up to 128
characters.

• IP address / Host name
The IP address must correspond to the IPv4 format. All devices connected via Unified
Collaboration must be in the same network. The IP address or the host name must be unique.

Connect actively to
Lists all HMI devices available for collaboration and shows the system ID and IP address/host
name.
To select a device as collaboration device, activate the device.

Note
System events for collaboration
System events for collaboration are only available for the current HMI device and the HMI devices
that you select under "Connect actively".
The system events contain, for example, information on the connection status. Alarms from
each connected device are displayed. System events are displayed in the "Alarm view" control as
logged alarms.

Requirement
• An HMI device has been created.

Procedure
To define the settings for Unified Collaboration, follow these steps:
1. Open the "Devices" tab in the project tree.
2. Open the Runtime settings of the respective HMI device.
3. Switch to the "Collaboration" area.

With Unified Comfort Panel you will find the "Collaboration" area under "Remote access".
4. Select the check box "Enable collaboration" under "General settings".

Using distributed systems
18.2 Unified Collaboration

System Manual, 11/2022 7573

5. Assign a system ID for the HMI device under "Identification".
Note
The system ID is incremented separately for different projects. To ensure a unique
assignment, change the ID manually.

6. Specify the collaboration name.
7. Enter the IP address or the hostname of the device.
8. Select the collaboration devices under "Connect actively to".

In order for a device to be visible under "Connect actively to", the "Enable collaboration"
option must be activated for this device.

See also
Restrictions (Page 7560)
Basics (Page 7557)
Changing the collaboration settings (Page 7574)

18.2.2.5 Changing the collaboration settings

Introduction
A device must be identifiable by a unique system ID for it to participate in Unified Collaboration.
When you make changes in the Runtime settings of the HMI device under "Collaboration", you
must ensure that the information is valid for all devices participating in Unified Collaboration.

Note
When you change the collaboration settings of a device participating in Unified Collaboration,
you must completely compile and download the projects of all participating devices.

Changing the collaboration settings
To change the collaboration settings, follow these steps:
1. Change the collaboration settings of an HMI device.
2. Check whether the following information is different for all devices participating in Unified

Collaboration:
– System ID
– Collaboration name
– IP address / Host name
Invalid entries are highlighted in red.

Using distributed systems
18.2 Unified Collaboration

7574 System Manual, 11/2022

3. If all devices participating in Unified Collaboration are in one project, follow these steps:
– Perform a full compilation and download of the projects of all participating HMI devices.

4. If the screen references of the device whose collaboration settings were changed are made
available in other projects, follow these steps:
– Export the screen references of the HMI device.
– Import the screen references of the HMI device into another project.

The existing data is overwritten.
– Perform a full compilation and download of the projects of all participating HMI devices.

See also
Defining collaboration settings (Page 7572)
Complete reloading of a project (Page 7187)
Basics of downloading projects (Page 7182)
Basics for downloading projects (Page 7147)
Complete reloading of a project (Page 7152)

18.2.3 Using Unified Collaboration

18.2.3.1 Configuring a screen window within a project

Requirement
• The collaboration devices are in the same network and have access to one another.
• The required certificates are provided.
• The Runtime settings of the collaboration devices are configured.
• Screens are configured for the collaboration devices.

Procedure
1. Open the screen on the device on which you want to display screens of the collaboration

device.
2. Add a screen window to the screen.
3. Open the Inspector window under "Properties > Properties > General > Screen".
4. Click the selection button in the "Static value" column.

A new dialog opens.
5. Select the collaboration device in the left area of the window.

Using distributed systems
18.2 Unified Collaboration

System Manual, 11/2022 7575

6. Select the screen to be displayed in the right area of the window.
7. Confirm your selection.

Note
When you delete a device that is participating in collaboration, the links of its screens to the
screen windows of other HMI devices are removed as well.
When the same device is to participate in collaboration again, the screens must be linked once
again to the screen windows.

Using scripts
Alternatively, you can also configure screen windows via a script:
1. Perform steps 1 and 2 as described above.
2. Open the Inspector window.
3. Configure a script:

– For an event
– For an object property

4. Enter the following line:
Screen.Windows("Screen window_1").Screen = "HMI_RT_1::Screen_1";
Alternatively, use the snippet "Change Screen in Screen window of current screen".

5. Adapt the name of the screen window, the HMI device and the screen.
In the example, "Screen window_1" is the screen window of the current device and
"HMI_RT_1::Screen_1" is the screen of the device connected via Unified Collaboration.

Result
After compiling and downloading, the screen of the collaboration device is displayed in screen
window in Runtime.

See also
Basics (Page 7557)
Restrictions (Page 7560)

Using distributed systems
18.2 Unified Collaboration

7576 System Manual, 11/2022

18.2.3.2 Configuring screen windows from different projects

Export screen references for Unified Collaboration

Introduction
To use Unified Collaboration, the screen references of the screens that are to be available in the
Runtime of another HMI device must be exported.
Once this file has been imported into a project, you can use the screens for Unified
Collaboration.

Requirement
• In the Runtime settings, the IP address or host name of the HMI device that provides the

screens for collaboration is specified under "Collaboration".
• At least one screen is configured.
• The required certificates are provided.

Procedure
1. Expand the folder of the device in the "Devices" tab of the project navigation.
2. Open the "Collaboration data" editor.

Using distributed systems
18.2 Unified Collaboration

System Manual, 11/2022 7577

3. Expand the device.
All available screens of the device are listed.

4. Select the screens you want to export. To do this, put a check mark in the "Export" column of
the screen or the group.

5. Click the export icon .
Note
If collaboration is disabled in the Runtime settings of the HMI device, the "Unified
Collaboration Export" dialog appears. The export can only be continued when the entries in
the Runtime settings are complete:
• System ID
• Collaboration name
• IP address / Host name
A new window opens.

6. Enter a name under which the file is to be saved.
The "Export completed" dialog box appears.

Note
Only screen references from a single device can be exported with each export operation. To
export the screen references of another device, switch to the device and repeat the operation.

Using distributed systems
18.2 Unified Collaboration

7578 System Manual, 11/2022

Result
You have exported the screen references of the device. You can import the screens into any
project.

Note
The exported xml file must not be modified manually.

Import screen references for Unified Collaboration

Introduction
To use Unified Collaboration, import screen references from collaboration devices. These
devices can be either HMI devices of the same project or of another project.

Requirement
• The required certificates are provided.
• The screen references of a collaboration device are exported.

Note
The exported XML file must not be modified manually to ensure error-free import and use of
the screens in Runtime.

Procedure for initial import
1. In the "Devices" tab of the project navigation, expand the "Common data" folder >

"Collaboration devices".
2. Open the "Collaboration Devices" editor.
3. Click the import icon .

A new window opens.
4. Select the xml file you want to import.

Using distributed systems
18.2 Unified Collaboration

System Manual, 11/2022 7579

5. Confirm all dialogs.
The "Import completed" dialog box appears.
The HMI device whose screen references you have imported now appears in the list.

6. Expand the list of the newly imported HMI device to see the screens.

Note
Only screen references from a single device can be imported with each import process. If you
want to import the screen references of another device, repeat the procedure.

Procedure for repeated import
If you want to once again import screen references that have already been imported, the
procedure is the same as for the initial import. The following collaboration settings must not
differ from the previously imported device and must be unique across the system:
• Collaboration name
• System ID
• IP address / Host name
If a value is used more than once, the data import cannot be performed. The import is
aborted with an error message in this case.
The previous data is overwritten by the successful import.

Using distributed systems
18.2 Unified Collaboration

7580 System Manual, 11/2022

Deleting a collaboration device
To delete imported Unified devices from the list, click or use the "Delete" command on the
shortcut menu. Individual screen references cannot be deleted. Attempting to delete a single
screen reference will delete the entire device from the list.

Result
You have made the screens of a collaboration device available for Runtime of an HMI device of
the project.

Note
The imported screen references of an HMI are visible to all HMI devices of the current project.

Configuring screen windows from different projects

Requirement
• Screens are configured for the collaboration devices.
• Export and import of the screen references are completed.
• All Runtime settings are configured and the collaboration devices are connected.
• The users in the participating projects are identical.

Note
Using the central user administration (UMC)
If you want to use HMI devices in multiple projects for Unified Collaboration, use the central
user administration (UMC). This reduces the configuration effort.

Procedure
1. Open the screen on the device on which you want to display screens of the collaboration

device.
2. Add a screen window to the screen.
3. Open the Inspector window under "Properties > Properties > General > Screen".
4. Click the selection button in the "Static value" column.

A new dialog opens.
5. Select the collaboration device in the left area of the window.

Using distributed systems
18.2 Unified Collaboration

System Manual, 11/2022 7581

6. Select the screen to be displayed in the right area of the window.

7. Confirm your selection by clicking on the green check mark.

Note
When you delete a device that is participating in collaboration, the links of its screens to the
screen windows of other HMI devices are removed as well.
When the same device is to participate in collaboration again, the screens must be linked once
again to the screen windows.

Using scripts
Alternatively, you can also configure screen windows via a script:
1. Open the screen on the device on which you want to display screens of the collaboration

device.
2. Add a screen window to the screen.
3. Open the Inspector window.
4. Configure a script:

– For an event
– For an object property

5. Enter the following line:
Screen.Windows("Screen window_1").Screen = "HMI_RT_1::Screen_1";
Alternatively, use the snippet "Change Screen in Screen window of current screen".

6. Adapt the name of the screen window, the HMI device and the screen.
In the example, "Screen window_1" is the screen window of the current device and
"HMI_RT_1::Screen_1" is the screen of the device connected via Unified Collaboration.

Using distributed systems
18.2 Unified Collaboration

7582 System Manual, 11/2022

Result
After compiling and downloading, the screen of the connected HMI device is displayed in
Runtime in the screen window via Unified Collaboration.

See also
Export screen references for Unified Collaboration (Page 7577)
Restrictions (Page 7560)

18.2.3.3 Display messages from participating devices

Requirement
Several HMI devices are configured as participating devices for Unified Collaboration.

Procedure
1. Configure a screen for one of the devices.
2. Place an alarm control on the screen.
3. Select the "Systems" property for the alarm control.

Using distributed systems
18.2 Unified Collaboration

System Manual, 11/2022 7583

4. Expand the list box.
The participating devices are displayed.

5. Enable the devices whose alarms are to be displayed.

At least one device must be selected.
Default setting: The local device is selected.

Result
In runtime, the alarm control shows the alarms from the selected participating devices.

18.2.4 Example: Connecting HMI devices from two projects with Unified
Collaboration

This example shows how to access screen objects of a Unified PC and two Unified Comfort Panels
using Unified Collaboration across devices and projects.

Using distributed systems
18.2 Unified Collaboration

7584 System Manual, 11/2022

Screens of the two Unified Comfort Panels should be operable in the Runtime project of the
Unified PC. One of the Unified Comfort Panels is created in another project. The screens of
the Unified Comfort Panels are displayed in a screen window. You switch the display of the
screens in the screen window by clicking on buttons.

Preparation
• All devices are located in a network and are uniquely identifiable.
• The Unified Collaboration components are enabled in the Windows Firewall.
• The system times of the individual devices differ by less than 3 minutes.
Create and distribute the required certificates using the Certificate Manager:
1. Open the Certificate Manager on the Unified PC.
2. Create a new root certificate for your plant.
3. Create a "Runtime Collaboration certificate" for each device.
4. Transfer the root certificate and one "RT Collaboration certificate" each to the collaboration

devices.

Creating projects and adding devices
1. Create two projects: "Project1" and "Project2".
2. Configure a "PC-System_1" Unified PC in "Project1".

"PC-System_1" is created with the HMI device "HMI_RT_1".
3. Configure a "HMI_2" Unified Comfort Panel in "Project1".
4. Configure a "HMI_3" Unified Comfort Panel in "Project2".
5. Create a "Screen_1" screen for each of the two Unified Comfort Panels.

Runtime settings of the "PC-System_1" Unified PC
1. Expand the folder "PC-System_1" in the "Project tree" under "Devices".
2. Expand the folder "HMI_RT_1".
3. Open the "Runtime settings" of the "HMI_RT_1".
4. Switch to the "Collaboration" area.
5. Activate "Enable collaboration".
6. Check and amend the following settings:

– The "System ID" is 1.
– "Generate collaboration name automatically" is selected.

The "Collaboration name" is "HMI_RT_1".
This setting cannot be changed.

– Specify IP address or host name.
The address must correspond to the IPv4 format.

Using distributed systems
18.2 Unified Collaboration

System Manual, 11/2022 7585

Runtime settings of the "HMI_2" Unified Comfort Panel
1. Expand the folder "HMI_2" in the "Project tree" under "Devices".
2. Open the "Runtime settings".
3. Switch to the "Collaboration" area.
4. Activate "Enable collaboration".
5. Check and amend the following settings:

– The "System ID" is 2.
– "Generate collaboration name automatically" is selected.

The "Collaboration name" is "HMI_RT_2".
This setting cannot be changed.

– Specify IP address or host name.
The address must correspond to the IPv4 format.

Runtime settings of the "HMI_3" Unified Comfort Panel
1. Open "Project2".
2. Expand the folder "HMI_3" in the "Project tree" under "Devices".
3. Open the "Runtime settings".
4. Switch to the "Collaboration" area.
5. Activate "Enable collaboration".
6. Check and amend the following settings:

– The "System ID" is 3.
– "Generate collaboration name automatically" is cleared.

The "Collaboration name" is "HMI_RT_3".
– Specify IP address or host name.

The address must correspond to the IPv4 format.

Exporting screen references
To operate the screens of the Unified Comfort Panels in the Runtime of the Unified PC, the screen
references of the Unified Comfort Panel "HMI_3" must be exported from "Project2".
Follow these steps:
1. In the project tree, expand the folder of the respective devices in the "Devices" tab.
2. Open the "Collaboration data" editor.
3. Expand the device by clicking on the arrow.

All available screens are listed.
4. Select the "Screen_1" screen. To do this, put a check mark in the "Export" column of the

corresponding screen.

Using distributed systems
18.2 Unified Collaboration

7586 System Manual, 11/2022

5. Click Export .
A new window opens.

6. Enter a name under which the file is to be saved.
The "Export completed" dialog box appears.

Importing screen references
To operate the screens of the Unified Comfort Panels in Runtime of the Unified PC, the screen
references of the Unified Comfort Panel "HMI_RT_3" must be imported into "Project1".
To import screen references, follow the steps below:
1. In the "Devices" tab of the project navigation, expand the "Common data" folder >

"Collaboration devices".
2. Open the "Collaboration Devices" editor.
3. Click Import .

A new window opens.
4. Select the xml file you want to import.
5. Confirm all dialogs.

The "Import completed" dialog box appears.
The HMI device whose screen references you have imported now appears in the list.

6. Expand the list of the newly imported HMI device to see the screens.

Connecting actively to collaboration devices
Once the import of the "HMI_RT_3" collaboration device is complete, the devices must be
actively connected in the Runtime settings. Follow these steps:
1. Open the Runtime settings of the "HMI_RT_1" Unified PC.
2. Switch to the "Collaboration" area.
3. Activate the collaboration devices "HMI_RT_2" and "HMI_RT_3" under "Connect actively to".

The collaboration devices "HMI_RT_2" and "HMI_RT_3" are available for collaboration.

Configuring the screen window
In the following, a screen is configured for the Unified PC in which a screen window is inserted.
Screens of the two Unified Comfort Panels can be displayed and operated in this screen window.
1. Expand the folder "PC-System_1" in the "Project tree" under "Devices".
2. Expand the folder "HMI_RT_1" and the "Screens" folder.
3. Add a screen.

The editor of the screen opens.
4. Add a screen window.
5. Select a screen window.
6. Open the Inspector window under "Properties > Properties > General > Screen".

Using distributed systems
18.2 Unified Collaboration

System Manual, 11/2022 7587

7. Click the selection button in the "Static value" column.
A new dialog opens.

8. Select "HMI_2 > Screens" in the left area of the window.
9. Select the "Screen_1" screen in the right area of the window.
10.Confirm your selection.

Configuring buttons
To configure the buttons for the screen change in the screen window, follow these steps:
1. Open the screen of the "HMI_RT_1" Unified PC in which the screen window is located.
2. Configure a "HMI_2" button.
3. Configure a "HMI_3" button.
4. Select the "HMI_2" button.
5. Open the Inspector window under "Properties > Events".
6. Select the "Click left mouse button" event.

The function list is displayed.
7. Select the "ChangeScreen" system function.
8. Open the selection window of the "Screen name" parameter.
9. Select "HMI_2 > Screens" in the left area of the window and confirm the selection.

The "Screen name" parameter contains the value "HMI_RT_2 :: Screen_1".
10.Specify the type of "Screen window" for the "Screen window path" parameter.
11.Open the selection menu and select the screen window.
12.Select the "HMI_3" button.
13.Open the Inspector window under "Properties > Events".
14.Select the "Click left mouse button" event.

The function list is displayed.
15.Select the "ChangeScreen" system function.
16.Open the selection window of the "Screen name" parameter.
17.Select "HMI_3 > Screens" in the left area of the window and confirm the selection.

The "Screen name" parameter contains the value "HMI_RT_3 :: Screen_1".
18.Specify the type of "Screen window" for the "Screen window path" parameter.
19.Open the selection menu and select the screen window.

Starting Runtime
1. Compile and download all HMI devices.
2. Open Unified PC Runtime.

Using distributed systems
18.2 Unified Collaboration

7588 System Manual, 11/2022

Result
• In Runtime, the screen of the "HMI_2" Unified Comfort Panel is initially displayed in the screen

window.
• When you click the "HMI_2" button, the screen of the Unified Comfort Panel "HMI_2" is

displayed in the screen window.
• When you click the "HMI_3" button, the screen of the Unified Comfort Panel "HMI_3" is

displayed in the screen window.

See also
Defining collaboration settings (Page 7572)
Export screen references for Unified Collaboration (Page 7577)
Import screen references for Unified Collaboration (Page 7579)
Configuring screen windows from different projects (Page 7581)
Creating certificates (Page 7564)
Distributing and installing certificates (Page 7567)

18.3 Web Client

18.3.1 Web client basics
By using the web client you can access the runtime of a Unified PC or Unified Comfort Panel in
the network from any device. The accessing device can be a PC or a smartphone, for example.

Access to the web client
By default, you use the web client for local access to your Unified PC runtime.
For Unified Comfort Panel, you must activate the web client in the TIA Portal in the Runtime
settings of the Unified Comfort Panel. Alternatively, you can manage the web client directly in
the Control Panel of the Unified Comfort Panel.
When you access a Unified PC or a Unified Comfort Panel for the first time, you load a
certificate to enable a secure connection. Afterwards, you operate the runtime as always.
Each web client is autonomous and independent of the runtime displayed locally on the HMI
device. We are distinguishing here between synchronous and asynchronous functions.
You can access a runtime simultaneously from multiple web clients.

Note
Use the latest web browser version
Use the latest version of your web browser to access the web client.

Using distributed systems
18.3 Web Client

System Manual, 11/2022 7589

License
For remote access to a WinCC Unified Runtime with web client, you need a license depending on
the HMI device used, the number and the type of accesses.

See also
Opening local user management in the "Browser" screen object (Page 6928)

18.3.2 Mode of operation of the web client
Each web client is autonomous and partially independent of other web clients and the runtime
displayed locally on the HMI device. For the runtime to run without errors and expediently, we
distinguish between asynchronous and synchronous functions. Some functions are not
supported at all or only partially supported in the web client.
All languages configured for the runtime project are supported in the web client.

Synchronous functions
When synchronous functions are executed, the change is applied to the local runtime and in the
runtime of other web clients.
Synchronous functions are all changes that change process data and project-related
properties, such as:
• Change tag values
• Acknowledging alarms
• Changing log entries

Note
Changes of properties at screen objects
Properties of screen objects that were changed through a user action are not applied to the local
Runtime and other web clients.
Example: Color, height and width of screen objects

Asynchronous functions
Asynchronous functions are executed independent of the local runtime and other web clients.
Asynchronous functions are mainly customizable display settings, such as:
• Change screen
• Change language
• Zoom

Using distributed systems
18.3 Web Client

7590 System Manual, 11/2022

• Filter
• Display in screen windows

Scripts and system functions
Scripts and system functions are mainly executed on the HMI device on which the runtime is
running.
A few system functions are executed on the device on which the web client is run, such as:
• "ExportParameterSets"
• "ImportParameterSets"

System functions under "HMIRuntime.Device.SysFct"
The following system functions under "HMIRuntime.Device.SysFct" are partially supported:
• "SetDHCPState":

The "mode" parameter can be changed.
• "SetNetworkInterfaceState":

The "adapterName" parameter can be changed.
The following device-dependent system functions under "HMIRuntime.Device.SysFct" are
executed on the HMI device that is accessed via the web client. The effect of these system
functions is not visible via the web client.
• "EjectStorageMedium"
• "StopRuntime"
• "ShowControlPanel"
• "ShowSoftwareVersion"
• "StartProgram"

Web client on the Unified Comfort Panel
If you want to access another HMI device from the Unified Comfort Panel using the web client,
use the "Browser" control.

Option to changer user
If you use runtime locally on the Unified Comfort Panel, you will be shown an option to switch
the user if you do not have sufficient functional rights. This option does not apply to access via
a web client. In this case, a note about insufficient authorizations is displayed in the web client.

Using distributed systems
18.3 Web Client

System Manual, 11/2022 7591

18.3.3 Activate web client for Unified Comfort Panel

Requirement
• A project has been created.
• A Unified Comfort Panel has been configured.

Enabling the web client in the TIA Portal
1. Open the runtime settings of the Unified Comfort Panel.
2. Expand the "Remote access".
3. Select "Web Client".
4. Enable the "Enable web access to runtime" option.

A note about licensing is displayed.

Enabling the web client in the Control Panel
1. Open the Control Panel of the Unified Comfort Panel.
2. Select "Runtime properties > Web client".
3. Select "Enable web access to runtime".

18.3.4 Using the web client

Requirement
• The web client is enabled when a Unified Comfort Panel is used.
• The project has been compiled without errors and loaded.
• The project runs in runtime.

Using distributed systems
18.3 Web Client

7592 System Manual, 11/2022

Procedure
To access the runtime of a different HMI device using the web client, follow these steps:
1. In the web browser, specify the IP address or the fully qualified name (name and domain) of

the HMI device running runtime.
If you want to access the runtime of a Unified Comfort Panel, use the IP address, for example
"https://141.73.65.245/".
If you are using a browser that runs directly on the HMI device, you can also use "localhost"
instead of the IP address.
To access the Runtime project directly, use "https://<ip>/device/WebRH", note the use of
lowercase/uppercase letters, and use the IP address of the HMI device instead of the
placeholder "<ip>".

2. If you access the runtime of the HMI device from this device for the first time and there is no
corresponding certificate, you will receive a security warning. Follow these steps:
– Continue loading the web page.
– Select "Certificate Authority" or the symbol or the message "Not secure" in the address line

of the browser.
The certificate is downloaded.

– Install the certificate in the web browser.
– Reload the page.

Note
If you reset the time on the web client after installing the certificate so that it is before the
time the certificate was created, the certificate is invalid. Install a valid certificate.

The WinCC Unified home page is displayed.
After complete download of a project, an error can occur when you open the WinCC Unified
home page (SwacLogin).
You can find additional information at SwacLogin: Errors after complete download
(Page 7601).
Note
If you experience display problems in the web client, completely delete the browser data
(history, form entries, etc.).

3. Select "WinCC Unified RT".
The user login appears.

4. Enter the user name and password and select "Log in".

Result
The runtime of the remote HMI device is displayed.
The Runtime project is displayed in the language that is set in the "User login" dialog. If this
language is not configured in the Runtime settings of the HMI device, the language that has
the lowest number in the "Order" column under "Runtime settings > Language & font" in the
TIA Portal is used.
Depending on the access authorization, you the option to monitor and operate the runtime.

Using distributed systems
18.3 Web Client

System Manual, 11/2022 7593

See also
Installing a certificate in the browser when accessing via web client (Unified PC) (Page 7594)
Installing a certificate in the browser when accessing via web client (UCP) (Page 7601)

18.3.5 Installing a certificate in the browser when accessing via web client
(Unified PC)

Using root certificates
To enable web browsers to establish a secure connection to WinCC Unified, the current root
certificate of the WinCC Runtime must be known in the web browser as a trusted certification
authority.
By installing the web server certificate on the PC device, the public root certificate is made
available as a download for installation in web browsers on the WinCC Unified home page.
The procedure for installing the root certificate differs depending on your web browser.

Use of self-signed certificates
As an alternative to the root certificate, you can use a self-signed certificate.

NOTICE
Security risk from self-signed certificate
A self-signed certificate is not issued by a trusted certification authority.
If you use a self-signed certificate from an untrustworthy source, the data transfer is not
protected from attacks.
Before using self-signed certificates, check the source.
Depending on the firewall and network settings, the use of self-signed certificates may be
prohibited.

The installation of self-signed certificates is not supported by all web browsers. Depending on
the web browser, it is possible to define exceptions.
For more detailed information, refer to the operating instructions of the web browser.

Using distributed systems
18.3 Web Client

7594 System Manual, 11/2022

Installing the root certificate for Chrome and Microsoft Edge
Chrome and Microsoft Edge use the Windows system certificate store.
• On devices with WinCC Unified installation that have been configured with the Certificate

Manager, these web browsers can immediately establish a secure connection to the WinCC
Unified web pages because the root certificate has already been installed in the system
certificate store.

• On devices without WinCC Unified Installation the root certificate must be installed
manually.

To install manually, follow these steps (for example, Microsoft Edge):
1. Open the WinCC Unified home page via the URL https://<host name>

At first, an error message appears:

2. Open the field with the error details and confirm that you want to open the web page.
3. On the WinCC Unified home page, select the field "Certificate Authority" and confirm "Open

file" in the download dialog.
The root certificate is downloaded to the pre-selected download directory.

Using distributed systems
18.3 Web Client

System Manual, 11/2022 7595

4. Open the downloaded file.
The root certificate is opened with the Windows standard form.

5. To import the root certificate into Windows, select "Install Certificate".
6. In the certificate import wizard, select "Local Machine" as the storage location, "Trusted Root

Certification Authority" as the certificate store and start the import process.

Installing the root certificate for Firefox
Firefox uses its own certificate store and must therefore be configured manually on each device
once:
1. Open the WinCC Unified home page via the URL https://<host name>

At first, an error message appears:
2. Open the field "Advanced" and confirm the field "Accept the Risk and Continue".

An exception is entered for this page in the Firefox certificate management.
3. On the WinCC Unified home page, select the field "Certificate Authority".

Using distributed systems
18.3 Web Client

7596 System Manual, 11/2022

4. Save the root certificate. To do this, click "Save file" in the Firefox dialog that follows.
5. Store the certificate in the Firefox certificate store. Proceed as follows:

– Open the "Settings" page of Firefox.
– Select "Privacy & Security". There you will find the "Certificates" area further down. Open

"Show certificates...".
– In the "Certificate Management" window, select the "Certification authorities" tab:

– Click "Import" and select the root certificate you saved in step 3.
– In the window that opens, select the option "This certificate can identify websites" and

confirm your selection.
– Click "Server" and remove the exception that was created by step 2.

Using distributed systems
18.3 Web Client

System Manual, 11/2022 7597

Installing the root certificate on iOS devices
iOS uses its own certificate store and must therefore be configured manually on each device
once. An error message also appears when the WinCC Unified home page is opened.
1. Open the field "Advanced" and confirm the field "Accept the Risk and Continue".
2. On the WinCC Unified home page, select the field "Certificate Authority".

3. Select "Install".

Using distributed systems
18.3 Web Client

7598 System Manual, 11/2022

4. Select "Install" again.

You see the entry "Trusted".

Using distributed systems
18.3 Web Client

System Manual, 11/2022 7599

5. Select "General > Info > Certificate Trust Settings".

6. Activate "WinCC Unified CA" and select "Next".

See also
Using the web client (Page 7592)

Using distributed systems
18.3 Web Client

7600 System Manual, 11/2022

18.3.6 Installing a certificate in the browser when accessing via web client (UCP)

Using the web server certificates
To enable web browsers to establish a secure connection to the Runtime of the Unified Comfort
Panel, the certificate in the web browser must be known as trusted.
The procedure for installing the certificate differs depending on your web browser.

Use of self-signed certificates
When accessing the Unified Comfort Panel via web client, a self-signed certificate is used.

NOTICE
Security risk from self-signed certificate
A self-signed certificate is not issued by a trusted certification authority.
If you use a self-signed certificate from an untrustworthy source, the data transfer is not
protected from attacks.
Before using self-signed certificates, check the source.
Depending on the firewall and network settings, the use of self-signed certificates may be
prohibited.

The installation of self-signed certificates is not supported by all web browsers. Depending on
the web browser, it is possible to define exceptions.
For more detailed information, refer to the operating instructions of the web browser.

See also
Using the web client (Page 7592)

18.3.7 SwacLogin: Errors after complete download
After complete download of a project to a Unified PC, an error can occur when you open the
WinCC Unified home page. The error can occur regardless of whether you open the home page
locally on the PC or from a different device.
A possible cause of the error is the deletion of the browser cache.

Using distributed systems
18.3 Web Client

System Manual, 11/2022 7601

Error description
In "Chrome" and "MS Edge", the error is displayed with the following alarm:

In "Firefox", the error is displayed with the following alarm:

After accepting the warning of a potential security risk, the page remains empty in Firefox.
Only the background screen is visible.

Using distributed systems
18.3 Web Client

7602 System Manual, 11/2022

Remedy the error in "Chrome" and "MS Edge"
To remedy the error in "Chrome" and "MS Edge", follow these steps:
1. Open a new tab.
2. Enter the URL address of the identity provider of the UMC server in the address line of the

browser. The URL is the same as the one in the error message without "/swaclogin", for
example, "https://uadtbf-01.asrd-lab.net/umc-sso".

3. The page with a warning regarding the secure connection is displayed.

Using distributed systems
18.3 Web Client

System Manual, 11/2022 7603

4. Accept the warning by clicking on "Proceed to uadtbf-01.asrd-lab.net (unsafe)".
5. The home page with the "User login" dialog is displayed.

Remedy the error in "Firefox"
To remedy the error in "Firefox", follow these steps:
1. Open a new tab.
2. Enter the URL address of the identity provider of the UMC server (ring server) in the address

line of the browser, for example, "https://uadtbf-01.asrd-lab.net/umc-sso".
3. A blank page opens. Close the page.
4. Refresh the home page with the function key <F5>. The home page with the "User login"

dialog is displayed.

See also
Using the web client (Page 7592)

Using distributed systems
18.3 Web Client

7604 System Manual, 11/2022

18.3.8 Logging out user
If you want to end your Runtime session, you have the following options to log out completely:
• Use the "Logout" system function.
• Log out in the user management.
• Close all instances, i.e. open windows, of the browser in use.

Requirement
• You are logged in to Runtime.
• When you want to log out in the Runtime project, the system function "Logout" is

configured, for example, to the event "Click left mouse button".

Logging out in the Runtime project with the system function "Logout"
• Select the button at which the system function "Logout" is configured.

Logging out in the user management
• Select "Logout" from the menu.

Your session is ended.

New data downloaded from the TIA Portal is applied during the next login.

Using distributed systems
18.3 Web Client

System Manual, 11/2022 7605

18.4 WinCC Smart Server

18.4.1 General

Introduction
With WinCC Smart Server, you can communicate between and with HMI systems via TCP/IP
connections (e.g. LAN).
You can use the Smart Server in combination with SIMATIC Unified Comfort Panels.

Use of the SmartServer
You use Smart Server in the following application scenarios:
• Distributed HMI devices with Smart Client applications for controlling large machines or

machines that are spread out over a large area.
• Remote control of an HMI device via the Internet or Intranet
User benefits:
• Flexible solution for access to HMI devices from any location
• Reduction of load on the field bus:

For example, Unified Runtime and Unified Comfort Panels provide a control system with
access to process data. No load is placed by the factory level on the sensitive field level with
respect to the necessary communication requirements. These requirements are handled by
Unified Runtime as well as with the Unified Comfort Panels.

• Expensive on-site service visits to be avoided by using the remote control. Unplanned non-
operation periods are reduced and the system productivity is increased.

Using distributed systems
18.4 WinCC Smart Server

7606 System Manual, 11/2022

18.4.2 Application scenarios

Remote diagnostics
A factory has a service contract with an external service company. The Unified Comfort Panel and
the service technician's PC are linked together over a TCP/IP-ready network. The service
technician accesses the Unified Comfort Panel via the Internet and executes remote diagnostics.

Application example
Among other things, flow rates are measured in the process control of a cooling unit.
Contamination in a feed line reduces the flow of coolant. When the flow rate drops below the
configured threshold value, the Unified Comfort Panel displays a warning.
The service technician then establishes a connection with the remote Unified Comfort Panel
and takes the appropriate actions.
Advantage: The downtime is reduced to a minimum by remote maintenance.

Distributed HMI devices
Distributed devices, so-called Smart Clients, are used for controlling large machines or machines
that are spread out over a large area.
The Smart Client establishes the connection to the Smart Server via the Smart Client
application.

Using distributed systems
18.4 WinCC Smart Server

System Manual, 11/2022 7607

The operator can control and monitor the system with the Smart Client application and the
Unified Comfort Panel. The operator sees the same screen with each Smart Client application
and on the Unified Comfort Panel.

18.4.3 Security concept for the Smart Server
Remote monitoring and remote control of the Smart Server is protected by two functions:
• Encryption of communication with the Smart Server
• Passwords

Passwords for the Smart Server
Remote monitoring and remote control of the Smart Server is password protected. You create a
password for each of two users.
• A password consists of exactly 8 characters.
• It contains at least one number (0-9)
• It contains at least one lowercase letter (a-z)
• It contains at least one uppercase letter (A-Z)
• It contains at least one of the following characters:

!$%&()*+,-./:;<=>?@[\]_{|}~^
• Passwords cannot be entered using copy & paste.
• The passwords for User1 and User2 cannot be identical.
• Passwords must not be empty.

Note
Passwords for the Smart Server
No passwords have been preset.
You cannot use Smart Server if both passwords are not assigned.

Encrypt communication to the Smart Server
The option "Secure communication via self-signed certificates" enables an encrypted
connection between Smart Client and Smart Server. When establishing the communication, the
Smart Server sends a self-signed certificate to the Smart Client. The certificate must be accepted
by the Smart Client.
Connections on Smart Client to Smart Server are then only possible on the basis of the
exchanged certificate.

Using distributed systems
18.4 WinCC Smart Server

7608 System Manual, 11/2022

18.4.4 Settings in the TIA Portal

Introduction
In the "Runtime settings" editor, you configure the requirements for using the Smart Server.
As an alternative, configure the settings in the Control Panel of the Unified Comfort Panel.
Note that the settings on the Unified Comfort Panel are overwritten when a project is
downloaded from the TIA Portal.

Requirement
• A project is open in the TIA Portal.
• A Unified Comfort Panel has been created.

Procedure
To configure the Smart Server, follow these steps:
1. Open the "Runtime settings" of the Unified Control Panels in the project tree.
2. In the "Runtime settings", expand the "Remote access" menu command.
3. Click "Smart Server".
4. Enable the "Enable Smart Server" setting in the "Smart Server Configuration" group.
5. Assign a password for "User1" and "User2" respectively.

Note the Rules for passwords (Page 7608).
6. Activate "Secure communications via self-signed certificates".

Note
If "Secure communication using self-signed certificates" is not enabled, the communication
is not encrypted.

7. If you do not want to use automatic port configuration, disable the option and assign a port
manually.

8. Compile and download the project onto the Unified Comfort Panel.

Using distributed systems
18.4 WinCC Smart Server

System Manual, 11/2022 7609

18.4.5 Settings in the Control Panel of the Smart Server
The settings on the Control Panel of the Unified Comfort Panel regulate which remote operator
is permitted to access the Smart Server application.
The options in the Control Panel are analogous to the runtime settings in the TIA Portal.
Note that the settings on the Unified Comfort Panel are overwritten when a project is
downloaded from the TIA Portal.

Procedure
To configure the Smart Server in the Control Panel of the Unified Comfort Panel, follow these
steps:
1. In the Control Panel of the Unified Control Panel, open the menu item "Network and Internet".
2. In the area "Remote access > Smart Server" enable the setting "Enable Smart Server".
3. Select one or more users for remote access.
4. Assign a password for each user.

Note the Rules for passwords (Page 7608).
5. Activate "Secure communication via self-signed certificate".

Note
If "Secure communication via self-signed certificate" is not enabled, the communication is
not encrypted.

6. If you do not want to use automatic port configuration, disable the option and assign a port
manually.

Using distributed systems
18.4 WinCC Smart Server

7610 System Manual, 11/2022

18.4.6 Configuring the Smart Client application

18.4.6.1 Dialog "New SmartServer: Connection"
This dialog opens when you click the "SmartClient" button in the taskbar.
It is used to set the desired Smart Server and to select the connection method.
The following configuration options are available to you:
SmartServer
Enter the address of the server to which the connection is to be established. You can find the
various options for entering the address under Remote control by means of the Smart Client
application (Page 7613).
Connection profil
Select the type of connection to the Smart Server according to the network you are using.
Options
Opens the "Smart Client Options" dialog box with the technical settings for the Smart Client
application.

18.4.6.2 "Options" dialog, "Connections" tab
The settings for the Smart Client application are specified in this dialog.
The following configuration options are available to you:
Format and encodings
Settings for compressing the screen data of the Smart Server.
• Use encoding

Preassigned based on the selection under "Connection profile".
Select the desired compression or "Raw" (no compression).

• Use 8-bit color
Reduces the color depth at the client to 8 bits (256 colors). The data are then transferred
faster. However, incorrect colors may result.

• Custom Compression level
Allows individual customizing of the compression level in the "Level" input field:
1 = least compression (faster); 9 = maximum compression (slower).

• Allow JPEG compression
Allows the use of JPEG compression (involves losses).
Enter the "Screen quality" in the input field underneath:
1 = least compression (faster); 9 = maximum compression (slower).

• Allow CopyRect encoding
Allows compression while using "similar rectangles".

Using distributed systems
18.4 WinCC Smart Server

System Manual, 11/2022 7611

Restrictions
• View only (inputs ingnored)

Sets the view mode for this Smart Client irrespective of the settings on the Smart Server. This
allows you to prevent unintended control operations.

• Disable clipboard transfer
Turns off the clipboard.
Applies only to the copying and pasting of texts.

Display
Settings for the screen display
• Scale by

Zooms in or zooms out the desktop to be displayed.
• Full-screen Mode

Displays the desktop to be shown in full-screen mode. If the display on the Smart Server is
larger than the screen of the Smart Client, it is scrolled automatically by the mouse
movement.

Mouse
Settings for the evaluation of mouse actions
• Emulate 3 Buttons (with 2-button click)

Emulation of a three-button mouse by a two-button mouse.
• Swap mouse buttons 2 and 3

Mouse buttons 2 and 3 are swapped.
Mouse cursor
Settings for the display of the cursor
Select the type of transfer of the mouse actions:
• Track remote cursor locally

The information on the location of the cursor is transferred separately from the screen
information. This speeds up the transfer of the cursor.

• Let remote server deal with mouse cursor
Moves the Smart Server mouse pointer to the Smart Client mouse pointer. This allows more
accurate cursor positioning.

• Don't show remote cursor
The cursor at the Smart Server is not included in the transfer.

18.4.6.3 "Options" dialog, "Globals" tab
Technical settings for the Smart Client application are made in this dialog.
The following configuration options are available to you:
Interface options
• Show toolbars by default

Shows the toolbar.
• Warn at switching to the full-screen mode

Outputs a message before the full-screen mode is activated.

Using distributed systems
18.4 WinCC Smart Server

7612 System Manual, 11/2022

• Number of connections to remember
The Smart Client creates a list of the recently used connections. This setting specifies the
number of connections listed.

• Clear the list of saved connections
The list is cleared.

Local cursor shape
Specifies the appearance of the local cursor. This makes it easier to differentiate between the
local mouse pointer and the remote mouse pointer.
Logging
• Write log to a file

Writes information to the logbook of the Smart Client application.
• Verbosity level

18.4.7 Remote control by means of the Smart Client application

Introduction
On the Smart Client, the Smart Client application provides the connection to the remote Unified
Comfort Panel.

Requirement
• Both devices are connected with via a TCP/IP capable network.
• In the TIA Portal project of the Smart Server or in the Unified Comfort Panel, the setting

"Enable Smart Server" is selected in the runtime settings under "Remote access > Smart
Server".
Note that the settings on the Unified Comfort Panel are overwritten when a project is
downloaded from the TIA Portal.

Sequence
Remote monitoring or remote control is supported on the Smart Server.
Remote monitoring or remote control can be implemented on the Smart Client using the
Smart Client application.
Remote control via the Smart Client application works as follows:
• Start the Smart Client application
• Establish connection
• Password input
• Operator control and monitoring on the Unified Comfort Panel

Using distributed systems
18.4 WinCC Smart Server

System Manual, 11/2022 7613

Install SmartClient application
The SmartClient application is executed via the "SmartClient.exe" file.
• If WinCC Runtime is installed on the SmartClient, the SmartClient application is also installed.
• If WinCC Runtime is not installed on the SmartClient, you have several options:

– You copy the SmartClient application from the WinCC Runtime product DVD.
– You copy the SmartClient application from the installation path from another PC.

Start the Smart Client application
• To connect to the remote Unified Comfort Panel, call the Smart Client application and enter

the IP address of the Smart Server.
– IP address or server name:port number

- or -
– IP address or server name:display number
Example: "192.168.0.1::5800"

Other options to start the Smart Client application:
• Enter the name of the executable file and the IP address in the command line:

smartclient.exe 192.168.0.1.
The Logon dialog box appears.
- or -

• Enter the name of the executable file, the IP address and the password in the command line:
 smartclient.exe 192.168.0.1 /password <Password>.

Using distributed systems
18.4 WinCC Smart Server

7614 System Manual, 11/2022

Password input
• Password input at the Smart Server

Instead of the on-screen keyboard, the following message is displayed on the Smart Client
when you enter the password directly at the Smart Server: "Remote access by Smart Options
is in Progress. Please wait until the input of values has been ended." This measure prevents
keyboard input for entering the password from being displayed on the Smart Client.

• Password input at the Smart Client
The display of the screen keyboard on the Smart Server by actions on the Smart Client is
suppressed. Use the local on-screen keyboard for entries at the Smart Client. The local on-
screen keyboard on the Smart Client is automatically displayed. Close the on-screen keyboard
manually. Select "Input > Hide Input Panel" to hide the local on-screen keyboard.
Note
The entries with full-screen keyboard are not protected on devices with a screen size of ≤ 6''.
Entries in Control Panel Applets which do not use the full-screen keyboard are protected.

Note
Hidden password input is not supported by the on-screen keyboards of third-party products.

Note
It is not possible to enter special characters in combination with [AltGr].

Operation with the keyboard
For operator control via the keyboard, the following is available:

Keyboard shortcut Function
<Alt+Ctrl+SHIFT+O> Opens the "SmartClient options" dialog.
<Alt+Ctrl+SHIFT+F> Switches over to full screen mode
<Alt+Ctrl+SHIFT+R> Updates the display
<Alt+Ctrl+SHIFT+N> Opens the "New SmartServer Connection" dialog
<Alt+Ctrl+SHIFT+S> Save as
<Alt+Ctrl+SHIFT+T> Displays and hides the toolbar

Result
The entire layout of the remote Unified Comfort Panel is shown in the application window.
Depending on the configuration, you can specify monitoring only or operator control of all keys
with the mouse.

Using distributed systems
18.4 WinCC Smart Server

System Manual, 11/2022 7615

18.4.8 Use and limitations of the Smart Server

Use restrictions
When using the Smart Server, observe the following notes:
• Smart Server and Smart Client

– Use only simple projects.
– Avoid photographs and color gradients in screens.
– Avoid heavy background loads during operation, for example, those from user-defined

functions or logs.
– The maximum number of connected Smart Clients depends on the Unified Comfort Panel.

For additional information, see the "Performance features" documentation.
– To improve the performance of the Smart Server, you can disable the hardware

acceleration of the graphics card.
– For client access of a PC with touch screen to a SmartServer, the following applies to the

touch operation of the SmartClient:
Standard touch operation such as clicking or scrolling in lists is possible, but touch
gestures and events such as "Press" and "Release" are not supported.

– If you access a Unified Comfort Panel via the Smart Client, this leads to reduced
performance on the HMI device.

• Access protection
To protect access to an Unified Comfort Panel using different passwords, use the first
password for protected access and the second password for unprotected access; for example,
remote control with password and remote monitoring without password.
Passwords must be assigned. It is not permitted to leave passwords blank.

• Port
The connection to the web server is established via port 443 (HTTPS over SSL / TLS) or via port
80 (HTTP, unencrypted). For the web server to start without problems, make sure that port
is not in use by any other application, such as the IIS World Wide Web Publishing Service.

• Timeout
If the connection between the Smart Server and a Smart Client is interrupted, the server will
register this disconnection only with a certain delay. The delay is based on the Windows
standard configuration of TCP/IP Timeout.

Use-requirements in the company network
If the company network is protected by a Firewall, the system administrator must enable the
corresponding port:
• The Smart Server is connected to the network via port 5900.
You change the port number in the Runtime settings under "Remote access > Smart Server"
in the settings for "Communication" or in the same way in the Control Panel of the Unified
Comfort Panel.

Using distributed systems
18.4 WinCC Smart Server

7616 System Manual, 11/2022

Options 19
19.1 WinCC Audit

19.1.1 Basics

19.1.1.1 GMP compliance

GMP-compliant projects with WinCC
Traceability and therefore the documentation of production data is becoming increasingly
important in many sectors, for example
• Pharmaceutical industry
• Companies in the food and beverage industry or in the related mechanical engineering

industry
Storage of production data in electronic form offers many advantages compared to paper
documents, such as simple acquisition and logging of data.
Events that are relevant for monitoring and ensuring the correctness of the process occur
during runtime. Although the data provides information about a specific action, it is
complicated for the user to easily identify the relevant data in the data set, such as: Cause of
the change in value, actions that led to the change, or additional details about the change
itself (e.g. source, location, cause).
However, it is also important to ensure that data cannot be falsified and that it can be read at
any time.
Therefore, sector-specific and cross-industry standards have been developed for the
electronic documentation of production data.
The most important set of regulations is the FDA Guideline 21 CFR Part 11 for electronic data
records and electronic signatures issued by the FDA, the US Food and Drug Administration.
In addition, different EU regulations apply, for example, EU 178/2002, depending on the
industry.
Requirements for production systems in these industries have been developed on the basis
of 21 CFR Part 11 and the corresponding layout to comply with GMP (Good Manufacturing
Practice). They are also required for other industries.
The following primary requirements are derived from these directives and rules:
• Creation of an Audit Trail or operating trace in runtime

Based on this document, it is possible to trace the user who carried out an operator action on
the machine at what time.

• Important process steps must also be assignable to a clear responsibility, for example, via an
acknowledgment or a comment.

System Manual, 11/2022 7617

19.1.1.2 GMP-compliant configuration

Introduction
"Configuration conforms to GMP" means creating projects in accordance with "Good
Manufacturing Practice". The requirements are set out in FDA rules "21 CFR Part 11". The FDA is
the U.S. Food and Drug Administration. Eudralex Volume 4, Appendix 1, EMA regulation
178/2002 also applies. EMA is the European Medicines Agency.
GMP-compliant configuration means HMI devices have electronic production data
documentation functionalities.
Note that the WinCC Audit option is currently only available for Unified SCADA.

GMP-relevant and Audit Trail
WinCC offers the "Audit" option for implementing GMP compliance. Using the Audit option, the
"Configuration conforms to GMP" function can be enabled.
Enable the "Configuration conforms to GMP" function directly in the runtime settings of the
HMI device. GMP relevant functionalities are then added to WinCC. These functionalities are:
• Option to label tags as "GMP relevant".
• Suggestions for the comment with typical reasons for changes of GMP-relevant tags can be

pre-defined by selecting text lists.
• Automatic identification of significant changes in GMP-relevant tags
• Generation and storage of electronic records of the relevant changes - Audit Trail
• System function for recording relevant user actions - electronic recording
• Recording of manipulated log data with checksum
• Audit trail record for printing logged changes
Execution of or changes to labeled objects are saved in a special log, the "AuditTrail".

Licensing
To use the GMP relevant functionalities configured in WinCC in runtime, you need the following
license:
• WinCC Audit for RT Unified

19.1.1.3 Audit option

Advanced functions
The Audit option adds functions to WinCC to ensure that your project is GMP compliant.

Options
19.1 WinCC Audit

7618 System Manual, 11/2022

The following functionalities are added:
• Audit Trail

For each HMI device, you can create one Audit Trail .
Operator actions and system processes that are relevant for the FDA compliance of the
process are recorded in an Audit Trail during runtime.
– Actions by the system, such as starting up runtime or rejecting logon attempts.

Audit Trail certificates in Runtime
Audit Trail certificates are required for the HMI device. The certificates are used to check integrity
and prevent tampering with the archive. To install the certificate on the HMI device, use the
WinCC Unified Certificate Manager. Note that the maximum lifetime of a certificate is 150
months.

Note
Note that an error message appears in the alarm control without the certificate or with an
expired certificate.

Options
19.1 WinCC Audit

System Manual, 11/2022 7619

Extension of the WinCC engineering system
For HMI devices that support "Configuration conforms to GMP", the WinCC engineering system
is extended to include the following configuration options when GMP is enabled:
• The Audit Trail entry is added to the "Logs" editor
• A "Good Manufacturing Practice Settings" entry is added to the "HMI tags" editor in the

Inspector window of a "Properties > Properties" tag
• "InsertElectronicRecord" system function

See also
Configuring the "InsertElectronicRecord" system function (Page 7637)

19.1.1.4 Scope of logging
It is important to ensure that Audit-related processes are always logged in runtime in the Audit
Trail in a project with the option "Audit". Logging of the Audit Trail depends on the device used.
You have two options for logging your data in WinCC Unified:
• File-based logging

File-based logging allows you to log up to 5000 logging tags in an SQL Lite database.
You do not need a license to log logging tags in WinCC Unified PC.
You need a WinCC Unified Runtime (RT) license to log logging tags in WinCC Unified PC.

• Database-based logging
Database-based logging allows you to log all logging tags up to the high limit in an MS SQL
database.
Database-based logging is only available for WinCC Unified PC, and you need a WinCC
Unified Runtime (RT) license to log logging tags.
Besides the functionality, database-based logging also includes an MS SQL server. Therefore,
you need the "WinCC Unified Database Storage" license.

Scope of logging
The following Audit-relevant processes are logged depending on the configuration of the tags
of the project:
• Value changes of GMP-relevant tags by the user
• "InsertElectronicRecord" system function

You use the "InsertElectronicRecord" system function to record user actions that are not
automatically recorded by the Audit Trail.
You can configure this system function to screen calls, for example, or you configure function
lists containing system functions that do not require acknowledgment.

Options
19.1 WinCC Audit

7620 System Manual, 11/2022

19.1.1.5 Performance features of the GMP-compliant configuration

Supported HMI devices

Supported HMI devices
The qualification "GMP relevant configuration" can be configured for the following HMI devices:
• Unified PC
• Unified Comfort Panel

Restrictions

Restrictions
The following functions and configurations cannot be used simultaneously with the
qualification "GMP relevant configuration":
• PN direct keys
• DP DirectKey
• Events of screen objects

You can set important user actions as GMP-relevant in runtime, such as changing tag values.
In this case, you may not assign any other events to this graphic object.
When the event of a screen object is assigned actions which open a user dialog, you may not
be able to execute these actions at other events.

• Controlling GMP-relevant tags using a slider
The slider is not suitable for controlling GMP-relevant tags. Any operation of the slider will
continuously change the tag value. If this is a GMP-relevant tag, a flood of entries is
generated in the "AuditTrail".

19.1.2 Using the Audit trail

19.1.2.1 Enabling GMP compliant configuration

Introduction
The function is made available to the Audit Trail by labeling it "Configuration conforms to GMP".

Requirements
• A project is created.
• A GMP compatible HMI device has been created.

Options
19.1 WinCC Audit

System Manual, 11/2022 7621

Procedure
1. Click on the HMI device in the project tree.
2. Double-click on "Runtime settings" in the project tree. The editor opens.
3. Click on "Good Manufacturing Practice".
4. Select "Configuration conforms to GMP".

Result
The Audit option is now enabled for the HMI device.
The following functions can now be configured:
• Audit Trail log

– For each HMI device, you can create one Audit Trail
• "InsertElectronicRecord" system function
• GMP-relevant tags
• Reasons for GMP-relevant tags (available text lists with pre-defined comments for

acknowledgment in Runtime)
• GMP relevant recipes

19.1.2.2 Creating an audit trail

Requirements
"Configuration conforms to GMP" has been selected on the HMI device. You can only create one
Audit Trail per HMI device.

Options
19.1 WinCC Audit

7622 System Manual, 11/2022

Procedure
1. Click on the HMI device in the project tree.
2. Double-click "Logs".

The "Logs" editor will open.
3. Change to the "Audit Trail" tab.

An Audit Trail has been created.

4. Set the parameters of the "AuditTrail" in the Inspector window under "Properties > Properties
> General".

Storage medium and storage directory
The following settings are available for the storage medium and the storage directory:
• Default: You select the storage location that is defined in the WinCC Unified configuration on

the runtime machine as storage directory.
• Local: Under storage directory, enter the path to the storage location. Make sure that the user

has write permission.
• Project folder: As storage directory, you select the runtime folder to which the project data is

copied after the download.

Options
19.1 WinCC Audit

System Manual, 11/2022 7623

Log time period
The standard time period is 365 days. You can specify the log time period in the following
format: Days.Hours:Minutes:Seconds.

Maximum log size
The standard log size is 10 GB. The value is entered in MB. When the maximum log size has been
reached, the oldest entries are overwritten.

Log segments
The size of the log segments is specified either as a time period or a segment size. You specify
the following under "Properties > Properties > Segment":
• Segment time period: The standard time period for logging a single segment is 30 days. You

can specify the time period in the following format: Days.Hours:Minutes:Seconds.
• Maximum segment size: The standard segment size is 1 GB. The value is entered in MB.
• Segment start time: Specifies the start time of the log segment.

Backup
When the databases exist in the MSSQL format, you can create backups of the database under
"Properties > Properties > Backup".
1. Under "Backup mode", select the "Path" setting.
2. Enter a storage location under "Backup path".

19.1.2.3 Audit Trail reports

Basics
Based on an Audit Trail report, it is possible to trace the operator who carried out operator
actions at what time. The configuration engineer uses the WinCC Unfied Excel add‑in to
configure a report template with Audit Trail parameters that are relevant for quality assurance in
the manufacturing process. You can print out the report either as an Excel file, a PDF file or send
it via email.
General information on configuring report templates in the Excel add-in is available in
Creating report templates for production protocols (Page 7655).
General functions on the configuration of report jobs in runtime are available in Working
with production protocols in runtime (Page 7719).

Options
19.1 WinCC Audit

7624 System Manual, 11/2022

Audit Trail parameters
The following table contains an overview of the potential values of the individual report
columns:

Parameter Description
Time stamp Contains the time stamp at which the event occurred.
Object name Contains the name of the object that triggered the change.
User Contains the name of the logged-on user.

When no user is logged on, the field remains empty.
Operator Station Contains either the name of the PC, PLC or the IP address of the web client.
Old value Contains the tag value before the change.
New value Contains the tag value after the change.
Cause Contains the user comment.

Contains the confirmation of the desired state.
Event ID Contains the internal identifier of the event.
Tracking ID Contains the internal identifier to link the user action to the system response.
Provider type of the audit Contains an identifier for the type of intervention:

2 - Task scheduler
6 - Operator action
11 - System response

Audit provider Contains the name of the provider, for example, Scheduler, User Interface, Event Manager.
Type of operation Contains an identifier for the change:

1 - New value
2 - Updated value
3 - Deleted value

Object reference Contains an identifier of the triggering object. This parameter is reserved for internal purposes.
 Integrity Contains an identifier for proof that data was manipulated later.

See also
Add Audit (Page 7424)
Adding or editing configurations for audit (Page 7434)

Add Audit

Introduction
To output the Runtime device Audit Trail in a report, add an Audit data source item to a report
template.
You can find more information about the Audit option in WinCC Unified in the TIA Portal help.

Requirement
• The Audit option was activated in the engineering for the Runtime device.

Options
19.1 WinCC Audit

System Manual, 11/2022 7625

• The "Audit" option is activated in the connection settings of the Excel add-in.
• The "WinCC Unified" tab is visible in Excel.
• A time series segment is available.

Procedure
1. Click on "Segments" in the "Configuration" group.

The list with the segments already created is loaded.
2. Select a time series segment.

The segment is extended by the area for the data source items.
3. Click "+".
4. Select the "Audit" option.
5. Select the Audit Trail.
6. (Optional) To undo your selection, select the Audit Trail under "Selected data source items"

and click "Delete".
7. Confirm with "OK".

Result
The Audit data source item is displayed below the segment.

Options
19.1 WinCC Audit

7626 System Manual, 11/2022

If an Audit Trail is configured for the data source, the Audit data is inserted into the report
when the Runtime data is read into Excel and when it is generated in Runtime:
• In the legend table: Identifier of the overall status of the Audit Trail for the queried time range

in the "Audit Status" field

Value Description
Green No manipulations of the Audit Trail were found in

the queried time range.
Red Manipulations of the Audit Trail were found in the

queried time range. Single or multiple entries
have been deleted, added or changed.

Requirement: The "Audit status" option is activated on the segment under "Header
properties".
Note
Overall status for check mode "None"
If the check mode "None" is set in the configuration of the audit data sources item, the "Audit
status" field is always green.

• In the data table of the segment: Identifier of manipulations

Type of manipulation Identifier in the data table
Value of entries changed Directly at the entries
Entries added
Entries deleted The manipulated time range receives a start and

end entry.

First, the data table shows the contents configured in the standard configuration for Audit. To
output other contents, select or create a configuration.

Adding or editing configurations for audit

Introduction
Check mode
The check mode of the configuration of an audit data source item determines
• whether an integrity check is performed when the runtime data is read, and what is checked.

You can output the overall result of the check in the table header row in the "Audit status"
field.

• Which audit data records are provided in the data table.

Options
19.1 WinCC Audit

System Manual, 11/2022 7627

Possible check modes:

"None" Provides the data for all audit data records that fall within the requested time range. No
integrity check is performed.
Default setting

"Check only" Checks all audit data records that fall within the requested time range without providing their
data.
It is tested whether data records have been manipulated, deleted or added.

"Check entries" Checks the audit data records that fall within the requested time range and that have not been
deleted from the audit trail or subsequently added, and provides their data.
It is checked whether data records have been manipulated.

"Check all" Checks all audit data records that fall within the requested time range and provides their data.
It is tested whether data records were manipulated, deleted from the audit trail or subse‐
quently added.

Filter type
An Audit data record consists of two entries:
• An entry for the user expectation
• An entry for the system response.
User expectation and system response may differ. In addition, there are cases in which only
one of the two entries is created.
The filter type controls which data records and which entries are included in the report.
Possible filter types:

Filter type User expectation equals sys‐
tem response

User expectation does not
equal system response

Data record entry for user
expectation or system re‐
sponse is missing

"Show all data in detail" Both data record entries are inserted. The existing data record entry
is inserted."Show data and conformity

errors"
The data record entry with
the user expectation is inser‐
ted.

Both data record entries are
inserted.

"Show only data with con‐
formity errors"

No data record entry inserted.

Requirement
• The "WinCC Unified" tab is visible in Excel.

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration".
3. Click "New Configuration > Audit configuration".
4. Enter the name of the configuration under "Name".
5. Select a check mode:

Options
19.1 WinCC Audit

7628 System Manual, 11/2022

6. Determine which audit attributes are displayed. To do this, activate the options for the
desired columns under "Columns".

7. Specify a filter type.
Preset value: "Show data and conformity errors"

8. (Optional) To further filter the inserted content, define a filter query.
The filter query can consist of up to two conditions. Follow these steps:
– Under "Filter query", click "+" or "Add new condition row".
– Select an Audit attribute, an operator and enter the value of the attribute.
– Optional: Use "+" or "Add new condition row" to create further conditions and select

whether the conditions are to be linked with a logical AND or OR.
9. Confirm your entries with "OK".

Editing a configuration
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration".
3. Click a configuration for Audit.
4. Edit the configuration settings. You have the same options as when creating the

configuration.
5. Confirm your entries with "OK".
The changes are applied the next time you read in the Runtime data.

Examples of the configuration of the filter type
The following table contains examples of data records that were generated in Runtime through
changes to tags monitored by Audit:

Data record
ID

Tag name Modified by Old value New value Description

1A Mo‐
tor1_Speed

User1 0 10 An operator changes the speed of a motor in
an I/O field of an HMI screen.
User expectation and system response are
identical.

1B Mo‐
tor1_Speed

System 0 10

2A ValvePercen‐
tile

User1 0 100 An operator opens a valve using a slider on
an HMI screen.
The valve has a physical blockage and cannot
be opened. Therefore, no data record entry
for the system response is generated.

Options
19.1 WinCC Audit

System Manual, 11/2022 7629

Data record
ID

Tag name Modified by Old value New value Description

3A ValvePercen‐
tile

User1 0 99 A physical blockage has been removed and
the operator repeats the entry. The valve re‐
acts, but cannot be fully opened.
User expectation and system response differ.

3B ValvePercen‐
tile

System 0 49

4B Mo‐
tor2_Speed

System 0 20 An operator changed the speed of another
motor. The resulting data record was manip‐
ulated, and the user expectation entry was
deleted.
There is only one entry for the system re‐
sponse.

The following table shows which data record entries are inserted into the data table
depending on the filter type selected when generating the report:

Data record ID Tag name Modified by Old value New value
Filter type "Show all data in detail"
1A Motor1_Speed User1 0 10
1B Motor1_Speed System 0 10
2A ValvePercentile User1 0 100
3A ValvePercentile User1 0 99
3B ValvePercentile System 0 49
4B Motor2_Speed System 0 20
Filter type "Show data and conformity errors"
1A Motor1_Speed User1 0 10
2A ValvePercentile User1 0 100
3A ValvePercentile User1 0 99
3B ValvePercentile System 0 49
4B Motor2_Speed System 0 20
Filter type "Show only data with conformity errors"
2A ValvePercentile User1 0 100
3A ValvePercentile User1 0 99
3B ValvePercentile System 0 49
4B Motor2_Speed System 0 20

19.1.2.4 Audit trail logging concept

Format

Audit Trail format
On an HMI device with "Configuration conforms to GMP", all events that are relevant to the Audit
are recorded in runtime in the Audit Trail. You have several format options.

Options
19.1 WinCC Audit

7630 System Manual, 11/2022

Selection is dependent on the display program and the runtime language used:
• RDB file

Data is saved with quick access in a proprietary database.
If you require maximum read performance in Runtime, use the "RDB file" storage location.

• csv file
To view and evaluate a csv file, use Microsoft Excel or similar on your PC.
Note
Double quotation marks or several characters are not permitted as list separators for the
format "File - csv (ASCII)". You can find the settings for list separators under "Start > Settings
> Control Panel > Regional and Language Options".

• TXT file
This file format supports all characters that can be used in WinCC. For editing, you will need
software that can save files in Unicode, such as Notepad.
Note
Use "File - TXT (Unicode)" to log Asian languages.

Audit Trail with checksum
Audit Trail with checksum is automatically generated in the database that is based on the user
certificate. The certificates are created with the WinCC Certificate Manager Tool. You can find
additional information in the Runtime online help in the Certificate Manager section.

Storage location and medium

Storage location and medium
Depending on the hardware configuration of the HMI device, the data may be logged locally (on
the hard disk of a PC or on the storage card of a panel) or, if present, on a network drive.

Note
Logging on network drives
We do not recommend that you log Audit Trails directly on a network drive. Power supply can be
interrupted at any time. This means there is no guarantee for a reliable operation of logs and
Audit Trails.
We recommend you save the logs on your local hard drive, or on a storage medium of the HMI
device. Use the system function "ArchiveLogFile" to save the logs long-term on a network drive.

"Configuration conforms to GMP" can only be fully operated in runtime as long as Audit-
relevant user actions can be saved in the Audit Trail. It is important to ensure that sufficient
memory space is available for the Audit Trail and that the connection to the storage location
of the Audit Trail is not interrupted.

Options
19.1 WinCC Audit

System Manual, 11/2022 7631

Error-handling with insufficient free storage space
If there is insufficient storage space, your project can be configured so that the administrator has
an option of continuing the process without logging in the Audit Trail (forcing).

Error-handling if there is no storage medium or the connection to the server is interrupted
If the storage space for the Audit Trail is insufficient, for example, if there is no storage medium,
all Audit-relevant user actions are blocked.
The block is canceled as soon as the storage location for the Audit Trail can be reached again.
The block can be skipped by "forcing".

Error-handling with long-term logging
If the Audit Trail must be moved to a server for long-term logging and the connection to the
server is interrupted at this time, the following error-handling is required:
The system closes the Audit Trail and renames it. The system attempts to send the renamed
Audit Trail to the server again in the background.
If disruption in the connection to the server persists, you receive a system alarm telling you
that the connection is down. Then the system attempts to send the renamed Audit Trail every
300 seconds.
The attempt to transmit the data is repeated until successfully completed. The data is also
transmitted after a restart of the HMI device.

Protection mechanisms

Protective mechanisms to prevent changes to Audit Trail data
The Audit Trail data are protected against deliberate or accidental changes:
• The directory in which the Audit Trail is saved can only be accessed with special rights.
• The Audit Trail files are write-protected.
• In addition, electronic records that have been removed or added in a certain time segment

are identified.
• Each data record contains a checksum that can be used to detect a change of its contents. The

checksum is generated based on a certificate. This checksum also ensures that the number
of lines has not changed in the Audit Trail file.

Use the "HmiCheckLogIntegrity" tool, included in the Audit option, to check whether an Audit
Trail has been changed:

Options
19.1 WinCC Audit

7632 System Manual, 11/2022

Upgrading WinCC

Upgrading WinCC
Before you update WinCC with a Service Pack or a new version, you will have to exit and save the
Audit Trail or the logs with checksum. After WinCC is updated, the audit trail or logs with
checksum will be continued with new files.
Make sure that the logs are started at a defined state with the new version.

Audit trail behavior in runtime

Effects in runtime
The configuration in Audit Trail has the following effects in runtime, depending on the
configuration:
• Audit-relevant user actions (such as tag changes) are recorded in an Audit Trail.
• For GMP-relevant tags, the system automatically generates an electronic record as an action

requested by the user (requested action) and an electronic record of the system reaction
(performed action).

• "Enable logging at runtime start" check box enabled:
The Audit Trail is started with runtime.

• "Forcing" group, "Allowed if storage space has been exhausted" check box enabled:
A user with administrator rights can use "forcing" to run operations on the plant even though
the Audit Trail can no longer be logged because of storage space limitations. Interrupting the
Audit Trail prevents the process from being stopped.
If the check box "Signing may be bypassed" is enabled, the administrator is not required to
input electronic signatures, acknowledgments or comments for operator actions that would
normally require signing, acknowledgment or comment.

• Depending on the configuration, the texts can be selected from a pre-defined text list for
acknowledgment in Runtime.

• If the storage space available for the Audit Trail is less than the configured "Free storage space
limit in MB", the function list configured for the "Low free space" event will be processed.

• If there is insufficient storage space for the Audit Trail because of hardware limits, the
function list configured for the "Free space critically low" event will be processed.

Options
19.1 WinCC Audit

System Manual, 11/2022 7633

19.1.3 Configuring audit functions

19.1.3.1 Logging tag value changes

GMP-relevant tags

GMP-relevant tags
To log changes to the tag value "Good Manufacturing Practice" (GMP), mark a tag as GMP
relevant. Special consideration should be given to the following:
• Array tags: When you mark an array variable as GMP relevant, all elements are automatically

labeled as GMP relevant. You cannot change the setting of the individual elements.
• User data types: When you mark a user data type as GMP relevant, all elements are

automatically labeled as GMP relevant. You cannot change the setting of the individual
elements.

• System tags: System tags cannot be marked as GMP relevant.

Changes to tag values
When a tag is marked as GMP relevant, changes to the tag value are logged in an Audit Trail.
• Value changes by a user are logged in the Audit Trail.
• Value changes caused by a system function that is configured to an event are logged when

the system function is triggered by a direct user action.
• Value changes that are made by the PLC or a system function are not logged in the Audit Trail.

Effects in runtime
The configuration has the following effects in runtime depending on the properties of the GMP-
relevant tags:
• If the user changes the value of a GMP-relevant tag in runtime, the value change is entered

in the Audit Trail.
• Acknowledgment

If "Acknowledgment" is specified as the "Type of confirmation", the user must acknowledge
a value change of this tag. Otherwise, the value change is rejected.
The acknowledgment is logged in the Audit Trail.

• Comment
If the "Comment required" setting is selected in addition to the acknowledgment, the user
must acknowledge and comment a value change of this tag. Otherwise, the value change is
rejected. The user can enter the comment via a free text or via the pre-defined text list.
The acknowledgment and the entered comment are logged in the Audit Trail.

Options
19.1 WinCC Audit

7634 System Manual, 11/2022

Logging tag value changes

Requirement
• "Configuration conforms to GMP" has been activated in the Runtime settings.

Procedure
1. Open the HMI tags editor and select the tag for which you want to make GMP settings.
2. Click "GMP relevant" under "Properties > Properties > "GMP" in the Inspector window.

Figure 19-1 Marking a tag as GMP relevant
3. Specify how the user must confirm a value change in the "Confirmation type" selection field:

– "None"
If the value change is to be logged in the Audit Trail without user confirmation.

– "Acknowledgment"
If user acknowledgement of the value change is required.

4. Select the "Comment required" check box if the user is required to also enter a comment.
This check box is only selected when "Acknowledgment" is specified under "Type of
confirmation".

Confirmation type "Electronic signature"
If you have selected the electronic signature as the confirmation type, a drop-down list with the
HMI roles is displayed.
Select which of the roles can confirm a value change.

Options
19.1 WinCC Audit

System Manual, 11/2022 7635

Specifying comments via text lists
To keep the comments uniform, you can use text lists.
1. Create a text list with texts that can be selected for the comment.
2. In the runtime settings of the HMI device, select the text list in "Reasons for GMP-relevant tag".

19.1.3.2 Logging user actions

User actions with GMP-compliant configuration

Introduction
In a GMP-compliant configuration, user actions and system operations in runtime which are
relevant for the quality of the process are recorded in an Audit Trail.
For example, a user logon to the system or the change of a tag value are saved in the log.
In runtime, user actions are saved in an Audit Trail under the following conditions:
• "Configuration conforms to GMP" has been enabled
• A user is logged on to the system

Logging modes

Configuration-dependent logging
The following processes are logged depending on the configuration of the tags of the project:
• Value changes of GMP-relevant tags by the user

In addition to logging user actions, you can configure tags to require users to confirm or
acknowledge specific actions and enter a comment on the change.

Options
19.1 WinCC Audit

7636 System Manual, 11/2022

Manual logging by means of the "InsertElectronicRecord" system function
This system function is used to log actions in the Audit Trail that are not automatically logged in
the Audit Trail.

Configuring the "InsertElectronicRecord" system function

Introduction
This system function is used to log user actions that are not entered automatically in the Audit
Trail. Moreover, you can use this system and script function to request the user to enter an
acknowledgment or a comment for the action.
You can configure this function even if the Unified Scada device is not configured as being
GMP-compliant. However, current archiving in Runtime takes place only if the device is
configured as GMP-compliant.
This function can be configured for screen objects, schedulers, global script. At present, this
function is not available for faceplates.
In this example, the system function is assigned to a button. Every time the user operates
this button, this action is logged in the Audit Trail.

Requirements
• "Configuration conforms to GMP" has been enabled.

Procedure
1. Click on a button in a screen.
2. Click on "Events" in the Inspector window.
3. In the function list, configure the "InsertElectronicRecord" system function to the "Click"

event.

System function parameters

Parameter Description Type
Name Specifies the name of the object. String, HMI_tag, Screen object
Category Specifies the name of the tag. String, HMI_tag, Screen object
Operation
type

Specifies the type of change. 1: New value
2: Modified value
3: Deleted value

Old value Value before the change Integer, Double, Bool, String, Color, HMI_tag, Screen
object

New value Value after the change Integer, Double, Bool, String, Color, HMI_tag, Screen
object

Options
19.1 WinCC Audit

System Manual, 11/2022 7637

Parameter Description Type
Confirma‐
tion type

Specifies whether an acknowledgment is requested. Specifies how the action must be confirmed.
0 = (None): No confirmation required, an entry is cre‐
ated in the Audit Trail
1 = (Acknowledgement): Acknowledgment, the user
must acknowledge the action; an entry is created in
the Audit Trail
2 = (Digital Signature): Electronic signature; a dialog
window opens in which the user must enter the elec‐
tronic signature - an entry is created in the Audit Trail

Reason (op‐
tional)

Is not supported

Result
When a user operates the screen object in Runtime and triggers the event, the tag value is
changed. An entry is created in the Audit Trail at the same time; depending on the parameters
"Confirmation type" and "Reason", the entry is an acknowledgment and a comment.

GMP-compliant user administration

Central user management
Use the central user management to manage users and user groups centrally for multiple
applications or HMI devices.

19.1.3.3 Recording system functions

Introduction
If system functions are triggered in runtime, this is recorded in the Audit Trail for some system
functions. If specific system functions are used on a GMP-relevant object, the user must confirm
the triggering.
Some system functions are not supported when using Audit. If you use these system
functions in your project, you are solely responsible for them.
The following table shows which system functions are Audit-relevant and whether the user's
signature is required:

System functions and Audit
Function (call in script) Effect of /Audit
InsertElectronicRecord Entered in Audit Trail
SetTagValue Entered in Audit Trail
IncreaseTag Entered in Audit Trail
DecreaseTag Entered in Audit Trail

Options
19.1 WinCC Audit

7638 System Manual, 11/2022

Function (call in script) Effect of /Audit
ModifyBits
SetBitInTag (SetBitInTag) Entered in Audit Trail if the tag is GMP

relevant
Confirmation is dependent on tag con‐
figuration

ResetBitInTag (ResetBitInTag) Entered in Audit Trail if the tag is GMP
relevant
Confirmation is dependent on tag con‐
figuration

InvertBitInTag (InvertBitInTag) Entered in Audit Trail if the tag is GMP
relevant
Confirmation is dependent on tag con‐
figuration

SetBit (SetBit) Entered in Audit Trail if the tag is GMP
relevant
Confirmation is dependent on tag con‐
figuration

ResetBit (ResetBit) Entered in Audit Trail if the tag is GMP
relevant
Confirmation is dependent on tag con‐
figuration

InvertBit (InvertBit) Entered in Audit Trail if the tag is GMP
relevant
Do not use the system function for tags
that require acknowledgment or com‐
ment.

SetBitWhileKeyPressed (---) Entered in Audit Trail if the tag is GMP
relevant
Confirmation is dependent on tag con‐
figuration

SetDataRecordToPLC (SetDataRecordToPLC) Entered in Audit Trail if the recipe is GMP
relevant
Confirmation is dependent on recipe
configuration

GetDataRecordTagsFromPLC (GetDataRecordFromPLC) Entered in Audit Trail if the recipe is GMP
relevant

ImportDataRecords (ImportDataRecords) Entered in Audit Trail if the recipe is GMP
relevant

ImportDataRecordsWithChecksum (ImportDataRecordsWith‐
Checksum)

Entered in Audit Trail if the recipe is GMP
relevant

ExportDataRecords (ExportDataRecords) ---
ExportDataRecordsWithChecksum (ExportDataRecordsWith‐
Checksum)

LoadDataRecord (LoadDataRecord) Entered in Audit Trail if the recipe is GMP
relevant
Confirmation is dependent on recipe
configuration

Options
19.1 WinCC Audit

System Manual, 11/2022 7639

Function (call in script) Effect of /Audit
SaveDataRecord (SaveDataRecord) Entered in Audit Trail if the recipe is GMP

relevant
Confirmation is dependent on recipe
configuration

SetDataRecordTagsToPLC (SetDataRecordTagsToPLC) Entered in Audit Trail if the recipe is GMP
relevant
Confirmation is dependent on recipe
configuration

GetDataRecordTagsFromPLC (GetDataRecordTagsFromPLC) Entered in Audit Trail if the recipe is GMP
relevant

SetRecipeTags (SetRecipeTags) Entered in Audit Trail if the recipe is GMP
relevant

GetDataRecordName (GetDataRecordName) ---
ClearDataRecordMemory (ClearDataRecordMemory) Not supported
ClearDataRecord (ClearDataRecord) Entered in Audit Trail if the recipe is GMP

relevant
PrintScreen (PrintScreen) ---
PrintReport (PrintReport) ---
RecipeViewSaveDataRecord (---) Entered in Audit Trail if the recipe is GMP

relevant
Confirmation is dependent on recipe
configuration

RecipeViewSaveAsDataRecord (---) Entered in Audit Trail if the recipe is GMP
relevant
Confirmation is dependent on recipe
configuration

RecipeViewNewDataRecord (---) ---
RecipeViewClearDataRecord (---) Entered in Audit Trail if the recipe is GMP

relevant
RecipeViewGetDataRecordFromPLC (---) Entered in Audit Trail if the recipe is GMP

relevant
RecipeViewSetDataRecordToPLC (---) Entered in Audit Trail if the recipe is GMP

relevant
Confirmation is dependent on recipe
configuration

RecipeViewSynchronizeDataRecordWithTags (---) Entered in Audit Trail if the recipe is GMP
relevant
Confirmation is dependent on recipe
configuration

RecipeViewRenameDataRecord (---) Entered in Audit Trail if the recipe is GMP
relevant

RecipeViewBack (---) ---
RecipeViewOpen (---) ---
RecipeViewMenu (---) ---
TrendViewScrollForward (---) ---
TrendViewScrollBack (---) ---
TrendViewExtend (---) ---

Options
19.1 WinCC Audit

7640 System Manual, 11/2022

Function (call in script) Effect of /Audit
TrendViewCompress (---) ---
TrendViewBackToBeginning (---) ---
TrendViewStartStop (---) ---
TrendViewSetRulerMode (---) ---
TrendViewBackToBeginning (---) ---
StatusForceGetValues (---) Not supported
StatusForceSetValues (---) Not supported
AlarmViewAcknowledgeAlarm (---) Entered in
AlarmViewEditAlarm (---) ---
AlarmViewShowOperatorNotes (---) ---
HTMLBrowserBack (---) Not supported
HTMLBrowserForward (---) Not supported
HTMLBrowserRefresh (---) Not supported
HTMLBrowserStop (---) Not supported
ScreenObjectCursorUp (---) ---
ScreenObjectCursorDown (---) ---
ScreenObjectPageUp (---) ---
ScreenObjectPageDown (---) ---
PressButton (---) ---
ReleaseButton (---) ---
SmartClientViewConnect (---) Not supported
SmartClientViewDisconnect (---) Not supported
SmartClientViewReadOnlyOn (---) Not supported
SmartClientViewReadOnlyOff (---) Not supported
SmartClientViewRefresh (---) Not supported
SmartClientViewLeave (---) Not supported
ShowAlarmWindow (ShowAlarmWindow) ---
ClearAlarmBuffer (ClearAlarmBuffer) ---
ShowSystemAlarm (ShowSystemAlarm) ---
SetAlarmReportMode (SetAlarmReportMode) ---
Logoff (Logoff) Entered in Audit Trail
GetPassword (GetPassword) ---
GetGroupNumber (GetGroupNumber) ---
ExportImportUserAdministration (ExportImportUserAdmi‐
nistration)

Import of user administration is entered
in Audit Trail
Export is not entered in Audit Trail

Logon (Logon) Entered in Audit Trail
GetUserName (GetUserName) ---
TraceUserChange (---) ---
ShowLogOnDialog (---) ---

Options
19.1 WinCC Audit

System Manual, 11/2022 7641

Function (call in script) Effect of /Audit
LinearScaling (LinearScaling) Entered in Audit Trail if the tag is GMP

relevant
Confirmation is dependent on tag con‐
figuration

InverseLinearScaling (InverseLinearScaling) Entered in Audit Trail if the tag is GMP
relevant
Confirmation is dependent on tag con‐
figuration

IncreaseFocusedValue (---) ---
DecreaseFocusedValue (---) ---
OpenCommandPrompt (OpenCommandPrompt) Not supported
OpenControlPanel (OpenControlPanel) Not supported
ActivateCleanScreen (---) ---
AdjustContrast (---) ---
CalibrateTouchScreen (CalibrateTouchScreen) ---
OpenScreenKeyboard (OpenScreenKeyboard) ---
OpenTaskManager (OpenTaskManager) Not supported
BackupRAMFileSystem (BackupRAMFileSystem) Not supported
SetAcousticSignal (SetAcousticSignal) ---
ShowOperatorNotes (ShowOperatorNotes) ---
AcknowledgeAlarm (AcknowledgeAlarm) Entered in Audit Trail
GoToHome (GoToHome) ---
GoToEnd (GoToEnd) ---
EditAlarm (EditAlarm) ---
DirectKeyScreenNumber (---) Not supported
DirectKey (---) Not supported
SetDeviceMode (SetDeviceMode) Entered in Audit Trail
SetDisplayMode (SetDisplayMode) ---
SetConnectionMode (SetConnectionMode) Entered in Audit Trail
SetScreenKeyboardMode (SetScreenKeyboardMode) ---
ChangeConnection (ChangeConnection) Not supported
SetLanguage (SetLanguage) ---
SetWebAccess (---) Not supported
StartProgram (StartProgram) Not supported
ShowSoftwareVersion (ShowSoftwareVersion) ---
SimulateTag (---) Not supported
StopRuntime (StopRuntime) Entered in Audit Trail
ControlWebServer (ControlWebServer) Not supported
ControlSmartServer (ControlSmartServer) Not supported
OpenInternetExplorer (OpenInternetExplorer) ---
SendEMail (SendEMail) ---
UpdateTag (---) ---
ClearAlarmBufferProTool (ClearAlarmBufferProtoolLegacy) Not supported

Options
19.1 WinCC Audit

7642 System Manual, 11/2022

Function (call in script) Effect of /Audit
Encoding(Encode) Entered in Audit Trail if the tag is GMP

relevant
Confirmation is dependent on tag con‐
figuration

EncodeEx(Encode) Entered in Audit Trail if the tag is GMP
relevant
Confirmation is dependent on tag con‐
figuration

19.1.3.4 Standard entries in the Audit Trail

General entries in the Audit Trail
Individual operator actions are overwritten during logging. The following table shows examples
of such entries:

Log entry Description
Change of the tag value 'HMI_Tag_1' from '0' to'55' Changing the value of a tag
User logged off. Logging out a user.
Shutting down application. Exiting the program.
Runtime start of WinCC Runtime Advanced Starting WinCC Runtime Advanced
'Project.HMI_1 - 0' Build 2. Information on the project, the device and the current version

number

Options
19.1 WinCC Audit

System Manual, 11/2022 7643

Version number of the device
The version number is incremented with each compilation of the device. You can find the version
number in the Inspector window under "Properties > Properties > Information".

Options
19.1 WinCC Audit

7644 System Manual, 11/2022

19.2 Creating production reports

19.2.1 Basics

19.2.1.1 Introduction

Note
Restriction for Unified Comfort Panel
Contexts are not supported in V17 for Unified Comfort Panel. This option is not available in a
report template with a Unified Comfort Panel as data source. When you generate a report on a
Unified Comfort Panel whose report template uses this option, error entries are generated in the
"ErrorLog" worksheet of the report.

Introduction
With WinCC Unified Reporting, you can generate tabular production reports in Runtime for the
following project data:
• Logging tags and tags
• Log alarms

Log the alarm properties of the recorded alarms and statistical calculations for display
duration and frequency of the recorded alarms.

• Contexts:
Log which contexts were running during a specific period or which project data occurred
during the runtime of a specific context.
– User-defined contexts:

These contexts are created and executed by a program created with the ODK API.
– System-generated contexts

When the Performance Insight and Calendar option packages are installed, these
contexts are executed by the system during Runtime.

• Audit Trail of the Runtime device
• If Plant Intelligence options are installed, you can use the WinCC Unified Local Reporting

option to generate production reports for additional project data.
You can find more information in the Help for the respective Plant Intelligence option.

The production reports can be generated as XLSX file or PDF file and sent automatically as an
e-mail to a specified group of recipients. For example, you can generate an XLSX report that
outputs all alarms occurring in a production line. You then distribute or archive the report for
analysis purposes.

Options
19.2 Creating production reports

System Manual, 11/2022 7645

Functional scope in the add-in
You create the report templates in an Excel add-in. For this purpose, Reporting offers the
following functions in the add-in:
• Selecting a data source:

– Online: A connection to a Runtime server on which a Runtime project is running.
– Offline: A configuration file that contains the data of a Runtime project

• Definition of single value segments and time series segments
• Selection of the data source items of the segments

Possible data source items:
– Logging tags and tags
– Log alarms
– Contexts

• Definition of the report period (absolute or relative)
• Creation of type-specific data source item configurations
• Execution of individual segments or all segments for test purposes

Options
19.2 Creating production reports

7646 System Manual, 11/2022

Excel sheet Excel plugin

Data

Report area

Data

Report area

Update

Update

WinCC Runtime

Position of the data in the table

Location
Time information

Start, End
Which data

Data source items (KPIs, operands, machine
states, alarms, tags)

Position of the data in the table

Location
Time information

Start, End
Which data

Data source items (KPIs, operands,
machine states, alarms, tags)

Functional scope in Runtime
In the "Reports" control in Runtime, you configure report jobs that use the report templates
defined in the Excel add-in. To do so, Reporting offers the following functions in Runtime:
• Maintenance of the global email settings (contact data and SMTP server configuration)
• Maintenance of job parameters, especially import and export of report templates
• Creating new report jobs and managing existing report jobs
• Overview of the generated reports
• Download or deletion of the reports

19.2.1.2 Basics of Reporting

Report templates
A report template is an Excel file (.xslx) that was created with the WinCC Unified Excel add-in. The
report template has access to the data of the data source with which the add-in is connected.
For each report template, you define which segments are contained in the reports using the
template and which data source items are evaluated by the segments.
After you have imported report templates into the "Reports" control in Runtime, you can
select them for configuring report jobs.

Data sources
The data source is the source from which you select data source items when you configure the
report template.

Options
19.2 Creating production reports

System Manual, 11/2022 7647

The following connection modes and data sources are available:
• Connection mode: Online

The data source is the project that is running on the Runtime server to which the add-in is
connected.

• Connection mode: Offline
Data source is a configuration file. You generate the configuration file by exporting the data
source items of the project to a file in the "Reports" control in Runtime. You can use this file
to create additional report templates without connecting to a runtime server.

Options and data source items
Options control the types of data source items to which the report template has access.
Data source items are the specific objects whose data is read from the Runtime project during
report generation.
The following options and types of data source items are available in Reporting, depending
on the installed software:

Software Option Types of data source items
WinCC Unified ba‐
sic installation

Alarms Logging alarms
Alarm statistics for logging alarms

WinCC Unified ba‐
sic installation

Logging tag Logging tags

WinCC Unified ba‐
sic installation

Tag Tags

WinCC Unified ba‐
sic installation

User-defined col‐
umn

User-defined texts or Excel formulas

WinCC Unified ba‐
sic installation

Context User-defined contexts
Not available for Unified Comfort Panel

WinCC Unified ba‐
sic installation

Audit Audit

Performance In‐
sight option pack‐
age

Performance In‐
sight

Local KPIs and operands of the PI option Performance Insight:
• KPIs
• Logged KPIs
• Operands (counters and numerical operands)
• Machine states
• System-generated contexts

Line Coordination
option package

Line Coordination Jobs

Calendar option
package

Context System-generated contexts

Report jobs and job parameters
A report job is a job for generating reports in Runtime. A new report is generated each time the
report job is performed.

Options
19.2 Creating production reports

7648 System Manual, 11/2022

The job parameters of the report order determine the details of its execution, such as which
trigger it has, which report template it uses and the format of the report.
Report jobs are executed automatically when their trigger event occurs or manually by the
user.

Reports
A report (production report) is an XLSX file or PDF file that is generated when a report job is
executed in Runtime. The data source items from the Runtime project defined in the report
template are read during generation, and their data are imported into a table in the report.

Using general Excel functions
In addition to the specific add-in functions, you also have access to the standard Excel functions
in a report template. These include:
• Layout functions
• Functions for graphical preparation or analysis of the data imported from Runtime, such as

charts, pivot tables and formulas
See also Tips on design and layout (Page 7717).

19.2.1.3 General requirements and restrictions

Installing the Excel add-in
The installation of the Reporting add-in on a computer requires that the operating system and
the local MS Excel installation are regularly updated.
If there are problems with the installation, check the version of the local MS Excel
installation. Lengthy maintenance intervals between the operating system and Excel can
cause problems during installation of the add-in.
Update the operating system and the Excel version if necessary.
To install the add-in with a local Excel installation, MS Excel with build 16.0.6769 or higher is
required.

Note
Note the Microsoft upgrade restrictions
If you have an Excel installation that cannot be upgraded to Build 16.0.6769 or higher (for
example, because Excel was installed using a single Office license), purchase a current Office
version or use Online Office.

IIS settings for standalone installation of the Excel Add-In
To install the Excel Add-In on a PC without Unified Runtime, the same IIS (Internet Information
Services) settings must be active in Windows that are required to install WinCC Unified Runtime
on a PC.

Options
19.2 Creating production reports

System Manual, 11/2022 7649

You can find additional information in the "SIMATIC Unified PC Installation" user help section
on the software and hardware requirements.

Unified Comfort Panel
The following restrictions apply to generating reports on Unified Comfort Panels:

Contexts Contexts are not supported in V17 for Unified Comfort Panel. This option is not available in a report
template with a Unified Comfort Panel as data source. When you generate a report on a Unified
Comfort Panel whose report template uses this option, error entries are generated in the "ErrorLog"
worksheet of the report.

Storage location of the
Reporting database

The following folder on the SD card plugged into the panel is preconfigured as the storage location
of the reporting database:
• Device version V18: media/simatic/X51/Reports

You can configure and load another storage location in TIA Portal in the Runtime settings of the
Panel.

• Device version <V18: media/simatic/X51
Storage location for re‐
ports

The "Reports" folder on the SD card inserted in the Panel is permanently pre-configured as the local
main storage location for reports: media/simatic/X51/Reports
For Panels with device version V18, you can configure and load a different local main storage location
in the Runtime settings of the Panel in TIA Portal.

Enable Reporting
The use of Reporting requires that the Reporting functionality was enabled:
• For configuring report templates:

Reporting must be enabled for the Runtime project that serves as the data source.
• For configuring report jobs and generating reports in Runtime as well as in a simulation:

Reporting must be enabled for the Runtime project that is running on the HMI device or is
being simulated.

The reporting functionality of a Runtime project is enabled in TIA Portal in the Runtime
settings of its HMI device with the option "Enable reporting".

Note
Devices with a device version lower than V18
Reporting is always enabled for HMI devices with a device version lower than V18.

See also
Version compatibility (Page 7651)
Configuring Reporting-specific Runtime settings (Page 7655)

Options
19.2 Creating production reports

7650 System Manual, 11/2022

19.2.1.4 Version compatibility

Introduction
When loading a Runtime project for which the "Reports" control has been configured, the
general rules for version compatibility of WinCC Unified apply.
The rules described here also apply for the interaction between add-in, data source, report
template and runtime version of the project in which reports are generated.

Compatibility between add-in and data source
The add-in can use the following data sources:

Add-in Online data source Offline data source
V16 Runtime project V16 Configuration file generated with a Runtime

project V16
V17 Runtime project V16 or V17 Configuration file generated with a Runtime

project V16 or V17

Compatibility between add-in and report template
The following report templates can be opened and edited in the add-in:

Add-in Report template
V16 Created with a V16 add-in
V17 • Created with a V17 add-in

• Created with a V16 add-in
If the add-in is connected to a V17 data source when you open the report template, you
will be prompted to migrate the report template to V17.
If the add-in is connected to a V16 data source when the report template is opened, no
migration is necessary.

Note
Migration of report templates
The migration of the report template is not reversible. A report template migrated from V16 to
V17 can no longer be opened in a V16 add-in.
If migration is not desired, connect the add-in to a V16 data source before opening the report
template.

Note
Scope of functions of report templates
The functions available in the configuration of the report template in the add-in depend on the
version of the data source used by the add-in.

Options
19.2 Creating production reports

System Manual, 11/2022 7651

Compatibility between report template and runtime project
In a runtime project, reports can be generated using the following report templates:

Report template Version of the runtime project
V16 V16 and V17
V17 V17

See also
Basics on version compatibility (Page 187)

19.2.2 Complete workflow for using production reports

Introduction
The use of reports (production reports) requires preliminary work in the Engineering System, in
the Excel add-in and in Runtime. The exact workflow depends on where the report template for
generating the report is used:
• Internally in the project

A report template is based on Project A. It is used in Runtime in Project A to generate reports.
• Across projects

A report template is based on Project A. It is used in Runtime in Project B to generate reports.
Project A and Project B were downloaded into the same Runtime.
The data source items added to the report template must be findable in both projects. Make
sure that the names are consistent or that you have a uniform plant model.

• Across Runtimes
A report template is based on Project A. It is used in Project B to generate reports. Project A
and Project B were downloaded into different Runtimes.
In this case, the following applies:
– The data source items added to the report template must be findable in both projects.

Make sure that the names are consistent or that you have a uniform plant model.
– In both Runtimes, the same options that are used in the report template must be installed.

Options
19.2 Creating production reports

7652 System Manual, 11/2022

Workflow for cross-project use of report templates in the same Runtime
1. In the Engineering System, configure the HMI device that serves as data source for the Excel

add-in during configuration of the report templates.
– Configure alarms and tags.
– When reports are to evaluate context data, configure the plant model as well as other

objects and settings that are necessary to start system-generated contexts.
Example: To evaluate shift contexts of the Calendar PI option, you configure the plant
model, the time model, a calendar and a calendar control.

– Enable Reporting in the Runtime settings of the device.
2. Select one of the following options:

– To create the report template before the HMI device goes live, start a simulation for the
HMI device.
Requirement: The engineering system and Runtime are installed on the same device.
The device is downloaded to Runtime. Its project (project A) is started in simulation mode.

– To create the report template during productive operation of the HMI device, load the
device from the Engineering System into the Runtime and start its project (project A).

Note
Evaluation of context-relevant data
To ensure that reports generated in runtime evaluate context-relevant data, contexts must
be executed in the project during runtime.
The system-generated contexts of the PI options Performance Insight and Calendar are
started automatically while a project is running in Runtime.
You can also use the ODK API to write a program that defines, starts and stops user-defined
contexts for a project.

3. (Optional) To work with an offline connection in the Excel add-in, export an offline
configuration file in the "Reports" control in Runtime.

4. Start the Excel add-in and set up the data source.
Select one of the following options:
– Online connection: Select the Runtime server onto which you loaded the HMI device.
– Offline connection: Load the offline configuration file created in Step 3 as the data source.

5. Configure a report template in the Excel add-in.
6. (Optional) Test a report template by running it in the Excel add-in and reading the project

data into Excel.

Options
19.2 Creating production reports

System Manual, 11/2022 7653

7. In the Engineering System, configure the HMI device for which you want to generate reports
in Runtime:
– Place the "Reports" control in one of the screens of the HMI device.
– Configure alarms, tags and the plant model if the reports are to evaluate context data.

Make sure that this data matches the data of the HMI device from step 1.
– Enable Reporting in the Runtime settings of the device.
– (Optional) In the Runtime settings of the device, configure the storage location for reports

and the storage location of the reporting database.
8. Load the HMI device from the engineering system into Runtime and start its project (Project

B).
9. In Runtime, go to the screen with the "Reports" control.
10.(Optional) To send emails when reports are created, configure the global email settings.
11.Configure the job parameters.

To do this, import the report template defined in step 4, among others.
12.Configure a report job that uses the report template.
13.(Optional) Perform report orders manually.
14.In the control, get an overview of which reports have been generated.
15.Download the reports, if necessary.
16.(Optional) To reuse the configuration of the "Reports" control, such as on a device in another

network, transfer the existing configuration from the control from one device to the control
of the other device.

See also
Reporting (Page 7145)
Reporting (Page 7180)
Exporting an offline configuration file (Page 7743)
Setting up a data source (Page 7663)
Configuring report templates (Page 7668)
Configuring production reports in the engineering system (Page 7655)
Setting global email settings (Page 7725)
Configuring task parameters (Page 7727)
Configuring report tasks (Page 7734)
Running a report job manually (Page 7742)
Downloading reports (Page 7742)
Transferring the control configuration (Page 7744)
Workflow for working with reports in Runtime (Page 7719)

Options
19.2 Creating production reports

7654 System Manual, 11/2022

19.2.3 Configuring production reports in the engineering system

19.2.3.1 Configuring Reporting-specific Runtime settings

Procedure
1. Open "Runtime settings > Reporting" in the project tree below the HMI device.
2. Select the "Enable Runtime" option.

When the option is disabled, it is not possible to use the Runtime project as data source for
report templates or configure report jobs in Runtime and generate reports.

3. (Optional) Configure the storage location of the reporting database.
4. (Optional) Configure the storage location for the reports generated in Runtime.
You can find more information on configuring these storage locations for Unified Comfort
Panel here (Page 7145), for Unified PC here (Page 7180).

19.2.3.2 Inserting a "Reporting" control in a screen

Procedure
1. Select the HMI device on the "Devices" tab.
2. Open the "Screens" folder.
3. Open the screen.
4. In the "My controls" pane, select the "Reporting" control and place it on the screen.

19.2.4 Creating report templates for production reports

19.2.4.1 Requirements

General requirements and restrictions

Installing the Excel add-in
The installation of the Reporting add-in on a computer requires that the operating system and
the local MS Excel installation are regularly updated.
If there are problems with the installation, check the version of the local MS Excel
installation. Lengthy maintenance intervals between the operating system and Excel can
cause problems during installation of the add-in.
Update the operating system and the Excel version if necessary.

Options
19.2 Creating production reports

System Manual, 11/2022 7655

To install the add-in with a local Excel installation, MS Excel with build 16.0.6769 or higher is
required.

Note
Note the Microsoft upgrade restrictions
If you have an Excel installation that cannot be upgraded to Build 16.0.6769 or higher (for
example, because Excel was installed using a single Office license), purchase a current Office
version or use Online Office.

IIS settings for standalone installation of the Excel Add-In
To install the Excel Add-In on a PC without Unified Runtime, the same IIS (Internet Information
Services) settings must be active in Windows that are required to install WinCC Unified Runtime
on a PC.
You can find additional information in the "SIMATIC Unified PC Installation" user help section
on the software and hardware requirements.

Unified Comfort Panel
The following restrictions apply to generating reports on Unified Comfort Panels:

Contexts Contexts are not supported in V17 for Unified Comfort Panel. This option is not available in a report
template with a Unified Comfort Panel as data source. When you generate a report on a Unified
Comfort Panel whose report template uses this option, error entries are generated in the "ErrorLog"
worksheet of the report.

Storage location of the
Reporting database

The following folder on the SD card plugged into the panel is preconfigured as the storage location
of the reporting database:
• Device version V18: media/simatic/X51/Reports

You can configure and load another storage location in TIA Portal in the Runtime settings of the
Panel.

• Device version <V18: media/simatic/X51
Storage location for re‐
ports

The "Reports" folder on the SD card inserted in the Panel is permanently pre-configured as the local
main storage location for reports: media/simatic/X51/Reports
For Panels with device version V18, you can configure and load a different local main storage location
in the Runtime settings of the Panel in TIA Portal.

Enable Reporting
The use of Reporting requires that the Reporting functionality was enabled:
• For configuring report templates:

Reporting must be enabled for the Runtime project that serves as the data source.
• For configuring report jobs and generating reports in Runtime as well as in a simulation:

Reporting must be enabled for the Runtime project that is running on the HMI device or is
being simulated.

Options
19.2 Creating production reports

7656 System Manual, 11/2022

The reporting functionality of a Runtime project is enabled in TIA Portal in the Runtime
settings of its HMI device with the option "Enable reporting".

Note
Devices with a device version lower than V18
Reporting is always enabled for HMI devices with a device version lower than V18.

See also
Version compatibility (Page 7651)

Installation of the Reporting add-in

Note
Regular updates of operating system and MS Excel
The installation of the Reporting add-in on a computer requires that the operating system and
the local MS Excel installation are regularly updated.
If there are problems with the installation, check the version of the local MS Excel installation.
Lengthy maintenance intervals between the operating system and Excel can cause problems
during installation of the add-in.
Update the operating system and the Excel version if necessary.
To install the add-in with a local Excel installation, MS Excel with build 16.0.6769 or higher is
required.

Note
Note the Microsoft upgrade restrictions
If you have an Excel installation that cannot be upgraded to Build 16.0.6769 or higher (for
example, because Excel was installed using a single Office license), purchase a current Office
version or use Online Office.

Procedure
1. Install the Excel manifest on the computer.
2. Set up read access to the installation path of the Excel manifest.
3. Add the add-in to Excel.

See also
Installing the Excel manifest (Page 7658)
Setting up read access to the Excel manifest (Page 7658)

Options
19.2 Creating production reports

System Manual, 11/2022 7657

Adding the Reporting add-in in Excel (Page 7659)
MS help for autoloop (https://docs.microsoft.com/en-us/office/troubleshoot/error-messages/
cannot-open-add-in-from-localhost)

Installing the Excel manifest

Procedure
1. In the installation package of WinCC Unified on "DVD_2", double-click the file

"Support\Reporting\SIMATIC_WinCC_Unified_Reporting_<Version number>.exe".
2. Select the target directory to which the underlying ZIP file is extracted and confirm your input.

The ZIP file is extracted and setup starts automatically.
Note
Start setup manually
To start the setup manually after the file was extracted, select the option "Extract the setup
files without being installed".
Start the setup later by running the "Setup.exe" file as administrator in the target directory.

3. Follow the setup instructions.
4. In the "Configuration" step, select the option for the Excel add-in.
5. Click "Next" and follow the setup instructions.

See also
Installation of the Reporting add-in (Page 7657)

Setting up read access to the Excel manifest

Requirement
The Excel manifest is installed.

Procedure
Give the users that create templates with the Excel add-in read access to the installation path of
the Excel manifest: <target directory>\WinCCUnifiedReporting\Excelmanifest

Note
This step is also necessary if the user belongs to a group in the user management with general
read permission.

Options
19.2 Creating production reports

7658 System Manual, 11/2022

https://docs.microsoft.com/en-us/office/troubleshoot/error-messages/cannot-open-add-in-from-localhost
https://docs.microsoft.com/en-us/office/troubleshoot/error-messages/cannot-open-add-in-from-localhost

See also
Installing the Excel manifest (Page 7658)
Installation of the Reporting add-in (Page 7657)

Adding the Reporting add-in in Excel

Requirement
• The Excel manifest is installed on the PC.
• Read access to the installation path of the Excel manifest is set up.
• The following software is available on the computer:

– Local Excel
MS Excel (Build 16.0.6769 or higher)
Note
Regular updates of operating system and MS Excel
The installation of the Reporting add-in on a computer requires that the operating system
and the local MS Excel installation are regularly updated.
If there are problems with the installation, check the version of the local MS Excel
installation. Lengthy maintenance intervals between the operating system and Excel can
cause problems during installation of the add-in.
Update the operating system and the Excel version if necessary.

Note
Note the Microsoft upgrade restrictions
If you have an Excel installation that cannot be upgraded to Build 16.0.6769 or higher (for
example, because Excel was installed using a single Office license), purchase a current
Office version or use Online Office.

– Or Office online

Procedure
1. Open Microsoft Excel.
2. Open the "Trust Center" under "File" > "Options".
3. Click "Trust Center Settings".
4. Click "Catalogs of trusted add-ins".

Options
19.2 Creating production reports

System Manual, 11/2022 7659

5. Add the catalog using the URL "\\<Computer name>\Excelmanifest".

6. Make sure that the check mark in the "Show in Menu" column is set.
7. End and restart Excel.

Options
19.2 Creating production reports

7660 System Manual, 11/2022

8. In the "Insert" menu, click "My Add-ins".

In the "Office Add-ins" dialog box, the Siemens add-in is displayed under "Shared folders".
9. Select the add-in and click "Add".

See also
Installing the Excel manifest (Page 7658)
Setting up read access to the Excel manifest (Page 7658)
Installation of the Reporting add-in (Page 7657)

Configuring Internet Explorer and Edge
The Reporting Excel add-in uses the certificate that was selected during installation of WinCC
Unified Runtime or later in "WinCC Unified Configuration".
Some browsers do not consider self-signed certificates as trusted. If you use a self-signed
certificate for WinCC Unified Runtime, you must add the certificate to the list of trusted
certificates in Internet Explorer or Edge on the device on which the Excel add-in is installed.
For detailed information on handling certificates, see the Runtime Readme.

Options
19.2 Creating production reports

System Manual, 11/2022 7661

Procedure
The following section describes the procedure for adding a self-signed certificate to the list of
trusted certificates, using Internet Explorer as an example:
1. Start Internet Explorer.
2. In the address line, enter the host name or the IP when creating the certificate.

You will receive a security warning.
3. Click "Continue to this website (not recommended)".
4. Click "Install certificate".
5. Click "Place all certificates in the following store" and "Browse".
6. Click "Trusted Root Certification Authorities" followed by "OK".

Note
Do not use the preset options for automatic selection of the certificate store.

7. Exit the dialog.
8. If you receive a security warning as to whether you want to trust the certificate, confirm it

with "Yes".
9. Load the page again.

See also
MicrosoftHelp_IE_ZertifikatInstallieren (https://medium.com/@ali.dev/how-to-trust-any-self-
signed-ssl-certificate-in-ie11-and-edge-fa7b416cac68)

19.2.4.2 Login
A login dialog opens in the Excel add-in in the following cases:
• After start of Excel and the add-in
• When using an online connection: When the connection to the Runtime server must be re-

established.
Examples:
– Runtime has been reloaded.
– The security token has expired due to a timeout.

Requirement
• The add-in is installed.
• When using an online connection:

– A Runtime server is accessible.
– A Runtime project is running on the server.

Options
19.2 Creating production reports

7662 System Manual, 11/2022

https://medium.com/@ali.dev/how-to-trust-any-self-signed-ssl-certificate-in-ie11-and-edge-fa7b416cac68
https://medium.com/@ali.dev/how-to-trust-any-self-signed-ssl-certificate-in-ie11-and-edge-fa7b416cac68

Procedure
In order to use an online connection, log onto a Runtime server:
1. Under "Server", enter the name of the server on which the project that is to serve as data

source for the report template is running.
Use the same spelling as when the Runtime server certificate was created.
Note
If Runtime is installed on the same computer as the add-in, use of the name "localhost" is not
permitted.

2. Enter the user name and password of a user that is registered on the server in the Runtime
user management.

3. Click "Login".
In order to use an offline connection, click "Go offline".

Result
Online connection
The add-in is connected to the Runtime server and the options available there are loaded.
You can now create report templates.

Offline connection
Before you create report templates, set up the offline connection.

See also
Setting up an offline connection (Page 7666)
Installation of the Reporting add-in (Page 7657)

19.2.4.3 Setting up a data source

Using an online connection
When an online connection is present, the add-in establishes a connection to a Runtime server.
The project running on the server serves as data source for the add-in.
The connection settings allow you to:
• Change the connected Runtime server to another Runtime server
• When a report template that was created with a different Runtime server than the currently

connected server is reused: check the options available on the server and delete the options
that were not loaded

Options
19.2 Creating production reports

System Manual, 11/2022 7663

Setting up an online connection

Requirements
• A Runtime server is accessible.
• A Runtime project is running on the server.

Procedure
1. In the "Data sources" group on the "WinCC Unified" tab, click on "Connections".
2. Click "Online" under "Connections" in the add-in.
3. Under "Server", enter the server name.

Use the same spelling as when the Runtime server certificate was created.
Note
If Runtime is installed on the same computer as the add-in, use of the name "localhost" is not
permitted.

4. Click "Load".

Result
• A server node is created.
• The add-in is connected to the Runtime server and its options are loaded.

Data source items of these options can be added to report templates. Their data can be read
in from Runtime to Excel.
Note
To check which options were loaded, click on the server node.
Options that are being used in the currently open report template but are not available on the
connected server have a red icon. You can remove the option:

• If no connection can be established or an incorrect server name has been entered, the add-
in will display a corresponding error message.

See also
Removing options (Page 7664)

Removing options

Introduction
If you reuse report templates across servers, e.g. in order to adapt an existing template for
another project, it may be necessary to remove unavailable options from the connection
settings.

Options
19.2 Creating production reports

7664 System Manual, 11/2022

The procedure for this is presented using the Performance Insight option as an example.

Requirement
• The add-in was connected to a server on which the Performance Insight (PI) option is

installed.
• A report template that uses KPIs was created with the add-in.
• The add-in was then connected to a server without the Performance Insight option installed

for the purpose of adapting the template to the project running there.

Removing an option
1. In the "Data sources" group on the "WinCC Unified" tab, click on "Connections".
2. Under "Connections", click on "Online".
3. Select the server node.

You see the loaded options under the server node:

Available options
The following applies to data source items of these options:
• They can be added to the report template.
• Their data can be read in from Runtime to Excel in the add-in.
Unavailable options
In the example: Performance Insight
The following applies to data source items of these options:
• They cannot be added to the report template.
• If the report template already has a data source element of this option, its data

cannot be read in from Runtime to Excel.

4. Select the "Performance Insight" option under the server node.
5. Click the "Delete" button next to the option.
6. Confirm your input.

Result
The option is removed from the connection settings.
Next, remove all data source items of this option from the report template.

Reloading an option
When the add-in is connected to a Runtime server, all options available on the server are loaded.
To reload an option that was deleted in the connection settings but is available on the server,
select the server node and click "Load".

Options
19.2 Creating production reports

System Manual, 11/2022 7665

Using an offline connection
With the offline connection, the add-in uses a configuration file as data source.
The connection settings allow you to:
• Change the configuration file used
• When reusing a report template with a configuration based on a Runtime server different to

that of the currently selected configuration file: Check the available options and delete the
options that were not loaded.

Setting up an offline connection

Requirement
An offline configuration file was created in the "Reports" control in Runtime. The configuration
file is available on the device.

Procedure
1. In the "Data sources" group on the "WinCC Unified" tab, click on "Connections".
2. Under "Connections", click on "Offline".
3. Click "Open offline configuration".
4. Select the desired file in the window that opens and confirm your entries.
5. Click "Load".
6. Select the desired options.
7. Confirm your entries.

Result
• A server node is created. The node bears the name of the server on which the configuration

file is based.
• The configuration file, together with its options, is loaded into the add-in. The data of the

configuration file is available for configuring the report template.
Note
To check which options were loaded, click on the server node.
Options that are being used in the currently open report template but are not available in the
configuration file have a red icon. You can remove the option:

See also
Removing options (Page 7667)
Exporting an offline configuration file (Page 7743)

Options
19.2 Creating production reports

7666 System Manual, 11/2022

Removing options

Introduction
If you reuse report templates across servers, e.g. in order to adapt an existing template for
another project, it may be necessary to remove unavailable options from the connection
settings.
The procedure for this is presented using the Performance Insight option as an example.

Requirement
• The add-in was changed over to an offline connection whose configuration file does not

include Performance Insight.
• A report template was opened in the add-in whose configuration is based on a connection to

a Runtime server on which Performance Insight is installed.

Removing an option
1. In the "Data sources" group on the "WinCC Unified" tab, click on "Connections".
2. Under "Connections", click on "Offline".
3. Select the server node.

You see the loaded options under the server node:

Available options
The following applies to data source items of these options:
• They can be added to report templates.
• Their data can be read in from the configuration file to Excel.
Unavailable options
In the example: Performance Insight
The following applies to data source items of these options:
• They cannot be added to the report template.
• If the report template already has a data source element of this option, its data

cannot be read in from the configuration file to Excel.

4. Select the "Performance Insight" option under the server node.
5. Click the "Delete" button next to the option.
6. Confirm your input.

Result
The option is removed from the connection settings.
Next, remove all data source items of this option from the report template.

Options
19.2 Creating production reports

System Manual, 11/2022 7667

Reloading an option
When a configuration file is loaded, all options available in the file are loaded.
To reload an option that was deleted in the connection settings but is available in the
configuration file, select the server node and click "Load".

19.2.4.4 Configuring report templates

Requirement
An online connection or offline connection has been established.

Procedure
To create a new report template, proceed as follows:
1. Open a new Excel file.
2. Add a segment.

You can choose between time series segments and single value segments.
3. Add data source items to the segment.

The exact procedure depends on the type of the data source item.
4. Optional: If you do not want a data source item to use the default configuration, determine its

configuration.
You have the following options:
– Select an existing configuration.
– Create a new configuration and select it.
– Define a local configuration.

5. Optional: To define additional segments, repeat steps 2 to 4.
6. Optional: When using an online connection, test the template by reading the runtime data

of selected segments or all segments.

User interface of the add-in

Requirement
• The "WinCC Unified" tab is visible in Excel.

Options
19.2 Creating production reports

7668 System Manual, 11/2022

Structure
If you click on "Segments" in the "Configuration" group, you see the following interface:

① Toolbar
② Work area

Toolbar buttons:

Button Tooltip Description
"Segment configuration" Loads the interface to add and edit segments

in the work area.
"Data source item configuration" Loads the interface for adding and editing the

configuration of a data source item in the
work area.

"Basic settings" Loads the interface for setting the language
settings in the work area.

"Update all" Reads the Runtime data of the connected da‐
ta source into the data tables of the segments.

"Delete Runtime data" Removes all Runtime data from the report
template.

Logoff Logs out the user currently logged in to the
add-in.

Help Opens the user help for the add-in.

Options
19.2 Creating production reports

System Manual, 11/2022 7669

Working with segments

Basic information on segments

Definition
A report template consists of any number of segments. Each segment is a container to which you
can add any number of data source items. The segment reads the data from its data source items.
There are time series segments and single value segments.

Note
Hierarchical segments of PI options
Hierarchical segments are also available with PI Options installed. For more information on this,
refer to the PI Options help.

Time series segments
A time series segment documents the data of its data source items in a defined time period.
It has a legend table and a data table.

Data source items
Time series segments can have the following data source items:
• Logging alarms
• Alarm statistics
• Logging tags
• User-defined columns
• Contexts
• Audit

Note
Data source items of the PI options
If PI options are installed, additional data source items can be added. For more information on
this, refer to the PI Options help.

Legend table
The table header row provides general information about the segment and its data source
items.
You decide which type of information is provided when you create or edit the segment.

Options
19.2 Creating production reports

7670 System Manual, 11/2022

Data table
The data table outputs the data of the data source items. It documents how the data source
items have changed in the defined time period.
The data table of a time series segment has the following columns:

Columns Description
Time stamp column Always output

Always output as the first column
Per data source
item

Standard column The standard column provides the standard property of the data source item. This
property depends on the type of data source item.
For a data source item of the Tag type, e.g. the tag value

Optional col‐
umns

Provide more information about the data source item. What information this is depends
on the type of the data source item.
For a data source item of the Tag type, e.g. the quality code of the tag value
You change the default settings for visibility, column title and order of these columns
in the configuration of the data source item.

In the default setting, the data source items in the data table have the order in which they
were added to the segment.

Note
When the standard columns and optional columns provide numerical values, you can have the
actual values replaced with texts or graphics from a text list or graphic list when importing the
Runtime data.

Single value segments
A single value segment documents exactly one value for its data source items.

Data source items
Single value segments can have the following data source items:
• Logging tags
• Tags

Note
Data source items of the PI options
If PI options are installed, additional data source items can be added. For more information on
this, refer to the PI Options help.

Options
19.2 Creating production reports

System Manual, 11/2022 7671

Data table
The data table of a single value segment has the following columns per data source item:

Columns Description
Standard column The standard column provides the standard property of the data source item.

For tags and logging tags: the tag value
Optional columns Provide more information about the data source item.

For tags and logging tags:
• Time stamp
• Data source item
• Quality code of the tag value
You change the default settings for the visibility of these columns in the configuration of the data source
item.

The data table of a single value segment shows the data source items in the order in which
they were added to the segment.

Note
When the standard columns and optional columns provide numerical values, you can have the
actual values replaced with texts or graphics from a text list or graphic list when importing the
Runtime data.

Single row segments do not have a table header row. However, in the configurations of
their data source items, you can determine whether a caption is inserted for the displayed
columns and the position at which this occurs.

See also
Standard column (Page 7672)

Standard column

Introduction
For each data source item of a segment, a standard column is added in the data table of the
segment.

Content of the standard column
The standard column provides the standard property of the data source item and depends on the
type of the data source item:

Data source item type Default column title Value
Logging alarm "Alarm ID" Alarm IDs of the displayed alarms
Alarm statistics "Alarm statistics [ID]" Alarm IDs of the alarms displayed in the alarm sta‐

tistics

Options
19.2 Creating production reports

7672 System Manual, 11/2022

Data source item type Default column title Value
Tag or logging tag "<Name of the tags or

logging tags>"
Value of the tag or logging tag

Context "<Name of the context
object>"

Context name

Audit "Audit [<object name>]" The name of the object monitored by the Audit Trail
User-defined column Name entered when cre‐

ating the data source
item

As set in the configuration of the data source item:
• A fixed string.

Or
• A dynamically calculated string

Changing the column title
You can replace the default column title with a localizable display name. See Setting a display
name for standard column (Page 7711).

Replacing numerical values
If the standard column provides numeric values, you have the option to have the actual values
replaced with texts or graphics from a text list or graphic list when the Runtime data is read in.
See Assigning text lists and graphic lists (Page 7708).
User-defined columns are excluded from this.

See also
Basic information on segments (Page 7670)

Options
19.2 Creating production reports

System Manual, 11/2022 7673

The segment user interface

Structure
The interface for creating and editing segments has the following structure:

① Filter
Filters the list of segments by name.

② Button for creating a segment
③ List of segments

Each segment has buttons for reading in, editing and deleting the segment.
The following configuration is displayed for each segment:
• Segment name
• Number of data source items
• Insertion location of the segment in the Excel file
• Time span
• If context filters have been configured: The filter string
A click on the segment opens the area with the data source items.

Options
19.2 Creating production reports

7674 System Manual, 11/2022

Create segments

Requirement
• The "WinCC Unified" tab is visible in Excel.
• The data source is set up.
• To filter the time interval of the time series segment depending on the context: There are

contexts in the project that run on the connected Runtime server or are the basis of the
configuration file.

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Click "New segment".
3. Select "New time series segment" or "New single value segment".
4. Enter a segment name.

Note
Note the Excel restrictions for naming tables (for example, do not use blanks).
Change the segment name only via the add-in, not via the Excel property "Table name".
Do not change the name of the worksheet after creating the segment. The add-in addresses
the segment by the segment name and the worksheet name.

Options
19.2 Creating production reports

System Manual, 11/2022 7675

5. For a time series segment, make the following settings in addition:
– Under "File location" you determine where the segment will be inserted in the file. Enter

the name of the worksheet and the cell.
Alternatively, click "Select a cell" and use the cell currently selected in the Excel file:

– Under "Start" and "End", you determine the time period for which values are read into the
segment.

"Absolute date/
time"

Select a date and a time.
The information is absolute to the current date.

"Relative date/
time"

Select a reference time and a time interval.
The information is relative to the current date.
See also Formats for relative time information (Page 7679).

"Date/Time of the
cell"

Applies the value of the cell currently highlighted in the Excel file.
Make sure that the cell supplies a valid time.

"Date/Time of the
tag"

Applies the value of the set tag.
Make sure that the tag supplies a valid time.
Possible data types:
• DateTime
• String
• Integer

Options
19.2 Creating production reports

7676 System Manual, 11/2022

– (Optional) Under "Properties of the legend table", you configure the contents to be
displayed in the table header row of the segment:

"Name"
"Start"
"End"
"State"

General information on the segment

"Context filter" If the segment time was limited by a context filter: The filter string is
output.
See step 6.

"Audit status" If the segment has an audit data source item, the field shows the
overall status of the audit data:
• Green field: No manipulations of the Audit Trail were found in the

queried time range.
• Red field: Manipulations of the Audit Trail were found in the

queried time range. Single or multiple entries have been deleted,
added or changed.

"Header" The table header row includes a list of the segment's data source
items showing general information about these data source items.
The information displayed for the data source items depends on their
type.
Example of contexts: Display name of the context, context provider,
hierarchy path, short name of the context, full name of the context,
option

Use the check boxes to remove information from or add information to the legend table.
To change the sorting in the table header row, move the mouse pointer to a row and shift
it using the arrow buttons or drag-and-drop.

Options
19.2 Creating production reports

System Manual, 11/2022 7677

6. (Optional) You can filter the time interval of the time series segment depending on the
context. You can define up to two filter conditions.
Proceed as follows:
– Under "Context filter", click "+" or "Add new condition row".

The condition line is added.
– Click on "+" in the condition line.
– Under "Select context", select the root of the common plant model.

In the next row, you see the top level of the common plant model.
– Navigate through the common plant model to plant objects with contexts.

Plant objects and contexts can be recognized by the following icons:

Plant object

Context

– Select a context.
– Select an operator.
– Enter a value.
– (Optional) Use "+" or "Add new condition row" to create a second condition and select

whether the two conditions are to be linked with a logical AND or OR.
7. (Optional) Under "Autofit", configure whether the column width and row height of the data

table is automatically adapted to the text read from Runtime.
8. Confirm your entries with "OK".

Result
The segment is created and added to the list of segments:
Next, add data source items to the segment. Your procedure depends on the type of the new
data source item.

See also
Tips on design and layout (Page 7717)
Adding data source elements (Page 7681)
Working with configurations (Page 7694)

Options
19.2 Creating production reports

7678 System Manual, 11/2022

Formats for relative time information

Definition of a relative time information
The relative times are entered using a reference time and a time interval.

Reference time
Use one of the following characters for the reference time:
• "*" - Now
• "t" (today) - Today at midnight
• "y" (yesterday) - Yesterday at midnight
• "1-31" - Specific day of the current month

Time interval
• "y" (year): +1y = plus 1 year
• "mo" (month): +1mo = plus 1 month
• "w" (week): +1w = plus 1 week
• "d" (day): +1d = plus 1 day
• "h" (hour): +1h = plus 1 hour
• "m" (minute): +1m = plus 1 minute
• "s" (second): +1s = plus 1 second
• "ms" (milliseconds): +250ms = plus 250 milliseconds

Options
19.2 Creating production reports

System Manual, 11/2022 7679

Examples
• *-1y: One year ago today
• t+8h: Today at 8:00 am
• y+8h: Yesterday at 8:00 am
• 1+8h: The first day of the current month at 8:00 am
• *-1d: One day ago
• *-2h-30m-30s: 2 hours, 30 minutes and 30 seconds ago

See also
Create segments (Page 7675)

Edit segments

Requirement
• The "WinCC Unified" tab is visible in Excel.
• A segment is available.

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Click "Edit" next to a segment in the list of segments.
3. Edit the segment.

You can make the same settings as when creating the segment.

Delete segments

Requirement
• The "WinCC Unified" tab is visible in Excel.
• A segment is available.

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Click "Delete" next to a segment in the list of segments.
3. Confirm your entries with "OK".

Options
19.2 Creating production reports

7680 System Manual, 11/2022

Adding data source elements

Adding log alarms

Requirement
• There are logging alarms in the project that runs on the connected Runtime server or is the

basis of the configuration file.
• The "Alarm" option is enabled in the connection settings.
• The "WinCC Unified" tab is visible in Excel.
• A time series segment is available.

Adding logging alarms
1. Click on "Segments" in the "Configuration" group.

The list with the segments already created is loaded into the add-in.
2. Select a segment.

The segment is extended by the area for the data source items.
3. Click "+".
4. Select the "Alarms" option.
5. Select the "Alarm" entry under "Select alarms".
6. Under "Select alarms", select the entry "Alarm [ID]".

Note
Change selection criteria
After you have added alarms, you can change the selection criteria and add more data source
items to the segment.
For example: Output tags and alarms in the same segment.

7. To cancel your selection, select the entry "Alarm [ID]" under "Selected data source items" and
click "Delete".

8. Confirm with "OK".

Result
• The data source item for logging alarms is added to the add-in below the segment.
• The configuration of the data source item controls which data is added when importing the

runtime data into the data table.
Note
With the default setting, the data source item uses the default configuration. It shows all
logging alarms of the project.

Options
19.2 Creating production reports

System Manual, 11/2022 7681

To display data that deviates from the default configuration, select one of the following
options:
• Select a different matching configuration.
• Create your own configuration.
• Edit a configuration.
• Overwrite a configuration locally.

See also
Creating or editing configurations for log alarms (Page 7694)
Select configuration (Page 7705)
Working with configurations (Page 7694)

Adding alarm statistics

Introduction
To output statistical calculations for logging alarms in a report, add alarm statistics to a report
template. The following calculations are available:
• Frequency of an alarm
• Average display time per state machine
• Total display time per state machine
• Maximum display time per state machine
• Minimum display time per state machine
The alarm statistics add columns with statistical calculations and columns with general alarm
properties of the recorded alarms to the reports.
You can find more information about calculations in alarm statistics in the help for the alarm
control.

Requirement
• The "Alarm" option is enabled in the connection settings.
• The "WinCC Unified" tab is visible in Excel.
• A time series segment is available.

Procedure
1. Click on "Segments" in the "Configuration" group.

The list with the segments already created is loaded.
2. Select a time series segment.

The segment is extended by the area for the data source items.

Options
19.2 Creating production reports

7682 System Manual, 11/2022

3. Click "+".
4. Select the "Alarm" option.
5. Under "Select alarms", select the entry "Alarm statistic [ID]".
6. Under "Select alarm statistic" select the entry "Alarm statistic [ID]".

Note
Change selection criteria
After adding the alarm statistics, you can change the selection criteria and add more data
source items.

7. (Optional) To cancel your selection, select the entry "Alarm statistic [ID]" under "Selected data
source items" and click "Delete".

8. Confirm with "OK".

Result
The added data source item for alarm statistics is displayed below the segment and inserted into
the data table.
First, the data table shows the contents configured in the default configuration for alarm
statistics. To output other contents, select or create a configuration.

See also
Creating or editing configurations for an alarm statistics (Page 7696)
Working with configurations (Page 7694)

Add logging tags

Requirement
• The project on which the connected Runtime server runs or the basis of the configuration file

has logging tags.
• The "Logging tag" option was selected while setting up of the connection.
• The "WinCC Unified" tab is visible in Excel.
• A single value segment or time series segment is available.

Procedure
1. Click on "Segments" in the "Configuration" group.

The list of segments is loaded.
2. Select a segment.

The segment is extended by the area for the data source items.
3. Click "+".

Options
19.2 Creating production reports

System Manual, 11/2022 7683

4. Select the "Logging tag" option.
5. Optional: To reduce the load time, filter which tags are loaded to the selection under "Add

filter".
The preset filters "*" return all logging tags of the project.
– "Tag name": Enter the name of the tag whose logging tags you want to add.
– "Logging tag name": Enter the name of the logging tags you want to add.
Note that the entry is case-sensitive.
Note
Filter by partial string
You use the wildcard "*" to filter by partial strings.
For example:
• *T* returns all tags with a "T" in their name.
• *T returns all tags that end in "T".
• T* returns all tags that start with "T".
When filtering for structures, the separators must be part of the filter string.
For example: The following filters return the logging tags for all tags of the device
"HMI_RT_1":
• Filter for tag: "HMI_RT_1::*"
• Filter for logging tag: "*"

6. Click "Load".
The logging tags of the project are filtered and provided under "Select tags".

7. Optional: Further reduce the number of tags that are offered for selection by clicking next to
"Select logging tags" and entering another filter string.
The list of tags you are being offered is filtered while you type.

8. Select one or more tags under "Select logging tags".
The tags are added to the "Selected data source items" list.
Note
Change selection criteria
After you have added a tag, you can select a different option or a different filter and add
additional data source items.
For example: Output KPIs and logging tags in the same segment.

9. To remove one or more data source items from "Selected data source items", select them and
click "Delete".

10.Confirm with "OK".
The added logging tags are shown below the segment and added to the Excel table.

11.If you have added the logging tag to a single value segment:
– In the Excel worksheet, select the cell in which the logging tag is to be inserted.
– Click the "Select a cell" button on the data source item of the logging tag.

Alternatively, enter the name of the worksheet and the cell.

Options
19.2 Creating production reports

7684 System Manual, 11/2022

See also
Create segments (Page 7675)
Select configuration (Page 7705)
Create or edit configurations for logging tags (Page 7697)
Working with configurations (Page 7694)

Adding tags

Requirement
• The project on which the connected Runtime server runs or the basis of the configuration file

has tags.
• The "Tag" option was enabled when the connection was set up.
• The "WinCC Unified" tab is visible in Excel.
• A single value segment is available.

Procedure
1. Click on "Segments" in the "Configuration" group.

The list of segments is loaded.
2. Select the single value segment.

The segment is extended by the area for the data source items.
3. Click "+".
4. Select the "Tag" option.
5. Optional: To reduce the load time, filter which tags are loaded to the selection under "Add

filter".
Under "Tag name", enter a filter, e.g. the name of the tag. Note that the entry is case-sensitive.
The default filter "*" returns all tags of the project.
Note
Filter by partial string
You use the wildcard "*" to filter by partial strings.
For example:
• *T* returns all tags with a "T" in their name.
• *T returns all tags that end in "T".
• T* returns all tags that start with "T".
When filtering for structures, the separators must be part of the filter string.
For example: The filter "HMI_RT_1::*" returns all tags of the device "HMI_RT_1".

Options
19.2 Creating production reports

System Manual, 11/2022 7685

6. Click "Load".
The tags of the project are filtered and provided under "Select tags".
You can recognize structs and arrays in the list by the following items:

① Button to display the members of the struct or array
② "Select all included data source items"

Button that adds all members with a simple data type to the list of selected data source items

7. Optional: Further reduce the number of tags that are offered for selection by clicking next to
"Select tags" and entering another filter string.

The list of tags you are being offered is filtered while you type.
8. Select which tags will be added to the segment. You have the following options:

Target Procedure Result
Show the members of
a struct or array.

Click the button with
the arrow next to the
struct or array.

A second "Select tags" list is added, in which you
can see all the members of the struct or array.
You can add to the segment any members that
have a simple data type, e.g. bool, float or string.

Add all members of a
struct or array.

Next to the struct or ar‐
ray, click "Select all in‐
cluded data source
items".

All members with a simple data type are added to
the "Selected data source items" list and marked
as selected under "Select tags":

Select tags with simple
data type.

Under "Select tag", click
the required tags.

The tags are added to the "Selected data source
items" list and marked as selected under "Select
tags":

Note
Automatic filtering when displaying the members or selection of all members
If you click the button to display the members of a struct or array or activate the option to
select their members, the struct or array is set as a filter:
• The list under "Select tags" only shows the struct or array.
• A second "Select tags" list is added below this, in which you can see all members of the

struct or array.
To see all available tags again, delete the filters.

Note
Change selection criteria
After you have added a tag, you can select a different option or a different filter and add
additional data source items.

Options
19.2 Creating production reports

7686 System Manual, 11/2022

9. To remove tags from the segment, click on the tags in "Selected data source items" and click
"Delete".

10.Confirm with "OK".
The added tags are added to the segment.
When the report template is updated in the add-in and when the report is generated in
runtime, the tag values are inserted into the data table.

See also
Creating or editing configurations for tags: (Page 7699)
Working with configurations (Page 7694)

Adding contexts

Introduction
To display in a report which contexts are to run during a certain time period, add only contexts
to a segment in the report template.
To display which process data has been accumulated during the runtimes of a context, add
the context and other data source items, such as logging tags or logging alarms, to the
segment.

Requirement
• There are contexts in the project that run on the connected Runtime server or are the basis

of the configuration file.
• The "Context" option is enabled in the connection settings.
• The "WinCC Unified" tab is visible in Excel.
• A time series segment is available.

Adding a context to a segment
1. Click on "Segments" in the "Configuration" group.

The list with the segments already created is loaded.
2. Select a segment.

The segment is extended by the area for the data source items.
3. Click "+".
4. Select the "Context" option.

Options
19.2 Creating production reports

System Manual, 11/2022 7687

5. Select a context:
– Under "Select a context definition", select the root of the plant model.

In the next row, you see the top level of the common plant model.
– Navigate through the common plant model to plant objects with contexts.

Plant objects and contexts can be recognized by the following icons:

Plant object

Context

– Select the desired contexts.
All selected contexts are included in the "Selected data source items" list

Note
Change selection criteria
After you have added a context, you can select a different option and add additional data
source items.
For example: Context and logging tags in the same segment.

6. To remove one or more data source items from "Selected data source items", select them and
click "Delete".

7. Confirm with "OK".

Result
The selected contexts are displayed below the segment and inserted into the data table.
If you do not want a context to use the default configuration, select its configuration next.

Content of the data table after executing the segment
In segments to which only contexts or contexts and user-defined columns have been added:
• A line is inserted for each context whose runtime falls within the time period of the segment.
• "Time stamp" column: The time at which the context was started
In segments that combine contexts with logging tags or logging alarms:
• All logged values with the same time stamp are displayed per row.
• "Time stamp" column: The logging event
• "Start time" column: The time at which the context was started
• "Context " <Context name>"" column: The value passed to the context at start
• If no context was started at the time of logging, the context cells remain empty.

Options
19.2 Creating production reports

7688 System Manual, 11/2022

Example
The following data source items were added to a segment:
• The "Product" context

Runtime of the context: 15:00:00 to 19:59:59 hours
The context was started with the "Orange lemonade" value.

• The "Logged_Rotation" logging tag
Logging cycle: 2s

• The "Logged_Temperature" logging tag
Logging cycle: 5s

• The user-defined "Unit" column
It contains the unit for "Logged temperatures".

Content of the data table after execution of the segment:

Lines 2 to
6

Values were logged for "Logged_Rotation" and "Logged_Temperature", while the "Product" context ran with the
"Orange lemonade" value.

Line 8 A value was logged for "Logged_Rotation" while no context was running.

Adding user-defined columns

Introduction
User-defined columns supplement the data of the other data source items of a time series
segment with additional information:
• With a fixed string

The string appears in each cell of the column.
Example: Display measurement unit of the tag values in report

• With a formula
The formula is calculated during generation for each cell in the dynamic column.
Example: The sum of the tag values output in the report.

The configuration of the user-defined column controls which string or formula it uses.

Options
19.2 Creating production reports

System Manual, 11/2022 7689

Requirement
• The "User-defined column" option was enabled when the connection was set up.
• The "WinCC Unified" tab is visible in Excel.
• A time series segment is available.

Procedure
1. Click on "Segments" in the "Configuration" group.

The list of segments is loaded.
2. Select a segment.

The segment is extended by the area for the data source items.
3. Click "+".
4. Select the option "User-defined column".
5. Enter the name of the column under "name".
6. Click "Select" or press <ENTER>.

The column is included in the list "Selected data source items".
Note
Change selection criteria
After you have added a column, you can select a different option or a different filter and add
additional data source items.

7. Select a configuration for the user-defined column.
8. To remove one or more data source items from "Selected data source items", select them and

click "Delete".
9. Confirm with "OK".
The added columns are displayed below the segment and inserted into the data table.

See also
Creating and editing configurations for user-defined columns (Page 7701)
Working with configurations (Page 7694)

Add Audit

Introduction
To output the Runtime device Audit Trail in a report, add an Audit data source item to a report
template.
You can find more information about the Audit option in WinCC Unified in the TIA Portal help.

Options
19.2 Creating production reports

7690 System Manual, 11/2022

Requirement
• The Audit option was activated in the engineering for the Runtime device.
• The "Audit" option is activated in the connection settings of the Excel add-in.
• The "WinCC Unified" tab is visible in Excel.
• A time series segment is available.

Procedure
1. Click on "Segments" in the "Configuration" group.

The list with the segments already created is loaded.
2. Select a time series segment.

The segment is extended by the area for the data source items.
3. Click "+".
4. Select the "Audit" option.
5. Select the Audit Trail.
6. (Optional) To undo your selection, select the Audit Trail under "Selected data source items"

and click "Delete".
7. Confirm with "OK".

Result
The Audit data source item is displayed below the segment.

Options
19.2 Creating production reports

System Manual, 11/2022 7691

If an Audit Trail is configured for the data source, the Audit data is inserted into the report
when the Runtime data is read into Excel and when it is generated in Runtime:
• In the legend table: Identifier of the overall status of the Audit Trail for the queried time range

in the "Audit Status" field

Value Description
Green No manipulations of the Audit Trail were found in

the queried time range.
Red Manipulations of the Audit Trail were found in the

queried time range. Single or multiple entries
have been deleted, added or changed.

Requirement: The "Audit status" option is activated on the segment under "Header
properties".
Note
Overall status for check mode "None"
If the check mode "None" is set in the configuration of the audit data sources item, the "Audit
status" field is always green.

• In the data table of the segment: Identifier of manipulations

Type of manipulation Identifier in the data table
Value of entries changed Directly at the entries
Entries added
Entries deleted The manipulated time range receives a start and

end entry.

First, the data table shows the contents configured in the standard configuration for Audit. To
output other contents, select or create a configuration.

Setting a display name for standard column

Introduction
You can assign a display name for the standard column of a data source item. When a display
name is set, it is used in the data table instead of the default column title and is listed in the table
header row.
Display names make reports clearer, for example, when data source items for contexts or
tags have very long names.
You set the display name in the local configuration of the data source item.

Requirement
• The "WinCC Unified" tab is visible in Excel.
• There is a segment with a matching data source item.

Options
19.2 Creating production reports

7692 System Manual, 11/2022

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Expand a segment by clicking on it.

The area for adding and editing data source elements appears.
3. Move the mouse pointer to the data source item and click "Edit".

The local configuration of the data source item opens.
4. Enter the desired column title in "Display name".

The column title must be unique within the segment.
Note
Localization
The column title is stored in the Runtime language currently set in the basic settings of the
add-in.
To localize the column title, change the Runtime language and repeat your entry in the new
language.

5. Confirm your entry with "OK".

Result
• The data table uses the display name as the column title for the standard column of the data

source item.
• As long as the following conditions are met, the "Display name" column is inserted into the

table header row:
– Display of the header row in table header row is enabled.

Make this setting at the segment.
– A display name is set for at least one data source item of the segment.
The column lists the display names of all data source items. If no display name is set for a data
source item, its cell remains empty.

Note
• If you assign a different configuration to the data source item, the display name is retained.
• To return to the display of the default column title after assigning a display name, enter the

name of the data source item under "Display name".

Delete data source elements

Requirement
• The "WinCC Unified" tab is visible in Excel.
• A segment with a data source element is available.

Options
19.2 Creating production reports

System Manual, 11/2022 7693

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Expand a segment by clicking on it.

The area for adding and editing data source elements appears.
3. Move the mouse pointer over a data source element and click "Delete".

Working with configurations

Basics of configuration
The configuration of a data source item defines the values of a data source element that are
displayed in a segment or how they are calculated and displayed.
There are specific configuration settings for each data-source-item type.
Data source items used in time series segments use a different configuration than data
source items used in single-value segments.
You have the following options:
• Use standard configuration.

There is a standard configuration for all types of data source items. Once added, data source
items use the default configuration of their type.
You can edit the standard configurations.

• Use user-defined configuration.
You can create any number of user-defined configurations for all types of data source items.
You can select one of the user-defined configurations on the data source item.

• Overwrite a configuration locally.
You can overwrite the configuration selected at the data source item locally.

Creating or editing configurations for log alarms

Requirement
• The "WinCC Unified" tab is visible in Excel.

Creating a configuration
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click "New Configuration > Logging alarm configuration".
4. Enter the name of the configuration under "Configuration name".

Options
19.2 Creating production reports

7694 System Manual, 11/2022

5. (Optional) Enter texts or graphics from a text list or graphic list in the standard column
instead of the alarm IDs.
See Assigning text lists and graphic lists (Page 7708).

6. (Optional) Change the default settings of the optional columns. The optional columns are
used to display the alarm properties.
See Configuring optional columns (Page 7707).

7. (Optional) Filter the logging alarms to be displayed. You define a filter query for this purpose.
The filter query can consist of up to two conditions.
Proceed as follows:
– Under "Filter", click "+" or "Add new condition row".
– Select an alarm property, an operator, and enter a value.
– Optional: Use "+" or "Add new condition row" to create additional conditions. Select

whether the conditions are to be linked with a logical AND or OR.
8. Enable the option "Use system colors" so that the alarms are highlighted with the same colors

as in the alarm control.
9. Confirm your entries with "OK".

Note
To not use the default column title for the standard column, set a display name in the local
configuration of the data source item. See Setting a display name for standard column
(Page 7711).

Editing a configuration
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click a configuration for logging alarms.
4. Edit the configuration settings. You have the same options as when creating the

configuration.
5. Confirm your entries with "OK".
The changes are applied the next time you read in the Runtime data.

See also
Select configuration (Page 7705)
Calculation modes for data source elements (Page 7715)

Options
19.2 Creating production reports

System Manual, 11/2022 7695

Creating or editing configurations for an alarm statistics

Requirement
• The "WinCC Unified" tab is visible in Excel.

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click "New Configuration > Alarm statistics configuration".
4. Enter the name of the configuration under "Configuration name".
5. (Optional) Enter texts or graphics from a text list or graphic list in the standard column

instead of the alarm IDs.
See Assigning text lists and graphic lists (Page 7708).

6. (Optional) Change the default settings of the optional columns. The optional columns are
used to display the statistical calculations and alarm properties.
See Configuring optional columns (Page 7707).

7. (Optional) Filter the contents to displayed in the alarm statistics. You define a filter query for
this purpose. The filter query can consist of up to two conditions.
Proceed as follows:
– Under "Filter", click "+" or "Add new condition row".
– Select an alarm property, an operator, and enter a value.
– Optional: Use "+" or "Add new condition row" to create additional conditions. Select

whether the conditions are to be linked with a logical AND or OR.
8. Enable the option "Use system colors" so that the alarms are highlighted with the same colors

as in the alarm control.
9. Confirm your entries with "OK".

Note
To not use the default column title for the standard column, set a display name in the local
configuration of the data source item.
See Setting a display name for standard column (Page 7711).

Editing a configuration
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

Options
19.2 Creating production reports

7696 System Manual, 11/2022

3. Click a configuration for alarm statistics.
4. Edit the configuration settings. You have the same options as when creating the

configuration.
5. Confirm your entries with "OK".
The changes are applied the next time you read in the Runtime data.

See also
Adding alarm statistics (Page 7682)

Create or edit configurations for logging tags

Requirement
• The "WinCC Unified" tab is visible in Excel.

Creating a configuration
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click "New Configuration".
4. To create a configuration for logging tags in a time series segment, select the entry "Logging

tag configuration".
To create a configuration for logging tags in a single value segment, select the entry "Single
value configuration logging tag".

5. Enter the name of the configuration under "Configuration name".
6. Under "Calculation mode", select the data to be written if no current value is available.
7. (Optional) If the configuration is for logging tags with the numeric data type, you can output

texts or graphics from a text list or graphic list in the standard column instead of the tag value.
See Assigning text lists and graphic lists (Page 7708).

8. Set the other settings as described below.
9. Confirm your entries with "OK".

Note
To not use the default column title for the standard column, set a display name in the local
configuration of the data source item. See Setting a display name for standard column
(Page 7711).

Options
19.2 Creating production reports

System Manual, 11/2022 7697

Editing a configuration
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click a configuration for logging tags.
4. Edit the configuration settings.
5. Confirm your entries with "OK".
The changes are applied the next time you read in the Runtime data.

Additional settings for time series segments
In time series segments, the following additional settings are available for logging tags:

Setting Description
"Interval" Only for the "Stepped" and "Interpolated" calculation modes.
"Columns" > "Quality Code" (Optional) Change the default settings of the optional "Quality Code" col‐

umn.
See Configuring optional columns (Page 7707).

Additional settings for single value segments
In single value segments, the following additional settings are available for logging tags:

Setting Description
"Time stamp" Determine the date and time for which the value is read.

Proceed as described below.
"Show captions" Define whether a header is displayed in the columns for the time stamp,

the data source item and the quality code.
"Show time stamp" Determine whether and where this information is displayed in the table.

The information is always in relation to the value cell."Show data source item"
"Show quality code"

To set the "Time stamp", select one of the following options:

 Absolute time information Select a date and a time.
The information is absolute.

 Relative time information Select a reference time and a time interval.
The information is relative to the current date.

Options
19.2 Creating production reports

7698 System Manual, 11/2022

 Read time information from cell Applies the value of the cell currently highligh‐
ted in the Excel file.
Make sure that the cell supplies a valid time.

 Read time information from tag Applies the value of the set tag.
Make sure that the tag supplies a valid time.
Possible data types:
• DateTime
• String
• Integer

See also
Calculation modes for data source elements (Page 7715)

Creating or editing configurations for tags:

Requirement
• The "WinCC Unified" tab is visible in Excel.

Creating a configuration
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":
3. Click "New Configuration> Tag single value configuration".
4. Enter the name of the configuration under "Name".
5. (Optional) If the configuration is for tags with the numeric data type, you can output texts or

graphics from a text list or graphic list in the standard column instead of the tag value.
See Assigning text lists and graphic lists (Page 7708).

6. Set the other settings as described below.
7. Confirm your entries with "OK".

Note
To not use the default column title for the standard column, set a display name in the local
configuration of the data source item. See Setting a display name for standard column
(Page 7711).

Editing a configuration
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration".

Options
19.2 Creating production reports

System Manual, 11/2022 7699

3. Click a configuration for tags.
4. Edit the configuration settings.
5. Confirm your entries with "OK".
The changes are applied the next time you read in the Runtime data.

Settings for single value segments
In single value segments, the following settings are available for tags:

Setting Description
"Show captions" Select whether a header is displayed in the columns for the time stamp,

the data source item and the quality code.
"Show time stamp" Select whether the time stamp is output with the value.
"Show data source item" Select whether the quality code is output with the value.
"Show quality code" Select whether the quality code is output with the value.

Creating or editing configurations for contexts

Requirement
• The "WinCC Unified" tab is visible in Excel.

Core statement
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click "New Configuration".
4. Select the entry "Configuration context".
5. Enter the name of the configuration under "Configuration name".
6. (Optional) Change the default settings of the optional columns. The optional columns are

used to display important contextual information.
See Configuring optional columns (Page 7707).

7. Confirm your entries with "OK".

Note
To not use the default column title for the standard column, set a display name in the local
configuration of the data source item. See Setting a display name for standard column
(Page 7711).

Options
19.2 Creating production reports

7700 System Manual, 11/2022

Editing a configuration
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click a configuration for contexts.
4. Edit the configuration settings.
5. Confirm your entries with "OK".
The changes are applied the next time you read in the Runtime data.

Creating and editing configurations for user-defined columns

Requirement
• The "WinCC Unified" tab is visible in Excel.

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click "New Configuration > User-defined column configuration".
4. Enter the name of the configuration under "Configuration name".

Options
19.2 Creating production reports

System Manual, 11/2022 7701

5. Under "Formula", select one of the following options:
– Enter a fixed string.

The string is transferred into each cell of the column.
– Enter an Excel formula.

The formula is copied into each cell of the user-defined column and adapted to the
respective row.
To prevent a part of the formula from being adjusted, place the character "$" in front of
it.
Example

Formula in configuration =B2+C2 =B$2+C2
Adapting the formula in the
report

in line 2 =B2+C2 =B2+C2
in line 3 =B3+C3 =B2+C3
in line 4 =B4+C4 =B2+C4

Note
No validity check
The formula is not tested for correctness during either input or dynamic adaptation.

6. Confirm your entries with "OK".

Adding or editing configurations for audit

Introduction
Check mode
The check mode of the configuration of an audit data source item determines
• Whether an integrity check is performed when the Runtime data is read, and what is checked.

You can output the overall result of the check in the table header row in the "Audit status"
field.

• Which audit data records are provided in the data table.
Possible check modes:

"None" Provides the data for all audit data records that fall within the requested time range. No
integrity check is performed.
Default setting

"Check only" Checks all audit data records that fall within the requested time range without providing their
data.
It is tested whether data records have been manipulated, deleted or added.

"Check entries" Check the audit data records and provides their data that fall within the queried time range
and that have not been deleted from the Audit Trail or subsequently added.
It is checked whether data records have been manipulated.

"Check all" Checks all audit data records and provides their data that fall within the queried time range.
It is tested whether data records were manipulated, deleted from the audit trail or subse‐
quently added.

Options
19.2 Creating production reports

7702 System Manual, 11/2022

Filter type
An Audit data record consists of two entries:
• An entry for the user expectation
• An entry for the system response.
User expectation and system response may differ. In addition, there are situations in which
only one of the two data records is created.
The filter type controls which data records and which entries are included in the report.
Possible filter types:

Filter type User expectation equals sys‐
tem response

User expectation does not
equal system response

Data record entry for user
expectation or system re‐
sponse is missing

"Show all data in detail" Both data record entries are inserted. The existing data record entry
is inserted."Show data and conformity

errors"
The data record entry with
the user expectation is inser‐
ted.

Both data record entries are
inserted.

"Show only data with con‐
formity errors"

No data record entry inserted.

Requirement
• The "WinCC Unified" tab is visible in Excel.

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click "New Configuration > Audit configuration".
4. Enter the name of the configuration under "Name".
5. Select a check mode:
6. Specify a filter type.

Preset value: "Show data and conformity errors"
7. (Optional) Change the default settings of the optional columns. The optional columns are

used to display the audit attributes.
See Configuring optional columns (Page 7707).

Options
19.2 Creating production reports

System Manual, 11/2022 7703

8. (Optional) To further filter the inserted content, define a filter query.
The filter query can consist of up to two conditions. Proceed as follows:
– Under "Filter", click "+" or "Add new condition row".
– Select an Audit attribute, an operator and enter the value of the attribute.
– Optional: Use "+" or "Add new condition row" to create additional conditions. Select

whether the conditions are to be linked with a logical AND or OR.
9. Confirm your entries with "OK".

Note
To not use the default column title for the standard column, set a display name in the local
configuration of the data source item. See Setting a display name for standard column
(Page 7711).

Editing a configuration
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration":

3. Click a configuration for Audit.
4. Edit the configuration settings. You have the same options as when creating the

configuration.
5. Confirm your entries with "OK".
The changes are applied the next time you read in the Runtime data.

Examples of the configuration of the filter type
The following table contains examples of data records that were generated in Runtime through
changes to tags monitored by Audit:

Data record
ID

Tag name Modified by Old value New value Description

1A Mo‐
tor1_Speed

User1 0 10 An operator changes the speed of a motor in
an I/O field of an HMI screen.
User expectation and system response are
identical.

1B Mo‐
tor1_Speed

System 0 10

2A ValvePercen‐
tile

User1 0 100 An operator opens a valve using a slider on
an HMI screen.
The valve has a physical blockage and cannot
be opened. Therefore, no data record entry
for the system response is generated.

Options
19.2 Creating production reports

7704 System Manual, 11/2022

Data record
ID

Tag name Modified by Old value New value Description

3A ValvePercen‐
tile

User1 0 99 A physical block has been removed and the
operator repeats the entry. The valve reacts,
but cannot be fully opened.
User expectation and system response differ.

3B ValvePercen‐
tile

System 0 49

4B Mo‐
tor2_Speed

System 0 20 An operator changed the speed of another
motor. The resulting data record was manip‐
ulated, and the user expectation entry was
deleted.
There is only one entry for the system re‐
sponse.

The following table shows which data record entries are inserted into the data table
depending on the filter type selected when generating the report:

Data record ID Tag name Modified by Old value New value
Filter type "Show all data in detail"
1A Motor1_Speed User1 0 10
1B Motor1_Speed System 0 10
2A ValvePercentile User1 0 100
3A ValvePercentile User1 0 99
3B ValvePercentile System 0 49
4B Motor2_Speed System 0 20
Filter type "Show data and conformity errors"
1A Motor1_Speed User1 0 10
2A ValvePercentile User1 0 100
3A ValvePercentile User1 0 99
3B ValvePercentile System 0 49
4B Motor2_Speed System 0 20
Filter type "Show only data with conformity errors"
2A ValvePercentile User1 0 100
3A ValvePercentile User1 0 99
3B ValvePercentile System 0 49
4B Motor2_Speed System 0 20

Select configuration

Requirement
• The "WinCC Unified" tab is visible in Excel.
• A segment with a data source item is available.
• There is a user-defined configuration for the type of the data source item.

Options
19.2 Creating production reports

System Manual, 11/2022 7705

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Select the segment.

The segment is extended by the area for the data source items.
3. Select the desired configuration from a data source item in the drop-down list.
4. Click "OK".

Result
The changes are applied the next time you read in the runtime data.

Overwrite a configuration locally
A local configuration overwrites the configuration selected at the data source item. It applies
only to the data source item for which it was entered.

Requirement
• The "WinCC Unified" tab is visible in Excel.
• A segment with a data source item is available.

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Select the segment.

The segment is expanded to include the plant complex for the data source items.
3. Move the mouse over a data source item and click "Edit".

You create a local configuration that first adopts the values of the original configuration.
4. Enter a name for the local configuration.
5. (Optional) Set a display name. See Setting a display name for standard column (Page 7711).
6. Make the remaining settings as required.

You can make the same settings as in the default and custom configurations.
7. Confirm your entries with "OK".

Result
The changes are applied the next time you read in the Runtime data.

Delete configuration

Requirement
A configuration is available.

Options
19.2 Creating production reports

7706 System Manual, 11/2022

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Click "Data source item configuration".
3. Move the mouse to a configuration.

Note
Default configurations cannot be deleted
You can edit default configurations but not delete them.

4. Click "Delete".

Result
• The configuration is deleted.
• Data source items with this configuration obtain a local configuration with the same settings.

Configuring optional columns

Introduction
In time series segments, data source items of the following types have optional columns:
• Logging tag
• Logging alarm
• Alarm statistics
• Audit
• Context
The optional columns of a data source item depend on its type. The configuration of the data
source items controls whether and how the data table shows these columns.
This section describes how to configure the optional columns.

Requirements
The data source item configuration is open. The configuration must apply to a time series
segment.

Showing and hiding columns
1. To show an optional column in the data table, enable the option for the desired column in the

"Columns" area.
2. To hide a column, disable its option.

Options
19.2 Creating production reports

System Manual, 11/2022 7707

Changing the column title
The data table uses as default column titles the identifiers you see in the "Columns" area. To
change the default column titles, do the following.
1. In the "Columns" area, move the mouse pointer to an optional column.
2. Click the button with the pin.
3. Assign a unique column title.

Note
Localization
The column title is stored in the Runtime language currently set in the basic settings of the
add-in.
To localize the column title, change the Runtime language and repeat your entry in the new
language.

Changing the column sequence
To change the order of the optional columns in the data table, proceed as described in Changing
the column sequence (Page 7712).

Assigning text list or graphic list
The values of numeric columns can be replaced by texts or graphics when the Runtime data is
read in.
To assign a suitable text list or graphic list to the property, proceed as described in Assigning
text lists and graphic lists (Page 7708).

Assigning text lists and graphic lists

Introduction
If standard columns and optional columns of data source items output numerical values, you can
assign text lists and graphic lists to these columns. When the Runtime data is read in, the cell
values of these columns are replaced by texts or graphics from the assigned lists.

Options
19.2 Creating production reports

7708 System Manual, 11/2022

This function improves the readability of the report and helps to draw the reader's attention
to important information.

Note
Restrictions
• Tags/logging tags

Assign a text list or graphic list to the standard column of data source items with a Tag or
Logging tag type only if the tag or logging tag has a numeric data type.
You can assign a text list or graphic list to the optional "Quality Code" column regardless of
the data type of the tag.

• User-defined columns
It is not possible to assign a text list or graphic list for data source items with the User-defined
column type.

• Context and audit
Usually, the names of context objects and audit objects displayed in the standard column do
not contain purely numerical values. It is not recommended to assign a text list or graphic list.

Example
Add two data source items with the same logging tag to a time series segment.
For the first data source item, use the default configuration. This causes the report to output
the tag value in the standard column.
For the second data source item, select a configuration in which a graphic list is assigned to
the standard column. The graphic list contains representational graphics staggered by value
range. As a result, the report outputs a graphic in the standard column.
After reading in the Runtime data, the standard column of the second data source item
makes readers of the report aware of limit violations. Readers can get the exact tag value
from the standard column of the first data source item.

Requirements
• A segment with a data source item was created in the add-in.
• Suitable text lists or graphic lists have been configured in engineering for the connected data

source.

Assigning text lists and graphic lists to the standard column
1. Click on "Segments" in the "Configuration" group.
2. Select the segment.

The data source items of the segment are displayed.
3. Move the mouse over a data source item and click "Edit".

The local configuration of the data source item opens.

Options
19.2 Creating production reports

System Manual, 11/2022 7709

4. Select a suitable list under "Assign text/graphic list".
5. To preview the selected list and its graphics or texts, click the "i" button.

To hide the preview, click the "i" button again.

Assigning optional columns to text lists and graphic lists
1. Click on "Segments" in the "Configuration" group.
2. Select one of the following options:

To make the assignment apply to a specific data source item, follow these steps:
– Select the segment.

The data source items of the segment are displayed.
– Move the mouse over the data source item and click "Edit".

The local configuration of the data source item opens.
To make the assignment apply to multiple data source items of the same type, follow these
steps:
– Click "Data source item configuration":

You can see all default and custom configurations.
– Click on the desired configuration.

The configuration opens.
3. In the "Columns" area, click the following button next to the desired optional column:

An interface for assigning a text list or graphic list is loaded into the add-in.
4. Select the desired graphic list or text list from the drop-down list.
5. To preview the selected list and its graphics or texts, click the "i" button.

To hide the preview, click the "i" button again.
Note
If you are connected offline to the data source, no preview of graphic lists is available.

6. Confirm your entries.

Result
When the Runtime data is read in, the assigned lists are searched for an entry that matches the
actual cell value:
• If a matching entry is found, the corresponding text or graphic is inserted into the data table.
• If no matching entry is found, the actual cell value is inserted.

Note
The assignment of graphic lists slows down the import of the Runtime data into the Excel add-
in.

Options
19.2 Creating production reports

7710 System Manual, 11/2022

See also
Standard column (Page 7672)
Basic information on segments (Page 7670)

Setting a display name for standard column

Introduction
You can assign a display name for the standard column of a data source item. When a display
name is set, it is used in the data table instead of the default column title and is listed in the table
header row.
Display names make reports clearer, for example, when data source items for contexts or
tags have very long names.
You set the display name in the local configuration of the data source item.

Requirement
• The "WinCC Unified" tab is visible in Excel.
• There is a segment with a matching data source item.

Procedure
1. Click on "Segments" in the "Configuration" group.
2. Expand a segment by clicking on it.

The area for adding and editing data source elements appears.
3. Move the mouse pointer to the data source item and click "Edit".

The local configuration of the data source item opens.
4. Enter the desired column title in "Display name".

The column title must be unique within the segment.
Note
Localization
The column title is stored in the Runtime language currently set in the basic settings of the
add-in.
To localize the column title, change the Runtime language and repeat your entry in the new
language.

5. Confirm your entry with "OK".

Options
19.2 Creating production reports

System Manual, 11/2022 7711

Result
• The data table uses the display name as the column title for the standard column of the data

source item.
• As long as the following conditions are met, the "Display name" column is inserted into the

table header row:
– Display of the header row in table header row is enabled.

Make this setting at the segment.
– A display name is set for at least one data source item of the segment.
The column lists the display names of all data source items. If no display name is set for a data
source item, its cell remains empty.

Note
• If you assign a different configuration to the data source item, the display name is retained.
• To return to the display of the default column title after assigning a display name, enter the

name of the data source item under "Display name".

See also
Standard column (Page 7672)
Overwrite a configuration locally (Page 7706)

Changing the column sequence

Introduction
For a time series segment, you can change the default column order of the data table.
You have the following options:
• Specify the order which the data source items have in the data table.
• For each data source item: Set the order of its optional columns.

Note
The time stamp column always appears first.

Requirement
• The "WinCC Unified" tab is visible in Excel.
• A time series segment has been created.

Options
19.2 Creating production reports

7712 System Manual, 11/2022

Change the order of data source items
Procedure
1. Click on "Segments" in the "Configuration" group.
2. Click the time series segment in the list of time series segments.

The data source items of the segment are displayed.
3. Left-click a data source item and move it up or down using drag-and-drop operation.

Result
The order of data source items in the segment interface is changed.
The next time the Runtime data is read in, the data table outputs the data source items in
this order.

Changing the order of optional columns
Procedure
1. Select one of the following options:

To change the column order of a particular data source item, follow these steps:
– Select the segment.

The data source items of the segment are displayed.
– Move the mouse over the data source item and click "Edit".

The local configuration of the data source item opens.
To change the column order for all data source items that use the same configuration, follow
these steps:
– Click "Data source item configuration":

You can see all default and custom configurations.
– Click on the desired configuration.

The configuration opens.
2. Move the mouse pointer to a column under "Columns".

The columns you see depend on the type of data source item.
3. Move the column up or down using the arrow buttons or drag-and-drop.

Result
The order of the optional columns in the configuration is changed.
The next time the Runtime data is read in, the data table outputs the optional columns in the
changed order.

Options
19.2 Creating production reports

System Manual, 11/2022 7713

See also
Creating or editing configurations for log alarms (Page 7694)
Basic information on segments (Page 7670)
Configuring optional columns (Page 7707)

Reading Runtime data in Excel

Note
Reading in Runtime data in Excel is used for testing. It is not intended for mass retrieval of data,
as is the case when report jobs are executed in Runtime.

Requirement
An online connection is established.

Reading in all segments
1. Select "WinCC Unified > Segments".
2. Click "Update all":

Reading in individual segments
1. Select "WinCC Unified > Segments".
2. Next to a segment in the list of segments click, "Update":

Options
19.2 Creating production reports

7714 System Manual, 11/2022

Result
The segment or segments are run. The Runtime data of your data source items are read into
Excel.

Note
Controlling the column width and row height
When the automatic adjustment of the column width and row height is disabled in the segment
properties, the text read in may be truncated or the formula results are replaced with "#"
characters.
Check the column widths and row heights and adjust them manually, if required, or select
automatic adjustment. Manual adaptations only apply in the Excel add-in. They are not included
in the generated reports.

Note
Removing Runtime data from report template
Remove the Runtime data from the report template before you save the report template and
make it available for uploading to Runtime.
To do this, click the "Delete Runtime data" button in the toolbar of the Excel add-in.

Diagnostics during the data query
Successful execution of the data query is documented by the add-in with a status message in the
table.
If an error occurs during the data query, a general error message is displayed under status. In
addition, detailed error messages are displayed in the "ErrorLog" worksheet.

Calculation modes for data source elements
If there is no current value for a data source item for a requested point in time, the following
calculation modes are available.

Calculation modes for tags
The following calculation modes are available for tags of a time series segment:

Calculation mode Description
Raw The actual value available for the specified period. If no data are available, no value is

output.
Stepped If no data are available, the last value is used.

With this mode you can also use values with an invalid quality code.
Interpolate The values are interpolated linearly for the specified time period.

With this mode you can only use values with a valid quality code.

Options
19.2 Creating production reports

System Manual, 11/2022 7715

The following calculation modes are available for tags of a single value segment:

Calculation mode Description
Interpolate The values are interpolated linearly for the specified time period.

With this mode you can only use values with a valid quality code.
Left If no data is available, the last value before the specified period is used.
Right If no data is available, the last value after the specified period is used.

See also
Create or edit configurations for logging tags (Page 7697)

19.2.4.5 Making general settings

Changing the language

Changing the add-in language
The Excel add-in automatically uses the same user interface language as Excel. If you are using
a language for Excel that is not included in the Unified options, English is used as the default
language.
You can select the language for the contents of the report independently of the interface. To
select another language, the language must be configured in Runtime.

Selecting the language for the report
1. Select "WinCC Unified > Segments".
2. Click "Basic settings":

3. Under "Runtime language", select the language of the report content.
4. Under "Query language" you select which language data queries have that require user input,

e.g. filter definitions.

Adapting the work area

Undocking and moving the add-in
To enlarge your working area, you can undock the Excel add-in:
1. Open the drop-down list in the header of the add-in.
2. Click "Move".
3. Move the mouse pointer to the desired location and click the left mouse button.

Options
19.2 Creating production reports

7716 System Manual, 11/2022

4. To move the add-in again, keep the left mouse button pressed in the header of the add-in and
move the mouse.

5. To dock the add-in again, double-click in the header of the add-in.

Adapting the size of the add-in
1. Open the drop-down list in the header of the add-in.
2. Click "Resize".
3. Move the mouse pointer to the left to make the add-in wider or to the right to make it

narrower.
4. Left-click when you have reached the desired size.

Zooming in the add-in

Procedure
To zoom in or out of the display in the add-in, press <CTRL> and move the mouse wheel.

19.2.4.6 Undo and redo
The Excel functions "Undo" and "Redo" are not available in the add-in.

19.2.4.7 Tips on design and layout
This section includes tips on the visual design of reports. The apply for:
• Report templates
• Reports that were generated as XLSX file

Note
Deviating PDF results
A PDF report created by LibreOffice can deviate in content or layout from a PDF report generated
with Excel, for example, if the report template uses common Excel features that LibreOffice does
not support, such as special fonts or chart types.

Arranging segments
Always place the segments of a report template side by side or each in their own worksheet.
Because the data tables of the segments grow dynamically, tables can overlap when
segments are placed one below the other. In the add-in, this causes an error of the
OfficeExtension.Error class when reading in the Runtime data.

Options
19.2 Creating production reports

System Manual, 11/2022 7717

Changing the column sequence
See section Changing the column sequence (Page 7712).

Adapt column width and row height
For each segment of a report template, check whether the column widths and row heights of
your data table are wide or high enough for the values to be read. If this is not the case, texts in
the generated report are truncated or the formula results are replaced with "#" characters.
To do this, select one of the following options:
• In the properties of the segments, select the options for automatic adjustment of the column

width and row height.
• Click "Update all" in the report template.

Values are imported to Excel from the data source. Check the column widths and row heights
and adjust them manually, if required.
Note
The manual adaptations apply only in the Excel add-in. They are not included in the
generated reports.

Replacing numerical values
If columns of a data source item output numeric values, you can assign text lists and graphic lists
to the columns. When the Runtime data is read in, the cell values of these columns are replaced
by texts or graphics from the assigned lists. This improves the readability of the report and helps
to draw the reader's attention to important information.
Example: Visualizing limit violations of tags with graphics
See section Assigning text lists and graphic lists (Page 7708).

Preparing imported Runtime data
Adjust the cell formatting of the Runtime data, for example, font, color, alignment, or number
format. The rows inserted when reading the Runtime data adopt the formatting.
Add diagrams, pivot tables or formulas that graphically visualize, structure or evaluate the
data imported from Runtime.

Note
If you have read Runtime data into the report template for better data preparation, remove it
before saving the report template and making it available for upload to Runtime.
To do this, click the "Delete Runtime data" button in the toolbar of the Excel add-in.

Options
19.2 Creating production reports

7718 System Manual, 11/2022

Set up page
Use "File > Print > Set up page" to define details for printing the report, for example:
• Alignment of the report (portrait format or landscape format)
• Scaling, for example, to print all columns on one page
• Inserting a user-defined header or footer
The print settings set in the report template are applied in Runtime when a report job is
executed for PDF generation.

Renaming worksheets and segments
When you add a segment to a report template in the add-in, a table is created in Excel. The add-
in addresses the table by the name of the worksheet and segment.
Do not rename worksheets after adding segments.
Do not change the table name of a segment using the Excel property "Table name". Edit the
segment in the add-in and rename it there.

19.2.5 Working with production reports in Runtime

19.2.5.1 Workflow for working with reports in Runtime

Introduction
The following workflow describes which works are required in the "Reports" control so that
production reports are generated in Runtime.
The reports can be stored as file in the file system and sent as an attachment to an e-mail.
Alternatively, an e-mail without attachment can also be sent about the generation of the
report. In this way, employees from management and production can be informed about the
production situation promptly, regardless of their location.
You can send the e-mail using a secure SMTP server (authentication with user name and
password or via certificate) or an unsecured SMTP server, for example, an internal company
mail server.

Options
19.2 Creating production reports

System Manual, 11/2022 7719

Requirement
• Requirements in TIA Portal:

– The necessary project data were configured for the HMI device for which reports are to be
created.

– The "Reports" control was placed on an HMI screen of the device.
– The "Enable Reporting" option was enabled in the Runtime settings of the device.
– (Optional) The storage locations for reports and the Reporting database were configured

in the Runtime settings of the device.
• The HMI device has been compiled, uploaded to the Runtime server and its project is running.
• When using contexts: Contexts have been defined and executed in Runtime for the project.
• The Runtime server has access to report templates.
• For cross-project and cross-Runtime use of report templates: The data sources used in the

report template can also be found on the HMI device. Make sure that the names and plant
hierarchy are consistent.

Procedure
1. To send reports by e-mail, configure the global e-mail settings:

– When one of the servers requires a certificate for sending e-mails, upload the certificate.
– Create contacts for the e-mail receivers and e-mail senders.
– Create the required SMTP server configurations.

2. Configure job parameters for report templates, triggers and targets.
These job parameters will then be available to you for selection when configuring the report
jobs.

3. Configure report jobs.
Reports are generated in Runtime when the report jobs are executed.

4. (Optional) Perform report orders manually.
5. In the control, get an overview of which reports have been generated.
6. Download the reports, if necessary.
7. (Optional) To reuse the configuration of the "Reports" control, such as on a device in another

network, transfer the existing configuration from the control from one device to the control
of the other device.

Options
19.2 Creating production reports

7720 System Manual, 11/2022

Configuring job parameters
First, you configure which job parameters are available for selection during the configuration of
the report jobs. You configure the following job parameters:
• The available report templates

The report template defines which data the report outputs. Import and/or delete templates,
if required.

• The available triggers
The trigger defines when a report job is executed. Add triggers, edit triggers or delete them.

• The available targets
Targets define whether reports are made available to users in the file system or via e-mails.
Add targets, edit triggers, or delete them.

You set further job parameters while configuring a report job in the "Report jobs" tab.

Configuring a report job
You configure the following for each report job:
• Name of the report job
• Used report template
• Name of the reports generated by this template

Note
Texts through dynamic placeholders
Placeholders are available to you when defining the report name. The placeholders are
evaluated and replaced by text during execution of the report.
See also Dynamic placeholder (Page 7746).

• Targets of the generated report
To send e-mails, select a target of the type "E-mail".

• Per target: The target format of the generated report
Possible formats: .XLSX and .PDF

• Trigger
• Comment
• Activate

See also
Setting global email settings (Page 7725)
Configuring task parameters (Page 7727)
Configuring report tasks (Page 7734)
Running a report job manually (Page 7742)
Downloading reports (Page 7742)
Transferring the control configuration (Page 7744)

Options
19.2 Creating production reports

System Manual, 11/2022 7721

Complete workflow for using production reports (Page 7652)
Creating report templates for production reports (Page 7655)

19.2.5.2 The user interface of the "Reports" control

Note
Automatic data transfer
Changes in the "Reports" control are saved automatically.

Layout
You create and manage report jobs in the "Reports" control. You also have access to the reports
generated by the report jobs.
The control has the following structure:

Options
19.2 Creating production reports

7722 System Manual, 11/2022

1 Tab for the configuration and management of reports, report jobs, job parameters and global settings
2 Toolbar

The buttons you see depend on the tab.

Options
19.2 Creating production reports

System Manual, 11/2022 7723

3 Work area
On the "Reports", "Report jobs" and "Job parameters" tabs: List of elements available on the tab
On the "Global settings" tab: The settings

4 Options for selecting the elements
You can select elements individually or all at once.

5 Detail area
Shows the properties of the selected element.

6 Information bar

Tab
"Reports" tab
Here you can see which reports have been generated. You can download or delete reports via
the toolbar.
The "Status" column shows Information:
• On the status of the generated report files (XLSX and PDF)
• On the status of the targets (File system and E-mail)
Overview of the status icons:

Status Description
Execution has been successfully completed.

An error occurred during execution.

Execution is in progress.

A click on an icon opens a detailed status message.

"Report jobs" tab
Here you create new report jobs, manage existing report jobs or start a report job manually.

"Job parameters" tab
Here you manage the parameters with which you configure the report jobs in the "Report
jobs" tab.

"Global settings" tab
Here you make the following settings:
• For sending e-mails
• For transfer of the control configuration
• For creating an offline configuration file
• For configuring paging

Options
19.2 Creating production reports

7724 System Manual, 11/2022

Toolbar
The following buttons are available in the toolbars of the tab:

Icon Button
Delete Deletes the elements whose option is enabled in the work area.

• Add new
• Import

• Creates a new element.
• "Job parameters > Templates" tab: To import a report template into Run‐

time
Run In the "Report jobs" tab.

Manually creates a report for the report job whose option is enabled in the
work area.

Export • In the "Job parameters > Templates" tab:
To export report templates

• In the "Reports" tab:
To download reports to the client

Information bar
The button in the information bar displays general information sent by the reporting service, for
example, on whether a report job has been executed.

19.2.5.3 Setting global email settings
If configured accordingly, an e-mail is sent automatically after a report job is executed. The e-
mail can include the report as an attachment.
Maintenance of the basic settings for sending e-mails is carried out in the "Global settings"
tab:
• If necessary: The certificates that the e-mail sender uses to authenticate itself at the SMTP

servers.
• The contact information of the e-mail senders and e-mail receivers.
• The configuration of the SMTP server via which the e-mails are sent.

Upload certificates
Store the certificates of the SMTP servers that require authentication via certificate.

Requirement
• You have access to the storage location of a valid certificate file.

Options
19.2 Creating production reports

System Manual, 11/2022 7725

Procedure
1. In the "Reports" control, click on the "Global settings > Certificates" tab.
2. Click "Add new" in the toolbar.

Alternative: In the work area, click "Add new".
3. In the dialog that opens, select the certificate file.
4. Confirm your input.
5. Optional: Select the uploaded certificate in the work area and enter a comment on the

certificate in the detail area.

Result
The certificates uploaded here are available in the "Contacts" tab.

Maintaining contacts
Store the data of the e-mail senders and email recipients.

Procedure
To create a new contact, follow these steps:
1. In the "Reports" control, click on the "Global settings > Contacts" tab.
2. Click "Add new".
3. Enter the name of the contact.
4. Enter the e-mail address of the contact.
5. To use the contact as a sender for an SMTP server that requires authentication with a

certificate, select the appropriate certificate under "Certificate".
6. To use the contact as a sender for an SMTP server that requires authentication with a user

name and password, enter the password.
The e-mail address is used as the user name.

7. (Optional) Enter a comment relating to the contact.

Result
The contacts configured here are available:
• As the e-mail sender in the SMTP server configuration.
• As an e-mail recipient when configuring "target" job parameters with the target type e-mail

Maintenance of the SMTP server configuration
Store the data of the SMTP servers via which the e-mails are sent.

Options
19.2 Creating production reports

7726 System Manual, 11/2022

Requirement
Contacts that are suitable as senders have been entered in the "Global Settings > Contacts" tab.

Procedure
To create a new SMTP server configuration, follow these steps:
1. In the "Reports" control, click on the "Global settings > SMTP" tab.
2. Click "Add new".
3. Specify the following:

Field Description
"Name" Enter the name of the SMTP server configuration.
"Address" Enter the URL of the SMTP server.

Servers without authentication (e.g. company-
internal mail servers) and with authentication are
permitted.
Example: URL of a company mail
server: mail.<Company name>.com

"Port" Enter the port number of the SMTP server.
Default setting: 25

"Sender" In the list, select the contact that is used as the
sender for this SMTP server configuration.
All contacts maintained under "Contacts" are of‐
fered to you for selection. Select a sender that
meets the respective requirements of the server.

"Comment" (Optional) Enter a comment relating to the SMTP
server configuration.

Result
The servers configured here are available when configuring the "Target" job parameters with the
target type email.

19.2.5.4 Configuring task parameters
Job parameters define the details of a report job.

Options
19.2 Creating production reports

System Manual, 11/2022 7727

You configure the following parameters on the "Job parameters" tab:
• Templates
• Trigger

Define trigger when a report job is executed.
• Targets

Targets define how a report is made available to users. The following target types are
available:
– "E-mail"

An e-mail is sent after a report job is executed. The report generated by the report job can
be included with the e-mail as an attachment.

– "File system"
The reports generated by the report job are stored in the file system.

The parameters configured here are available to you for selection when configuring the
report jobs in the "Report jobs" tab.
You define the remaining job parameters while configuring a report job in the "Report jobs"
tab.

See also
Importing and exporting report templates (Page 7728)
Deleting templates (Page 7729)
Configure trigger (Page 7729)

Importing and exporting report templates

Requirement
• The "Reports" control is placed on a screen of the project.
• The "Job parameters > Templates" tab is visible in the control.
• Import: You have access to the storage location of the report template.
• Export: Report templates have been imported into the control.

Importing report template
1. Click "Add new" in the toolbar.

Alternative: In the work area, click "Add new".
2. In the dialog that opens, select the file of a report template.

Options
19.2 Creating production reports

7728 System Manual, 11/2022

3. Confirm your input.
Note
No validation
The template is not validated during import.

4. Optional: In the work area, select the imported report template in the work area and enter a
comment describing the template in the detail area.

Exporting report templates
1. In the work area, select the options next to the report templates you want to export.
2. Click "Export" in the toolbar.
The report templates are downloaded to the download folder or a user-defined directory
according to the device settings.

Deleting templates

Requirement
• The "Reports" control is placed on a screen of the project.
• The "Job parameters > Templates" tab is visible in the control.
• Templates have been imported into the control.

Procedure
1. In the work area, select the options next to the templates you want to delete.
2. Click "Delete" in the toolbar.

Deleting used templates
The "In use" column shows whether the template is used by a report job.
If you delete a template that is used by a report job, the report job is marked as inconsistent
and no longer executed.

Configure trigger

Introduction
In the "Job Parameters > Triggers" tab you configure which automatic triggers are available for
selection when configuring report jobs.
Report jobs with automatic triggers are executed if the report jobs on the "Report jobs" tab
are set to active and their trigger event occurs. Users can also start the execution manually.

Options
19.2 Creating production reports

System Manual, 11/2022 7729

Requirement
• The "Reports" control is placed on a screen of the project.
• The "Job parameters > Trigger" tab is visible in the control.
• To use the trigger type "Context trigger": Contexts are available in the project.

Add trigger
1. In the work area of the tab, click "Add new".

A new trigger is created and displayed in the detail area.
2. Assign a unique name to the trigger.
3. Select the trigger mode:

Trigger type Triggering the trigger
"Tag trigger" Automatically when the configured value condition occurs at the tag

defined in the trigger.
"Serial trigger" Automatically within the user-defined interval when the time defined by

the series has been reached.
"Context trigger" Automatically when the selected context is started or stopped.

Optional: By using a condition, you can also limit the triggering of the
trigger to specific context values.

4. Depending on the selected trigger type, set the settings for the new trigger as described
below.

5. Optional: Enter a comment for the trigger.

Settings for tag trigger
1. Click "Select tag".
2. Click "Load".
3. Select the required tag and click "OK".
4. Set the condition and the condition value.

Example:

Set tag <tag name>
Condition >
Condition value 100

The trigger will be initiated when the tag receives a value greater than 100.

Options
19.2 Creating production reports

7730 System Manual, 11/2022

Settings for serial triggers
1. Select the serial pattern.

The series pattern defines the occurrence and time at which the trigger is initiated.
Example: Weekly > Every 2 weeks > Fridays

2. Select the series area.
The series range defines the period in which the trigger is initiated.

"Start" Specify the start date
"Time" Specify the time at which the trigger is initiated.
"End on" Specify the end date. The trigger will be executed for the last time on this

day.
"End after" Determine the number of dates after which the series ends.
"No end date" The series runs indefinitely.

Settings for context triggers
1. Click "Select context".
2. In the "Context selection" dialog, click "Select plant object".
3. In the "Browser view" dialog, select a plant object and confirm your input.

In the "Context selection" dialog you can see all contexts that have been defined for the
selected plant object.

4. Select a context and confirm your input.
5. Under "Context status", select when the trigger will be triggered:

"Started" When starting the context.
"Stopped" When stopping the context.

6. Optional: To bind the execution of the report order to certain context values, you define a
condition:

"Condition" Select an operator.
"Value" Select a context value.

Example:

Plant object "MyPlant.hierarchy::PlantView/Bottling"
Context "Product"
Context state "Started"
Condition =
Value "Orange lemonade"

Report jobs with this trigger are always executed when the context "Product" defined on the
plant object "Bottling" is started with the value "Orange lemonade".

Delete trigger
Select the option of the desired trigger in the work area of the "Job Parameters > Triggers" tab
and click "Delete" in the toolbar.

Options
19.2 Creating production reports

System Manual, 11/2022 7731

Edit trigger
1. Enable the option of the desired trigger in the work area of the tab.
2. In the detail area, edit the settings of the trigger.

Note
No change of the trigger type
The trigger type can only be set when adding the trigger.

Add target with target type "E-mail"

Requirement
• The "Reports" control is placed on a screen of the project.
• The receivers of the e-mails are maintained as contacts in the "Global settings > Contacts" tab.
• An SMTP server, with which the e-mail is to be sent, has been configured in the "Global

settings > SMTP" tab.

Procedure
1. In the "Reports" control, click on the "Job parameters > Targets" tab.
2. In the work area of the tab, click "Add new".
3. Select "E-mail" as target type.

A new target is created and displayed in the detail area.
4. Assign a unique name to the target.
5. Select an SMTP server configuration.
6. Add the desired receivers and CC receivers:

– To do so, select a contact from the list "Add receiver" or "Add CC receiver".
– Add the contact by clicking "+".

7. Enter the e-mail subject.
To integrate the report name into the subject line, use the placeholder {ReportName}.

8. Enter the e-mail text.
To integrate the report name into the email text, use the placeholder {ReportName}.

9. (Optional) Enter a comment.

Result
The target is available for selection when configuring report jobs.
An e-mail is sent after a report job is executed with this target. The e-mail can include the
report as attachment.

Options
19.2 Creating production reports

7732 System Manual, 11/2022

See also
Dynamic placeholder (Page 7746)

Add a target with "File system" target type

Introduction
A reporting job with a target of the "File system" target type saves reports to a file system.
When configuring the report jobs, you can choose from pre-configured and user-defined
targets of this target type.
Preconfigured targets
The following targets with "File system" target type are pre-configured:

Local project storage location The reports are stored in the following folder: <Project folder of the
Runtime project>\Reports

Local main storage location The reports are stored in the local main storage location for reports. The local main
storage location is configured in TIA Portal in the Runtime settings of the HMI device.
If this setting has not been set in TIA Portal, the reports are stored as follows:
• Unified PC:

In the folder configured during installation of Runtime or later in the "WinCC Unified
Configuration" tool

• Unified Comfort Panel:
In the "Reports" folder on the SD card inserted in the Panel: media/simatic/X51/
Reports

You can select these targets in the "Report jobs" tab. You cannot edit or delete these targets
in the "Job parameters > Targets" tab.
User-defined targets
In the "Reports" control, you can create user-defined targets of the "File system" target type.
These user-defined targets are always subfolders of the local main storage location.

Requirement
• The "Reports" control is placed on a screen of the project.
• Unified Comfort Panel: The panel contains the storage media configured in the TIA Portal

Runtime settings as storage locations for reports and for the reporting database.

Procedure
To add user-defined targets of the "File system" target type, follow these steps:
1. In the "Reports" control, click on the "Job parameters > Targets" tab.
2. In the work area of the tab, click "Add new".

Options
19.2 Creating production reports

System Manual, 11/2022 7733

3. Select "File system" as target type.
A new target is created and displayed in the detail area.
Under "Destination path", you can see the path to the local main storage location for reports.

4. Assign a unique name to the target.
5. Under "Subfolder", enter the path to the subfolder in which the report is to be saved.

Use the following notation: <folder name> or <folder name>\<folder name>\...
Note
Relative path information
The path specification is relative to the local main storage location for reports.

6. (Optional) Enter a comment.

Result
The target is available for selection when configuring report jobs.
When a report job with this target is being executed, the generated report is stored in the
subfolder of the local main storage location defined as the target. If the folder entered under
"Target path" does not exist, it is created by the system.

Note
Change of the local main storage location for reports
When the local main storage location for reports changes, the targets are automatically adapted.
New reports are stored relative to the new local main storage location. The old folders are not
deleted.

19.2.5.5 Configuring report tasks

Creating a report job

Introduction
A report job is a job for generating reports in Runtime. The configuration of a report job controls
the details of the generation.

Requirement
• The "Reports" control is configured on a screen of the project.
• The following job parameters were configured in the control:

– At least one template has been imported.
– To automatically execute a report job: Triggers are configured in the "Job parameters >

Trigger" tab.

Options
19.2 Creating production reports

7734 System Manual, 11/2022

• For sending an email after execution of the report job:
– Email contacts were configured in the global settings.
– An SMTP server was configured in the global settings.
– A target of the target type "E-mail" was configured in the "Job parameters > Targets" tab.

• For a report job with the target format PDF:
– Microsoft Office Excel or LibreOffice is installed on the runtime server.
– Depending on whether Excel or LibreOffice is installed, the information required for PDF

creation was provided during the Runtime installation or in the "WinCC Unified
Configuration" tool.

Procedure
1. Select the "Report jobs" tab in the "Reports" control.
2. Select "Add new" in the work area or click "Add new" in the toolbar.
3. In the detail area, enter a name for the report job.
4. Select a report template.
5. Configure the report name. See section Configuring report names (Page 7737).

The configuration is applied to all reports generated by the report job.

Options
19.2 Creating production reports

System Manual, 11/2022 7735

6. Under "Targets", you determine how the reports are to be made available to users. Follow
these steps:
– Click "Add target".

You see the targets configured in the tab "Job parameters > Targets".
– Select a target.
– Add the target by clicking "+".

The target is added to the table to define the target formats.

– Determine the formats in which the reports generated by the report job are provided for
the target. In the table, activate the options of the desired formats for each target.
Note
Sending emails without a report
If you deactivate both options for targets with "E-mail" target type, an email without
attachment is sent after the report job has been executed.

Note
PDF as target type
Generating PDFs with Excel is significantly slower than with LibreOffice. To generate large
PDF reports, it is therefore recommended that you install LibreOffice.
A PDF report created by LibreOffice can deviate in content or layout from a PDF report
generated with Excel, for example, if the report template uses common Excel features
that LibreOffice does not support, such as special fonts or chart types.

– To remove a target from the report job, click the "Remove" button in the table.
7. Under "Trigger", select which event triggers the execution of the report job:

– If the report job is only to be executed manually, select "Manual".
– If the report job is to be executed automatically, select one of the other triggers

configured under "Trigger".
Note
You can also execute the report job manually.

8. (Optional) Enter a comment for the report job.
9. Specify whether the automatic execution of the report job is active or paused. To do this, set

the slider "Enabled" or "Disabled".
Note
You can still execute disabled report jobs manually.

Options
19.2 Creating production reports

7736 System Manual, 11/2022

Result
The report job is saved automatically.
When its trigger occurs, the report job is executed. A report is generated and made available
as configured under "Targets".

See also
Execution of report jobs (Page 7741)
Configure trigger (Page 7729)
Add target with target type "E-mail" (Page 7732)
Add a target with "File system" target type (Page 7733)
Tips on design and layout (Page 7717)

Managing report jobs

Requirement
• The "Reports" control is configured on a screen of the project.
• Report jobs have been configured in the control.

Procedure
1. Select the "Report jobs" tab in the "Reports" control.
2. To edit a report job, proceed as follows:

– Select the report job in the work area.
– In the detail area, edit the settings of the report job.

You have the same options as when creating a report job.
3. To delete report jobs, proceed as follows:

– In the work area, enable the options next to the report job.
– Click "Delete" in the toolbar.

Configuring report names

Note
Make sure that the generated report name does not violate the policy of the operating system
regarding the maximum length of file names.

Introduction
The default name of reports is Report_{NNN}.

Options
19.2 Creating production reports

System Manual, 11/2022 7737

To use different report names, enter one or more placeholders at the report job. The
placeholders are combined to form the report name during execution of the report.

Placeholder types
Placeholders have one of the following types:

Placeholder type Description
Text For user-defined fixed texts
Counter On automatic numbering Dynamic placeholders

The placeholders are bro‐
ken down into values dur‐
ing execution of the re‐
port.

Date format For outputting the generation time
Tag To output the process value of an online tag

Unique report names
If the report name uses counter or date format placeholders, the report job generates unique
report names.

Requirement
• The "Reports" control contains a screen of the runtime project that is running.

Procedure
You can enter the placeholders manually in the "Report name" field or you can have the software
help you configure the report name.
To have the software help configure the report name, follow these steps:
1. Select the "Report jobs" tab in the "Reports" control.
2. Select a report job in the work area.

You can see the settings for the report job in the detail area.

Options
19.2 Creating production reports

7738 System Manual, 11/2022

3. Next to "Report name", click "Configure".
You see the following operator controls:

① List for selection of the placeholder type
② Button for adding a placeholder of the selected type
③ Table for configuring or removing the placeholder

Note
For the default report name, the "Report name" has the value Report_{NNN} and the table
shows the placeholders "Report_" and "NNN".
To swap the order of placeholders or to add a placeholder in the center, delete the
placeholders and then add them in the desired order.

4. Optional: To delete the default placeholders, click "x" in the placeholder table.
5. Select the desired type under "Select placeholder type".

Note
A report name can contain only one counter.

Options
19.2 Creating production reports

System Manual, 11/2022 7739

6. Click "+".
An empty placeholder of the corresponding type is added at the end of the table.

7. Enter the placeholder under "Value" in the placeholder table.

Placeholder type Description Example
"Text" Enter the text. Report_
"Date format" Enter a date placeholder. A list of permitted placeholders and

examples can be found in section Dy‐
namic placeholder (Page 7746)."Counter" Enter a counter placeholder.

"Tag" Enter the full name of an online tag. RT1_Brewery::BatchNo

Note
Enter the dynamic placeholders without any markup characters.
Alternatively, you can select an online tag via the user interface. Follow these steps:
– Click the "..." button on the tag placeholder.
– In the "Tag selection" dialog, click the "Search" button.

You can see all the tags of the Runtime project that is running.
Note
Scrolling and filtering
Use the page navigation buttons to scroll forward or backward.
To filter the displayed tags, enter a filter string in "Filter" and click "Search".
You use the wildcard "*" to filter by partial strings.
For example:
• *T* returns all tags with a "T" in their name.
• *T returns all tags that end in "T".
• T* returns all tags that start with "T".
When filtering for structures, the separators must be part of the filter string.

– Click the desired tag.

Options
19.2 Creating production reports

7740 System Manual, 11/2022

– Confirm with "OK".
 In the "Report name" field, the placeholder you added is appended to the end of the report
name.

Alternative procedure
To enter the placeholders manually, proceed as follows:
1. Select the "Report jobs" tab in the "Reports" control.
2. Select a report job in the work area.

You can see the settings for the report job in the detail area.
3. Enter the desired combination of fixed texts and dynamic placeholders manually in the

"Report name" field.
Use markup characters for the dynamic placeholders. See section Dynamic placeholder
(Page 7746).

Example:

"Report name" value Generated report name
Report_{yyyymmdd}_{HHMMss}_{@PC1_Brewery::Ba
tchNo}

Report_20190101_170001_BatchNo_87002314

Result
When generating a report, the dynamic placeholders are resolved and all placeholders are
merged to form the report name.
If a process value contains a character that is not permitted in file names, it is replaced by an
underscore.
If there is an error resolving the name, e.g. because the tag is not found in runtime, the tag
placeholder in the name is replaced by ERR. The process is logged in the generation status of
the report.

Execution of report jobs

Automatic and manual execution
Automatic execution
Report jobs that have a tag trigger, serial trigger or context trigger and are set to active on
the "Report jobs" tab are automatically executed when their trigger occurs.

Manual execution
Report jobs with a trigger of the "Manual" type must always be executed manually.
In addition, you can at any time manually execute report jobs that have a tag trigger, serial
trigger or context trigger.

Options
19.2 Creating production reports

System Manual, 11/2022 7741

System response to errors
• Error adding the report job to the queue

The execution of the report job is discarded. A system alarm documents the error.
• Error executing the job

In the "Reports" control, "Reports" tab, the status icon indicates the error. A click on the icon
opens a detailed status message.
A system alarm documents the error.

See also
Running a report job manually (Page 7742)
Configure trigger (Page 7729)

19.2.5.6 Running a report job manually
You can execute report jobs manually at any time, regardless of their trigger type. This also
applies to report jobs that were disabled in the "Report Jobs" tab and whose automatic execution
is therefore paused.

Requirement
Report jobs have been configured in the "Reports" control.

Procedure
1. Select the "Report jobs" tab in the "Reports" control.
2. In the work area, enable the option next to the report job that you want to execute manually.
3. Click "Execute" in the toolbar.

Result
The report is generated. You can download it in the "Reports" tab.

19.2.5.7 Downloading reports
You can download the reports stored by the report job in the file system to your device.
Depending on which file formats have been set in the report job, you can download the
report as an XLSX file and as a PDF file.

Requirement
• Report jobs with the target type "File system" have been configured and executed in the

"Reports" control.

Options
19.2 Creating production reports

7742 System Manual, 11/2022

Procedure
1. Select the "Reports" tab in the "Reports" control.
2. In the work area, select the option in the left column for each report that you want to

download.
3. Enable the desired target formats in the "Files" column.

Note
Generation status
You are only offered successfully generated formats.
In the "Status" column you can check whether the generation for a format has failed. For a
detailed status message click on the icon of a target format.

4. Click "Export" in the toolbar.

Result
The reports are downloaded into the download directory of the browser.
You can edit, distribute, or log the reports.

19.2.5.8 Exporting an offline configuration file
An offline configuration file is required to configure reporting templates in the Reporting Excel
add-in without an online connection to the Runtime server.

Requirement
• The "Reports" control is placed on a screen of the project.
• The Runtime project has data that can serve as data source elements in the reporting

template, such as alarms and logging tags.

Procedure
1. In the "Reports" control, click on the "Global settings > Configuration" tab.
2. Enter the name of the offline configuration file under "Offline-configuration".
3. Click "Export offline configuration".

Result
A JSON file with the data source elements of the Runtime project is created. The file is
downloaded to the download folder or a user-defined directory according to the device settings.
You can select the configuration file in the Reporting Excel add-in as data source for an offline
connection.

Options
19.2 Creating production reports

System Manual, 11/2022 7743

19.2.5.9 Transferring the control configuration
You have the option of reusing the settings in the "Reports" control, for example, on a device in
another network. To do this, export the existing configuration on the one device from the control
to a ZIP file. Then import the file into a "Reports" control on the other device.

Scope
The transfer covers the following data:
• Global settings, without passwords and certificates
• Job parameters, including the report templates available in the control
• Report jobs
Reports are not transferred.

Requirement
• The "Reports" control is placed on a screen in the project running in Runtime.
• Export: Settings have been made, e.g. contacts maintained, report templates imported, and

report jobs created in the "Reports" control.
• Import: You have access to the ZIP file generated by the export on the device on which

Runtime is installed.

Export configuration
1. In the "Reports" control, select the "Global settings > Configuration" tab.
2. Enter the name of the export file under "Export/import configuration > Export".
3. Click "Export configuration".
The configuration is exported to a ZIP file and downloaded to the default download directory
of the device.

Import configuration
1. In the "Reports" control, select the "Global settings > Configuration" tab.
2. Click "Select import file" under "Export/import configuration".
3. Select the ZIP file in File Explorer and confirm your selection.
4. Runtime checks whether the control already contains configurations:

– No: The configuration is imported.
– Yes:

Select "OK" to import the configuration. The existing configuration is overwritten.
Select "Cancel" to cancel the import.

Options
19.2 Creating production reports

7744 System Manual, 11/2022

19.2.5.10 Configuring enable paging
To set how many entries the lists in the work area of the "Reports" control display per page, follow
these steps:
1. In the "Reports" control, click on the "Global settings > Configuration" tab.
2. Under "List Settings", select the number of entries.
If a list has more entries, these are split over several pages. Use the buttons below the list to
switch pages.

Note
The setting is lost through a screen change.

19.2.5.11 Inconsistencies and error diagnostics

Note
Inconsistent report jobs are not executed.
The templates available in the "Reports" control are not validated.

Display of inconsistencies and errors
Errors and inconsistencies are displayed as follows:

In the control If job parameters are affected.
Examples:
• No template is set for a report job.
• A tag that triggers a report job is deleted in the engineering system. The project

is reloaded into the device.
In the "Error log"
worksheet of the
report

Errors or inconsistencies affecting the content of the report.
Example: The report evaluates data from a tag that is no longer available in runtime.

As system alarm For errors and inconsistencies that do not affect job parameters or the contents of the
report.
Example: The ExecuteReport system function transfers a report job that does not
exist.

Options
19.2 Creating production reports

System Manual, 11/2022 7745

Job parameters
The following values lead to errors and inconsistencies:

Parameter Invalid values Default setting
"Name" Zero, empty or already assigned

name
"New report job"

"Template" Zero, empty or "None".
Name of a template that is not
imported

"None"

"Target name" Zero or empty "NewReportJob[NN]"

19.2.5.12 Dynamic placeholder

Introduction
Dynamic placeholders are evaluated when the report job is executed and replaced with text in
runtime.
The following job parameters can contain placeholders:
• Report name
• Targets with the target type "E-mail": Subject and text of the email

Dynamic placeholders for report names
Use dynamic placeholders for counters and/or dates to generate unique report names:

Counter place‐
holder

Description Example Area
Configuration Result

{N} Automatic number‐
ing

Rep_{N} Rep_1 0...9
{NN} Rep_{NN} Rep_01 00...99
{NNN} Rep_{NNN} Rep_001 000...999

Date place‐
holder

Description Example Area
Configuration Result

{yy} Current year

Rep_{yy} Rep_18 Valid year with 2 digits
{yyyy} Rep_{yyyy} Rep_2018 Valid year with 4 digits
{m} Current month Rep_{m} Rep_1 Valid month, no prefixed 0 for months in single-

digit range
{mm} Rep_{mm} Rep_01 Valid month, prefixed 0 for months in single-digit

range
{mmm} Rep_{mm} Rep_Jan Month abbreviation with 3 characters
{mmmm} Rep_{mmmm} Rep_Janu‐

ary
Month with full name

Options
19.2 Creating production reports

7746 System Manual, 11/2022

Date place‐
holder

Description Example Area
Configuration Result

{d} Current day of the
month

Rep_{d} Rep_1 Valid day, no prefixed 0 for days in single-digit
range

{dd} Rep_{dd} Rep_01 Valid day, prefixed 0 for days in single-digit range
{ddd} Rep_{ddd} Rep_Mon Day abbreviation with 3 characters
{dddd} Rep_{dddd} Rep_Mon‐

day
Day with full name

{h} Current hour

Rep_{h} Rep_1 Current hour (12-hour clock), no prefixed 0 for sin‐
gle-digit values

{hh} Rep_{hh} Rep_01 Current hour (12-hour clock), prefixed by 0 for sin‐
gle-digit values

{H} Rep_{H} Rep_13 Current hour (24-hour clock), no prefixed 0 for sin‐
gle-digit values

{HH} Rep_{HH} Rep_13 Current hour (24-hour clock), prefixed by 0 for sin‐
gle-digit values

{M} Current minute

Rep_{M} Rep_6 Valid minute, no prefixed 0 for single-digit values
{MM} Rep_{MM} Rep_06 Valid minute, prefixed by 0 for single-digit values
{s} Current second

Rep_{s} Rep_41 Valid second, no prefixed 0 for single-digit values

{ss} Rep_{ss} Rep_41 Valid second, prefixed by 0 for single-digit values

Use a dynamic placeholder for tags to integrate process values in the report name:

Tag placehold‐
er

Description Example Area
Configuration Result

{@<Full
Tag name>}

Process value of an
online tag

Rep_{@PC1_Lin‐
eA::MyTag1}

Rep_On Process value of the online tags
If the value contains a character that is not permit‐
ted in file names, it is replaced by an underscore.
If there is an error resolving the name, e.g. because
the tag is not found in runtime, the tag placeholder
in the name is replaced by ERR. The process is log‐
ged in the generation status of the report.

Examples:

Definition with placeholder Generated report name
LineA_{yyyymmdd}_{HHMMss} LineA_20190101_170001
LineA_{yymmmd}_{hhMMss} LineA_19Jan1_050001
LineA_{NNN} LineA_014
LineA_{yyyymmdd}_{HHMMss}_BatchNo_{@PC1_Brew‐
ery::BatchNo}

LineA_20190101_170001_BatchNo_87002314

Placeholder for email subject and email text
To integrate the report name into the subject line or the email text, use the following dynamic
placeholder {ReportName}.

Options
19.2 Creating production reports

System Manual, 11/2022 7747

Markup
Use the following markup characters for dynamic placeholders:
• Placeholders for counter and date: {}
• Placeholders for tags: {@}

Note
There is no markup in the placeholder table for defining the report name. See also
section Configuring report names (Page 7737).

Options
19.2 Creating production reports

7748 System Manual, 11/2022

Runtime Openness 20
20.1 WinCC Unified Open Pipe

20.1.1 Introduction

Welcome to WinCC Unified Open Pipe
WinCC Unified Open Pipe is an Openness concept based on pipe technology to connect a
customer application to WinCC Unified RT.
Compared to Openness RT (ODK), WinCC Unified Open Pipe offers a limited number of
functions. However, the connection code can be written in any programming language that
supports pipe technology. Even batch access to the pipe is possible.
The main aim of WinCC Unified Open Pipe is to make it possible for you to connect
an existing application to WinCC Unified RT with little workload and independent of the
programming language. The available commands let you communicate with WinCC Unified
RT using tags and alarms.

System Manual, 11/2022 7749

Pipe technology
The pipe is a data stream with buffer between two processes that works according to the FIFO
principle (First In First Out). One process is provided by WinCC Unified RT (OpennessManager).
It creates the pipe and processes the requests of the customer application. The second process
is the customer application. It connects to the pipe by using its name, sends requests and
receives responses.

Name of the pipe:
• Under Windows: "\\.\pipe\HmiRuntime"
• Under Linux: "/tmp/HmiRuntime"
As soon as the pipe is open, single-line commands can be sent; they must end in a line break
("\n" or "\r\n"). Responses are returned using the same pipe instance.

Runtime Openness
20.1 WinCC Unified Open Pipe

7750 System Manual, 11/2022

Basic syntax and expert syntax
Two types of syntax are available for WinCC Unified Open Pipe:
• Basic syntax

You use the basic syntax when you are working with basic batch files (e.g. in a CMD.exe or
batch).

• Expert syntax
You use the expert syntax when you are working with scripts or programming languages that
have a JSON parser, e.g. Python, Node.js or Powershell.

Samples
You will find the following file on the installation medium:
"Support\Openness\Siemens.Unified.Openness_SDK_<version number>.zip"
Extract the file locally to any directory on your computer. You will then find examples of the
use of WinCC Unified Open Pipe in the subfolder "OpenPipe\Samples".

20.1.2 Safety-related settings

Pipe access
• The use of Open Pipe is limited to local communication between the Open Pipe application

and Runtime.
• To access the pipe, the user of the client script must belong to the following user group:

– Under Windows: "SIMATIC HMI"
– Under Linux: "industrial"

20.1.3 Behavior of the browse commands

Browse behavior
WinCC Unified Open Pipe provides several Browse commands in the simple syntax and in the
expert syntax. The following behavior is common to all commands:
• Initial request

In an initial request, you define the request using optional parameters.
• Page size

To get the result faster, you can use a parameter to specify a page size in the initial request.
If the result exceeds the specified page size, the response is distributed over several pages.
Without this parameter the configured page size is used. You can read the configured page
size via the commands "ReadConfig" and set it via "WriteConfig".

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7751

• Next request
You get the next results page via the following requests. Next requests only have the
parameter "Next".

• A Browse command is complete when a Next request returns an empty response.
• A Browse command that has not yet reached the last page of results is canceled in the

following cases:
– When the configured time limit for inactivity is exceeded.

You can read the time limit via the commands ReadConfig and set it via WriteConfig.
– When a new browse request is started.

Configurable settings
The following settings control the browse behavior:

Setting Default value Value range Description
DefaultPageSize 1000 0 ... Uint32_Max If a browse request was called without the PageSize parameter

and the number of hits is greater than the value of DefaultPa‐
geSize, the response is distributed over several pages.
Value 0: No pagination

BrowseTimeOut 300 s 0 ... Uint32_Max For requests with pagination, defines after how many seconds
without activity the request is canceled. After that a Next re‐
quest returns an error.
Value 0: No timeout

With the command "ReadConfig" you request the settings, with the command "WriteConfig"
you set them. Changes apply to the current pipe session.

20.1.4 Using basic syntax

20.1.4.1 Basics of basic syntax

Characteristics
The basic syntax has the following characteristics:
• Simple text-based syntax without JSON parts.
• Only commands for individual objects, e.g. write access to a single tag.
• Object names may not include special characters or space characters.
• No cookies.

Runtime Openness
20.1 WinCC Unified Open Pipe

7752 System Manual, 11/2022

Structure of a request
<Command> <Object> <Value>
• Command: Command name, e.g. "WriteTagValue"
• Object: Name of the object for which the command is called, e.g. "Tag1"
• Value: Input value, e.g. "True"

Structure of a response
OnSuccess:
Notify<Command> <Object> <Value1…ValueN>
• Command: Command name, e.g. "ReadTagValue"
• Object: Name of the object for which the command was called, e.g. "Tag1"
• Value1…ValueN: For example, value and quality of the read tags
OnError:
Error<Command> <Object> <Error text>
• Command: Command name, e.g. "ReadTagValue"
• Object: Name of the object for which the command was called, e.g. "Tag1"
• Error text: Detailed error description

Overview of the commands of the simple syntax
Command OnSuccess OnError Description
SubscribeTagValue
<Tag>

NotifySubscribeTagVal
ue <Tag> <Quality>
<Value>

ErrorSubscribeTagValu
e <Tag> <Error text>
ErrorNotifyTagValue
<Tag> <Error text>

Subscribe tag for monitoring.
Quality={good, bad, uncer‐
tain}

UnsubscribeTagValue
<Tag>

NotifyUnsubscribeTagV
alue <Tag>

ErrorUnsubscribeTagVa
lue <Tag> <Error text>

Unsubscribe tag from moni‐
toring.

ReadTagValue <Tag> NotifyReadTagValue
<Tag> <Quality>
<Value>

ErrorReadTagValue
<Tag> <Error text>

Reads the value of the tags
from the system.

WriteTagValue <Tag>
<Value>

NotifyWriteTagValue
<Tag>

ErrorWriteTagValue
<Tag> <Error text>

Writes the value to the tag.

SetCharSet <Value> NotifySetCharSet
<Value>

ErrorSetCharSet
<Value> <Error text>

Changes to a different charac‐
ter coding.

ReadConfig <Parameter
>

NotifyReadConfig
<Parameter> <Value>

ErrorReadConfig
<Error text>

Reads a setting configured for
the general browse behavior.

WriteConfig
<Parameter>

NotifyWriteConfig
<Parameter> <Value>

ErrorWriteConfig
<Error text>

Sets a setting for the general
browse behavior.

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7753

Command OnSuccess OnError Description
BrowseTags:
• Initial request:

BrowseTags <System>

<Page size> --
filter <Filter>

• Next request:
BrowseTags --next

NotifyBrowseTags
<System>::<Tag> ...
<System>::<Tag>

ErrorBrowseTags
<Error text>

Returns the names of the tags
of the local system or all sys‐
tems communicating via run‐
time collaboration.

BrowseConfiguredAlarm
s:
• Initial request:

BrowseConfiguredAl
arms <System>
<Page size> --
filter <Filter>

• Next request:
BrowseConfiguredAl
arms --next

NotifyBrowseConfigure
dAlarms
<System>::<Alarm> ...
 <System>::<Alarm>

ErrorBrowseConfigured
Alarms <Error text>

Returns the names of the con‐
figured alarms of the local sys‐
tem or all systems communi‐
cating via Runtime Collabora‐
tion.

BrowseAlarmClasses
<System>

NotifyBrowseAlarmClas
ses <System>::<Alarm
class> ...
<System>::<Alarm
class>

ErrorBrowseConfigured
Alarms <Error text>

Returns the alarm classes of
the local system or all systems
communicating via Runtime
Collaboration.

Errors and error texts
This help only provides a selection of possible error messages. The error texts can also differ from
the texts in your projects.

20.1.4.2 Commands

SubscribeTagValue

Description
The command "SubscribeTagValue" subscribes the specified tag for monitoring.

Error handling
• When the tag value contains a line break (\n), the value cannot be signaled. An error is

signaled.
• When the same tag is subscribed a second time for monitoring, an error is signaled.

Runtime Openness
20.1 WinCC Unified Open Pipe

7754 System Manual, 11/2022

• A global monitoring error is signaled with "ErrorSubscribeTagValue". Because no monitoring
was set up, there is no need to unsubscribe the tag from monitoring.

• An error relating to the tag value is signaled with "ErrorNotifyTagValue". Monitoring is set up
in this case, but the tag value cannot be signaled for various reasons. Unsubscribe the tag
from monitoring when it is no longer needed.

Request
SubscribeTagValue <Tag>
For example: SubscribeTagValue Tag_1

Response
OnSuccess (or partial success):
NotifySubscribeTagValue <Tag> <Quality> <Value>
For example:
• NotifySubscribeTagValue Tag_1 Uncertain 0
• NotifySubscribeTagValue Tag_1 Good 10
• NotifySubscribeTagValue Tag_1 Bad 12
OnError:
• Global error:

ErrorSubscribeTagValue <Tag> <Error text>
For example:
– ErrorSubscribeTagValue Tag_1 Tag does not exist
– ErrorSubscribeTagValue Tag_1 Subscription already exists

• Error for tag value:
ErrorNotifyTagValue <Tag> <Error text>
For example:
– ErrorNotifyTagValue Tag_1 Encoding error
– ErrorNotifyTagValue Tag_1 Value contains newline

UnsubscribeTagValue

Description
The "UnsubscribeTagValue" command unsubscribes a tag from monitoring.

Request
UnsubscribeTagValue <Tag>
For example: UnsubscribeTagValue Tag_1

Response
OnSuccess:

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7755

NotifyUnsubscribeTagValue <Tag>
For example:
• NotifyUnsubscribeTagValue Tag_1
• NotifyUnsubscribeTagValue Tag_1
• NotifyUnsubscribeTagValue Tag_1
OnError:
ErrorUnsubscribeTagValue <Tag> <Error text>
For example: ErrorUnsubscribeTagValue Tag_1 Subscription does not
exist

ReadTagValue

Description
The "ReadTagValue" command reads the value of a tag from the system. Only the tag value and
the quality are signaled.
When the tag value contains a line break (\n), the value cannot be signaled. An error is
signaled.

Request
ReadTagValue <Tag>
For example: ReadTagValue Tag_1

Response
OnSuccess (or partial success):
NotifyReadTagValue <Tag> <Quality> <Value>
For example:
• NotifyReadTagValue Tag_1 Uncertain 0
• NotifyReadTagValue Tag_1 Good 10
• NotifyReadTagValue Tag_1 Bad 12
OnError:
ErrorReadTagValue <Tag> <Error text>
For example:
• ErrorReadTagValue Tag_1 Tag does not exist
• ErrorReadTagValue Tag_1 Encoding error
• ErrorReadTagValue Tag_1 Value contains newline

Runtime Openness
20.1 WinCC Unified Open Pipe

7756 System Manual, 11/2022

WriteTagValue

Description
The "WriteTagValue" command writes a value to a single tag.
When the transferred tag value contains a line break (\n), only the partial string in front of
the line break is written to the tag.

Request
WriteTagValue <Tag> <Value>
For example: WriteTagValue Motor.Label MC001

Response
OnSuccess (or partial success):
NotifyWriteTagValue <Tag>
For example: NotifyWriteTagValue Motor.Label
OnError:
ErrorWriteTagValue <Tag> <Error text>
For example: ErrorWriteTagValue Motor.Label Tag does not exist

SetCharSet

Description
Sets the character encoding to one of the following specified values: {UTF-8, cp437, cp850}
The default character encoding is UTF-8.
The following character coding values must be supported as a minimum:
• UTF-8
• cp850

In German Windows systems, this is the default for the SystemLocale.
• cp437

In US Windows systems, this is the default for the SystemLocale.
Internally, strings are treated as Unicode strings (often as UTF-16 in a CFSTR). For external
communication over the pipe, the Unicode characters must be converted into a byte
representation.
When a character cannot be converted for a specific character coding (e.g. the Greek
character "π" in the character coding cp437), an "encoding error" is triggered.

Request
SetCharSet <Value>
For example: SetCharSet UTF-8

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7757

Response
OnSuccess:
NotifySetCharSet <Value>
For example: NotifySetCharSet UTF-8
OnError:
ErrorSetCharSet <Value> <Error text>
For example: ErrorSetCharSet UTF-9 unknown character set

ReadConfig

Description
The "ReadConfig" command reads a setting configured for general browse behavior. To read
multiple settings, call the command several times.

Request
ReadConfig <Param>
• Param:

Value: The configuration parameters
Possible parameters:
– DefaultPageSize

The page size used when a browse request is called without the "PageSize" parameter
– BrowseTimeOut

Number of seconds after which an inactive browse request is aborted.
For example:
ReadConfig DefaultPageSize

OnSuccess
NotifyReadConfig <Parameter> <Value>
For example:
NotifyReadConfig DefaultPageSize 1000
NotifyReadConfig BrowseTimeOut 300

OnError
ErrorReadConfig <Error description>
For example:
ErrorReadConfig Invalid arguments passed to browsing function.

WriteConfig

Description
The "WriteConfig" command sets a setting configured for general browse behavior. To set
multiple settings, call the command several times

Runtime Openness
20.1 WinCC Unified Open Pipe

7758 System Manual, 11/2022

Request
WriteConfig <Parameter> <Value>
• Parameter:

Value: The configuration parameters
Possible parameters:
– DefaultPageSize

The page size used when a browse request is called without the "PageSize" parameter
Preset value: 1000

– BrowseTimeOut
Number of seconds after which an inactive browse request is canceled.
Preset value: 300 s

For example:
WriteConfig DefaultPageSize 500

Response
OnSuccess:
NotifyWriteConfig <Parameter>
For example:
NotifyWriteConfig DefaultPageSize
OnError:
ErrorWriteConfig <Error description>
For example:
ErrorWriteConfig Invalid arguments passed to browsing function.

BrowseTags

Description
The "BrowseTags" command returns the names of the tags of the local HMI system or all HMI
systems communicating via runtime collaboration.
Information on the general browse behavior of the command can be found in section
Behavior of the browse commands (Page 7751).
If the number of hits exceeds the page size of the response, the command consists of an
initial request and 1 to N Next requests:
• You define the query in the initial request.

It provides a response that delivers the first set of hits.
• You can call the remaining hits via Next requests.

Initial request
BrowseTags <System> <Page size> --filter <Filter>

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7759

• System: Optional
Controls from which system the tags are read.
– Value: "*"

All systems that communicate with each other via runtime collaboration
– Default value: The local system

• Page size: Optional
Controls how many tags a response returns.
Default value: The configured page size is used. See also section ReadConfig (Page 7758).

• --filter <Filter>: Optional
Restricts the command to tags whose "Name" matches the filter.
– --filter: Command line command
– <Filter>: The filter string

Permitted wildcards:

Wildcard Description Example
* Replaces 0 to more characters Filter string: "Motor*"

Tags contained in the re‐
sponse:
• "Motor"
• "MotorOn"
• "MotorOff"

? Replaces 1 character Filter string: "Motor_?"
Tags contained in the re‐
sponse:
• "Motor_1"
• "Motor_2"

– Default value: All tags of the system specified by SystemNames are queried.
For example:
BrowseTags * 100 --filter *Tag0* // browse for tags of all systems
with filter and paging

Next request
BrowseTags --next

Response
OnSuccess
NotifyBrowseTags <System>::<Tag name> ... <System>::<Tag name>
For example:
NotifyBrowseTags HMI_RT_1::InternalTag0 HMI_RT_2::InternalTag01
HMI_RT_2::InternalTag02

OnError
ErrorBrowseTags <Error description>

Runtime Openness
20.1 WinCC Unified Open Pipe

7760 System Manual, 11/2022

For example:
ErrorBrowseTags Invalid arguments passed to browsing function.

BrowseConfiguredAlarms

Description
The "BrowseConfiguredAlarms" command returns the names of the configured alarms of the
local HMI system or all HMI systems communicating via Runtime Collaboration.
Information on the general browse behavior of the command can be found in section
Behavior of the browse commands (Page 7751).
If the number of hits exceeds the page size of the response, the command consists of an
initial request and 1 to N Next requests:
• You define the query in the initial request.

It provides a response that delivers the first set of hits.
• You can call the remaining hits via Next requests.

Initial request
BrowseConfiguredAlarms <System> <Page size> --filter <Filter>

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7761

• System: Optional
Controls from which system the alarms are read.
– Value: "*"

All systems that communicate with each other via runtime collaboration
– Default value: The local system

• Page size: Optional
Controls how many alarms a response returns.
Default value: The configured page size is used. See also section ReadConfig (Page 7758).

• --filter <Filter>: Optional
Restricts the command to alarms whose "Name" matches the filter.
– --filter: Command line command
– <Filter>: The filter string

Permitted wildcards:

Wildcard Description Example
* Replaces 0 to more characters Filter string: "Motor*:Analog_

Alarm"
Alarms contained in the re‐
sponse:
• "MotorOn:AnalogAlarm"
• "MotorOff:AnalogAlarm"

? Replaces 1 character Filter string: "Motor_?:Analog_
alarm"
Alarms contained in the re‐
sponse:
• "Motor_1:Analog_alarm"
• "Motor_2:Analog_alarm"

– Default value: All tags of the system specified by SystemNames are queried.
For example:
BrowseConfiguredAlarms * 100 --filter *Analog* // browse for alarms
of all systems with filter and paging

Next request
BrowseConfiguredAlarms --next

Response
OnSuccess
NotifyBBrowseConfiguredAlarms <System>::<Alarm name> ...
<System>::<Alarm name>
For example:
NotifyBrowseConfiguredAlarms HMI_RT_1::Motor_1:AnalogAlarm_1
HMI_RT_2::Motor_1:AnalogAlarm_1 HMI_RT_2::Motor_2:AnalogAlarm_1

Runtime Openness
20.1 WinCC Unified Open Pipe

7762 System Manual, 11/2022

OnError
ErrorBrowseConfiguredAlarms <Error description>
For example:
ErrorBrowseConfiguredAlarms A parameter is not valid or out of
range.

BrowseAlarmClasses

Description
The command "BrowseAlarmClasses" returns the alarm classes of the local HMI system or all
HMI systems communicating via Runtime Collaboration.
Information on the general browse behavior of the command can be found in section
Behavior of the browse commands (Page 7751).

Note
Paging is not available for "BrowseAlarmClasses".

Request
BrowseAlarmClasses <System>
• System: Optional

Controls from which system the tags are read.
– Value: "*"

All systems that communicate with each other via runtime collaboration
– Default value: The local system

For example:
BrowseAlarmClasses //Browse for alarm classes in local system

Response
OnSuccess
NotifyBrowseAlarmClasses <System>::<Alarm class> ...
<System>::<Alarm class>
For example:
NotifyBrowseAlarmClasses HMI_RT_1::Alarm
HMI_RT_1::SystemNotification HMI_RT_1::SystemInformation
HMI_RT_1::SystemAlarm HMI_RT_1::Notification
HMI_RT_1::OperatorInputInformation
OnError
ErrorBrowseAlarmClasses <Error description>
For example:
ErrorBrowseAlarmClasses Invalid arguments passed to browsing
function.

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7763

See also
ReadConfig (Page 7758)

20.1.4.3 Reference
The following section contains a reference of the properties of tags that you get with the
command ReadTagValue.
The commands transfer the property values as string.

Tag properties
"Name" property
Name of the tag

"Value" property
Value of the tag at the moment of the read operation.

"Quality" property
Quality of the read operation of the tag
Possible values:
• "Good"
• "Bad"
• "Uncertain"

"ErrorDescription" property
Description of the error code of the last read or write operation of the tag

20.1.5 Using expert syntax

20.1.5.1 Basics of expert syntax

Characteristics
The expert syntax has the following characteristics:
• Complete JSON commands and replies.
• Commands for individual objects and multiple objects, for example, to write multiple tags in

one call.
• Character coding is always UTF-8.
• Cookies are available and mandatory.

Runtime Openness
20.1 WinCC Unified Open Pipe

7764 System Manual, 11/2022

Structure of a request
{
 "Message": "<Command>",
 "Params":
 {
 "<Object name>":
 [
 "<Param1>",
 "<Param2>"
]
 },
 "ClientCookie": "<Cookie name>"
}

Structure of a response
OnSuccess
{
 "Message": "Notify<Command>",
 "Params":
 {
 "<Object name>":
 [
 {
 "<Value1>"
 },
 {
 "<Value2>"
 }
]
 },
 "ClientCookie": "<Cookie name>"
}
OnError
{
 "Message": "Error<Command>",

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7765

 "ErrorCode": "<Error code>",
 "ErrorDescription": "<Error description>",
 "ClientCookie": "<Cookie name>"
}

Overview of the commands of the expert syntax
Command OnSuccess OnError Description
SubscribeTag <Tag>
<ClientCookie>

NotifySubscribeTag
<Tag name>
<Value>
<TimeStamp>
<Quality>
<QualityCode>
<hasChanged>
<Error code>
<Error text>
<ClientCookie>

ErrorSubscribeTag
<Error code> <Error
text>
<ClientCookie>

Subscribes one or more tags
for monitoring.

UnsubscribeTag
<ClientCookie>

NotifyUnsubscribeTag
<ClientCookie>

ErrorUnsubscribeTag
<Error code> <Error
text>
<ClientCookie>

Unsubscribes the tag or tags
from the cookie from moni‐
toring.

ReadTag <Tags>
<ClientCookie>

NotifyReadTag <Tag
name>
<Value>
<TimeStamp>
<Quality>
<QualityCode>
<Errorcode>
<Error text>
<ClientCookie>

ErrorReadTag
<Error code> <Error
text>
<ClientCookie>

Reads the value of one or
more tags of the system.

WriteTag <Tags,
Values>
<ClientCookie>

NotifyWriteTag <Tag
name> <Error code>
<Error text>
<ClientCookie>

ErrorWriteTag
<Error code> <Error
text>
<ClientCookie>

Writes the specified values to
the specified tags.

SubscribeAlarm
<Filter> <Systems>
<Language>
<ClientCookie>

NotifySubscribeAlarm
<ClientCookie>
<Alarms>

ErrorSubscribeAlarm
<Error code> <Error
text>
<ClientCookie>

Subscribes the alarms defined
over the filter, the system and
the language ID for monitor‐
ing.

UnsubscribeAlarm
<ClientCookie>

NotifyUnsubscribeAlar
m <ClientCookie>

Error
UnsubscribeAlarm
<Error code> <Error
text>
<ClientCookie>

Unsubscribes the alarms from
the cookie from monitoring.

ReadAlarm <Filter>
<Systems> <Language>
<ClientCookie>

NotifyReadAlarm
<ClientCookie>
<Alarms>

ErrorReadAlarm
<Error code> <Error
text>
<ClientCookie>

Reads the alarms defined by
the filter, the system and the
LanguageID.

Runtime Openness
20.1 WinCC Unified Open Pipe

7766 System Manual, 11/2022

Command OnSuccess OnError Description
ReadConfig
<Parameter>
<ClientCookie>

NotifyReadConfig
<Parameter> <Value>
<ClientCookie>

ErrorReadConfig
<Error code> <Error
text>
<ClientCookie>

Reads the settings configured
for the general browse behav‐
ior.

WriteConfig
<Parameter>
<ClientCookie>

NotifyWriteConfig
<Parameter> <Value>
<ClientCookie>

ErrorWriteConfig
<Error code> <Error
text><ClientCookie>

Sets the settings for the gen‐
eral browse behavior.

BrowseTags
• Initial request:

BrowseTags
<LanguageId>
<Filter>
<Attribute>
<PageSize>
<Systems>
<ClientCookie>

• Next request:
BrowseTags <Next>
<ClientCookie>

NotifyBrowseTags
<Attribute>
<Value> ...
<Attribute> <Value>
<ClientCookie>

ErrorBrowseTags
<Error code> <Error
text> <ClientCookie>

Returns "Name", "Display‐
Name" and "DataType" as well
as optional additional attrib‐
ute values of the tags of the
local system or several HMI
systems communicating via
runtime collaboration.

BrowseConfiguredAlarm
s:
• Initial request:

BrowseConfiguredAl
arms <LanguageId>
<Filter>
<Attributes>
<PageSize>
<SystemNames>
<ClientCookie>

• Next request:
BrowseConfiguredAl
arms <Next>
<ClientCookie>

NotifyBrowseConfigure
dAlarms <Alarm class>
<Alarms> ... <Alarm
class> <Alarms>
<ClientCookie>

ErrorBrowseConfigured
Alarms <Error code>
<Error text>
<ClientCookie>

Returns "AlarmClass", "Name"
and "Area" as well as optional
further attribute values of the
configured alarms of an HMI
system or several systems
communicating via Runtime
Collaboration.

BrowseAlarmClasses
<Filter>
<Attributes>
<Systems>

NotifyBrowseAlarmClas
ses <Alarm class> ...
<Alarm class>
<ClientCookie>

ErrorBrowseAlarmClass
es <Error code>
<Error text>
<ClientCookie>

Returns the alarm classes of
the local system or all systems
communicating via Runtime
Collaboration.

Errors and error texts
This help only provides a selection of possible error messages. The error texts can also differ from
the texts in your projects.

Attributes of the tags and alarms
You can find a description of the attributes of the tags and alarms in the help document Runtime
- Open Development Kit (ODK) (Page 7822).

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7767

20.1.5.2 Commands

SubscribeTag

Description
The "SubscribeTag" command subscribes one or more tags for monitoring. The following
properties are monitored:
• Tag value
• Quality
• Quality code
• Time stamp
"NotifiySubscribeTag" always returns all monitored tags, even if only the value of one
monitored tag changes. The change can be a change to the quality code, time stamp or
tag value. The order of tags in the response corresponds to the order in the "SubscribeTag"
request.
It is permitted to have the same tag monitored by multiple "SubscribeTag" calls.

Request
{"Message":"SubscribeTag","Params":{"Tags":
["<Tag>","<Tag>"]},"ClientCookie":"<Cookie>"}
• Tags: List of the tags to be monitored
• ClientCookie: Is used for "UnsubscribeTag" and to assign the notification to its

monitoring.
For example:
{"Message":"SubscribeTag","Params":{"Tags":
["Tag_0","Tag_1"]},"ClientCookie":"mySubscription1"}

Response
OnSuccess
{"Message":"NotifySubscribeTag", "Params":{"Tags":[{"Name":"<Tag>",
"Quality":"<Value>", "QualityCode":"<Value>",
"TimeStamp":"<Value>", "Value":"<Tag value>",
"ErrorCode":<Value>, "ErrorDescription":"<Error text>"},
{"Name":"<Tag>", "Quality":"<Value>", "QualityCode":"<Value>",
"TimeStamp":"<Value>", "Value":"<Tag value>", "ErrorCode":<Value>,
"ErrorDescription":"<Error text>"}]}, "ClientCookie":"<Cookie>"}
For example:
{"Message":"NotifySubscribeTag", "Params":{"Tags":[{"Name":"Tag_0",
"Quality":"Good", "QualityCode":"192",
"TimeStamp":"2019-01-30T11:25:35Z", "Value":"16", "ErrorCode":0,
"ErrorDescription":""}, {"Name":"Tag_1", "Quality":"Uncertain",
"QualityCode":"76", "TimeStamp":"2019-01-30T11:25:35Z",

Runtime Openness
20.1 WinCC Unified Open Pipe

7768 System Manual, 11/2022

"Value":"1", "ErrorCode":-2147483620, "ErrorDescription":"Tag does
not exist"}]}, "ClientCookie":"mySubscription1"}
OnError
{"Message":"ErrorSubscribeTag", "ErrorCode":<Value>,
"ErrorDescription":"<Error text>", "ClientCookie":"<Cookie>"}
For example:
{"Message":"ErrorSubscribeTag", "ErrorCode":-2147483621,
"ErrorDescription":"Subscription could not be created",
"ClientCookie":"mySubscription1"}

UnsubscribeTag

Description
The "UnsubscribeTag" command unsubscribes a tag from monitoring that was started with the
cookie transferred in the call of "SubscribeTag".

Request
{"Message":"UnsubscribeTag","ClientCookie":"<Cookie>"}
For example:
{"Message":"UnsubscribeTag","ClientCookie":"mySubscription1"}

Response
OnSuccess
{"Message":"NotifyUnsubscribeTag","ClientCookie":"<Cookie>"}
For example:
{"Message":"NotifyUnsubscribeTag","ClientCookie":"mySubscription1"}
OnError
{"Message":"ErrorUnsubscribeTag", "ErrorCode":<Value>,
"ErrorDescription":"<Error text>", "ClientCookie":"Cookie"}
For example:
{"Message":"ErrorUnsubscribeTag", "ErrorCode":-2147483621,
"ErrorDescription":"Subscription could not be closed",
"ClientCookie":"mySubscription1"}

ReadTag

Description
The "ReadTag" command reads multiple tags. The tag value, the quality, the quality code and the
time stamp are signaled.
 The order of tags in the response corresponds to the order in the "ReadTag" request.

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7769

Request
{"Message":"ReadTag","Params":{"Tags":
["<Tag>","<Tag>"]},"ClientCookie":"<Cookie>"}
For example:
{"Message":"ReadTag","Params":{"Tags":
["Tag_0","Tag_1"]},"ClientCookie":"myRequest1"}

Response
OnSuccess
{"Message":"NotifyReadTag","Params":{"Tags":
[{"Name":"<Tag>","Quality":"<Value>","QualityCode":"<Value>","TimeSt
amp":"<Value>","Value":"<TagValue>","ErrorCode":<Value>,"ErrorDescri
ption":"<ErrorText>"},
{"Name":"<Tag>","Quality":"<Value>","QualityCode":"<Value>","TimeSta
mp":"<Value>","Value":"<TagValue>","ErrorCode":<Value>,"ErrorDescrip
tion":"<ErrorText>"}]},"ClientCookie":"<Cookie>"}
For example:
{"Message":"NotifyReadTag","Params":{"Tags":
[{"Name":"Tag_0","Quality":"Good","QualityCode":"192","TimeStamp":"2
019-01-30T11:25:35Z","Value":"16","ErrorCode":0,"ErrorDescription":"
"},
{"Name":"Tag_1","Quality":"Uncertain","QualityCode":"76","TimeStamp"
:"2019-01-30T11:25:35Z","Value":"1","ErrorCode":-2147483620,"ErrorDe
scription":"Tag does not exist"}]},"ClientCookie":"myRequest1"}
OnError
{"Message":"ErrorReadTag","ErrorCode":<Value>,"ErrorDescription":"<E
rror text>", "ClientCookie":"<Cookie>"}
For example:
{"Message":"ErrorReadTag","ErrorCode":-2147483621,"ErrorDescription"
:"Failed to Read", "ClientCookie":"myRequest1"}

WriteTag

Description
The "WriteTag" command writes the values of multiple tags.

Request
{"Message":"WriteTag","Params":{"Tags":
[{"Name":"<Tag>","Value":"<Tag value>"},
{"Name":"<Tag>","Value":"<Tag value>"}]},"ClientCookie":"<Cookie>"}
For example:
{"Message":"WriteTag","Params":
{"Tags":[{"Name":"Tag_0","Value":"50"},
{"Name":"Tag_1","Value":"40"}]},"ClientCookie":"myRequest2"}

Runtime Openness
20.1 WinCC Unified Open Pipe

7770 System Manual, 11/2022

Response
OnSuccess
{"Message":"NotifyWriteTag","Params":{"Tags":
[{"Name":"<Tag>","ErrorCode":<Value>,"ErrorDescription":"<ErrorText>
"},
{"Name":"<Tag>","ErrorCode":<Value>,"ErrorDescription":"<ErrorText>"
}]},"ClientCookie":"<Cookie>"}
For example:
{"Message":"NotifyWriteTag","Params":{"Tags":
[{"Name":"Tag_0","ErrorCode":0,"ErrorDescription":""},
{"Name":"Tag_1","ErrorCode":-2147483620,"ErrorDescription":"Tag
does not exist"}]},"ClientCookie":"myRequest2"}
OnError
{"Message":"ErrorWriteTag","ErrorCode":<Value>,"ErrorDescription":"<
Error text>", "ClientCookie":"<Cookie>"}
For example:
{"Message":"ErrorWriteTag","ErrorCode":-2147483621,"ErrorDescription
":"Failed to Write", "ClientCookie":"myRequest2"}

SubscribeAlarm

Description
The "SubscribeAlarm" command subscribes systems for monitoring of changes of active alarms.
The first time "NotifySubscribeAlarm" is called, all active alarms are queried. Afterwards
"NotifySubscribeAlarm" is only called if the status of an alarm changes.

Request
{"Message":"SubscribeAlarm","Params":{"SystemNames":
["<System>","<System>"],"Filter":"<Filter>","LanguageId":<ID>},"Clie
ntCookie":"<Cookie>"}
• SystemNames: Optional

When the list is empty or missing, all known systems are subscribed for monitoring.
• Filter: Optional
• LanguageID: Optional
• ClientCookie:

Is used for "UnsubscribeAlarm" and to assign the notification to its monitoring.
For example:
{"Message":"SubscribeAlarm","Params":{"SystemNames":
["System0","System1"],"Filter":"AlarmClassName !=
‘Warning’","LanguageId":1033},"ClientCookie":"CookieForSubscribeAlar
ms123"}

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7771

Response
OnSuccess
{"Message":"NotifySubscribeAlarm","ClientCookie":"<Cookie>","params"
:{"Alarms":[{<Key value pairs for the properties of the first
alarm>},{<Key value pairs for the properties of the second alarm>},
{<...>}]}}
For example:
{"Message":"NotifySubscribeAlarm","ClientCookie":"CookieForSubscribe
Alarms123","params":{"Alarms":[{"AcknowledgmentTime":"1970-01-01
00:00:00.0000000","AlarmClassName":"Alarm","AlarmClassSymbol":"Alarm
","AlarmText1":"","AlarmText2":"","AlarmText3":"","AlarmText4":"","A
larmText5":"","AlarmText6":"","AlarmText7":"","AlarmText8":"","Alarm
Text9":"","Area":"","BackColor":"4294967295","ChangeReason":"3","Cle
arTime":"1970-01-01
00:00:00.0000000","Connection":"1.0.0.0.0.0","DeadBand":"No
deadband
configured.","Duration":"00:00:01.7431098","EventText":"","Flashing"
:"FALSE","HostName":"md1z5cpc","ID":"0","InfoText":"","InstanceID":"
9","LoopInAlarm":"","ModificationTime":"2019-01-30
11:25:39.9780320","Name":"RUNTIME_1::Tag_2:Alarm2","NotificationReas
on":"1","Origin":"","Priority":"1","RaiseTime":"2019-01-30
11:25:39.9780320","ResetTime":"1970-01-01
00:00:00.0000000","SourceID":"","SourceType":"1","State":"1","StateM
achine":"7","StateText":"R","SuppressionState":"0","SystemSeverity":
"0","Tag":"RUNTIME_1::Tag_2","TextColor":"4278190080","UserName":"",
"Value":"7","ValueLimit":"No limit
configured.","ValueQuality":"192"},
{"AcknowledgmentTime":"1970-01-01
00:00:00.0000000","AlarmClassName":"Alarm","AlarmClassSymbol":"Alarm
","AlarmText1":"","AlarmText2":"","AlarmText3":"","AlarmText4":"","A
larmText5":"","AlarmText6":"","AlarmText7":"","AlarmText8":"","Alarm
Text9":"","Area":"","BackColor":"4294967295","ChangeReason":"3","Cle
arTime":"1970-01-01
00:00:00.0000000","Connection":"1.0.0.0.0.0","DeadBand":"No
deadband
configured.","Duration":"00:00:01.7431098","EventText":"","Flashing"
:"FALSE","HostName":"md1z5cpc","ID":"0","InfoText":"","InstanceID":"
9","LoopInAlarm":"","ModificationTime":"2019-01-30
11:25:39.9780320","Name":"RUNTIME_1::Tag_2:Alarm1","NotificationReas
on":"1","Origin":"","Priority":"1","RaiseTime":"2019-01-30
11:25:39.9780320","ResetTime":"1970-01-01
00:00:00.0000000","SourceID":"","SourceType":"1","State":"1","StateM
achine":"7","StateText":"R","SuppressionState":"0","SystemSeverity":
"0","Tag":"RUNTIME_1::Tag_2","TextColor":"4278190080","UserName":"",
"Value":"7","ValueLimit":"No limit
configured.","ValueQuality":"192", "AlarmGroupID": "1"}]}
OnError
{"Message":"ErrorSubscribeTag", "ErrorCode":<Value>,
"ErrorDescription":"<Error text>", "ClientCookie":"<Cookie>"}

Runtime Openness
20.1 WinCC Unified Open Pipe

7772 System Manual, 11/2022

For example:
{"Message":"ErrorSubscribeAlarm","ErrorCode":"-2147483621","ErrorDes
cription":"Alarm Subscription failed because of invalid
filter","ClientCookie":"CookieForSubscribeAlarms123"}

UnsubscribeAlarm

Description
The "UnsubscribeAlarm" command unsubscribes the alarms from monitoring that was started
with the cookie transferred in the call of "SubscribeAlarm".

Request
{"Message":"UnsubscribeAlarm","ClientCookie":"<Cookie>"}
For example:
{"Message":"UnsubscribeAlarm","ClientCookie":"CookieForSubscribeAlar
ms123"}

Response
OnSuccess
{"Message":"NotifyUnsubscribeAlarm","ClientCookie":"<Cookie>"}
For example:
{"Message":"NotifyUnsubscribeAlarm","ClientCookie":"CookieForSubscri
beAlarms123"}
OnError
{"Message":”ErrorUnsubscribeAlarm","ErrorCode":<Value>,"ErrorDescrip
tion":"<Error text>", "ClientCookie":"<Cookie>"}
For example:
{"Message":"ErrorUnsubscribeAlarm","ErrorCode":-2147483621,"ErrorDes
cription":"Subscription could not be closed",
"ClientCookie":"CookieForSubscribeAlarms123"}

ReadAlarm

Description
The "ReadAlarm" command reads all active alarms.

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7773

Request
{"Message":"ReadAlarm","Params":{"SystemNames":
["<System>","<System>"],"Filter":"<Value>","LanguageId":<Value>},"Cl
ientCookie":"<Cookie>"}
• SystemNames: Optional

When the list is empty or missing, all known systems are subscribed for monitoring.
• Filter: Optional
• LanguageID: Optional
• ClientCookie:

Is used for "UnsubscribeAlarm" and to assign the notification to its monitoring.
For example:
{"Message":"ReadAlarm","Params":{"SystemNames":
["System0","System1"],"Filter":"","LanguageId":1033},"ClientCookie":
"CookieForReadAlarmRequest456"}

Response
{"Message":"NotifyReadAlarm", "ClientCookie":"<Cookie>","params":
{"Alarms":[{<Key value pairs for properties of the first alarm>},
{<Key value pairs for the properties of the second alarm>},
{<...>}]}}
OnSuccess
For example:
{"Message":"NotifyReadAlarm",
"ClientCookie":"CookieForReadAlarmRequest456", "params":{"Alarms":
[{"AcknowledgmentTime":"1970-01-01 00:00:00.0000000",
"AlarmClassName":"Alarm",
"AlarmClassSymbol":"Alarm","AlarmText1":"","AlarmText2":"","AlarmTex
t3":"","AlarmText4":"","AlarmText5":"","AlarmText6":"","AlarmText7":
"","AlarmText8":"","AlarmText9":"","Area":"","BackColor":"4294967295
","ChangeReason":"3","ClearTime":"1970-01-01
00:00:00.0000000","Connection":"1.0.0.0.0.0","DeadBand":"No
deadband
configured.","Duration":"00:00:01.7431098","EventText":"","Flashing"
:"FALSE","HostName":"md1z5cpc","ID":"0","InfoText":"","InstanceID":"
9","LoopInAlarm":"","ModificationTime":"2019-01-30
11:25:39.9780320","Name":"RUNTIME_1::Tag_2:Alarm2","NotificationReas
on":"1","Origin":"","Priority":"1","RaiseTime":"2019-01-30
11:25:39.9780320","ResetTime":"1970-01-01
00:00:00.0000000","SourceID":"","SourceType":"1","State":"1","StateM
achine":"7","StateText":"R","SuppressionState":"0","SystemSeverity":
"0","Tag":"RUNTIME_1::Tag_2","TextColor":"4278190080","UserName":"",
"Value":"7","ValueLimit":"No limit
configured.","ValueQuality":"192"},
{"AcknowledgmentTime":"1970-01-01
00:00:00.0000000","AlarmClassName":"Alarm","AlarmClassSymbol":"Alarm
","AlarmText1":"","AlarmText2":"","AlarmText3":"","AlarmText4":"","A
larmText5":"","AlarmText6":"","AlarmText7":"","AlarmText8":"","Alarm
Text9":"","Area":"","BackColor":"4294967295","ChangeReason":"3","Cle

Runtime Openness
20.1 WinCC Unified Open Pipe

7774 System Manual, 11/2022

arTime":"1970-01-01
00:00:00.0000000","Connection":"1.0.0.0.0.0",DeadBand":"No deadband
configured.","Duration":"00:00:01.7431098","EventText":"","Flashing"
:"FALSE","HostName":"md1z5cpc","ID":"0","InfoText":"","InstanceID":"
9","LoopInAlarm":"","ModificationTime":"2019-01-30
11:25:39.9780320","Name":"RUNTIME_1::Tag_2:Alarm1","NotificationReas
on":"1","Origin":"","Priority":"1","RaiseTime":"2019-01-30
11:25:39.9780320","ResetTime":"1970-01-01
00:00:00.0000000","SourceID":"","SourceType":"1","State":"1","StateM
achine":"7","StateText":"R","SuppressionState":"0","SystemSeverity":
"0","Tag":"RUNTIME_1::Tag_2","TextColor":"4278190080","UserName":"",
"Value":"7","ValueLimit":"No limit
configured.","ValueQuality":"192"", "AlarmGroupID": "1"}]}
OnError
{"Message":"ErrorReadAlarm","ErrorCode":<Value>,
"ErrorDescription":"<Error text>", "ClientCookie":"<Cookie>"}
For example:
{"Message":"ErrorReadAlarm","ErrorCode":-2147483621,
"ErrorDescription":"Alarm Subscription failed because of invalid
filter", "ClientCookie":"CookieForReadAlarmRequest456"}

ReadConfig

Description
The "ReadConfig" command reads the settings configured for the general browse behavior.

Request
{"Message": "ReadConfig", "Params": ['<Parameter>',
'<Parameter>'], "ClientCookie": '<Cookie>'}
• Params:

Value: Comma-separated list of configuration parameters
Possible parameters:
– DefaultPageSize

The page size used when a browse request is called without the "PageSize" parameter
– BrowseTimeOut

Number of seconds after which an inactive browse request is canceled.
• Cookie:

Name of the response cookie
For example:
{"Message": "ReadConfig", "Params": ['DefaultPageSize',
'BrowseTimout'], "ClientCookie": "myBrowseAlarmsRequest1"}

OnSuccess
{"Message":"NotifyReadConfig", "Params": {"<Parameter>":<Value>,
"<Parameter>":<Value>}, "ClientCookie": '<Cookie>'}

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7775

For example:
{"Message":"NotifyReadConfig", "Params": {"DefaultPageSize":500,
"BrowseTimeOut":60}, "ClientCookie": "myBrowseAlarmsRequest1"}

OnError
{"Message": "ErrorReadConfig", "ErrorCode": "<Code>",
"ErrorDescription": "<Description>", "ClientCookie": "<Cookie>"}
For example:
{"Message": "ErrorReadConfig", "ErrorCode": "-2165322729",
"ErrorDescription": "Invalid arguments passed to browsing
function.", "ClientCookie": "myBrowseAlarmsRequest1"}

WriteConfig

Description
The "WriteConfig" command sets configurable settings for the general browse behavior.

Request
{"Message": "WriteConfig", "Params": ["<Parameter>":<Value>,
"<Parameter>":<Value>], "ClientCookie": '<Cookie>'}
• Params:

Value: Comma-separated list of configuration parameters and their values
Possible parameters:
– DefaultPageSize

The page size used when a browse request is called without the "PageSize" parameter
Preset value: 1000

– BrowseTimeOut
Number of seconds after which an inactive browse request is canceled.
Preset value: 300 s

• Cookie:
Name of the response cookie

For example:
{"Message": "WriteConfig", "Params": ["DefaultPageSize":500,
"BrowseTimout":60], "ClientCookie": "myBrowseAlarmsRequest1"}

OnSuccess
{"Message":"NotifyWriteConfig", "Params": {"<Parameter>":<Value>,
"<Parameter>":<Value>}, "ClientCookie": '<Cookie>'}
For example:
{"Message":"NotifyWriteConfig", "Params": {"DefaultPageSize":500,
"BrowseTimeOut":60}, "ClientCookie": "myBrowseAlarmsRequest1"}

OnError
{"Message": "ErrorWriteConfig", "ErrorCode": "<Code>",
"ErrorDescription": "<Description>" "ClientCookie": "<Cookie>"}
For example:

Runtime Openness
20.1 WinCC Unified Open Pipe

7776 System Manual, 11/2022

{"Message": "ErrorWriteConfig", "ErrorCode": "-2165322733",
"ErrorDescription": "A parameter is not valid or out of range.",
"ClientCookie": "myBrowseAlarmsRequest1"}

BrowseTags

Description
The "BrowseTags" command returns "Name", "DisplayName" and "DataType" as well as optional
further attribute values of the tags of an HMI system or several HMI systems communicating via
runtime collaboration.
Information on the general browse behavior of the command can be found in section
Behavior of the browse commands (Page 7751).
If the number of hits exceeds the page size of the response, the command consists of an
initial request and 1 to N Next requests:
• You define the query in the initial request.

It provides a response that delivers the first set of hits.
• You can call the remaining hits via Next requests.

Initial request
{"Message": "BrowseTags", "Params": {"LanguageId": <Value>,
"Filter": "<String>", "Attributes": ["<Attribute name>", ...,
"<Attribute name>"], "PageSize": <Value>, "SystemNames":
["<Name>", ..., "<Name>"]}, "ClientCookie": "<Cookie>"}

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7777

• LanguageId: Optional
Controls in which language the "DisplayName" of the tags is returned.
– Value: The language ID
– Default value: The default language of the system from which the tag originates

• Filter: Optional
Restricts the command to tags whose "Name" matches the filter.
– Value: Filter string

Permitted wildcards:

Wildcard Description Example
* Replaces 0 to more characters Filter string: "Motor*"

Tags contained in the re‐
sponse:
• "Motor"
• "MotorOn"
• "MotorOff"

? Replaces 1 character Filter string: "Motor_?"
Tags contained in the re‐
sponse:
• "Motor_1"
• "Motor_2"

– Default value: All tags of the system specified by SystemNames are queried.
• Attributes: Optional

Controls which tag attributes returns the response:
– Value: Comma-separated enumeration of the attribute names

The response returns "Name", "DisplayName" and "DataType" as well as the specified
attributes.

– Value: "*"
The response provides all attributes supported by the TIA Portal for tags: Name,
DisplayName, AcquisitionMode, Persistent, DataType, Connection, AcquisitionCycle,
MaxLength, SubstituteValueUsage, InitialValue, SubstituteValue, InitialMaxValue,
InitialMinValue, Address

– Default value: The response returns "Name", "DisplayName" and "DataType".
• PageSize: Optional

Controls how many tags a response returns.
Default value: The configured page size is used. See also section ReadConfig (Page 7775).

Runtime Openness
20.1 WinCC Unified Open Pipe

7778 System Manual, 11/2022

• SystemNames: Optional
Controls from which system the tags are read.
– Value: "*"

All systems that communicate with each other via runtime collaboration
– Value: Comma-separated list of systems that communicate with each other via runtime

collaboration
FOR EXAMPLE: "HMI_RT_1", "HMI_RT_2"

– Default value: The local system
• ClientCookie:

Value: Name of the response cookie
For example:
{"Message": "BrowseTags", "Params": {"LanguageId": 1033,
"Filter": "*InternalTag_Bool_1*", "Attributes": ["AcquisitionMode",
"MaxValue"], "PageSize": 50, "SystemNames": ["HMI_RT_1",
"HMI_RT_2"]}, "ClientCookie": "myBrowseTagRequest1"}

Next request
{"Message": "BrowseTags", "Params": "Next", "ClientCookie":
"<Cookie>"}
For example:
{"Message": "BrowseTags", "Params": "Next", "ClientCookie":
"myBrowseTagRequest1"}

Response
OnSuccess
{"ClientCookie": "<Cookie>", "Message": "NotifyBrowseTags",
"Params": {"Tags": [{"<Attribute name":<Value>, "<Attribute
name>":<Value>, "DataType":<Value>, "DisplayName": "<Value>",
"Name":"<Value>"}],}}
For example:
{"ClientCookie": "<myBrowseTagRequest1>", "Message":
"NotifyBrowseTags", "Params": {"Tags":
[{"AcquisitionMode":0, "MaxValue":1000, "DataType":1,
"DisplayName": "HMI_RT_1::InternalTag_Bool_1",
"Name":"HMI_RT_1::InternalTag_Bool_1"}],}}

OnError
{"Message": "ErrorBrowseTags", "ErrorCode": "<Code>",
"ErrorDescription": "<Description>", "ClientCookie": "Cookie>"}
For example:
{"Message": "ErrorBrowseTags", "ErrorCode": "-2165323798",
"ErrorDescription": "Invalid system name.", "ClientCookie":
myBrowseTagRequest1"}

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7779

BrowseConfiguredAlarms

Description
The "BrowseConfiguredAlarms" command returns "AlarmClass", "Name" and "Area" as well as
optional further attribute values of the configured alarms of an HMI system or several systems
communicating via Runtime Collaboration.
Information on the general browse behavior of the command can be found in section
Behavior of the browse commands (Page 7751).
If the number of hits exceeds the page size of the response, the command consists of an
initial request and 1 to N Next requests:
• You define the query in the initial request.

It provides a response that delivers the first set of hits.
• You can call the remaining hits via Next requests.

Initial request
{"Message": "BrowseConfiguredAlarms", "Params": {"LanguageId":
<Value>, "Filter": "<String>", "Attributes": ["<Attribute
name>", ..., "<Attribute name>"], "PageSize": <Value>,
"SystemNames": ["<Name>", ..., "<Name>"]}, "ClientCookie":
"<Cookie>"}
• LanguageId: Optional

Controls in which language the alarm texts are returned.
– Value: The language ID
– Default value: The default language of the system from which the alarm originates

• Filter: Optional
Restricts the command to alarms whose "Name" matches the filter.
– Value: Filter string

Permitted wildcards:

Wildcard Description Example
* Replaces 0 to more characters Filter string: "Motor*:Ana‐

log_Alarm"
Alarms contained in the re‐
sponse:
• "MotorOn:AnalogAlarm"
• "MotorOff:AnalogAlarm"

? Replaces 1 character Filter string: "Motor_?:Ana‐
log_alarm"
Alarms contained in the re‐
sponse:
• "Motor_1:Analog_alarm"
• "Motor_2:Analog_alarm"

– Default value: All alarms of the system specified by SystemNames are queried.

Runtime Openness
20.1 WinCC Unified Open Pipe

7780 System Manual, 11/2022

• Attributes: Optional
Controls which alarm attributes the response returns:
– Value: Comma-separated enumeration of the attribute names

The response returns "AlarmClass", "Name" and "Area" as well as the specified attributes.
– Value: "*"

The response returns the following attributes: Name, ID, SourceType, AlarmClassName,
Priority, EventText, AlarmText1, AlarmText2, AlarmText3, AlarmText4, AlarmText5,
AlarmText6, AlarmText7, AlarmText8, AlarmText9, InfoText, Group, Origin, Area

– Default: The response returns "AlarmClass", "Name" and "Area".
• PageSize: Optional

Controls how many alarms a response returns.
Default value: The configured page size is used. See also section ReadConfig (Page 7775).

• SystemNames: Optional
Controls from which system the alarms are read.
– Value: "*"

All systems that communicate with each other via runtime collaboration
– Value: Comma-separated list of systems that communicate with each other via runtime

collaboration
FOR EXAMPLE: "HMI_RT_1", "HMI_RT_2"

– Default value: The local system
• ClientCookie:

Value: Name of the response cookie
For example:
{"Message": "BrowseConfiguredAlarms", "Params": {"LanguageId":
1033, "Filter": "*alarm_*", "Attributes": ["Priority"],
"PageSize": 50, "SystemNames": ["HMI_RT_1"], }, "ClientCookie":
"myBrowseAlarmsRequest1"}

Next request
{"Message": "BrowseConfiguredAlarms", "Params": "Next",
"ClientCookie": "<Cookie>"}
For example:
{"Message": "BrowseConfiguredAlarms", "Params": "Next",
"ClientCookie": "myBrowseAlarmsRequest1"}

Response
OnSuccess
{"ClientCookie": "<Cookie>", "Message":
"NotifyBrowseConfiguredAlarms", "Params":
{"AlarmClasses":[{"AlarmClassName":"<Value>", "Alarms":
[{"AlarmClassName":"<Value>", "Area":<Value>, "Name":<Value>,
"Name":<Value>, "Priority":<Value>}, {"AlarmClassName":"<Value>",
"Area":<Value>, ...}], {"AlarmClassName":"<Value>", "Alarms":
[{"AlarmClassName": "<Value>, ...}]}

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7781

For example:
{"ClientCookie":"myBrowseAlarmsRequest1",
"Message":"NotifyBrowseConfiguredAlarms", "Params":{"AlarmClasses":
[{"Name":"HMI_RT_1::Warning",
"Alarms":[{"AlarmClassName":"HMI_RT_1::Warning",
"Area":"HMI_RT_1::Alarming",
"Name":"HMI_RT_1::Tag6:Analog_alarm_2", "Priority":12},
{"AlarmClassName":"HMI_RT_1::Warning",
"Area":"HMI_RT_1::Alarming",
"Name":"HMI_RT_1::AlarmTag_1:Discrete_alarm_1", "Priority":12}]}]}}

OnError
{"Message": "ErrorBrowseConfiguredAlarms", "ErrorCode": "<Code>",
"ErrorDescription": "<Description>", "ClientCookie": "Cookie>"}
For example:
{"Message": "ErrorBrowseAlarms", "ErrorCode": "-2165323798 /
-2165322773", "ErrorDescription": "Invalid system name.", or
“Your browse request has been expired”, "ClientCookie":
"myBrowseAlarmsRequest1"}

BrowseAlarmClasses

Description
The command "BrowseAlarmClasses" returns the alarm classes of the local HMI system or all
HMI systems communicating via Runtime Collaboration.
Information on the general browse behavior of the command can be found in section
Behavior of the browse commands (Page 7751).

Request
{"Message": "BrowseAlarmClasses", "Params": {"Filter": <String>,
"Attributes"["<Attribute name>", ..., "<Attribute name>"],
"SystemNames": ["<Name>", ..., "<Name>"]}, "ClientCookie":
"<Cookie>"}

Runtime Openness
20.1 WinCC Unified Open Pipe

7782 System Manual, 11/2022

• Filter: Optional
Restricts the command to alarm classes whose "Name" matches the filter.
– Value: Filter string

Permitted wildcards:

Wildcard Description Example
* Replaces 0 to more characters Filter string: "*Alarm"

Alarm classes contained in the
response:
• "Alarm"
• "SystemAlarm"

? Replaces 1 character Filter string: "Alarm_Prio_?
Alarms contained in the re‐
sponse:
• "Alarm_Prio_1"
• "Alarm_Prio_2"

– Default value: All alarm classes of the system specified by SystemNames are queried.
• Attributes: Optional

Controls which attributes of the alarm class return the response:
– Value: Comma-separated enumeration of attributes

The response returns "Name" and "StateMachine" as well as the specified attributes.
– Value: "*"

The response returns the following attributes: Name, StateMachine, ID, Priority,
NormalStateTextColor, NormalStateBackColor, RaisedStateTextColor,
RaisedStateBackColor, RaisedStateFlashing, AcknowledgedStateTextColor,
AcknowledgedStateBackColor, AcknowledgedStateFlashing, ClearedStateTextColor,
ClearedStateBackColor, ClearedStateFlashing, AcknowledgedClearedStateTextColor,
AcknowledgedClearedStateBackColor, AcknowledgedClearedStateFlashing

– Default: The response returns "Name" and "StateMachine".
• System: Optional

Controls from which system the tags are read.
– Value: "*"

All systems that communicate with each other via runtime collaboration
– Value: Comma-separated list of systems that communicate with each other via runtime

collaboration
FOR EXAMPLE: "HMI_RT_1", "HMI_RT_2"

– Default value: The local system
For example:
{"Message": "BrowseAlarmClasses", "Params": {"Filter":
"*Alarm*", "SystemNames": ["HMI_RT_1"]}, "ClientCookie":
"myBrowseAlarmClassRequest1"} //Browse for alarm classes in
specified system with filter

Response
OnSuccess

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7783

NotifyBrowseAlarmClasses <System>::<Alarm class> ...
<System>::<Alarm class>
For example:
NotifyBrowseAlarmClasses HMI_RT_1::Alarm
HMI_RT_1::SystemNotification HMI_RT_1::SystemInformation
HMI_RT_1::SystemAlarm HMI_RT_1::Notification
HMI_RT_1::OperatorInputInformation
OnError
ErrorBrowseAlarmClasses <Error description>
For example:
ErrorBrowseAlarmClasses Invalid arguments passed to browsing
function.

20.1.5.3 Reference
The following section contains a reference of the properties of alarms and tags that you get with
the commands ReadAlarm and ReadTag.
The commands transfer the property values as string.

Tag properties
"Name" property
Name of the tag

"Value" property
Value of the tag at the moment of the read operation.

"Quality" property
Quality of the read operation of the tag
Possible values:
• "Good"
• "Bad"
• "Uncertain"

"QualityCode" property
Quality code of the read operation of the tag

"TimeStamp" property
Time stamp of the last successful read operation of the tag

"Error" property
Error code of the last read or write operation of the tag

Runtime Openness
20.1 WinCC Unified Open Pipe

7784 System Manual, 11/2022

"ErrorDescription" property
Description of the error code of the last read or write operation of the tag

Alarm properties
"InstanceID" property
InstanceID for an alarm with multiple instances

"SourceID" property
Source at which the alarm was triggered.

"Name" property
Name of the alarm

"AlarmClassName" property
Name of the alarm class

"AlarmClassSymbol" property
Symbol of the alarm class

"AlarmParameterValues" property
Parameter values of the alarm

"AlarmText1" … "AlarmText9" properties
Additional texts 1-9 of the alarm

"ChangeReason" property
Trigger event of the modification of the alarm state

"Connection" property
Connection via which the alarm was triggered.

"State" property
Current alarm state
The property can contain the following values:
• "0": Normal
• "1": Raised
• "2": RaisedCleared
• "5": RaisedAcknowledged
• "6": RaisedAcknowledgedCleared
• "7": RaisedClearedAcknowledged
• "8": Removed

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7785

"StateText" property
Current alarm state as text, e.g. "active" or "inactive"

"EventText" property
Text that describes the alarm event.

"InfoText" property
Text that describes an operator instruction for the alarm.

"TextColor" property
Number with the text color of the alarm state

"BackColor" property
Number with the background color of the alarm state

"Flashing" property
Indicates whether the alarm flashes.
Values: "TRUE" or "FALSE"

"ModificationTime" property
Time of last modification to the alarm state

"RaiseTime" property
Trigger time of the alarm

"AcknowledgementTime" property
Time of alarm acknowledgment

"ClearTime" property
Time of alarm reset

"ResetTime" property
Time of alarm reset

"SuppressionState" property
Status of alarm visibility

"SystemSeverity" property
Severity of the system error

"Priority" property
Relevance for display and sorting of the alarm

"Origin" property
Origin for display and sorting of the alarm

Runtime Openness
20.1 WinCC Unified Open Pipe

7786 System Manual, 11/2022

"Area" property
Origin for display and sorting of the alarm

"Value" property
Current process value of the alarm

"ValueQuality" property
Quality of the process value of the alarm

"ValueLimit" property
Limit of the process value of the alarm

"UserName" property
User name of the operator control alarm

"HostName" property
Name of the host that triggered the alarm.

"ID" property
ID of the alarm that is also used in the display.

"AlarmGroupID" property
ID of the alarm group to which alarm belongs.

"SourceType" property
Source from which the alarm was generated, e.g. tag-based, controller-based or system-
based alarm.
HmiAlarmSourceType SourceType { get; }
The enumeration "HmiAlarmSourceType" can contain the following values:
• Undefined (0)
• Tag (1)
• Controller (2)
• System (3)
• Alarm (4)

"DeadBand" property
Range of the triggering tag, in which no alarms are generated.
object DeadBand { get; }

"LoopInAlarm" property
Function that navigates from the alarm control to its origin.
string LoopInAlarm { get; }

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7787

"NotificationReason" property
Reason for the notification
The property can contain the following values:
• "O": Unknown
• "1": Add

The alarm was added to the filtered result list. The alarm meets the filter criteria that apply to
the monitoring.

• "2": Modify
Properties of the alarm were changed, but the alarm is still part of the filtered result list.

• "3": Remove
The alarm was part of the result list, but it no longer meets the filter criteria due to changes
to its properties.
Note
Changes to the alarms will not result in notifications until the alarm again meets the filter
criteria. In this case, "NotificationReason" is set to Add.

Note
Removing an alarm from business logic
The use case of the client determines whether the client ignores notifications via alarms with the
"NotificationReason" Modify or Remove.
For example:
• State-based monitoring: The client wants to show a list of incoming alarms. All notification

reasons are relevant. The client removes an alarm from the list as soon as the notification
reason is Remove.

• Event-based monitoring: The client wants to send an email when an alarm comes in. Only the
notification reason Add is relevant.

Example:
A customer application begins monitoring with the filter criterion "State" = 1. An alarm is
triggered. Runtime notifies the customer application of the "NotificationReason" as follows:

NotificationReason Description
Add • The "State" property is 1. The alarm is active.
Modify • The "State" property has not changed.

• Another property that is not part of the filter criterion has changed, e.g. "Pri‐
ority".

Remove The "State" property has changed, e.g. alarm is inactive.

"Duration" property
Returns the time interval in nanoseconds between triggering of the alarm and its previous
status change.

Runtime Openness
20.1 WinCC Unified Open Pipe

7788 System Manual, 11/2022

20.1.5.4 Syntax of the alarm filter
With an AlarmSubscription, a filter can be transferred so that not all active alarms of the alarm
system are notified, but only those which match the filter. The filter syntax is based on SQL
syntax. However, only the WHERE instruction is relevant. The keyword "WHERE" must be omitted.

Operators
The following operators can be used in the filter string of the alarm filter:

Operator Description Example
= equal to Name = 'Recipe246'
<> not equal Value <> 0.0
> greater than Value > 25.0
< less than Value < 75.0
>= greater than or equal to Value >= 25.0
<= less than or equal to Value <= 75.0
OR, || logical OR State = 1 OR State = 3
AND, && logical AND Value >= 25.0 AND Value

<= 75.0
BETWEEN within a range Value BETWEEN 25.0 AND

75.0
NOT BETWEEN outside a range Value NOT BETWEEN 25.0

AND 75.0
LIKE string corresponds to the string string Name LIKE 'Motor*'
NOT LIKE string does not correspond to the string string Name NOT LIKE 'Valve*'
IN (v1, v2, …) corresponds to one or more values State IN (1, 4, 7)
NOT IN (v1, v2, …) does not correspond to one or more values State NOT IN (0, 2, 3,

5, 6)
(…) brackets expressions Value <= 75.0 AND

(State = 1 OR State = 3)

Precedence of the operators:

Rank Operators
1 • Relational operators:

=, <>, >, <, >=, <=
• LIKE
• IN
• BETWEEN

2 NOT
3 AND, &&
4 OR, ||

Runtime Openness
20.1 WinCC Unified Open Pipe

System Manual, 11/2022 7789

Permitted wildcards:

Wildcard Description Example
* Replaces 0 to more characters Name LIKE ‘Motor*’

Reference = <1.*.15>1
? Replaces 1 character Name = ‘Recipe?’

20.2 Programming Custom Web Controls

20.2.1 Custom web controls
Custom Web Controls represent an independent web page with interface to Runtime. Custom
Web Controls offer you the option of adding your own elements to the visualization elements
provided. Custom Web Controls thus extend usability and functionality to achieve an optimal
visualization result.
Custom web controls are run on the web client and hosted in Runtime. A Custom Web
Control can be displayed as an independent Web page in any browser and on any mobile
device.

Note
Observe the performance limit of Unified Comfort Panels. We do not recommend using, for
example, Custom Web Controls with 3D representations for Unified Comfort Panels.

Requirements for a web-based graphic interface
To use a Custom Web Control in WinCC, the Control must be anchored in a container. The
container is provided on the user side by the Custom Web Control framework and contains
components of the graphical user interface (GUI).

Runtime Openness
20.2 Programming Custom Web Controls

7790 System Manual, 11/2022

The following requirements apply when a web-based GUI component if it is to be provided in
a Custom Web Control container:
• The component must be HTML5-based and interpretable by current browsers.
• The component must be executable exclusively on the client side.
• The component must work without interaction with client-side components outside the

container.
• The component must comply with the principle of a Single Page Application (SPA) and fit on

a web page. All code (HTML, JavaScript and CSS) must be received when the page is called
or dynamically added during user actions. The web page may not reload at any time.

• The component must not know in which environment it is deployed. The component must
be executable independent of the environment.

• All data exchange must take place through communication between client and server.

Application example
Based on an application example, you can learn more about the structure and development of
a Custom Web Control: SIOS entry (https://support.industry.siemens.com/cs/ww/en/view/
109779176).

20.2.2 General structure and folder structure
A ready-to-use Custom Web Control must be available as a "*.zip" file that contains all graphics
and code files used. The structure is divided into two folders, "assets" and "control", and a "*.json"
file (manifest.json).
The "assets" folder contains a logo that is displayed in the TIA Portal. The "control" folder
contains "*.html", "*.js" and "*.css" files, as well as used graphics and icons that the Control
needs for the display.
A Custom Web Control has the following folder structure:

Contents of the "control" folder:

Runtime Openness
20.2 Programming Custom Web Controls

System Manual, 11/2022 7791

https://support.industry.siemens.com/cs/ww/en/view/109779176
https://support.industry.siemens.com/cs/ww/en/view/109779176

Contents of the "assets" folder:

20.2.3 Contract-based interaction and the manifest file

20.2.3.1 Basics for the manifest
To enable the Unified Runtime server to communicate with the provided control, the control
must reveal methods, events and properties to the Unified Runtime server.
The sum of the information that the control releases with it is called the "contract". For the
custom web control container, this information is contained in a "*.json" file (manifest.json).
The manifest file contains multiple sectors that each reveal elements to the container.

Tips for an efficient procedure
To verify that you have created a valid JSON file, use the notes in Visual Studio Code or copy the content of the file to an online validation tool,
such as "https://jsonlint.com".

20.2.3.2 Manifest structure
Each manifest has two root elements:
• "mver": Specifies the manifest version.
• "control": Specifies the manifest type.
The "control" element provides the following sectors.
• "identity" sector
• "environment" sector
• "metadata" sector

Runtime Openness
20.2 Programming Custom Web Controls

7792 System Manual, 11/2022

• "contracts" sector
The "contracts" sector contains the following:
– Methods
– Events
– Properties

• "types" sector

"identity" sector
The "identity" sector contains identity information.
The following information of the data type "String" is required:
• "name": Defines the name of the Custom Web Control.
• "version": Defines the version of the Custom Web Control.
• "displayname": Defines the display name of the Custom Web Control.

Note
Special characters must not be used, e.g. #,$,*,%,.,/,;,?;[,],~,'".

• "icon" (optional)
Includes the path for the logo that is displayed in the "Toolbox > My Controls" task card in the
TIA Portal.
The path can be specified as follows:
– URL starting with "http://" or "https://"
– Relative path to the storage location of the manifest starting with "./"
– Data URL that contains a Base64 encoded image starting with "data:"
The referenced image must be between 120x120 pixels and 320x320 pixels in size. The
following image formats are supported:
– JPG and JPEG
– PNG
– ICO
– TIFF
– BMP
Use a square image to avoid distortions.
If "icon" is not specified, only the display name ("displayname") is shown under "My Controls".

Runtime Openness
20.2 Programming Custom Web Controls

System Manual, 11/2022 7793

• "type": Each Custom Web Control can be referenced via the identity type and therefore
requires a pre-defined structure. Types must follow the 8-4-4-4-12 pattern of a 128-bit
integer (GUID).
Note
GUID generation
For example, a GUID can be created as follows:
• In Visual Studio under "Tools > Create GUID"
• Under https://www.guidgenerator.com/ (https://www.guidgenerator.com/)

• "start" (optional): The start directory must be specified to set the starting point of the Custom
Web Control for the browser.
If this value is not defined, "./control/index.html" is used.

Example: "identity"

"identity": {
 "name": "GaugeMeter",
 "version": "1.0",
 "displayname": "GaugeMeter",
 "icon": "./assets/logo.ico",
 "type": "guid://551BF148-2F0D-4293-99C2-C9C3A1A6A073",
 "start": "./control/index.html"
}

"environment" sector
The optional "environment" sector provides information on the environment that is integrated
into the Custom Web Control. If the sector does not exist, then no requirements and
dependencies exist.
Requirements are specified under the element "prerequesites". "renderingspace" can be used
below "prerequesites". Restrictions of the display of the Custom Web Control can be specified
under "renderingspace".
The following restrictions are permitted:

Restriction Data type Description
minwidth integer Specifies the minimum width that is necessary to

display the Custom Web Control.
maxwidth integer Specifies the maximum width that is permitted to

display the Custom Web Control.
defaultwidth integer Specifies the default width of the Custom Web Con‐

trol.
The value must be between "minwidth" and "max‐
width".

minheight integer Specifies the minimum height that is necessary to
display the Custom Web Control.

Runtime Openness
20.2 Programming Custom Web Controls

7794 System Manual, 11/2022

https://www.guidgenerator.com/

Restriction Data type Description
maxheight integer Specifies the maximum height that is permitted to

display the Custom Web Control.
defaultheight integer Specifies the default height of the Custom Web

Control. The value must be between "minheight"
and "maxheight".

unit string Specifies the unit of the display restrictions. The
following values are permitted:
• "px"
• "cm"
• "mm"
• "in"
• "pt"
If "unit" is not specified, "px" is used.

Extensions can be specified under "extensions".
Each extension has the following optional fields:
• "mandatory": Specifies whether the Custom Web Control can be used without the extension.

Regardless of the value in this field, extensions of a Custom Web Control are always necessary.
• "version": Specifies a compatible version or versions.
You can find available extensions at Extensions (Page 7804).

Example: "environment"

"environment": {
 "prerequisites": {
 "renderingspace": {
 "defaultwidth": 450,
 "defaultheight": 300,
 "unit": "px"
 }
 }
 "extensions": {
 "HMI": {
 "mandatory": true,
 "version": "~1.0.0"
 }
 }
}

"metadata" sector
The following optional information can be stored, for example, as metadata:
• Author
• Keywords

Runtime Openness
20.2 Programming Custom Web Controls

System Manual, 11/2022 7795

• Description of the Custom Web Control
• Homepage
Metadata are not relevant for the execution of the Custom Web Control. User-defined
metadata can be supplemented.

Example: "metadata"

"metadata":{
 "author": "Siemens",
 "keywords": [
 "Gauge",
 "GaugeMeter"
]
 "description": "Display tag value with a gauge."
"homepage": "https://www.siemens.com"
"company": "Siemens AG"
}

"contracts" sector
The "contracts" sector contains methods, events and properties as interface for use in the TIA
Portal.
The Custom Web Control has access to methods, events and properties and therefore
receives tag changes from the PLC, for example.
Data types can be used or referenced in this sector.

Note
A data type can be assigned with the keyword "type" below an element or it can be referenced
with "$ref". The two keywords cannot be used at the same time.
You can find additional information at Data types and references in the manifest (Page 7800).

Note the following restrictions when naming methods, events, properties, arguments and
parameters:
• Only alphanumeric characters of the ASCII character set and "_" are permitted.
• The names must not start with a number.
• The entry is case-sensitive.
• Special characters are not permitted.

Methods
"methods" contain a list of methods used by the Custom Web Control.

Runtime Openness
20.2 Programming Custom Web Controls

7796 System Manual, 11/2022

Methods of a Custom Web Control can be used in Unified Scripting to transfer information
from the Unified server to the custom web control in the client. Methods are always executed
asynchronously.
For example, a method to flash the passed zone can be called as follows:
Screen.Items('GaugeMeter_1').BlinkZone(2)
The following optional elements can be assigned to a method:
• "return": Specifies or references a data type.

An additional "promise" field of the type "Boolean" returns whether the method is actually
running asynchronously and is not fulfilled in a defined time period. The default value is
"false". If the value is "true", the type specified with "return" is valid for the fulfilled value of the
Promise object.
You can react as follows to the Promise object:
 "const result = await Screen.Items('GaugeMeter_1').BlinkZone(2)
HMIRuntime.Trace(result); "

• "parameters": Each parameter specifies or references a data type.
• "description": Specifies the description of the method.

Example: "methods"

"methods": {
 "BlinkZone": {
 "parameters": {
 "zoneIndex": {
 "type": "number"
 }
 },
 "description": "Let the given zone blink."
 }
}

Events
"events" contain a list of events used by the Custom Web Control.
Events are triggered by the Custom Web Control itself at any time. Events can be used in
Unified Scripting to transfer information from the client to the server. They can be found in
the engineering system under "Properties > Events".
An event can be assigned the following optional elements:
• "arguments": Contains arguments. Each argument specifies or references a data type.
• "description": Specifies the description of the event.

Runtime Openness
20.2 Programming Custom Web Controls

System Manual, 11/2022 7797

Example: "events"

"events": {
 "ZoneChanged": {
 "arguments": {
 "zoneIndex": {
 "type": "number"
 }
 },
 "description": "Whenever the zone is changed, this event is raised and
gives you the new zone index."
 }
}

Properties
"properties" contain a list of properties used by the Custom Web Control.
Properties can be found in the engineering system under "Properties > Properties >
Interfaces".
The following elements can be assigned to a property:
• "type" or "$ref": A data type must be specified or referenced.

Note
Only individual elements can be connected
When using complex data types, such as an array or user data types, only the elements of the
bottom level can be linked to a property.

• "default" (optional): Specifies the default value of the property.
• "description" (optional): Specifies the description of the property.

Runtime Openness
20.2 Programming Custom Web Controls

7798 System Manual, 11/2022

Example: "properties"

"properties": {
 "GaugeValue": {
 "type": "number",
 "default": 20
 "description": "This property represents the value of the gauge."
 },
 "MinValue": {
 "type": "number",
 "default": 0
 "description": "This property represents the minimum value of the gauge."
 },
 "MaxValue": {
 "type": "number",
 "default": 50
 "description": "This property represents the maximum value of the gauge."
 },
}

"types" sector
The "types" sector contains local definitions for user-defined data types, objects and arrays.
A data type that is defined in this sector can only be referenced within this manifest. External
data types from a JSON Schema can be referenced under "contract" or "types".

Example: "types"

"types": {
 "Color": {
 "$id": "http://tia.siemens.com/wincc-unified/types/s/color",
 "type": "number"
 },
 "AlignmentPart": {
 "type": "object",
 "properties": {
 "Vertical": {
 "$ref":"#/control/types/VerticalAlignment"
 }
 }
 },
 "VerticalAlignment": {
 "type": "string",
 "enum": [
 "Top",
 "Center",
 "Bottom"
],
 "default": "Center"
 }
}

Runtime Openness
20.2 Programming Custom Web Controls

System Manual, 11/2022 7799

See also
Creating the ZIP file (Page 7819)

20.2.3.3 Data types and references in the manifest

Data types
Data types in the "contracts" sector of the manifest can be specified or referenced as follows:
• As basic data type

The following basic data types can be used without reference:
– Boolean: Can accept "true" or "false".
– Number: Any representable number, for example:

Integer: 1; -3
Float: 5.21
Numbers in exponential format: 2.99792458e8

– String: Any text
– Null: Displays the zero object and is used as return type for methods without return value.

• As local reference to the "types" sector of the manifest
Arrays, objects or user-defined data types can be defined in the "types" sector.

• As external reference to a JSON Schema that is offered by Siemens, for example:
– "$id": "http://tia.siemens.com/wincc-unified/types/s/color"
– "$id": "http://tia.siemens.com/wincc-unified/types/c/font"

User-defined data types are, for example, structured data types or basic data types with
restrictions.
The following type restrictions are permitted in the manifest:

Type restriction Description
enum Specifies the permitted String values of an enumeration.
items Specifies the permitted data type of an array.
minItems Specifies the minimum number of elements in an array.
maxItems Specifies the maximum number of elements in an array.
minimum Specifies the minimum value of a number of the data type "number" or "inte‐

ger".
maximum Specifies the maximum value of a number of the data type "number" or "in‐

teger".
pattern Specifies the permitted pattern as regular expression that defines the content

of a string.
minLength Specifies the minimum length of a string.
maxLength Specifies the maximum length of a string.
required Specifies a list of mandatory properties within a structure.

Runtime Openness
20.2 Programming Custom Web Controls

7800 System Manual, 11/2022

Identification of a data type
When you define a data type in the "types" sector, you can specify a Uniform Resource Identifier
(URI) or a fragment in the optional "$id" field. This information uniquely identifies the data type
across multiple manifests. Within the manifest in which a data type is defined, this data type can
also be referenced by using its ID.

Note
Absolute URIs are preferred over fragments.

Referencing a data type
Data types in the "contracts" or "types" sector can be referenced with "$ref".
You have the following options for referencing data types:
• As reference to the "types" sector without using the "$id"

Example: "BackColor":{"$ref": "#/control/types/color"}
• As reference to the "types" sector using the "$id"

Example: "BackColor":{"$ref": "http://tia.siemens.com/wincc-unified/
types/s/color"}

20.2.4 Interaction between control and container via the API
A single API object ("WebCC" object) is used to enable communication between the Custom Web
Control and the Unified Runtime server.
The following requirements apply to this API object:
1. All functionalities that the Control needs for independent executability must be available on

the client side.
2. The API object must be created and extended with the specific functionalities that the control

provides through the manifest file.

The API object
The API object represents the interface through which the methods, events and properties of the
Control are called or received from the framework.
For the initialization of the Custom Web Control, the properties, methods and events of the
manifest file must be declared.

Runtime Openness
20.2 Programming Custom Web Controls

System Manual, 11/2022 7801

You can link the properties, methods and events to your code.

Note
Declaration
The name must match the name of the manifest file.
Note the following restrictions:
• Only alphanumeric characters of the ASCII character set and "_" are permitted.
• The names must not start with a number.
• The entry is case-sensitive.
• Special characters are not permitted.

Example: API object

{
 //Methods
 methods: {
 BlinkZone: function(zoneIndex){
 //code
 }
 },
 //Events
 events: ['ZoneChanged', 'Event2'],
 //Properties
 properties:{
 GaugeValue: " ",
 Property2: " "
 }
}

Integrating the "WebCC" object
Integrating the API object makes the corresponding namespaces available to the Custom Web
Control.
As a requirement, a JavaScript file (webcc.min.js) must be integrated in "index.html", which
performs a handshake between the control and the container.

CAUTION
Do not change "webcc.min.js" file
The "webcc.min.js" file is used to establish the connection and must not be changed.

Runtime Openness
20.2 Programming Custom Web Controls

7802 System Manual, 11/2022

The "index.html" file is the entry point of your web page.

Note
Download "webcc.min.js"
You can find the file "webcc.min.js" in the application example: SIOS entry (https://
support.industry.siemens.com/cs/ww/en/view/109779176)

The "webcc.min.js" file contains the connection data to WinCC Unified.
After the connection setup, you can access the data that is defined in the "manifest.json" file
from any position in your application.

Example: Integrating the "WebCC" object

<!doctype html>
<head>
 <script>…</script>
 <!-- Web Custom Control Facade -->
 <script type= text/JavaScript src='webcc.min.js'>
</head>

Initialization of the "WebCC" object
The API object must have been successfully initialized before the Control can be created. To
check this, the tag "result" of the parameter "function(result)" is queried. It is used as an indicator
and must supply "true" to continue. As an additional parameter, extensions can be called during
initialization.

Example: Initialization of the "WebCC" object

WebCC.start(function(result) {
 if (result) {
 //startup succeeded
 //add subscriptions
 } else {
 //startup failed
 }
 },
controlInit.ControlApi,
 ['HMI'] };

See also
Extensions (Page 7804)

Runtime Openness
20.2 Programming Custom Web Controls

System Manual, 11/2022 7803

https://support.industry.siemens.com/cs/ww/en/view/109779176
https://support.industry.siemens.com/cs/ww/en/view/109779176

20.2.5 Extensions

20.2.5.1 Basics of extensions
With extensions you can use additional functions in Custom Web Controls.
The following extensions can be used:
• HMI extension:

– Obejct "WebCC.Extensions.HMI.Properties" provides access to all properties of the
container that contains the Custom Web Control.

– Object "WebCC.Extensions.HMI.Style" allows access to the active style
– The "DatePrecise", "Big", and "Variant" prototypes as extensions to the integrated

JavaScript objects.
• Formatting extension: The "WebCC.Extensions.Formatting.Output" object enables the

formatting of text.
• Dialog extension: Allows access to a dialog window.
When using extensions, follow these steps:
1. You integrate the extensions used in the manifest in the "environment" sector.

This permits the environment to check whether the respective extension exists.
2. You call the extensions used during the initialization of the "WebCC" object.
3. Call the extension as property of the "WebCC" object at any point in your Custom Web Control.

Integration in the manifest
Integrate extensions in the "environment" sector of the manifest as follows:

"environment": {
 "extensions": {
 "HMI": {
 "mandatory": true,
 "version": "~1.0.0"
 }
 "Formatting": {
 "mandatory": true,
 "version": "~1.0.0"
 }
 "Dialogues": {
 "mandatory": true,
 "version": "~1.0.0"
 }
 }
}

Runtime Openness
20.2 Programming Custom Web Controls

7804 System Manual, 11/2022

Initialization of the "WebCC" object

WebCC.start(function(result) {
 if (result) {
 //startup succeeded
 //add subscriptions
 } else {
 //startup failed
 }
 },
controlInit.ControlApi,
 ['HMI', 'Formatting', 'Dialogues'] };

See also
Dialog extension (Page 7810)
Formatting extension (Page 7809)
HMI extension (Page 7805)

20.2.5.2 HMI extension

"Properties" object
The "WebCC.Extensions.HMI.Properties" object provides access to all properties of the container
that contains the Custom Web Control. The properties are placed after the "Properties" object.
You can find all available properties in the WinCC Unified object model under AUTOHOTSPOT.
The extension enables the "WebCC.onPropertyChanged.subscribe" event that can be used to
register for changes of properties.

"Style" object
The "WebCC.Extensions.HMI.Style" object has the "Name" property that contains the name of
the active style.
The "WebCC.Extensions.HMI.Style.onChanged" event is initiated when the style is changed in
runtime. The event contains the name of the style that is being activated.

Example

WebCC.Extensions.HMI.Style.onChanged.subscribe(function(currentStyle) {
console.log(currentStyle);
});

Runtime Openness
20.2 Programming Custom Web Controls

System Manual, 11/2022 7805

Data types

Introduction
Prototypes are provided as extension of the installed JavaScript objects; they are used in the HMI
environment.
The prototypes are available in the global namespace.

"DatePrecise" prototype
The JavaScript object "Date" provides millisecond accuracy, while Unified Runtime works with
nanosecond accuracy.
The "DatePrecise" object is used to work with nanosecond accuracy. The "DatePrecise" object
does not contain any information about time zones and uses coordinated universal time
(UTC) for calculations.

Constructors and methods
Constructor Description
DatePrecise() Creates a "DatePrecise" object for the current date and

time.
DatePrecise(year, month[, day[,
hours[, minutes[, seconds[,
milliseconds[, microseconds[,
nanoseconds]]]]]]])

Creates a "DatePrecise" object. This constructor corre‐
sponds to the JavaScript "Date" constructor, but enables
additional parameters for microseconds and nanosec‐
onds.
The parameters "year" and "month" are mandatory.

DatePrecise(DomHighResTimeStamp) Creates a "DatePrecise" object that accepts the "Dom‐
HighResTimeStamp" object of a browser with a millisec‐
ond value since January 1, 1970, and an accuracy in the
microsecond range.

DatePrecise([seconds,
nanoseconds])

Creates a "DatePrecise" object that accepts the second
value since January 1, 1970, and an additional nanosec‐
ond offset.

DatePrecise(date) Creates a "DatePrecise" object from a passed JavaScript
"Date" object. The nanoseconds are "0".

DatePrecise(precise) Creates a "DatePrecise" object from a passed "DatePre‐
cise" object.

Method Description
getMicroseconds() Returns the number of microseconds (from 0 to 999).
getNanoseconds() Returns the number of nanoseconds (from 0 to 999).
getTime() Returns the number of milliseconds since January 1,

1970. This method corresponds to the method of the
JavaScript "Date" object.

Runtime Openness
20.2 Programming Custom Web Controls

7806 System Manual, 11/2022

Method Description
getHrTime() Returns a precise date as an array with two numerical

values. The first value represents the seconds elapsed
since January 1, 1970. The second value is the offset in
nanoseconds.

setMicroseconds(microseconds) Sets the microseconds (from 0 to 999).
setNanoseconds(nanoseconds) Sets the nanoseconds (from 0 to 999).
setTime(DomHighResTimeStamp) Determines the date over a specific number of millisec‐

onds, starting from January 1, 1970.
This method corresponds to the method of the Java‐
Script "Date" object.

setHrTime([seconds, nanoseconds]) Specifies a precise date as array with two numerical val‐
ues. The first value represents the seconds elapsed since
January 1, 1970. The second value is the offset in nano‐
seconds.

toDate() Returns a "Date" object. The nanosecond accuracy is lost.
valueOf() Returns a "DomHighResTimeStamp" object. The nano‐

second accuracy is lost. The object is compatible with the
JavaScript "Date" object.

Examples

var ms = window.DatePrecise([1593862222, 545410000]).getTime();
var date = window.DatePrecise(Date.UTC(1960, 11, 24, 18, 4, 5, 10));
var jsdate = date.toDate();

"Big" prototype
The "Big" prototype enables processing of large numbers with any desired precision. You can
find the library and application examples at "Big.js".

Constructors and methods

Note
The "n" parameter can take on the following data types:
• JavaScript data type "Number"
• "Big" data type
• "String" data type that contains a numerical value

Constructor Description
Big(n) Creates a number of the data type "Big" with the value "n".

Runtime Openness
20.2 Programming Custom Web Controls

System Manual, 11/2022 7807

Method Description
abs() Returns the absolute value of the "Big" number.
cmp(n) Compares two "Big" numbers. The following return values occur:

• If the "Big" number is greater than "n", 1 is returned.
• If the "Big" numbers are the same, 0 is returned.
• If the "Big" number is less than "n", -1 is returned.

div(n) Returns the value of the "Big" number divided by "n".
eq(n) Returns a Boolean value that indicates whether the "Big" number and "n" are

the same.
gt(n) Returns a Boolean value that indicates whether the "Big" number is greater

than "n".
gte(n) Returns a Boolean value that indicates whether the "Big" number is greater

than or equal to "n".
lt(n) Returns a Boolean value that indicates whether the "Big" number is less than

"n".
lte(n) Returns a Boolean value that indicates whether the "Big" number is less than

or equal to "n".
minus(n) Returns the value of the "Big" number minus "n".
mod(n) Returns the value of the "Big" number using modulo of value "n".
plus(n) Returns the value of the "Big" number plus "n".
pow(exp) Returns the value of the "Big" number to the power of "exp". The value for "exp"

must be an integer between -1e+6 and +1e+6.
round([dp [, rm]]) Returns the rounded value of the "Big" number to a maximum of "dp". The

value for "dp" must be an integer between -1e+6 and +1e+6. The default value
for the parameter "dp" is 20.
The "rm" parameter supports the following modes:
• 0: Rounded to zero.
• 1: Rounded to the nearest neighbor. If the distance is equal, the figures are

rounded up.
• 2: Rounded to the nearest neighbor. If the distance is the same, it is roun‐

ded to the straight neighbor.
• 3: Rounded up.

sqrt() Returns the square root of the "Big" number.
times(n) Returns the value of the "Big" number multiplied by "n".
toExponential([dp
])

Returns a string that represents the value of the "Big" number type in expo‐
nential notation. The "dp" parameter defines the number of decimal places
displayed. The value for "dp" must be an integer between 0 and 1e+6. The
default value for the parameter "dp" is 20.

toFixed([dp]) Returns a string that represents the value of the "Big" number type in standard
notation. The "dp" parameter defines the number of decimal places displayed.
The value for "dp" must be an integer between 0 and 1e+6. The default value
for the parameter "dp" is 20.

Runtime Openness
20.2 Programming Custom Web Controls

7808 System Manual, 11/2022

Method Description
toPrecise(sd) Returns a string that represents the number of significant digits of the "Big"

number. The "sd" parameter defines the number of decimal places displayed.
The value for "sd" must be between 1 and 1e+6. The default value for the
parameter "sd" is 20.
If the "Big" number has more than the number of significant digits defined by
"sd", the return value is rounded to the number of significant digits defined by
'sd'. The rounding mode is 1.

toString() Returns a string that represents the value of the "Big" number. Under the
following conditions, the value is displayed in exponential notation:
• The positive exponent is greater than or equal to 21.
• The negative exponent is less than or equal to -7.

"Variant" prototype
Basic data types can be mapped with the "Variant" prototype.

Constructors and methods
Constructor Description
Variant(value, type) Creates a "Variant" object using any value and data

type.

Methods Description
typeOf() Returns a numerical value that identifies the ele‐

mentary data type.
valueOf() Returns the value that was converted into the cor‐

responding data types "Number", "Boolean",
"String", "DataPrecise" or "Big".
"Time" and "DateTime" are returned as values of the
type "DatePrecise".
Numerical values that cannot be mapped without
loss of accuracy are returned as values of the type
"Big".

Examples
var variant = window.Variant(47111, 0x5);
var big = variant.valueOf();

20.2.5.3 Formatting extension
The "WebCC.Extensions.Formatting.Output" object enables the creation and formatting of text
according to the parameters passed.

Runtime Openness
20.2 Programming Custom Web Controls

System Manual, 11/2022 7809

Methods
Methods Description
format(value, pattern [, lcid]) Takes any number or random text and formats it

according to the parameters passed.
The language can optionally be specified via the
LCID. When the LCID is not transferred, the current
language is used.

Example

var floatValue = WebCC.Extensions.Formatting.Output.format(42.1111111, '{F2}', 'de-DE');
//Ergebnis: 42,11
var hexValue = WebCC.Extensions.Formatting.Output.format(45054, '{H,2}');
//Ergebnis: AF FE
var dateValue = WebCC.Extensions.Formatting.Output.format(1609745948315, '{D,@yyyy/MM/dd}
{T,@HH:mm:ss}');
//Ergebnis: 2021/01/04 07:39:08

See also
Basics of extensions (Page 7804)

20.2.5.4 Dialog extension
The dialog extension enables you to open a dialog window that is not limited by the display
range of the Control. A URL is made available to the user interface; it is displayed in the dialog.
A JSON data model is also made available. It is transferred to the dialog and returned as soon as
the dialog is closed.
The use of dialogs is asynchronous.

"WebCC.Extensions.Dialogues" object
The "WebCC.Extensions.Dialogues" object allows for the creation and use of one or more dialogs.

Runtime Openness
20.2 Programming Custom Web Controls

7810 System Manual, 11/2022

The object has the following methods and properties:

Methods Description
create(id, view, data, [options]) Creates a "Dialog" object.

The "id" parameter is transferred as a string. The
"view" parameter is transferred as a string that con‐
tains a relative URL. The "data" parameter contains
random data this is transferred to the dialog. The
optional "options" parameter contains a JSON ob‐
ject with the following options:
• Information on the size of the dialog box: "min‐

width", "maxwidth", "minheight", "maxheight"
and "unit".

• A Boolean value "resizable" that defines wheth‐
er the size of the dialog box can be changed.

• A "caption" string that is displayed in the title of
the dialog.

list() Returns a string array that contains the IDs of cur‐
rently created and opened dialog boxes.
As soon as the dialog box is closed, the ID is no
longer displayed in the string array.

get(id) Returns a "Dialog" object with the transferred ID. If
the ID does not exist, ZERO is returned.

Property Description
self The "self" property contains the "Dialog" object.

"WebCC.Extensions.Dialog" prototype
The "WebCC.Extensions.Dialog" prototype enables the interaction with the dialog instance and
offers the following methods and events:

Methods Description
open(width, height) Creates a dialog and returns a "promise" property. If

the dialog is already open, only the "promise" prop‐
erty is returned.
The dialog is displayed in the current screen with
the specified width and height.

close([result]) Closes a dialog and fulfills the associated "promise"
property.
The "result" parameter is optional and can be of any
type. The "result" parameter normally contains the
data that were transferred when the dialog was
opened and were subsequently changed.

cancel([reason]) Closes a dialog. The "promise" property is rejected.
The "reason" parameter is optional and can be of
any type.

Runtime Openness
20.2 Programming Custom Web Controls

System Manual, 11/2022 7811

Property Description
id The "id" property contains the ID of the dialog. The

ID is available as a string.
promise The "promise" property contains information about

the status of a dialog.
data The "data" property contains the data that were

transferred when a dialog was created.

Example: Opening a dialog

var dialog = WebCC.Extensions.Dialogues.create('id_1','input.html',
'myData',
{ caption: 'GaugeValue', resizeable: false });
if (dialog) {
 // open(width, height) returns promise
 dialog.open(250, 150).then(
 function success(data) {
 // close called
 WebCC.Properties.GaugeValue = data;
 updateValue(data);
 }).catch(
 function (reason) {
 // cancel called
 });
}

Example: Access to data within a dialog

var self = WebCC.Extensions.Dialogues.self;
if (self) {
 // initialize dialog data
 var inputValue = self.data;
 // 'myData'
}

Example: Closing a dialog with fulfilled promise

var self = WebCC.Extensions.Dialogues.self;
if (self) {
 // close([result]) fullfill dialog promise
 self.close(data);
}

Runtime Openness
20.2 Programming Custom Web Controls

7812 System Manual, 11/2022

Example: Closing a dialog in case of cancellation

var self = WebCC.Extensions.Dialogues.self;
if (self) {
 // cancel([reason]) reject dialog promise
 self.cancel();
}

See also
Basics of extensions (Page 7804)

20.2.6 Revision of a graphical user interface

Introduction
User interfaces can be used as Custom Web Control by using the framework. This document is
intended to describe the process by means of an example and uses a provided user interface.
With this user interface, a slider controls the movement of a pointer.
The user interface can be found in the application example at the following address: SIOS
entry (https://support.industry.siemens.com/cs/ww/en/view/109779176)
The code examples shown in this section can be found in the "index.html" file of the
application example.

Conversion of the color coding
The TIA Portal and the manifest file use different color coding. The manifest file is not able to work
with hexadecimal values, but only accepts decimal values. The author of the manifest file must
convert the hexadecimal values as defined in the TIA Portal into decimal values.
To use a web page as a Custom Web Control, the encoding must be converted.

Example: Color coding

function toColor(num) {
 num >>>= 0;
 var b = num & 0xFF,
 g = (num & 0xFF00) >>> 8,
 r = (num & 0xFF0000) >>> 16,
 a = ((num & 0xFF000000) >>> 24) / 255;
 return 'rgba(' + [r, g, b, a].join(',') + ')';
}

Runtime Openness
20.2 Programming Custom Web Controls

System Manual, 11/2022 7813

https://support.industry.siemens.com/cs/ww/en/view/109779176

Defining the default values of properties
Default properties are defined in the TIA Portal and for Runtime projects. These default
properties define, among other things, font size, line thickness and value ranges. Default
properties are obtained in Runtime during initialization of the setup.

Example: Defining default values

var defaultProperties = {
 GaugeValue: 20,
 GaugeBackColor: 4294967295,
 Alignment:
 {
 Vertical: 'Center'
 },
 LineThickness: 20,
 FontSize: 16,
 MinValue: 0,
 MaxValue: 50,
 DivisionCount: 5,
 Zones: [
 { Min: 0, Max: 30, StrokeColor: 4281381677 },
 { Min: 30, Max: 40, StrokeColor: 4294958336 },
 { Min: 40, Max: 50, StrokeColor: 4293934654 }
]
}

Initialization of the Custom Web Control
To be able to function as a Custom Web Control within WinCC, the "WebCC" object must be
initialized. After that the Control can be created.
Initialization takes place in "index.html".

Runtime Openness
20.2 Programming Custom Web Controls

7814 System Manual, 11/2022

Initialization of the Custom Web Control

WebCC.start(
 // callback function; occurs when the connection is done or failed.
 // "result" is a boolean defining if the connection was successfull or
not.
 function (result) {
 if (result) {
 console.log('connected successfully');
 initializeGauge();
 // Set current values
 setProperty({ key: 'GaugeBackColor', value:
WebCC.Properties.GaugeBackColor });
 setProperty({ key: 'Alignment', value: WebCC.Properties.Alignment });
 setProperty({ key: 'LineThickness', value:
WebCC.Properties.LineThickness });
 setProperty({ key: 'DivisionCount', value:
WebCC.Properties.DivisionCount });
 setProperty({ key: 'FontSize', value: WebCC.Properties.FontSize });
 setProperty({ key: 'Zones', value: WebCC.Properties.Zones });
 setProperty({ key: 'MaxValue', value: WebCC.Properties.MaxValue });
 setProperty({ key: 'MinValue', value: WebCC.Properties.MinValue });
 setProperty({ key: 'GaugeValue', value:
WebCC.Properties.GaugeValue });
 // Subscribe for value changes
 WebCC.onPropertyChanged.subscribe(setProperty);
 }
 else {
 console.log('connection failed');
 }
 },
 // contract (see also manifest.json)
 {
 // Methods
 methods: {
 },
 // Events
 events: {
 },
 //Properties
 //////////
 properties: defaultProperties
 },
 // placeholder to include additional Unified dependencies (not used in
this example) [],
 // connection timeout
 10000
);

Operating the Control via WinCC
To operate the Custom Web Control via WinCC, some functions need to be implemented. The
functions show an example of the use of the API object. The sequences of the functions are
specific to this example, so they are not explained in detail.

Runtime Openness
20.2 Programming Custom Web Controls

System Manual, 11/2022 7815

Example: Operating the Control

// Updates the value shown by the gauge whenever it is changed, e.g. by a
WinCC Unified tag or script.
// This function will be called by "setProperty" whenever the contract
property GaugeValue is changed.
// - value: number that contains the new value to be shown in the gauge
meter. function updateValue(value) {
 gauge.set(value);
 const newZoneIndex = gauge.options.staticZones.indexOf(
 gauge.options.staticZones.
 filter(zone => zone.min <= gauge.value && gauge.value <=
zone.max).pop()
);
 if (newZoneIndex != currentZoneIndex) {
 currentZoneIndex = newZoneIndex;
 WebCC.Events.fire('ZoneChanged', newZoneIndex);
 }
}

// Updates the alignment of the whole gauge inside the control. You can
place it at the top, middle or bottom.
// This function will be called by "setProperty" whenever the user changes
the alignment.
// - alignment: object that contains an enum property "Vertical" that can be
either "Top", "Center" or "Bottom".
function updateAlignment(alignment) {
 const item = document.getElementById('gauge');
 let vertVal = '0';
 let topVal = '0';
 switch (alignment.Vertical) {
 case 'Top':
 break;
 case 'Center':
 topVal = '50%';
 vertVal = '-50%';
 break;
 case 'Bottom':
 topVal = 'inherit';
 break;
 }
 item.style.top = topVal;
 item.style.transform = 'translate(0,' + vertVal + ')';
}

// Updates the labels of the gauge. All labels have to be updated whenever
the DivisionCount, MaxValue, MinValue or FontSize is changed.
// This function will be called by "setProperty" whenever one of those
contract properties change.
function updateLabels() {
 const labels = new Array(.Properties.DivisionCount).fill(0).map(
 (x, i) => (i + 1) * (WebCC.Properties.MaxValue -
WebCC.Properties.MinValue/WebCC.Properties.DivisionCount +
WebCC.Properties.MinValue

Runtime Openness
20.2 Programming Custom Web Controls

7816 System Manual, 11/2022

);
 labels.unshift(WebCC.Properties.MinValue);
 gauge.setOptions({
 staticLabels: {
 font: WebCC.Properties.FontSize + 'px "Siemens Sans"',
 labels: labels
 }
 });
}

// Paints the given zones inside the gauge. This function will be called by
"setProperty" whenever a zone is changed or
// zones will be added or removed.
// - zones: array of new zones to be painted
function updateZones(zones) {
 gauge.setOptions({
 staticZones: zones.map(item => {
 return { strokeStyle: toColor(item.StrokeColor), min: item.Min, max:
item.Max };
 })
 });
}

// This is a callback function that is called every time a contract property
changes. The function forwards the change to
// other functions so you can see the new value in the control.
// - data: object containing a key and a value property. The "key" contains
the name of the changed contract property and the "value" contains the new
value.
function setProperty(data) {
 // console.log('onPropertyChanged ' + data.key); // uncomment this line
to check whether data is incoming in the browser console from WinCC Unified
 switch (data.key) {
 case 'GaugeValue':
 updateValue(data.value);
 break;
 case 'GaugeBackColor':
 document.body.style.backgroundColor = toColor(data.value);
 break;
 case 'Alignment':
 updateAlignment(data.value);
 break;
 case 'LineThickness':
 gauge.setOptions({ lineWidth: data.value / 100 });
 break;
 case 'FontSize':
 updateLabels();
 break;
 case 'MinValue':
 gauge.setMinValue(data.value);
 updateLabels();
 break;
 case 'MaxValue':
 gauge.maxValue = data.value;
 updateLabels();

Runtime Openness
20.2 Programming Custom Web Controls

System Manual, 11/2022 7817

 break;
 case 'DivisionCount':
 updateLabels();
 break;
 case 'Zones':
 updateZones(data.value);
 break;
 }
}

// Let the given zone blink by descreasing and increasing the alpha value of
the zone color from 0% to 100% and back to original value 2 times.
// - zoneIndex: integer as index of the zone that will blink.
function blinkZone(zoneIndex) {
 const currentZone = gauge.options.staticZones[zoneIndex];
 const rgba = currentZone.strokeStyle.split(',');
 const originalRgba = Number(rgba[3].replace(')', ''));
 let currentRgba = originalRgba;
 let state = 0; // 0: falling, 1: raising, 2: falling again
 let currentRound = 0;
 const timerId = setInterval(() => {
 switch (state) {
 case 0:
 currentRgba -= 0.2;
 if (currentRgba <= 0) {
 currentRgba = 0;
 state = 1;
 }
 break;
 case 1:
 currentRgba += 0.2;
 if (currentRgba >= 1) {
 currentRgba = 1;
 state = 2;
 }
 break;
 case 2:
 currentRgba -= 0.2;
 if (currentRgba < originalRgba) {
 currentRound++;
 if (currentRound >= 2) {
 clearInterval(timerId);
 return;
 } else {
 currentRgba = originalRgba;
 state = 0;
 }
 }
 break;
 } rgba[3] = currentRgba.toFixed(1);
 currentZone.strokeStyle = rgba.join(',') + ')';
 gauge.setOptions(gauge.options.staticZones);
 }, 50);
}

Runtime Openness
20.2 Programming Custom Web Controls

7818 System Manual, 11/2022

20.2.7 Creating the ZIP file
To use the Custom Web Control, the hierarchy of folders and files must be compressed. The data
must be available in compressed form. To create the file, you can use any application that can
generate a valid file with the extension ".zip".
The name of the ZIP file must match the GUID, for example, "{551BF148-2F0D-4293-8E10-
C9C3A1A6A073}.zip".

Note
GUID generation
For example, a GUID can be created as follows:
• In Visual Studio under "Tools > Create GUID"
• Under https://www.guidgenerator.com/ (https://www.guidgenerator.com/)

20.2.8 Restrictions

Unified Comfort Panel
When you make the Custom Web Control available on a Unified Comfort Panel, note the
following special features:
• The Custom Web Control is executed locally without being hosted in a web server.
• Links outside of the Custom Web Control are not supported, e.g. http links.
• The retrieval of external data or adding of contents is not supported, for example, via the

"XMLHttpRequest" object or "fetch".
• Debugging of the Custom Web Control on the Unified Comfort Panel is not supported.

Tips for an efficient procedure
If you want to test whether your Custom Web Control can be executed on the Unified Comfort Panel, run the file "Index.html" locally on a PC
without hosting the Custom Web Control in its own web server.

Rounding error
The JavaScript data type "Number" is a 64-bit floating point data type. For integer values, a
secure display of up to 15 digits is possible before rounding errors occur.
Tags that use "DInt" or "Date", for example, can therefore lead to rounding errors when used
in Custom Web Controls.
To avoid rounding errors, use the prototypes "Big" and "DatePrecise".

Logic operation of complex data types
When using complex types, such as an array or user data types, only the elements of the bottom
level can be linked to a property.

Runtime Openness
20.2 Programming Custom Web Controls

System Manual, 11/2022 7819

https://www.guidgenerator.com/

Access of devices outside of the network
When the custom web control is accessed by a device outside of the network, it may not be
possible to display or operate the Custom Web Control. In this case, access to the Custom Web
Control depends on the network and security settings.

20.2.9 Installing and using Custom Web Controls
Custom Web Controls are freely-programmable and serve as a specific solution that goes beyond
the functionalities of the toolbox provided. You can use Custom Web Controls like any other tool
in the screens.

Requirement
• A project has been created.
• An HMI device has been created.
• A screen has been created.

Installing Custom Web Control
To install Custom Web Controls for a TIA Portal project, follow these steps:
1. Open the directory of your project.
2. Open the "UserFiles" subfolder.
3. Create a folder with the name "CustomControls".
4. Store the created program as *.zip file in the "CustomControls" folder.
5. In the TIA Portal, click on the "Update" button in the "Toolbox" > "My Controls" task card.

The Custom Web Control is displayed in the "Toolbox" task card of the "Screens" editor.

Using Custom Web Control
1. Drag the Custom Web Control from the "Toolbox" > "My Controls" task card onto the screen.
2. Select the Control.
3. In the Inspector window, go to "Properties > Events".
4. Configure system functions or scripts for the events used in the Control.
5. In the Inspector window, go to "Properties > Properties > Interface".
6. Assign static values for the interface properties or dynamize the interface properties

according your requirements.
When dynamizing with tags, note that the Control's access to the tags is "Read only" by
default.
If you want the Control to change the values of the tags, remove the check mark.

7. Compile and load the Runtime project.

Runtime Openness
20.2 Programming Custom Web Controls

7820 System Manual, 11/2022

20.2.10 Updating Custom Web Controls

Introduction
After changing the properties for custom web controls or configuring new events, you can
update custom web controls.

Updating custom web controls
If you have changed the properties for custom web controls or configured new events, you can
update the custom web controls as follows:
1. Click the Update icon in the "My Controls" palette.
2. Custom web controls are updated.
3. A message appears in the Inspector window:

– "The object '{0}' was updated successfully".
– "The object '{0}' was updated successfully, but some properties have been lost due to

incompatible changes to the interface."
– "All objects are up to date". You have not changed any properties or alarms.

Note
The placeholder '{0}' stands for a unique and complete path on which the custom web control
is stored.

Restrictions for the update
If you have opened a project as read-only, the update is not possible.
The following changes to the custom web control prevent the automatic update:
• Renaming properties or events
• Deleting properties or events
• Changing the data type

Runtime Openness
20.2 Programming Custom Web Controls

System Manual, 11/2022 7821

20.3 Runtime API

20.3.1 Basics

Task of the runtime API
Runtime API describes the open programming interface of WinCC Unified PC RT. With the
Runtime API, you can use the internal functions of WinCC in your own applications. With an ODK
client, you can read out all the objects of the runtime system and change their runtime
attributes, for example, for tags or alarms.
The ODK is optimized for the processing of mass data when special objects are used, for
example the reading or writing of 1000 tags in one pass.

Note
Siemens is not liable for and does guarantee the compatibility of the data and information
transported via the API interfaces with third-party software.
We expressly point out that improper use of the API interface can result in data loss or production
downtimes.

Requirement
• Programming environment is installed, e.g. MS Visual Studio
• WinCC Runtime Unified Scada RT is installed.

Application of C++ and .NET
The Runtime API makes all the interfaces available for the access to the runtime system in the
languages C++ and C#.

Name-based addressing of objects
The objects of the Runtime system are addressed by their name and the full name path.
The name path of objects consists of several components and has the following syntax:
[SystemName::][ObjectName][.ElementPath][:SubElementName]
• SystemName

Name of a Runtime systems (optional)
If the "SystemName" is omitted, the object is searched for on the local runtime system.

• ObjectName
Name of a tag or a structure

Runtime Openness
20.3 Runtime API

7822 System Manual, 11/2022

• ElementPath
Element of a structure

• SubElementName
Subelement of an object, e.g. alarm or logging tag of a tag.

Examples for access to different object types:
• Simple tag: MyRTSystem::MySimpleTag
• Structure tag: MyRTSystem::Motor.Temperature
• Alarm of a simple tag: MyDiscreteTag:MyDiscreteAlarm
• Alarm of a structure tag: Motor.Temperature:MyAnalogAlarm
• Logging tag: MySimpleTag:MyLoggingTag
• Connection: MyRTSystem::MyHmiConnection

20.3.2 Creating a minimal ODK client

Introduction
An ODK client uses the ODK API to access objects of the WinCC Unified system.
In the following, an ODK client is created for use of the Runtime API in the C# and C++
languages.
The programs only contain the most needed components of a simple client. They form the
framework for all the subsequent runtime code examples in this documentation. See also
section Code samples (Page 7832).

Note
You will find additional programming examples on the installation medium in the file
"Support\Openness\Siemens.Unified.Openness_SDK_<version number>.zip" in the
subdirectory"ODK\samples".

Requirement
• Development environment is installed.
• The ODK SDK was extracted locally on your computer. You will find the ODK SDK in the

"Support\Openness" folder on the WinCC Unified DVD in the file
"Siemens.Unified.Openness_SDK_<version number>.zip".
Note
If you create a C++ ODK client, you must set the system tag "PATH=C:\Program
Files\Siemens\Automation\WinCCUnified\bin" and perform a restart.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7823

Procedure C# client
1. Create a new .NET project in the development environment.
2. Carry out the following project settings:

– Target framework is .NET 4.6.
– ODK client is "Release" version for the x64 platform.

3. Create references to the following assembly: Siemens.Runtime.HmiUnified.Interfaces.dll
(Copy Local = False)
You will find the assembly in the local folder to which you have extracted Openness_SDK.zip,
in the subfolder "ODK\bin".

4. Create a program with the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

using Siemens.Runtime.HmiUnified;

namespace Siemens.Runtime.HmiUnified.TestClient
{
 class Program
 {

 static void Main(string[] args)
 {
 try
 {
 using (IRuntime runtime = Runtime.Connect())
 {
 //do runtime operations
 }
 }
 catch (Exception ex)
 {
 System.Console.WriteLine(string.Format("Exception occured
{0}", ex.Message));
 }
 }
 }
}

Procedure C++ client
1. Create a new C++ project in the development environment.
2. Set the following include directories for required headers:

– <Local folder to which you have extracted the ODK SDK>\ODK\include\ODK
– <Local folder to which you have extracted the ODK SDK>\ODK\include\ODK\include\CF

Runtime Openness
20.3 Runtime API

7824 System Manual, 11/2022

3. Create references to the following libraries in "<Local folder to which you have extracted the
ODK SDK>\ODK\include\ODK\lib":
– HmiUnifiedRt.lib
– CfCore.lib

4. Create a reference to the following directory as "Additional Library Directory":
– <Local folder to which you have extracted the ODK SDK>\ODK\lib

5. Create a program with the following code:

#include <CfTL>

#include "IOdkRt.h"
#include "IOdkRtTag.h"
#include "IOdkRtTagLogging.h"
#include "IOdkRtAlarm.h"
#include "IOdkRtAlarmLogging.h"
#include "IOdkRtCpm.h"
#include "IOdkRtConnection.h"
#include "IOdkRtUmc.h"

#include <stdio.h>
#include <tchar.h>
#include <iostream>

using namespace Siemens::Runtime::HmiUnified;
using namespace Siemens::Runtime::HmiUnified::Common;
using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 CCfString projectName = L"";
 IRuntimePtr pRuntime;

 if(CF_SUCCEEDED(Connect(projectName, &pRuntime)
 {
 // do runtime operations here
 }
 return 0;
}

Result
The program core of an ODK client is created.
You can complete the program with the fragments from the following code examples for
ODK-API.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7825

20.3.3 Authorizing users

Introduction
Before the ODK client can be used, all users that run the ODK client must be authorized.

Note
Only authenticated users can access the data of a project over the Runtime API with an ODK
client.

Requirement
WinCC Unified RT setup has been carried out completely on the Runtime computer.

Procedure
Add the user who corresponds to the logged-on Windows user on the Runtime computer to the
Windows user group "SIMATIC HMI" in the Windows user management.

Result
When the ODK client is connected to the Runtime system, the logged-on Windows user is
authenticated via the user management of the Runtime computer.
If one of the checks fails, the ODK client does not establish a connection (error:
"Authentication error" or "User has no access right").

20.3.4 Startup and shutdown behavior of an ODK application

20.3.4.1 Autostart of an ODK application
You have the possibility of starting ODK applications automatically on start-up of the device.

Requirement
Runtime is configured in such a way that it automatically started on start-up of the device
without a user having to be logged on. (Default setting)

Runtime Openness
20.3 Runtime API

7826 System Manual, 11/2022

Procedure
In the Windows Task Scheduler, create a task which starts the ODK application on start-up of the
device.

Note
User Service Mode
To use the ODK application in Service Mode, configure the security options in the dialog "Create
task" in such a way that a user does not have to be logged on for starting the task.
Under Windows 10 activate the option "Run whether user is logged on or not".

Result
The "Connect" method of IRuntime wait for a maximum of ten minutes after the start of the ODK
application until the Runtime has started up.

20.3.4.2 Shutdown behavior
You have the option to be notified by the system on shutdown of Runtime, for example, to start
cleanup work on the client.
For this purpose, subscribe the system tag "@SystemActivationState" for monitoring.
"@SystemActivationState" signals whether Runtime is active and can have the following
values:
• System startup in progress (1)
• System started (activated) (2)
• System stopped (3)
• System shutdown in progress (4)
• System restart in progress (5)
Value 4 is the trigger to start cleanup work.

Note
Interface calls on shutdown
Do not call any functions of the ODK interfaces while the system is shut down.

20.3.4.3 Restart behavior

Tags subscribed for monitoring
After Runtime is restarted, you can continue to use the existing subscriptions.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7827

20.3.5 Syntax of the alarm filter
With an AlarmSubscription, a filter can be transferred so that not all active alarms of the alarm
system are notified, but only those which match the filter. The filter syntax is based on SQL
syntax. However, only the WHERE instruction is relevant. The keyword "WHERE" must be omitted.

Operators
The following operators can be used in the filter string of the alarm filter:

Operator Description Example
= equal to Name = 'Recipe246'
<> not equal Value <> 0.0
> greater than Value > 25.0
< less than Value < 75.0
>= greater than or equal to Value >= 25.0
<= less than or equal to Value <= 75.0
OR, || logical OR State = 1 OR State = 3
AND, && logical AND Value >= 25.0 AND Value

<= 75.0
BETWEEN within a range Value BETWEEN 25.0 AND

75.0
NOT BETWEEN outside a range Value NOT BETWEEN 25.0

AND 75.0
LIKE string corresponds to the string string Name LIKE 'Motor*'
NOT LIKE string does not correspond to the string string Name NOT LIKE 'Valve*'
IN (v1, v2, …) corresponds to one or more values State IN (1, 4, 7)
NOT IN (v1, v2, …) does not correspond to one or more values State NOT IN (0, 2, 3,

5, 6)
(…) brackets expressions Value <= 75.0 AND

(State = 1 OR State = 3)

Precedence of the operators:

Rank Operators
1 • Relational operators:

=, <>, >, <, >=, <=
• LIKE
• IN
• BETWEEN

2 NOT
3 AND, &&
4 OR, ||

Runtime Openness
20.3 Runtime API

7828 System Manual, 11/2022

Permitted wildcards:

Wildcard Description Example
* Replaces 0 to more characters Name LIKE ‘Motor*’

Reference = <1.*.15>1
? Replaces 1 character Name = ‘Recipe?’

See also
IAlarmSubscription (Page 7895)
IPlantObjectAlarmSubscription (Page 7937)
IPlantObjectAlarmSubscription (Page 8129)
IAlarmSubscription (Page 8077)

20.3.6 Locale IDs of the supported languages
At the AlarmSubscription, there is a Language property which defines the language of the alarm
filter and the language of the alarm texts. In this case, a locale ID from the table below must be
entered.
The following table contains the Microsoft locale IDs of the languages supported in the TIA
Portal:

Language Country/Region LocaIe ID
Afrikaans South Africa 1078
Albanian Albania 1052
Armenian Armenia 1067
Azerbaijani (Cyrillic) Azerbaijan 2092
Azerbaijani (Latin) Azerbaijan 1068
Basque Basque country 1069
Belarusian Belarus 1059
Bulgarian Bulgaria 1026
Chinese Chinese (Hong Kong S.A.R.) 3076
Chinese Chinese (Macao S.A.R.) 5124
Chinese Chinese (Singapore) 4100
Chinese Chinese (Taiwan) 1028
Chinese Chinese (PR China) 2052
Danish Denmark 1030
German Germany 1031
German Liechtenstein 5127
German Luxembourg 4103
German Austria 3079
German Switzerland 2055
English Australia 3081

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7829

Language Country/Region LocaIe ID
English Belize 10249
English United Kingdom 2057
English Ireland 6153
English Jamaica 8201
English Canada 4105
English Caribbean 9225
English New Zealand 5129
English Philippines 13321
English Zimbabwe 12297
English South Africa 7177
English Trinidad and Tobago 11273
English USA 1033
Estonian Estonia 1061
Faroese Faroe Islands 1080
Finnish Finland 1035
French Belgium 2060
French France 1036
French Canada 3084
French Luxembourg 5132
French Monaco 6156
French Switzerland 4108
Galician Galicia 1110
Georgian Georgia 1079
Greek Greece 1032
Hindi India 1081
Indonesian Indonesia 1057
Icelandic Iceland 1039
Italian Italy 1040
Italian Switzerland 2064
Japanese Japan 1041
Kazakh Kazakhstan 1087
Catalan Catalonia 1027
Kyrgyz Kyrgyzstan 1088
Konkani India 1111
Korean Korea 1042
Croatian Croatia 1050
Latvian Latvia 1062
Malay Brunei Darussalam 2110
Malay Malaysia 1086
Macedonian Macedonia, FYRM 1071
Mongolian (Cyrillic) Mongolia 1104
Dutch Belgium 2067
Dutch Netherlands 1043

Runtime Openness
20.3 Runtime API

7830 System Manual, 11/2022

Language Country/Region LocaIe ID
Norwegian (Bokmal) Norway 1044
Norwegian (Nynorsk) Norway 2068
Polish Poland 1045
Portuguese Brazil 1046
Portuguese Portugal 2070
Romanian Romania 1048
Russian Russia 1049
Sanskrit India 1103
Swedish Finland 2077
Swedish Sweden 1053
Serbian (Cyrillic) Serbia and Montenegro (former‐

ly)
3098

Serbian (Latin) Serbia and Montenegro (former‐
ly)

2074

Slovakian Slovakia 1051
Slovenian Slovenia 1060
Spanish Argentina 11274
Spanish Bolivia 16394
Spanish Chile 13322
Spanish Costa Rica 5130
Spanish Dominican Republic 7178
Spanish Ecuador 12298
Spanish El Salvador 17418
Spanish Guatemala 4106
Spanish Honduras 18442
Spanish Columbia 9226
Spanish Mexico 2058
Spanish Nicaragua 19466
Spanish Panama 6154
Spanish Paraguay 15370
Spanish Peru 10250
Spanish Puerto Rico 20490
Spanish Spain 3082
Spanish Uruguay 14346
Spanish Venezuela 8202
Swahili Kenya 1089
Tatar Russia 1092
Thai Thailand 1054
Czech Czech Republic 1029
Turkish Turkey 1055
Ukrainian Ukraine 1058
Hungarian Hungary 1038
Uzbek (Cyrillic) Uzbekistan 2115

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7831

Language Country/Region LocaIe ID
Uzbek (Latin) Uzbekistan 1091
Vietnamese Vietnam 1066

20.3.7 Code samples
ODK is supplied with code samples for using the Runtime interfaces. Open the local folder to
which you have extracted the file "Support\Openness\Siemens.Unified.Openness_SDK_<version
number>.zip".
You will find the code samples in the subfolder "\ODK\samples".

Using the code samples in the help
To reduce the complexity of the code samples and enable better readability, the examples in the
help deliberately exclude troubleshooting and freeing up memory.
The application programmer must add these elements during programming.

Constructs affected under C#
• Exception handling with try…catch…finally

try
{
 …
}
catch (Exception ex)
{
 …
}
finally
{
}

• Freeing up memory with Dispose or using (…)
See also section Releasing objects (Page 7833).

For a description of how to evaluate ODK-specific errors, see section Error-handling interfaces
(Page 7841).

Constructs affected under C++
• Methods for outputting error information

For an example of implementation of the printErrorInformation method, see
section IErrorInfo (Page 8001).

• Freeing up allocated memory
• Null pointer check: if (pObject != nullptr) {…}
• Error code check: if (CF_SUCCEEDED(errorCode) {…}
For a description of how to evaluate ODK-specific errors, see section Error codes of the C++
interfaces (Page 7986).

Runtime Openness
20.3 Runtime API

7832 System Manual, 11/2022

20.3.8 Description of the C# interfaces

20.3.8.1 Releasing objects

Creating objects with GetObject
In .NET-ODK, you create the objects with the "GetObject" method, for example:
ITagSet odkTagSet = runtime.GetObject<ITagSet>();
Memory is created internally for the object. In .NET, the Garbage Collector automatically
releases the memory when an object is no longer needed. However, the memory is released
at an indefinite time.

Note
The indefinite execution of the Garbage Collector may cause the memory to increase and appear
as if it is not being released again. The real reason for this is that the Garbage Collector has not
yet started!

Releasing objects created with GetObject
The ODK client should release the memory of objects created using the "GetObject" method as
soon as the object is no longer needed.
The following cases must be distinguished here:
• Using the objects by synchronous ODK methods
• Using the objects by asynchronous ODK methods

Example when using synchronous ODK methods
When releasing objects used by synchronous ODK methods, use the keyword using:

Copy code
try
{
 using (ITag myTag = runtime.GetObject<ITag>("Tag1"))
 {
 IProcessValue value = myTag.Read(HmiReadType.Cache); // Reads synchronous
 }
}
catch (OdkException ex)
{
 System.Console.WriteLine(string.Format("OdkException occured {0}", ex.Message));
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7833

Example when using asynchronous ODK methods
When you release objects that are used by asynchronous ODK methods, you can use the
"Dispose" method. This can be called in the callback method:

Copy code
ITagSet odkTagSet = runtime.GetObject<ITagSet>();
odkTagSet.Add(new string[] { "Tag1", "Tag2" });

// Assign callback function
odkTagSet.OnReadResult += odkTagSet_OnReadResult;
odkTagSet.ReadAsync();// Reads asynchronous

void odkTagSet_OnReadResult(ITagSet sender, IList<IProcessValue> values, bool completed)
{
 try
 {
 …
 }
 catch (OdkException ex)
 {
 …
 }
 finally
 {
 if (null != sender)
 {
 sender.Dispose(); // Release memory
 }
 }
}

20.3.8.2 Interfaces of the Runtime environment

IRuntime

Description
The C# interface "IRuntime" specifies properties and methods for handling the Runtime system.
The "Connect" method of the "Runtime" class is called to establish the connection to the Runtime
system.
The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Members "Runtime"
The class implements the following method:

Runtime Openness
20.3 Runtime API

7834 System Manual, 11/2022

"Connect" method
Checks whether valid licenses are available for the products installed on the Runtime device:
• Yes: Connects ODK application and Runtime project.
• No: Supplies an error code. Use the interfaces for error handling to query the error

description (license missing, expired, etc.).
The method is overloaded:
• Connect to locally running Runtime project. Logged-on Windows user is authenticated.

IRuntime Connect()
• Connect to locally running Runtime project. The logged-on Windows user is not

authenticated; instead, the user is specified as a parameter.
Note
Can only be used in a future version!
IRuntime Connect(string userName, string password)
– user

User name
– password

Password
• Connect to a specific Runtime project. Logged-on Windows user is authenticated.

Note
Can only be used in a future version!
IRuntime Connect(string value)
value
Name of a Runtime project

• Connect to a specific Runtime project. The logged-on Windows user is not authenticated;
instead, the user is specified as a parameter.
Note
Can only be used in a future version!
IRuntime Connect(string value, string userName, string password)
– value

Name of a Runtime project
– user

User name
– password

Password

"Dispose" method
Enable Runtime system with all resources.
void Dispose()

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7835

Members "IRuntime"
The following properties and methods are specified in the interface:

"ProjectName" property
Name of the current project

Note
Can only be used in a future version!

string ProjectName { get; }

"UserName" property
Name of the logged-on user
string UserName { get; }

"Product" property
Return version information and installed options of the Runtime system as "IProduct" object.
IProduct Product { get; }

"GetObject" method
Create a new instance of an object type T in a project.
T GetObject<T>(params object[] parameters)
The object type T adopts the following values:
• ITag, ITagSet or ITagSetQCD

Access to tags
• IAlarm, IAlarmSet or IAlarmSubscription

Access to alarm system
• ILoggedTag or ILoggedTagSet

Access to logging tags
• IAlsrmLogging or IAlarmLoggingSubscription

Access to logged alarms
• IUserManagement

Access to user management
• IConnection or IConnectionSet

Access to connections
parameters
Optional: A name or array with names of objects of the respective object type

"GetOption" method
Return an installed option of the Runtime system as "IOption" object using the name.
IOption GetOption(string optionName)

Runtime Openness
20.3 Runtime API

7836 System Manual, 11/2022

optionName
Name of the installed option

Example
Initialize the ODK and establish a connection to the active project of the Runtime system.

Copy code
public static IRuntime runtime = null;

public void Connect()
{
 // Connect to running project
 runtime = Siemens.Runtime.HmiUnified.Runtime.Connect();
}

Initialize an "IProduct" object and output the technical product version of the Runtime system:

public void GetVersionInfo(IRuntime runtime)
{
 IProduct product = runtime.Product;
 IVersionInfo version = product.Version;
 System.Console.WriteLine(string.Format("Product version: {0}.{1}.{2}.{3}",
version.Major, version.Minor, version.ServicePack, version.Update));

 ...
}

Access a tag with the name "Tag1":

public void ReadSingleTagSync()
{
 ITag myTag = runtime.GetObject<ITag>("Tag1");
 //further tag processing
}

See also
IProduct (Page 7837)
IErrorResult (Page 7841)

IProduct

Description
The C# interface "IProduct" specifies properties for handling product information of the Runtime
system.
The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7837

Members
The following properties are specified in the interface:

"Options" property
Return installed options of the Runtime system as a list of "IOption" objects.
IList<IOption> Options { get; }

"Version" property
Return version structure of the Runtime system as "IVersionInfo" object.
IVersionInfo Version { get; }

Example
The version of the "IProduct" object is read out and iterated via the installed "IOption" objects:

Copy code

public void GetVersionInfo(IRuntime runtime)
{
 // Get product version
 IProduct product = runtime.Product;
 IVersionInfo version = product.Version;
 System.Console.WriteLine(string.Format("Product version: {0}.{1}.{2}.{3}",
version.Major, version.Minor, version.ServicePack, version.Update));
 if (product.Options.Count > 0)
 {
 foreach (IOption op in product.Options)
 {
 IVersionInfo opVersion = op.Version;
 // Iterate through options and get version
 System.Console.WriteLine(string.Format("Option name: {0}", op.Name));
 System.Console.WriteLine(string.Format("Option version: {0}.{1}.{2}.{3}",
opVersion.Major, opVersion.Minor, opVersion.ServicePack, opVersion.Update));
 }
 }
}

See also
IRuntime (Page 7834)
IOption (Page 7839)
IVersionInfo (Page 7840)

Runtime Openness
20.3 Runtime API

7838 System Manual, 11/2022

IOption

Description
The C# interface "IOption" specifies properties and methods for handling installed product
options of the Runtime system.
The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Members
The following properties and methods are specified in the interface:

"Name" property
Name of an installed option of the Runtime system
String Name { get; }

"Version" property
Return version structure of an installed option of the Runtime system as "IVersionInfo" object.
IVersionInfo Version { get; }

"GetObject" method
Create new instance of an object type T of the option.
T GetObject<T>(params object[] parameters)
• T

The value defines a specific object type of the option.
• parameters

Optional: A parameter or array with parameters for the object type of the option

Example
Instantiate and use installed options with name "MyOptionName":

Copy code
public void GetOptionObject()
{
 //load option component by name
 IMyOption rtOption = (IMyOption)runtime.GetOption("MyOptionName");
 //create a instance of the option object IMyOptionObject
 IMyOptionObject optionObject = rtOption.GetObject<IMyOptionObject>();
 string strMethod = optionObject.MyMethod();
 string strProperty = optionObject.MyProperty;
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7839

See also
IProduct (Page 7837)
IVersionInfo (Page 7840)

IVersionInfo

Description
The C# interface "IVersionInfo" specifies properties for handling version information of the
Runtime system.

Members
The following properties are specified in the interface:

"Major" property
Main version of the Runtime system or of an installed option
uint16 Major { get; }

"Minor" property
Minor version of the Runtime system or of an installed option
uint16 Minor { get; }

"ServicePack" property
Service pack of the Runtime system or of an installed option
uint16 ServicePack { get; }

"Update" property
Update version of the Runtime system or of an installed option
uint16 Update { get; }

Runtime Openness
20.3 Runtime API

7840 System Manual, 11/2022

Example
Information about the installed "IOption" options of the runtime system is output:

Copy code

public void GetVersionInfo(IRuntime runtime)
{
 // Get product version
 IProduct product = runtime.Product;
 IVersionInfo version = product.Version;
 System.Console.WriteLine(string.Format("Product version: {0}.{1}.{2}.{3}",
version.Major, version.Minor, version.ServicePack, version.Update));
 if (product.Options.Count > 0)
 {
 foreach (IOption op in product.Options)
 {
 IVersionInfo opVersion = op.Version;
 // Iterate through options and get version
 System.Console.WriteLine(string.Format("Option name: {0}", op.Name));
 System.Console.WriteLine(string.Format("Option version: {0}.{1}.{2}.{3}",
opVersion.Major, opVersion.Minor, opVersion.ServicePack, opVersion.Update));
 }
 }
}

See also
IProduct (Page 7837)
IOption (Page 7839)

20.3.8.3 Error-handling interfaces

IErrorResult

Description
The C# interface "IErrorResult" specifies properties of error results in runtime.
The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Members
The following properties are specified in the interface:

"Error" property
Error code of an error
int32 Error { get; }

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7841

"Name" property
Name of the associated object of the data source
string Name { get; }

Example
Error output when writing a TagSet:

Copy code
public void WritePartlyNotExistingTagSetSync()
{
 ITagSet odkTagSet = runtime.GetObject<ITagSet>();
 odkTagSet.Add("Tag1", 1);
 odkTagSet.Add("Tag2", 2);
 odkTagSet.Add("NotExistingTag1", 1);
 odkTagSet.Add("NotExistingTag2", 2);

 IList<IErrorResult> writeResult = odkTagSet.Write();

 foreach (var result in writeResult)
 {
 System.Console.WriteLine(string.Format("Write tag '{0}' failed, error code {1}",
result.Name, result.Error));
 }
}

See also
IRuntime (Page 7834)
IErrorInfo (Page 7842)

IErrorInfo

Description
The C# interface "IErrorInfo" specifies methods and properties for handling error codes.

Members
The following properties and methods are specified in the interface:

"Error" property
Error code of an error
int32 Error { get; }

"GetErrorDescription" method
Output an error description for the error code.

Runtime Openness
20.3 Runtime API

7842 System Manual, 11/2022

string GetErrorDescription(uint32 Error)
Error
Error code that is passed by the ODK client.

See also
IErrorResult (Page 7841)

OdkException

Description
In the case of exceptions, the ODK triggers an OdkException in the .Net environment. The
OdkException can be caught by try-catch blocks and evaluated.
The "OdkException" class inherits all properties and methods of the .NET class "Exception".

Members "OdkException"
The following objects and methods are also implemented in the "OdkException" class for all
properties and methods of the .NET class "Exception".

"OdkException" method
• Trigger exception without alarm.

OdkException()
• Trigger exception with alarm and error description.

OdkException(string message)
message
Description of the error

• Trigger exception with alarm and error description. Trigger additional exception with
reference to triggering exception.
OdkException(string message, Exception innerException)
– message

Description of the error
– innerException

Triggering exception
• Trigger exception with serialized data.

OdkException(SerializationInfo info, StreamingContext context)
– info

Serialized data of the exception
– context

Describes the origin or target of the serialized data.

"ErrorCode" property
Error code of the exception

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7843

UInt32 ErrorCode { get; }

"ErrorSubCategory" property
Subcategory of an error code
UInt32 ErrorSubCategory { get; }

Example
Exception handling using the example of optional components:

Copy code
public void GetOptionObject()
{
 //load option component by name
 IMyOption rtOption = (IMyOption)runtime.GetOption("MyOptionName");
 //create a instance of the option object IMyOptionObject
 IMyOptionObject optionObject = rtOption.GetObject<IMyOptionObject>();
 try
 {
 string strMethod = optionObject.MyMethod();
 string strProperty = optionObject.MyProperty;
 }
 catch (OdkException ex)
 {
 //It is an option error?
 if (ex.ErrorSubCategory == MyOptionConstants.MYOPTION_ERRORCATEGORY)
 {
 //Handle option specific error
 if (ex.ErrorCode == (uint)MyErrorCodes.E_UNKNOWN_NAME)
 {
 //get error description
 string errorDescription = ex.Message;
 }
 }
 }
}

20.3.8.4 Interfaces of the tags

IProcessValue

Description
The C# interface "IProcessValue" specifies properties and methods for values of process tags of
the Runtime system. The "IProcessValue" interface provides values from the result of a read
operation or monitoring.

Members
The following properties are specified in the interface:

Runtime Openness
20.3 Runtime API

7844 System Manual, 11/2022

"Name" property
Name of the tag
string Name { get; }

"Value" property
Value of the tag at the moment of the read operation.
object Value { get; }

"Quality" property
Quality code of the read operation of the tag.
uint32 Quality { get; }

"TimeStamp" property
Time stamp of the last successful read operation of the tag.
DateTime TimeStamp { get; }

"Error" property
Error code of the last read or write operation of the tag.
int32 Error { get; }

Example
Output properties of the "IProcessValue" object that is returned by the ITag.Read method:

Copy code
public void ReadSingleTagSync()
{
 var myTag = runtime.GetObject<ITag>("Tag1");
 var value = myTag.Read(HmiReadType.Cache); // Reads value from Cache
 Console.WriteLine("Name: {0} Timestamp: {1} Value: {2} Quality: {3}", value.Name, value.
TimeStamp, value.Value, value.Quality);
}

See also
ITag (Page 7845)
ITagSet (Page 7848)
ITagSetQCD (Page 7855)

ITag

Description
The C# interface "ITag" specifies properties and methods for handling tags of the Runtime
system.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7845

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.
The methods trigger an exception in the case of an error.

Members
The following properties and methods are specified in the interface:

"Name" property
Name of the tag that is read with the "Read" method.
string Name { get; set; }

"Read" method
Read process value and properties of the tag synchronously from the Runtime system.
IProcessValue Read(HmiReadType type = HmiReadType.Cache)
type
The enumeration "HmiReadType" specifies the origin of the tag value:
• HmiReadType.Cache (default parameter): Reads the tag value from the tag image. If no

subscription exists, the tag is subscribed.
• HmiReadType.Device: Reads the tag value directly from the AS. The tag image is not used.

"Write" method
Write process value of the tag synchronously in the Runtime system.
void Write(
 object value,
 HmiWriteType type = HmiWriteType.NoWait)
• value

Value of the tag
• type

The enumeration "HmiWriteType" specifies whether the method waits for the write operation
to be completed:
– HmiWriteType.NoWait (default parameter): Writes the tag value without waiting.

Errors for the write operation are not detected.
– HmiWriteType.Wait: Waits until the tag value is written in the AS. If an error occurs

during the write operation, an exception is triggered.

Runtime Openness
20.3 Runtime API

7846 System Manual, 11/2022

"WriteQCD" method
Write process value with quality code of the tag synchronously in the Runtime system. The
tag also has a freely definable time stamp. You can use this to acquire past external measured
values, for example.

Note
Reaction to external tags
For external tags, the method only writes the tag value. The QualityCode and time stamp are set
internally by the system.

void Write(
 object value,
 DateTime timeStamp,
 uint32 qualityCode,
 HmiWriteType type = HmiWriteType.NoWait)
• value

Value of the tag
• timeStamp

Time stamp of the tag
• qualityCode

Quality code of the tag
• type

The enumeration "HmiWriteType" specifies whether the method waits for the write operation
to be completed:
– HmiWriteType.NoWait (default parameter): Writes the tag value without waiting.

Errors for the write operation are not detected.
– HmiWriteType.Wait: Waits until the tag value is written in the AS. If an error occurs

during the write operation, an exception is triggered.

"WriteWithOperatorMessage" method
Write process value of the tag synchronously in the runtime system and create operator input
alarm. In addition to the reason, the operator input alarm contains the old and new value,
the user and host names and the unit.
void WriteWithOperatorMessage(
 object value,
 string reason)
• value

Value of the tag
• reason

Reason for the value change for alarm

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7847

Example
Read and write tag synchronously:

public void ReadSingleTagSync()
{
 var myTag = runtime.GetObject<ITag>("Tag1");
 var value = myTag.Read(HmiReadType.Cache); // Reads value from Cache
 Console.WriteLine("Name: {0} Timestamp: {1} Value: {2} Quality: {3}", value.Name, value.
TimeStamp,value.Value, value.Quality);
}

public void WriteSingleTagSync()
{
 var odkTag = runtime.GetObject<ITag>("Tag1");
 var value = 5;
 odkTag.Write(value, HmiWriteType.NoWait); // Writes value without waiting that value h
as been written to PLC
 var pvalue = odkTag.Read(HmiReadType.Cache);
}

See also
IProcessValue (Page 7844)
ITagSet (Page 7848)

ITagSet

Description
The C# interface "ITagSet" specifies properties, methods and events for optimized access to
several tags of the Runtime system.
After initialization of the "ITagSet" object, you can execute read and write access to
multiple tags in one call. Simultaneous access demonstrates better performance and lower
communication load than single access to multiple tags.
The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Runtime Openness
20.3 Runtime API

7848 System Manual, 11/2022

The methods trigger an exception in the case of an error.

Note
You have the option to enumerate via a TagSet and to access a special element via the name. This
is useful if you want to change the value of a tag in the TagSet for a write operation. To write the
values in the process image, a "Write" or "WriteAsync" method must first be called:
MyTagSet.Add("MyTag1", "MyTag2");
MyTagSet["MyTag1"] = 5; // Set value to 5 for write operation
MyTagSet.Write();

Members
The following properties, methods and events are specified in the interface:

"ContextId" property
Identification characteristics of a TagSet. If several TagSets are used to read tags, you can
assign the response to the request via ContextId.
Default value -1: The ContextId is not used.
int32 ContextId { get; set; }

"Count" property
Number of tags of a TagSet list
int32 Count { get; }

"Add" method
Add tag to a TagSet.
Add tag with or without process value to the TagSet:
void Add(ICollection<string> tagNames)
tagNames
List with tag names for TagSet
or
void Add(string tagName, object value = null)
• TagName

Name of the tag for TagSet
• value

New value of the tag, default: No value

"Remove" method
Remove individual tag from a TagSet.
void Remove(string tagName)

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7849

tagName
Name of the tag that is removed from TagSet.

"Clear" method
Remove all tags from a TagSet.
void Clear()

"Read" method
Read process values and properties of all the tags of a TagSet synchronously from the
Runtime system.
IList<IProcessValue> Read(HmiReadType type = HmiReadType.Cache)
type
The enumeration "HmiReadType" specifies the origin of the tag value:
• HmiReadType.Cache (default): Reads the tag values from the tag image. If no subscription

exists, the tag is subscribed.
• HmiReadType.Device: Reads the tag values directly from the automation system. The tag

image is not used.

"ReadAsync" method
Read process values and properties of all the tags of a TagSet asynchronously from the
Runtime system.
void ReadAsync(HmiReadType type = HmiReadType.Cache)
type
The enumeration "HmiReadType" specifies the origin of the tag value:
• HmiReadType.Cache (default): Reads the tag values from the tag image. If no subscription

exists, the tag is subscribed.
• HmiReadType.Device: Reads the tag values directly from the automation system. The tag

image is not used.

"Write" method
Write process values of all tags of a TagSet synchronously in the Runtime system.
IList<IErrorResult> Write(HmiWriteType type = HmiWriteType.NoWait)
type
The enumeration "HmiWriteType" specifies whether the method waits for the write operation
to be completed:
• HmiWriteType.NoWait (default): Writes the tag values without waiting. Errors for the

write operation are not detected.
• HmiWriteType.Wait: Waits until the tag values are written in the automation system. The

associated errors are written.

"WriteAsync" method
Write process values of all tags of a TagSet asynchronously in the Runtime system.

Runtime Openness
20.3 Runtime API

7850 System Manual, 11/2022

The method always has the HmiWriteType.Wait type and waits until the tag value has
been written in the automation system. If an error occurs during the write operation, it is
reported via the AsyncHandler.
void WriteAsync()

"WriteWithOperatorMessage" method
Write process values of all tags of a TagSet synchronously in the Runtime system and create
operator input alarms. In addition to the reason, the operator input alarms contain the old
and new value, the user and host names and the unit.
void WriteWithOperatorMessage(string reason)
reason
Reason for the value change for alarm

"Subscribe" method
Subscribe all tags of a TagSet asynchronously for cyclic monitoring of the process values.

Note
Tags from IO devices with the "Cyclic in operation" acquisition mode
For a tag with the acquisition mode "Cyclic in operation", the value stored in the process image
when Subscribe is called might be outdated. OnAdd therefore only provides the QualityCode
"uncertain". Only value changes made after the Subscribe call provide the current value and the
QualityCode "good".

void Subscribe()

"CancelSubscribe" method
Cancel monitoring of all tags of a TagSet.
void CancelSubscribe()

"OnReadResult" event
After completion of the read operation of the "ReadAsync" method, the event calls an
instance of the "OnReadResultHandler" delegate.
Declares the event and the event handler for asynchronous read operations.
event OnReadResultHandler OnReadResult

"OnWriteResult" event
After completion of the write operation of the "WriteAsync" method, the event calls an
instance of the "OnWriteResultHandler" delegate.
Declares the event and the event handler for asynchronous write operations.
event OnWriteResultHandler OnWriteResult

"OnDataChanged" event
After a process value change of a monitored TagSet, the event calls an instance of the
"OnDataChangedHandler" delegate.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7851

Declares the event and the event handler for process value changes.
event OnDataChangedHandler OnDataChanged

"OnReadResultHandler" delegate
Specifies the signature of the event handling method for the "OnReadResult" event of a
TagSet.
void OnReadResultHandler(
 ITagSet sender,
 IList<IProcessValue> values,
 bool completed)
• sender

The read out "TagSet" object
• values

Event data as a list of "IProcessValue" objects of the read tag
• completed

Status of the asynchronous transfer:
– True: All values of the TagSet are read.
– False: Not all values of the TagSet are read yet.

"OnWriteResultHandler" delegate
Specifies the signature of the event handling method for the "OnWriteResult" event of a
TagSet.
void OnWriteResultHandler(
 ITagSet sender,
 IList<IErrorResult> values,
 bool completed)
• sender

The written "TagSet" object
• values

Error during write operations of tags as "IErrorResult" object
• completed

Status of the asynchronous transfer:
– True: All values of the TagSet are written.
– False: Not all values of the TagSet are written yet.

"OnDataChangedHandler" delegate
Specifies the signature of the event handling method for the "OnDataChanged" event of a
TagSet.

Runtime Openness
20.3 Runtime API

7852 System Manual, 11/2022

void OnDataChangedHandler(
 ITagSet sender,
 IList<IProcessValue> values)
• sender

The monitored "TagSet" object
• values

Event data as a list of "IProcessValue" objects of the changed process values

Example
Read TagSet synchronously and write with change:

Copy code
public void ReadTagSetSync()
{
 var odkTagSet = runtime.GetObject<ITagSet>())
 odkTagSet.Add(new[] { "Tag1", "Tag2" });
 var values = odkTagSet.Read();
 foreach (var value in values)
 {
 Console.WriteLine("Name: {0} Timestamp: {1} Value: {2} Quality: {3}", value.Name,
value.TimeStamp, value.Value, value.Quality);
 // Get Type information
 PrintProcessValue(value);
 }
}

public void WriteTagSetSyncWithChange()
{
 var odkTagSet = runtime.GetObject<ITagSet>();
 odkTagSet.Add(new[] { "Tag1", "Tag2" });
 // Modify the value of a tag in the tagset and write
 odkTagSet["Tag1"] = 5;
 odkTagSet.Write();
}

Define functions for asynchronous write operations and define the monitoring of TagSets.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7853

Monitor events "OnWriteResult" or "OnDataChanged" and call the event handling methods
"odkTagSet_OnWriteComplete" or "odkTag_OnDataChanged" on occurrence:

Copy code

public void WriteTagSetAsync()
{
 var odkTagSet = runtime.GetObject<ITagSet>();
 odkTagSet.Add("Tag1", 1);
 odkTagSet.Add("Tag2", 2);
 // Assign callback function
 odkTagSet.OnWriteResult += OdkTagSet_OnWriteResult;
 odkTagSet.WriteAsync();
 _event.WaitOne();
 _event.Reset();
}

private void OdkTagSet_OnWriteResult(ITagSet sender, IList<IErrorResult> values, bool compl
eted)
{
 foreach (var value in values)
 {
 Console.WriteLine("Error = {0} Name = {1}", value.Error, value.Name);
 }
}

public void SubscribeTagSet()
{
 var odkTagSet = runtime.GetObject<ITagSet>();
 odkTagSet.Add(new[] { "Tag1", "Tag2" });
 // Assign callback function
 odkTagSet.OnDataChanged += OdkTagSet_OnDataChanged;
 odkTagSet.Subscribe();
 _event.WaitOne();
 _event.Reset();
 odkTagSet.CancelSubscribe();
}

public void OdkTagSet_OnDataChanged(ITagSet sender, IList<IProcessValue> pItems)
{
 foreach (var value in pItems)
 Console.WriteLine("Name: {0} Timestamp: {1} Value: {2} Quality: {3}", value.Name, val
ue.TimeStamp, value.Value, value.Quality);
}

See also
IProcessValue (Page 7844)
ITag (Page 7845)

Runtime Openness
20.3 Runtime API

7854 System Manual, 11/2022

ITagSetQCD

Description
The C# interface "ITagSetQCD" specifies properties, methods and events for optimized writing of
several tags of the Runtime system. The tags also have a freely definable time stamp and quality
code. You can use this to acquire past external measured values, for example.

Note
Reaction to external tags
For external tags, the method only writes the tag value. The QualityCode and time stamp are set
internally by the system.

After initialization of the "ITagSetQCD" object, you can have read access to multiple tags in
one call. Simultaneous access demonstrates better performance and lower communication
load than single access to multiple tags.
The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.
The methods trigger an exception in the case of an error.

Note
You have the option to enumerate via a TagSet and to access a special element via the name. This
is useful if you want to change the value of a tag in the TagSet for a write operation. To write the
values in the process image, a "Write" or "WriteAsync" method must first be called:
MyTagSet.Add("MyTag1", "MyTag2");
MyTagSet["MyTag1"] = 5; // Set value to 5 for write operation
MyTagSet.Write();

Members
The following properties, methods and events are specified in the interface:

"ContextId" property
Identification characteristics of a TagSet. If several TagSets are used to read tags, you can
assign the response to the request via ContextId.
Default value -1: The ContextId is not used.
int32 ContextId { get; set; }

"Count" property
Number of tags of a TagSet list
int32 Count { get; }

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7855

"Add" method
Add user-defined tag with process value, quality code and time stamp to the TagSet.
void Add(string tagName, object value, DateTime timeStamp, uint32
qualityCode)
• TagName

Name of the tag for TagSet
• value

New value of the tag
• timeStamp

Time stamp of the tag
• qualityCode

Quality code of the tag

"Remove" method
Remove individual tag from a TagSet.
void Remove(string tagName)
tagName
Name of the tag that is removed from TagSet.

"Clear" method
Remove all tags from a TagSet.
void Clear()

"Write" method
Write process values of all tags of a TagSet synchronously in the Runtime system.
IList<IErrorResult> Write(HmiWriteType type = HmiWriteType.NoWait)
type
The enumeration "HmiWriteType" specifies whether the method waits for the write operation
to be completed:
• HmiWriteType.NoWait (default): Writes the tag values without waiting. Errors for the

write operation are not detected.
• HmiWriteType.Wait: Waits until the tag values are written in the automation system. The

associated errors are written.

"WriteAsync" method
Write process values of all tags of a TagSet asynchronously in the Runtime system.
The method always has the HmiWriteType.Wait type and waits until the tag value has
been written in the automation system. If an error occurs during the write operation, it is
reported via the AsyncHandler.
void WriteAsync()

Runtime Openness
20.3 Runtime API

7856 System Manual, 11/2022

"OnWriteComplete" event
After completion of the write operation of the "WriteAsync" method, the event calls an
instance of the "OnWriteCompleteTagSetQCDHandler" delegate.
Declares the event and the event handler for asynchronous write operations with quality
codes and time stamps.
event OnWriteCompleteTagSetQCDHandler OnWriteComplete

"OnWriteCompleteTagSetQCDHandler" delegate
Specifies the signature of the event handling method for the "OnWriteComplete" event of a
TagSet with quality code and time stamps.
void OnWriteCompleteTagSetQCDHandler(
 ITagSetQCD sender,
 IList<IErrorResult> pItems)
• sender

Source of the event
• pItems

Error during write operations of tag as "IErrorResult" object

Example
Write TagSet with time stamp and quality code synchronously:

Copy code
public void WriteTagSetQCDSync()
{
 var odkTagSet = runtime.GetObject<ITagSetQCD>();
 odkTagSet.Add("Tag1", 1, DateTime.Now, 128);
 odkTagSet.Add("Tag2", 2, DateTime.Now, 128);
 var writeResult = odkTagSet.Write();
}

See also
IProcessValue (Page 7844)
ITagSetQCDItem (Page 7858)

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7857

ITagSetQCDItem

Description
The C# interface "ITagSetQCDItem" specifies properties for user-defined values of tags in a
TagSetQCD. You can use this to acquire past external measured values, for example.

Note
Reaction to external tags
For external tags, only the tag value is set. The QualityCode and time stamp are set internally by
the system.

The objects "ITagSetQCDItem" are not used by the "ITagSetQCD" object and can also be edited
with the methods of the "ITagSetQCD" interface.

Members
The following properties are specified in the interface:

"Name" property
Name of the tag
string Name { get; set; }

"Value" property
Tag value
object Value { get; set; }

"Quality" property
Quality code of the tag
int32 Quality { get; set; }

"TimeStamp" property
Time stamp of the tag
DateTime TimeStamp { get; set; }

See also
ITagSetQCD (Page 7855)

Runtime Openness
20.3 Runtime API

7858 System Manual, 11/2022

ILoggedTagValue

Description
The C# interface "ILoggedTagValue" specifies the properties that a logged process value of a
logging tag has in the logging system.
An "ILoggedTagValue" instance is a pure data object. The instance encapsulates all properties
of the logged process value. It represents a historical process value.

Members
The following properties are specified in the interface:

"Name" property
Name of the logging tag
string Name { get; set; }

"Value" property
The logged process value
object Value { get; set; }

"Quality" property
Quality code of the process value
int16 Quality { get; set; }
If the "ILoggedTagValue" instance has been added to the log by calling the "Write" method,
"Quality" has the value "GOOD" (sub-status: "Unspecific", extended sub-status: "Manual
input"). The "Source time" marker is set to "1".

"TimeStamp" property
Time stamp of the process value
DateTime TimeStamp { get; set; }

"Error" property
Error code of the process value
uint32 Error { get; }

"Flags" property
Context information from the read operation for the process value
HmiTagLoggingValueFlags Flags { get; set; }
The "HmiTagLoggingValueFlags" enumeration contains the following bit-by-bit-coded values:
• 0: Extra

There are still additional values at the time of the process value.
• 2: Calculated

Process value is calculated.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7859

• 16: Bounding
Process value is a limit value.

• 32: NoData
No additional information available

• 64: FirstStored
Process value is the first value stored in the logging system.

• 128: LastStored
Process value is the last value stored in the logging system.

See also
ILoggedTag (Page 7860)
ILoggedTagSet (Page 7861)

ILoggedTag

Description
The C# interface "ILoggedTag" specifies properties and methods for the handling of logging tags
of a logging system. A logging tag is represented by an "ILoggedTag" instance. The information
on the logged process values of the logging tag is stored in "ILoggedTagValue" instances.
The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Members
The following properties and methods are specified in the interface:

"Name" property
Name of the logging tag
string Name { get; set; }

"Read" method
Synchronous read operation.
The method returns a list of the "ILoggedTagValue" instances of the logging tag whose time
stamps are in the time period defined by the arguments.
IList<ILoggedTagValue> Read(DateTime begin, DateTime end, bool
boundingValue)
• begin

Start date of the time period
• end

End date of the time period
• boundingValue

True, to additionally return high and low limits.

Runtime Openness
20.3 Runtime API

7860 System Manual, 11/2022

"Write" method
Synchronous read operation.
The method manually writes an "ILoggedTagValue" instance to the logging system. "Quality"
of the instance receives the value "GOOD" (sub-status: "Unspecific", extended sub-status:
"Manual input"). The "Source time" marker is set to "1".
Application example: While the connection to the logging system is interrupted, the process
value of a tag that is being logged changes. The resulting "ILoggedTagValue" instance is
cached. After the connection has been re-established, manually add the instance to the log
by calling "Write".
void Write(ILoggedTagValue tag)
• tag

The "ILoggedTagValue" instance to be logged

Example
Output process values of the logging tag "Tag1:Tag1Logging1" for a time period:

Copy code
public void ReadSingleTag()
{
 var tag = _runtime.GetObject<ILoggedTag>("Tag1:Tag1Logging1";
 var begin = DateTime.UtcNow.AddMinutes(-10);
 var end = DateTime.UtcNow;
 var values = tag.Read(begin, end, true);
 foreach (var v in values)
 {
 var pinfo = _runtime.GetObject<IErrorInfo>();
 Console.WriteLine();
 Console.WriteLine("Name: {0} Error:{1}", v.Name, pinfo.GetErrorDescription(error));
 }
}

See also
ILoggedTagValue (Page 7859)
ILoggedTagSet (Page 7861)

ILoggedTagSet

Description
The C# interface "ILoggedTagSet" specifies properties, methods and events for optimized access
to a collection of "ILoggedTag" instances of a logging system.
After initializing an "ILoggedTagSet" instance, you can read or write multiple "ILoggedTag"
instances in one call. Simultaneous access demonstrates better performance and lower
communication load than single access to multiple logging tags.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7861

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Members
The following properties, methods and events are specified in the interface:

"ContextId" property
Identifier of an "ILoggedTagSet" instance. If several "ILoggedTagSet" instances are used to
read logging tags, you can assign the response to the job via ContextId.
Default value -1: The ContextId is not used.
int32 ContextId { get; set; }

"Count" property
Number of "ILoggedTag" instances of the "ILoggedTagSet" instance
int32 Count { get; }

"Add" method
The method is overloaded:
• Add multiple "ILoggedTag" instances to the "ILoggedTagSet" instance:

void Add(ICollection<string> tagNames)
tagNames
A collection with the names of the "ILoggedTag" instances

• Add a single "ILoggedTag" instance to the "ILoggedTagSet" instance
void Add(string tagName)
tagName
Name of the "ILoggedTag" instance

• Add an "ILoggedTagValue" instance to the "ILoggedTagSet" instance:
void Add(ILoggedTagValue object)
object
Reference of the "ILoggedTagValue" instance

"Remove" method
Remove individual logging tag from the "ILoggedTagSet" instance.
void Remove(string tagName)
tagName
Name of the logging tag that is removed.

"Clear" method
Remove all logging tags from an "ILoggedTagSet" instance.
void Clear()

"Read" method
Synchronous read operation.

Runtime Openness
20.3 Runtime API

7862 System Manual, 11/2022

Reads from all logging tags of the "ILoggedTagSet" instance the logged process values whose
time stamp is in the time period defined by the arguments.
IList<ILoggedTagValue> Read(DateTime begin, DateTime end, bool
boundingValue)
• begin

Start date of the time period
• end

End date of the time period
• boundingValue

True, to additionally return high and low limits.

"ReadAsync" method
Asynchronous read operation.
Reads from all logging tags of the "ILoggedTagSet" instance the logged process values whose
time stamp is in the time period defined by the arguments.
void ReadAsync(DateTime begin, DateTime end, bool boundingValue)
• begin

Start date of the time period
• end

End date of the time period
• boundingValue

True, to additionally return high and low limits.

"Subscribe" method
Subscribe all logging tags of an "ILoggedTagSet" instance asynchronously to update the
process values when they change. When new process values are logged, they can be
processed with the "OnDataChanged" event.
void Subscribe()

"CancelSubscribe" method
Revoke update of process values on change for all logging tags of an "ILoggedTagSet"
instance.
void CancelSubscribe()

"Write" method
Synchronous write operation.
Writes the "ILoggingTagValue" instances added by call of "Add" to the logging system.
"Quality" of the instance receives the value "GOOD" (sub-status: "Unspecific", extended sub-
status: "Manual input"). The "Source time" marker is set to "1".
Errors during write operations are returned in a list with "IErrorResult" instances.
Application example: The connection to the archive server was interrupted. After the
connection has been re-established, add multiple "ILoggedTagValue" instances cached in the
PLC to the archive afterwards by calling "Write".

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7863

 IList<IErrorResult> Write()

"WriteAsync" method
Asynchronous write operation.
Writes the "ILoggingTagValue" instances added by call of "Add" to the logging system.
"Quality" of the instance receives the value "GOOD" (sub-status: "Unspecific", extended sub-
status: "Manual input"). The "Source time" marker is set to "1".
Application example: The connection to the archive server was interrupted. After the
connection has been re-established, add multiple "ILoggedTagValue" instances cached in the
PLC to the archive afterwards by calling "Write".
void WriteAsync()

"OnReadComplete" event
After completion of the read operation of the "ReadAsync" method, the event calls an
instance of the "OnReadCompleteTagSetHandler" delegate.
Declares the event and the event handler for asynchronous read operations.
event OnReadCompleteTagSetHandler OnReadComplete

"OnDataChanged" event
After a process value change of a monitored "ILoggedTagSet" instance, the event calls an
instance of the "OnDataChangedTagSetHandler" delegate.
Declares the event and the event handler for process value changes.
event OnDataChangedTagSetHandler OnDataChanged

"OnReadCompleteTagSetHandler" delegate
Specifies the signature of the event handling method for the "OnReadComplete" event of an
"ILoggedTagSet" instance.
void OnReadCompleteTagSetHandler(
 ILoggedTagSet sender,
 uint32 errorCode,
 IList<ILoggedTagValue> values,
 bool completed)
• sender

Source of the event
• errorCode

Error during asynchronous transfer
• values

Event data as a list of "ILoggedTagValue" instances of the read logging tags
• completed

Status of the asynchronous transfer:
– True: All values of the "ILoggedTagSet" instance are read out.
– False: All values of the "ILoggedTagSet" instance are not yet read out.

Runtime Openness
20.3 Runtime API

7864 System Manual, 11/2022

"OnDataChangedTagSetHandler" delegate
Specifies the signature of the event handling method for the "OnDataChanged" event of an
"ILoggedTagSet" instance.
void OnDataChangedTagSetHandler(
 ILoggedTagSet sender,
 uint32 errorCode,
 IList<ILoggedTagValue> value)
• sender

Source of the event
• errorCode

Error during asynchronous transfer
• value

Event data as a list of "ILoggedTagValue" instances with process values of the changed
logging tags

Example
Read and output process values of logging tags of a specified period in the "ILoggedTagSet"
instance "tagSet" asynchronously:

Copy code
public void ReadTagSetAsync()
{
 try
 {
 var begin = DateTime.UtcNow.AddHours(-1);
 var end = DateTime.UtcNow;
 var tagSet = _runtime.GetObject<ILoggedTagSet>();
 tagSet.OnReadComplete += TagSet_OnReadComplete;
 tagSet.Add("Tag1:Tag1Logging1");
 tagSet.Add("Tag2:Tag2Logging1");
 tagSet.ReadAsync(begin, end, true);
 }
 catch (OdkException ex)
 {
 Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

private void TagSet_OnReadComplete(ILoggedTagSet sender, uint errorCode,
IList<ILoggedTagValue> values, bool completed)
{
 Print(values);
 sender.Dispose();
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7865

Output process values of logging tag "Tag1:Tag1Logging1" in case of change:

Copy code
public void SubscribeTagSet()
{
 try
 {
 ILoggedTagSet tagSet = _runtime.GetObject<ILoggedTagSet>();
 tagSet.Add("Tag1:Tag1Logging1");
 tagSet.OnDataChanged += tagSet_OnDataChanged;
 tagSet.Subscribe();
 }
 catch (OdkException ex)
 {
 Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

void tagSet_OnDataChanged(ILoggedTagSet sender, UInt32 errorCode, IList<ILoggedTagValue>
values)
{
 Print(values);
 sender.Dispose();
}

See also
ILoggedTag (Page 7860)
ILoggedTagValue (Page 7859)

ITags

Description
The C# interface "ITags" defines methods with which you can access configured tags.
The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Members
"Find" method
Supplies a collection with "ITagAttributes" instances of the specified tag.

Runtime Openness
20.3 Runtime API

7866 System Manual, 11/2022

ICollection<ITagAttributes> Find(ICollection<string> SystemNames,
string Filter = null, UInt32 LanguageID = 0)
• SystemNames

Collection of SystemNames on which the tags were configured.
• (Optional) Filter

Filter by name of the tags to restrict the search.
Supports searching with wildcards (*).

• (Optional) LanguageID
Language code ID of filter

"FindAsync" method
For asynchronous searching for "ITagAttributes" instances of the specified tags.
void FindAsync(IList<string> SystemNames, string Filter = null,
UInt32 LanguageID = 0)
• SystemNames

Collection of SystemNames on which the tags were configured.
• (Optional) Filter

Filter by name of the tags to restrict the search.
Supports searching with wildcards (*)

• (Optional) LanguageID
Language code ID of filter

"OnTagAttributesRecieved" event
After completion of the "FindAsync" method, the event calls an instance of the
"OnTagAttributesRead" delegate.
event OnTagAttributesRead OnTagAttributesRecieved;

"OnTagAttributesRead" delegate
Specifies the signature of the event handling method for the "OnTagAttributesReceived"
event of an "ITagAttributes" instance.
public delegate void OnTagAttributesRead(ITags sender,
ICollection<ITagAttributes> tagAttributes, bool completed)
• sender

Source of the event
• tagAttributes

Event data as collection of "ITagAttributes" instances
• completed

Status of the asynchronous transfer:
– True: All tags have been read out.
– False: Not all tags have been read out yet.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7867

ITagAttributes

Description
The C# interface "ITagAttributes" defines properties of a tag.

Member
"Name" property
The name of the tag. Must be unique throughout the device.
string Name { get; }

"DisplayName" property
The display name of the tags
string DisplayName { get; }

"DataType" property
The data type of the tag
HmiDataType DataType { get; }

"Connection" property
The connection of the tag
The memory location of the tag in the controller is accessed via the connection.
string Connection { get; }

"AcquisitionCycle" property
The acquisition cycle of tags
If you configure a tag at an object, the acquisition cycle of the tag is displayed at the object.
string AcquisitionCycle { get; }

"AcquisitionMode" property
The acquisition mode of the tag
HmiAcquisitionMode AcquisitionMode { get; }
The enumeration "HmiAcquisitionMode" can contain the following values:
• Undefined (0)
• CyclicOnUse (1)
• CyclicContinous (2)
• OnDemand (3)
• OnChange (4)

Runtime Openness
20.3 Runtime API

7868 System Manual, 11/2022

"MaxLength" property
The length of the tags.
The length is only available with a string tag. The length is preset for structure tags and
cannot be changed.
UInt32 MaxLength { get; }

"Persistent" property
The persistence of the tags
bool Persistent { get; }

"InitialValue" property
The start value of the tag
After Runtime starts, the tag retains the start value until an operator or the PLC changes the
value.
object InitialValue { get; }

"InitialMaxValue" property
The start value for the event "On exceeding".
object InitialMaxValue { get; }

"InitialMinValue" property
The start value for the event "On falling below"
object InitialMinValue { get; }

"SubstituteValue" property
The substitute value of the tag
If the selected condition occurs, the tag is filled with the substitute value in runtime.
object SubstituteValue { get; }

"SubstituteValueUsage" property
The condition for using the substitute value of the tag
HmiSubstituteValueUsage SubstituteValueUsage { get; }
The enumeration "HmiSubstituteValueUsage" can contain the following values:
• None (0)
• InvalidValue (1)
• RangeViolation (2)
• InvalidValueOrRangeViolation (3)

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7869

ILoggingTags

Description
The C# interface "ILoggingTags" defines methods with which you can access configured logging
tags.
The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Members
"Find" method
Supplies a collection with "ITagAttributes" instances of the specified logging tag.
ICollection<ILoggingTagAttributes> Find(IList<string> SystemNames,
string Filter = null, UInt32 LanguageID = 0)
• SystemNames

Collection of SystemNames on which the tags were configured.
• (Optional) Filter

Filter by name of the tags to restrict the search.
Supports searching with wildcard (*).
Example:
Tag1:* Supplies all logging tags of "Tag1".

• (Optional) LanguageID
Language code ID of filter

"FindAsync" method
For asynchronous searching for "ILoggingTagAttributes" instances.
void FindAsync(IList<string> SystemNames, string Filter = null,
UInt32 LanguageID = 0)
• SystemNames

Collection of SystemNames on which the tags were configured.
• (Optional) Filter

Filter by name of the tags to restrict the search.
Supports searching with wildcard (*).
Example:
Tag1.*: Supplies all logging tags of "Tag1".

• (Optional) LanguageID
Language code ID of filter

"OnLoggingTagAttributesReadReceived" event
After completion of the "FindAsync" method, the event calls an instance of the
"OnLoggingTagAttributesRead" delegate.
event OnLoggingTagAttributesRead OnLoggingTagAttributesReadRecieved;

Runtime Openness
20.3 Runtime API

7870 System Manual, 11/2022

"OnLoggingTagAttributesRead" delegate
Specifies the signature of the event handling method for the "OnLoggingTagAttributesRead"
event of an "ILoggingTags" instance.
public delegate void OnLoggingTagAttributesRead(ILoggingTags
sender, ICollection<ILoggingTagAttributes> tagAttributes, bool
completed);
• sender

Source of the event
• tagAttributes

Event data as collection of "ILoggingTagAttributes" instances
• completed

Status of the asynchronous transfer:
– True: All logging tags are read out.
– False: Not all logging tags are read out yet.

ILoggingTagAttributes

Description
The C# interface "ILoggingTagAttributes" defines properties of a logging tag.

Member

"Name" property
The name of the tag
string Name { get; }

"DisplayName" property
The display name of the tags
string DisplayName { get; }

"DataType" property
The data type of the tag
HmiDataType DataType { get; }

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7871

20.3.8.5 Interfaces of the alarms

IAlarmResult

Description
The C# interface "IAlarmResult" specifies properties for accessing properties of active alarms of
the Runtime system.
An "IAlarmResult" object is a pure data object which maps all properties of an active alarm.

Members
The following properties are specified in the interface:

"InstanceID" property
InstanceID for an alarm with multiple instances
uint32 InstanceID { get; }

"SourceID" property
Source at which the alarm was triggered.
string SourceID { get; }

"Name" property
Name of the alarm
string Name { get; }

"AlarmClassName" property
Name of the alarm class
string AlarmClassName { get; }

"AlarmClassSymbol" property
Symbol of the alarm class
string AlarmClassSymbol { get; }

"AlarmParameterValues" property
Parameter values of the alarm
IReadOnlyList<object> AlarmParameterValues { get; }

"AlarmText1" … "AlarmText9" properties
Additional texts 1-9 of the alarm
string AlarmText1 { get; }
…
string AlarmText9 { get; }

Runtime Openness
20.3 Runtime API

7872 System Manual, 11/2022

"ChangeReason" property
Trigger event for modification of the alarm state
uint16 ChangeReason { get; }

"Connection" property
Connection via which the alarm was triggered
string Connection { get; }

"State" property
Current alarm state
HmiAlarmState State { get; }
The enumeration "HmiAlarmState" can contain the following values:
• Standard (0x00)
• Raised (0x01)
• RaisedCleared (0x02)
• RaisedAcknowledged (0x05)
• RaisedAcknowledgedCleared (0x06)
• RaisedClearedAcknowledged (0x07)
• Removed (0x80)

"StateText" property
Current alarm state as text, for example, "active" or "inactive"
string StateText { get; }

"EventText" property
Text that describes the alarm event.
string EventText { get; }

"InfoText" property
Text that describes an operator instruction for the alarm.
string InfoText { get; }

"TextColor" property
Text color of the alarm state
uint32 TextColor { get; }

"BackColor" property
Background color of the alarm state
uint32 BackColor { get; }

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7873

"Flashing" property
Indicates whether the alarm is flashing.
bool Flashing { get; }

"InvalidFlags" property
Identification of the alarm with invalid data
byte InvalidFlags { get; }

"ModificationTime" property
Time of the last modification to the alarm state
DateTime ModificationTime { get; }

"RaiseTime" property
Time the alarm was triggered
DateTime RaiseTime { get; }

"AcknowledgementTime" property
Time of alarm acknowledgment
DateTime AcknowledgementTime { get; }

"ClearTime" property
Time of alarm reset
DateTime ClearTime { get; }

"ResetTime" property
Time of alarm reset
DateTime ResetTime { get; }

"SuppressionState" property
Status of alarm visibility
byte SuppressionState { get; }

"SystemSeverity" property
Severity of the system error
UInt8 SystemSeverity { get; }

"Priority" property
Relevance for display and sorting of the alarm
UInt8 Priority { get; }

"Origin" property
Origin for display and sorting of the alarm
string Origin { get; }

Runtime Openness
20.3 Runtime API

7874 System Manual, 11/2022

"Area" property
Origin area for display and sorting of the alarm
string Area { get; }

"Value" property
Current process value of the alarm
object Value { get; }

"ValueQuality" property
Quality of the process value of the alarm
uint16 ValueQuality { get; }

"ValueLimit" property
Process value limit of the alarm
object ValueLimit { get; }

"UserName" property
User name of the operator input alarm
string UserName { get; }

"UserResponse" property
Expected or required user response to the alarm
byte UserResponse { get; }

"HostName" property
Name of the host that triggered the alarm.
string HostName { get; }

"Id" property
ID of the alarm that is also used in the display.
Uint32 Id { get; }

"AlarmGroupID" property
ID of the alarm group to which the alarm belongs.
UInt32 AlarmGroupID { get; }

"SourceType" property
Source from which the alarm was generated, for example, tag-based, controller-based or
system-based alarm.
HmiAlarmSourceType SourceType { get; }

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7875

The enumeration "HmiAlarmSourceType" can contain the following values:
• Undefined (0)
• Tag (1)
• Controller (2)
• System (3)
• Alarm (4)

"DeadBand" property
Range of the triggering tag in which no alarms are generated.
object DeadBand { get; }

"LoopInAlarm" property
Function that navigates from the alarm control to its origin.
string LoopInAlarm { get; }

"NotificationReason" property
Reason for the notification
HmiNotificationReason NotificationReason { get; }
The enumeration "HmiNotificationReason" can contain the following values:
• Unknown (0)
• Add (1)

The alarm was added to the filtered result list. The alarm meets the filter criteria that apply to
the monitoring.

• Modify (2)
Properties of the alarm were changed, but the alarm is still part of the filtered result list.

• Remove (3)
The alarm was part of the result list, but it no longer meets the filter criteria due to changes
to its properties.
Note
Changes to the alarms only lead to notifications again when the alarm meets the filter criteria
again. In this case, "NotificationReason" is set to Add.

Runtime Openness
20.3 Runtime API

7876 System Manual, 11/2022

Note
Removing alarm from business logic
The use case of the client determines whether the client ignores notifications via alarms with the
"NotificationReason" Modify or Remove.
For example:
• State-based monitoring: The client wants to show a list of incoming alarms. All notification

reasons are relevant. The client removes an alarm from the list as soon as the notification
reason is Remove.

• Event-based monitoring: The client wants to send an email when an alarm comes in. Only the
notification reason Add is relevant.

Example:
An ODK client begins monitoring with the filter criterion "State" = 1. An alarm is triggered.
Runtime notifies the ODK client of the "NotificationReason" as follows:

Notification‐
Reason

Description

Add • The "State" property is 1. The alarm is active.
Modify • The "State" property has not changed.

• Another property that is not part of the filter criterion has changed, e.g. "Priority".
Remove The "State" property has changed, for example, alarm is inactive.

"Duration" property
Returns the time interval in nanoseconds between triggering of the alarm and its previous
status change.
TimeSpan Duration { get; }

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7877

Example
When alarms become active, a selection of properties of the "IAlarmResult" objects is output:

Runtime Openness
20.3 Runtime API

7878 System Manual, 11/2022

Copy code
public void alarm_OnAlarmHandler(IAlarmSubscription sender, UInt32 nGlobalError, String
systemName, IList<IAlarmResult> value, bool completed)
{
 if (0 == nGlobalError)
 {
 try
 {
 AlarmList = new List<IALarmResult>();
 foreach (var item in value)
 {
 System.Console.WriteLine(string.Format("InstanceID: {0}", item.InstanceID));
 System.Console.WriteLine(string.Format("AcknowledgementTime: {0}",
item.AcknowledgementTime));
 System.Console.WriteLine(string.Format("AlarmClass: {0}",
item.AlarmClassName));
 System.Console.WriteLine(string.Format("AlarmClassSymbol: {0}",
item.AlarmClassSymbol));
 System.Console.WriteLine(string.Format("Id: {0}", item.Id));
 System.Console.WriteLine(string.Format("AlarmParameterValues: {0}",
item.AlarmParameterValues));
 System.Console.WriteLine(string.Format("AlarmText1: {0}", item.AlarmText1));
 System.Console.WriteLine(string.Format("AlarmText9: {0}", item.AlarmText9));
 System.Console.WriteLine(string.Format("Area: {0}", item.Area));
 System.Console.WriteLine(string.Format("BackColor: {0}", item.BackColor));
 System.Console.WriteLine(string.Format("ChangeReason: {0}",
item.ChangeReason));
 System.Console.WriteLine(string.Format("ClearTime: {0}", item.ClearTime));
 System.Console.WriteLine(string.Format("Connection: {0}", item.Connection));
 System.Console.WriteLine(string.Format("DeadBand: {0}", item.DeadBand));
 System.Console.WriteLine ("Duration: {0}", item.Duration);
 System.Console.WriteLine(string.Format("EventText: {0}", item.EventText));
 System.Console.WriteLine(string.Format("InfoText: {0}", item.InfoText));
 System.Console.WriteLine(string.Format("Flashing: {0}", item.Flashing));
 System.Console.WriteLine(string.Format("HostName: {0}", item.HostName));
 System.Console.WriteLine(string.Format("InvalidFlags: {0}",
item.InvalidFlags));
 System.Console.WriteLine(string.Format("LoopInAlarm: {0}",
item.LoopInAlarm));
 System.Console.WriteLine(string.Format("ModificationTime: {0}",
item.ModificationTime));
 System.Console.WriteLine(string.Format("Name: {0}", item.Name));
 System.Console.WriteLine(string.Format("Origin: {0}", item.Origin));
 System.Console.WriteLine(string.Format("Priority: {0}", item.Priority));
 System.Console.WriteLine(string.Format("RaiseTime: {0}", item.RaiseTime));
 System.Console.WriteLine(string.Format("ResetTime: {0}", item.ResetTime));
 System.Console.WriteLine(string.Format("SourceID: {0}", item.SourceID));
 System.Console.WriteLine(string.Format("SourceType: {0}", item.SourceType));
 System.Console.WriteLine(string.Format("State: {0}", item.State));
 System.Console.WriteLine(string.Format("StateText: {0}", item.StateText));
 System.Console.WriteLine(string.Format("SuppressionState: {0}",
item.SuppressionState));
 System.Console.WriteLine(string.Format("SystemSeverity: {0}",
item.SystemSeverity));
 System.Console.WriteLine(string.Format("TextColor: {0}", item.TextColor));
 System.Console.WriteLine(string.Format("User: {0}", item.UserName));

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7879

Copy code
 System.Console.WriteLine(string.Format("UserResponse: {0}",
item.UserResponse));
 System.Console.WriteLine(string.Format("Value: {0}", item.Value));
 System.Console.WriteLine(string.Format("ValueLimit: {0}",
item.ValueQuality));

 AlarmList.Add(item);
 }
 ...
 }
 ...
 }
}

See also
IAlarm (Page 7880)
IAlarmSubscription (Page 7895)

IAlarm

Description
The C# interface "IAlarm" specifies properties and methods for handling active alarms of the
runtime system.
The methods trigger an exception in the case of an error.

Members
The following properties and methods are specified in the interface:

"Error" property
Error code of the alarm
uint32 Error { get; set; }

"Name" property
Name of the active alarm
string Name { get; set; }

"Acknowledge" method
Acknowledge active alarm or instance of an active alarm synchronously.
void Acknowledge(UInt32 instanceId)
• instanceID

– Value "0": Acknowledge all instances of an active alarm.
– Value > "0": Acknowledge instance with this ID.

Runtime Openness
20.3 Runtime API

7880 System Manual, 11/2022

"Disable" method
Deactivate generation of the alarm in the alarm source synchronously.
void Disable()

"Enable" method
Activate generation of the alarm in the alarm source again synchronously.
void Enable()

"Reset" method
Acknowledge the inactive state of an active alarm or an instance of an active alarm
synchronously.
void Reset(UInt32 instanceId)
• instanceID

– Value "0": Acknowledge the inactive state of the active alarm.
– Value > "0": Acknowledge the inactive state of an instance with this ID.

"Shelve" method
Hide active alarm synchronously.
void Shelve()

"Unshelve" method
Display hidden alarm synchronously again.
void Unshelve()

Example
Acknowledge active alarm synchronously:

Copy code
public void AcknowledgeAlarms(IList<IAlarmResult> AlarmList)
{
 if (AlarmList != null)
 {
 foreach (var alarm in AlarmList)
 {
 var alarmAck = runtime.GetObject<IAlarm>(alarm.Name);
 alarmAck.Acknowledge((alarm.InstanceID); // to acknowledge a particular alarm
instance, parameter can be ommitted if all instances of an alarm shall be acknowledged.
 }
 }
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7881

See also
IAlarmResult (Page 7872)
IAlarmSet (Page 7882)
IAlarmSubscription (Page 7895)

IAlarmSet

Description
The C# interface "IAlarmSet" specifies properties, methods and events for optimized access to
several active alarms of the runtime system.
After the initialization of the "IAlarmSet" object, you can execute asynchronous operations
with multiple alarms in one call, e. g. acknowledgment. Simultaneous access demonstrates
better performance and lower communication load than single access to multiple tags.
The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.
The methods trigger an exception in the case of an error.

Members
The following properties, methods and events are only specified in the interface:

Access operator "this[string]"
Accessing an element of an alarm set via the alarm name.
IAlarm this[string alarmName] { get; set; }
alarmName
Name of the alarm that is changed in the AlarmSet.

"Count" property
Number of alarms of an AlarmSet list.
int32 Count { get; }

"Add" method
Add an active alarm or an instance of the alarm to the AlarmSet.
IAlarm Add(string alarmName, UInt32 instanceId)
• alarmName

Name of the alarm that is added to the AlarmSet.
• instanceId

Value = "0": Add all instances of an active alarm.
Value > "0": Add instance with this ID.

"Remove" method
Remove a single alarm or an instance of an alarm from the AlarmSet.

Runtime Openness
20.3 Runtime API

7882 System Manual, 11/2022

void Remove(string alarmName, UInt32 instanceId)
• alarmName

Name of the alarm that is removed from the AlarmSet.
• instanceID

value = "0": Remove all instances of an active alarm
Value > "0": Remove instance with this ID.

"Clear" method
Remove all alarms from an AlarmSet.
void Clear()

"Acknowledge" method
Acknowledge alarms of the AlarmSet asynchronously.
int Acknowledge()

"Disable" method
Deactivate generation of alarms of the AlarmSet in the alarm source asynchronously.
void Disable()

"Enable" method
Activate generation of alarms of the AlarmSet in the alarm source again asynchronously.
void Enable()

"Reset" method
Acknowledge inactive state of the alarms of the AlarmSet asynchronously. This method is
relevant for alarms with the state machine "Alarm with acknowledgment and confirmation".
Other state machines do not require a reset.
void Reset()

"Shelve" method
Hide alarms of the AlarmSet asynchronously.
void Shelve()

"Unshelve" method
Show hidden alarms of the AlarmSet asynchronously again.
void Unshelve()

"OnAcknowledgeHandler" event
When an AlarmSet is acknowledged with the "Acknowledge" and "AckknowledgeInstance"
methods, the event calls an instance of the "OnAlarmSetEventHandler" delegate.
Declares the event and the event handler for the asynchronous acknowledgment of the
alarms.
event OnAlarmSetEventHandler OnAcknowledgeHandler

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7883

"OnResetHandler" event
When the inactive state of the alarms of an AlarmSet is acknowledged with the "Reset"
method, the event calls an instance of the "OnAlarmSetEventHandler" delegate.
Declares the event and the event handler for the asynchronous removal of the alarms.
event OnAlarmSetEventHandler OnResetHandler

"OnDisableHandler" event
When the alarms of an AlarmSet are deactivated with the "Disable" method, the event calls
an instance of the "OnAlarmSetEventHandler" delegate.
Declares the event and the event handler for the asynchronous deactivation of the alarms.
event OnAlarmSetEventHandler OnDisableHandler

"OnEnableHandler" event
When the alarms of an AlarmSet are reactivated with the "Enable" method, the event calls an
instance of the "OnAlarmSetEventHandler" delegate.
Declares the event and the event handler for the asynchronous reactivation of the alarms.
event OnAlarmSetEventHandler OnEnableHandler

"OnShelveHandler" event
When the alarms of an AlarmSet are hidden with the "Shelve" method, the event calls an
instance of the "OnAlarmSetEventHandler" delegate.
Declares the event and the event handler for the asynchronous hiding of the alarms.
event OnAlarmSetEventHandler OnShelveHandler

"OnUnshelveHandler" event
When the alarms of an AlarmSet are displayed again with the "Unshelve" method, the event
calls an instance of the "OnAlarmSetEventHandler" delegate.
Declares the event and the event handler for the new asynchronous displaying of the alarms.
event OnAlarmSetEventHandler OnUnshelveHandler

"OnAlarmSetEventHandler" delegate
Specifies the signature of the event handling method for all events of an AlarmSet.
void OnAlarmSetEventHandler(
 IAlarmSet sender,
 uint32 errorCode,
 IList<IAlarmSetResult> values,
 bool completed)
• sender

Source of the event
• errorCode

Error during asynchronous transfer

Runtime Openness
20.3 Runtime API

7884 System Manual, 11/2022

• values
Event data as a list of "IAlarmSetResult" objects of the processed alarms.

• completed
Status of the asynchronous transfer:
– True: All alarms of the AlarmSet are processed.
– False: Not all alarms of the AlarmSet are processed yet.

Example
Acknowledge active alarms from the "AlarmList" list as an AlarmSet asynchronously:

Copy code
public void AcknowledgeAlarms(IList<IAlarmResult> AlarmList)
{
 if (AlarmList != null)
 {
 if (AlarmList.Count == 1)
 {
 IAlarm alarmAck = runtime.GetObject<IAlarm>(AlarmList[0].Name);
 alarmAck.Acknowledge();
 }
 else
 {
 AlarmAckList = new List<IAlarmResult>();
 IAlarmSet alarmSet = runtime.GetObject<IAlarmSet>(); ;
 foreach (var alarmResult in AlarmList)
 {
 IAlarm pAlarm = null;
 pAlarm = alarmSet.Add(alarmResult.Name);
 AlarmAckList.Add(alarmResult);
 }

 // Assign callback function
 alarmSet.OnAcknowledgeHandler += alarmSet_OnAcknowledgeHandler;
 alarmSet.Acknowledge();
 }
 }
}

public void alarmSet_OnAcknowledgeHandler(IAlarmSet sender, uint errorCode,
IList<IAlarmSetResult> values, bool completed)
{
 foreach (var item in values)
 {
 System.Console.WriteLine(string.Format("InstanceId: {0} Name: {1} SystemName: {2} ",
item.InstanceId, item.Name, item.SystemName));
 }
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7885

Remove active alarms from the "AlarmList" list as an AlarmSet asynchronously:

Copy code
public void ResetAlarms(IList<IAlarmResult> AlarmList)
{
 if (AlarmList != null)
 {
 if (AlarmList.Count == 1)
 {
 IAlarm alarmReset = runtime.GetObject<IAlarm>(AlarmList[0].Name);
 alarmReset.Reset();
 }
 else
 {
 IAlarmSet alarmSet = runtime.GetObject<IAlarmSet>(); ;
 AlarmResetList = new List<IAlarmResult>();
 foreach (var alarmResult in AlarmList)
 {
 IAlarm pAlarm = null;
 pAlarm = alarmSet.Add(alarmResult.Name);
 AlarmResetList.Add(alarmResult);
 }
 alarmSet.OnResetHandler += alarmSet_OnReseteHandler;
 try
 {
 alarmSet.Reset();
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}",
ex.Message));
 }
 }
 }
}

public void alarmSet_OnReseteHandler(IAlarmSet sender, uint errorCode,
IList<IAlarmSetResult> values, bool completed)
{
 try
 {
 foreach (var item in values)
 {
 System.Console.WriteLine(string.Format("InstanceId: {0} Name: {1} SystemName:
{2} ",
 item.InstanceId, item.Name, item.SystemName));
 }
 }
 finally
 {
 if (null != sender)
 {
 sender.Dispose();
 }
 }
}

Runtime Openness
20.3 Runtime API

7886 System Manual, 11/2022

See also
IAlarmSetResult (Page 7887)
IAlarm (Page 7880)

IAlarmSetResult

Description
The C# interface "IAlarmSetResult" specifies properties of alarms in AlarmSets. These properties
are returned by the EventHandler for all events of AlarmSets.

Members
The following properties are specified in the interface:

"SystemName" property
System name of the runtime system of an alarm in the AlarmSet
string SystemName { get; }

"Name" property
Name of an alarm in the AlarmSet
string Name { get; }

"InstanceId" property
InstanceID of an alarm in the AlarmSet
uint32 InstanceId { get; }

"Error" property
Error code of an alarm in the AlarmSet
uint32 Error { get; }

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7887

Example
Read out alarm of an AlarmSet after acknowledgment

Copy code
public void alarmSet_OnAcknowledgeHandler(IAlarmSet sender, uint errorCode,
IList<IAlarmSetResult> values, bool completed)
{
 try
 {
 foreach (var item in values)
 {
 System.Console.WriteLine(string.Format("InstanceId: {0} Name: {1} SystemName:
{2} ",
 item.InstanceId, item.Name, item.SystemName));
 }
 }
 finally
 {
 if (null != sender)
 {
 sender.Dispose();
 }
 }
}

See also
IAlarmSet (Page 7882)

IAlarmTrigger

Description
The C# interface "IAlarmTrigger" specifies methods for triggering alarms.

Members
"CreateSystemAlarm" method
Creates an alarm of the SystemAlarmWithoutClearEvent class with the state machine alarm
without "Inactive with acknowledgment" status.

Runtime Openness
20.3 Runtime API

7888 System Manual, 11/2022

void CreateSystemAlarm(object alarmText, string area, object
alarmParameterValue1, ..., object alarmParameterValue7)
• alarmText:

The alarm text. You have the following options:
– Transfer a text list of the type "ITextList".

The list entries of the text list can directly contain multilingual alarm texts or references
to other text lists with multilingual alarm texts.
Note
Only user-defined text lists
This method processes only user-defined text lists.

– Transfer static string with monolingual text.
• area:

The area of origin of the alarm
• alarmParameterValue1 to alarmParameterValue7:

User-defined comments
The alarm triggers an event with the following event path:
• For multilingual alarm

texts:
@ScriptingSystemEvents.SystemAlarmWithoutClearEvent:SystemAlarmWit
houtClearEvent

• For monolingual alarm
text:
@ScriptingSystemEvents.SystemAlarmWithoutClearEventText:SystemAlar
mWithoutClearEvent

"CreateSystemInformation" method
Creates an alarm of the SystemInformation class with the state machine alarm without
"Inactive without acknowledgment" status.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7889

void CreateSystemInformation(object alarmText, string area, object
alarmParameterValue1, ..., object alarmParameterValue7)
• alarmText:

The alarm text. You have the following options:
– Transfer a text list of the type "ITextList".

The list entries of the text list can directly contain multilingual alarm texts or references
to other text lists with multilingual alarm texts.
Note
Only user-defined text lists
This method processes only user-defined text lists.

– Transfer static string with monolingual text.
• area:

The area of origin of the alarm
• alarmParameterValue1 to alarmParameterValue7:

User-defined comments
The alarm triggers an event with the following event path:
• For multilingual alarm

texts: @ScriptingSystemEvents.SystemInformation:SystemInformation
• For monolingual alarm

text: @ScriptingSystemEvents.SystemInformationText:SystemInformation

"CreateOperatorInputInformation" method
Creates an alarm of the OperatorInputInformation class with the state machine alarm
without "Inactive without acknowledgment" status.
void CreateOperatorInputInformation(object alarmText, string area,
object alarmParameterValue1, ..., object alarmParameterValue7)
• alarmText:

The alarm text. You have the following options:
– Transfer a text list of the type "ITextList".

The list entries of the text list can directly contain multilingual alarm texts or references
to other text lists with multilingual alarm texts.
Note
Only user-defined text lists
This method processes only user-defined text lists.

– Transfer static string with monolingual text.
• area:

The area of origin of the alarm
• alarmParameterValue1 to alarmParameterValue7:

User-defined comments

Runtime Openness
20.3 Runtime API

7890 System Manual, 11/2022

The alarm triggers an event with the following event path:
• For multilingual alarm

texts:
@ScriptingSystemEvents.OperatorInputInformation:OperatorInputInfor
mation

• For monolingual alarm
text:
@ScriptingSystemEvents.OperatorInputInformationText:OperatorInputI
nformation

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7891

Example
The following code examples show how to trigger alarms of the class
SystemAlarmWithoutClearEvent. Alarms of the classes SystemInformation and
OperatorInputInformation are triggered in the same way.

Runtime Openness
20.3 Runtime API

7892 System Manual, 11/2022

Copying code
public void CreateSystemAlarm()
{
 //Create SystemAlarm with monolingual alarm text
 var alarm = runtime.GetObject<IAlarmSubscription>();
 var systemNames = new List<string>();
 systemNames.Add("SYSTEM1");
 alarm.OnAlarmHandler += alarm_OnAlarmHandler;
 alarm.OnPendingAlarmCompleteHandler += Alarm_OnPendingAlarmCompleteHandler;
 alarm.Filter = "AlarmClassName = 'SystemAlarmWithoutClearEvent'";
 alarm.Language = 1033;
 alarm.SystemNames = systemNames;
 alarm.Start();
 var systemAlarm = runtime.GetObject<IAlarmTrigger>();
 systemAlarm.CreateSystemAlarm(alarmText: "Alarm Text", area: "Area",
 alarmParameterValue1: "Param1",
 alarmParameterValue2: "Param2",
 alarmParameterValue3: "Param3",
 alarmParameterValue4: "Param4",
 alarmParameterValue5: "Param5",
 alarmParameterValue6: "Param6",
 alarmParameterValue7: "Param7");
 _event.WaitOne();
 _event.Reset();
 //stop alarm subscription
 alarm.Stop();
 //Dispose alarm object
 alarm.Dispose();
}

public void CreateSystemAlarmWithAlarmTextAsTextList()
{
 //Create SystemAlarm with multilingual alarm text; the tranlsations are directly stored
in the text list
 var alarm = runtime.GetObject<IAlarmSubscription>();
 var systemNames = new List<string>();
 systemNames.Add("SYSTEM1");
 alarm.OnAlarmHandler += alarm_OnAlarmHandler;
 alarm.OnPendingAlarmCompleteHandler += Alarm_OnPendingAlarmCompleteHandler;
 alarm.Filter = "AlarmClassName = 'SystemAlarmWithoutClearEvent'";
 alarm.Language = 1033;
 alarm.SystemNames = systemNames;
 alarm.Start();
 var systemAlarm = runtime.GetObject<IAlarmTrigger>();
 var texlistforAlarmText = runtime.GetObject<ITextList>();
 // Text list: AlarmTextTemplate
 // Test list entry index: 101
 // Text: "My input msg. input value = @1%d@"
 texlistforAlarmText.Name = "AlarmTextTemplate";
 texlistforAlarmText.TextListEntryIndex = 101;
 systemAlarm.CreateSystemAlarm(alarmText: texlistforAlarmText, area: "Area",
 alarmParameterValue1: "125", // dynamic value for format specifier @1%d@
 alarmParameterValue2: "Param2",
 alarmParameterValue3: "Param3",
 alarmParameterValue4: "Param4",

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7893

Copying code
 alarmParameterValue5: "Param5",
 alarmParameterValue6: "Param6",
 alarmParameterValue7: "Param7");
 _event.WaitOne();
 _event.Reset();
 //stop alarm subscription
 alarm.Stop();
 //Dispose alarm object
 alarm.Dispose();
}

public void CreateSystemAlarmWithTextListAsParameterValue()
{
 //Create SystemAlarm with multilingual alarm text; the text list references other text
lists with tranlsations
 var alarm = runtime.GetObject<IAlarmSubscription>();
 var systemNames = new List<string>();
 systemNames.Add("SYSTEM1");
 alarm.OnAlarmHandler += alarm_OnAlarmHandler;
 alarm.OnPendingAlarmCompleteHandler += Alarm_OnPendingAlarmCompleteHandler;
 alarm.Filter = "AlarmClassName = 'SystemAlarmWithoutClearEvent'";
 alarm.Language = 1033;
 alarm.SystemNames = systemNames;
 alarm.Start();
 var systemAlarm = runtime.GetObject<IAlarmTrigger>();
 var textList1 = runtime.GetObject<ITextList>("Text_List_1");
 var textList2 = runtime.GetObject<ITextList>("Text_List_2");
 textList1.TextListEntryIndex = 1; //Eng TL @1%t#2T@ Val: @3%s@
 systemAlarm.CreateSystemAlarm(alarmText: textList1, area: "Area",
 alarmParameterValue1: 1,
 alarmParameterValue2: textList2, // text list object
 alarmParameterValue3: "Hello"); // Dynamic value of @3%s@
 _event.WaitOne();
 _event.Reset();
 //stop alarm subscription
 alarm.Stop();
 //Dispose alarm object
 alarm.Dispose();
}

See also
ITextList (Page 7895)

Runtime Openness
20.3 Runtime API

7894 System Manual, 11/2022

ITextList

Description
The C# interface "ITextList" is used to transfer multilingual alarm texts for system alarms and
operator input alarms. See section IAlarmTrigger (Page 7888), CreateSystemInformation
method. An ITextList instance is passed to the alarm text. When the operator input alarm is
generated, it is replaced by the configured text from the text list.

Members
"Name" property
The name of the text list.
string Name { get; set; }

"TextListEntryIndex" property
The index of the list entry
UInt32 TextListEntryIndex { get; set; }

IAlarmSubscription

Description
The C# interface "IAlarmSubscription" specifies methods for monitoring alarms of the runtime
system.
The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Members
The following methods and events are specified in the interface:

"SystemNames" property
System names of runtime systems for the monitoring of active alarms
IList<string> SystemNames { get; set; }

"Language" property
Country identifier of the language of the monitored alarms
uint32 Language { get; set; }

"Filter" property
SQL-type string for filtering the result set of active alarms
string Filter { get; set; }

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7895

All properties of an alarm can be used in the filter string. The filter string can contain
operators. Refer to the section Syntax of the alarm filter (Page 7828).

"Start" method
Subscribe systems for monitoring changes of active alarms.
void Start()

"Stop" method
Clear monitoring of active alarms.

Note
Start and Stop in Windows Forms applications
Do not call the "Stop" method for a Windows forms application in the same thread in which you
called "Start".

void Stop()

"OnAlarmHandler" event
Following a change of the alarm state on subscribed systems, the event calls an instance of
the "OnAlarmHandler" delegate.
Declares the event and the event handler for asynchronous monitoring of alarms.
event OnAlarmHandler OnAlarmHandler

"OnPendingAlarmCompleteHandler" event
After completion of the handling of all active alarms of a system, the event calls an instance
of the "OnPendingAlarmCompleteHandler" delegate.
Declares the event and the event handler for confirmation of the asynchronous operations.
event OnPendingAlarmCompleteHandler OnPendingAlarmCompleteHandler

"OnAlarmHandler" delegate
Specifies the signature of the event handling method for the "OnAlarmHandler" event.
void OnAlarmHandler(
 IAlarmSubscription sender,
 uint32 systemError,
 string systemName,
 IList<IAlarmResult> values,
 bool completed)
• sender

Reference to the "IAlarmSubscription" object
• systemError

Error code for the asynchronous operation
• systemName

Name of the runtime system that is subscribed for alarm monitoring by the user.

Runtime Openness
20.3 Runtime API

7896 System Manual, 11/2022

• values
Event data as a list of "IAlarmResult" objects of the monitored active alarms.

• completed
Status of the asynchronous transfer:
– True: All alarms are read out.
– False: Not all alarms are read out yet.

"OnPendingAlarmCompleteHandler" delegate
Specifies the signature of the event handling method for the
"OnPendingAlarmCompleteHandler" event.
void OnPendingAlarmCompleteHandler(IAlarmSubscription sender)
• sender

Source of the event

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7897

Example
Define functions for asynchronous monitoring of active alarms. Monitor "OnAlarmHandler"
event and when occurring call the event handling method "alarm_OnAlarmHandler":

Runtime Openness
20.3 Runtime API

7898 System Manual, 11/2022

Copy code
public void SubscribeAlarmWithFilterOnOriginAndAlarmclass()
{
 try
 {
 // object filter = "AlarmClass = 'AlarmWithOptionalAcknowledgement' AND Origin =
'Boiler'";
 IAlarmSubscription alarm = runtime.GetObject<IAlarmSubscription>();
 List<string> systemNames = new List<string>();
 systemNames.Add("SYSTEM1");

 // Assign alarm handler
 alarm.OnAlarmHandler += alarm_OnAlarmHandler;
 alarm.Filter = "AlarmClassName = 'AlarmWithOptionalAcknowledgement' AND Origin =
'Boiler'";
 alarm.Language = 1033;
 alarm.SystemNames = systemNames;
 alarm.Start();
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

public void alarm_OnAlarmHandler(IAlarmSubscription sender, UInt32 nGlobalError, String
systemName, IList<IAlarmResult> value, bool completed)
{
 if (0 == nGlobalError)
 {
 try
 {
 AlarmList = new List<IAlarmResult>();
 foreach (var item in value)
 {
 System.Console.WriteLine(string.Format("InstanceID: {0} SourceID: {1} Name:
{2} State: {3} EventText: {4} StateText: {5} BackColor: {6} Flashing: {7} Quality: {8}
ModificationTime: {9}",
 item.InstanceID, item.SourceID, item.Name, item.State,
 item.EventText, item.StateText, item.BackColor, item.Flashing,
item.Quality, item.ModificationTime));
 AlarmList.Add(item);
 }

 // For test purpose: Cancel subscription after first notification
 AcknowledgeAlarms(AlarmList);
 }
 finally
 {
 if (null != sender)
 {
 sender.Stop();
 sender.Dispose();
 }
 }
 }

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7899

Copy code
 else
 {
 System.Console.WriteLine("AlarmSubscription Failed");
 }
}

See also
IAlarmResult (Page 7872)
IAlarm (Page 7880)

ILoggedAlarmResult

Description
The C# interface "ILoggedAlarmResult" specifies methods for accessing properties of logged
alarms of a logging system.

Members
The following properties are specified in the interface:

"InstanceID" property
InstanceID for a logged alarm with multiple instances
uint32 InstanceID { get; }

"Name" property
Name of the logged alarm
string Name { get; }

"AlarmClassName" property
Name of the alarm class of the logged alarm
string AlarmClassName { get; }

"AlarmClassSymbol" property
Symbol of the alarm class of the logged alarm
string AlarmClassSymbol { get; }

"AlarmParameterValues" property
Parameter values of the logged alarm
IReadOnlyList<object> AlarmParameterValues { get; }

"AlarmText1" … "AlarmText9" properties
Additional texts 1-9 of the logged alarm

Runtime Openness
20.3 Runtime API

7900 System Manual, 11/2022

string AlarmText1 { get; }
…
string AlarmText9 { get; }

"ChangeReason" property
Trigger event for modification of the alarm state of the logged alarm
uint16 ChangeReason { get; }

"Connection" property
Connection via which the logged alarm was triggered
string Connection { get; }

"State" property
Alarm state of the logged alarm
HmiAlarmState State { get; }
The enumeration "HmiAlarmState" can contain the following values:
• Standard (0x00)
• Raised (0x01)
• RaisedCleared (0x02)
• RaisedAcknowledged (0x05)
• RaisedAcknowledgedCleared (0x06)
• RaisedClearedAcknowledged (0x07)
• Removed (0x80)

"StateText" property
Alarm state of the logged alarm as text, for example, "active" or "inactive"
string StateText { get; }

"EventText" property
Text of the logged alarm that describes the alarm event
string EventText { get; }

"TextColor" property
Text color of the alarm state of the logged alarm
uint32 TextColor { get; }

"BackColor" property
Background color of the alarm state of the logged alarm
uint32 BackColor { get; }

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7901

"Flashing" property
Indicates whether a logged alarm is flashing.
bool Flashing { get; }

"InvalidFlags" property
Identification of the logged alarm with invalid data
byte InvalidFlags { get; }

"ModificationTime" property
Time of the last modification to the alarm state of the logged alarm
DateTime ModificationTime { get; }

"RaiseTime" property
Trigger time of the logged alarm
DateTime RaiseTime { get; }

"AcknowledgementTime" property
Time of alarm acknowledgment of the logged alarm
DateTime AcknowledgementTime { get; }

"ClearTime" property
Time of reset of the logged alarm
DateTime ClearTime { get; }

"ResetTime" property
Time of reset of the logged alarm
DateTime ResetTime { get; }

"SuppressionState" property
Status of visibility of the logged alarm
byte SuppressionState { get; }

"SystemSeverity" property
Severity of the system error
byte SystemSeverity { get; }

"Priority" property
Relevance for display and sorting of the logged alarm
byte Priority { get; }

"Origin" property
Origin for display and sorting of the logged alarm
string Origin { get; }

Runtime Openness
20.3 Runtime API

7902 System Manual, 11/2022

"Area" property
Origin area for display and sorting of the logged alarm
string Area { get; }

"Value" property
Process value of the logged alarm
object Value { get; }

"AlarmGroupName" property
Name of the group to which the alarm belongs. Blank if the alarm does not belong to a group.
string AlarmGroupName { get; }

"DeadBand" property
Range of the triggering tag in which no alarms are generated.
object DeadBand { get; }

"HostName" property
Name of the host that triggered the alarm.
string HostName { get; }

"InfoText" property
Localizable text for the alarm that contains the associated work instruction.
string InfoText { get; }

"StateMachine" property
StateMachine model of the alarm. The StateMachine represents the behavior of
alarms through the arrangement of alarm states and alarm events, e.g. "RaiseClear",
"RaiseRequiresAcknowledgment" or "RaiseClearOptionalAcknowledgment".
byte StateMachine { get; }

"ValueQuality" property
Quality of the process value of the alarm
int32 ValueQuality { get; }

"ValueLimit" property
Process value limit of the logged alarm
object ValueLimit { get; }

"SingleAcknowledgement" property
Indicates whether an alarm may be acknowledged only individually or may be acknowledged
as a group or multiple selection.
bool SingleAcknowledgement { get; }

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7903

"LoggedAlarmStateObjectID" property
ID of alarm state for referencing within the logging system.
string LoggedAlarmStateObjectID { get; }

"ID" property
User-defined ID of the alarm that is also used in the display.
uint32 ID { get; }

"SourceType" property
Source from which the alarm was generated, for example, tag-based, controller-based or
system-based alarm.
HmiAlarmSourceType SourceType { get; }
The enumeration "HmiAlarmSourceType" can contain the following values:
• Undefined (0)
• Tag (1)
• Controller (2)
• System (3)
• Alarm (4)

"UserName" property
User name of the logged operator input alarm
string UserName { get; }

"UserResponse" property
Expected or required user response to the logged alarm
byte UserResponse { get; }

"LoopInAlarm" property
Function that navigates from the alarm control to its origin.
string LoopInAlarm { get; }

"Error" property
Error code of the logged alarm
unit32 Error { get; }

"Duration" property
Returns the time interval in nanoseconds between triggering of the logged alarm and its
previous status change.
TimeSpan Duration { get; }

Runtime Openness
20.3 Runtime API

7904 System Manual, 11/2022

See also
IAlarmLogging (Page 7905)
IAlarmLoggingSubscription (Page 7907)

IAlarmLogging

Description
The C# interface "IAlarmLogging" specifies properties and methods for reading out logged
alarms of a logging system.
The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Members
The following methods and events are specified in the interface:

"Read" method
Read out logged alarms of a time period synchronously from logging system.
IList<ILoggedAlarmResult> Read(
 DateTime begin,
 DateTime end,
 string filter,
 uint32 language,
 IList<string> systemNames)
• begin

Start date of the time period
• end

End date of the time period
• filter

Filter for limiting the read operation with properties of the "ILoggedAlarmResult" object.
• language

Country identification of the language of the logged alarm text
• systemNames

System names of the runtime systems of the logged alarms. Default: local system

"ReadAsync" method
Read out logged alarms of a time period asynchronously from logging system.
void ReadAsync(
 DateTime begin,
 DateTime end,
 string filter,

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7905

 uint32 language,
 IList<string> systemNames)
• begin

Start date of the time period
• end

End date of the time period
• filter

Filter for limiting the read operation with properties of the "ILoggedAlarmResult" object.
• language

Country identification of the language of the logged alarm text
• systemNames

System names of the runtime systems of the logged alarms. Default: local system

"OnReadComplete" event
After readout of the logged alarms, the event calls an instance of the
"OnReadCompleteAlarmLoggingHandler" delegate.
Declares the event and the event handler for the asynchronous readout of logged alarms.
event OnReadCompleteAlarmLoggingHandler OnReadComplete

"OnReadCompleteAlarmLoggingHandler" delegate
Specifies the signature of the event handling method for the "OnReadComplete" event.
void OnReadCompleteAlarmLoggingHandler(
 IAlarmLogging sender,
 uint32 errorCode,
 IList<ILoggedAlarmResult> values,
 bool completed)
• sender

Source of the event
• errorCode

Error code for the asynchronous operation
• values

Event data as a list of "ILoggedAlarmResult" objects of the read-out logged alarms.
• completed

Status of the asynchronous transfer:
– True: All alarms are read out.
– False: Not all alarms are read out yet.

Runtime Openness
20.3 Runtime API

7906 System Manual, 11/2022

Example
Reading out and outputting logged alarms asynchronously:

Copy code
public void ReadAsync()
{
 try
 {
 var alarm = _runtime.GetObject<IAlarmLogging>();
 var now = DateTime.UtcNow;
 var begin = now.AddMinutes(-5);
 var end = now.AddMinutes(-2);
 List<string> systemNames = new List<string>();
 systemNames.Add("SYSTEM1");
 alarm.OnReadComplete += Alarm_OnReadComplete;
 alarm.ReadAsync(begin, end, "", 1033, systemNames);
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

private void Alarm_OnReadComplete(IAlarmLogging sender, uint errorCode,
IList<ILoggedAlarmResult> values, bool completed)
{
 PrintValues(values);
 sender.Dispose();
}

private void PrintValues(IList<ILoggedAlarmResult> values)
{
 foreach (var v in values)
 {
 Console.WriteLine(string.Format("Name: {0} Timestamp: {1} Value: {2}", v.Name,
v.RaiseTime, v.Value));
 }
}

See also
ILoggedAlarmResult (Page 7900)
IAlarmLoggingSubscription (Page 7907)

IAlarmLoggingSubscription

Description
The C# interface "IAlarmLoggingSubscription" specifies properties and methods for monitoring
logged alarms of a logging system.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7907

The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Members
The following properties, methods and events are specified in the interface:

"SystemNames" property
System names of the runtime systems of the logged alarms
IList<string> SystemNames { get; set; }

"Language" property
Country identification of the language of the logged alarms
uint32 Language { get; set; }

"Filter" property
SQL-type string for filtering the result set of the logged alarms
string Filter { get; set; }

"Start" method
Start monitoring of logged alarms.
void Start()

"Stop" method
Stop monitoring of all logged alarms.
void Stop()

"OnDataChanged" event
Following a change of a monitored alarm in the logging systems, the event calls an instance
of the "OnDataChangedAlarmLoggingHandler" delegate.
Declares the event and the event handler for the monitoring of logged alarms.
event OnDataChangedAlarmLoggingHandler OnDataChanged

"OnDataChangedAlarmLoggingHandler" delegate
Specifies the signature of the event handling method for the "OnDataChanged" event.
void OnDataChangedAlarmLoggingHandler(
 IAlarmLoggingSubscription sender,

Runtime Openness
20.3 Runtime API

7908 System Manual, 11/2022

 uint32 errorCode,
 IList<ILoggedAlarmResult> values)
• sender

Source of the event
• errorCode

Error code for the asynchronous operation
• values

Event data as a list of "ILoggedAlarmResult" objects of the monitored logged alarms.

Example
Output logged alarms following a change:

Copy code
public void SubscribeAlarm()
{
 try
 {
 _alarm = _runtime.GetObject<IAlarmLoggingSubscription>();
 List<string> systemNames = new List<string>();
 systemNames.Add("SYSTEM1");
 // Assign alarm handler
 _alarm.OnDataChanged += Alarm_OnDataChanged;
 _alarm.Filter = "";
 _alarm.Language = 1033;
 _alarm.SystemNames = systemNames;
 _alarm.Start();
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

private void Alarm_OnDataChanged(IAlarmLoggingSubscription sender, uint errorCode,
IList<ILoggedAlarmResult> values)
{
 PrintValues(values);
}

private void PrintValues(IList<ILoggedAlarmResult> values)
{
 foreach (var v in values)
 {
 Console.WriteLine(string.Format("Name: {0} Timestamp: {1} Value: {2}", v.Name,
v.RaiseTime, v.Value));
 }
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7909

Cancel monitoring of logged alarms:

Copy code
public void CancelSubscription()
{
 try
 {
 if (_alarm != null)
 {
 _alarm.Stop();
 _alarm.Dispose();
 }
 }
 catch(Exception ex)
 {
 System.Console.WriteLine(ex.Message);
 }
}

See also
IAlarmLogging (Page 7905)
ILoggedAlarmResult (Page 7900)

20.3.8.6 Interfaces for connections

IConnectionResult

Description
The C# interface "IConnectionResult" provides access to the details of a connection.

Members
The following properties are specified in the interface:

"Name" property
Name of the connection
string Name { get; }

"ConnectionState" property
Status of the connection
HmiConnectionState ConnectionState { get; }
The "HmiConnectionState" enumeration contains the following values:
• Disabled (0)
• Connecting (1)

Runtime Openness
20.3 Runtime API

7910 System Manual, 11/2022

• Connected (2)
• Disconnecting (3)
• Disconnected (4)
• Reconnecting (5)

"EstablishmentMode" property
Mode in which the connection will be established.
HmiConnectionEstablishmentMode EstablishmentMode { get; }
The "HmiConnectionEstablishmentMode" enumeration contains the following values:
• None (0)
• AutomaticActive (1)
• AutomaticPassive (2)
• OnDemandActive (3)
• OnDemandPassive (4)

"TimeSynchronizationMode" property
Mode of time synchronization between HMI system and automation system
HmiTimeSynchronizationMode TimeSynchronizationMode { get; }
The "HmiTimeSynchronizationMode" enumeration contains the following values:
• None (0)
• Subordinate (1)
• Lead (2)

"DisabledAtStartup" property
Indicates whether the connection is disabled at the start of Runtime.
bool DisabledAtStartup { get; }
• true: Connection is disabled at the connection start.
• false: Connection is active at the connection start.

"Enabled" property
Indicates whether the connection is active.
bool Enabled { get; }
• true: Connection is active.
• false: Connection is not active.

"ConnectionType" property
Protocol of a communication driver, e.g. "S7 Classic".
string ConnectionType { get; }

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7911

"Error" property
Error code of the connection
uint32 Error { get; }

Example

Output connection details:

Copy code
public void Connection_Read()
{
 var (connection = m_runtime.GetObject<IConnection>("HMI-ConnectionS7Plus");
 if (connection != null)
 {
 var con = connection.Read();
 if (con != null)
 {
 Console.WriteLine("Connection Name is {0} ", con.Name);
 Console.WriteLine("ConnectionState is {0}", con.ConnectionState);
 Console.WriteLine("TimeSynchronizationMode is {0} ", con.TimeSynchronizationMod
e);
 Console.WriteLine("EstablishMentMode is {0} ", con.EstablishmentMode);
 Console.WriteLine("Enabled is {0} ", con.Enabled);
 Console.WriteLine("DisabledAtStartup is {0} ", con.DisabledAtStartup);
 Console.WriteLine("ConnectionType is {0} ", con.ConnectionType);
 Console.WriteLine(" Error is {0} ", con.Error);
 }
 }
}

See also
IConnection (Page 7913)
IConnectionSet (Page 7915)

IConnectionStatusResult

Description
The C# interface "IConnectionStatusResult" provides access to the status of a connection.

Members
The following properties are specified in the interface:

"Name" property
Name of the connection

Runtime Openness
20.3 Runtime API

7912 System Manual, 11/2022

string Name { get; }

"ConnectionState" property
Status of the connection
HmiConnectionState ConnectionState { get; }
The "HmiConnectionState" enumeration contains the following values:
• Disabled (0)
• Connecting (1)
• Connected (2)
• Disconnecting (3)
• Disconnected (4)
• Reconnecting (5)

"Error" property
Error code of the connection
uint32 Error { get; }

Example
Output status of a certain connection:

Copy code
public void Connection_GetConnectionState()
{
 var connection = m_runtime.GetObject<IConnection>("HMI-ConnectionS7Plus");
 var con = connection.GetConnectionState();
 if (con != null)
 {
 Console.WriteLine("Connection Name is : {0} ", con.Name);
 Console.WriteLine(" Error is : {0} ", con.Error);
 Console.WriteLine("Connection status is: {0}", con.ConnectionStatus);
 }
}

See also
IConnection (Page 7913)
IConnectionSet (Page 7915)

IConnection

Description
The C# interface "IConnection" provides properties and methods for the access to a connection.
A connection is a configured, logical assignment of two communication partners.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7913

The interface inherits the Dispose method of the "IDisposable" interface of the .NET
framework.

Members
The following properties and methods are specified in the interface:

"Name" property
Name of the connection
string Name { get; set; }

"Read" method
Read connection details synchronously from the Runtime system.
IConnectionResult Read()

"GetConnectionState" method
Return connection status of a connection.
IConnectionStatusResult GetConnectionState()

"SetConnectionMode" method
Change connection status of a connection.
void SetConnectionMode(ConnectionMode mode)
The "ConnectionMode" enumeration contains the following values:
• Disabled (0)
• Enabled (1)

Examples
Disable connection:

Copy code
public void Connection_SetConnectionStateDisable()
{
 var connection = m_runtime.GetObject<IConnection>("HMI-ConnectionS7Plus");
 if (connection != null)
 {
 connection.SetConnectionMode(ConnectionMode.Disabled);
 }
}

Runtime Openness
20.3 Runtime API

7914 System Manual, 11/2022

Enable connection:

Copy code
public void SetConnectionStateEnable()
{
 using (IConnection connection = runtime.GetObject<IConnection>("HMI-ConnectionS7Plus"))
 {
 if (connection != null)
 {
 connection.SetConnectionMode(ConnectionMode.Enabled);
 }
 }
}

See also
IConnectionSet (Page 7915)
IConnectionResult (Page 7910)
IConnectionStatusResult (Page 7912)

IConnectionSet

Description
The C# interface "IConnectionSet" specifies properties, methods and events for optimized access
to several connections of the Runtime system.
After initialization of the "IConnectionSet" object, you have read/write access to multiple
connections in one call. Simultaneous access takes place with better performance and lower
communication load than single access to multiple connections.
The interface inherits the Dispose method of the "IDisposable" interface of the .NET
framework.

Members
The following properties, methods and events are specified in the interface:

"ContextId" property
ID as additional identification feature of a connection. The ContextId can, for example, be
used to recognize identically named connections.
Default value -1: The ContextId is not used.
int32 ContextId { get; set; }

Access operator "this[string]"
Accessing or changing an element of a ConnectionSet via the connection name.
IConnection this[string connectionName] { get; set; }

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7915

connectionName
Name of the connection

"Count" property
Number of connections of a connection set list
int32 Cont { get; }

"Add" method
Add connections to a connection set.
void Add(ICollection<string> connections)
connections
List of connections for the connection set

"Remove" method
Remove individual connection from connection set.
void Remove(string connection)
connection
Name of connection that is removed from the connection set.

"Clear" method
Remove all connections from connection set.
void Clear()

"Read" method
Read connection details of all connections of the connection set synchronously from the
Runtime system.
IList<IConnectionResult> Read()

"ReadAsync" method
Read connection details of all connections of the connection set asynchronously from the
Runtime system.
void ReadAsync()

"GetConnectionState" method
Read connection status of all connections of the connection set synchronously from the
Runtime system.
IList<IConnectionStatusResult> GetConnectionState()

"Subscribe" method
Subscribe all connections of a connection set asynchronously for change monitoring.
void Subscribe()

"CancelSubscribe" method
Cancel change monitoring of all connections of a connection set.

Runtime Openness
20.3 Runtime API

7916 System Manual, 11/2022

void CancelSubscribe()

"OnConnectionRead" event
After establishment of the connection, event calls an instance of the "OnConnectionHandler"
delegate.
Declares the event and the event handler for the establishment of a connection.
event OnConnectionHandler OnConnectionRead

"OnConnectionStateChange" event
After change of the connection status, event calls an instance of the
"OnConnectionStateChangeHandler" delegate.
Declares the event and the event handler for the change of the connection status.
event OnConnectionStateChangeHandler OnConnectionStateChange

"OnConnectionHandler" delegate
Specifies the signature of the event handling method for the "OnConnectionHandler" event
of a connection set.
void OnConnectionHandler(
 IConnectionSet sender,
 uint32 systemError,
 IList<IConnectionResult> values)
• sender

Source of the event
• systemError

Error code
• values

List of connections

"OnConnectionStateChangeHandler" delegate
Specifies the signature of the event handling method for the
"OnConnectionStateChangeHandler" event of a connection set.
void OnConnectionStateChangeHandler(
 IConnectionSet sender,
 uint32 systemError,
 IList<IConnectionStatusResult> values)
• sender

Source of the event
• systemError

Error code
• values

List of status changes of the connections

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7917

Examples
Monitor connection status:

Copy code
public void ConnnectionSet_Subscribe()
{
 Console.WriteLine("Connection Set:Subscription start");
 using (IConnectionSet subscribe = runtime.GetObject<IConnectionSet>())
 {
 if (subscribe != null)
 {
 ICollection<string> list = new string[] { "HMI-Connection", "HMI-
ConnectionS7Plus" };
 subscribe.Add(list);
 subscribe.OnConnectionStateChanged += Subscribe_OnConnectionStateChanged;
 subscribe.Subscribe();
 Thread.Sleep(500);
 }
 }
}

private void Subscribe_OnConnectionStateChanged(IConnectionSet sender, uint systemError,
IList<IConnectionStatusResult> values)
{
 if (0 == systemError)
 {
 try
 {
 foreach (var item in values)
 {
 Console.WriteLine("Name:{0} ", item.Name);
 Console.WriteLine("State:{0} ", item.ConnectionStatus.ToString());
 Console.WriteLine("Error:{0} ", item.Error);
 }
 }

 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occured {0}", ex.Message));
 }

 finally
 {
 if (null != sender)
 {
 sender.CancelSubscribe();
 Console.WriteLine("Subscription cancelled");
 sender.Dispose();
 }
 }
 }
 else
 {
 System.Console.WriteLine("Connection set subscription Failed");
 }
}

Runtime Openness
20.3 Runtime API

7918 System Manual, 11/2022

Copy code

Read out connection synchronously:

Copy code
public void ConnectionSet_Read()
{
 Console.WriteLine("Connection Set: Read ");
 using (IConnectionSet read = runtime.GetObject<IConnectionSet>())
 {
 if (read != null)
 {
 ICollection<string> list = new string[] { "HMI-Connection", "HMI-
ConnectionS7Plus" };
 read.Add(list);

 IList<IConnectionResult> connectionResult = read.Read();
 foreach (var item in connectionResult)
 {
 System.Console.WriteLine(string.Format("Connection Name is {0} ",
item.Name));
 System.Console.WriteLine(string.Format("ConnectionState is {0}",
item.ConnectionState.ToString()));
 System.Console.WriteLine(string.Format("TimeSynchronizationMode is {0} ",
item.TimeSynchronizationMode.ToString()));
 System.Console.WriteLine(string.Format(" Error is {0} ", item.Error));
 System.Console.WriteLine(string.Format("EstablishMentMode is {0} ",
item.EstablishmentMode));
 System.Console.WriteLine(string.Format("Enabled is {0} ", item.Enabled));
 System.Console.WriteLine(string.Format("DisabledAtStartup is {0} ",
item.DisabledAtStartup));
 System.Console.WriteLine(string.Format("ConnectionType is {0} ",
item.ConnectionType));
 }
 }
 }
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7919

Read out connection asynchronously:

Copy code
public void ConnectionSet_ReadAsync()
{
 Console.WriteLine("Connection Set: ReadAsync start");
 IConnectionSet readAsync = runtime.GetObject<IConnectionSet>();
 if (readAsync != null)
 {
 ICollection<string> list = new string[] { "HMI-Connection", "HMI-ConnectionS7Plus" };
 readAsync.Add(list);
 readAsync.OnConnectionRead += Read_OnConnectionComplete;
 readAsync.ReadAsync();
 Thread.Sleep(5000);
 }
}

private void Read_OnConnectionComplete(IConnectionSet sender, uint systemError,
IList<IConnectionResult> values)
{
 foreach (var item in values)
 {
 Console.WriteLine("Name:{0} ", item.Name);
 Console.WriteLine("State:{0} ", item.ConnectionState);
 Console.WriteLine("establishmentMode:{0} ", item.EstablishmentMode);
 Console.WriteLine("TimeSynchronizationMode:{0} ", item.TimeSynchronizationMode);
 Console.WriteLine("ConnectionType:{0} ", item.ConnectionType);
 Console.WriteLine("Enabled:{0} ", item.Enabled);
 Console.WriteLine("DisabledAtStartup:{0} ", item.DisabledAtStartup);
 Console.WriteLine("Error:{0} ", item.Error);
 }
}
 finally
 {
 if (null != sender)
 {
 sender.Dispose();
 }
 }
}

See also
IConnection (Page 7913)
IConnectionResult (Page 7910)
IConnectionStatusResult (Page 7912)

Runtime Openness
20.3 Runtime API

7920 System Manual, 11/2022

20.3.8.7 Interfaces of the Plant Model

IPlantModel

Description
The C# interface "IPlantModel" specifies methods for access to object instances of the plant
model of a Runtime system. The "IPlantModel" object represents the plant model of the graphical
Runtime system.
The interface inherits the Dispose method of the "IDisposable" interface of the .NET
framework.

Formatting a path in the hierarchy
A hierarchy path of object instances consists of several components and has the following
syntax:
[SystemName].HierarchyName::[PlantObjectID/.../]PlantObjectID
The system name can be omitted for referencing a local hierarchy. The dot before the
hierarchy name must stay.

Note
Fixed code HierarchyName
In the current version, HierarchyName has a fixed code which is "hierarchy".

Members
The class implements the following methods:

"GetPlantObject" method
Supplies an object instance of "IPlantObject".
IPlantObject GetPlantObject(string plantObject)
• plantObject

Identifies an IPlantObject instance by its name or its path in the hierarchy.

"GetPlantObjectsByType" method
Supplies a list with instances of "IPlantObject" that have a specific type.
IList<IPlantObject> GetPlantObjectsByType(string
plantObjectTypeFilter, string viewFilter = null)
• plantObjectTypeFilter

Filter for the "IPlantObject" type on which the instances are based.
• Optional: viewFilter

Filter for the path in the hierarchy. Only instances from a specific node are returned.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7921

"GetPlantObjectsByExpression" method
Supplies a list with instances of "IPlantObject" instances. The instances are filtered by type
and property values.
IList<IPlantObject> GetPlantObjectsByExpression(ICollection<string>
propertyNames, string plantObjectTypeFilter, string
expressionFilter, string viewFilter)
• propertyNames

A list with property names
• plantObjectTypeFilter

Filter for the object type on which the instances are based.
• expressionFilter

An expression that is a filter for the property values.
• Optional: viewFilter

Filter for a hierarchy path.
Example:
var plantObjectArr =
PlantModel.GetPlantObjectsByExpression("Temperature", "Motor",
"Temperature>100");

"GetPlantObjectsByPropertyNames" method
Supplies a list with "IPlantObject" instances that have specific properties and originate in a
specific plant node.
IList<IPlantObject>
GetPlantObjectsByPropertyNames(ICollection<string> propertyNames,
string viewFilter = null)
• propertyNames

A list with property names
If the list contains multiple values, all properties must be available at the object.

• Optional: viewFilter
Filter for a hierarchy path.

Example
Example of a hierarchy path:

Hierarchy path Referenced object instance
System2.TechnologicalHierarchy::P1/S1/L2/
LeftPump

References the "LeftPump" object instance in the "Technologi‐
calHierarchiy" of system2.

.TechnologicalHierarchy::P1/S1/L2/LeftPump References the "LeftPump" object instance in the "Technologi‐
calHierarchiy" of the local system.

U4711 References the "U4711" object instance of the local system.
System2::U4711 References the "U4711" object instance of System2.

Runtime Openness
20.3 Runtime API

7922 System Manual, 11/2022

Sample code

Copy code
public void Odk_GetPlantObjectsByType()
{
 using (IPlantModel myPlantModel = runtime.GetObject<IPlantModel>())
 { //gets node for specified Node path
 IList<IPlantObject> plantObject =
myPlantModel.GetPlantObjectsByType("RUNTIME_1::NodeType1",
 ".hierarchy::RootNodeName\\Node1");

 if (plantObject.Count() > 0)
 {
 foreach (IPlantObject item in plantObject)
 {
 System.Console.WriteLine(string.Format("ViewName: {0} Name: {1}",
item.CurrentPlantView, item.Name));
 }
 }
 }
}

IPlantObject

Description
The C# interface "IPlantObject" specifies properties and methods for handling object instances
of the plant model of a Runtime system.
An object instance in the plant model is based on an object type and its data structure. Each
object instance receives its position within the hierarchy by assigning it to a hierarchy node.
The interface inherits the Dispose method of the "IDisposable" interface of the .NET
framework.

Formatting of a hierarchy path
A hierarchy path of object instances consists of several components and has the following
syntax:
[SystemName].HierarchyName::[PlantObjectID/.../]PlantObjectID
The system name can be omitted for referencing a local hierarchy. The dot before the
hierarchy name must stay.

Members
The following properties, methods and events are specified in the interface:

"Name" property
The name for unique identification of the object instance.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7923

string Name { get; }

"Parent" property
The parent object instance in the hierarchy.
IPlantObject Parent { get; }

"Children" property
List of child object instances in the hierarchy
IReadOnlyList<IPlantObject> Children { get; }

"PlantViewPaths" property
The dictionary with string/string pairs that maps the hierarchy names to the hierarchy paths
for all hierarchies that contain the "IPlantObject" instance (hierarchy name to hierarchy path).
IReadOnlyDictionary<string, string> PlantViewPaths { get; }

"CurrentPlantView" property
Path and name of the object instance in the currently selected hierarchy, e.g. "Maintenance".
The "CurrentPlantView" property is used as basis for navigation with the "Parent" or "Children"
properties. If the object instance is only contained in one hierarchy, "CurrentPlantView"
contains its path. If the object is contained in several views, the hierarchy path must be set
via this property before the "Parent" or "Children" property can be used.
string CurrentPlantView { get; set; }

"GetProperty" method
Supplies a property of the object instance.
IPlantObjectProperty GetProperty(string propertyName)
propertyName
Name of an object instance property

"GetProperties" method
Supplies a two-dimensional list (name-object pairs) of the data structure of the object
instance. The list allows access to the instance properties.
IPlantObjectPropertySet GetProperties(ICollection<string>
propertyNames = null)
• Optional: propertyNames

List with names of one or multiple object instance properties.
Without parameters, all properties of an object instance are returned

"GetActiveAlarms" method
Supplies all active alarms that the object instance contains at the time it is called in the active
hierarchy. Unlike with an AlarmSubscription, no status changes or new alarms are signaled
that occur after the function call. Users can filter the alarms or specify a SystemName if they
only want to receive the active alarms of a specific system.

Runtime Openness
20.3 Runtime API

7924 System Manual, 11/2022

void GetActiveAlarms(UInt32 languageId, bool includeChildren =
false, string filter = null);
• languageID

Language code of the language for all texts of an alarm and the filters. Refer to the
section Locale IDs of the supported languages (Page 7829).

• Optional: includeChildren
The active alarms of the child instances are returned as well.

• Optional: filter
SQL-type string for filtering the alarm texts. The filter can contain operators. See also Syntax
of the alarm filter (Page 7828).

"CreateAlarmSubscription" method
Supplies a "PlantObjectAlarmSubscription" that can be used to start and stop an alarm
subscription.
IPlantObjectAlarmSubscription CreateAlarmSubscription();

"PlantObjectAlarmHandler" event
The event calls an instance of the "OnPlantObjectAlarmHandler" delegate.
event OnPlantObjectAlarmHandler PlantObjectAlarmHandler;

"OnPlantObjectAlarmHandler" delegate
Specifies the signature of the event handling method for the
"PlantObjectAlarmHandler" event of an "IPlantObject" instance.
public delegate void OnPlantObjectAlarmHandler(
 IPlantObject sender,
 UInt32 systemError,
 string systemName,
 IList<IAlarmResult> values,
 bool completed);
• sender

Source of the event
• systemError

Supplies an error code when a global error has occurred. When the error code is set, values
is irrelevant.

• systemName
Name of the runtime system that is subscribed for alarm monitoring by the user.

• values
Event data as a list of "IAlarmResult" instances of the monitored active alarm.

• completed
Status of the asynchronous transfer:
– True: All alarms are read out.
– False: Not all alarms are read out yet.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7925

Example
Copy code

public void Odk_PlantObjectGetProperties()
{
 var myPlantModel = _runtime.GetObject<IPlantModel>();
 var strNodeName = ".hierarchy::RootNodeName/Node1";
 var plantObject = myPlantModel.GetPlantObject(strNodeName);
 Console.WriteLine("ViewName: {0} Name: {1}", plantObject.CurrentPlantView, plantObject.Name);
 // get the plant objectproperties by propeyty names
 var plantObjectProperties = plantObject.GetProperties();
 if (plantObjectProperties != null)
 {
 var nCount = plantObjectProperties.Count;
 var listPropValues = plantObjectProperties.Read();
 Console.WriteLine("Number of Properties {0}", nCount);
 foreach (var item in listPropValues)
 {
 Console.WriteLine("Property Name is {0} ", item.Name);
 Console.WriteLine("Property Value is {0} ", item.Value);
 Console.WriteLine("Property Quality is {0} ", item.Quality);
 Console.WriteLine("Property Error is {0} ", item.Error);
 }
 }
}

IPlantObjectProperty

Description
The C# interface "IPlantObjectProperty" specifies the handling of properties of object instances
of the plant model of a Runtime system. The properties represent the data structure of an object
instance.
The object instance communicates with the automation system through the properties of the
data structure. The values of the properties are obtained from linked process tags or internal
tags.
You reference an "IPlantObjectProperty" object using the IPlantObject.GetProperty or
IPlantObject.GetProperties method.
The interface inherits the Dispose method of the "IDisposable" interface of the .NET
framework.

Runtime Openness
20.3 Runtime API

7926 System Manual, 11/2022

Members
The interface has the following properties and methods:

"Name" property
Name of the property
string Name { get; }

"Read" method
Reads the value of the "IPlantObjectProperty" instance synchronously and returns it as an
"IPlantObjectPropertyValue" object. The value, the quality code and the time stamp of the
property are determined when the property is read.
IPlantObjectPropertyValue Read()

"Write" method
Writes the value synchronously to the "IPlantObjectProperty" instance.
void Write(object Value)
• Value

New process value of the property

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7927

Example
Copy code
public void Odk_PlantObjectGetPropertyWrite()
{
 using (IPlantModel myPlantModel = runtime.GetObject<IPlantModel>())
 {
 string strNodeName = ".hierarchy::RootNodeName\\Node1"; 　 //gets node for specified
Node path
 using (IPlantObject plantobject = myPlantModel.GetPlantObject(strNodeName))
 {
 System.Console.WriteLine(string.Format("ViewName: {0} Name: {1}",
plantobject.CurrentPlantView, plantobject.Name));
 if (plantobject != null)
 {
 string strName = "NodeProperty_1";
 using (IPlantObjectProperty plantObjectProperty =
plantobject.GetProperty(strName))
 {
 if (plantObjectProperty != null)
 {
 IPlantObjectPropertyValue pValue = plantObjectProperty.Read();
 System.Console.WriteLine(string.Format("Property Name: {0}
property value before write
 operation: {1}", strName, pValue.Value));
 Object value = 400; // Write Cpm Node Property
 plantObjectProperty.Write(value);
 IPlantObjectPropertyValue pValues = plantObjectProperty.Read();
 System.Console.WriteLine(string.Format("Property Name: {0}
property value after write Operration: {1}",strName, pValues.Value));
 }
 }
 }
 }
 }
 }
}

IPlantObjectPropertyValue

Description
The C# interface "IPlantObjectPropertyValue" specifies the properties of process tags that are
connected to an object instance property of the Runtime system.

Members
The following properties are specified in the interface:

"Name" property
Name of the tag

Runtime Openness
20.3 Runtime API

7928 System Manual, 11/2022

string Name { get; }

"Value" property
Value of the tag at the moment of the read operation.
object Value { get; }

"Quality" property
Quality code of the read operation of the tag.
Int32 Quality { get; }

"TimeStamp" property
Time stamp of the last successful read operation of the tag.
DateTime TimeStamp { get; }

"Error" method
Error code of the last read or write operation of the tag.
UInt32 Error { get; }

"OnPlantModelPropertySubscriptionHandler" delegate
Specifies the signature of the event handling method for the
"OnPlantModelPropertySubscriptionHandler" event of an "IPlantObjectPropertySet"
instance.
public delegate void OnPlantModelPropertySubscriptionHandler(
 IPlantObjectPropertySet sender,
 IList<IPlantObjectPropertyValue> values);
• sender

Source of the event
• values

Event data as a list of "IPlantObjectPropertyValue" instances of the monitored active alarm.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7929

Example
Copy code

public void Odk_PlantObjectGetPropertyRead()
{
 using (var myPlantModel = _runtime.GetObject<IPlantModel>())
 {
 var strNodeName = ".hierarchy::RootNodeName/Node1";
 //gets node for specified Node path
 using (var plantobject = myPlantModel.GetPlantObject(strNodeName))
 {
 Console.WriteLine("ViewName: {0} Name: {1}", plantobject.CurrentPlantView, plantobject.Name);
 var strName = "NodeProperty_1";
 using (var plantObjectProperty = plantobject.GetProperty(strName))
 {
 if (plantObjectProperty != null)
 {
 // Read Cpm Node Property
 var plantObjectPropertyValue = plantObjectProperty.Read();
 if (null != plantObjectPropertyValue)
 {
 Console.WriteLine(
 "Name= {0} TimeStamp {1} QualityCode {2} Error {3} Value {4}",
 plantObjectPropertyValue.Name, plantObjectPropertyValue.TimeStamp,
 plantObjectPropertyValue.Quality, plantObjectPropertyValue.Error,
 plantObjectPropertyValue.Value);
 }
 }
 }
 }
 }
}

IPlantObjectPropertySet

Description
The C# interface "IPlantObjectPropertySet" specifies properties, methods and events for
optimized access to several IPlantObjectProperty instances of the Runtime system.
After initialization of the "IPlantObjectPropertySet" object, you have read/write access
to multiple IPlantObjectProperty instances in one call. Simultaneous access has better
performance and a lower communication load than single access to multiple properties.
The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Member
The following properties, methods and events are specified in the interface:

Runtime Openness
20.3 Runtime API

7930 System Manual, 11/2022

"ContextID" property
"ContextID" can be useful for asynchronous methods. Users can assign "ContextID" if they
have to assign the answer from the system to a read/write job.
Default value -1: "ContextId" is not used.
Int32 ContextId { get; set; }

"[propertyName]" property
Change the process value of a property of the "IPlantObjectPropertySet" instance.
The value is changed by the property only in the local "IPlantObjectPropertySet" instance. To
write the values in the process image, a "Write" or "WriteAsync" method must be called.
object this[string propertyName] { get; set; }
• propertyName

Name of the property that is changed in the PropertySet.

"Count" property
The number of properties of the "IPlantObjectPropertySet" instance.
Uint32 Count { get; }

"Read" method
Supplies a list with all values of the "IPlantObjectProperty" instances contained in the
"IPlantObjectPropertySet" instance. The values are read synchronously.
IList<IPlantObjectPropertyValue> Read();

"ReadAsync" method
Reads the values of all "IPlantObjectProperty" instances of the "IPlantObjectPropertySet"
instance asynchronously.
void ReadAsync()

"Write" method
Writes the values of the "IPlantProperty" instances of the "PlantObjectPropertySet" instance
synchronously to the Runtime system. Write operation errors are returned in a list with
"IErrorResult" instances.
IList<IErrorResult> Write()

"WriteAsync" method
Writes the values of all "IPlantObjectProperty" instances of the "PlantObjectPropertySet"
instance asynchronously to the Runtime system.
void WriteAsync()

"Subscribe" method
Subscribes all properties of the "IPlantObjectPropertySet" instance asynchronously for change
monitoring.
void Subscribe()

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7931

"Add" method
Adds one or more "IPlantObjectProperty" instances to the "IPlantObjectPropertySet" instance.
The method can be called as follows:
• Adding multiple "IPlantObjectProperty" instances without value:

void Add(ICollection<string> propertyNames)
– name

A collection with the names of the "IPlantObjectProperty" instances.
• Adding a "IPlantObjectProperty" instance with value:

void Add(string propertyName, object value);
– propertyName

Name of the "IPlantObjectProperty" instance
– value

New process value of the "IPlantObjectProperty" instance

"Remove" method
Removes a property from the "IPlantObjectPropertySet" instance.
void Remove(string propertyName)
• propertyName

Name of the property that is being removed.

"Clear" method
Removes all properties from the "IPlantObjectPropertySet" instance.
void Clear()

"OnPropertySetReadComplete" event
After completion of the read operation of the "ReadAsync" method, the event calls an
instance of the "OnPropertySetReadCompleteHandler" delegate.
Declares the event and the event handler for asynchronous read operations.
event OnPropertySetReadCompleteHandler OnPropertySetReadComplete

"OnPropertySetWriteComplete" event
After completion of the write operation of the "WriteAsync" method, the event calls an
instance of the "OnPropertySetWriteCompleteHandler" delegate.
Declares the event and the event handler for asynchronous write operations.
event OnPropertySetWriteCompleteHandler OnPropertySetWriteComplete

"OnPlantModelPropertySubscriptionNotification" event
After the change of a monitored PropertySet, the event calls an instance of the
"OnPlantModelPropertySubscriptionHandler" delegate.
Declares the event and the event handler when changing a PropertySet.
event OnPlantModelPropertySubscriptionHandler
OnPlantModelPropertySubscriptionNotification

Runtime Openness
20.3 Runtime API

7932 System Manual, 11/2022

"OnPropertySetReadCompleteHandler" delegate
Specifies the signature of the event handling method for the "OnPropertySetReadComplete"
event of an "IPlantObjectPropertySet" instance.
void OnPropertySetReadCompleteHandler(
 IPlantObjectPropertySet sender,
 UInt32 errorCode,
 IList<IPlantObjectPropertyValue> values)
• sender

Source of the event
• errorCode

Supplies an error code when a global error has occurred.
• values

Event data as a list of "IPlantObjectPropertyValue" instances of the read property.

"OnPropertySetWriteCompleteHandler" delegate
Specifies the signature of the event handling method for the "OnPropertySetWriteComplete"
event of an "IPlantObjectPropertySet" instance.
void OnPropertySetWriteCompleteHandler(
 IPlantObjectPropertySet sender,
 UInt32 errorCode,
 IList<IPlantObjectPropertyValue> values)
• sender

Source of the event
• errorCode

Supplies an error code when a global error has occurred. When the error code is set, values
is irrelevant.

• values
Event data as a list of "IPlantObjectPropertyValue" instances of the read property.

"OnPlantModelPropertySubscriptionHandler" delegate
Specifies the signature of the event handling method for the
"OnPlantModelPropertySubscriptionNotification" event of an "IPlantObjectPropertySet"
instance.
void OnPlantModelPropertySubcriptionHandler(
 IPlantObjectPropertySet sender,
 IList<IPlantObjectPropertyValue> values)
• sender

Source of the event
• values

Event data as a list of the changed "IPlantObjectPropertyValue" instances.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7933

Example
Copy code
public void Odk_PlantObjectGetPropertySetReadAsync()
{
 try
 { 　
 IPlantModel myPlantModel = runtime.GetObject<IPlantModel>(); 　
 string strNodeName = ".hierarchy::RootNodeName\\Node1"; 　 //gets node for specified
Node path
 IPlantObject plantObject = myPlantModel.GetPlantObject(strNodeName); 　
 System.Console.WriteLine(string.Format("ViewName: {0} Name: {1}",
plantObject.CurrentPlantView,
 plantObject.Name));
 if (plantObject != null)
 {
 ICollection<string> PropNames = null;// get the plant objectproperties by
propeyty names
 IPlantObjectPropertySet plantObjectPropertyset =
plantObject.GetProperties(PropNames); 　
 if (plantObjectPropertyset != null)
 {
 　 plantObjectPropertyset.OnPropertySetReadComplete +=
odkPlantModel_onReadComplete; // Read Plant
 　 Object properties values asynchronously
 　 plantObjectPropertyset.ReadAsync();
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
} 　
public void odkPlantModel_onReadComplete(IPlantObjectPropertySet sender, UInt32
SystemError, IList<IPlantObjectPropertyValue> Values)
{
 try
 {
 foreach (var value in Values)
 {
 Console.WriteLine("Name {0}", value.Name);
 Console.WriteLine("TimeStamp {0}", value.TimeStamp);Console.WriteLine("Value
{0}", value.Value);
 Console.WriteLine("Quality {0}", value.Quality);Console.WriteLine("Error {0}",
value.Error);
 } 　
 }
 finally
 {
 if (null != sender)
 {
 sender.Dispose();
 }
 }
}

Runtime Openness
20.3 Runtime API

7934 System Manual, 11/2022

Copy code

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7935

Copy code
public void odk_plantModelSubscribe()
{
 try
 {
 IPlantModel myPlantmodel = runtime.GetObject<IPlantModel>(); 　
 string strNodeName = ".hierarchy::RootNodeName\\Node1"; 　 //gets node for specified
Node path
 IPlantObject plantObject = myPlantmodel.GetPlantObject(strNodeName); 　
 System.Console.WriteLine(string.Format("ViewName: {0} Name: {1}",
plantObject.CurrentPlantView,
 plantObject.Name));
 if (plantObject != null)
 {
 ICollection<string> PropNames = null;
 IPlantObjectPropertySet plantObjectPropertyset =
plantObject.GetProperties(PropNames); 　
 if (plantObjectPropertyset != null)
 {
 　 // Assign callback function
 　 plantObjectPropertyset.OnPlantModelPropertySubscriptionNotification +=
 　 odkPlantModelPropertySet_OnDataChanged; 　
 　 plantObjectPropertyset.Subscribe();
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}
public void odkPlantModelPropertySet_OnDataChanged(IPlantObjectPropertySet sender,
IList<IPlantObjectPropertyValue> Values)
{
 try
 {
 foreach (var value in Values)
 {
 Console.WriteLine("Name {0}", value.Name);
 Console.WriteLine("TimeStamp {0}", value.TimeStamp);
 Console.WriteLine("Value {0}", value.Value);
 Console.WriteLine("Quality {0}", value.Quality);Console.WriteLine("Error {0}",
value.Error);
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
 finally
 {
 if (null != sender)
 {
 sender.Dispose();
 }
 }

Runtime Openness
20.3 Runtime API

7936 System Manual, 11/2022

Copy code
} 　

IPlantObjectAlarmSubscription

Description
The C# interface "IPlantObjectAlarmSubscription" specifies methods for monitoring alarms of
"IPlantObject" instances.
The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Member
The following properties, methods and events are specified in the interface:

"Filter" property
SQL-type string for filtering the result set of active alarms.
string Filter { get; set; }
All properties of an alarm can be used in the filter string. The filter string can contain
operators. Refer to the section Syntax of the alarm filter (Page 7828).

"Language" property
Country identifier of the language of the monitored alarms. See also section Locale IDs of the
supported languages (Page 7829).
UInt32 Language { get; set; }

"IncludeChildren" property
If "true" is transferred, the alarm subscription only applies to the alarms of the "IPlantObject"
instance and all its children in the hierarchy. If "false" is transferred, it only applies for the
alarms of the "IPlantObject" instance.
bool IncludeChildren { get; set; }

"Start" method
Subscribe systems for monitoring changes of active alarms.
void Start()

"Stop" method
Clear monitoring of active alarms.
void Stop()

"OnPlantObjectSubscribeAlarmHandler" event
Declares the event for the monitoring of alarms of an "IPlantObject" instance.
The event calls an instance of the "OnPlantObjectSubscribeAlarmHandler" delegate.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7937

event OnPlantObjectSubscribeAlarmHandler
OnPlantObjectSubscribeAlarmHandler;

"OnPlantObjectSubscribeAlarmHandler" delegate
Specifies the signature of the event handling method for the
"OnPlantObjectSubscribeAlarmHandler" event of an "IPlantObject" instance.
public delegate void OnPlantObjectSubscribeAlarmHandler(
 IPlantObjectAlarmSubscription sender,
 UInt32 systemError,
 string systemName,
 IList<IAlarmResult> values);
• sender

Source of the event
• systemError

Supplies an error code when a global error has occurred. When the error code is set, values
is irrelevant.

• systemName
Name of the runtime system that is subscribed for alarm monitoring by the user.

• values
Event data as a list of "IAlarmResult" instances of the monitored active alarm.

Runtime Openness
20.3 Runtime API

7938 System Manual, 11/2022

Example
Copy code
public void Odk_GetAlarmSubscription()
{
 try
 {
 using (IPlantModel myPlantModel = runtime.GetObject<IPlantModel>())
 {
 string strNodeName = ".hierarchy::RootNodeName\\Node1"; 　 //gets node for
specified Node path
 IPlantObject plantobject = myPlantModel.GetPlantObject(strNodeName); 　
 IPlantObjectAlarmSubscription alarmsub = plantobject.CreateAlarmSubscription();
　//Assign alarm handler
 if (alarmsub != null)
 {
 　 alarmsub.OnPlantObjectSubscribeAlarmHandler +=
alarm_OnPlantObjectSubscribeAlarmHandler;
 　 alarmsub.Filter = "";
 　 alarmsub.Language = 1033;
 　 alarmsub.IncludeChildren = false;
 　 alarmsub.Start();
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
} 　
public void alarm_OnPlantObjectSubscribeAlarmHandler(IPlantObjectAlarmSubscription sender,
UInt32 nGlobalError, String systemName, IList<IAlarmResult> value)
{
 try
 {
 foreach (var item in value)
 {
 System.Console.WriteLine(string.Format("Name: {0}", item.Name));
 System.Console.WriteLine(string.Format("InstanceID: {0}", item.InstanceID));
 System.Console.WriteLine(string.Format("AlarmClass: {0}", item.AlarmClassName));
 System.Console.WriteLine(string.Format("AlarmParameterValues: {0}",
item.AlarmParameterValues));
 System.Console.WriteLine(string.Format("AlarmText1: {0}", item.AlarmText1));
 System.Console.WriteLine(string.Format("Area: {0}", item.Area));
 }
 }
 finally
 {
 if (null != sender)
 {
 sender.Stop();
 }
 }
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7939

20.3.8.8 Interfaces of the Calendar option

ISHCCalendar

Description
The C# interface "ISHCCalendar" specifies the properties and methods of a calendar. The
calendar is integrated via an "IPlantObject" instance.
The interface inherits the "Dispose() method of the "IDisposable" interface of the .NET
framework and the methods of the "ISHCGetObject" interface

Members
"Settings" property
Reference to an "ISHCCalenderSettings" instance which saves the settings of the calendar.
ISHCCalendarSettings Settings { get; }

"Category" property
Reference to an "ISHCCategoryProvider" instance with which you access categories of the
calendar.
ISHCCategoryProvider Category { get; }

"DayTemplate" property
Reference to an "ISHCDayTemplatesProvider" instance with which you create, read, update
and delete day templates for the calendar.
ISHCDayTemplatesProvider DayTemplate { get; }

"ShiftTemplate" property
Reference to an "ISHCShiftTemplatesProvider" instance with which you create, read, update
and delete shift templates for the calendar.
ISHCShiftTemplatesProvider ShiftTemplate { get; }

"ActionTemplate" property
Reference to an "ISHCActionTemplatesProvider" instance with which you create, read, update
and delete action templates for the calendar.
ISHCActionTemplatesProvider ActionTemplate { get; }

"Day" property
Reference to an "ISHCDayProvider" instance with which you create, read, update and delete
days for the calendar.
ISHCDayProvider Day { get; }

Runtime Openness
20.3 Runtime API

7940 System Manual, 11/2022

Example
The following example serves as a basis for the other examples for the C# interfaces of the
Calendar option.
It shows how you can obtain the "IPlantObject" instance and also an "ISHCCalendar"
instance. The "ISHCCalendar" instance referenced via calendar is also used in the other
examples.

Copy code
using Siemens.Runtime.HmiUnified.SHC;
using Siemens.Runtime.HmiUnified;

ISHCCalendar calendar = null;
// Connect to Runtime
IRuntime runtime = Runtime.Connect(); 　
if (runtime != null)
{
 IPlantModel myPlantModel = runtime.GetObject<IPlantModel>();
 IPlantObject po = myPlantModel.GetPlantObject(".hierarchy::Plant/Unit1");
 if (po != null)
 {
 calendar = po.Calendar();
 }
}

ISHCCategory

Description
The C# interface "ISHCCategory" specifies the properties and methods of a time category of the
time model.
The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members
"Name" property
The name of the category
string Name { get; }

"DisplayNames" property
A dictionary from UInt32/string pairs with the display names and their language code IDs.
IDictionary<UInt32, string> DisplayNames { get; }

"Descriptions" property
A dictionary from UInt32/string pairs with the descriptions of the category and its language
code ID.
IDictionary<UInt32, string> Descriptions { get; }

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7941

"Color" property
The color of the category
Color Color { get; }

"Deleted" property
Saves the information on whether an already used category was deleted in Engineering.
bool Deleted { get; }

Example
static void PrintCategory(ISHCCategory category)
{
 if (null != category)
 {
 Console.WriteLine(" \nName:{0} \nColor:{1} \n Deleted:{2}\n", category.Name,
category.Color, category.Deleted);
 }
 IDictionary<uint, string> displayNames = category.DisplayNames;
 foreach (var item in displayNames)
 {
 Console.WriteLine("Language:{0} DisplayName:{1}", item.Key, item.Value);
 }
 IDictionary<uint, string> description = category.Descriptions;
 foreach (var item in description)
 {
 Console.WriteLine("Language:{0} Description:{1}", item.Key, item.Value);
 }
}

See also
Locale IDs of the supported languages (Page 7829)

ISHCCategoryProvider

Description
The C# interface "ISHCCategoryProvider" provides you with read access to the "ISHCCategory"
instances of an "ISHCCalendar" instance.

Members
"Browse" method
Supplies a collection with the categories of the calendar.
IReadOnlyCollection<ISHCCategory> Browse();

Runtime Openness
20.3 Runtime API

7942 System Manual, 11/2022

Example
Copy code
IReadOnlyCollection<ISHCCategory> categories = calendar.Category.Browse();
foreach (var cat in categories)
{
 // do something
}

ISHCCalendarSettings

Description
The C# interface "ISHCCalendarSettings" specifies properties and methods for access to the
calendar settings of an "ISHCCalendar" instance.
The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members
"PlantObject" property
Reference to the "IPlantObject" instance to which the calendar belongs.
string PlantObject { get; }

"FirstDayOfWeek" property
Reference to the "ShcWeekDay" instance which is set as the first day of the week.
ShcWeekDay FirstDayOfWeek { get; }

"FirstWeekOfYear" property
Reference to the "ShcWeekStart" instance which is set as the first week of the year.
ShcWeekStart FirstWeekOfYear { get; }

"FiscalYearStartDay" property
The first day of the fiscal year
Default setting: 1
Byte FiscalYearStartDay { get; }

"FiscalYearStartMonth" property
The first month of the fiscal year
Default setting: 1
Byte FiscalYearStartMonth { get; }

"DayOffset" property
The offset with which the workday begins, calculated from midnight.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7943

Default setting: 0
Maximum value: 24 hours
TimeSpan DayOffset { get; }

"Workdays" property
Number of workdays
UInt32 Workdays { get; }

"TimeZone" property
The Microsoft time zone
UInt32 TimeZone { get; }

Example
static void PrintCalendar(ISHCCalendarSettings calendar)
{
 if (null != calendar)
 {
 string cal = string.Format(" \n Workdays: {0} \n FirstDayOfWeek: {1} \n
FirstWeekOfYear: {2} \n FiscalYearStartDay: {3} \n FiscalYearStartMonth: {4} \n DayOffset:
{5} \n PlantObject: {6} \n \n TimeZone:{7} \n", calendar.Workdays, calendar.FirstDayOfWeek,
calendar.FirstWeekOfYear, calendar.FiscalYearStartDay, calendar.FiscalYearStartMonth,
calendar.DayOffset, calendar.PlantObject, calendar.TimeZone);
 Console.WriteLine(cal);
 }
}

ISHCTimeSlice

Description
The C# interface "ISHCTimeSlice" specifies the properties and methods of a time slice.
The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members
"StartTime" property
Time stamp with the start time of the time slice
DateTime StartTime { get; set; }

"Duration" property
The duration of the time slice
TimeSpan Duration { get; set; }

Runtime Openness
20.3 Runtime API

7944 System Manual, 11/2022

"Category" property
The time category of the time slice
string Category { get; set; }

ISHCDay

Description
The C# interface "ISHCDay" specifies the properties and methods of a day.
The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members
"Comments" property
A dictionary from UInt32/string pairs with the comments of the "ISHCDay" instance and their
language code IDs.
IDictionary<UInt32, string> Comments { get; }

"StartTime" property
Time stamp with the start time of the "ISHCDay" instance.
DateTime StartTime { get; set; }

"IsCustomized" property
Saves information on whether the "ISHCDay" instance was edited by users.
bool IsCustomized { get; }

"DayTemplate" property
The "ISHCDayTemplate" instance from which the "ISHCDay" instance is derived.
string DayTemplate { get; set; }

"CreateShift" method
Instantiates an "ISHCShift" instance at the "ISHCDay" instance.
ISHCShift CreateShift(
 ISHCShiftTemplate shcShiftTemplate,
 TimeSpan startTime);
• shcShiftTemplate

Reference to the shift template from which the shift is derived
• startTime

Time stamp with the start time of the "ISHCShift" instance.

"DeleteShift" method
Deletes a shift of the "ISHCDay" instance.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7945

void DeleteShift(
 ISHCShift shcShift);
• shcShift

Reference to the shift to be deleted

"GetShifts" method
Supplies a list with all the shifts of the "ISHCDay" instance.
IReadOnlyList<ISHCShift> GetShifts();

"SetComment" method
Adds a new entry to the dictionary of the "Comment" property.
void SetComment(
 UInt32 languageId,
 string comment);
• languageId

The language code ID of the comment
• comment

A comment

See also
Locale IDs of the supported languages (Page 7829)

ISHCDayProvider

Description
The C# interface "ISHCDayProvider" provides you with access to the days of an "ISHCCalendar"
instance. With the methods of the provider, you can create, read, update and delete days.

Members
"Browse" method
Supplies a collection with the "ISHCDay" instances of the calendar.
IReadOnlyCollection<ISHCDay> Browse(
 DateTime startTime, DateTime end);
• startTime

Defines the start of the time period whose days are returned.
• end

Defines the end of the time period whose days are returned.

Runtime Openness
20.3 Runtime API

7946 System Manual, 11/2022

Example:

static void ReadDayWithShift()
{
 try
 {
 DateTime start = DateTime.Now.StartOfDay();
 DateTime end = DateTime.Now.EndOfDay();
 end = end.AddDays(3);
 IReadOnlyCollection<ISHCDay> days = calendar.Day.Browse(start, end);
 if (days.Count > 0)
 {
 foreach (var day in days)
 {
 // PrintDays(day);
 if (null != day)
 { string strDays = string.Format("\n StartTime :{0} \n IsCustomized :{1} \n
DayTemplate :{2} ", day.StartTime, day.IsCustomized, day.DayTemplate);
 Console.WriteLine(strDays);
 IDictionary<uint, string> Comments = day.Comments;foreach (var item in
Comments)
 {Console.WriteLine("\n Language:{0} DayComment:{1} \n", item.Key,
item.Value); }
 }

 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

"Create" method
Adds new "ISHCDay" instances to the calendar.
void Create(
 IList<ISHCDay> days);
• days

List with the new "ISHCDay" instances

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7947

Example:

static void CreateDayWithShift()
{
 try
 {
 IReadOnlyCollection<ISHCDayTemplate> Daytemplates =
calendar.DayTemplate.Browse(false);
 if (Daytemplates.Count > 0)
 {
 ISHCDayTemplate dayTemplate = Daytemplates.ElementAt(0);
 List<ISHCDay> DayList = new List<ISHCDay>();
 ISHCDay day = calendar.GetObject<ISHCDay>();
 day.DayTemplate = dayTemplate.Name;
 DateTime dtday = DateTime.Now;
 day.StartTime = dtday;
 day.SetComment(1033, "DaywithShift");
 DayList.Add(day);
 calendar.Day.Create(DayList);
 IReadOnlyCollection<ISHCShiftTemplate> ShiftTemplates =
calendar.ShiftTemplate.Browse(false);
 if (ShiftTemplates.Count > 0)
 {
 ISHCShiftTemplate ShiftTemplate = ShiftTemplates.ElementAt(0);
 ISHCShift dayShift = day.CreateShift(ShiftTemplate, new TimeSpan(18, 0, 0));
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

"Update" method
Updates "ISHCDay" instances of the calendar.
void Update(
 IList<ISHCDay> days);
• days

List of the "ISHCDay" instances to be updated

Runtime Openness
20.3 Runtime API

7948 System Manual, 11/2022

Example:

static void UpdateDayWithShift()
{
 try
 {
 DateTime start = DateTime.Now.StartOfDay();
 DateTime end = DateTime.Now.EndOfDay();
 end = end.AddDays(1);
 IReadOnlyCollection<ISHCDay> days = calendar.Day.Browse(start, end);
 if (days.Count > 0)
 {
 List<ISHCDay> list = new List<ISHCDay>();
 foreach (var day in days)
 {
 IReadOnlyCollection<ISHCShift> shifts = day.GetShifts();
 if (shifts != null)
 {
 ISHCShift shift = shifts.ElementAt(0);
 shift.GetTimeSlices().ElementAt(0).Category = "Maintenance";
 }
 list.Add(day);
 }
 calendar.Day.Update(list);
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

"Delete" method
Deletes "ISHCDay" instances of the calendar.
void Delete(
 IList<ISHCDay> days);
• days

List of "ISHCDay" instances to be deleted

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7949

Example:

static void DeleteDayWithShift()
{
 try
 {
 DateTime start = DateTime.Now.StartOfDay();
 DateTime end = DateTime.Now.EndOfDay();
 end = end.AddDays(3);
 IReadOnlyCollection<ISHCDay> days = calendar.Day.Browse(start, end);
 if (days.Count > 0)
 {
 List<ISHCDay> list = new List<ISHCDay>();
 foreach (var day in days)
 {
 list.Add(day);
 }
 calendar.Day.Delete(list);
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

ISHCDayTemplate

Description
The C# interface "ISHCDayTemplate" specifies the properties and methods of a day.
The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members
"Name" property
The name of the "ISHCDayTemplate" instance.
string Name { get; set; }

"DisplayNames" property
A dictionary from UInt32/string pairs with the display names of the "ISHCDayTemplate"
instance and their language code IDs.
IDictionary<UInt32, string> DisplayNames { get; }

"Descriptions" property
A dictionary from UInt32/string pairs with the descriptions of the "ISHCDayTemplate" instance
and their language code IDs.
IDictionary<UInt32, string> Descriptions { get; }

Runtime Openness
20.3 Runtime API

7950 System Manual, 11/2022

"Deleted" property
Saves information on whether the day template was deleted by users.
bool Deleted { get; }

"SetDisplayName" method
Sets the display name of the "ISHCDayTemplate" instance and its language code ID.
void SetDisplayName(
 UInt32 languageId,
 string displayName);
• languageId

The language code ID of the display name
• displayName

The display name

"SetDescription" method
Sets the description of the "ISHCDayTemplate" instance and its language code ID.
 void SetDescription(
 UInt32 languageId,
 string description);
• languageId

The language code ID
• description

The description

"GetShifts" method
Supplies a collection with the shifts of the "ISHCDayTemplate" instances.
IReadOnlyList<ISHCShift> GetShifts();

"CreateShift" method
Adds a shift to the "ISHCDayTemplate" instance.
ISHCShift CreateShift(
 ISHCShiftTemplate template,
 TimeSpan startTime);
• template

Reference to the shift template on which the shift is based.
• startTime

Time stamp with the start time of the shift

"DeleteShift" method
Deletes a shift of the "ISHCDayTemplate" instance.
void DeleteShift(
 ISHCShift shift);
• shift

Reference to the shift to be deleted

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7951

See also
Locale IDs of the supported languages (Page 7829)

ISHCDayTemplatesProvider

Description
The C# interface "ISHCDayTemplatesProvider" provides you with access to the day templates of
an "ISHCCalendar" instance. With the methods of the provider, you can create, read, update and
delete day templates.

Members
"Browse" method
Supplies a collection with the "ISHCDayTemplate" instances of the calendar.
IReadOnlyCollection<ISHCDayTemplate> Browse(
 bool includeDeleted);
• includeDeleted

Saves information on whether the collection also contains the deleted day templates.
Example:

static void ReadDayTemplateWithShift()
{
 try
 {
 IReadOnlyCollection<ISHCDayTemplate> dayTemplate =
calendar.DayTemplate.Browse(false);
 if (dayTemplate.Count > 0)
 {
 foreach (var template in dayTemplate)
 {
 PrintDayTemplates(template);
 ReadShiftsforDayTemplate(template);
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

"Create" method
Adds new "ISHCDayTemplate" instances to the calendar.

Runtime Openness
20.3 Runtime API

7952 System Manual, 11/2022

void Create(
 ICollection<ISHCDayTemplate> dayTemplates);
• dayTemplates

Collection with the new "ISHCDayTemplate" instances
Example:

static void CreateDayTemplateWithShift()
{
 try
 {
 ISHCDayTemplate Daytemplate = calendar.GetObject<ISHCDayTemplate>();
 if (null != Daytemplate)
 {
 List<ISHCDayTemplate> ListDayTemplate = new List<ISHCDayTemplate>();
 Daytemplate.Name = "DayTemplateName"; 　
 Daytemplate.SetDescription(1033, "DayTemplateDescription");
 Daytemplate.SetDisplayName(1033, "DayTemplateDisplayName");
 ListDayTemplate.Add(Daytemplate);
 calendar.DayTemplate.Create(ListDayTemplate);
 IReadOnlyCollection<ISHCShiftTemplate> ShiftTemplates =
calendar.ShiftTemplate.Browse(false);
 if (ShiftTemplates.Count > 0)
 {
 ISHCShiftTemplate ShiftTemplate = ShiftTemplates.ElementAt(0);
 ISHCShift shift = Daytemplate.CreateShift(ShiftTemplate, new TimeSpan(1, 0,
0));
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

"Update" method
Updates the "ISHCDayTemplate" instances of the calendar.
void Update(
 ICollection<ISHCDayTemplate> dayTemplates);
• dayTemplates

Collection with the "ISHCDayTemplate" instances to be updated

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7953

Example:

static void UpdateDayTemplateWithShift()
{
 try
 {
 IReadOnlyCollection<ISHCDayTemplate> dayTemplate =
calendar.DayTemplate.Browse(false);
 if (dayTemplate.Count > 0)
 {
 List<ISHCDayTemplate> list = new List<ISHCDayTemplate>();
 foreach (var dayTemplates in dayTemplate)
 {
 dayTemplates.Name = "UpdatedDayTemplate";
 dayTemplates.SetDisplayName(1033, "UpdatedDayTemplateDisplayName");
 dayTemplates.SetDescription(1033, "UpdatedDayTemplateDescription");
 IReadOnlyCollection<ISHCShift> shifts = dayTemplates.GetShifts();
 if (shifts != null)
 {
 ISHCShift shift = shifts.ElementAt(0);
 shift.Duration = new TimeSpan(6, 0, 0);
 }
 list.Add(dayTemplates);
 }
 calendar.DayTemplate.Update(list);
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

"Delete" method
Deletes "ISHCDayTemplate" instances of the calendar.
void Delete(
 ICollection<ISHCDayTemplate> dayTemplates);
• dayTemplates

Collection with the "ISHCDayTemplate" instances to be deleted

Runtime Openness
20.3 Runtime API

7954 System Manual, 11/2022

Example:

static void DeleteDayTemplateWithShift()
{
 try
 {
 IReadOnlyCollection<ISHCDayTemplate> dayTemplates =
calendar.DayTemplate.Browse(false);
 if (dayTemplate.Count > 0)
 {
 List<ISHCDayTemplate> list = new List<ISHCDayTemplate>();
 foreach (var dayTemplate in dayTemplates)
 {
 list.Add(dayTemplate);
 }
 calendar.DayTemplate.Delete(list);
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

ISHCShiftTemplate

Description
The C# interface "ISHCShiftTemplate" specifies the properties and methods of a shift.
The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members
"Name" property
The name of the "ISHCShiftTemplate" instance
string Name { get; set; }

"DisplayNames" property
A dictionary from UInt32/string pairs with the display names of the "ISHCShiftTemplate"
instance and their language code IDs.
IDictionary<UInt32, string> DisplayNames { get; }

"Descriptions" property
A dictionary from UInt32/string pairs with the descriptions of the "ISHCShiftTemplate"
instance and their language code IDs.
IDictionary<UInt32, string> Descriptions { get; }

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7955

"Deleted" property
Saves information on whether the shift template was deleted by users.
bool Deleted { get; }

"Duration" property
The duration of the "ISHCShiftTemplate" instance.
TimeSpan Duration { get; set; }

"SetDisplayName" method
Sets the display name of the "ISHCShiftTemplate" instance and its language code ID.
void SetDisplayName(
 UInt32 languageId,
 string displayName);
• languageId

The language code ID of the display name
• displayName

The display name

"SetDescription" method
Sets the description of the "ISHCShiftTemplate" instance and its language code ID.
 void SetDescription(
 UInt32 languageId,
 string description);
• languageId

The language code ID
• description

The description

"GetTimeSlices" method
Supplies a list with the time slices of the "ISHCShiftTemplate" instance.
IReadOnlyList<ISHCTimeSlice> GetTimeSlices();

"CreateTimeSlice" method
Adds a time slice to the "ISHCShiftTemplate" instance.
void CreateTimeSlice(
 ISHCTimeSlice slice);
• slice

Reference to the new time slice

"DeleteTimeSlice" method
Deletes a time slice of the "ISHCShiftTemplate" instance.

Runtime Openness
20.3 Runtime API

7956 System Manual, 11/2022

void DeleteTimeSlice(
 ISHCTimeSlice slice);
• slice

Reference to the time slice to be deleted

See also
Locale IDs of the supported languages (Page 7829)

ISHCShiftTemplatesProvider

Description
The C# interface "ISHCShiftTemplatesProvider" provides you with access to the shift templates of
an "ISHCCalendar" instance. With the methods of the provider, you can create, read, update and
delete shift templates.

Members
"Browse" method
Supplies a collection with the "ISHCShiftTemplate" instances of the calendar.
IReadOnlyCollection<ISHCShiftTemplate> Browse(
 bool includeDeleted);
• includeDeleted

Saves information on whether the collection also contains the deleted shift templates.
Example:

static void ReadShiftTemplatesWithTimeslice()
{
 try
 {
 Console.WriteLine("ReadShiftTemplate With Timeslice");
 IReadOnlyCollection<ISHCShiftTemplate> template =
calendar.ShiftTemplate.Browse(false);
 if (template.Count > 0)
 {
 foreach (var shift in template)
 {
 PrintShiftTemplates(shift);
 ReadTimeslicesforShiftTemplate(shift);
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}",
ex.Message));
 }
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7957

"Create" method
Adds new "ISHCShiftTemplate" instances to the calendar.
void Create(
 ICollection<ISHCShiftTemplate> shiftTemplates);
• shiftTemplates

Collection with the new "ISHCShiftTemplate" instances of the calendar.
Example:

static void CreateShiftTemplateWithTimeSlice()
{
 try
 {
 using (ISHCShiftTemplate pShiftTemplate = calendar.GetObject<ISHCShiftTemplate>())
 {
 pShiftTemplate.Name = "ShiftTemplateName";
 pShiftTemplate.SetDisplayName(1033, "ShiftTemplateDisplayName");
 pShiftTemplate.SetDescription(1033, "ShiftTemplateDescriptions");
 pShiftTemplate.Duration = new TimeSpan(8, 0, 0);
 List<ISHCShiftTemplate> ShiftList = new List<ISHCShiftTemplate>();
 ShiftList.Add(pShiftTemplate);
 calendar.ShiftTemplate.Create(ShiftList);
 IReadOnlyCollection<ISHCCategory> categories = calendar.Category.Browse();
 if (categories.Count > 0)
 {
 ISHCCategory pCat = categories.ElementAt(0);
 ISHCTimeSlice pTimeSlice = calendar.GetObject<ISHCTimeSlice>();
 pTimeSlice.StartTime = DateTime.Now.StartOfDay();
 pTimeSlice.Duration = new TimeSpan(3, 0, 0);
 pTimeSlice.Category = pCat.Name;
 pShiftTemplate.CreateTimeSlice(pTimeSlice);
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}",
ex.Message));
 }
}

"Update" method
Updates "ISHCShiftTemplate" instances of the calendar.
void Update(
 ICollection<ISHCShiftTemplate> shiftTemplates);
• shiftTemplates

Collection with the "ISHCShiftTemplate" instances to be updated

Runtime Openness
20.3 Runtime API

7958 System Manual, 11/2022

Example:

static void UpdateShiftTemplateWithTimeslice()
{
 try
 {
 IReadOnlyCollection<ISHCShiftTemplate> shiftTemplates =
calendar.ShiftTemplate.Browse(false);
 List<ISHCShiftTemplate> list = new List<ISHCShiftTemplate>();
 IReadOnlyCollection<ISHCCategory> categories = calendar.Category.Browse();
 ISHCCategory pCat = categories.ElementAt(1);
 foreach (var shifttemplate in shiftTemplates)
 {
 shifttemplate.Name = "UpdateShiftTemplate";
 shifttemplate.SetDisplayName(1033, "Updated DisplayName");
 shifttemplate.SetDescription(1033, "UpdatedDescription");
 shifttemplate.Duration = new TimeSpan(10, 0, 0);
 list.Add(shifttemplate);
 IReadOnlyCollection<ISHCTimeSlice> Timeslices =
shifttemplate.GetTimeSlices();
 if (Timeslices.Count > 0)
 {
 ISHCTimeSlice timeslice = Timeslices.ElementAt(0);
 timeslice.Duration = new TimeSpan(5, 0, 0);
 timeslice.Category = pCat.Name;
 }
 }
 calendar.ShiftTemplate.Update(list);
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}",
ex.Message));
 }
}

"Delete" method
Deletes "ISHCShiftTemplate" instances of the calendar.
void Delete(
 ICollection<ISHCShiftTemplate> shiftTemplates);
• shiftTemplates

Collection with the "ISHCShiftTemplate" instances of the calendar to be deleted.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7959

Example:

static void DeleteShiftTemplateWithTimeslice()
{
 try
 {
 IReadOnlyCollection<ISHCShiftTemplate> shiftTemplates =
calendar.ShiftTemplate.Browse(false);
 if (shiftTemplates.Count > 0)
 {
 List<ISHCShiftTemplate> list = new List<ISHCShiftTemplate>();
 foreach (var shifttemplate in shiftTemplates)
 {
 list.Add(shifttemplate);
 }
 calendar.ShiftTemplate.Delete(list);
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}",
ex.Message));
 }
}

ISHCShift

Description
The C# interface "ISHCShift" specifies the properties and methods of a shift.
The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members
"StartTime" property
Time stamp with the start time of the "ISHCShift" instance.
DateTime StartTime { get; set; }

"Duration" property
The duration of the "ISHCShift" instance.
TimeSpan Duration { get; set; }

"ShiftTemplate" property
The shift template of the "ISHCShift" instance.
string ShiftTemplate { get; }

Runtime Openness
20.3 Runtime API

7960 System Manual, 11/2022

"IsCustomized" property
Saves information on whether the "ISHCShift" instance was edited by users.
bool IsCustomized { get; }

"DeltaKind" property
Saves information on how the time slices of the "ISHCShift" instance deviate from the shift
template.
ShcDeltaType DeltaKind { get; }
The enumeration "ShcDeltaType" can contain the following values:
• Added (0)
• Modified (1)
• Deleted (2)

"ShiftId" property
Saves the ShiftID of the "ISHCShift" instance.
UInt32 ShiftId { get; set; }

"Comments" property
A dictionary from UInt32/string pairs with the descriptions of the "ISHCShift" instance and
their language code IDs.
IDictionary<UInt32, string> Comments { get; }

"GetTimeSlices" method
Supplies a collection with the time slices of the "ISHCShift" instances.
IReadOnlyList<ISHCTimeSlice> GetTimeSlices();

"CreateTimeSlice" method
Adds a time slice to the "ISHCShift" instance.
void CreateTimeSlice(
 ISHCTimeSlice slice);
• slice

Reference to the new time slice

"DeleteTimeSlice" method
Deletes a time slice of the "ISHCShift" instance.
void DeleteTimeSlice(
 ISHCTimeSlice slice);
• slice

Reference to the time slice to be deleted

"SetComment" method
Adds a comment with language code ID to the "Comments" property.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7961

void SetComment(
 UInt32 languageId,
 string comment);
• languageId

The language code ID of the comment
• comment

The comment

"CreateAction" method
Adds an action to the "ISHCShift" instance.
ISHCAction CreateAction(
 ISHCActionTemplate actionTemplate,
 TimeSpan offset);
• actionTemplate

The action template of the new action
• offset

The offset for the anchor point of the action, in relation to the starting point of the shift.
Positive and negative value allowed.

Example:

static void CreateActionUsingShift()
{
 try
 {
 DateTime start = DateTime.Now.StartOfDay();
 DateTime end = DateTime.Now.EndOfDay();
 end = end.AddDays(3);
 ISHCShift Shift = calendar.Day.Read(start,
end).ElementAt(0).GetShifts().ElementAt(0);
 if (Shift != null)
 {
 ISHCAction Action =
Shift.CreateAction(calendar.ActionTemplate.Read(false).ElementAt(0), new TimeSpan(5, 0,
0));
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

"DeleteAction" method
Deletes an action of the "ISHCShift" instance.
void DeleteAction(ISHCAction shcAction);
• shcAction

Reference to the action to be deleted

Runtime Openness
20.3 Runtime API

7962 System Manual, 11/2022

"GetActions" method
Supplies a list with the actions of the "ISHCShift" instance.
IReadOnlyList<ISHCAction> GetActions();
Example:

static void ReadActionUsingShift()
{
 try
 {
 DateTime start = DateTime.Now.StartOfDay();
 DateTime end = DateTime.Now.EndOfDay();
 end = end.AddDays(3);
 ISHCShift Shift = calendar.Day.Read(start,
end).ElementAt(0).GetShifts().ElementAt(0);
 if (Shift != null)
 {
 IReadOnlyList<ISHCAction> action = Shift.GetActions();
 if (action != null)
 {
 ISHCAction actions = action.ElementAt(0);
 string Action = string.Format("\n Offset:{0} \n IsCustomized:
{1} ,actionTemplate:{2}", actions.Offset, actions.IsCustomized, actions.ActionTemplate);
 System.Console.WriteLine(Action);
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

See also
Locale IDs of the supported languages (Page 7829)

ISHCAction

Description
The C# interface "ISHCAction" specifies the properties and methods of an action.
The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members
"Offset" property
The offset for the anchor point of the "ISHCAction" instance in 100 nanoseconds in relation to
the start point of its shift instance. Positive and negative value allowed.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7963

TimeSpan Offset { get; set; }

"ActionTemplate" property
The action template of the "ISHCAction" instance
string ActionTemplate { get; }

"IsCustomized" property
Saves information on whether the "ISHCAction" instance was edited by users.
bool IsCustomized { get; }

"GetElements" method
Supplies a list with the action elements of the "ISHCAction" instance.
IReadOnlyList<ISHCActionElement> GetElements();

ISHCActionElement

Description
The C# interface "ISHCActionElement" specifies the properties and methods of an action
element of an "ISHCAction" instance.
The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members
"ElementType" property
The type of the "ISHCActionElement" instance.
ShcActionElementType ElementType { get; }
The enumeration "ShcActionElementType" can contain the following values:
• Tag (0)

The action element controls a tag.

"Enabled" property
Saves the information on whether the "ISHCActionElement" instance is activated.
bool Enabled { get; set; }

"Offset" property
The offset of the "ISHCActionElement" instance in 100 nanoseconds in relation to the anchor
point of its action. Positive and negative value allowed.
TimeSpan Offset { get; set; }

"Value" property
Value of the tag controlled by the "ISHCActionElement" instance

Runtime Openness
20.3 Runtime API

7964 System Manual, 11/2022

object Value { get; set; }

"ElementName" property
Name of the tag controlled by the "ISHCActionElement" instance
string ElementName { get; set; }

ISHCActionTemplate

Description
The C# interface "ISHCActionTemplate" specifies the properties and methods of the action
template of an "ISHCAction" instance.
The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members
"Name" property
The name of the "ISHCActionTemplate" instance.
string Name { get; set; }

"DisplayNames" property
A dictionary from UInt32/string pairs with the display names of the "ISHCActionTemplate"
instance and their language code IDs.
IDictionary<UInt32, string> DisplayNames { get; }

"Deleted" property
Saves information on whether the action template was deleted by users.
bool Deleted { get; }

"Descriptions" property
A dictionary from UInt32/string pairs with the descriptions of the "ISHCActionTemplate"
instance and their language code IDs.
IDictionary<UInt32, string> Descriptions { get; }

"SetDisplayName" method
Sets the display name of the "ISHCActionTemplate" instance and its language code ID.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7965

void SetDisplayName(
 UInt32 languageId,
 string displayName);
• languageId

The language code ID of the display name
• displayName

The display name

"SetDescription" property
Sets the description of the "ISHCActionTemplate" instance and its language code ID.
void SetDescription(
 UInt32 languageId,
 string description);
• languageId

The language code
• IDdescription

The description

"CreateElement" property
Adds an "ISHCActionTemplateElement" instance to the "ISHCActionTemplate" instance.
void CreateElement(
 ISHCActionTemplateElement actiontemplateElement);
• actiontemplateElement

Reference to the new action template element

"DeleteElement" property
Deletes an "ISHCActionTemplateElement" instance of the "ISHCActionTemplate" instance.
void DeleteElement(
 ISHCActionTemplateElement actiontemplateElement);
• actiontemplateElement

Reference to the action template element to be deleted

"GetElements" property
Supplies a list with action template elements of the "ISHCActionTemplate" instances.
IReadOnlyList<ISHCActionTemplateElement> GetElements();

See also
Locale IDs of the supported languages (Page 7829)

Runtime Openness
20.3 Runtime API

7966 System Manual, 11/2022

ISHCActionTemplateElement

Description
The C# interface "ISHCActionTemplateElement" specifies the properties and methods of an
action element of an "ISHCActionTemplate" instance.
The interface inherits the "Dispose()" method of the "IDisposable" interface of the .NET
framework.

Members
"ElementType" property
The type of the "ISHCActionTemplateElement" instance.
ShcActionElementType ElementType { get; }
The enumeration "ShcActionElementType" can contain the following values:
• Tag (0)

The action element controls a tag.

"Offset" property
The offset of the "ISHCActionTemplateElement" instance in 100 nanoseconds in relation to
the anchor point of its action template. Positive and negative value allowed.
TimeSpan Offset { get; set; }

"Value" property
Value of the tag controlled by the "ISHCActionTemplateElement" instance.
object Value { get; set; }

"ElementName" property
Name of the tag controlled by the "ISHCActionTemplateElement" instance.
string ElementName { get; set; }

ISHCActionTemplatesProvider

Description
The C# interface "ISHCActionTemplatesProvider" provides you with access to the action
templates of an "ISHCCalendar" instance. With the methods of the provider, you can create, read,
update and delete action templates.

Members
"Browse" method
Supplies a collection with the "ISHCActionTemplate" instances of the calendar.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7967

IReadOnlyCollection<ISHCActionTemplate> Browse(
 bool includeDeleted);
• includeDeleted

Saves information on whether the collection also contains the deleted action templates.
Example:

static void ReadActionTemplate()
{
 try
 {
 Console.WriteLine("ReadActionTemplate");
 IReadOnlyCollection<ISHCActionTemplate> actionTemplate =
calendar.ActionTemplate.Browse(false);
 foreach (var template in actionTemplate)
 {
 PrintActionTemplates(template);
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

"Create" method
Adds new "ISHCActionTemplate" instances to the calendar.
void Create(
 ICollection<ISHCActionTemplate> actionTemplates);
• actionTemplates

Collection with the new "ISHCActionTemplate" instances

Runtime Openness
20.3 Runtime API

7968 System Manual, 11/2022

Example:

static void CreateActionTemplateWithActionTemplateElement()
{
 try
 {
 ISHCActionTemplate pActionTemplate = calendar.GetObject<ISHCActionTemplate>();
 if (pActionTemplate != null)
 {
 pActionTemplate.Name = "ActionTemplate";
 pActionTemplate.SetDisplayName(1033, "ActionDisplayName");
 pActionTemplate.SetDescription(1033, "ActionDescription");
 List<ISHCActionTemplate> ActionList = new List<ISHCActionTemplate>();
 ActionList.Add(pActionTemplate);
 calendar.ActionTemplate.Create(ActionList);
 ISHCActionTemplateElement pActionTemplateElement =
calendar.GetObject<ISHCActionTemplateElement>();
 if (pActionTemplateElement != null)
 {
 pActionTemplateElement.ElementName = "HMI_RT_1::Unit1.Member_1";
 pActionTemplateElement.Value = false;
 pActionTemplateElement.Offset = new TimeSpan(4, 0, 0);
 pActionTemplate.CreateElement(pActionTemplateElement);
 }
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

"Update" method
Updates "ISHCActionTemplate" instances of the calendar.
void Update(
 ICollection<ISHCActionTemplate> actionTemplates);
• actionTemplates

Collection with the "ISHCActionTemplate" instances to be updated

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7969

Example:

static void UpdateActionTemplateWithActionTemplateElement()
{
 IReadOnlyCollection<ISHCActionTemplate> actionTemplates =
calendar.ActionTemplate.Browse(false);
 List<ISHCActionTemplate> list = new List<ISHCActionTemplate>();
 foreach (var actionTemplate in actionTemplates)
 {
 actionTemplate.Name = "UpdatedActionTemplate";
 actionTemplate.SetDisplayName(1033, "UpdatedDisplayName ");
 actionTemplate.SetDescription(1033, "UpdatedDescription"); 　 　
 IReadOnlyCollection<ISHCActionTemplateElement> action =
actionTemplate.GetElements();
 ISHCActionTemplateElement templateElement = action.ElementAt(0);
 templateElement.Offset = new TimeSpan(6, 0, 0);
 list.Add(actionTemplate);
 }
 calendar.ActionTemplate.Update(list);
}

"Delete" method
Deletes "ISHCActionTemplate" instances of the calendar.
void Delete(
 ICollection<ISHCActionTemplate> actionTemplates);
• actionTemplates

Collection with the "ISHCActionTemplate" instances to be deleted
Example:

static void DeleteActionTemplateWithActionTemplateElement()
{
 try
 {
 IReadOnlyCollection<ISHCActionTemplate> actionTemplates =
calendar.ActionTemplate.Browse(false);
 if (actionTemplates.Count > 0)
 {
 List<ISHCActionTemplate> list = new List<ISHCActionTemplate>();
 foreach (var actionTemplate in actionTemplates)
 {
 list.Add(actionTemplate);
 }
 calendar.ActionTemplate.Delete(list);
 }
 }
 catch (OdkException ex)
 {
 System.Console.WriteLine(string.Format("OdkException occurred {0}", ex.Message));
 }
}

Runtime Openness
20.3 Runtime API

7970 System Manual, 11/2022

20.3.8.9 Interfaces of the contexts

IContextLogging

Description
The C# interface "IContextLogging" defines events and methods for creating and reading
"IContextDefinition" instances as well as for starting, stopping, monitoring and reading their
"ILoggedContext" instances. You can use "ILoggedContext" instances to filter runtime data, for
example, for alarms that fall within the time period of a particular "ILoggedContext" instance.
The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.
The methods trigger an exception in case of an error.

Members
"CreateContextDefinitions" method
Creates ContextDefinitions in the database.
void CreateContextDefinitions(ICollection<IContextDefinition>
contextDefinitions)
• contextDefinitions:

Collection with "IContextDefinition" instances

"ReadContextDefinitions" method
Reads ContextDefinitions from the database. The instances can be filtered by plant object and
HMIContextProviderType .

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7971

void ReadContextDefinitions(ICollection<string> plantViewPaths =
null, ICollection<HmiContextProviderType> providerTypes = null,
HmiSortingMode sortingMode = HmiSortingMode.Ascending)
• plantViewPaths:

Limits the read operation to "IContextDefinition" instances from this collection of plant
objects.

• (optional) providerTypes:
Limits the read operation to "IContextDefinition" instances with HmiContextProvider types
from this collection.
The enumeration "HmiContextProviderType" can contain the following values:
– NoContext = 0
– Calendar = 1

For "IContextDefinition" instances generated by the PI Option Calendar.
– PerformanceInsightMachineState = 2

For "IContextDefinition" instances generated by the PI Option Performance Insight.
– LineCoordinator = 3

For "IContextDefinition" instances generated by the PI Option Line Coordinator.
– UserDefined = 5

It is a user-defined "IContextDefinition" instance, created by ODK, for example.
• (optional) sortingMode:

The "HmiSortingMode" according to which the read "IContextDefinition" instances are sorted.
The enumeration "HmiSortingMode" can contain the following values:
– Ascending = 1

Default setting
– Descending = 2

"ReadContexts" method
Reads "ILoggedContext" instances of a specific time period. The instances can be filtered
using a "IContextFilter" instance.
void ReadContexts(DateTime start, DateTime end,
IContextFilter ContextFilter=null, HmiSortingMode sortingMode =
HmiSortingMode.Ascending)
• start:

The start time of the period within which the "ILoggedContext" instances must lie.
• end:

The end time of the period within which the "ILoggedContext" instances must lie.

Runtime Openness
20.3 Runtime API

7972 System Manual, 11/2022

• (optional) ContextFilter:
The "IContextFilter" instance whose filter settings are used.

• (optional) sortingMode:
The "HmiSortingMode" according to which the read "ILoggedContext" instances are sorted.
The enumeration "HmiSortingMode" can contain the following values:
– Ascending = 1

Default setting
– Descending = 2

"StartContext" method
Creates a new "ILoggedContext" instance for a "IContextDefinition" instance.
void StartContext(string contextName, HmiContextProviderType
providerType, string plantViewPath, object contextValue, DateTime
startTime, UInt32 qualityCode)
• contextName:

The name of the "IContextDefinition" instance for which the context log entry is created.
• (optional) providerType:

The HmiContextProviderType that the "IContextDefinition" instance of the context log entry
must have.
The enumeration "HmiContextProviderType" can contain the following values:
– NoContext = 0
– Calendar = 1

For "IContextDefinition" instances generated by the PI Option Calendar.
– PerformanceInsightMachineState = 2

For "IContextDefinition" instances generated by the PI Option Performance Insight.
– LineCoordinator = 3

For "IContextDefinition" instances generated by the PI Option Line Coordinator.
– UserDefined = 5

It is a user-defined "IContextDefinition" instance, created by ODK, for example.
• plantViewPath:

Path to an "IPlantObject" instance
E.g.: ".hierarchy::PlantView/Ln_1/M_1"
Is used in combination with contextName for unique identification of the
"IContextDefinition" instance.

• contextValue:
The context value of the context log entry

• startTime:
The start time of the new context log entry

• qualityCode:
The QualityCode of the context value of the context log entry

"StopContext" method
Stops the currently running "ILoggedContext" instance of an "IContextDefinition" instance.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7973

void StopContext(string contextName, HmiContextProviderType
providerType, string plantViewPath, DateTime endtime)
• contextName:

The name of the "IContextDefinition" instance whose context log entry is stopped.
• (optional) providerType:

The HmiContextProviderType that the "IContextDefinition" instance of the context log entry
must have.
The enumeration "HmiContextProviderType" can contain the following values:
– NoContext = 0
– Calendar = 1

For "IContextDefinition" instances generated by the PI Option Calendar.
– PerformanceInsightMachineState = 2

For "IContextDefinition" instances generated by the PI Option Performance Insight.
– LineCoordinator = 3

For "IContextDefinition" instances generated by the PI Option Line Coordinator.
– UserDefined = 5

It is a user-defined "IContextDefinition" instance, created by ODK, for example.
• plantViewPath:

Path to an "IPlantObject" instance
E.g.: ".hierarchy::PlantView/Ln_1/M_1"
Is used in combination with contextName for unique identification of the
"IContextDefinition" instance.

• endtime:
End time of the context log entry

"Add" method
Adds a "IContextDefintion" instance to a vector. The methods Clear(), Subscribe() and
CancelSubscription() can be called for the instances of the vector.

Runtime Openness
20.3 Runtime API

7974 System Manual, 11/2022

void Add(string contextName, HmiContextProviderType providerType,
string plantViewPath)
• contextName:

The name of the "IContextDefintion" instance
• providerType:

The HmiContextProviderType of the "IContextDefintion" instance
The enumeration "HmiContextProviderType" can contain the following values:
– NoContext = 0
– Calendar = 1

For "IContextDefinition" instances generated by the PI Option Calendar.
– PerformanceInsightMachineState = 2

For "IContextDefinition" instances generated by the PI Option Performance Insight.
– LineCoordinator = 3

For "IContextDefinition" instances generated by the PI Option Line Coordinator.
– UserDefined = 5

It is a user-defined "IContextDefinition" instance, created by ODK, for example.
• plantViewPath:

Path to an "IPlantObject" instance
E.g.: ".hierarchy::PlantView/Ln_1/M_1"
Is used in combination with contextName for unique identification of the
"IContextDefinition" instance.

"Clear" method
Deletes the "IContextDefintion" instances added via Add() from the vector.
void Clear()

"Subscribe" method
Subscribes the "IContextDefinition" instances added to the vector via Add() for monitoring.
void Subscribe()

"CancelSubscription" method
Unsubscribes the "IContextDefinition" instances added to the vector with Add() from
monitoring.
void CancelSubscribe()

"OnContextDefinitionCreate" event
The event calls the delegate "OnContextDefinitionCreateDelegate" after the creation of
ContextDefinitions.
Declares the event and the event handler for creating "IContextDefinition" instances.
event OnContextDefinitionCreateDelegate OnContextDefinitionCreate;

"OnContextDefinitionReadReply" event
After reading the ContextDefinitions, the event calls the
"OnContextDefinitionReadReplyDelegate" delegate.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7975

Declares the event and the event handler for reading "IContextDefinition" instances.
event OnContextDefinitionReadReplyDelegate
OnContextDefinitionReadReply;

"OnLoggedContextReadReply" event
After reading the LoggedContexts, the event calls the "OnContextReadReplyDelegate"
delegate.
Declares the event and the event handler for reading "ILoggedContext" instances.
event OnContextReadReplyDelegate OnLoggedContextReadReply;

"OnContextDataChanged" event
Event calls the delegate "OnContexDataChangedHandler" when starting or stopping a
monitored "ILoggedContext" instance.
Declares the event and the event handler for monitoring "ILoggedContext" instances.
event OnContexDataChangedHandler OnContextDataChanged;

"OnContextDefinitionCreateDelegate" delegate
Specifies the signature of the event handling method for the "OnContextDefinitionCreate"
event of the "IContextLogging" interface.
public delegate void
OnContextDefinitionCreateDelegate(IContextLogging sender,
 UInt32 globalError,
 string systemName,
 List<IContextError> errors,
 bool completed)
• sender:

Source of the event
• globalError:

Global ErrorCode when a global error occurs during the call. All other parameters are invalid
in this case.

• systemName:
Name of the system on which the ContextDefinitions have been created.

• errors:
List with the instance-specific errors that were generated when the ContextDefinitions were
created.

• completed:
Status of the asynchronous transfer:
– True: All ContextDefinitions have been notified.
– False: Additional notifications are expected.

"OnContextDefinitionReadReplyDelegate" delegate
Specifies the signature of the event handling method for the "OnContextDefinitionReadReply"
event of the "IContextLogging" interface.

Runtime Openness
20.3 Runtime API

7976 System Manual, 11/2022

public delegate void
OnContextDefinitionReadReplyDelegate(IContextLogging sender,
 UInt32 globalError,
 string systemName,
 IList<IContextDefinition> contextDefinitionData,
 bool completed)
• sender:

Source of the event
• globalError:

Global ErrorCode when a global error occurs during the call. All other parameters are invalid
in this case.

• systemName:
Name of the system on which the ContextDefinitions have been created.

• contextDefinitionData:
List of read "IContextDefinition" instances

• completed:
Status of the asynchronous transfer:
– True: All ContextDefinitions have been notified.
– False: Additional notifications are expected.

"OnContextReadReplyDelegate" delegate
Specifies the signature of the event handling method for the "OnLoggedContextReadReply"
event of the "IContextLogging" interface.
public delegate void OnContextReadReplyDelegate(IContextLogging
sender,
 UInt32 globalError,
 string systemName,
 IList<ILoggedContext> loggedContexts,
 bool completed)
• sender:

Source of the event
• globalError:

Global ErrorCode when a global error occurs during the call. All other parameters are invalid
in this case.

• systemName:
Name of the system on which the "ILoggedContext" instances have been created.

• loggedContexts:
List with "ILoggedContext" instances that were started or stopped.

• completed:
Status of the asynchronous transfer:
– True: All ContextDefinitions have been notified.
– False: Additional notifications are expected.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7977

"OnContexDataChangedHandler" delegate
Specifies the signature of the event handling method for the "OnContextDataChanged" event
of the "IContextLogging" interface.
public delegate void OnContexDataChangedHandler(IContextLogging
sender,
 IList<ILoggedContext> loggedContexts)
• sender:

Source of the event
• loggedContexts:

List with "ILoggedContext" instances

Example
Copying code
public void CreateContextDefinitions()
{
 Console.WriteLine("CreateContextDefinitions \n");
 var contextLogging = _runtime.GetObject<IContextLogging>();
 List<IContextDefinition> contextDefnitions = new List<IContextDefinition>();
 for (int i = 0; i < 5; i++)
 {
 var contextDefinition = _runtime.GetObject<IContextDefinition>();
 contextDefinition.PlantViewPath = ".hierarchy::Plant/Node1_1";
 contextDefinition.DataType = HmiContextDataType.DInt;
 Dictionary<UInt32, string> displayLanguages = new Dictionary<uint, string>();
 displayLanguages[1033] = "english";
 displayLanguages[1031] = "deutsch";
 contextDefinition.DisplayNames = displayLanguages;
 Random rnd = new Random();
 int num = rnd.Next(1, 1000);
 contextDefinition.Name = "CD_" + num + i.ToString();
 contextDefnitions.Add(contextDefinition);
 contextLogging.OnContextDefinitionCreate +=
ContextLogging_OnContextDefinitionCreate;
 contextLogging.CreateContextDefinitions(contextDefnitions);
 _event.WaitOne();
 _event.Reset();
 contextLogging.Dispose();
 }
}

Runtime Openness
20.3 Runtime API

7978 System Manual, 11/2022

Copying code
private void ContextLogging_OnContextDefinitionCreate(IContextLogging sender, UInt32
globalError, string systemName, IList<IContextError> errors, bool completed)
{
 if (globalError != 0)
 {
 Console.WriteLine("System Name:{0} Error:{1}", systemName, globalError);
 }
 else
 {
 if (null != errors)
 {
 foreach (var error in errors)
 {
 Console.WriteLine("ContextName:{0} Error:{1}", error.Name, error.Error);
 Console.WriteLine();
 }
 }
 }
}

Copying code
public void ReadContextDefinitionsWithFilter()
{
 Console.WriteLine("ReadContextDefinitionsWithFilter \n");
 var contextLogging = _runtime.GetObject<IContextLogging>();
 contextLogging.OnContextDefinitionReadReply +=
OnContextDefinitionReadReplyForContextLogging;
 List<string> plantobjectsfilter = new List<string>();
 plantobjectsfilter.Add(".hierarchy::Plant/Node1_1");
 List<HmiContextProviderType> contextProviderType = new List<HmiContextProviderType>();
 contextProviderType.Add(HmiContextProviderType.UserDefined);
 contextLogging.ReadContextDefinitions(plantViewPaths: plantobjectsfilter,
providerTypes: contextProviderType, sortingMode: HmiSortingMode.Ascending);
 _event.WaitOne();
 _event.Reset();
 contextLogging.Dispose();
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7979

Copying code
public void StartContext()
{
 Console.WriteLine("StartContext \n");
 var contextLogging = _runtime.GetObject<IContextLogging>();
 startDt = System.DateTime.Now;
 object value = "Orange Juice";
 uint quality = 192;
 var strContextName = "ContextName_" + strContext_Unique_Num;
 var providerType = HmiContextProviderType.UserDefined;
 IPlantObject plantObject = ".hierarchy::PlantView/Ln_1/M_1";
 var plantViewPath = ".hierarchy::Plant/Node1_1";
 contextLogging.StartContext(strContextName, providerType, plantViewPath, value,
startDt, quality);
}

Copying code
public void StopContext()
{
 Console.WriteLine("StopContext \n");
 var contextLogging = _runtime.GetObject<IContextLogging>();
 endDt = System.DateTime.Now;
 var strContextName = "ContextName_" + strContext_Unique_Num;
 var providerType = HmiContextProviderType.UserDefined;
 contextLogging.StopContext(strContextName, providerType, endDt);
}

Copying code
void OnContextDefinitionReadReplyForContextLogging(IContextLogging sender, UInt32
globalErrors, string systemName, IList<IContextDefinition> contextDefinitions, bool
completed)
{
 if (globalErrors != 0)
 {
 Console.WriteLine("System Name:{0} Error:{1}", systemName, globalErrors);
 }
 else
 {
 if (null != contextDefinitionData)
 {
 foreach (var cd in contextDefinitionData)
 {
 Console.WriteLine("PlantViewPath:{0} Name:{1} Datatype:{2} Error:{3}",
cd.PlantViewPath, cd.Name, cd.DataType, cd.Error);
 Console.WriteLine();
 }
 }
 }
}

Runtime Openness
20.3 Runtime API

7980 System Manual, 11/2022

Copying code
void OnLoggedContextReadReplyForContextLogging(IContextLogging sender, UInt32
globalErrors, string systemName, IList<ILoggedContext> loggedContexts, bool completed)
{
 if (globalErrors != 0)
 {
 Console.WriteLine("System Name:{0} Error:{1}", systemName, globalErrors);
 }
 else
 {
 if (null != loggedContexts)
 {
 foreach (var lc in loggedContexts)
 {
 Console.WriteLine("StartTime:{0} EndTime:{1} Value:{2} Quality:{3} Error:
{4}", lc.StartTime, lc.EndTime, lc.Value, lc.Quality, lc.Error);
 Console.WriteLine();
 }
 }
 }
}

Copying code
public void Subscribe()
{
 Console.WriteLine("Subscribe \n");
 var contextLogging = _runtime.GetObject<IContextLogging>();
 contextLogging.OnContextDataChanged += OnContextDataChangedForContextLogging;
 CreateContextDefinition();
 var name = "ContextName_" + strContext_Unique_Num;
 var providerType = HmiContextProviderType.UserDefined;
 contextLogging.Add(name, providerType);
 contextLogging.Subscribe();
 StartContext();
 StopContext();
 contextLogging.CancelSubscribe();
 contextLogging.Dispose();
}

IContextDefinition

Description
The C# interface "IContextDefinition" specifies properties for the definition of
"IContextDefinition" instances. "ILoggingContext" instances can be created using the Start() and
Stop() methods based on an "IContextDefiniton" instance.
The interface inherits the Dispose() method of the "IDisposable" interface of the .NET
framework.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7981

Members
"PlantViewPath" property
Sets the path to the plant object of the "IContextDefinition" instance
string PlantViewPath { get; set; }
Example: ".hierarchy::Plant/Station"

"ProviderType" property
The source that creates the instance.
Is used together with "Name" to uniquely identify a "IContextDefinition" instance.
HmiContextProviderType ProviderType { get; }
The enumeration "HmiContextProviderType" can contain the following values:
(optional) providerType:
The HmiContextProviderType that the "IContextDefinition" instance of the context log entry
must have.
The enumeration "HmiContextProviderType" can contain the following values:
• NoContext = 0
• Calendar = 1

For "IContextDefinition" instances generated by the PI Option Calendar.
• PerformanceInsightMachineState = 2

For "IContextDefinition" instances generated by the PI Option Performance Insight.
• LineCoordinator = 3

For "IContextDefinition" instances generated by the PI Option Line Coordinator.
• UserDefined = 5

It is a user-defined "IContextDefinition" instance, created by ODK, for example.

"Name" property
The name of the "IContextDefinition" instance
Is used together with "ProviderType" to uniquely identify a "IContextDefinition" instance.
string Name { get; set;}

"DisplayNames" property
The display name of the "IContextDefinition" instance
IDictionary<UInt32, string> DisplayNames { get; set; }

"DataType" property
The data type of the "IContextDefinition" instance
HmiContextDataType DataType { get; set; }
The enumeration "HmiContextDataType" can contain the following values:
• Bool = 0x01
• SInt = 0x02

Runtime Openness
20.3 Runtime API

7982 System Manual, 11/2022

• Int = 0x03
• DInt = 0x04
• LInt = 0x05
• USInt = 0x06
• UInt = 0x07
• UDInt = 0x08
• ULInt = 0x09
• Real = 0x0A
• LReal = 0x0B
• LTime = 0x0C
• DateTime = 0x0D
• Byte = 0x11
• Word = 0x12
• DWord = 0x13
• LWord = 0x14
• String = 0x32

"Error" property
The error code of the "IContextDefinition" instance
Is set if the instance is read incorrectly.
UInt32 Error { get; }

ILoggedContext

Description
The C# interface "ILoggedContext" defines properties of context log entries of an
"IContextDefinition" instance.
The context log entries are started and stopped using methods of the "IContextLogging"
interface.

Members
"StartTime" property
The start time of the "IContextLogging" instance
DateTime StartTime { get; }

"EndTime" property
The end time of the "IContextLogging" instance

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7983

DateTime EndTime { get; }

"Error" property
The error code of the "IContextLogging" instance
UInt32 Error { get; }

"Value" property
The value of the "IContextLogging" instance
The value has the same data type as is specified by the "DataType" property of the
"IContextDefinition" instance.
Example: An "IContextDefinition" instance has the name "Product" and the data type String.
Its "IContextLogging" instance has the value "Limo".
 object Value { get; }

"Quality" property
The QualityCode of the context value
UInt32 Quality { get; }

IContextError

Description
The C# interface "IContextError" specifies properties of error results that occur when generating
ContextDefinitions in the database.

Members
"Name" property
Name of the "IContextDefintion" instance
string Name { get; }

"Error" property
The error code
UInt32 Error { get; }

IContextFilter

Description
The C# interface "IContextFilter" specifies the properties for filtering according to
"ILoggedContext" instances.

Runtime Openness
20.3 Runtime API

7984 System Manual, 11/2022

Members
"Name" property
The name of the "IContextDefinition" instance for whose "ILoggedContext" instances filtering
is performed.
string Name { set; get; }

"ProviderType" property
The HmiContextProviderType of an "IContextDefinition" instance for whose "ILoggedContext"
instances the filtering is performed.
HmiContextProviderType ProviderType { set; get;}
The enumeration "HmiContextProviderType" can contain the following values:
• NoContext = 0
• Calendar = 1

For "IContextDefinition" instances generated by the PI Option Calendar.
• PerformanceInsightMachineState = 2

For "IContextDefinition" instances generated by the PI Option Performance Insight.
• LineCoordinator = 3

For "IContextDefinition" instances generated by the PI Option Line Coordinator.
• UserDefined = 5

It is a user-defined "IContextDefinition" instance, created by ODK, for example.

"Operator" property
The filter operator
string Operator { set; get; }
The operator is applied to the value. The following operators are allowed:
• For values with data type Int and Real:

– =
– !=
– <
– >
– <=
– >=

• For values with data type String:
– LIKE
– =
Strings must always be fully specified.

string Operator { set; get; }
Examples of operators: ">", "<", ">=" , "<=" and "="

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7985

"Value" property
To filter by "Value" of the "ILoggedContext" instance
object Value { set; get; }

Example
Copying code
public void ReadContextWithFilter()
{
 Console.WriteLine("ReadContextWithFilter \n");
 var contextLogging = _runtime.GetObject<IContextLogging>();
 contextLogging.OnLoggedContextReadReply += OnLoggedContextReadReplyForContextLogging;
 IContextFilter Filter = _runtime.GetObject<IContextFilter>();
 if (Filter != null)
 {
 Filter.Name = "ContextName_" + strContext_Unique_Num;
 Filter.ProviderType = HmiContextProviderType.UserDefined;
 Filter.Operator = "=";
 Filter.Value = "Orange Juice";
 }
 contextLogging.ReadContexts(startDt, endDt, Filter, HmiSortingMode.Ascending);
 _event.WaitOne();
 _event.Reset();
 contextLogging.Dispose();
}

20.3.9 Description of the C++ interfaces

20.3.9.1 Error codes of the C++ interfaces
All methods that have defined a CFRESULT return CFSUCCESS if the method was run through
successfully. Otherwise, they return a corresponding error code.

20.3.9.2 Interfaces of the Runtime environment

IOdkRt

Description
The C++ interface "IOdkRt" specifies methods for the connection to the Runtime system and the
error handling.

Members
The following methods are specified in the interface:

Runtime Openness
20.3 Runtime API

7986 System Manual, 11/2022

"Connect" method
Checks whether valid licenses are available for the products installed on the Runtime device:
• Yes: Connects ODK application and Runtime project.
• No: Supplies an error code. Use the interfaces for error handling to query the error

description (license missing, expired, etc.).
CFRESULT Connect(
 const CFSTR context,
 IRuntime **ppRuntime,
 const CTSTR user = nullptr,
 const CTSTR password = nullptr)
• context

[in]: Name of the runtime project
Note
The name of the Runtime project is not used in the current version. An empty string must be
passed in order to connect to the locally run Runtime project.

• IRuntime
[out]: Points to the initialized "IRuntime" object that the ODK object model makes available.

• user
[in]: User name
Note
Can only be used in a future version!

• password
[in]: Password
Note
Can only be used in a future version!

"Close" method
Enable configuration files and plug-ins of the Runtime system.
CFRESULT Close()

"GetErrorHandler" method
Transfers an "IErrorInfo" object for error handling.
CFRESULT GetErrorHandler(IErrorInfo** pErrorInfo)
IErrorInfo
[out]: Points to an "IErrorInfo" object.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7987

Example
Connect to the Runtime system of the active project:

Copy code
IRuntimePtr pRuntime;

CFRESULT Connect()
{
 // Connect to running project
 CCfString projectName = L"";
 CFRESULT retVal = Connect(projectName, &pRuntime);

 return retVal;
}

Error handling when reading out installed options of the Runtime system:

Copy code
void GetOptionObject(IRuntimePtr pRuntime)
{
 Siemens::Runtime::HmiUnified::Common::Cpp::IOptionPtr pOdkOption;
 //load option component by name
 pRuntime->GetOption(CCfString("MyOptionName"), &pOdkOption);

 ICfUnknownPtr pUnknown;
 //create a instance of the option object "MyOptionObject"
 pOdkOption->GetObject(CCfString("MyOptionObject"), &pUnknown);

 IMyOptionObjectPtr pMyOptionObject(pUnknown);
 CCfString strProperty;
 pMyOptionObject->GetMyProperty(&strProperty);
}

See also
IRuntime (Page 7988)
IErrorInfo (Page 8001)

IRuntime

Description
The C++ interface "IRuntime" specifies methods for information and the addressing of the
Runtime system.

Members
The following methods are specified in the interface:

Runtime Openness
20.3 Runtime API

7988 System Manual, 11/2022

"GetObject" method
Create new instance of an object of the Runtime system. Possible object types are defined in
the configuration file OdkObjectModel.xml.
CFRESULT GetObject(const CFSTR value, ICfUnknown **ppObject)
• value

[in]: Name of the object type, for example "Tag" for tags
• ppObject

[out]: Points to the initialized object of the runtime system.

"GetProduct" method
Return an "IProduct" object that allows access to the version information and installed
options of the Runtime system.
CFRESULT GetProduct(IProduct **ppProduct)
ppProduct
[in/out]: Points to an "IProduct" object that contains the product information of the runtime
system.

"GetOption" method
Referencing installed option of the Runtime system.
CFRESULT GetOption(
 const CFSTR optionName,
 IOption **ppOption)
• optionName

[in]: Name of the installed option
• ppProduct

[out]: Points to an installed option of the Runtime system as "IOption" object.

"GetUserName" method
Return the name of the logged-on user.
CFRESULT GetUserName(CFSTR* name)
name
[out]: Displays the user name.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7989

Example
Initialize an object of the "Tag" type of the Runtime system:

Copy code
CFRESULT ReadSingleTagSync(IRuntimePtr pRuntime, CCfString tag)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"Tag"), &pUnk);

 ITagPtr pTag(pUnk);
 pTag->SetTagName(tag);
 ... //further tag processing
}

Output technical product version of the Runtime system:

Copy code
void GetVersionInfo(IRuntimePtr pRuntime)
{
 IProductPtr pProduct;
 pRuntime->GetProduct(&pProduct);

 uint16_t uintMajor, uintMinor, uintUpdate, uintServicePack;
 IVersionInfoPtr pVersion;

 pProduct->GetVersion(&pVersion);
 pVersion->GetMajor(&uintMajor);
 pVersion->GetMinor(&uintMinor);
 pVersion->GetServicePack(&uintServicePack);
 pVersion->GetUpdate(&uintUpdate);
 wcout << L"WinCC Unified version: " << uintMajor << L"-" << uintMinor << L"-" <<
uintServicePack << L"-" << uintUpdate << endl;
}

Runtime Openness
20.3 Runtime API

7990 System Manual, 11/2022

Use installed options:

Copy code
void GetOptionObject(IRuntimePtr pRuntime)
{
 Siemens::Runtime::HmiUnified::Common::Cpp::IOptionPtr pOdkOption;
 pRuntime->GetOption(CCfString("MyOptionName"), &pOdkOption);

 ICfUnknownPtr pUnk;
 pOdkOption->GetObject("MyOptionObject2", &pUnk);

 IMyOptionObjectPtr pMyOptionObject(pUnknown);
 CCfString strProperty;
 pMyOptionObject->GetMyProperty(&strProperty);

 //using extension methods for CPM node
 ICpmPtr pCpm;
 pRuntime->GetObject(CCfString("Cpm"), (ICfUnknown**) &pCpm);

 ICpmNodePtr pCpmNode;
 CCfString strNode(".hierarchy::PlantView\\Unit1");
 pCpm->GetNode(strNode, &pCpmNode);

 //using specific option interface
 IMyOptionPtr pMyOption(pOdkOption);

 IMyCpmNodeFormulaPtr pFormula;
 pMyOption->GetObject(pCpmNode, CCfString("Formula"), (ICfUnknown**) &pFormula);
 pFormula->SetName(CCfString("Quality"));
 int32_t result;
 pFormula->Calc(&result);
}

See also
IOdkRt (Page 7986)
IProduct (Page 7991)
IOption (Page 7993)

IProduct

Description
The C++ interface "IProduct" specifies methods for handling product information of the Runtime
system.

Members
The following methods are specified in the interface:

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7991

"GetOptions" method
Return installed options of the Runtime system as array of "IOption" objects.
CFRESULT GetOptions(IOptionEnumerator **ppEnumerator)
ppEnumerator
[out]: Points to the installed options as "IOptionEnumerator" object.

"GetVersion" method
Return version structure of the installed Runtime system as "IVersionInfo" object.
CFRESULT GetVersion(IVersionInfo** versionInfo)
versionInfo
[out]: Points to a structure with version information of the installed Runtime system.

Example
Output technical product version of the Runtime system:

Copy code
void GetVersionInfo(IRuntimePtr pRuntime)
{
 IProductPtr pProduct;
 pRuntime->GetProduct(&pProduct);
 uint16_t uintMajor, uintMinor, uintUpdate, uintServicePack;
 IVersionInfoPtr pVersion;

 pProduct->GetVersion(&pVersion);
 pVersion->GetMajor(&uintMajor);
 pVersion->GetMinor(&uintMinor);
 pVersion->GetServicePack(&uintServicePack);
 pVersion->GetUpdate(&uintUpdate);
 wcout << L"WinCC Unified version: " << uintMajor << L"-" << uintMinor << L"-" <<
uintServicePack << L"-" << uintUpdate << endl;
}

Runtime Openness
20.3 Runtime API

7992 System Manual, 11/2022

Output name of all installed options:

Copy code
void GetVersionInfo(IRuntimePtr pRuntime)
{
 IProductPtr pProduct;
 pRuntime->GetProduct(&pProduct);
 IOptionEnumeratorPtr pItems;

 while (pItems->MoveNext() == CF_SUCCESS)
 {
 IOptionPtr pValue;
 pItems->Current(&pValue);
 CCfString module;
 pValue->GetName(&module);
 wcout << L"Option name: " << module << endl;
 }
}

See also
IOdkRt (Page 7986)
IRuntime (Page 7988)
IOption (Page 7993)
IOptionEnumerator (Page 7994)
IVersionInfo (Page 7996)

IOption

Description
The C++ interface "IOption" specifies properties and methods for handling installed product
options of the Runtime system.

Members
The following methods are specified in the interface:

"GetName" method
Return name of an installed option of the Runtime system.
CFRESULT GetName(CFSTR *pValue)
pValue
[out]: Points to the name of an installed option of the runtime system.

"GetObject" method
Referencing installed option of the Runtime system.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7993

CFRESULT GetObject(
 const CFSTR Value,
 ICfUnknown** ppObject)
• Value

[in]: Name of the installed option of the Runtime system
• ppObject

[out]: Points to the installed option of the Runtime system as an "ICfUnknown" object.

"GetVersion" method
Reference version structure of an installed option of the Runtime system as "IVersionInfo"
object.
CFRESULT GetVersion(IVersionInfo** versionInfo)
versionInfo
[out]: Points to a structure with version information of an installed option of the Runtime
system.

Example
Read out installed option:

Copy code
void GetOptionObject(IRuntimePtr pRuntime)
{
 Siemens::Runtime::HmiUnified::Common::Cpp::IOptionPtr pOdkOption;
 pRuntime->GetOption(CCfString("MyOptionName"), &pOdkOption);

 ICfUnknownPtr pUnk;
 pOdkOption->GetObject("MyOptionObject2", &pUnk);

 IMyOptionObjectPtr pMyOptionObject(pUnknown);
 CCfString strProperty;
 pMyOptionObject->GetMyProperty(&strProperty);
}

See also
IProduct (Page 7991)
IOptionEnumerator (Page 7994)
IVersionInfo (Page 7996)

IOptionEnumerator

Description
The "IOptionEnumerator" interface is a C++ interface that specifies methods for handling the
enumeration of installed product options of the Runtime system.
All the methods return CF_SUCCESS in case of successful execution.

Runtime Openness
20.3 Runtime API

7994 System Manual, 11/2022

Members
The following methods are specified in the interface:

"Current" method
Output the current element of the enumeration of a list.
CFRESULT Current(IOption **ppItem)
ppItem
[out]: Points to the current "IOption" object as an element of the list.

"MoveNext" method
Go to the next element of the enumeration of a list.
CFRESULT MoveNext()

"Reset" method
Reset the current position in the enumeration of a list.
CFRESULT Reset()
The "MoveNext"method subsequently moves to the first element of the list.

"Count" method
Output the size of the enumeration or the number of elements of a list.
CFRESULT Count(uint32_t *value)
value
[out]: Points to the value for the number of the elements of the list.

Example
Access the installed options "IOption" of the runtime system:

Copy code
void GetVersionInfo(IRuntimePtr pRuntime)
{
 IProductPtr pProduct;
 pRuntime->GetProduct(&pProduct);

 pProduct->GetOptions(&pItems);
 IOptionEnumeratorPtr pItems;

 while (pItems->MoveNext() == CF_SUCCESS)
 {
 IOptionPtr pValue;
 pItems->Current(&pValue);
 ...
 }
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7995

See also
IOption (Page 7993)

IVersionInfo

Description
The C++ interface "IVersionInfo" specifies methods for reading out version information of the
runtime system.

Members
The following methods are specified in the interface:

"GetMajor" method
Return main version of an installed option of the Runtime system.
CFRESULT GetMajor(uint16_t *pValue)
pValue
[out]: Points to the main version of an installed option of the Runtime system.

"GetMinor" method
Return minor version of an installed option of the Runtime system.
CFRESULT GetMinor(uint16_t *pValue)
pValue
[out]: Points to the minor version of an installed option of the Runtime system.

"GetServicePack" method
Return service pack of an installed option of the Runtime system.
CFRESULT GetServicePack(uint16_t *pValue)
pValue
[out]: Points to the service pack of an installed option of the Runtime system.

"GetUpdate" method
Return update version of an installed option of the Runtime system.
CFRESULT GetUpdate(uint16_t *pValue)
pValue
[out]: Points to the update version of an installed option of the Runtime system.

Runtime Openness
20.3 Runtime API

7996 System Manual, 11/2022

Example
Output technical product version of the Runtime system:

Copy code
void GetVersionInfo(IRuntimePtr pRuntime)
{
 IProductPtr pProduct;
 pRuntime->GetProduct(&pProduct);

 uint16_t uintMajor, uintMinor, uintUpdate, uintServicePack;
 IVersionInfoPtr pVersion;

 pProduct->GetVersion(&pVersion);
 pVersion->GetMajor(&uintMajor);
 pVersion->GetMinor(&uintMinor);
 pVersion->GetServicePack(&uintServicePack);
 pVersion->GetUpdate(&uintUpdate);
 wcout << L"WinCC Unified version: " << uintMajor << L"-" << uintMinor << L"-" <<
uintServicePack << L"-" << uintUpdate << endl;
}

See also
IProduct (Page 7991)
IOption (Page 7993)

IErrorResult

Description
The "IErrorResult" interface is a C++ interface that specifies methods for reading out error details.

Members
The following methods are specified in the interface:

"GetError" method
Read out error code of an error message.
CFRESULT GetError(CFRESULT *value)
value
[out]: Points to an error code.

"GetName" method
Read out name of the associated object of the data source.
CFRESULT GetError(CFSTR *value)
value
[out]: Points to an object name.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7997

Example
Read out details of "IErrorResult" error messages:

Copy code
IErrorResultEnumerator* WriteTagSetSync(IRuntimePtr pRuntime, std::vector<TagTuple_T> tags)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"TagSet"), &pUnk);
 IErrorResultEnumerator* pEnumerator = nullptr;

 ITagSetPtr pTagSet(pUnk);

 // add tags to tag set
 for (int i = 0; i < tags.size(); i++)
 {
 pTagSet->AddWithValue(CCfString(tags[i]._tagName), tags[i]._tagValue);
 }

 errCode = pTagSet->Write(&pEnumerator);
 if (CF_FAILED(errCode))
 {
 std::wcout << L"Write operation failed." << std::endl;
 PrintErrorInformation(errCode, L"Write", pRuntime);
 }
 if (pEnumerator != nullptr)
 {
 while (pEnumerator->MoveNext() == CF_SUCCESS)
 {
 IErrorResult* pValue;
 CFRESULT errorCode = pEnumerator->Current(&pValue);
 if (pValue != nullptr && CF_SUCCEEDED(errorCode))
 {
 pValue->GetError(&errorCode);
 CCfString str;
 pValue->GetName(&str);
 if (CF_FAILED(errorCode))
 {
 std::wcout << L"Write Tag failed, Tag name: " << str << L", ErrorCode:" <<
errorCode << std::endl;
 PrintErrorInformation(errorCode, L"Write Tag", pRuntime);
 }
 }
 }
 }
 return pEnumerator;
}

See also
IErrorResultEnumerator (Page 7999)

Runtime Openness
20.3 Runtime API

7998 System Manual, 11/2022

IErrorResultEnumerator

Description
The "IErrorResultEnumerator" interface is a C++ interface that specifies methods for handling the
enumeration of error messages of the Runtime system.
All the methods return CF_SUCCESS following successful execution.

Members
The following methods are specified in the interface:

"Current" method
Output the current element of the enumeration of a list.
CFRESULT Current(IErrorResult **ppItem)
ppItem
[out]: Points to the current "IErrorResult" object as an element of the list.

"MoveNext" method
Go to the next element of the enumeration of a list.
CFRESULT MoveNext()

"Reset" method
Reset the current position in the enumeration of a list.
CFRESULT Reset()
The "MoveNext" method moves afterwards to the first element of the list.

"Count" method
Output the size of the enumeration or the number of elements of a list.
CFRESULT Count(uint32_t *value)
value
[out]: Points to the value for the number of elements of the list.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 7999

Example
Access the "IErrorResult" error messages when writing a TagSet:

Copy code
IErrorResultEnumerator* WriteTagSetSync(IRuntimePtr pRuntime, std::vector<TagTuple_T> tags)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"TagSet"), &pUnk);
 IErrorResultEnumerator* pEnumerator = nullptr;

 ITagSetPtr pTagSet(pUnk);

 // add tags to tag set
 for (int i = 0; i < tags.size(); i++)
 {
 pTagSet->AddWithValue(CCfString(tags[i]._tagName), tags[i]._tagValue);
 }

 errCode = pTagSet->Write(&pEnumerator);
 if (CF_FAILED(errCode))
 {
 std::wcout << L"Write operation failed." << std::endl;
 PrintErrorInformation(errCode, L"Write", pRuntime);
 }
 if (pEnumerator != nullptr)
 {
 while (pEnumerator->MoveNext() == CF_SUCCESS)
 {
 IErrorResult* pValue;
 CFRESULT errorCode = pEnumerator->Current(&pValue);
 if (pValue != nullptr && CF_SUCCEEDED(errorCode))
 {
 pValue->GetError(&errorCode);
 CCfString str;
 pValue->GetName(&str);
 if (CF_FAILED(errorCode))
 {
 std::wcout << L"Write Tag failed, Tag name: " << str << L", ErrorCode:" <<
errorCode << std::endl;
 PrintErrorInformation(errorCode, L"Write Tag", pRuntime);
 }
 }
 }
 }
 return pEnumerator;
}

See also
IErrorResult (Page 7997)
ITagSet (Page 8014)
ITagSetQCD (Page 8019)

Runtime Openness
20.3 Runtime API

8000 System Manual, 11/2022

IErrorInfo

Description
The "IErrorInfo" interface is a C++ interface that specifies methods for handling error codes.

Members
The following methods are specified in the interface:

"GetErrorDescription" method
Output an error description for the error code.
You have to use the "GetErrorHandler" method to instantiate an "IErrorInfo" object
beforehand.
CFRESULT GetErrorDescription(
 uint32_t errorCode,
 CFSTR *errorDescription)
• errorCode

[in]: Error code that is handed over by the ODK client.
• errorDescription

[out]: Points to the error description of the error code.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8001

Example
Output object name and description of an error:

Copy code
void PrintErrorInformation(CFRESULT errorCode, CCfSmartString objectName, IRuntimePtr
pRuntime)
{
 if (pRuntime != nullptr)
 {
 IErrorInfoPtr pInfo;
 CFRESULT result = pRuntime->GetObject(CCfString(L"ErrorHandler"),
(ICfUnknown**)&pInfo);
 if (CF_FAILED(result))
 {
 std::wcout << "Error occurred: Can not create 'ErrorHandler' object " << std::endl;
 return;
 }
 CCfString resStr;
 result = pInfo->GetErrorDescription(errorCode, &resStr);
 if (CF_SUCCEEDED(result))
 {
 CCfSmartString errorDescription(resStr);
 std::wcout << "Error occurred: '" << errorDescription.Get() << "', ObjectName = "
<< objectName.Get() << std::endl;
 }
 else
 {
 std::wcout << "Error occurred: 'GetErrorDescription' failed, Error number: " <<
result << std::endl;
 }
 }
 else
 {
 CCfString strMsg(L"");
 Siemens::Runtime::HmiUnified::Common::IErrorInfo* pErrorInfo;
 GetErrorHandler(&pErrorInfo);
 CFRESULT rVal = pErrorInfo->GetErrorDescription(errorCode, &strMsg);
 CCfSmartString errorDescription(strMsg);
 std::wcout << "Error occurred: '" << errorDescription.Get() << "', ObjectName = " <<
objectName.Get() << std::endl;
 }
}

See also
IOdkRt (Page 7986)

Runtime Openness
20.3 Runtime API

8002 System Manual, 11/2022

20.3.9.3 Interfaces of the tags

IProcessValue

Description
The C++ interface "IProcessValue" specifies properties and methods for values of process tags of
the Runtime system. The "IProcessValue" interface represents values from the result of a read
operation or monitoring.

Members
The following methods are specified in the interface:

"GetTagName" method
Return the name of the tag.
CFRESULT GetTagName(CFSTR *value)
value
[out]: Points to the name of the tag belonging to the process value.

"GetValue" method
Return value of the tag at the moment of the read operation.
CFRESULT GetValue(CFVARIANT *value)
value
[out]: Points to the process value of the tag.

"GetQuality" method
Return quality code of the read operation of the tag.
CFRESULT GetQuality(int32_t *value)
value
[out]: Points to the quality code of the process tag.

"GetTimeStamp" method
Return the time stamp of the last successful read operation of the tag.
CFRESULT GetTimeStamp(CFDATETIME64 *value)
value
[out]: Points to the time stamp of the read operation of the process tag.

"GetError" method
Return error code of the last read or write operation of the tag.
CFRESULT GetError(int32_t *value)
value
[out]: Points to the error code of the process tag.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8003

Example
Read out a process tag and output the properties of the "IProcessValue" object:

Copy code
CFRESULT ReadSingleTagSync(IRuntimePtr pRuntime, CCfString tag)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"Tag"), &pUnk);

 ITagPtr pTag(pUnk);
 pTag->SetTagName(tag);
 IProcessValuePtr pValue;

 // Read value of tag
 pTag->Read(&pValue);

 CCfString timeStamp;
 CFDATETIME64 cfTimeStamp;
 pValue->GetTimeStamp(&cfTimeStamp);
 CCfDateTime64 time(cfTimeStamp);
 timeStamp = time.GetDateTimeString(false);
 CCfString strName;
 pValue->GetTagName(&strName);
 CCfVariant varValue;
 pValue->GetValue(&varValue);
 int32_t quality;
 pValue->GetQuality(&quality);

 std::wcout << strName.ToUTF8().c_str() << L" " << timeStamp.ToUTF8().c_str() << L" " <<
L" Value: " << (double)(varValue) << L" Quality: " << quality << std::endl;
}

See also
IProcessValueEnumerator (Page 8004)
ITag (Page 8006)
ITagSet (Page 8014)
ITagSetQCD (Page 8019)

IProcessValueEnumerator

Description
The "IProcessValueEnumerator" interface is a C++ interface that specifies methods for handling
the enumeration of process values of the Runtime system. The enumeration is, for example,
used when reading out process values of a TagSet.
All the methods return CF_SUCCESS in case of successful execution.

Runtime Openness
20.3 Runtime API

8004 System Manual, 11/2022

Members
The following methods are specified in the interface:

"Current" method
Output the current element of the enumeration of a list.
CFRESULT Current(IProcessValue **ppItem)
ppItem
[out]: Points to the current "IProcessValue" object as an element of the list.

"MoveNext" method
Go to the next element of the enumeration of a list.
CFRESULT MoveNext()

"Reset" method
Reset the current position in the enumeration of a list.
CFRESULT Reset()
The "MoveNext"method subsequently moves to the first element of the list.

"Count" method
Output the size of the enumeration or the number of elements of a list.
CFRESULT Count(uint32_t *value)
value
[out]: Points to the value for the number of the elements of the list.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8005

Example
Output process values of TagSets:

Copy code
...
IProcessValueEnumeratorPtr pItems;
pTagSet->Read(&pItems);

std::wcout << "Read finished " << std::endl;
// Iterate over the process value objects
while(CF_SUCCEEDED(pItems->MoveNext()))
{
 IProcessValuePtr pValue;
 pItems->Current(&pValue); // get current process value

 CCfString timeStamp;
 CFDATETIME64 cfTimeStamp;
 pValue->GetTimeStamp(&cfTimeStamp);
 CCfDateTime64 time(cfTimeStamp);
 timeStamp = time.GetDateTimeString(false);
 CCfString strName;

 pValue->GetTagName(&strName);
 CCfVariant varValue;
 pValue->GetValue(&varValue);
 int32_t quality;
 pValue->GetQuality(&quality);
 int32_t error = 0;
 pValue->GetError(&error);
 std::wcout << L" " << strName.ToUTF8().c_str() << L" " << timeStamp.ToUTF8().c_str() <<
L" " << L" Value: " << static_cast<double>(varValue) << L" Quality: " << quality << L"
Error: " << (uint32_t)error << std::endl;
}
...

See also
IProcessValue (Page 8003)

ITag

Description
The C++ interface "ITag" specifies methods for handling tags of the Runtime system.
All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
The following methods are specified in the interface:

Runtime Openness
20.3 Runtime API

8006 System Manual, 11/2022

"SetTagName" method
Set name of the tag.
CFRESULT SetTagName(const CFSTR tagName)
tagName
[in]: Name of the tag

"Write" method
Write process value of the tag synchronously in the Runtime system.
CFRESULT Write(
 const CFVARIANT value,
 CFENUM type = HmiWriteType::NoWait)
• value

[in]: Tag value
• type

[in/optional]: The enumeration "HmiWriteType" specifies whether the method waits for the
write operation to be completed:
– HmiWriteType::NoWait (default): Writes the tag value without waiting. Errors for the

write operation are not detected.
– HmiWriteType::Wait: Waits until the tag value is written in the AS. The associated

errors are written.

"WriteQCD" method
Write process value with quality code of the tag synchronously in the Runtime system. The
tag also has a freely definable time stamp. You can use this to acquire past external measured
values, for example.

Note
Reaction to external tags
For external tags, the method only writes the tag value. The QualityCode and time stamp are set
internally by the system.

CFRESULT WriteQCD(
 const CFVARIANT value,
 const CFDATETIME64 timeStamp,
 const int16_t qualityCode,
 CFENUM type = HmiWriteType::NoWait)
• value

[in]: Tag value
• timeStamp

[in]: Time stamp of the tag. Also in the past.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8007

• qualityCode
[in]: Quality code of the tag

• type
[in/optional]: The enumeration "HmiWriteType" specifies whether the method waits for the
write operation to be completed:
– HmiWriteType::NoWait (default): Writes the tag value without waiting. Errors for the

write operation are not detected.
– HmiWriteType::Wait: Waits until the tag value is written in the AS. The associated

errors are written.

"WriteWithOperatorMessage" method
Write process value of the tag synchronously in the runtime system and create operator input
alarm. In addition to the reason, the operator input alarm contains the old and new value,
the user and host names and the unit.
CFRESULT WriteWithOperatorMessage(
 const CFVARIANT value,
 const CFSTR reason)
• value

[in]: Value of the tag
• reason

[in]: Reason for the value change for alarm

"Read" method
Read process value and properties of the tag synchronously from the Runtime system.
CFRESULT Read(
 IProcessValue **ppValue,
 CFENUM type = HmiReadType::Cache)
• ppValue

[out]: Points to the properties and the value of the tag as an "IProcessValue" object.
• type

[in/optional]: The enumeration "HmiReadType" specifies the origin of the tag value:
– HmiReadType::Cache (default): Reads the tag value from the tag image. If no

subscription exists, the tag is subscribed.
– HmiReadType::Device: Reads the tag value directly from the AS. The tag image is not

used.

Runtime Openness
20.3 Runtime API

8008 System Manual, 11/2022

Example
Write tags synchronously:

Copy code
CFRESULT WriteSingleTagSync(IRuntimePtr pRuntime, CCfString tag, CCfVariant& value)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode = pRuntime->GetObject(CCfString(L"Tag"), &pUnk);
 ITagPtr pTag(pUnk);
 pTag->SetTagName(tag);
 // Write value of tag
 errCode = pTag->Write(value, HmiWriteType::Wait);
 return errCode;
}

Write tag with time stamp and quality code synchronously:

Copy code
void WriteSingleTagQCDSync(IRuntimePtr pRuntime, CCfString tag, CCfVariant& value)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"Tag"), &pUnk);
 ITagPtr pTag(pUnk);
 pTag->SetTagName(tag);
 // Write value of tag
 pTag->WriteQCD(value, CCfDateTime64::Now(), 128, HmiWriteType::Wait);
}

Read tags synchronously:

Copy code
CFRESULT ReadSingleTagSync(IRuntimePtr pRuntime, CCfString tag)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"Tag"), &pUnk);

 ITagPtr pTag(pUnk);
 pTag->SetTagName(tag);

 IProcessValuePtr pValue;

 // Read value of tag
 pTag->Read(&pValue);
 ...

 return errCode;
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8009

See also
IProcessValue (Page 8003)
ITagCallback (Page 8010)

ITagCallback

Description
The "ITagCallback" interface and the "COdkTagSourceCBBase" and "COdkTagSetCB" classes
define methods for implementing asynchronous read and write operations with tags. The
methods are used by the C++-interface "ITagSet".

Members of the interface
The following methods are specified in the "ITagCallback" interface:

"OnReadComplete" method
Callback method is called on completion of asynchronous read operations.
The "OnReadComplete" callback method is called when the "ITagSet.ReadAsync" method is
used.
CFRESULT OnReadComplete(
 IProcessValueEnumerator *pEnumerator,
 uint32_t errorCode,
 int32_t contextId,
 CFBOOL completed)
• pEnumerator

[out]: Points to an "IProcessValueEnumerator" object that contains the enumeration of the
read process values.

• systemError
[out]: Error code for the asynchronous operation

• contextId
[out]: ContextID as additional identification feature of the tag.

• completed
[out]: Status of the asynchronous transfer:
– True: All alarms are read out.
– False: Not all alarms are read out yet.

"OnWriteComplete" method
Callback method is called on completion of asynchronous write operations.
The "OnWriteComplete" callback method is called when the "ITagSet.WriteAsync" method is
used.
CFRESULT OnWriteComplete(
 IErrorResultEnumerator *pEnumerator,
 uint32_t errorCode,

Runtime Openness
20.3 Runtime API

8010 System Manual, 11/2022

 int32_t contextId
 CFBOOL completed)
• pEnumerator

[out]: Points to an "IErrorResultEnumerator" object that contains the enumeration with errors
for the write operations of the tag.

• systemError
[out]: Error code for the asynchronous operation

• contextId
[out]: ContextID as additional identification feature of the tag.

• completed
[out]: Status of the asynchronous transfer:
– True: All alarms are read out.
– False: Not all alarms are read out yet.

"OnDataChanged" method
Callback method is called when a monitored tag value is changed.
The callback method is called after the process value change of a monitored TagSet
("ITagSet.Subscribe" method).
CFRESULT OnDataChanged(
 IProcessValueEnumerator *pEnumerator,
 uint32_t errorCode,
 int32_t contextId)
• pEnumerator

[out]: Points to an "IProcessValueEnumerator" object that contains the enumeration of the
read process values.

• systemError
[out]: Error code for the asynchronous operation

• contextId
[out]: ContextID as additional identification feature of the tag.

Members of the classes
The following methods are implemented in the "COdkTagSourceCBBase" and "COdkTagSetCB"
classes:

"SetEvent" method
Signals an event.
CFBOOL SetEvent()

"ResetEvent" method
Resets the signaling of an event.
CFBOOL ResetEvent()

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8011

"WaitForcompletion" method
Waits for the signaling of an event.
uint32_t WaitForcompletion(uint32_t dwMilliseconds)
dwMilliseconds
[in]: Time interval in milliseconds for which an event is waited for.

"GetValues" method
Return process values of the asynchronous read operation.
std::vector<IProcessValue*> GetValues()

Runtime Openness
20.3 Runtime API

8012 System Manual, 11/2022

Example
In the following section tags in a TagSet are read asynchronously. To this purpose the
"ReadTagSetAsync" function uses a "COdkTagSetCB" object that implements the "ITagCallback"
interface and that uses the "COdkTagSourceCBBase" class. The service life of the "COdkTagSetCB"
object is determined via reference counting.

Copy code
void ReadTagSetAsync(IRuntimePtr pRuntime, std::vector<CCfString> tags)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"TagSet"), &pUnk);
 ITagSetPtr pTagSet(pUnk);
 // add tags to tag set
 for(int i = 0; i < tags.size(); i++)
 {
 pTagSet->Add(tags[i]);
 }

 COdkTagSetCB* pTagSetCB = new COdkTagSetCB();
 pTagSetCB->AddRef();
 // Read the tag set asynchronously, result comes via callback
 pTagSet->ReadAsync(pTagSetCB);
 pTagSetCB->WaitForcompletion(std::numeric_limits<uint32_t>::max();
 vector<IProcessValuePtr> pValues = pTagSetCB->GetValues();
 std::wcout << L"Read finished " << std::endl;

 // display tag values
 for(int i = 0; i < pValues.size(); i++)
 {
 IProcessValue* pValue = pValues[i];
 CCfString timeStamp;
 CFDATETIME64 cfTimeStamp;
 pValue->GetTimeStamp(&cfTimeStamp);
 CCfDateTime64 time(cfTimeStamp);
 timeStamp = time.GetDateTimeString(false);
 CCfString strName;
 pValue->GetTagName(&strName);
 CCfVariant varValue;
 pValue->GetValue(&varValue);
 int32_t quality;
 pValue->GetQuality(&quality);
 int32_t error = 0;
 pValue->GetError(&error);
 std::wcout << L" " << strName.ToUTF8().c_str() << L" " << timeStamp.ToUTF8().c_str()
<< L" " << L" Value: " << static_cast<double>(varValue) << L" Quality: " << quality << L"
Error: " << (uint32_t)error << std::endl;
 }
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8013

See also
ITag (Page 8006)
ITagSet (Page 8014)
ITagSetQCD (Page 8019)

ITagSet

Description
The C++ interface "ITagSet" specifies properties and methods for an optimized access to several
tags of the Runtime system.
After initialization of the "ITagSet" object, you can execute read and write access to
multiple tags in one call. Simultaneous access demonstrates better performance and lower
communication load than single access to multiple tags.
All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
The following methods are specified in the interface:

"SetContextId" method
Set ID as an additional identification feature of the tag. The ContextId can, for example, be
used to recognize identically named tags from different monitoring functions. Default value
-1: The ContextId is not used.
CFRESULT SetContextId(const int32_t value)
value
[in]: ContextId of the tag:

"GetContextId" method
Set ID as an additional identification feature of the tag. The ContextId can, for example, be
used to recognize identically named tags from different monitoring functions. Default value
-1: The ContextId is not used.
CFRESULT GetContextId(int32_t *value)
value
[out]: Points to the ContextId of the tag.

"Remove" method
Remove individual tag from a TagSet.
CFRESULT Remove(const CFSTR tagName)
tagName
[in]: Name of the tag that is removed from TagSet.

Runtime Openness
20.3 Runtime API

8014 System Manual, 11/2022

"Add" method
Add tag to a TagSet.
CFRESULT Add(const CFSTR tagName)
tagName
[in]: Name of the tag for TagSet

"AddWithValue" method
Add tag with process value to the TagSet.
CFRESULT AddWithValue(const CFSTR tagName, const CFVARIANT value)
• tagName

[in]: Name of the tag
• value

[in]: New value of the tag

"GetValue" method
Read process value of a tag of a TagSet.
To fill the local TagSet with process values, a "Read", "ReadAsync" or "AddWithValue" method
must be called beforehand.
The values of the "IProcessValue" object are not available until after execution of the methods
"Read", "ReadAsync" or "AddWithValue".
CFRESULT GetValue(const CFSTR tagName, CFVARIANT *pValue)
• tagName

[in]: Name of the tag from the TagSet
• pValue

[out]: Points to the process value of the tag.

"SetValue" method
Change the process value of a tag of a TagSet.
The "SetValue" method changes only the values of the local TagSet. In order to write the
changed values into the automation system you must additionally execute the "Write" or
"WriteAsync" method.
CFRESULT SetValue(const CFSTR tagName, const CFVARIANT value)
• tagName

[in]: Name of the tag from the TagSet
• value

[in]: New value of the tag

"Write" method
Write process values of all tags of a TagSet synchronously in the Runtime system.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8015

CFRESULT Write(HmiUnified::Rt::IErrorResultEnumerator
**ppEnumerator, CFENUM type = HmiWriteType::NoWait)
• ppEnumerator

[out]: Points to an "IErrorResultEnumerator" object that contains the enumeration with errors
for the write operations.

• type
[in/optional]: The enumeration "HmiWriteType" specifies whether the method waits for the
write operation to be completed:
– NoWait (default): Writes the tag values without waiting. Errors for the write operation

are not detected.
– Wait: Waits until the tag values are written in the automation system. The associated

errors are written.

"WriteWithOperatorMessage" method
Write process values of all tags of a TagSet synchronously in the Runtime system and create
operator input alarms. In addition to the reason, the operator input alarms contain the old
and new value, the user and host names and the unit.
CFRESULT WriteWithOperatorMessage(const CFSTR reason)
reason
[in]: Reason for the value change for alarm

"WriteAsync" method
Write process values of all tags of a TagSet asynchronously in the Runtime system.
The method always has the HmiWriteType::Wait type and waits until the tag value has
been written in the automation system. Associated errors are written.
CFRESULT WriteAsync(
 ITagCallback* pTagSetCb)
• pTagSetCb

[in]: Points to the "ITagCallback" object that implements the callback interface.

"Read" method
Read process values and properties of all the tags of a TagSet synchronously from the
Runtime system.

Runtime Openness
20.3 Runtime API

8016 System Manual, 11/2022

CFRESULT Read(
 IProcessValueEnumerator **ppEnumerator,
 CFENUM type = HmiReadType::Cache)
• ppEnumerator

[in/out]: Points to the properties and process values of the tags as an
"IProcessValueEnumerator" object.

• type
[in/optional]: The enumeration "HmiReadType" specifies the origin of the tag value:
– Cache (default): Reads the tag values from the tag image. If no subscription exists, the

tag is subscribed.
– Device: Reads the tag values directly from the automation system. The tag image is not

used.

"ReadAsync" method
Read process values and properties of all the tags of a TagSet asynchronously from the
Runtime system.
CFRESULT ReadAsync(
 ITagCallback *pTagSetCb,
 CFENUM type = HmiReadType::Cache)
• pTagSetCb

[in]: Points to the "ITagCallback" object that implements the callback interface.
• type

[in/optional]: The enumeration "HmiReadType" specifies the origin of the tag value:
– Cache (default): Reads the tag value from the tag image. If no subscription exists, the tag

is subscribed.
– Device: Reads the tag value directly from the AS. The tag image is not used.

"Subscribe" method
Subscribe all tags of a TagSet asynchronously for cyclic monitoring of the process values.

Note
Tags from IO devices with the "Cyclic in operation" acquisition mode
For a tag with the acquisition mode "Cyclic in operation", the value stored in the process image
when Subscribe is called might be outdated. OnAdd therefore only provides the QualityCode
"uncertain". Only value changes made after the Subscribe call provide the current value and the
QualityCode "good".

CFRESULT Subscribe(ITagCallback *pTagSetCb)
pTagCb
[in]: Points to the "ITagCallback" object that implements the callback interface.

"CancelSubscribe" method
Cancel monitoring of all tags of a TagSet.
CFRESULT CancelSubscribe()

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8017

"GetCount" method
Return the number of tags of a TagSet list.
CFRESULT GetCount(int32_t *value)
value
[out]: Points to the value for the number of tags of the TagSet list.

"Clear" method
Remove all tags from a TagSet.
CFRESULT Clear()

Example
Write TagSet asynchronously:

Copy code
struct TagTuple_T
{
 CCfSmartString _tagName;
 CCfVariant _tagValue;
};

void WriteTagSetAsync(IRuntimePtr pRuntime, std::vector<TagTuple_T> tags)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"TagSet"), &pUnk);
 vector<IErrorResultPtr> pErrors;
 ITagSetPtr pTagSet(pUnk);

 // add tags to tag set
 for(int i = 0; i < tags.size(); i++)
 {
 pTagSet->AddWithValue(CCfString(tags[i]._tagName), tags[i]._tagValue);
 }

 COdkTagSetCB* pTagSetCB = new COdkTagSetCB();
 pTagSetCB->AddRef();
 // Write value of tag asynchronously
 pTagSet->WriteAsync(pTagSetCB);
 pTagSetCB->WaitForcompletion(std::numeric_limits<uint32_t>::max());
}

Runtime Openness
20.3 Runtime API

8018 System Manual, 11/2022

Start monitoring for tags of a TagSet:

Copy code
void SubscribeTagSet(IRuntimePtr pRuntime, std::vector<CCfString> tags)
{
 ICfUnknown* pUnk;
 pRuntime->GetObject(CCfString(L"TagSet"), &pUnk);
 ITagSetPtr pTagSet(pUnk);
 // add tags to tag set
 for(int i = 0; i < tags.size(); i++)
 {
 pTagSet->Add(tags[i]);
 }
 COdkTagSetCB* pTagSetCB = new COdkTagSetCB();
 pTagSetCB->AddRef();
 // subscribe tags
 pTagSet->Subscribe(pTagSetCB);
 pTagSetCB->WaitForcompletion(1500);
 std::wcout << L"Stop subscribtion." << std::endl;
 pTagSet->CancelSubscribe();
}

See also
IProcessValue (Page 8003)
ITagCallback (Page 8010)
IErrorResultEnumerator (Page 7999)

ITagSetQCD

Description
The C++ interface "ITagSetQCD" specifies methods for optimized writing of several tags of the
Runtime system. The tags also have a freely definable time stamp and quality code. You can use
this to acquire past external measured values, for example.

Note
Reaction to external tags
For external tags, the method only writes the tag value. The QualityCode and time stamp are set
internally by the system.

After initialization of the "ITagSetQCD" object, you can have read access to multiple tags in
one call. Simultaneous access demonstrates better performance and lower communication
load than single access to multiple tags.
All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8019

Members
The following methods are specified in the interface:

"SetContextId" method
Set ID as an additional identification feature of the tag. The ContextId can, for example, be
used to recognize identically named tags from different monitoring functions. Default value
-1: The ContextId is not used.
CFRESULT SetContextId(const int32_t value)
value
[in]: ContextId of the tag:

"GetContextId" method
Set ID as an additional identification feature of the tag. The ContextId can, for example, be
used to recognize identically named tags from different monitoring functions. Default value
-1: The ContextId is not used.
CFRESULT GetContextId(int32_t *value)
value
[out]: Points to the ContextId of the tag.

"Remove" method
Remove individual tag from a TagSet.
CFRESULT Remove(const CFSTR tagName)
tagName
[in]: Name of the tag that is removed from TagSet.

"Add" method
Add tag with process value, quality code and time stamp to the TagSet.
CFRESULT Add(
 const CFSTR tagName,
 const CFVARIANT value,
 const CFDATETIME64 timeStamp,
 const int16_t qualityCode)
• tagName

[in]: Name of the tag for TagSet
• value

[in]: New process value of the tag
• timeStamp

[in]: Time stamp of the process value. Also in the past.
• qualityCode

[in]: Quality code for process value

"Write" method
Write process values of all tags of a TagSet synchronously in the Runtime system.

Runtime Openness
20.3 Runtime API

8020 System Manual, 11/2022

CFRESULT Write(HmiUnified::Rt::IErrorResultEnumerator
**ppEnumerator, CFENUM type = HmiWriteType::NoWait)
• ppEnumerator

[out]: Points to an "IErrorResultEnumerator" object that contains the enumeration with errors
for the write operations.

• type
[in/optional]: The enumeration "HmiWriteType" specifies whether the method waits for the
write operation to be completed:
– HmiWriteType::NoWait (default): Writes the tag values without waiting. Errors for

the write operation are not detected.
– HmiWriteType::Wait: Waits until the tag values are written in the automation system.

The associated errors are written.

"WriteAsync" method
Write process values of all tags of a TagSet asynchronously in the Runtime system.
The method always has the HmiWriteType::Wait type and waits until the tag value has
been written in the automation system. Associated errors are written.
CFRESULT WriteAsync(
 ITagCallback* pTagSetCb)
• pTagSetCb

[in]: Points to the "ITagCallback" object that implements the callback interface.

"GetCount" method
Return the number of tags of a TagSet list.
CFRESULT GetCount(int32_t *value)
value
[out]: Points to the value for the number of tags of the TagSet list.

"GetItem" method
Return tag of the TagSet for changing or reading out process value, QualityCode and time
stamp.
CFRESULT GetItem(
 const CFSTR name,
 ITagSetQCDItem **pTagSetQCDItem)
• name

[in]: Name of the tag in the TagSet
• pTagSetQCDItem

[out]: Points to tag as "TagSetQCDItem" object

"Clear" method
Remove all tags from a TagSet.
CFRESULT Clear()

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8021

Example
Write TagSet with time stamp and quality code synchronously:

Copy code
struct TagTuple_T
{
 CCfSmartString _tagName;
 CCfVariant _tagValue;
};

void WriteTagSetQCDSync(IRuntimePtr pRuntime, std::vector<TagTuple_T> tags)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"TagSetQCD"), &pUnk);
 ITagSetQCDPtr pTagSetQCD(pUnk);

 // add tags to tag set
 for(int i = 0; i < tags.size(); i++)
 {
 pTagSetQCD->Add(CCfString(tags[i]._tagName), tags[i]._tagValue, CCfDateTime64::Now(),
128);
 }
 IErrorResultEnumerator* pEnumerator;
 pTagSetQCD->Write(&pEnumerator);
 while (pEnumerator->MoveNext() == CF_SUCCESS)
 {
 IErrorResult* pValue;
 CFRESULT errorCode = pEnumerator->Current(&pValue);
 pValue->GetError(&errorCode);
 CCfString str;
 pValue->GetName(&str);
 }
}

See also
IProcessValue (Page 8003)
ITagCallback (Page 8010)
ITagSetQCDItem (Page 8023)
IErrorResultEnumerator (Page 7999)

Runtime Openness
20.3 Runtime API

8022 System Manual, 11/2022

ITagSetQCDItem

Description
The C++ interface "ITagSetQCDItem" specifies methods for adapting tags of the Runtime system.
You can read in tags into a TagSetQCD and then change all names, values, time stamps and
QualityCodes of the tags.

Note
Reaction to external tags
For external tags, only the tag value is set. The QualityCode and time stamp are set internally by
the system.

All the methods return CF_SUCCESS following successful execution.

Members
The following methods are specified in the interface:

"GetName" method
Return the name of the tag.
CFRESULT GetName(CFSTR *name)
name
[out]: Points to the name of the tag.

"SetName" method
Change name of the tag.
CFRESULT SetName(const CFSTR name)
name
[in]: New name of the tag.

"GetValue" method
Return value of the tag at the moment of the read operation.
CFRESULT GetValue(CFVARIANT *value)
value
[out]: Points to the process value of the tag.

"SetValue" method
Change value of the tag.
CFRESULT SetValue(const CFVARIANT value)
value
[in]: New process value of the tag.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8023

"GetTimeStamp" method
Return time stamp of the tag.
CFRESULT GetTimeStamp(CFDATETIME64 *timeStamp)
timeStamp
[out]: Points to the time stamp of the tag.

"SetTimeStamp" method
Change time stamp of the tag.
CFRESULT SetTimeStamp(const CFDATETIME64 timeStamp)
timeStamp
[in]: New time stamp of the tag

"GetQuality" method
Return quality code of the read operation of the tag.
CFRESULT GetQuality(int32_t *qualityCode)
qualityCode
[out]: Points to the quality code of the tag.

"SetQuality" method
Change quality code of the tag.
CFRESULT SetQuality(const int32_t qualityCode)
qualityCode
[in]: New quality code of the tag

See also
ITagSetQCD (Page 8019)

ILoggedTagValue

Description
The C++ interface "ILoggedTagValue" specifies the properties that a logged process value of a
logging tag has in the logging system.
An "ILoggedTagValue" instance is a pure data object. The instance encapsulates all properties
of the logged process value. It represents a historical process value.
All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
The following methods are specified in the interface:

Runtime Openness
20.3 Runtime API

8024 System Manual, 11/2022

"GetTagName" method
Return name of the logging tag.
CFRESULT GetTagName(CFSTR *value)
value
[out]: Points to the name of the process value belonging to the logging tag.

"GetValue" method
Return process value of the logging tag.
CFRESULT GetValue(CFVARIANT *value)
value
[out]: Points to the process value of the logging tag.

"GetQuality" method
Return quality code of the process value.
CFRESULT GetQuality(int16_t *value)
value
[out]: Points to the quality code of the process value.
If the "ILoggedTagValue" instance has been added to the log by calling the "Write" method,
"Quality" has the value "GOOD" (sub-status: "Unspecific", extended sub-status: "Manual
input"). The "Source time" marker is set to "1".

"GetTimeStamp" method
Return time stamp of the process value.
CFRESULT GetTimeStamp(CFDATETIME64 *value)
value
[out]: Points to the time stamp of the process value.

"GetError" method
Return error code of the process value.
CFRESULT GetError(uint32_t *value)
value
[out]: Points to the error code of the process value.

"GetFlags" method
Return context information from the read operation for the process value.
CFRESULT GetFlags(HmiTagLoggingValueFlags *value)
value
[out]: Points to the context information.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8025

The "HmiTagLoggingValueFlags" enumeration contains the following bit-by-bit-coded values:
• 0: Extra

There are still additional values at the time of the process value.
• 2: Calculated

Process value is calculated.
• 16: Bounding

Process value is a limit value.
• 32: NoData

No additional information available
• 64: FirstStored

Process value is the first value stored in the logging system.
• 128: LastStored

Process value is the last value stored in the logging system.

Example
Output process values of a logging tag:

Copy code
void PrintValues(ILoggedTagValueEnumeratorPtr pItems,IRuntimePtr pRuntime)
{
 // Iterate over the process value objects
 while (CF_SUCCEEDED(pItems->MoveNext()))
 {
 ILoggedTagValuePtr pValue;
 pItems->Current(&pValue); // get current process value
 uint32_t nerror;
 pValue->GetError(&nerror);
 if (nerror)
 {
 PrintErrorInformation(nerror, L"GetObject", pRuntime);
 CCfString strName;
 pValue->GetTagName(&strName);
 std::wcout << "Tag With Error: "<<strName.ToUTF8().c_str() << std::endl;
 continue;
 }
 CCfString timeStamp;
 CFDATETIME64 cfTimeStamp;
 pValue->GetTimeStamp(&cfTimeStamp);
 CCfDateTime64 time(cfTimeStamp);
 timeStamp = time.GetDateTimeString(false);
 CCfString strName;
 pValue->GetTagName(&strName);
 CCfVariant varValue;
 pValue->GetValue(&varValue);
 HmiTagLoggingValueFlags enumflag;
 pValue->GetFlags(&enumflag);
 std::wcout << strName.ToUTF8().c_str() << L" " << timeStamp.ToUTF8().c_str() << L"
Value: " << (double)(varValue) <<" Flagvalue = "<< enumflag<< std::endl;
 }
}

Runtime Openness
20.3 Runtime API

8026 System Manual, 11/2022

See also
ILoggedTagValueEnumerator (Page 8027)
ILoggedTag (Page 8032)

ILoggedTagValueEnumerator

Description
The "ILoggedTagValueEnumerator" interface is a C++ interface that specifies methods for
handling the enumeration of process values of a logging tag of the Runtime system. The
methods are used by the C++-interfaces "ILoggedTag" and "ILoggedTagSet".
All the methods return CF_SUCCESS in case of successful execution.

Members
The following methods are specified in the interface:

"Current" method
Output the current element of the enumeration of a list.
CFRESULT Current(ILoggedTagValue **ppItem)
ppItem
[out]: Points to the current "ILoggedTagValue" object as an element of the list.

"MoveNext" method
Go to the next element of the enumeration of a list.
CFRESULT MoveNext()

"Reset" method
Reset the current position in the enumeration of a list.
CFRESULT Reset()
The "MoveNext"method subsequently moves to the first element of the list.

"Count" method
Output the size of the enumeration or the number of elements of a list.
CFRESULT Count(uint32_t *value)
value
[out]: Points to the value for the number of the elements of the list.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8027

Example
Output process values of a logging tag:

Copy code
void PrintValues(ILoggedTagValueEnumeratorPtr pItems,IRuntimePtr pRuntime)
{
 // Iterate over the process value objects
 while (CF_SUCCEEDED(pItems->MoveNext()))
 {
 ILoggedTagValuePtr pValue;
 pItems->Current(&pValue); // get current process value
 ...
 }
}

See also
ILoggedTagValue (Page 8024)
ILoggedTag (Page 8032)
ILoggedTagSet (Page 8033)
ILoggedTagCallback / ILoggedTagSetCallback (Page 8028)

ILoggedTagCallback / ILoggedTagSetCallback

Description
The interfaces "ILoggedTagCallback" and "ILoggedTagSetCallback" and the classes
"COdkTagSourceCBBase" and "COdkTagSetLoggingCB" define methods for implementing
asynchronous read and write operations with logging tags. The methods are used by the C++-
interfaces "ILoggedTag" and "ILoggedTagSet".
All the methods return CF_SUCCESS following successful execution.

Members of "ILoggedTagCallback"
The following methods are specified in the interface:

"OnReadComplete" method
Callback method is called on completion of asynchronous read operations.
CFRESULT OnReadComplete(ILoggedTagValueEnumerator *pEnumerator)
pEnumerator
[out]: Points to an "ILoggegTagValueEnumerator" object that contains the enumeration of
the process values.

"OnDeleteComplete" method
Callback method is called on completion of asynchronous delete operations.
CFRESULT OnDeleteComplete(ILoggedTagValueEnumerator *pEnumerator)

Runtime Openness
20.3 Runtime API

8028 System Manual, 11/2022

pEnumerator
[out]: Points to an "ILoggegTagValueEnumerator" object that contains the enumeration of
the process values.

"OnWriteComplete" method
Callback method is called on completion of asynchronous write operations. Can only be
applied to individual logging tags in the "ILoggedTagCallback" interface.
CFRESULT OnWriteComplete(ILoggedTagValueEnumerator *pEnumerator)
pEnumerator
[out]: Points to an "ILoggegTagValueEnumerator" object that contains the enumeration of
the process values.

"OnDataChanged" method
Callback method is called when a monitored logging tag is changed.
CFRESULT OnDataChanged(ILoggedTagValueEnumerator *pEnumerator)
pEnumerator
[out]: Points to an "ILoggegTagValueEnumerator" object that contains the enumeration of
the process values.

Members of "ILoggedTagSetCallback"
The following methods are specified in the interface:

"OnReadComplete" method
Callback method is called on completion of asynchronous read operations.
The "OnReadComplete" callback method is called when the "ReadAsync" method is used.
CFRESULT OnReadComplete(ILoggedTagValueEnumerator *pEnumerator,
 uint32_t errorCode,
 int32_t contextId)
• pEnumerator

[out]: Points to an "ILoggegTagValueEnumerator" object that contains the enumeration of
the process values.

• errorCode
[out]: Error code for the asynchronous operation

• contextId
[out]: ContextID as additional identification feature of the logging tag.

"OnDataChanged" method
Callback method is called when a monitored logging tag is changed.
The callback method is called after the process value change of a monitored logging tag or a
LoggedTagSet.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8029

CFRESULT OnDataChanged(ILoggedTagValueEnumerator *pEnumerator,
 uint32_t errorCode,
 int32_t contextId)
• pEnumerator

[out]: Points to an "ILoggegTagValueEnumerator" object that contains the enumeration of
the process values.

• errorCode
[out]: Error code for the asynchronous operation

• contextId
[out]: ContextID as additional identification feature of the logging tag.

Members of the classes
The following methods are implemented in the "COdkTagSourceCBBase" and
"COdkTagSetLoggingCB" classes:

"SetEvent" method
Signals an event.
CFBOOL SetEvent()

"ResetEvent" method
Resets the signaling of an event.
CFBOOL ResetEvent()

"WaitForcompletion" method
Waits for the signaling of an event.
uint32_t WaitForcompletion(uint32_t dwMilliseconds)
dwMilliseconds
[in]: Time interval in milliseconds for which an event is waited for.

"GetValues" method
Return process values of the asynchronous read operation.
std::vector<ILoggedTagValuePtr> GetValues()

Runtime Openness
20.3 Runtime API

8030 System Manual, 11/2022

Example
Output LoggedTagSet asynchronously:

Copy code
void LogggingReadTagSetAsync(IRuntimePtr pRuntime, std::vector<CCfString> tags)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"LoggedTagSet"), &pUnk);

 ILoggedTagSetPtr pTagSet(pUnk);
 // add tags to tag set
 for (int i = 0; i < tags.size(); i++)
 {
 pTagSet->Add(tags[i]);
 }
 CCfDateTime64 begin, end;
 begin = CCfDateTime64::Now(true);
 end = begin;
 begin.SubtractTimeSpan(Get1Minute() * 30);

 ILoggedTagValueEnumeratorPtr pItems;

 COdkTagSetLoggingCB* pTagSetCB = new COdkTagSetLoggingCB();

 pTagSetCB->AddRef();
 // Read the tag set asynchronously, result comes via callback
 pTagSet->ReadAsync(pTagSetCB, begin, end, true);
 pTagSetCB->WaitForcompletion(std::numeric_limits<uint32_t>::max());
 vector<ILoggedTagValuePtr> pValues = pTagSetCB->GetValues();

 // display tag values
 for (int i = 0; i < pValues.size(); i++)
 {
 ILoggedTagValue* pValue = pValues[i];
 CCfString timeStamp;
 CFDATETIME64 cfTimeStamp;
 pValue->GetTimeStamp(&cfTimeStamp);
 CCfDateTime64 time(cfTimeStamp);
 timeStamp = time.GetDateTimeString(false);
 CCfString strName;
 pValue->GetTagName(&strName);
 CCfVariant varValue;
 pValue->GetValue(&varValue);
 std::wcout << strName.ToUTF8().c_str() << L" " << timeStamp.ToUTF8().c_str() << L"
Value: " << (double)(varValue) << std::endl;
 }
}

See also
ILoggedTag (Page 8032)
ILoggedTagSet (Page 8033)
ILoggedTagValueEnumerator (Page 8027)

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8031

ILoggedTag

Description
The C++ interface "ILoggedTag" specifies properties and methods for the handling of logging
tags of a logging system. A logging tag is represented by an "ILoggedTag" instance. The
information on the logged process values of the logging tag is stored in "ILoggedTagValue"
instances.
All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
The following methods are specified in the interface:

"SetTagName" method
Set name of the logging tag.
CFRESULT SetTagName(const CFSTR tagName)
tagName
[in]: Name of the logging tag

"Read" method
Synchronous read operation to read the "ILoggedTagValue" instances of the logging tag
whose time stamps are in the time period defined by the arguments.
CFRESULT Read(
 const CFTIMEDATE64 begin,
 const CFTIMEDATE64 end,
 ILoggedTagValueEnumerator** ppEnumerator,
 CFBOOL boundingValue)
• begin

[in]: Start date of the time period
• end

[in]: End date of the time period
• ppEnumerator

[in/out]: Points to the enumeration of "ILoggedTagValue" instances of the logging tag as
"ILoggedTagValueEnumerator" object.

• boundingValue
[in]: True, in order to additionally return high and low limits.

"Write" method
Synchronous write operation.
The method manually writes an "ILoggedTagValue" instance to the logging system. "Quality"
of the instance receives the value "GOOD" (sub-status: "Unspecific", extended sub-status:
"Manual input"). The "Source time" marker is set to "1".

Runtime Openness
20.3 Runtime API

8032 System Manual, 11/2022

Application example: While the connection to the logging system is interrupted, the process
value of a tag that is being logged changes. The resulting "ILoggedTagValue" instance is
cached. After the connection has been re-established, manually add the instance to the log
by calling "Write".
CFRESULT Write(
 ILoggedTagValue* ptag
• ptag

[in]: The "ILoggedTagValue" instance to be logged

Example
Read out process values of a logging tag synchronously from a logging system:

Copy code
void LoggingReadSingleTagSync(IRuntimePtr pRuntime, CCfString tag)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"LoggedTag"), &pUnk);
 ILoggedTagPtr pTag(pUnk);
 pTag->SetTagName(tag);
 CCfDateTime64 begin, end;
 begin = CCfDateTime64::Now(true);
 end = begin;
 begin.SubtractTimeSpan(Get1Minute() * 3);
 ILoggedTagValueEnumeratorPtr pItems;
 // Read value of tag
 pTag->Read(begin, end, &pItems, true);
 std::wcout << "Read finished " << std::endl;
 PrintValues(pItems ,pRuntime);
}

See also
ILoggedTagValue (Page 8024)
ILoggedTagSet (Page 8033)
ILoggedTagCallback / ILoggedTagSetCallback (Page 8028)
ILoggedTagValueEnumerator (Page 8027)

ILoggedTagSet

Description
The C++ interface "ILoggedTagSet" specifies properties, methods and events for optimized
access to a collection of "ILoggedTag" instances of a logging system.
After initializing an "ILoggedTagSet" instance, you can read or write multiple "ILoggedTag"
instances in one call. Simultaneous access demonstrates better performance and lower
communication load than single access to multiple logging tags.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8033

All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
The following methods are specified in the interface:

"SetContextId" method
ID as additional identification feature of the logging tag. The ContextId can, for example,
be used to recognize identically named logging tags from different monitoring functions.
Default value -1: The ContextId is not used.
CFRESULT SetContextId(const int32_t value)
value
[in]: ContextId of the logging tag

"GetContextId" method
ID as additional identification feature of the logging tag. The ContextId can, for example,
be used to recognize identically named logging tags from different monitoring functions.
Default value -1: The ContextId is not used.
CFRESULT GetContextId(int32_t* value)
value
[out]: Points to the ContextId of the logging tag.

"Add" method
The method is overloaded:
• Add a single "ILoggedTag" instance to the "ILoggedTagSet" instance:

CFRESULT Add(const CFSTR tagName)
tagName
[in]: Name of the "ILoggedTag" instance

• Add an "ILoggedTagValue" instance to the "ILoggedTagSet" instance:
CFRESULT Add(ILoggedTagValue* object)
object
[in]: Reference of the "ILoggedTagValue" instance

"Remove" method
Remove individual logging tag from a LoggedTagSet.
CFRESULT Remove(const CFSTR tagName)
tagName
[in]: Name of the logging tag that is removed from the LoggedTagSet.

"Clear" method
Remove all logging tags from a LoggedTagSet.
CFRESULT Clear()

Runtime Openness
20.3 Runtime API

8034 System Manual, 11/2022

"Read" method
Retrieve all logging tags of a LoggedTagSet for a period of time synchronously from the
logging system.
CFRESULT Read(
 const CFTIMEDATE64 begin,
 const CFTIMEDATE64 end,
 ILoggedTagValueEnumerator** ppEnumerator,
 CFBOOL boundingValue)
• begin

[in]: Start date of the time period
• end

[in]: End date of the time period
• ppEnumerator

[in/out]: Points to the enumeration of process values of the logging tags of the LoggedTagSet
as "ILoggedTagValueEnumerator" object.

• boundingValue
[in/optional]: True, in order to additionally return high and low limits.

"ReadAsync" method
Retrieve all logging tags of a LoggedTagSet for a period of time synchronously from the
logging system.
CFRESULT ReadAsync(
 ILoggedTagSetCallback *pTagLoggedCb,
 const CFTIMEDATE64 begin,
 const CFTIMEDATE64 end,
 CFBOOL boundingValue)
• pTagLoggedCb

[in]: Points to the "ILoggedTagSetCallback" object that implements the callback interface.
• begin

[in]: Start date of the time period
• end

[in]: End date of the time period
• boundingValue

[in/optional]: True, in order to additionally return high and low limits.

"Subscribe" method
Subscribe all logging tags of a LoggedTagSet asynchronously for updating the process values
following a change. When new process values are logged, they can be processed with the
"OnDataChanged" event.
CFRESULT Subscribe(ILoggedTagSetCallback* pTagSetLoggedCb)
pTagSetLoggedCb
[in]: Points to the "ILoggedTagSetCallback" object that implements the callback interface.

"CancelSubscribe" method
Cancel updating of process values following a change for all logging tags of a LoggedTagSet.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8035

CFRESULT CancelSubscribe()

"Write" method
Synchronous write operation.
Writes the "ILoggingTagValue" instances added by call of "Add" to the logging system.
"Quality" of the instance receives the value "GOOD" (sub-status: "Unspecific", extended sub-
status: "Manual input"). The "Source time" marker is set to "1".
Errors during write operations are returned in a list with "IErrorResult" instances.
Application example: The connection to the archive server was interrupted. After the
connection has been re-established, add multiple "ILoggedTagValue" instances cached in the
PLC to the archive afterwards by calling "Write".
CFRESULT Write(IErrorResultEnumerator** ppErrorEnumerator)
ppErrorEnumerator
[out]: Points to an "IErrorResultEnumerator" object that contains the enumeration with errors
for the write operations.

"WriteAsync" method
Asynchronous write operation.
Writes the "ILoggingTagValue" instances added by call of "Add" to the logging system.
"Quality" of the instance receives the value "GOOD" (sub-status: "Unspecific", extended sub-
status: "Manual input"). The "Source time" marker is set to "1".
Application example: The connection to the archive server was interrupted. After the
connection has been re-established, add multiple "ILoggedTagValue" instances cached in the
PLC to the archive afterwards by calling "Write".
CFRESULT WriteAsync(ILoggedTagSetCallback* pTagLoggedCb)
pTagLoggedCb
[in]: Points to the "ILoggedTagSetCallback" object that implements the callback interface.

"GetCount" method
Return the number of logging tags of a LoggedTagSet list.
CFRESULT GetCount(int32_t *value)
value
[out]: Points to the value for the number of logging tags of the LoggedTagSet list.

Runtime Openness
20.3 Runtime API

8036 System Manual, 11/2022

Example
Subscribe logging tags of a LoggedTagSet for change monitoring:

Copy code
void LoggingSubscribeTagSet(IRuntimePtr pRuntime, std::vector<CCfString> tags)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"LoggedTagSet"), &pUnk);
 ILoggedTagSetPtr pTagSet(pUnk);
 // add tags to tag set
 for (int i = 0; i < tags.size(); i++)
 {
 pTagSet->Add(tags[i]);
 }
 COdkTagSetLoggingCB* pTagSetCB = new COdkTagSetLoggingCB();
 pTagSetCB->AddRef();
 // subscribe tags
 pTagSet->Subscribe(pTagSetCB);
 //stop subscription
 pTagSet->CancelSubscribe();
}

See also
ILoggedTag (Page 8032)
ILoggedTagCallback / ILoggedTagSetCallback (Page 8028)
ILoggedTagValueEnumerator (Page 8027)

ITags

Description
The C++ interface "ITags" defines methods with which you can access configured tags.
The interface inherits from the "ICfDispatch" interface.
All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
"Find" method
Supplies an enumerator for access to the "ITagAttributes" instances of the specified tag.
CFRESULT Find(
 CFVARIANT systemIDs,
 int32_t language,
 CFSTR filter,
 ITagAttributesEnumerator** ppITagAttributesEnumerator)

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8037

Find(CFVARIANT systemIDs, uint32_t language, CFSTR filter,
ITagAttributesEnumerator** ppITagAttributesEnumerator)
• systemIDs

[in]: Collection of SystemNames on which the tags were configured.
• language

[in]: Language code ID of filter
• filter

[in]: Filter by name of the tags to restrict the search.
Supports searching with wildcard (*)

• ppITagAttributesEnumerator
[out]: Enumerator which supplies access to the "ITagAttributes" instances.

"FindAsync" method
For asynchronous searching for "ITagAttributes" instances of the specified tags.
FindAsync(
 CFVARIANT systemIDs
 uint32_t language
 CFSTR filter
 ITagAttributesCallback* pCallback)
• systemIDs

[in]: Collection of SystemNames on which the tags were configured.
• language

[in]: Language code ID of filter
• filter

[in]: Filter by name of the tags to restrict the search.
Supports searching with wildcard (*)

• filterpCallback:
[in]: Callback pointer to an "ITagAttributesCallback" instance

ITagAttributes

Description
The C++ interface "ITagAttributes" defines methods for access to the attributes of a tag.
All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
"GetName" method
Supplies the name of the tags. Must be unique throughout the device.

Runtime Openness
20.3 Runtime API

8038 System Manual, 11/2022

GetName(
 CFSTR* name)
• name

[out]: The name

"GetDisplayName" method
Supplies the display name of the tags.
GetDisplayName(
 CFSTR* name)
• name

[out]: The display name

"GetDataType" method
Supplies the data type of the tags.
GetDataType(
 CFENUM* datatype)
• datatype

[out]: The data type of the tag

"GetConnection" method
Supplies the connection of the tag.
The memory location of the tag in the controller is accessed via the connection.
GetConnection(
 CFSTR* connection)
• connection

[out]: The connection

"GetAcquisitionCycle" method
Specifies the tag acquisition cycle.
If you configure a tag at an object, the acquisition cycle of the tag is displayed at the object.
GetAcquisitionCycle(
 CFSTR* acquisitionCycle)
• acquisitionCycle

[out]: The acquisition cycle

"GetAcquisitionMode" method
Supplies the acquisition mode of the tag.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8039

GetAcquisitionMode(
 CFENUM* acquisitionMode)
• acquisitionMode

[out]: Value of the enumeration "HmiAcquisitionMode".
The enumeration "HmiAcquisitionMode" can contain the following values:
– Undefined (0)
– CyclicOnUse (1)
– CyclicContinous (2)
– OnDemand (3)
– OnChange (4)

"GetMaxLength" method
Supplies the length of the tags.
The length is only available with a string tag. The length is preset for structure tags and
cannot be changed.
GetMaxLength(
 uint32_t* maxLength)
• maxLength

[out]: Maximum length

"GetPersistent" method
Supplies the persistence of the tags.
GetPersistent(
 CFBOOL* persistent)
• persistent

[out]: The persistence

"GetInitialValue" method
Supplies the start value of the tag.
After Runtime starts, the tag retains the start value until an operator or the PLC changes the
value.
GetInitialValue(
 CFVARIANT * initialValue)
• initialValue

[out]: The start value

"GetInitialMaxValue" method
Supplies the start value for the event "On exceeding".
InitialMaxValue(
 CFVARIANT * initialValue)
• initialValue

[out]: The start value

Runtime Openness
20.3 Runtime API

8040 System Manual, 11/2022

"GetInitialMinValue" method
Supplies the start value for the event "On falling below".
InitialMinValue(
 CFVARIANT * initialValue)
• initialValue

[out]: The start value

"GetSubstituteValue" method
Supplies the substitute value of the tags.
If the selected condition occurs, the tag is filled with the substitute value in runtime.
GetSubstituteValue(
 CFVARIANT * substituteValue)
• substituteValue

[out]: The substitute value

"GetSubstituteValueUsage" method
Supplies the condition for the use of the substitute value of the tag.
GetSubstituteValueUsage(
 CFVARIANT * substituteValueUsage)
• substituteValueUsage

[out]: The condition

ITagAttributesEnumerator

Description
The "ITagAttributesEnumerator" interface is a C++ interface that specifies methods for handling
the enumeration of tag attributes. The enumerator enables access to individual attributes from
a set of tag attributes.
The interface inherits from the "ICfUnknown" interface.
All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
"MoveNext" method
Go to the next element of the enumerator.
CFRESULT MoveNext()

"Current" method
Output the current element of the enumerator

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8041

CFRESULT Current(
 ITagAttributes** ppItem)
• ppItem

[out]: The current "ITagAttributes" instance

"Reset" method
Reset the current position in the enumerator. The "MoveNext" method moves afterwards to
the first element.
CFRESULT Reset()

"Count" method
Output the size of the enumerator or the number of its elements.
CFRESULT Count(
 uint32_t* value)
• value

[out]: Number of attributes

ITagAttributesCallback

Description
The C++ interface "ITagAttributesCallback" defines the callback method "OnTagAttributesRead".
The method is used for implementing asynchronous read operations of tag attributes. The
method is used by the C++ interface "ITags".
The interface implements the methods of the "ICfUnknown" interface.
All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
"OnTagAttributesRead" method
Callback method, is called on completion of an asynchronous search for "ITagAttributes"
instances.
OnTagAttributesRead(
 ITagAttributesEnumerator* pEnumerator,
 CFBOOL bIsCompleted)
• ITagAttributesEnumerator

[in/out]: Reference to an "ITagAttributesEnumerator" instance which provides access to the
tag attributes.

• bIsCompleted
[out]: Supplies information on whether the read operation was successfully completed.

Runtime Openness
20.3 Runtime API

8042 System Manual, 11/2022

ILoggingTags

Description
The C++ interface "ILoggingTags" defines methods with which you can access configured
logging tags.
The interface inherits from the "ICfDispatch" interface.
All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
"Find" method
Supplies an enumerator for access to the "ITagAttributes" instances of the specified logging
tag.
CFRESULT Find(
 CFVARIANT systemIDs,
 uint32_t language,
 CFSTR filter,
 ILoggingTagAttributesEnumerator** ppILoggingTagAttributesEnumerator)
• systemIDs

[in]: Collection of SystemNames on which the logging tags were configured.
• language

[in]: Language code ID of filter
• filter

[in]: Filter by name of the logging tags to restrict the search.
Supports searching with wildcard (*).
Example:
Tag1:* Supplies all logging tags of "Tag1".

• ppILoggingTagAttributesEnumerator
[out]: Enumerator which supplies access to the "ILoggingTagAttributes" instances.

"FindAsync" method
For asynchronous searching for "ILoggingTagAttributes" instances.
CFRESULT FindAsync(CFVARIANT systemIDs,
 uint32_t language,
 CFSTR filter,
 ILoggingTagAttributesCallback* pCallback)
• systemIDs

[in]: Collection of SystemNames on which the logging tags were configured.
• language

[in]: Language code ID of filter

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8043

• filter
[in]: Filter by name of the logging tags to restrict the search.
Supports searching with wildcard (*).

• pCallback
[in]: Callback pointer to an "ILoggingTagAttributesCallback" instance

ILoggingTagAttributes

Description
The C++ interface "ITagAttributes" defines methods for access to the attributes of a logging tag.
All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
"GetName" method
Supplies the name of the logging tag.
GetName(
 CFSTR* name)
• name

[out]: The name

"GetDisplayName" method
Supplies the display name of the logging tags.
GetDisplayName(
 CFSTR* name)
• name

[out]: The display name

"GetDataType" method
Supplies the data type of the logging tags.
GetDataType(
 CFENUM* datatype)
• datatype

[out]: The data type

Runtime Openness
20.3 Runtime API

8044 System Manual, 11/2022

ILoggingTagAttributesEnumerator

Description
The "ILoggingTagAttributesEnumerator" interface is a C++ interface that specifies methods for
handling the enumeration of logging tag attributes. The enumerator enables access to
individual attributes from a set of tag attributes.
The interface inherits from the "ICfUnknown" interface.
 All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
"MoveNext" method
Go to the next element of the enumerator.
CFRESULT MoveNext()

"Current" method
Output the current element of the enumerator
CFRESULT Current(
 ITagAttributes** ppItem)
• ppItem

[out]: The current "ITagAttributes" instance

"Reset" method
Reset the current position in the enumerator. The "MoveNext" method moves afterwards to
the first element.
CFRESULT Reset()

"Count" method
Output the size of the enumerator or the number of its elements.
CFRESULT Count(
 uint32_t* value)
• value

[out]: Number of attributes

ILoggingTagAttributesCallback

Description
The C++ interface "ILoggingTagAttributesCallback" defines the callback method
"OnTagAttributesRead". The method is used for implementing asynchronous read operations of
logging tag attributes. The method is used by the C++ interface "ILoggingTags".

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8045

The interface implements the methods of the "ICfUnknown" interface.
All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
"OnTagAttributesRead" method
Callback method, is called on completion of an asynchronous search for "ITagAttributes"
instances.
OnTagAttributesRead(
 ILoggingTagAttributesEnumerator* pEnumerator,
 CFBOOL bIsCompleted)
• ILoggingTagAttributesEnumerator

[in]: Reference to an "ILoggingTagAttributesEnumerator" instance which provides access to
the tag attributes.

• bIsCompleted
Supplies information on whether the result of the read operation is complete or whether
other events will come.

20.3.9.4 Interfaces of the alarms

IAlarmResult

Description
The C++ interface "IAlarmResult" specifies methods for accessing properties of active alarms of
the runtime system.
An "IAlarmResult" object is a pure data object which maps all properties of an active alarm.

Members
The following methods are specified in the interface:

"GetInstanceID" method
Return InstanceID for an alarm with multiple instances.
CFRESULT GetInstanceID(uint32_t *value)
value
[out]: Points to the InstanceID of the alarm.

"GetSourceID" method
Return source at which the alarm was triggered.
CFRESULT GetSourceID(CFSTR *value)

Runtime Openness
20.3 Runtime API

8046 System Manual, 11/2022

value
[out]: Points to the source of the alarm.

"GetName" method
Return the name of the alarm.
CFRESULT GetName(CFSTR *value)
value
[out]: Points to the name of the alarm.

"GetAlarmClassName" method
Return the name of the alarm class.
CFRESULT GetAlarmClassName(CFSTR *value)
value
[out]: Points to the symbol of the associated alarm class.

"GetAlarmClassSymbol" method
Return the symbol of the alarm class.
CFRESULT GetAlarmClassSymbol(CFSTR *value)
value
[out]: Points to the name of the associated alarm class.

"GetState" method
Return current alarm state.
CFRESULT GetState(int32_t *value)
value
[out]: Points to the current alarm state.

"GetStateText" method
Return current alarm state as text, for example, "active" or "inactive".
CFRESULT GetStateText(CFSTR *value)
value
[out]: Points to the current alarm state as text.

"GetEventText" method
Return text that describes the alarm event.
CFRESULT GetEventText(CFSTR *value)
value
[out]: Points to the text that describes the alarm event.

"GetInfoText" method
Return text that describes the alarm event.
CFRESULT GetInfoText(CFSTR *value)

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8047

value
[out]: Points to the text that describes an operator instruction for the alarm.

"GetAlarmText1" … "GetAlarmText9" method
Return additional texts 1-9 of the alarm.
CFRESULT GetAlarmText1(CFSTR *value)
…
CFRESULT GetAlarmText9(CFSTR *value)
value
[out]: Points to the additional text of the alarm.

"GetTextColor" method
Return text color of the alarm state.
CFRESULT GetTextColor(uint32_t *value)
value
[out]: Points to the text color of the alarm state.

"GetBackColor" method
Return background color of the alarm state.
CFRESULT GetBackColor(uint32_t *value)
value
[out]: Points to the background color of the alarm state.

"GetFlashing" method
Return flashing background color of the alarm state.
CFRESULT GetFlashing(CFBOOL *value)
value
[out]: Points to the flashing background color of the alarm state.

"GetModificationTime" method
Return time of the last modification to the alarm state.
CFRESULT GetModificationTime(CFDATETIME64 *value)
value
[out]: Points to the time of the last change of the alarm state.

"GetChangeReason" method
Return trigger event for modification of the alarm state.
CFRESULT GetChangeReason(uint16_t *value)
value
[out]: Points to the trigger event for the change of the alarm state.

"GetRaiseTime" method
Return trigger time of the alarm.

Runtime Openness
20.3 Runtime API

8048 System Manual, 11/2022

CFRESULT GetRaiseTime(CFDATETIME64 *value)
value
[out]: Points to the time the alarm was triggered.

"GetAcknowledgementTime" method
Return time of alarm acknowledgment.
CFRESULT GetAcknowledgementTime(CFDATETIME64 *value)
value
[out]: Points to the time of alarm acknowledgment.

"GetClearTime" method
Return time of the alarm reset.
CFRESULT GetClearTime(CFDATETIME64 *value)
value
[out]: Points to the time of the alarm reset.

"GetResetTime" method
Return time of the alarm reset.
CFRESULT GetResetTime(CFDATETIME64 *value)
value
[out]: Points to the time of the alarm reset.

"GetSuppressionState" method
Return status of alarm visibility.
CFRESULT GetSuppressionState(uint8_t *value)
value
[out]: Points to the status of the alarm visibility.

"GetPriority" method
Return relevance for display and sorting of the alarm.
CFRESULT GetPriority(uint8_t *value)
value
[out]: Points to the relevance of the alarm.

"GetOrigin" method
Return origin for display and sorting of the alarm.
CFRESULT GetOrigin(CFSTR *value)
value
[out]: Points to the origin of the alarm.

"GetArea" method
Return origin area for display and sorting of the alarm.
CFRESULT GetArea(CFSTR *value)

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8049

value
[out]: Points to the origin area of the alarm.

"GetValue" method
Return the current process value of the alarm.
CFRESULT GetValue(CFVARIANT *value)
value
[out]: Points to the current process value of the alarm.

"GetValueQuality" method
Return quality of the process value of the alarm.
CFRESULT GetValueQuality(uint16_t *value)
value
[out]: Points to the quality of the process value of the alarm.

"GetValueLimit" method
Return process value limit of the alarm.
CFRESULT GetValueLimit(CFVARIANT *value)
value
[out]: Points to the limit of the process value of the alarm.

"GetUserName" method
Return the user name of the operator input alarm.
CFRESULT GetUserName(CFSTR *value)
value
[out]: Points to the user name of the operator input alarm.

"GetLoopInAlarm" method
Return function that navigates from the alarm control to its origin.
CFRESULT GetLoopInAlarm(CFSTR *value)
value
[out]: Points to the function name that navigates to the origin of the alarm.

"GetAlarmParameterValues" method
Return parameter values of the alarm.
CFRESULT GetAlarmParameterValues(CFVARIANT *value)
value
[out]: Points to the parameter values of the alarm.

"GetInvalidFlags" method
Return identification of the alarm with invalid data.
CFRESULT GetInvalidFlags(uint8_t *value)

Runtime Openness
20.3 Runtime API

8050 System Manual, 11/2022

value
[out]: Points to the invalid data of the alarm.

"GetConnection" method
Return connection via which the alarm was triggered.
CFRESULT GetConnection CFSTR *value)
value
[out]: Points to the connection of the alarm.

"GetSystemSeverity" method
Return severity of the system error.
CFRESULT GetSystemSeverity(uint8_t *value)
value
[out]: Points to the severity of the system error.

"GetUserResponse" method
Return expected or required user response to the alarm.
CFRESULT GetUserResponse(uint8_t *value)
value
[out]: Points to the expected or required user response to the alarm.

"GetSourceType" method
Return source from which the alarm was generated, for example, tag-based, controller-based
or system-based alarm.
CFRESULT GetSourceType(uint16_t *value)
value
[out]: Points to the type of source.

"GetDeadBand" method
Return range of the triggering tag in which no alarms are generated.
CFRESULT GetDeadBand(CFVARIANT *value)
value
[out]: Points to the non-triggering range.

"GetId" method
Return ID of the alarm that is also used in the display.
CFRESULT GetId(uint32_t *value)
value
[out]: Points to the ID of the alarm.

"GetAlarmGroupID" method
Return ID of the alarm group to which the alarm belongs.
CFRESULT GetAlarmGroupID(uint32_t* groupId)

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8051

groupId
[out]: The ID of the alarm group

"GetHostName" method
Return the name of the host that triggered the alarm.
CFRESULT GetHostName(CFSTR *value)
value
[out]: Points to the host name.

"GetNotificationReason" method
Return the reason for the notification.
CFRESULT GetNotificationReason(CFENUM* value)
value:
[out]: Points to the enumeration of the notification reason. The notification reason can have
the following values:
• Unknown (0)
• Add (1)

The alarm was added to the filtered result list. The alarm meets the filter criteria that apply to
the monitoring.

• Modify (2)
Properties of the alarm were changed, but the alarm is still part of the filtered result list.

• Remove (3)
The alarm was part of the result list, but it no longer meets the filter criteria due to changes
to its properties.
Note
Changes to the alarms only lead to notifications again when the alarm meets the filter criteria
again. In this case, "NotificationReason" is set to Add.

Note
Removing alarm from business logic
The use case of the client determines whether the client ignores notifications via alarms with the
"NotificationReason" Modify or Remove.
For example:
• State-based monitoring: The client wants to show a list of incoming alarms. All notification

reasons are relevant. The client removes an alarm from the list as soon as the notification
reason is Remove.

• Event-based monitoring: The client wants to send an email when an alarm comes in. Only the
notification reason Add is relevant.

Example:

Runtime Openness
20.3 Runtime API

8052 System Manual, 11/2022

An ODK client begins monitoring with the filter criterion "State" = 1. An alarm is triggered.
Runtime notifies the ODK client of the "NotificationReason" as follows:

Notification‐
Reason

Description

Add • The "State" property is 1. The alarm is active.
Modify • The "State" property has not changed.

• Another property that is not part of the filter criterion has changed, e.g. "Priority".
Remove The "State" property has changed, for example, alarm is inactive.

Method "GetDuration"
Returns the time interval in nanoseconds between triggering of the alarm and its previous
status change.
CFRESULT GetDuration(CFTIMESPAN64 *value)
value
[out]: The time interval in nanoseconds

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8053

Example
When alarms become active, a selection of properties of the "IAlarmResult" objects is output:

Runtime Openness
20.3 Runtime API

8054 System Manual, 11/2022

Copy code
// Callback for alarm notifications
CFRESULT CFCALLTYPE CAlarmValue::OnAlarm(IAlarmResultEnumerator* pItems, uint32_t
systemError, CFSTR systemName, CFBOOL completed)
{
 CFRESULT hr = CF_FALSE;
 CFBOOL bSet = false;
 uint32_t nsize;
 pItems->Count(&nsize);

 if (nsize > 0 && CF_SUCCEEDED(systemError)) {
 m_AlarmValue.clear();

 while (CF_SUCCEEDED(pItems->MoveNext()))
 {
 IAlarmResultPtr ppValues;
 pItems->Current(&ppValues);

 AlarmAttributes AlarmValue;
 AlarmValue.m_nInstanceID;
 ppValues->GetInstanceID(&AlarmValue.m_nInstanceID);
 AlarmValue.m_strSourceID;
 CCfString strId;
 ppValues->GetSourceID(&strId);
 AlarmValue.m_strSourceID = CCfSmartString(strId);
 CCfString strName;
 ppValues->GetName(&strName);
 AlarmValue.m_strName = CCfSmartString(strName);
 CCfString strClassName;
 ppValues->GetAlarmClassName(&strClassName);
 AlarmValue.m_strAlarmClassName = CCfSmartString(strClassName);
 ppValues->GetState(&AlarmValue.m_nState);
 CCfString strEvent;
 ppValues->GetEventText(&strEvent);
 AlarmValue.m_strEventText = CCfSmartString(strEvent);
 CCfString strText;
 ppValues->GetStateText(&strText);
 AlarmValue.m_strStateText = CCfSmartString(strText);
 ppValues->GetBackColor(&AlarmValue.m_nBackColor);
 ppValues->GetTextColor(&AlarmValue.m_nTextColor);
 ppValues->GetFlashing(&AlarmValue.m_bFlashing);
 ppValues->GetDuration(&nDuration);

 ...

 AlarmValue.m_nAlarmsSize = nsize;

 AlarmValue.m_strSystemName = systemName;
 std::cout << "System name = " << AlarmValue.m_strSystemName.ToUTF8().c_str() <<
std::endl;

 m_AlarmValue.push_back(AlarmValue);
 std::cout << "Alarm name = " << strName.ToUTF8().c_str() << std::endl;
 }

 this->SetEvent();

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8055

Copy code
 return CF_SUCCESS;
 }
 return hr;
}

See also
IAlarmResultEnumerator (Page 8056)
IAlarm (Page 8057)
IAlarmSubscription (Page 8077)

IAlarmResultEnumerator

Description
The "IAlarmResultEnumerator" interface is a C++ interface that specifies methods for handling
the enumeration of active alarms of the runtime system. Through the enumeration, you access
individual alarms from the quantity of all active alarms of the runtime system.
All the methods return CF_SUCCESS following successful execution.

Members
The following methods are specified in the interface:

"Current" method
Output the current element of the enumeration of a list.
CFRESULT Current(IAlarmResult **ppItem)
ppItem
[out]: Points to the current "IAlarmResult" object as an element of the list.

"MoveNext" method
Go to the next element of the enumeration of a list.
CFRESULT MoveNext()

"Reset" method
Reset the current position in the enumeration of a list.
CFRESULT Reset()
The "MoveNext" method moves afterwards to the first element of the list.

"Count" method
Output the size of the enumeration or the number of elements of a list.
CFRESULT Count(uint32_t *value)

Runtime Openness
20.3 Runtime API

8056 System Manual, 11/2022

value
[out]: Points to the value for the number of elements of the list.

See also
IAlarmResult (Page 8046)

IAlarm

Description
The C++ interface "IAlarm" specifies properties and methods for handling active alarms of the
runtime system.
All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
The following methods are specified in the interface:

"SetSourceID" method
Set the ID of the source at which the active alarm was triggered.
CFRESULT SetSourceID(CFVARIANT sourceID)
sourceID
[in]: ID of the source of the active alarm

"SetName" method
Set the name of the active alarm.
CFRESULT SetName(CFSTR name)
name
[in]: Name of the active alarm

"GetName" method
Read out name of the active alarm.
CFRESULT GetName(CFSTR *name)
name
[out]: Points to a name of the active alarm.

"SetErrorCode" method
Set error code of the alarm.
CFRESULT SetErrorCode(uint32_t errorCode)
errorCode
[in]: Error code

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8057

"GetError" method
Read out error code of the alarm.
CFRESULT GetError(uint32_t *error)
error
[out]: Error code

"Disable" method
Deactivate generation of the alarm in the alarm source synchronously.
CFRESULT Disable()

"Enable" method
Activate generation of the alarm in the alarm source again synchronously.
CFRESULT Enable()

"Shelve" method
Hide active alarm synchronously.
CFRESULT Shelve()

"Unshelve" method
Display hidden alarm synchronously again.
CFRESULT Unshelve()

"Acknowledge" method
Acknowledge active alarm or instance of an active alarm synchronously.
CFRESULT Acknowledge(uint32_t instanceId)
• instanceId

Value "0": Acknowledge all instances of an active alarm.
Value > "0": Acknowledge instance with this ID.

"Reset" method
Acknowledge the inactive state of an active alarm or an instance of an active alarm
synchronously.
CFRESULT Reset(uint32_t instanceId)
• instanceId

Value "0": Acknowledge the inactive state of the active alarm.
Value > "0": Acknowledge the inactive state of an instance with this ID.

Runtime Openness
20.3 Runtime API

8058 System Manual, 11/2022

Example
Acknowledge list of active alarms synchronously:

Copy code
vector<AlarmAttributes> g_vecAlarmList;

void AcknowledgeAlarmSync(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"Alarm"), &pUnk);

 IAlarmPtr pAlarm(pUnk);
 pAlarm->SetName("Tag1:Alarm1");
 CFRESULT errCode = pAlarm->Acknowledge();
 }
}

See also
IAlarmResult (Page 8046)

IAlarmCallback

Description
The C++ interface "IAlarmCallback" defines methods for implementing asynchronous operations
for monitoring active alarms. The methods are used by the "IAlarmSubscription" interface.

Members
The following methods are specified in the "IAlarmCallback" interface:

"OnAlarm" method
Callback method is called when active alarms on monitored systems change the alarm state.
The "OnAlarm" callback method is called when the "IAlarmSubscription.Start" method is used.
CFRESULT OnAlarm(
 IAlarmResultEnumerator* pItems,
 uint32_t systemError,
 CFSTR systemName,
 CFBOOL completed)
• pItems

[in]: Points to an "IAlarmResultEnumerator" object that contains the enumeration of the
changed active alarms.

• systemError
[in]: Error code for the asynchronous operation

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8059

• systemName
[in]: System of the associated Runtime system.

• completed
[in]: True, if no more data from the callback can be expected.

"OnPendingAlarmsComplete" method
Callback method is called to display the completion of the handling of all the active alarms of
a system.
The "OnPendingAlarmsComplete" callback method is called when the
"IAlarmSubscription.Start" method is used.
CFRESULT OnPendingAlarmsComplete()

Runtime Openness
20.3 Runtime API

8060 System Manual, 11/2022

Example
In the following section, monitored active alarms are written asynchronously into the
"g_vecAlarmList" map at a change. To this purpose the "SubscribeAlarm" function uses a
"CAlarmValue" object that implements the "IAlarmCallback" interface and that uses the
"COdkTagSourceCBBase" class. The service life of the "CAlarmValue" object is determined via
reference counting.

Copy code
const uint32_t g_nMaxWaitTime = 6000;
vector<AlarmAttributes> g_vecAlarmList;

void SubscribeAlarm(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"AlarmSubscription"), &pUnk));
 IAlarmSubscriptionPtr pAlarm(pUnk);
 CAlarmValue* pAlarmValue = new CAlarmValue();
 pAlarmValue->AddRef();
 IAlarmCallback* pCB = pAlarmValue;
 CCfSafeArrayBound bounds(1UL, 0);
 CCfSafeArray daAttribute;
 CCfSafeArray daSystemID(CF_VT_SREF, 1, &bounds);
 CCfVariant daDataSource = 0;
 CCfVariant vSystemIDs = 0;
 // Subscription filter is currently not supported!
 CCfSmartString daFilter = L"";
 CCfSREF id(L"SYSTEM1");
 int32_t index = 0;
 daSystemID.PutElement(&index, &id);
 CCfVariant daLanguage = 1033;

 daSystemID.Detach(&vSystemIDs);
 CCfSmartString strFilter = L"";
 // Start Subscription
 pAlarm->SetFilter(strFilter.AllocCFSTR());
 pAlarm->SetLanguage(1033);
 pAlarm->SetSystemNames(vSystemIDs);
 Alarm->Start(pCB);
 // Wait for alarm notifications
 pAlarmValue->WaitForcompletion(g_nMaxWaitTime);
 Alarm->Stop();
 pAlarmValue->GetAlarmAttributes(g_vecAlarmList);
}

See also
IAlarmSubscription (Page 8077)

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8061

IAlarmSourceCommandCallback

Description
The C++ interface "IAlarmSourceCommandCallback" defines methods for implementing
asynchronous operations with active alarms. The methods are used by the "IAlarmSet" interface.

Members
The following methods are specified in the interface:

"OnAcknowledge" method
Callback method is called when an active alarm has been acknowledged.
The "OnAcknowledge" callback method is called when the "IAlarmSet.Acknowledge" method
is used.
CFRESULT OnAcknowledge(
 CFRESULT SystemError,
 IAlarmSetResultEnumerator *AlarmSetResult,
 CFBOOL MoreFollows)
• SystemError

[in]: Basic errors that occurred during the asynchronous transfer.
• AlarmSetResult

[in]: Points to an enumeration with the alarms of the callback
• MoreFollows

[in]: Status of the asynchronous transfer:
– True: Further callbacks are to be expected.
– False: This is the last callback.

"OnReset" method
Callback method is called when an active alarm has been removed.
The "OnReset" callback method is called when the "IAlarmSet.Reset" method is used.
CFRESULT OnReset(
 CFRESULT SystemError,
 IAlarmSetResultEnumerator *AlarmSetResult,
 CFBOOL MoreFollows)
• SystemError

[in]: Basic errors that occurred during the asynchronous transfer.
• AlarmSetResult

[in]: Points to an enumeration with the alarms of the callback
• MoreFollows

[in]: Status of the asynchronous transfer:
– True: Further callbacks are to be expected.
– False: This is the last callback.

Runtime Openness
20.3 Runtime API

8062 System Manual, 11/2022

"OnDisable" method
Callback method is called when the generation of the alarm in the alarm source has been
deactivated.
The "OnDisable" callback method is called when the "IAlarmSet.Disable" method is used.
CFRESULT OnDisable(
 CFRESULT SystemError,
 IAlarmSetResultEnumerator *AlarmSetResult,
 CFBOOL MoreFollows)
• SystemError

[in]: Basic errors that occurred during the asynchronous transfer.
• AlarmSetResult

[in]: Points to an enumeration with the alarms of the callback
• MoreFollows

[in]: Status of the asynchronous transfer:
– True: Further callbacks are to be expected.
– False: This is the last callback.

"OnEnable" method
Callback method is called when the generation of the alarm in the alarm source has been
activated again.
The "OnEnable" callback method is called when the "IAlarmSet.Enable" method is used.
CFRESULT OnEnable(
 CFRESULT SystemError,
 IAlarmSetResultEnumerator *AlarmSetResult,
 CFBOOL MoreFollows)
• SystemError

[in]: Basic errors that occurred during the asynchronous transfer.
• AlarmSetResult

[in]: Points to an enumeration with the alarms of the callback
• MoreFollows

[in]: Status of the asynchronous transfer:
– True: Further callbacks are to be expected.
– False: This is the last callback.

"OnShelve" method
Callback method is called when an active alarm has been hidden.
The "OnShelve" callback method is called when the "IAlarmSet.Shelve" method is used.
CFRESULT OnShelve(
 CFRESULT SystemError,

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8063

 IAlarmSetResultEnumerator *AlarmSetResult,
 CFBOOL MoreFollows)
• SystemError

[in]: Basic errors that occurred during the asynchronous transfer.
• AlarmSetResult

[in]: Points to an enumeration with the alarms of the callback
• MoreFollows

[in]: Status of the asynchronous transfer:
– True: Further callbacks are to be expected.
– False: This is the last callback.

"OnUnShelve" method
Callback method is called when an active alarm has been shown.
The "OnUnshelve" callback method is called when the "IAlarmSet.Unshelve" method is used.
CFRESULT OnUnshelve(
 CFRESULT SystemError,
 IAlarmSetResultEnumerator *AlarmSetResult,
 CFBOOL MoreFollows)
• SystemError

[in]: Basic errors that occurred during the asynchronous transfer.
• AlarmSetResult

[in]: Points to an enumeration with the alarms of the callback
• MoreFollows

[in]: Status of the asynchronous transfer:
– True: Further callbacks are to be expected.
– False: This is the last callback.

Runtime Openness
20.3 Runtime API

8064 System Manual, 11/2022

Example
In the following section, monitored active alarms of the "g_vecAlarmList" vector are
acknowledged asynchronously. To this purpose the "AcknowledgeAlarmAsync" function uses a
"CAlarmSourceCommandCB" object that implements the "IAlarmSourceCommandCallback"
interface and that uses the "COdkTagSourceCBBase" class. The service life of the
"CAlarmSourceCommandCB" object is determined via reference counting.

Copy code
const uint32_t g_nMaxWaitTime = 6000;
vector<AlarmAttributes> g_vecAlarmList; 　

void AcknowledgeAlarmAsync(IRuntimePtr pRuntime)
{

 ICfUnknownPtr pUnk;
 CFRESULT errCode;
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString(L"AlarmSet"), &pUnk)))
 {
 IAlarmSetPtr pAlarmSet(pUnk);
 CAlarmSourceCommandCB* pAlarmSoureCommand = new CAlarmSourceCommandCB();
 pAlarmSoureCommand->AddRef();
 IAlarmSourceCommandCallback* pCB = pAlarmSoureCommand;
 vector<AlarmAttributes>::iterator it = g_vecAlarmList.begin(); 　 // iterate through
list of notified alarms and acknowledge each alarm
 while (it != g_vecAlarmList.end())
 {
 IAlarm* pAlarm = nullptr; CCfVariant vtAlarmName = it->m_strName;
 errCode = pAlarmSet->Add(vtAlarmName, &pAlarm);
 it++;
 }

 // acknowledged the AlarmSet
 errCode = pAlarmSet->Acknowledge(pCB);
 // wait for acknowledge callback
 if (CF_SUCCEEDED(errCode) && pAlarmSoureCommand->WaitForcompletion(g_nMaxWaitTime) ==
CF_SUCCESS)
 {
 ...
 }
 }
}

See also
IAlarmSet (Page 8065)

IAlarmSet

Description
The C++ interface "IAlarmSet" specifies properties and methods for optimized access to several
active alarms of the runtime system.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8065

After the initialization of the "IAlarmSet" object, you can execute asynchronous operations
with multiple alarms in one call, e. g. acknowledgment or comment. Simultaneous access
demonstrates better performance and lower communication load than single access to
multiple tags.
All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
The following methods are specified in the interface:

"GetCount" method
Return number of alarms of an AlarmSet list.
CFRESULT GetCount(uint32_t *value)
value
[out]: Points to the value for the number of alarms of the AlarmSet list.

"Remove" method
Remove a single alarm or an instance of an alarm from an AlarmSet.
CFRESULT Remove(CFSTR name, uint32_t instanceId)
• name

[in]: Name of the alarm that is removed to the AlarmSet.
• instanceId

[in]:
Value = "0": Remove all instances of an active alarm.
Value > "0": Remove instance with this ID.

"Add" method
Add an active alarm or an instance of the alarm to an AlarmSet.
CFRESULT Add(
 CFVARIANT p_varName,
 IAlarm** pAlarm,
 uint32_t instanceId)
• p_varName

[in]: Name of the alarm tag that is added to the AlarmSet.
• pAlarm

[out]: Points to the added "IAlarm" object of the AlarmSet.
• instanceId

[in]:
Value = "0": Add all instances of an active alarm.
Value > "0": Add instance with this ID.

"Get" method
Reference an alarm or an instance of an alarm from an AlarmSet.

Runtime Openness
20.3 Runtime API

8066 System Manual, 11/2022

CFRESULT Get(
 const CFSTR p_varName,
 IAlarm** pAlarm,
 uint32_t instanceId)
• p_varName

[in]: Name of the alarm tag.
• pAlarm

[out]: Points to the "IAlarm" object of the AlarmSet.
• instanceId

[in]:
Value = "0": Reference all instances of an active alarm.
Value > "0": Reference instance with this ID.

"Disable" method
Deactivate generation of alarms of the AlarmSet in the alarm source asynchronously.
CFRESULT Disable(IAlarmSourceCommandCallback* p_pCallback)
p_pCallback
[in/out]: Points to an "IAlarmSourceCommandCallback" object that implements the
asynchronous operation.

"Enable" method
Activate generation of alarms of the AlarmSet in the alarm source again asynchronously.
CFRESULT Enable(IAlarmSourceCommandCallback* p_pCallback)
p_pCallback
[in/out]: Points to an "IAlarmSourceCommandCallback" object that implements the
asynchronous operation.

"Shelve" method
Hide alarms of the AlarmSet asynchronously.
CFRESULT Shelve(IAlarmSourceCommandCallback* p_pCallback)
p_pCallback
[in/out]: Points to an "IAlarmSourceCommandCallback" object that implements the
asynchronous operation.

"Unshelve" method
Show hidden alarms of the AlarmSet asynchronously again.
CFRESULT Unshelve(IAlarmSourceCommandCallback* p_pCallback)
p_pCallback
[in/out]: Points to an "IAlarmSourceCommandCallback" object that implements the
asynchronous operation.

"Acknowledge" method
Acknowledge alarms of the AlarmSet asynchronously.
CFRESULT Acknowledge(IAlarmSourceCommandCallback* p_pCallback)

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8067

p_pCallback
[in/out]: Points to an "IAlarmSourceCommandCallback" object that implements the
asynchronous operation.

"Reset" method
Acknowledge inactive state of the alarms of the AlarmSet asynchronously. This method is
relevant for alarms with the state machine "Alarm with acknowledgment and confirmation".
Other state machines do not require a reset.
CFRESULT Reset(IAlarmSourceCommandCallback* p_pCallback)
p_pCallback
[in/out]: Points to an "IAlarmSourceCommandCallback" object that implements the
asynchronous operation.

"Clear" method
Remove all alarms from AlarmSets.
CFRESULT Clear()

Runtime Openness
20.3 Runtime API

8068 System Manual, 11/2022

Example
Reset of alarms in an alarm list. Reset is the acknowledgment of the inactive status.

Copy code
const uint32_t g_nMaxWaitTime = 6000;
vector<AlarmAttributes> g_vecAlarmList; 　
void ResetAlarmAsync(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 CFRESULT errCode;
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString(L"AlarmSet"), &pUnk)))
 {
 IAlarmSetPtr pAlarmSet(pUnk);
 CAlarmSourceCommandCB* pAlarmSoureCommond = new CAlarmSourceCommandCB();
 pAlarmSoureCommond->AddRef();
 IAlarmSourceCommandCallback* pCB = pAlarmSoureCommond;
 vector<AlarmAttributes>::iterator it = g_vecAlarmList.begin(); 　 // iterate through
list of notified alarms and reset each alarm
 while (it != g_vecAlarmList.end())
 {
 IAlarm* palarm = nullptr;
 CCfVariant vtAlarmName = it->m_strName;
 errCode = pAlarmSet->Add(vtAlarmName, &palarm);
 it++;
 }
 // Reset the AlarmSet
 errCode = pAlarmSet->Reset(pCB);
 //Check if an alarm could not be reset
 if (CF_SUCCEEDED(errCode) && pAlarmSoureCommond->WaitForcompletion(g_nMaxWaitTime) ==
CF_SUCCESS)
 {
 ...
 }
 }
}

See also
IAlarmSourceCommandCallback (Page 8062)
IAlarmSetResult (Page 8069)
IAlarmSetResultEnumerator (Page 8070)

IAlarmSetResult

Description
The C++ interface "IAlarmSetResult" specifies methods for accessing properties of monitored
alarms in AlarmSets.
All the methods return CF_SUCCESS following successful execution.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8069

Members
The following methods are specified in the interface:

"GetSystemName" method
Return system name of the runtime system of an alarm in the AlarmSet.
CFRESULT GetSystemName(CFSTR *value)
value
[out]: Points to the associated system name.

"GetName" method
Return name of an alarm in the AlarmSet.
CFRESULT GetName(CFSTR *value)
value
[out]: Points to the name of an alarm

"GetInstanceID" method
Return InstanceID of an alarm in the AlarmSet.
CFRESULT GetInstanceID(uint32_t *value)
value
[out]: Points to the InstanceID of an alarm

"GetErrorCode" method
Return error code of an alarm in the AlarmSet.
CFRESULT GetErrorCode(uint32_t *value)
value
[out]: Points to the error code of an alarm.

See also
IAlarmSet (Page 8065)
IAlarmSetResultEnumerator (Page 8070)
IAlarmSubscription (Page 8077)

IAlarmSetResultEnumerator

Description
The "IAlarmSetResultEnumerator" interface is a C++ interface that specifies methods for
handling the enumeration of monitored alarms of the runtime system.
All the methods return CF_SUCCESS following successful execution.

Runtime Openness
20.3 Runtime API

8070 System Manual, 11/2022

Members
The following methods are specified in the interface:

"Current" method
Output the current element of the enumeration of a list.
CFRESULT Current(IAlarmSetResult **ppItem)
ppItem
[out]: Points to the current "IAlarmSetResult" object as an element of the list.

"MoveNext" method
Go to the next element of the enumeration of a list.
CFRESULT MoveNext()

"Reset" method
Reset the current position in the enumeration of a list.
CFRESULT Reset()
The "MoveNext" method moves afterwards to the first element of the list.

"Count" method
Output the size of the enumeration or the number of elements of a list.
CFRESULT Count(uint32_t *value)
value
[out]: Points to the value for the number of elements of the list.

See also
IAlarmSet (Page 8065)
IAlarmSetResult (Page 8069)

IAlarmTrigger

Description
The C++ interface "AlarmTrigger" specifies methods for triggering alarms.
All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
"CreateSystemAlarm" method
Creates an alarm of the SystemAlarmWithoutClearEvent class with the state machine alarm
without "Inactive with acknowledgment" status.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8071

CFRESULT CreateSystemAlarm(
CFVARIANT alarmText,
CFSTR area,
CFVARIANT p_AlarmParameterValue1,
CFVARIANT p_AlarmParameterValue2,
CFVARIANT p_AlarmParameterValue3,
CFVARIANT p_AlarmParameterValue4,
CFVARIANT p_AlarmParameterValue5,
CFVARIANT p_AlarmParameterValue6,
CFVARIANT p_AlarmParameterValue7)
• alarmText

[in]: The alarm text. You have the following options:
– Transfer a text list of type "ITextList".

The list entries of the text list can contain the multilingual text or references to other text
lists.
Note
Only user-defined text lists
This method processes only user-defined text lists.

– Transfer static string with monolingual text.
• area

[in]: The area of origin of the alarm
• p_AlarmParameterValue<Number>

[in]: User-defined comments
The alarm triggers an event with the following event path:
• For multilingual alarm

texts:
@ScriptingSystemEvents.SystemAlarmWithoutClearEvent:SystemAlarmWit
houtClearEvent

• For monolingual alarm
text:
@ScriptingSystemEvents.SystemAlarmWithoutClearEventText:SystemAlar
mWithoutClearEvent

"CreateSystemInformation" method
Creates an alarm of the SystemInformation class with the state machine alarm without
"Inactive without acknowledgment" status.
CFRESULT CreateSystemInformation(
CFVARIANT alarmText,
CFSTR area,
CFVARIANT p_AlarmParameterValue1,
CFVARIANT p_AlarmParameterValue2,
CFVARIANT p_AlarmParameterValue3,
CFVARIANT p_AlarmParameterValue4,
CFVARIANT p_AlarmParameterValue5,

Runtime Openness
20.3 Runtime API

8072 System Manual, 11/2022

CFVARIANT p_AlarmParameterValue6,
CFVARIANT p_AlarmParameterValue7)
• alarmText

[in]: The alarm text. You have the following options:
– Transfer a text list of the type "ITextList".

The list entries of the text list can directly contain multilingual alarm texts or references
to other text lists with multilingual alarm texts.
Note
Only user-defined text lists
This method processes only user-defined text lists.

– Transfer static string with monolingual text.
• area

[in]: The area of origin of the alarm
• p_AlarmParameterValue<Number>

[in]: User-defined comments
The alarm triggers an event with the following event path:
• For multilingual alarm

texts: @ScriptingSystemEvents.SystemInformation:SystemInformation
• For monolingual alarm

text: @ScriptingSystemEvents.SystemInformationText:SystemInformation

"CreateOperatorInputInformation" method
Creates an alarm of the OperatorInputInformation class with the state machine alarm
without "Inactive without acknowledgment" status.
CFRESULT CreateOperatorInputInformation(
CFVARIANT alarmText,
CFSTR area,
CFVARIANT p_AlarmParameterValue1,
CFVARIANT p_AlarmParameterValue2,
CFVARIANT p_AlarmParameterValue3,
CFVARIANT p_AlarmParameterValue4,
CFVARIANT p_AlarmParameterValue5,

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8073

CFVARIANT p_AlarmParameterValue6,
CFVARIANT p_AlarmParameterValue7)
• alarmText

[in]: The alarm text. You have the following options:
– Transfer a text list of the type "ITextList".

The list entries of the text list can directly contain multilingual alarm texts or references
to other text lists with multilingual alarm texts.
Note
Only user-defined text lists
This method processes only user-defined text lists.

– Transfer static string with monolingual text.
• area

[in]: The area of origin of the alarm
• p_AlarmParameterValue<Number>

[in]: User-defined comments
The alarm triggers an event with the following event path:
• For multilingual alarm

texts:
@ScriptingSystemEvents.OperatorInputInformation:OperatorInputInfor
mation

• For monolingual alarm
text:
@ScriptingSystemEvents.OperatorInputInformationText:OperatorInputI
nformation

Example
The following code examples show how to trigger alarms of the class
SystemAlarmWithoutClearEvent. Alarms of the classes SystemInformation and
OperatorInputInformation are triggered in the same way.

Copying code
void CreateSystemAlarm(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString(L"AlarmTrigger"), &pUnk)))
 {
 IAlarmTriggerPtr pTrigger(pUnk);
 if (pTrigger != nullptr)
 {
 pTrigger->CreateSystemAlarm(CCfVariant(L"Alarm Text"), CCfString(L"Alarm Area"),
CCfVariant(L"param1"), CCfVariant(L"param2"), CCfVariant(L"param3"),
CCfVariant(L"param4"), CCfVariant(L"param5"), CCfVariant("param6"), CCfVariant("param7"));
 }
 }
}

Runtime Openness
20.3 Runtime API

8074 System Manual, 11/2022

An alarm with multilingual text is created in the following code sample. The alarm text
is retrieved from a text list. The alarm text contains a dynamic value (@1%d@), which is
transferred via associated value 1.

Copy code
void CreateSystemAlarmWithAlarmTextAsTextList(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString(L"AlarmTrigger"), &pUnk)))
 {
 IAlarmTriggerPtr pTrigger(pUnk);
 if (pTrigger != nullptr)
 {
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString("TextList"), &pUnk)))
 {
 ITextListPtr ptextList(pUnk);
 if (nullptr != ptextList)
 {
 // Text list: MyTextList
 // Test list entry index: 101
 // Text: "My input msg. input value = @1%d@"
 ptextList->SetName(CCfString(L"MyTextList"));
 ptextList->SetTextListEntryIndex(101);
 pTrigger->CreateSystemAlarm(CCfVariant(ptextList), CCfString(L"Alarm Area"),
CCfVariant(L"125"),// dynamic value for format specifier @1%d@;
 CCfVariant(), CCfVariant(), CCfVariant(), CCfVariant(), CCfVariant(),
CCfVariant());
 }
 }
 }
 }
}

An alarm with multilingual text is created in the following code sample. The alarm text is
retrieved from a text list. In turn, the alarm text contains a reference to a second text list and

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8075

a dynamic value (@3%s@), which is transferred via associated value 3. (Use case: Nested text
list)

Copy code
void CreateSystemAlarmWithTextListAsParameterValue(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString(L"AlarmTrigger"), &pUnk)))
 {
 IAlarmTriggerPtr pTrigger(pUnk);
 if (pTrigger != nullptr)
 {
 ICfUnknownPtr pUnktextList, pUnktextList1;
 if (CF_SUCCEEDED(pRuntime->GetObject(CCfString("TextList"), &pUnktextList)) &&
CF_SUCCEEDED(pRuntime->GetObject(CCfString("TextList"), &pUnktextList1)))
 {
 ITextListPtr pTextList_1(pUnktextList);
 if (nullptr != pTextList_1)
 {
 pTextList_1->SetName(CCfString(L"Text_List_1"));
 pTextList_1->SetTextListEntryIndex(1); //Text with reference to Text_List_2:
@1%t#2T@ Val: @3%s@
 }
 ITextListPtr pTextList_2(pUnktextList1);
 if (nullptr != pTextList_2)
 {
 pTextList_2->SetName(CCfString(L"Text_List_2"));
 }
 pTrigger->CreateSystemAlarm(CCfVariant(pTextList_1), CCfString(L"Alarm Area"),
CCfVariant(1), // Index for Text_list_2
 CCfVariant(pTextList_2), // Text_list_2 object
 CCfVariant(L"Hello"), // Dynamic value of @3%s@
 CCfVariant(), CCfVariant(), CCfVariant(), CCfVariant());
 }
 }
 }
}

ITextList

Description
The C++ interface "ITextList" is used to transfer multilingual alarm texts for system alarms and
operator input alarms. See section IAlarmTrigger (Page 8071), CreateSystemInformation
method. An ITextList instance is passed to the alarm text. When the operator input alarm is
generated, it is replaced by the configured text from the text list.
All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Runtime Openness
20.3 Runtime API

8076 System Manual, 11/2022

Members
"GetName" method
Returns the name of the text list.
GetName(CFSTR* name)
• name:

[out]: The name

"SetName" method
Set the name of the text list.
SetName(CFSTR name)
• name:

[in]: The name

"GetTextListEntryIndex" method
Return the index of the list entry.
GetTextListEntryIndex)(OUT uint32_t* pIndex)
• pIndex

[out]: The index

"SetTextListEntryIndex" method
Set the index of the list entry.
SetTextListEntryIndex)(IN uint32_t pIndex)
• pIndex

[in]: The index

IAlarmSubscription

Description
The C++ interface "IAlarmSubscription" specifies methods for monitoring tags of the Runtime
system. The subscribed tags are monitored for a change of the alarm state.

Members
The following methods are specified in the interface:

"Start" method
Start monitoring of active alarms.
CFRESULT Start(IAlarmCallback* callbackPtr)
callbackPtr
[in/out]: Points to an "IAlarmCallback" object that implements the asynchronous monitoring.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8077

"Stop" method
Stop monitoring of active alarms.

Note
Start and Stop in Windows Forms applications
Do not call the "Stop" method for a Windows Forms application in the same thread where you
called "Start".

CFRESULT Stop()

"SetSystemNames" method
Set system names of runtime systems for the monitoring of active alarms.
CFRESULT SetSystemNames(CFVARIANT systemIDs)
systemIDs
[in]: System names of Runtime systems

"GetSystemNames" method
Read out system names of runtime systems for the monitoring of active alarms.
CFRESULT GetSystemNames(CFVARIANT* systemIDs)
systemIDs
[out]: Points to system names of Runtime systems.

"SetLanguage" method
Set country identification of the language for monitored alarms.
CFRESULT SetLanguage(uint32_t language)
language
[in]: Country identification of the language

"GetLanguage" method
Read out country identification of the language for monitored alarms.
CFRESULT GetLanguage(uint32_t* language)
language
[out]: Points to country identification of the language.

"GetFilter" method
Supplies the string by which the result set is filtered.
CFRESULT GetFilter(CFSTR* filter)
• filter

[out]: SQL-type string for filtering the result set of active alarms.

"SetFilter" method
Sets the string for filtering the result set of active alarms.

Runtime Openness
20.3 Runtime API

8078 System Manual, 11/2022

CFRESULT SetFilter(IN CFSTR filter)
• filter

[in]: SQL-type string for filtering the result set of active alarms.
All properties of an alarm can be used in the filter string. The filter string can contain
operators. Refer to the section Syntax of the alarm filter (Page 7828).

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8079

Example
In the following section, monitored active alarms are written asynchronously into the
"g_vecAlarmList" map at a change. To this purpose the "SubscribeAlarm" function uses a
"CAlarmValue" object that implements the "IAlarmCallback" interface and that uses the
"COdkTagSourceCBBase" class. The service life of the "CAlarmValue" object is determined via
reference counting.

Copy code
const uint32_t g_nMaxWaitTime = 6000;
vector<AlarmAttributes> g_vecAlarmList;

void SubscribeAlarm(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"AlarmSubscription"), &pUnk);

 IAlarmSubscriptionPtr pAlarm(pUnk);
 CAlarmValue* pAlarmValue = new CAlarmValue();
 pAlarmValue->AddRef();
 IAlarmCallback *pCB = pAlarmValue;

 CCfSafeArrayBound bounds(1UL, 0);

 CCfSafeArray daAttribute;
 CCfSafeArray daSystemID(CF_VT_SREF, 1, &bounds);
 CCfVariant daDataSource = 0;
 CCfVariant vSystemIDs = 0;

 CCfSmartString daFilter = L"";

 CCfSREF id(L"SYSTEM1");
 int32_t index = 0;
 daSystemID.PutElement(&index, &id);

 CCfVariant daLanguage = 1033;

 daSystemID.Detach(&vSystemIDs);

 CCfSmartString strFilter = L"";
 // Start Subscription
 pAlarm->SetFilter(strFilter.AllocCFSTR());
 pAlarm->SetLanguage(1033);
 pAlarm->SetSystemNames(vSystemIDs);

 pAlarm->Start(pCB);

 // Wait for alarm notifications
 if (pAlarmValue->WaitForcompletion(g_nMaxWaitTime) == CF_SUCCESS)
 {
 pAlarm->Stop();
 // Get current alarms from callback
 pAlarmValue->GetAlarmAttributes(g_vecAlarmList);
 }
}

Runtime Openness
20.3 Runtime API

8080 System Manual, 11/2022

See also
IAlarmResult (Page 8046)
IAlarmCallback (Page 8059)
IAlarmSetResult (Page 8069)

ILoggedAlarmResult

Description
The C++ interface "ILoggedAlarmResult" specifies methods for accessing properties of logged
alarms of a logging system.
An "ILoggedAlarmResult" object is a pure data object that maps all properties of a logged
alarm.

Members
The following methods are specified in the interface:

"GetInstanceID" method
Return InstanceID of a logged alarm.
CFRESULT GetInstanceID(uint32_t *value)
value
[out]: Points to the InstanceID of the logged alarm.

"GetName" method
Return the name of the logged alarm.
CFRESULT GetName(CFSTR *value)
value
[out]: Points to the name of the logged alarm.

"GetAlarmClassName" method
Return the name of the alarm class.
CFRESULT GetAlarmClassName(CFSTR *value)
value
[out]: Points to the symbol of the alarm class of the logged alarm.

"GetAlarmClassSymbol" method
Return the symbol of the alarm class.
CFRESULT GetAlarmClassSymbol(CFSTR *value)
value
[out]: Points to the name of the alarm class of the logged alarm.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8081

"GetState" method
Return alarm state of the logged alarm.
CFRESULT GetState(int32_t* *value)
value
[out]: Points to the alarm state.

"GetStateText" method
Return alarm state of the logged alarm as text, for example, "active" or "inactive".
CFRESULT GetStateText(CFSTR *value)
value
[out]: Points to the alarm state as text.

"GetEventText" method
Return text that describes the alarm event of the logged alarm.
CFRESULT GetEventText(CFSTR *value)
value
[out]: Points to the text that describes the alarm event.

"GetAlarmText1GetAlarmText9" method
Return additional texts 1-9 of the logged alarm.
CFRESULT GetAlarmText1(CFSTR *value)
…
CFRESULT GetAlarmText9(CFSTR *value)
value
[out]: Points to the additional text of the logged alarm.

"GetTextColor" method
Return text color of the alarm state of the logged alarm.
CFRESULT GetTextColor(uint32_t *value)
value
[out]: Points to the text color of the alarm state.

"GetBackColor" method
Return background color of the alarm state of the logged alarm.
CFRESULT GetBackColor(uint32_t *value)
value
[out]: Points to the background color of the alarm state.

"GetFlashing" method
Return flashing background color of the alarm state of the logged alarm.
CFRESULT GetFlashing(CFBOOL *value)

Runtime Openness
20.3 Runtime API

8082 System Manual, 11/2022

value
[out]: Points to the flashing background color of the alarm state.

"GetModificationTime" method
Return time of the last modification to the alarm state of the logged alarm.
CFRESULT GetModificationTime(CFDATETIME64 *value)
value
[out]: Points to the time of the last change of the alarm state.

"GetChangeReason" method
Return trigger event for modification of the alarm state of the logged alarm.
CFRESULT GetChangeReason(uint16_t *value)
value
[out]: Points to the trigger event for the change of the alarm state.

"GetRaiseTime" method
Return trigger time of the logged alarm.
CFRESULT GetRaiseTime(CFDATETIME64 *value)
value
[out]: Points to the time the logged alarm was triggered.

"GetAcknowledgementTime" method
Return time of alarm acknowledgment of the logged alarm.
CFRESULT GetAcknowledgementTime(CFDATETIME64 *value)
value
[out]: Points to the time of acknowledgment of the logged alarm.

"GetClearTime" method
Return time of reset of the logged alarm.
CFRESULT GetClearTime(CFDATETIME64 *value)
value
[out]: Points to the time when the logged alarm is reset.

"GetResetTime" method
Return time of reset of the logged alarm.
CFRESULT GetResetTime(CFDATETIME64 *value)
value
[out]: Points to the time of the reset of the logged alarm.

"GetSuppressionState" method
Return status of visibility of the logged alarm.
CFRESULT GetSuppressionState(uint8_t *value)

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8083

value
[out]: Points to the status of the visibility of the logged alarm.

"GetPriority" method
Return relevance for display and sorting of the logged alarm.
CFRESULT GetPriority(uint8_t *value)
value
[out]: Points to the relevance of the logged alarm.

"GetOrigin" method
Return origin for display and sorting of the logged alarm.
CFRESULT GetOrigin(CFSTR *value)
value
[out]: Points to the origin of the logged alarm.

"GetArea" method
Return origin area for display and sorting of the logged alarm.
CFRESULT GetArea(CFSTR *value)
value
[out]: Points to the origin area of the logged alarm.

"GetValue" method
Return process value of the logged alarm.
CFRESULT GetValue(CFVARIANT *value)
value
[out]: Points to the process value of the logged alarm.

"GetValueQuality" method
Return quality of the process value of the logged alarm.
CFRESULT GetValueQuality(uint16_t *value)
value
[out]: Points to the quality of the process value of the logged alarm.

"GetValueLimit" method
Return process value limit of the logged alarm.
CFRESULT GetValueLimit(CFVARIANT *value)
value
[out]: Points to the limit of the process value of the logged alarm.

"GetUserName" method
Return the user name of the logged operator input alarm.
CFRESULT GetUserName(CFSTR *value)

Runtime Openness
20.3 Runtime API

8084 System Manual, 11/2022

value
[out]: Points to the user name of the logged operator input alarm.

"GetLoopInAlarm" method
Return function that navigates from the alarm control to its origin.
CFRESULT GetLoopInAlarm(CFSTR *value)
value
[out]: Points to the function name that navigates to the origin of the logged alarm.

"GetAlarmParameterValues" method
Return parameter values of the logged alarm.
CFRESULT GetAlarmParameterValues(CFVARIANT *value)
value
[out]: Points to the parameter values of the logged alarm.

"GetInvalidFlags" method
Return identification of the logged alarm with invalid data.
CFRESULT GetInvalidFlags(uint8_t *value)
value
[out]: Points to the invalid data of the logged alarm.

"GetConnection" method
Return connection via which the logged alarm was triggered.
CFRESULT GetConnection CFSTR *value)
value
[out]: Points to the connection of the logged alarm.

"GetSystemSeverity" method
Return severity of the system error.
CFRESULT GetSystemSeverity(uint8_t *value)
value
[out]: Points to the severity of the system error.

"GetUserResponse" method
Return expected or required user response to the logged alarm.
CFRESULT GetUserResponse(uint8_t *value)
value
[out]: Points to the expected or required user response to the logged alarm.

"GetDeadBand" method
Return range of the triggering tag in which no alarms are generated.
CFRESULT GetDeadBand(CFVARIANT *value)

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8085

value
[out]: Points to the deadband of the logged alarm.

"GetHostName" method
Return the name of the host that triggered the alarm.
CFRESULT GetHostName(CFSTR *value)
value
[out]: Points to host name.

"GetInfoText" method
Return text for the alarm that contains the associated work instruction.
CFRESULT GetInfoText(CFSTR *value)
value
[out]: Points to the text of the operator instruction.

"GetStateMachine" method
Return StateMachine model of the alarm. The StateMachine represents the behavior of
alarms through the arrangement of alarm states and alarm events, e.g. "RaiseClear",
"RaiseRequiresAcknowledgment" or "RaiseClearOptionalAcknowledgment".
CFRESULT GetStateMachine(uint8_t *value)
value
[out]: Shows the model of the StateMachine of the logged alarm.

"GetSingleAcknowledgement" method
Returns whether an alarm may be acknowledged only individually or may be acknowledged
as a group or multiple selection.
CFRESULT GetSingleAcknowledgement(CFBOOL *value)
value
[out]: Points to the acknowledgement specification.

"GetLoggedAlarmStateObjectID" method
Return ID of the alarm state for referencing within the logging system.
CFRESULT GetLoggedAlarmStateObjectID(CFSTR *value)
value
[out]: Points to the ID of the alarm state of the logged alarm.

"GetID" method
Return the user-defined ID of the alarm that is also used in the display.
CFRESULT GetID(uint32_t *value)
value
[out]: Points to the ID of the logged alarm.

Runtime Openness
20.3 Runtime API

8086 System Manual, 11/2022

"GetSourceType" method
Return source from which the alarm was generated, for example, tag-based, controller-based
or system-based alarm.
CFRESULT GetSourceType(uint16_t *value)
value
[out]: Points to the type of source of the logged alarm.

Method "GetDuration"
Returns the time interval in nanoseconds between triggering of the logged alarm and its
previous status change.
CFRESULT GetDuration(CFTIMESPAN64 *value)
value
[out]: The time interval in nanoseconds

See also
ILoggedAlarmResultEnumerator (Page 8087)
IAlarmLogging (Page 8088)
IAlarmLoggingSubscription (Page 8092)

ILoggedAlarmResultEnumerator

Description
The "ILoggedAlarmResultEnumerator" interface is a C++ interface that specifies methods for
handling the enumeration of logged alarms of a logging system. Through the enumeration, you
access individual alarms from the set of logged alarm of a logging system.
All the methods return CF_SUCCESS following successful execution.

Members
The following methods are specified in the interface:

"Current" method
Output the current element of the enumeration of a list.
CFRESULT Current(ILoggedAlarmResult **ppItem)
ppItem
[out]: Points to the current "ILoggedAlarmResult" object as an element of the list.

"MoveNext" method
Go to the next element of the enumeration of a list.
CFRESULT MoveNext()

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8087

"Reset" method
Reset the current position in the enumeration of a list.
CFRESULT Reset()
The "MoveNext" method moves afterwards to the first element of the list.

"Count" method
Output the size of the enumeration or the number of elements of a list.
CFRESULT Count(uint32_t *value)
value
[out]: Points to the value for the number of elements of the list.

See also
ILoggedAlarmResult (Page 8081)
IAlarmLogging (Page 8088)

IAlarmLogging

Description
The C++ interface "IAlarmLogging" specifies methods for reading out logged alarms of a logging
system.
All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
The following methods are specified in the interface:

"Read" method
Read out logged alarms of a time period synchronously from logging system.
CFRESULT Read(
 CFDATETIME64 begin,
 CFDATETIME64 end,
 CFSTR filter,
 uint32_t language,
 CFVARIANT systemIDs,
 ILoggedAlarmResultEnumerator **ppEnumerator)
• begin

[in]: Start date of the time period
• end

[in]: End date of the time period
• filter

[in]: Filter for limiting the read operation with properties of the "ILoggedAlarmResult" object.

Runtime Openness
20.3 Runtime API

8088 System Manual, 11/2022

• language
[in]: Country identification of the language of the logged alarm text

• systemIDs
[in]: System names of the runtime systems of the logged alarms. Default: local system

• ppEnumerator
[out]: Points to the logged alarms as an "ILoggedAlarmResultEnumerator" object.

"ReadAsync" method
Read out logged alarms of a time period asynchronously from logging system.
CFRESULT ReadAsync(
 CFDATETIME64 begin,
 CFDATETIME64 end,
 CFSTR filter,
 uint32_t language,
 CFVARIANT systemIDs,
 IAlarmLoggingCallback *pLoggedAlarmCb)
• begin

[in]: Start date of the time period
• end

[in]: End date of the time period
• filter

[in]: Filter for limiting the read operation with properties of the "ILoggedAlarmResult" object.
• language

[in]: Country identification of the language of the logged alarm text
• systemIDs

[in]: System names of the runtime systems of the logged alarms. Default: local system
• pLoggedAlarmCb

[in]: Points to the "IAlarmLoggingCallback" object that implements the callback interface.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8089

Example
Read historical alarms synchronously from the logging system:

Copy code
void LoggingReadAlarmSync(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"LoggedAlarm"), &pUnk);

 CCfVariant vSystemIDs = 0;
 CFSAFEARRAYBOUND* bounds = nullptr;
 CCfSafeArray daSystemID(CF_VT_SREF, 1, bounds);
 CCfSREF id(L"SYSTEM1");
 int32_t index = 0;
 daSystemID.PutElement(&index, &id);
 daSystemID.Detach(&vSystemIDs);

 IAlarmLoggingPtr pAlarm(pUnk);

 CCfDateTime64 begin, end;
 begin = CCfDateTime64::Now(true);
 end = begin;
 begin.SubtractTimeSpan(Get1Minute() * 3);

 ILoggedAlarmResultEnumeratorPtr pItems;
 // Read value of tag
 pAlarm->Read(begin, end, CCfString(""), 1033, vSystemIDs, &pItems);

 std::wcout << "Read finished " << std::endl;

 // Iterate over the process value objects and print them
 while (CF_SUCCEEDED(pItems->MoveNext()))
 {
 ILoggedAlarmResultPtr pValue;
 pItems->Current(&pValue); // get current process value
 CCfString timeStamp;
 CFDATETIME64 cfTimeStamp;
 pValue->GetModificationTime(&cfTimeStamp);
 CCfDateTime64 time(cfTimeStamp);
 timeStamp = time.GetDateTimeString(false);
 CCfString strName;
 pValue->GetName(&strName);
 CCfVariant varValue;
 pValue->GetValue(&varValue);
 std::wcout << strName.ToUTF8().c_str() << L" " << timeStamp.ToUTF8().c_str() << L"
Value: " << (double)(varValue) << std::endl;
 }
}

See also
ILoggedAlarmResult (Page 8081)
ILoggedAlarmResultEnumerator (Page 8087)

Runtime Openness
20.3 Runtime API

8090 System Manual, 11/2022

IAlarmLoggingCallback (Page 8091)
IAlarmLoggingSubscription (Page 8092)

IAlarmLoggingCallback

Description
The C++ interface "IAlarmLoggingCallback" defines methods for implementing asynchronous
operations for monitoring active alarms. The methods are used by the "IAlarmLogging" and
"IAlarmLoggingSubscription" interfaces.
All the methods return CF_SUCCESS after execution.

Members
The following methods are specified in the "IAlarmCallback" interface:

"OnReadComplete" method
Callback method is called on completion of asynchronous read operations in logging systems.
The "OnReadComplete" callback method is called when the "IAlarmLogging.ReadAsync"
method is used.
CFRESULT OnReadComplete(ILoggedAlarmResultEnumerator *pEnumerator,
 uint32_t errorCode,
 int32_t contextId)
• pEnumerator

[out]: Points to an "ILoggegAlarmResultEnumerator" object that contains the enumeration of
the logged alarms.

• errorCode
[out]: Error code for the asynchronous operation

• contextId
[out]: ContextID as additional identification feature of the logged alarms.

"OnDataChanged" method
Callback method is called upon a change of a monitored alarm in logging systems.
The "OnDataChanged" callback method is called when the "IAlarmLoggingSubscription.Start"
method is used.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8091

CFRESULT OnDataChanged(ILoggedAlarmResultEnumerator *pEnumerator,
 uint32_t errorCode,
 int32_t contextId)
• pEnumerator

[out]: Points to an "ILoggegAlarmResultEnumerator" object that contains the enumeration of
the logged alarms.

• errorCode
[out]: Error code for the asynchronous operation

• contextId
[out]: ContextID as additional identification feature of the logged alarms.

See also
IAlarmLogging (Page 8088)
IAlarmLoggingSubscription (Page 8092)

IAlarmLoggingSubscription

Description
The C++ interface "IAlarmLoggingSubscription" specifies methods for monitoring logged alarms
of a logging system.
All the methods return CF_SUCCESS following successful execution. In the case of an error,
the methods return the corresponding error code.

Members
The following methods are specified in the interface:

"SetFilter" method
Set SQL-type string for filtering the result set of the logged alarms.
CFRESULT SetFilter(CFSTR filter)
filter
[in]: Filter string for logged alarms

"SetLanguage" method
Set country identifier of the language for monitoring of logged alarms.
CFRESULT SetLanguage(uint32_t language)
language
[in]: Country identification of the language

"SetSystemName" method
Set system names of runtime systems for the monitoring of logged alarms.
CFRESULT SetSystemName(CFVARIANT systemIDs)

Runtime Openness
20.3 Runtime API

8092 System Manual, 11/2022

systemIDs
[in]: System name of Runtime systems

"Start" method
Start monitoring of logged alarms.
CFRESULT Start(IAlarmLoggingCallback* pLoggedAlarmCb)
• filter

[in]: Filter for limiting the read operation with properties of the "ILoggedAlarmResult" object.
• pLoggedAlramCb

[in/out]: Points to an "IAlarmLoggingCallback" object that implements asynchronous
monitoring.

"Stop" method
Stop monitoring of all logged alarms.
CFRESULT Stop()

Example
Monitoring historical alarms. The values are returned by the "IAlarmLoggingCallback" object:

Copy code
void LoggingSubscribeAlarm(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"LoggedAlarmSubscribtion"), &pUnk);

 CCfVariant vSystemIDs = 0;
 CFSAFEARRAYBOUND* bounds = nullptr;
 CCfSafeArray daSystemID(CF_VT_SREF, 1, bounds);
 CCfSREF id(L"SYSTEM1");
 int32_t index = 0;
 daSystemID.PutElement(&index, &id);
 daSystemID.Detach(&vSystemIDs);

 IAlarmLoggingSubscriptionPtr pAlarm(pUnk);
 pAlarm->SetSystemName(vSystemIDs);
 pAlarm->SetLanguage(1033);

 COdkAlarmLoggingCB* pAlarmCB = new COdkAlarmLoggingCB();

 pAlarmCB->AddRef();

 // subscribe tags
 pAlarm->Start(pAlarmCB);
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8093

See also
IAlarmLogging (Page 8088)
IAlarmLoggingCallback (Page 8091)
ILoggedAlarmResult (Page 8081)

20.3.9.5 Interfaces for connections

IConnectionResult

Description
The C++ interface "IConnectionResult" provides methods for access to the details of connections.

Members
The following methods are specified in the interface:

"GetName" method
Return name of the connection.
CFRESULT GetName(CFSTR *pName)
pName
[out]: Points to the name of the connection.

"GetConnectionState" method
Return status of the connection.
CFRESULT GetConnectionState(CFENUM *pConnectionState)
pConnectionState
[out]: Points to the enumeration, which can contain the following values:
• Disabled (0)
• Connecting (1)
• Connected (2)
• Disconnecting (3)
• Disconnected (4)
• Reconnecting (5)

"GetEstablishmentMode" method
Return mode in which the connection is established.
CFRESULT GetEstablishmentMode(CFENUM *pEstablishmentMode)

Runtime Openness
20.3 Runtime API

8094 System Manual, 11/2022

pEstablishmentMode
[out]: Points to the enumeration, which can contain the following values:
• None (0)
• AutomaticActive (1)
• AutomaticPassive (2)
• OnDemandActive (3)
• OnDemandPassive (4)

"GetTimeSynchronizationMode" method
Mode of time synchronization between HMI system and AS.
CFRESULT GetTimeSynchronizationMode(CFENUM
*pTimeSynchronizationMode)
pTimeSynchronizationMode
[out]: Points to the enumeration, which can contain the following values:
• None (0)
• Subordinate (1)
• Lead (2)

"GetDisabledAtStartup" method
Indicates whether the connection is disabled at the start of Runtime.
CFRESULT GetDisabledAtStartup(CFBOOL *pDisabledAtStartup)
pDisabledAtStartup
[out]: Points to a Boolean value.

"GetEnabled" method
Indicates whether the connection is active.
CFRESULT GetEnabled(CFBOOL *pEnabled)
pbEnabled
[out]: Points to a Boolean value.

"GetConnectionType" method
Return protocol of a communication driver, e.g. "S7 Classic".
CFRESULT GetConnectionType(CFSTR *pConnectionType)
pConnectionType
[out]: Points to the name of the protocol.

"GetError" method
Return error code of the connection.
CFRESULT GetError(uint32_t *pError)
pError
[out]: Points to the error code.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8095

Example
Output connection details:

Copy code
void DisplayConnectionInfo(IConnectionResultPtr pConnectionresult,IRuntimePtr pRuntime)
{
 CCfString strName;
 pConnectionresult->GetName(&strName);
 std::cout << "ConnectionName:" << strName.ToUTF8() << std::endl;
 CCfString strConnectiontype;
 pConnectionresult->GetConnectionType(&strConnectiontype);
 std::cout << "ConnectionType:" << strConnectiontype.ToUTF8() << std::endl;
 CFENUM enConnectionState;
 pConnectionresult->GetConnectionState(&enConnectionState);
 HmiConnectionState enumconnectionState =
static_cast<HmiConnectionState>(enConnectionState);
 ConnectionState(enumconnectionState);
 CFENUM enEstablishmentMode;
 pConnectionresult->GetEstablishmentMode(&enEstablishmentMode);
 HmiConnectionEstablishmentMode enumEstablishmentMode =
static_cast<HmiConnectionEstablishmentMode>(enEstablishmentMode);
 Establishmentmode(enumEstablishmentMode);
 CFENUM enTimeSynchronizationMode;
 pConnectionresult->GetTimeSynchronizationMode(&enTimeSynchronizationMode);
 HmiTimeSynchronizationMode enumTimeSynchronizationMode =
static_cast<HmiTimeSynchronizationMode>(enTimeSynchronizationMode);
 TimeSynchronizationmode(enumTimeSynchronizationMode);
 CFBOOL bDisableatStartup;
 pConnectionresult->GetDisabledAtStartup(&bDisableatStartup);
 std::cout << "DisableStartup:" << (int)bDisableatStartup << std::endl;
 CFBOOL bEnabled;
 pConnectionresult->GetEnabled(&bEnabled);
 std::cout << "Enabled:" << (int)bEnabled << std::endl;
}

See also
IConnection (Page 8101)
IConnectionResultEnumerator (Page 8096)

IConnectionResultEnumerator

Description
The "IConnectionResultEnumerator" interface is a C++ interface that specifies methods for
handling the enumeration of connection details of the Runtime system. The enumeration is
used, for example, when reading out connections of a connection set.
All the methods return CF_SUCCESS following successful execution.

Runtime Openness
20.3 Runtime API

8096 System Manual, 11/2022

Members
The following methods are specified in the interface:

"Current" method
Output the current element of the enumeration of a list.
CFRESULT Current(IConnectionResult **ppItem)
ppItem
[out]: Points to the current "IConnectionResult" object as an element of the list.

"MoveNext" method
Go to the next element of the enumeration of a list.
CFRESULT MoveNext()

"Reset" method
Reset the current position in the enumeration of a list.
CFRESULT Reset()
The "MoveNext" method moves afterwards to the first element of the list.

"Count" method
Output the size of the enumeration or the number of elements of a list.
CFRESULT Count(uint32_t *pCount)
pCount
[out]: Points to the value for the number of elements of the list.

See also
IConnectionResult (Page 8094)
IConnectionSet (Page 8104)

IConnectionStatusResult

Description
The C++ interface "IConnectionStatusResult" provides methods for access to the status of
connections.

Members
The following methods are specified in the interface:

"GetName" method
Return name of the connection.
CFRESULT GetName(CFSTR *pName)

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8097

pName
[out]: Points to the name of the connection.

"GetConnectionStatus" method
Return status of the connection.
CFRESULT GetConnectionStatus(CFENUM *pConnectionStatus)
pConnectionStatus
[out]: Points to the enumeration, which can contain the following values:
• Disabled (0)
• Connecting (1)
• Connected (2)
• Disconnecting (3)
• Disconnected (4)
• Reconnecting (5)

"GetError" method
Return error code of the connection.
CFRESULT GetError(uint32_t *pError)
pError
[out]: Points to the error code.

Runtime Openness
20.3 Runtime API

8098 System Manual, 11/2022

Example
Output status of a certain connection:

Copy code
void ConnectionSet_GetConnectionState(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"ConnectionSet"), &pUnk);

 IConnectionSetPtr pConnectionsetPtr(pUnk);
 CCfSmartString strName(L"HMI-Connection");
 CCfString strName1(L"HMI-ConnectionS7Plus");
 CCfArrayVariant vtArrayVaiarnt;
 vtArrayVaiarnt.Append(strName);
 vtArrayVaiarnt.Append(strName1);
 ICfArrayVariantPtr connectionNames;
 vtArrayVaiarnt.DetachEnumerator(&connectionNames);
 pConnectionsetPtr->Add(connectionNames);

 IConnectionStatusResultEnumeratorPtr pConnectionStatusResultEnum;
 IConnectionStatusResultPtr pConnectionStatusresult;
 pConnectionsetPtr->GetConnectionState(&pConnectionStatusResultEnum);

 uint32_t nCount;
 pConnectionStatusResultEnum->Count(&nCount);
 for (int32_t i = 0; i < (int32_t)nCount; i++)
 {
 pConnectionStatusResultEnum->MoveNext();
 pConnectionStatusResultEnum->Current(&pConnectionStatusresult);

 CCfString strName;
 pConnectionStatusresult->GetName(&strName);
 std::cout << "ConnectionName:" << strName.ToUTF8() << std::endl;
 CFENUM enConnectionState;
 pConnectionStatusresult->GetConnectionStatus(&enConnectionState);
 HmiConnectionState enumconnectionState =
static_cast<HmiConnectionState>(enConnectionState);
 ConnectionState(enumconnectionState);
 }
}

See also
IConnection (Page 8101)
IConnectionStatusResultEnumerator (Page 8100)

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8099

IConnectionStatusResultEnumerator

Description
The "IConnectionStatusResultEnumerator" interface is a C++ interface that specifies methods for
handling the enumeration of connection status of the Runtime system. The enumeration is
used, for example, when reading out connections of a connection set.
All the methods return CF_SUCCESS following successful execution.

Members
The following methods are specified in the interface:

"Current" method
Output the current element of the enumeration of a list.
CFRESULT Current(IConnectionStatusResult **ppItem)
ppItem
[out]: Points to the current "IConnectionStatusResult" object as an element of the list.

"MoveNext" method
Go to the next element of the enumeration of a list.
CFRESULT MoveNext()

"Reset" method
Reset the current position in the enumeration of a list.
CFRESULT Reset()
The "MoveNext" method moves afterwards to the first element of the list.

"Count" method
Output the size of the enumeration or the number of elements of a list.
CFRESULT Count(uint32_t *pCount)
pCount
[out]: Points to the value for the number of elements of the list.

See also
IConnectionStatusResult (Page 8097)
IConnectionSet (Page 8104)

Runtime Openness
20.3 Runtime API

8100 System Manual, 11/2022

IConnection

Description
The C++ interface "IConnection" provides properties and methods for access to a connection.

Members
The following methods are specified in the interface:

"GetName" method
Return name of the connection.
CFRESULT GetName(CFSTR *pName)
pName
[out]: Points to the name of the connection.

"SetName" method
Change name of the connection.
CFRESULT SetName(CFSTR name)
name
[in]: Name of the connection

"Read" method
Read connection details synchronously from the Runtime system.
CFRESULT Read(IConnectionResult **ppConnectionResult)
ppConnectionResult
[out]: Points to an object of type "IConnectionResult" that contains the connection details.

"GetConnectionState" method
Return connection status of a connection.
CFRESULT GetConnectionState(IConnectionStatusResult
**ppConnectionStatusResult)
ppConnectionStatusResult
[out]: Points to an object of type "IConnectionStatusResult" that contains the status of
connections.

"SetConnectionMode" method
Change connection status of a connection.
CFRESULT SetConnectionMode(CFENUM connectionmode)
connectionmode
[in]: Enumeration which contains the mode of connections:
• Disabled (0)
• Enabled (1)

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8101

Examples
Change status of a connection:

Copy code
void Connection_SetConnectionState(IRuntimePtr pRuntime, ConnectionMode connectionMode)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"Connection"), &pUnk);

 IConnectionPtr pConnection(pUnk);
 CCfSmartString daName = L"HMI-Connection";
 pConnection->SetName(daName.AllocCFSTR());
 pConnection->SetConnectionMode(int32_t(connectionMode));
}

See also
IConnectionResult (Page 8094)
IConnectionStatusResult (Page 8097)
IConnectionSet (Page 8104)

IConnectionReadNotification

Description
The C++ interface "IConnectionReadNotification" defines a callback method for implementation
of operations following read operations of connections.

Members
The following method is specified in the interface:

"OnReadComplete" method
Callback method is called following read operations of connections.
The "OnReadComplete" callback method is called when the IConnectionSet.ReadAsync
method is used.
CFRESULT OnReadComplete(IConnectionResultEnumerator *pEnumerator,
uint32_t errorCode, int32_t contextId)
• pEnumerator

[out]: Points to an "IConnectionResultEnumerator" object that contains the enumeration of
the connection details.

• errorCode
[out]: Error code for the asynchronous operation.

• contextId
[out]: ContextID as additional identification feature of the connections.

Runtime Openness
20.3 Runtime API

8102 System Manual, 11/2022

Example
Read out connection asynchronously:

Copy code
void ConnectionSet_ReadAsync(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"ConnectionSet"), &pUnk);
 IConnectionSetPtr pConnectionset(pUnk);
 IConnectionResultPtr pConnectionResult;
 CCfString strName(L"HMI-Connection");
 CCfString strName1(L"HMI-ConnectionS7Plus");
 CCfArrayVariant vtArrayVaiarnt;
 vtArrayVaiarnt.Append(strName);
 vtArrayVaiarnt.Append(strName1);
 ICfArrayVariantPtr connectionNames;
 vtArrayVaiarnt.DetachEnumerator(&connectionNames);
 pConnectionset->Add(connectionNames);
 CCfRefPtr<CConnectionReadNotification>pRead = new CConnectionReadNotification(pRuntime);
 IConnectionReadNotification *pNotification = pRead;
 pConnectionset->ReadAsync(pNotification);
}

See also
IConnectionSet (Page 8104)

IConnectionStateChangeNotification

Description
The C++ interface "IConnectionStateChangeNotification" defines a callback method for
implementing asynchronous change monitoring of connections.

Members
The following method is specified in the interface:

"OnDataChanged" method
Callback method is called after changes of a monitored connection.
The "OnDataChanged" callback method is called when the IConnectionSet.Subscribe
method is used.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8103

CFRESULT OnDataChanged(IConnectionStatusResultEnumerator*
pEnumerator, uint32_t errorCode, int32_t contextId)
• pEnumerator

[out]: Points to an "IConnectionStatusResultEnumerator" object that contains the
enumeration of the connection status.

• errorCode
[out]: Error code for the asynchronous operation.

• contextId
[out]: ContextID as additional identification feature of the connections.

Example
Monitor connection status:

Copy code
void ConnnectionSet_Subscribe(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"ConnectionSet"), &pUnk);
 IConnectionSetPtr pConnectionsetPtr(pUnk);
 CCfString strName(L"RUNTIME_1::Connection3");
 CCfString strName1(L"HMI-ConnectionS7Plus");
 CCfArrayVariant vtArrayVaiarnt;
 vtArrayVaiarnt.Append(strName);
 vtArrayVaiarnt.Append(strName1);
 ICfArrayVariantPtr connectionNames;
 vtArrayVaiarnt.DetachEnumerator(&connectionNames);
 pConnectionsetPtr->Add(connectionNames);
 CConnectionSubscriptionNotification *pSubscribe = new
CConnectionSubscriptionNotification();
 IConnectionStateChangeNotification *pNotification = pSubscribe;
 pConnectionsetPtr->Subscribe(pNotification);
}

See also
IConnectionSet (Page 8104)

IConnectionSet

Description
The C++ interface "IConnectionSet" specifies properties and methods for optimized access to
several connections of the Runtime system.
After initialization of the "IConnectionSet" object, you have read/write access to multiple
connections in one call. Simultaneous access takes place with better performance and lower
communication load than single access to multiple connections.

Runtime Openness
20.3 Runtime API

8104 System Manual, 11/2022

Members
The following methods are specified in the interface:

"SetContextId" method
Change ID as additional identification feature of a connection. The ContextId can, for
example, be used to recognize identically named connections.
CFRESULT SetContextId(uint32_t id)
id
[in]: ContextID of the connection

"GetContextId" method
Return ID as additional identification feature of a connection. The ContextId can, for example,
be used to recognize identically named connections.
CFRESULT GetContextId(uint32_t *pId)
pId
[out]: Points to the ContextID of the connection.

"Add" method
Add connections to a connection set.
CFRESULT Add(ICfArrayVariant *connectionNames)
connectionNames
[in]: Points to an array that contains the names of connections.

"Remove" method
Remove individual connection from connection set.
CFRESULT Remove(CFSTR connectionName)
connectionName
[in]: Name of the connection.

"Clear" method
Remove all connections from connection set.
CFRESULT Clear()

"GetCount" method
Return number of connections of a connection set list.
CFRESULT GetCount(int32_t *pCount)
pCount
[out]: Points to the number of connections in the connection set.

"Read" method
Read connection details of all connections of the connection set synchronously from the
Runtime system.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8105

CFRESULT Read(IConnectionResultEnumerator
**ppConnectionResultEnumerator)
ppConnectionResultEnumerator
[out]: Points to the enumeration of the details of the individual connections.

"ReadAsync" method
Read connection details of all connections of the connection set asynchronously from the
Runtime system.
CFRESULT ReadAsync(IConnectionReadNotification *pReadReply)
pReadReply
[in]: Points to the "IConnectionReadNotification" callback interface for read operations and
returns the "IConnectionResultEnumerator" object.

"GetConnectionState" method
Read connection status synchronously from the Runtime system.
CFRESULT GetConnectionState(IConnectionStatusResultEnumerator
**ppConnectionStatusResultEnumerator)
ppConnectionStatusResultEnumerator
[out]: Points to an object of type "IConnectionStatusResultEnumerator" that contains the
enumeration of the connection status.

"Subscribe" method
Subscribe all connections of a connection set asynchronously for change monitoring.
CFRESULT Subscribe(IConnectionStateChangeNotification
*ppNotificationCB)
ppNotificationCB
[in]: Points to the "IConnectionStateChangeNotification" callback interface for monitoring and
returns the "IConnectionStatusResultEnumerator" object following a change.

"CancelSubscribe" method
Cancel change monitoring of all connections of a connection set.
CFRESULT CancelSubscribe()

Runtime Openness
20.3 Runtime API

8106 System Manual, 11/2022

Examples
Monitor connection:

Copy code
void ConnnectionSet_Subscribe(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"ConnectionSet"), &pUnk);
 IConnectionSetPtr pConnectionsetPtr(pUnk);
 CCfString strName(L"RUNTIME_1::Connection3");
 CCfString strName1(L"HMI-ConnectionS7Plus");
 CCfArrayVariant vtArrayVaiarnt;
 vtArrayVaiarnt.Append(strName);
 vtArrayVaiarnt.Append(strName1);
 ICfArrayVariantPtr connectionNames;
 vtArrayVaiarnt.DetachEnumerator(&connectionNames);
 pConnectionsetPtr->Add(connectionNames);
 CConnectionSubscriptionNotification *pSubscribe = new
CConnectionSubscriptionNotification();
 IConnectionStateChangeNotification *pNotification = pSubscribe;
 pConnectionsetPtr->Subscribe(pNotification);
}

Read out connection asynchronously:

Copy code
void ConnectionSet_ReadAsync(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"ConnectionSet"), &pUnk);
 IConnectionSetPtr pConnectionset(pUnk);
 IConnectionResultPtr pConnectionResult;
 CCfString strName(L"HMI-Connection");
 CCfString strName1(L"HMI-ConnectionS7Plus");
 CCfArrayVariant vtArrayVaiarnt;
 vtArrayVaiarnt.Append(strName);
 vtArrayVaiarnt.Append(strName1);
 ICfArrayVariantPtr connectionNames;
 vtArrayVaiarnt.DetachEnumerator(&connectionNames);
 pConnectionset->Add(connectionNames);
 CCfRefPtr<CConnectionReadNotification>pRead = new CConnectionReadNotification(pRuntime);
 IConnectionReadNotification *pNotification = pRead;
 pConnectionset->ReadAsync(pNotification);
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8107

Add/remove connection for connection set

Copy code

void Connection_AddRemove(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"ConnectionSet"), &pUnk);
 IConnectionSetPtr pConnectionsetPtr(pUnk);
 CCfString strName(L"HMI-Connection");
 CCfSmartString strName1(L"HMI-ConnectionS7Plus");
 CCfArrayVariant vtArrayVaiarnt;
 vtArrayVaiarnt.Append(strName);
 vtArrayVaiarnt.Append(strName1);
 ICfArrayVariantPtr connectionNames;
 vtArrayVaiarnt.DetachEnumerator(&connectionNames);
 pConnectionsetPtr->Add(connectionNames);
 int32_t count;
 pConnectionsetPtr->GetCount(&count);

 pConnectionsetPtr->Remove(strName1.AllocCFSTR());
 pConnectionsetPtr->GetCount(&count);

 pConnectionsetPtr->Clear();
 pConnectionsetPtr->GetCount(&count);
}

See also
IConnectionReadNotification (Page 8102)
IConnectionStateChangeNotification (Page 8103)
IConnection (Page 8101)
IConnectionResultEnumerator (Page 8096)
IConnectionStatusResultEnumerator (Page 8100)

20.3.9.6 Interfaces of the Plant Model

IPlantModel

Description
The C++ interface "IPlantModel" specifies methods for access to object instances of the plant
model of a Runtime system. The "IPlantModel" object represents the plant model of the graphical
Runtime system.
The interface inherits from the "ICfDispatch" interface.

Runtime Openness
20.3 Runtime API

8108 System Manual, 11/2022

Formatting of a hierarchy path
A hierarchy path of object instances consists of several components and has the following
syntax:
[SystemName].HierarchyName::[PlantObjectID/.../]PlantObjectID
The system name can be omitted for referencing a local hierarchy. The dot before the
hierarchy name must stay.

Members
The following methods are specified in the interface:

"GetPlantObject" method
Supplies an "IPlantObject" instance.
CFRESULT GetPlantObject(const CFSTR Node, IPlantObject**
ppPlantObject)
• Node

[in]: Identifies an IPlantObject instance by its name or its path in the hierarchy.
• ppPlantObject

[out]: Points to an "IPlantObject" instance.

"GetPlantObjectsByType" method
Supplies an enumeration with "IPlantObject" instances that have a specific type.
GetPlantObjectsByType(const CFSTR plantObjectTypeFilter, const
CFSTR ViewFilter, IPlantObjectEnumerator** ppPlantObjects)
• plantObjectTypeFilter

[in]: Filter for the "IPlantObject" type on which the instances are based.
• ViewFilter

[in]: Filter for the path in the hierarchy. Only instances from a specific node are returned.
• ppPlantObjects

[out]: Points to an "IPlantObjectEnumerator" enumeration with "IPlantObject" instances.

"GetObjectsByPropertyName" method
Supplies an enumeration with "IPlantObject" instances that have specific properties and
originate in a specific plant node.
GetPlantObjectsByPropertyNames(const CFVARIANT PropertyNames, const
CFSTR ViewFilter, IPlantObjectEnumerator** ppPlantObjects)
• PropertyNames

[in]: Property names
• ViewFilter

[in]: Filter for a hierarchy path.
• ppPlantObjects

[out]: Points to an "IPlantObjectEnumerator" enumeration with "IPlantObject" instances.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8109

"GetPlantObjectsByExpression" method
Supplies an enumeration with "IPlantObject" instances. The instances are filtered by type and
property values.
GetPlantObjectsByExpression(const CFVARIANT PropertyNames, const
CFSTR plantObjectTypeFilter, const CFSTR expressionFilter, const
CFSTR ViewFilter, IPlantObjectEnumerator** ppPlantObjects)
• PropertyNames

[in]: Property names
If the list contains multiple values, all properties must be available at the object.

• plantObjectTypeFilter
[in]: Filter for the object type on which the instances are based.

• expressionFilter
[in]: An expression that is a filter for the property values.

• ViewFilter
Filter for a hierarchy path.

• ppCpmNodes
[out]: Points to an "IPlantObjectEnumerator" enumeration with "IPlantObject" instances.

Example
Hierarchy path Referenced object instance
System2.TechnologicalHierarchy::P1/S1/L2/
LeftPump

References the "LeftPump" object instance in the "Technologi‐
calHierarchiy" of system2.

.TechnologicalHierarchy::P1/S1/L2/LeftPump References the "LeftPump" object instance in the "Technologi‐
calHierarchiy" of the local system.

U4711 References the "U4711" object instance of the local system.
System2::U4711 References the "U4711" object instance of System2.

Runtime Openness
20.3 Runtime API

8110 System Manual, 11/2022

Copy code
void PlantModelGetPlantObjectsByType(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"PlantModel"), &pUnk);
 IPlantModelPtr pPlantModel(pUnk);
 IPlantObjectEnumeratorPtr pPlantObjectEnum;
 pPlantModel->GetPlantObjectsByType(CCfString(L"BLOWER").Get(), CCfString(L"").Get(),
&pPlantObjectEnum);
 IPlantObjectPtr pItem;
 pPlantObjectEnum->MoveNext();
 while (CF_SUCCEEDED(pPlantObjectEnum->Current(&pItem)))
 {
 DisplayNodeInfo(pItem);
 pPlantObjectEnum->MoveNext();
 }

void PlantModelGetPlantObjectsByExpression(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"PlantModel"), &pUnk);
 IPlantModelPtr pPlantModel(pUnk);
 IPlantObjectEnumeratorPtr pPlantObjectEnum;
 CCfString str1 = L"NumberOfNodes";
 CCfString str2 = L"Quality";
 CCfSafeArray daSafeArray(CF_VT_STR, 1U, 2U);
 int32_t index = 0;
 daSafeArray.PutElement(&index, (void*)&str1);
 ++index;
 daSafeArray.PutElement(&index, (void*)&str2);
 ++index;
 CCfVariant vtProperties;
 daSafeArray.Detach(&vtProperties);
 pPlantModel->GetPlantObjectsByExpression(vtProperties, CCfString(L"BLOWER").Get(),
CCfString(L"NumberOfNodes>=0"), CCfString(L"RUNTIME_1.hierarchy").Get(),
&pPlantObjectEnum);

 pPlantObjectEnum->MoveNext();
 IPlantObject* pPlantObject;
 while (CF_SUCCEEDED(pPlantObjectEnum->Current(&pPlantObject)))
 {
 DisplayNodeInfo(pPlantObject);
 pPlantObjectEnum->MoveNext();
 }
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8111

IPlantObject

Description
The C++ interface "IPlantObject" specifies methods for handling object instances of the plant
model of a Runtime system.
An object instance in the plant model is based on an object type and its data structure. Each
object instance receives its position within the plant hierarchy by assigning it to a hierarchy
node.
The interface inherits from the "ICfDispatch" interface.

Formatting of a hierarchy path
A hierarchy path of object instances consists of several components and has the following
syntax:
[SystemName].HierarchyName::[NodeID/.../]NodeID
The system name can be omitted for referencing a local hierarchy. The dot before the
hierarchy name must stay.

Members
The following methods are specified in the interface:

"GetName" method
Supplies the name of the "IPlantObject" instance for unique identification.
CFRESULT GetName(CFSTR* pName)
• pName

[out]: Name of the instance

"GetParent" method
Supplies the parent of the "IPlantObject" instance in the hierarchy.
CFRESULT GetParent(IPlantObject** ppParent)
• ppParent

[out]: The parent as "IPlantObject" instance.

"GetChildren" method
Supplies an enumeration with the children of the "IPlantObject" instance in the hierarchy.
CFRESULT GetChildren(IPlantObjectEnumerator** ppChildren)
• ppChildren

[out]: An enumeration of the type "IPlantObjectEnumerator" with child object instances.

"GetPlantViewPaths" method
Supplies a map with hierarchy names and hierarchy paths that the "IPlantObject" instance has
in all hierarchies in which it is included.

Runtime Openness
20.3 Runtime API

8112 System Manual, 11/2022

CFRESULT GetPlantViewPaths(ICfMapStringToVariant **pViewPaths)
• pViewPaths

[out]: A map with String/String pairs (hierarchy name to hierarchy path).

"GetCurrentPlantView" method
Supplies the path and names of the "IPlantObject" instance in the current hierarchy.
If the "IPlantObject" instance is only contained in one hierarchy, this path is returned.
CFRESULT GetCurrentPlantView)(CFSTR* pView)
• pView

[out]: Hierarchy path and name of the "IPlantObject" instance.

"SetCurrentPlantView" method
"CurrentPlantView" is the basis for navigation with the "GetParent" or "GetChildren" methods.
If the "IPlantObject" instance is contained in several hierarchies, the path must be set via
"SetCurrentPlantView" before the "GetParent" or "GetChildren" method can be used.
CFRESULT SetCurrentPlantView)(CFSTR const& View)
• View

[in]: The current hierarchy

"GetProperty" method
Supplies a property of the "IPlantObject" instance.
CFRESULT GetProperty(const CFSTR propertyName,
IPlantObjectProperty** ppPlantObjectProperty)
• propertyName

[in]: Name of a property of the "IPlantObject" instance
• ppPlantObjectProperty

[out]: Points to an "IPlantObjectProperty" instance.

"GetProperties" method
Supplies a two-dimensional list (name-object pairs) of the data structure of the "IPlantObject"
instance. The list allows access to the instance properties.
CFRESULT GetProperties(const CFVARIANT propertyNames,
IPlantObjectPropertySet** ppPlantObjectPropertySet)
• Optional: propertyNames

[in]: List with names of one or multiple properties of the "IPlantObject" instance.
Without "propertyNames" parameter, all properties of the instance are referenced in the list.

• ppPlantObjectPropertySet
[out]: Points to the list of the type "IPlantObjectPropertySet" that contains the names of one
or multiple properties of the "IPlantObject" instance.

"GetActiveAlarms" method
Supplies all active alarms that the "IPlantObject" instance contains at the time it is called in
the active hierarchy. Unlike with an AlarmSubscription, no status changes or new alarms
are signaled that occur after the function call. Users can filter the alarms or specify a
SystemName if they only want to receive the active alarms of a specific system.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8113

CFRESULT GetActiveAlarms(uint32_t language, CFBOOL IncludeChildren,
CFSTR filter,IN IPlantObjectAlarmCallback* pCallback)
• language

[in]: Language code of the language for all texts of an alarm and the filters. Refer to the
section Locale IDs of the supported languages (Page 7829).

• IncludeChildren
[in]: The active alarms of the child instances are returned as well.

• filter
[in]: SQL-type string for filtering the alarm texts. The filter can contain operators. See
also Syntax of the alarm filter (Page 7828).

• pCallback
[in]: Callback pointer.

"CreateAlarmSubscription" method
Supplies a "PlantObjectAlarmSubscription" that can be used to start and stop an alarm
subscription.
CFRESULT CreateAlarmSubscription)(IPlantObjectAlarmSubscription**
ppPlantObjectAlarmSubscription)
• ppPlantObjectAlarmSubscription

[out] Points to a "PlantObjectAlarmSubscription" instance.

Example
Copy code
void PlantObjectGetProperties(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"PlantModel"), &pUnk);
 IPlantModelPtr pPlantModel(pUnk);
 IPlantObjectPtr pPlantObject;
 CCfString strNode = L".hierarchy::PlantView/Unit1";
 //gets node for specified Node path
 pPlantModel->GetPlantObject(strNode.Get(), &pPlantObject);

 //empty property - so all node members should be read
 CCfVariant vtProperties;
 IPlantObjectPropertySetPtr pPlantObjectPropertySet;
 // get the PlantObject properties by property names
 pPlantObject->GetProperties(vtProperties, &pPlantObjectPropertySet);

 uint32_t nCount = 0;
 pPlantObjectPropertySet->GetCount(&nCount);
 std::cout << "Count :" << nCount << std::endl;
}

Runtime Openness
20.3 Runtime API

8114 System Manual, 11/2022

IPlantObjectProperty

Description
The C++ interface "IPlantObjectProperty" specifies the handling of properties of object instances
of the plant model of a Runtime system. The properties represent the data structure of an object
instance.
The object instance communicates with the automation system through the properties of the
data structure. The values of the properties are obtained from linked process tags or internal
tags.
You reference an object using the IPlantObject.GetProperty or
IPlantObject.GetProperties methods.
The interface inherits from the "ICfDispatch" interface.

Members
The following methods are specified in the interface:

"GetName" method
Supplies the name of the property.
CFRESULT GetName(CFSTR *pName)
• pName

[out]: Points to the name of the property.

"Read" method
Reads the value of the "IPlantObjectProperty" instance synchronously and returns it as an
"IPlantObjectPropertyValue" object. The value, the quality code and the time stamp of the
property are determined when the property is read.
CFRESULT Read(IPlantObjectPropertyValue**
ppPlantObjectPropertyValue)
• ppPlantObjectPropertyValue

[out]: Values of the property as "IPlantObjectPropertyValue" instance

"Write" method
Writes the value synchronously to the "IPlantObjectProperty" instance.
CFRESULT Write)(const CFVARIANT value)
• value

[in]: New process value of the property

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8115

Example
Copy code
void PlantObjectReadproperty(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"PlantModel"), &pUnk);
 IPlantModelPtr pPlantModel(pUnk);
 IPlantObjectPtr pPlantObject;
 CCfString strNode = L".hierarchy::PlantView/Unit1";
 //gets node for specified Node path
 pPlantModel->GetPlantObject(strNode.Get(), &pPlantObject);
 //empty property - so all node members should be read
 CCfVariant vtProperties;
 CCfSafeArray daPropertyNames(CF_VT_STR, 1U, 1U);
 int32_t index = 0;
 CCfString strName(L"DateActivation");
 daPropertyNames.PutElement(&index, &strName);
 daPropertyNames.Detach(&vtProperties);
 IPlantObjectPropertySetPtr pPlantObjectPropertySet;
 // get the PlantObject properties by property names
 pPlantObject->GetProperties(vtProperties, &pPlantObjectPropertySet);
 CCfString strName(L"NumberOfNodes");
 IPlantObjectPropertyPtr PlantObjectProperty;
 //get the PlantObject property by name
 pPlantObject->GetProperty(strName.Get(), &PlantObjectProperty);
 IPlantObjectPropertyValuePtr pPlantObjectPropertyValue;
 // Read PlantObject Property
 PlantObjectProperty->Read(&pPlantObjectPropertyValue);

 CCfString strName;
 pPlantObjectPropertyValue->GetPlantObjectPropertyName(&strName);
 std::cout << "PlantModelPropertyName:" << strName.ToUTF8() << std::endl;
 int64_t qc;
 pPlantObjectPropertyValue->GetQuality(&qc);
 std::cout << "Quality:" << qc << std::endl;
 int64_t ec;
 pPlantObjectPropertyValue->GetError(&ec);
 std::cout << "Error:" << ec << std::endl;
 CCfDateTime64 dt;
 pPlantObjectPropertyValue->GetTimeStamp(&dt);
 std::cout << "DateTime:" << dt.GetDateTimeString().ToUTF8() << std::endl;
 CCfVariant vtVal;
 pPlantObjectPropertyValue->GetValue(&vtVal);
 std::cout << "Value:" << vtVal.uint64 << std::endl;
}

IPlantObjectPropertyValue

Description
The C++ interface "IPlantObjectPropertyValue" specifies the handling of process tag properties
of the Runtime system.

Runtime Openness
20.3 Runtime API

8116 System Manual, 11/2022

Members
The following methods are specified in the interface:

"GetPlantObjectPropertyName" method
Supplies the name of the tag.
CFRESULT GetPlantObjectPropertyName(CFSTR* pName)
• pName

[out]: Points to the name.

"GetValue" method
Supplies the tag value.
CFRESULT GetValue(CFVARIANT* pValue)
• pValue

[out]: Points to the process value.

"GetQuality" method
Supplies the quality code of the tag.
CFRESULT GetQuality(int64_t* pQualityCode)
• pQualityCode

[out]: Points to the quality code.

"GetTimeStamp" method
Supplies the time stamp of the last modification to the tag.
CFRESULT GetTimeStamp(CFDATETIME64* pTimeStamp)
• pTimeStamp

[out]: Points to the time stamp.

"GetError" method
Supplies the error code of the tag.
CFRESULT GetError(int64_t* pErrorCode)
• pErrorCode

[out]: Points to the error code.

Example
For example, see IPlantObjectProperty (Page 8115).

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8117

IPlantModelPropertySubscriptionNotification

Description
The C++ interface "IPlantModelPropertySubscriptionNotification" defines methods for
implementing asynchronous change monitoring of object instance properties. The methods are
used by the C++ interface "ICpmNodePropertySet".
All the methods return CF_SUCCESS following successful execution.
The interface inherits the "ICfUnknown" interface.

Members
The following methods are specified in the interface:

"OnDataChanged" method
Callback method is called when a monitored object instance property is changed.
CFRESULT OnDataChanged(IPlantObjectPropertyValueEnumerator*
pEnumerator)
• pEnumerator:

[in]: Points to the "IPlantObjectPropertyValueEnumerator" object that provides access to an
enumeration of "IPlantObjectPropertyValue" instances.

Runtime Openness
20.3 Runtime API

8118 System Manual, 11/2022

Example
Register a PropertySet for monitoring:

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8119

Copy code
void PlantObjectSubscribePropertySet(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"PlantModel"), &pUnk);

 IPlantModelPtr pPlantModel(pUnk);
 IPlantObjectPtr pPlantObject;
 CCfString strNode = L".hierarchy::PlantView/Unit1/Filler1";
 //gets node for specified Node path
 pPlantModel->GetPlantObject(strNode.Get(), &pPlantObject);

 //empty property - so all node members should be read
 CCfVariant vtProperties;
 IPlantObjectPropertySetPtr pPlantObjectPropertySet;
 // get the PlantObject properties by property names
 pPlantObject->GetProperties(vtProperties, &pPlantObjectPropertySet);

 CPlantModelPropertySubscriptionNotification* pSubscribe = new
CPlantModelPropertySubscriptionNotification();
 IPlantModelPropertySubscriptionNotification* pNotification = pSubscribe;
 //Susbcribe for all PlantObject properties
 pPlantObjectPropertySet->Subscribe(pNotification);
}

CFRESULT CFCALLTYPE
CPlantModelPropertySubscriptionNotification::OnDataChanged(IPlantObjectPropertyValueEnumer
ator* pEnumerator)
{
 uint32_t nCount = 0;
 pEnumerator->Count(&nCount);
 for (int i = 0;i < (int32_t)nCount; i++)
 {
 pEnumerator->MoveNext();
 IPlantObjectPropertyValue* pPlantModelPropertyValue;
 if (CF_SUCCEEDED(pEnumerator->Current(&pPlantModelPropertyValue)) && nullptr !=
pPlantModelPropertyValue)
 {
 CCfString strName;
 pPlantModelPropertyValue->GetPlantObjectPropertyName(&strName);
 std::cout << "Name:" << strName.ToUTF8() << std::endl;
 int64_t qc;
 pPlantModelPropertyValue->GetQuality(&qc);
 std::cout << "Quality:" << qc << std::endl;
 int64_t ec;
 pPlantModelPropertyValue->GetError(&ec);
 std::cout << "Error:" << ec << std::endl;
 CCfDateTime64 dt;
 pPlantModelPropertyValue->GetTimeStamp(&dt);
 std::cout << "DateTime:" << dt.GetDateTimeString().ToUTF8() << std::endl;
 CCfVariant vtVal;
 pPlantModelPropertyValue->GetValue(&vtVal);
 std::cout << "Value:" << vtVal.uint64 << std::endl;

Runtime Openness
20.3 Runtime API

8120 System Manual, 11/2022

Copy code
 }
 }
 this->SetEvent();
 return CF_SUCCESS;
}

IPlantObjectPropertyValueEnumerator

Description
The C++ interface "IPlantObjectPropertyValueEnumerator" specifies methods for handling the
enumeration of "IPlantObjectPropertyValue" instances.
All the methods return CF_SUCCESS following successful execution.
The interface inherits the "ICfUnknown" interface.

Members
The following methods are specified in the interface:

"Current" method
Supplies the current element of the enumeration.
Current(IPlantObjectPropertyValue** ppItem)
• ppItem

[out]:

"MoveNext" method
Move to the next element of the enumeration.
CFRESULT MoveNext()

"Reset" method
Resets the current position in the enumeration to the first element.
CFRESULT Reset()
"MoveNext" then supplies the first element of the enumeration.

"Count" method
Output the size of the enumeration or the number of elements in an enumeration.
CFRESULT Count(uint32_t *pValue)
• value

[out]: Points to the value for the number of elements in the enumeration.

Example
For example, see IPlantModelPropertySubscriptionNotification (Page 8118).

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8121

IPlantObjectPropertySet

Description
The C++ interface "IPlantObjectPropertySet" specifies methods for optimized access to several
"IPlantObjectProperty" instances of an "IPlantObject" instance of the Runtime system.
After initialization of the "IPlantObjectPropertySet" object, you have read/write access
to multiple "IPlantObjectProperty" instances in one call. Simultaneous access has better
performance and a lower communication load than single access to multiple properties.
The interface inherits from the "ICfDispatch" interface.

Members
The following methods are specified in the interface:

"GetContextID" method
Supplies an ID as additional identification feature of a property. "ContextId" can, for example,
be used to recognize properties having the same name but from different systems.
Default value -1: "ContextId" is not used.
CFRESULT GetContextId)(int32_t* pContextId)
• pContextId

[out]: "ContextId" of the property

"SetContextID" method
Sets an ID as additional identification feature of a property. "ContextId" can, for example, be
used to recognize properties having the same name but from different systems.
Default value -1: "ContextId" is not used.
CFRESULT SetContextId(int32_t contextId)
• contextId

[in]: "ContextId" of the property

"Read" method
Supplies all values of the "IPlantObjectProperty" instances contained in the
"IPlantObjectPropertySet" instance. The values are read synchronously.
CFRESULT Read(IPlantObjectPropertyValueEnumerator**
ppPlantObjectPropertyValueEnumerator)
• ppPlantObjectPropertyValueEnumerator

[out]: Points to the enumeration of the tag values as an
"IPlantObjectPropertyValueEnumerator" object.

"ReadAsync" method
Reads the values of all "IPlantObjectProperty" instances of the "IPlantObjectPropertySet"
instance asynchronously.

Runtime Openness
20.3 Runtime API

8122 System Manual, 11/2022

CFRESULT ReadAsync(IPlantObjectPropertySetReadReply* pReadReply)
• pReadReply

[in]: Points to the "IPlantObjectPropertySetReadReply" object that implements the callback
interface for read operations.

"Write" method
Writes the values of the "IPlantProperty" instances of the "PlantObjectPropertySet" instance
synchronously to the Runtime system.
CFRESULT Write(HmiUnified::Rt::IErrorResultEnumerator**
ppEnumerator)
• pWriteReply

[out]: Points to an "IErrorResultEnumerator" object that contains the enumeration with errors
for the write operations of the "IPlantObjectProperty" instances.

"WriteAsync" method
Writes the values of all "IPlantObjectProperty" instances of the "PlantObjectPropertySet"
instance asynchronously to the Runtime system.
CFRESULT WriteAsync(IPlantObjectPropertySetWriteReply *pWriteReply)
• pWriteReply

[in]: Points to the "IPlantObjectPropertySetWriteReply" object that implements the callback
interface for write operations.

"GetCount" method
Supplies the number of properties of the "IPlantObjectPropertySet" instance.
CFRESULT GetCount(uint32_t *pCount)
• pCount

[out]: Points to the number of properties.

"Subscribe" method
Subscribes all properties of the "IPlantObjectPropertySet" instance asynchronously for change
monitoring.
CFRESULT Subscribe(IPlantModelPropertySubscriptionNotification*
pPlantModelSubscriptionCallback)
• pPlantModelSubscriptionCallback

[in]: Points to the "IPlantObjectPropertySubscriptionNotification" object that implements the
callback interface of the change monitoring.

"CancelSubscribe" method
Cancels change monitoring for all properties of the "IPlantObjectPropertySet" instance.
CFRESULT CancelSubscribe()

"Add" method
Adds an "IPlantObjectProperty" instance with property value or more "IPlantObjectProperty"
instances to the "IPlantObjectPropertySet" instance.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8123

CFRESULT Add(ICfArrayVariantPtr propertyNames)
• propertyNames

[in]: Array with names of several "IPlantObjectProperty" instances
or
CFRESULT Add(const CFSTR propertyName, const CFVARIANT value)
• propertyName

[in]: Name of the "IPlantObjectProperty" instance
• value

[in]: New process value of the "IPlantObjectProperty" instance

"Remove" method
Removes a property from the "IPlantObjectPropertySet" instance.
CFRESULT Remove(const CFSTR propertyName)
• propertyName

[in]: Name of the property that is being removed.

"Clear" method
Removes all properties from the "IPlantObjectPropertySet" instance.
CFRESULT Clear()

New example
Copy code
void PlantObjectWriteAsyncPropertySet(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"PlantModel"), &pUnk);
 IPlantModelPtr pPlantModel(pUnk);
 IPlantObjectPtr pPlantObject;
 CCfString strNode = L".hierarchy::PlantView/Unit1";
 //gets node for specified Node path
 pPlantModel->GetPlantObject(strNode.Get(), &pPlantObject);

 //empty property - so all node members should be read
 CCfVariant vtProperties;
 IPlantObjectPropertySetPtr pPlantObjectPropertySet;
 // get the PlantObject properties by property names
 pPlantObject->GetProperties(vtProperties, &pPlantObjectPropertySet);

 CCfString strName(L"NumberOfNodes");
 CCfVariant vtValue(1000);
 pPlantObjectPropertySet->Add(strName, vtValue);

 CPlantObjectPropertySetWriteReply* pReply = new CPlantObjectPropertySetWriteReply();
 IPlantObjectPropertySetWriteReplyPtr pWritReply = pReply;
 //Write PlantObject properties values asynchronously
 pPlantObjectPropertySet->WriteAsync(pWritReply);
}

Runtime Openness
20.3 Runtime API

8124 System Manual, 11/2022

IPlantObjectPropertySetReadReply

Description
The C++ interface "IPlantObjectPropertySetReadReply" defines the "OnReadComplete" method
as callback method of a "ReadAsync" call. The method is used by the C++ interface
"IPlantObjectPropertySet".

Members
The following methods are specified in the interface:

"OnReadComplete" method
The "OnReadComplete" callback method is called when the "ReadAsync" method is used.
CFRESULT OnReadComplete(CFVARIANT
systemError, IPlantObjectPropertyValueEnumerator*
pPlantObjectPropertyValueEnumerator)
• systemError

[in]: Supplies an error code when a global error has occurred.
• ppPlantObjectPropertyValueEnumerator

[in]: Points to an "IPlantObjectPropertyValueEnumerator" object that contains the
enumeration of the process values of object instance properties.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8125

Example
Copy code
void PlantObjectReadAsyncPropertySet(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"PlantModel"), &pUnk);
 IPlantModelPtr pPlantModel(pUnk);
 IPlantObjectPtr pPlantObject;
 CCfString strNode = L".hierarchy::PlantView/Unit1";
 //gets node for specified Node path
 errCode = pPlantModel->GetPlantObject(strNode.Get(), &pPlantObject);

 //empty property - so all node members should be read
 CCfVariant vtProperties;
 IPlantObjectPropertySetPtr pPlantObjectPropertySet;
 // get the PlantObject properties by property names
 pPlantObject->GetProperties(vtProperties, &pPlantObjectPropertySet);
 CPlantObjectPropertySetReadReply* pReply = new CPlantObjectPropertySetReadReply();
 IPlantObjectPropertySetReadReplyPtr pReadReply = pReply;
 // Read PlantObject properties values asynchronously
 pPlantObjectPropertySet->ReadAsync(pReadReply);
}
CFRESULT CFCALLTYPE CPlantObjectPropertySetReadReply::OnReadComplete(IN CFVARIANT
SystemError, IN IPlantObjectPropertyValueEnumerator* pPlantObjectPropertySet)
{
 uint32_t nCount = 0;
 pPlantObjectPropertySet->Count(&nCount);

 for (int i = 0;i < (int32_t)nCount; i++)
 {
 pPlantObjectPropertySet->MoveNext();
 IPlantObjectPropertyValue* pPlantModelPropertyValue;

 CCfString strName;
 pPlantModelPropertyValue->GetPlantObjectPropertyName(&strName);
 std::cout << "Name:" << strName.ToUTF8() << std::endl;
 int64_t qc;
 pPlantModelPropertyValue->GetQuality(&qc);
 std::cout << "Quality:" << qc << std::endl;
 int64_t ec;
 pPlantModelPropertyValue->GetError(&ec);
 std::cout << "Error:" << ec << std::endl;
 CCfDateTime64 dt;
 pPlantModelPropertyValue->GetTimeStamp(&dt);
 std::cout << "DateTime:" << dt.GetDateTimeString().ToUTF8() << std::endl;
 CCfVariant vtVal;
 pPlantModelPropertyValue->GetValue(&vtVal);
 std::cout << "Value:" << vtVal.uint64 << std::endl;
 }
 this->SetEvent();
 return CF_SUCCESS;
}

Runtime Openness
20.3 Runtime API

8126 System Manual, 11/2022

IPlantObjectPropertySetWriteReply

Description
The C++ interface "IPlantObjectPropertySetWriteReply" defines the "OnWriteComplete" method
as callback method of a "WritedAsync" call. The method is used by the C++ interface
"IPlantObjectPropertySet".

Members
The following methods are specified in the interface:

"OnWriteComplete" method
The "OnWriteComplete" callback method is called when the "WriteAsync" method is used.
CFRESULT OnWriteComplete(CFVARIANT
systemError, IPlantObjectPropertyValueEnumerator*
pPlantObjectPropertyValueEnumerator)P
• systemError

[in]: Supplies an error code when a global error has occurred.
• ppPlantObjectPropertyValueEnumerator

[in]: Points to an "IPlantObjectPropertyValueEnumerator" object that contains the
enumeration of the process values of "IPlantObjectProperty" instances.

Example
Copy code
CFRESULT CFCALLTYPE CPlantObjectPropertySetWriteReply::OnWriteComplete(IN CFVARIANT
SystemError, IN IPlantObjectPropertyValueEnumerator* pPlantObjectPropertySet)
{
 uint32_t nCount = 0;
 pPlantObjectPropertySet->Count(&nCount);

 for (int i = 0;i < (int32_t)nCount; i++)
 {
 pPlantObjectPropertySet->MoveNext();
 IPlantObjectPropertyValue* pPlantModelPropertyValue;
 CCfString strName;
 pPlantModelPropertyValue->GetPlantObjectPropertyName(&strName);
 std::cout << "Name:" << strName.ToUTF8() << std::endl;
 int64_t ec;
 pPlantModelPropertyValue->GetError(&ec);
 std::cout << "Error:" << ec << std::endl;
 }

 this->SetEvent();
 return CF_SUCCESS;
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8127

IPlantObjectEnumerator

Description
The "IPlantObjectEnumerator" interface is a C++ interface that specifies methods for handling
the enumeration of object instances of the plant model of a Runtime system.
All the methods return CF_SUCCESS following successful execution.
The interface inherits from the "ICfDispatch" interface.

Members
The following methods are specified in the interface:

"Current" method
Supplies the current element of the enumeration.
CFRESULT Current(IPlantObject **ppItem)
• ppItem

[out]: Points to the current "IPlantObject" object as an element of the list.

"MoveNext" method
Move to the next element of the enumeration.
CFRESULT MoveNext()

"Reset" method
Resets the current position in the enumeration to the first element.
CFRESULT Reset()
"MoveNext" then supplies the first element of the enumeration.

"Count" method
Output the size of the enumeration or the number of elements in an enumeration.
CFRESULT Count(uint32_t *pValue)
• value

[out]: Points to the value for the number of elements in the enumeration.

Runtime Openness
20.3 Runtime API

8128 System Manual, 11/2022

Example
Copy code
void PlantObjectCurrentViewPath(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"PlantModel"), &pUnk);
 IPlantModelPtr pPlantModel(pUnk);
 IPlantObjectEnumeratorPtr pPlantObjectEnum;
 CCfString str1 = L"NumberOfNodes";
 CCfString str2 = L"Quality";
 CCfString str3 = L"Quantity";
 CCfString str4 = L"DateActivation";
 CCfSafeArray daSafeArray(CF_VT_STR, 1U, 4U);
 int32_t index = 0;
 daSafeArray.PutElement(&index, (void*)&str1);
 ++index;
 daSafeArray.PutElement(&index, (void*)&str2);
 ++index;
 daSafeArray.PutElement(&index, (void*)&str3);
 ++index;
 daSafeArray.PutElement(&index, (void*)&str4);
 CCfVariant vtProperties;
 daSafeArray.Detach(&vtProperties);
 // gets PlantObjects for specified filter
 pPlantModel->GetPlantObjectsByExpression(vtProperties,
CCfString(L"UNIT").Get(), CCfString(L""),
CCfString(L"RUNTIME_1.hierarchy::PlantView/Unit1").Get(),
&pPlantObjectEnum);

 pPlantObjectEnum->MoveNext();
 IPlantObject* pPlantObject;
 while (CF_SUCCEEDED(pPlantObjectEnum->Current(&pPlantObject)))
 {
 DisplayNodeInfo(pPlantObject);
 pPlantObjectEnum->MoveNext();
 }
}

IPlantObjectAlarmSubscription

Description
The C++ interface "IPlantObjectAlarmSubscription" specifies methods for starting and stopping
an "AlarmSubscription".
The interface inherits from the "ICfDispatch" interface.

Members
The following methods are specified in the interface:

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8129

"Start" method
Subscribe systems for monitoring changes of active alarms.
CFRESULT Start(IPlantObjectAlarmSubscriptionCallback* callbackPtr)
• callbackPtr

[in]: Points to the "IPlantObjectAlarmSubscriptionCallback" object that implements the
callback interface of the change monitoring.

"Stop" method
Clear monitoring of active alarms.
CFRESULT Stop(void)

"GetFilter" method
Supplies the string by which the result set is filtered.
CFRESULT GetFilter(CFSTR* filter)
• filter

[out]: SQL-type string for filtering the result set of active alarms.

"SetFilter" method
Sets the string for filtering the result set of active alarms.
CFRESULT SetFilter(IN CFSTR filter)
• filter

[in]: SQL-type string for filtering the result set of active alarms.
All properties of an alarm can be used in the filter string. The filter string can contain
operators. Refer to the section Syntax of the alarm filter (Page 7828).

"GetLanguage" method
Supplies the country identifier of the language of the monitored alarms.
CFRESULT GetLanguage(uint32_t* language)
• language

[out]: Code of the country identification. See also sectionLocale IDs of the supported
languages (Page 7829).

"SetLanguage" method
Sets the country identifier of the language of the monitored alarms.
CFRESULT SetLanguage)(uint32_t language)
• language

[in]: Code of the country identification See also sectionLocale IDs of the supported languages
(Page 7829).

"GetIncludeChildren" method
Supplies the setting for the child instances.

Runtime Openness
20.3 Runtime API

8130 System Manual, 11/2022

CFRESULT GetIncludeChildren(CFBOOL* bIsIncludeChildren)
• bIsIncludeChildren

[out]: Reads out whether the child instances are part of monitoring.

"SetIncludeChildren" method
Determines the setting for the child instances.
CFRESULT SetIncludeChildren(CFBOOL bIsIncludeChildren)
• bIsIncludeChildren

[in]: Controls whether the child instances are part of monitoring.

Example

Copy code
void PlantObjectSubscription(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"PlantModel").Get(), &pUnk);

 IPlantModelPtr pPlantModel(pUnk);
 CPlantModelAlarmValue* pAlarmValue = new CPlantModelAlarmValue();
 pAlarmValue->AddRef();
 IPlantObjectAlarmCallback *pCB = pAlarmValue;
 CCfString strNode = L".hierarchy::RootNodeName/Node1";
 IPlantObjectPtr pPlantObject;
 pPlantModel->GetPlantObject(strNode.Get(), &pPlantObject);
 CCfSmartString daFilter;//= L"AlarmClassName = 'Alarm'";
 uint32_t daLanguage = 1033;
 IPlantObjectAlarmSubscriptionPtr pPlantObjectAlarmSubscription;
 pPlantObject->CreateAlarmSubscription(&pPlantObjectAlarmSubscription);
 pPlantObjectAlarmSubscription->SetFilter(daFilter.AllocCFSTR());
 pPlantObjectAlarmSubscription->SetLanguage(1033);
 pPlantObjectAlarmSubscription->SetFilter(false);
 pPlantObjectAlarmSubscription->SetIncludeChildren(false);
 CCfRefPtr<CPlantObjectAlarmSubscriptionCallback> pCallback = new
CPlantObjectAlarmSubscriptionCallback();
 pPlantObjectAlarmSubscription->Start(pCallback);
 if (0 == pCallback->WaitForcompletion(30000))
 {
 pPlantObjectAlarmSubscription->Stop();
 }
}

IPlantObjectAlarmCallback

Description
The C++ interface "IPlantObjectAlarmCallback" defines the callback method "OnAlarm".

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8131

Member
The following methods are defined in the interface:

"OnAlarm" method
Specifies the signature of the event handling method for the "OnAlarm" event of an
"IPlantObject" instance.
OnAlarm(uint32_t systemError,
 CFSTR systemName,

Siemens::Runtime::HmiUnified::Alarms::IAlarmResultEnumerator*
pItems,
 CFBOOL completed)
• systemError

Supplies an error code when a global error has occurred. When the error code is set, pItems
is irrelevant.

• systemName
Name of the runtime system that is subscribed for alarm monitoring by the user.

• pItems
Supplies a pointer to "IAlarmResultEnumerator" that can be used to enumerate the active
alarms.

• completed
Status of the asynchronous transfer:
– True: All alarms are read out.
– False: Not all alarms are read out yet.

Runtime Openness
20.3 Runtime API

8132 System Manual, 11/2022

Example
Copy code
// Callback for alarm notifications
CFRESULT CFCALLTYPE CPlantModelAlarmValue::OnAlarm(uint32_t systemError, CFSTR
systemName, Siemens::Runtime::HmiUnified::Alarms::IAlarmResultEnumerator* pItems, CFBOOL
completed)
{
 CFRESULT hr = CF_FALSE;
 if (!completed)
 {
 uint32_t nsize;
 pItems->Count(&nsize);
 if (nsize > 0 && CF_SUCCEEDED(systemError)) {
 {
 int index = 0;
 while (CF_SUCCEEDED(pItems->MoveNext()))
 {
 IAlarmResultPtr ppValues;
 pItems->Current(&ppValues);

 CCfString strId;
 ppValues->GetSourceID(&strId);
 std::cout << "String ID = " << strId.ToUTF8().c_str() << std::endl;
 CCfString strName;
 ppValues->GetName(&strName);
 std::cout << "Name = " << strName.ToUTF8().c_str() << std::endl;
 CCfString strClassName;
 ppValues->GetAlarmClassName(&strClassName);
 std::cout << "Alarm Class Name = " << strClassName.ToUTF8().c_str() << std::endl;
 index++;
 }
 }
 }
 hr = CF_SUCCESS;
 return hr;
}

IPlantObjectAlarmSubscriptionCallback

Description
The C++ interface "IPlantObjectAlarmCallbackSubscription" defines the callback method
"OnAlarm".
The interface inherits the "ICfUnknown" interface.

Members
The following methods are specified in the interface:

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8133

"OnAlarm" method
Specifies the signature of the event handling method for the "OnAlarm" event of an
"IPlantObject" instance.
OnAlarm(uint32_t systemError,
 CFSTR systemName,

Siemens::Runtime::HmiUnified::Alarms::IAlarmResultEnumerator*
pItems)
• systemError

Supplies an error code when a global error has occurred. When the error code is set, pItems
is irrelevant.

• systemName
Name of the runtime system that is subscribed for alarm monitoring by the user.

• pItems
– Supplies a pointer to "IAlarmResultEnumerator" that can be used to enumerate the active

alarms.

20.3.9.7 Interfaces of the Calendar option

ISHCCalendarOption

Description
The C++ interface "ISHCCalendarOption" specifies the "GetObject" method. The method supplies
the calendar object of an "IPlantObject" instance. A calendar is always integrated via an
"IPlantObject" instance.

Members
"GetObject" method
Supplies an error code of the type CFRESULT.

Runtime Openness
20.3 Runtime API

8134 System Manual, 11/2022

CFRESULT
GetObject(Siemens::Runtime::HmiUnified::PlantModel::IPlantObject *
pCpmNode, CFSTR objectName, ICfUnknown** ppObject)
• cpmNode

[in]: Reference to the "IPlantObject" instance currently selected in the hierarchy
• objectName

[in]: The name of the "IPlantObject" instance
• ppObject

[out]: Returns an object of the type "ICfUnknown". The object is cast to a calendar object
using the "QueryInterface" method.
Example:
ISHCCalendarOptionPtr pShcOption;
pRuntime->GetOption(CCfString(ODK_SHC_OPTION),
(IOption**)&pShcOption);
ICfUnknownPtr pUnk;
pShcOption->GetObject(pPlantObject, ODK_SHC_CALENDAR, &pUnk);
ISHCCalendarPtr pCal;
pUnk->QueryInterface(IID_ISHCCalendar, (ICfUnknown**)&pCal);
COdkShcSample Sample;
Sample.SetCalendar(pCal);

Example
The following example serves as a basis for the other examples for the C++ interfaces of the
Calendar option.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8135

It shows how you can obtain the "IPlantObject" instance and also an "ISHCCalendar" instance.
The "ISHCCalendar" instance referenced via pCalendar is also used in the other examples.

Copy code
#include <iostream>
#include "IOdkShcInterface.h"
#include "IOdkRt.h"
#include "IOdkRtAlarm.h"
using namespace Siemens::Runtime::HmiUnified::Rt;
using namespace Siemens::Runtime::HmiUnified::Common;
using namespace Siemens::Runtime::HmiUnified::PlantModel;
IRuntimePtr pRuntime;
ISHCCalendarPtr pCalendar;
ISHCCalendarSettingsProviderPtr pCalendarProvider;
ISHCCategoryProviderPtr pShcCategoryProvider;
ISHCShiftTemplatesProviderPtr pShcShiftTemplateProvider;
ISHCDayProviderPtr pShcDayProvider;
ISHCDayTemplatesProviderPtr pShcDayTemplateProvider;
ISHCActionTemplatesProviderPtr pShcActionTemplateProvider;
CCfString projectName = L"";
if (CF_SUCCEEDED(Connect(projectName, &pRuntime)))
{
 ICfUnknownPtr pPlantModelUnk;
 pRuntime->GetObject(CCfString(L"PlantModel"), &pPlantModelUnk);
 IPlantObjectPtr pPlantObject;
 IPlantModelPtr pPlantModel(pPlantModelUnk);
 CCfString strNode = L".hierarchy::Plant/Unit1";
 //gets Object for specified Node path
 pPlantModel->GetPlantObject(strNode.Get(), &pPlantObject);
 IOptionPtr pOdkOption;
 pRuntime->GetOption(CCfString(ODK_SHC_OPTION), &pOdkOption);
 ISHCCalendarOptionPtr pShcOption;
 pOdkOption->QueryInterface(IID_ISHCCalendarOption, (ICfUnknown**)&pShcOption);
 ICfUnknownPtr pUnk;
 pShcOption->GetObject(pPlantObject, ODK_SHC_CALENDAR, &pUnk);
 pUnk->QueryInterface(IID_ISHCCalendar, (ICfUnknown**)&pCalendar);
 // Get all data provider
 pCalendar->GetActionTemplatesProvider(&pShcActionTemplateProvider);
 pCalendar->GetCategoryProvider(&pShcCategoryProvider);
 pCalendar->GetDayProvider(&pShcDayProvider);
 pCalendar->GetDayTemplateProvider(&pShcDayTemplateProvider);
 pCalendar->GetShiftTemplateProvider(&pShcShiftTemplateProvider);
 pCalendar->GetSettings(&pCalendarProvider);
}

ISHCCalendar

Description
The C++ interface "ISHCCalendar" specifies the methods of a calendar.
The interface inherits from the "ICfUnknown" interface.

Runtime Openness
20.3 Runtime API

8136 System Manual, 11/2022

Members
"GetSettings" method
Supplies the "ISHCCalendarSettings" instances of the calendar.
CFRESULT GetSettings(ISHCCalendarSettings** calendar)
• calendar

[out]: The "ISHCCalendarSettings" instance

"GetCategoryProvider" method
Supplies an "ISHCCategoryProvider" instance. The provider enables access to the
"ISHCategory" instances of the calendar.
CFRESULT GetCategoryProvider(ISHCCategoryProvider**
ppCatgoryProvider)
• ppCatgoryProvider

[out]: The "ISHCCategoryProvider" instance

"GetShiftTemplateProvider" method
Supplies an "ISHCShiftTemplatesProvider" instance. The provider enables access to the
"ISHCShiftTemplate" instances of the calendar.
CFRESULT GetShiftTemplateProvider(ISHCShiftTemplatesProvider**
ppShiftTemplateProvider)
• ppShiftTemplateProvider

[out]: The "ISHCShiftTemplatesProvider" instance

"GetDayTemplateProvider" method
Supplies an "ISHCDayTemplatesProvider" instance. The provider enables access to the
"ISHCShiftTemplate" instances of the calendar.
CFRESULT GetDayTemplateProvider(ISHCDayTemplatesProvider**
ppDayTemplateProvider)
• ppDayTemplateProvider

[out]: The "ISHCDayTemplatesProvider" instance

"GetActionTemplatesProvider" method
Supplies an "ISHCActionTemplatesProvider" instance. The provider enables access to the
"ISHCActionTemplate" instances of the calendar.
CFRESULT GetActionTemplatesProvider)(OUT
ISHCActionTemplatesProvider** ppActionTemplatesProvider)
• ppActionTemplatesProvider

[out]: The "ISHCActionTemplatesProvider" instance

"GetDayProvider" method
Supplies an "ISHCDayProvider" instance. The provider enables access to the "ISHCDay"
instances of the calendar.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8137

CFRESULT GetDayProvider(ISHCDayProvider** ppDayProvider)
• ppDayProvider

[out]: The "ISHCDayProvider" instance

"GetObject" method
Creates an instance of the type defined in value and supplies a reference to the instance.
CFRESULT GetObject(const CFSTR value, ICfUnknown** ppObject)
• value

[in]: Possible values:
– "ODK_SHC_OPTION"
– "ODK_SHC_CALENDAR"
– "ODK_SHC_TIME_SLICE"
– "ODK_SHC_DAY_TEMPLATE"
– "ODK_SHC_DAY"
– "ODK_SHC_DAY_TEMPLATE"
– "ODK_SHC_ACTION_TEMPLATE"
– "ODK_SHC_ACTION_TEMPLATE_ELEMENT"

• ppObject
[out]: Reference to an object of the type "ICfUnknown", which can be cast to the
corresponding type.
Example:
ICfUnknownPtr pUnk;
ISHCShiftTemplatePtr pShcShiftTemplate; 　
pCalendar->GetObject(ODK_SHC_SHIFT_TEMPLATE, &pUnk);
pShcShiftTemplate = (ISHCShiftTemplatePtr)pUnk;

ISHCCalendarSettings

Description
The C++ interface "ISHCCalendarSettings" specifies methods for the calendar settings of an
"ISHCCalendar" instance.
The interface inherits from the "ICfUnknown" interface.

Members
"GetPlantObject" method
Supplies the name of the "IPlantObject" instance to which the calendar belongs.
GetPlantObject(CFSTR* pCpmNode)
• pCpmNode

[out]: The name of the "IPlantObject" instance

Runtime Openness
20.3 Runtime API

8138 System Manual, 11/2022

"GetFirstDayOfWeek" method
Supplies the first day of the week.
CFRESULT GetFirstDayOfWeek(CFENUM * pvarRet)
• pvarRet

Points to the enumeration "ShcWeekDay", which can contain the following values:
– Sunday (0)
– Monday (1)
– Tuesday (2)
– Wednesday (3)
– Thursday (4)
– Friday (5)
– Saturday (6)

"GetFirstWeekOfYear" method
Supplies the first week of the year.
CFRESULT GetFirstWeekOfYear(CFENUM * pvarRet)
• pvarRet

[out]: Points to the enumeration "ShcWeekStart", which can contain the following values:
– FirstOfJanuary (0): The first week starts on the first of January.
– AtLeastFourDays (1): The first week must have at least four days.
– WholeWeek (2): The first week must have at least seven days.

"GetFiscalYearStartDay" method
Supplies the first day of the fiscal year.
CFRESULT GetFiscalYearStartDay(uint8_t* pvarRet)
• pvarRet

[out]: The first day of the fiscal year of the calendar.

"GetFiscalYearStartMonth" method
Supplies the first month of the fiscal year.
CFRESULT GetFiscalYearStartMonth(uint8_t* pvarRet)
• pvarRet

[out]: The first month of the fiscal year of the calendar.

"GetDayOffset" method
Supplies the offset with which the workday begins, calculated from midnight.
CFRESULT GetDayOffset(CFTIMESPAN64 * pvarRet)
• pvarRet

[out]: Supplies the number of hours after midnight with which the day begins.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8139

"GetWorkDays" method
Supplies the workdays of the calendar.
CFRESULT GetWorkDays(uint8_t* pvarRet)
• pvarRet

[out]: The workdays of the calendar.

"GetTimeZone" method
Supplies the time zone of the calendar.
CFRESULT GetTimeZone(uint32_t* pTimeZone)
• pvarRet

[out]: The time zone ID of Microsoft.

ISHCCategory

Description
The C++ interface "ISHCCategory" specifies the methods of a time category of an "ISHCCalendar"
instance.
The interface inherits from the "ICfUnknown" interface.

Members
"GetName" method
Supplies the name of the "ISHCCategory" instance.
CFRESULT GetName(CFSTR * pvarRet)
• pvarRet

[out]: The name

"GetDescriptions" method
Supplies a map with the descriptions of the "ISHCCategory" instance and their language code
IDs.
CFRESULT GetDescriptions(OUT ICfMapIDToVariant** ppDisplayNames)
• ppDisplayNames

[out]: A map with int32/string pairs (language code ID for description).
Example:
ICfMapIDToVariantPtr pDescriptions;
hr = pShcCategory->GetDescriptions(&pDescriptions);
std::cout << "Descriptions::" << std::endl << std::endl;
uint32_t nCount2 = 0;
pDescriptions->Count(&nCount2);
for (uint32_t nIndex2 = 0; nIndex2 < nCount2; nIndex2++)
{
 int32_t nLanguageID;

Runtime Openness
20.3 Runtime API

8140 System Manual, 11/2022

 pDescriptions->KeyAt(nIndex2, &nLanguageID);
 CCfVariant strDescription;
 pDescriptions->ValueAt(nLanguageID, &strDescription);
 std::cout << "LangauageID =" << nLanguageID << " Description="
<< CCfSmartString(strDescription).ToUTF8().c_str() << std::endl;
}

"GetDisplayNames" method
Supplies a map with the display names of the "ISHCCategory" instance and their language
code IDs.
CFRESULT GetDisplayNames(ICfMapIDToVariant** ppDisplayNames)
• ppDisplayNames

[out]: A map with int32/string pairs (language code ID for display name).
Example: Similar to "GetDescriptions"

"GetColor" method
Supplies the color of the "ISHCCategory" instance.
CFRESULT GetColor(uint32_t* pColor)
• pColor

[out]: Returns a 4-byte value for an RGBA color value.

"GetIsDeleted" method
Supplies the information on whether the "ISHCCategory" instance was deleted in Engineering.
CFRESULT GetIsDeleted(CFBOOL* p_bIsDeleted) = 0;
• p_bIsDeleted

[out]:
– 0: Was not deleted (default)
– 1: Was deleted

See also
Locale IDs of the supported languages (Page 7829)

ISHCCategoryEnumerator

Description
The C++ interface "ISHCCategoryEnumerator" specifies methods for handling the enumeration
of the time categories of an "ISHCCalendar" instance. The enumeration is returned by the Read
method of an "ISHCCategoryProvider" instance.
The interface inherits from the "ICfUnknown" interface.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8141

Members
"MoveNext" method
Go to the next element of the enumeration.
CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.
CFRESULT Current(ISHCCategory** ppItem)
• ppItem

[out]: The current "ISHCCategory" instance

"Reset" method
Reset the current position in the enumeration. The "MoveNext" method moves afterwards to
the first element.
CFRESULT Reset()

"Count" method
Output the size of the enumeration or the number of its elements.
CRFESULT Count(uint32_t* pCount)
• pCount

[out]: Number of categories

Runtime Openness
20.3 Runtime API

8142 System Manual, 11/2022

Example
Copy code
void PrintCategory(const ISHCCategoryEnumeratorPtr& p_pShcCategoryEnum)
{
 uint32_t nCount = 0;
 p_pShcCategoryEnum->Count(&nCount);
 for (uint32_t nIndex = 0; nIndex < nCount; nIndex++)
 {
 p_pShcCategoryEnum->MoveNext();
 ISHCCategoryPtr pShcCategory;
 p_pShcCategoryEnum->Current(&pShcCategory);
 cout << endl;
 CFRESULT hr = CF_ERROR;
 CCfString strName;
 hr = pShcCategory->GetName(&strName);
 cout << "CategoryName= " << strName.ToUTF8().c_str() << endl;
 uint32_t nColor;
 hr = pShcCategory->GetColor(&nColor);
 cout << "Color= " << nColor << endl;
 CFBOOL bIsDeleted;
 hr = pShcCategory->GetIsDeleted(&bIsDeleted);
 cout << "IsDeleted= " << (uint32_t)bIsDeleted << endl;

 ICfMapIDToVariantPtr pDisplayNames;
 hr = pShcCategory->GetDisplayNames(&pDisplayNames);
 std::cout << "DisplayNames::" << std::endl << std::endl;
 uint32_t nCount1 = 0;
 pDisplayNames->Count(&nCount1);
 for (uint32_t nIndex1 = 0; nIndex1 < nCount1; nIndex1++)
 {
 int32_t nLanguageID;
 pDisplayNames->KeyAt(nIndex1, &nLanguageID);
 CCfVariant strDIsplayname;
 pDisplayNames->ValueAt(nLanguageID, &strDIsplayname);
 std::cout << "LangauageID =" << nLanguageID << " DisplayName =" <<
CCfSmartString(strDIsplayname).ToUTF8().c_str() << std::endl;
 }

 ICfMapIDToVariantPtr pDescriptions;
 hr = pShcCategory->GetDescriptions(&pDescriptions);
 std::cout << "Descriptions::" << std::endl << std::endl;
 uint32_t nCount2 = 0;
 pDescriptions->Count(&nCount2);
 for (uint32_t nIndex2 = 0; nIndex2 < nCount2; nIndex2++)
 {
 int32_t nLanguageID;
 pDescriptions->KeyAt(nIndex2, &nLanguageID);
 CCfVariant strDescription;
 pDescriptions->ValueAt(nLanguageID, &strDescription);
 std::cout << "LangauageID =" << nLanguageID << " Description=" <<
CCfSmartString(strDescription).ToUTF8().c_str() << std::endl;
 }
 }
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8143

ISHCCategoryProvider

Description
The C++ interface "ISHCCategoryProvider" provides you with read access to an
"ISHCCategoryEnumerator" instance which contains an enumeration with the time categories
of an "ISHCCalendar" instance.
The interface inherits from the "ICfUnknown" interface.

Members
"Browse" method
Supplies an "ISHCCategoryEnumerator" instance which has access to an enumeration with
the "ISHCCategory" instances of the calendar.
CRFESULT Browse(ISHCCategoryEnumerator** data)
• data

[out]: The enumerator
Example:
ISHCCategoryEnumeratorPtr pShcCategoryEnum;
CFRESULT hr = pShcCategoryProvider->Browse(&pShcCategoryEnum);
if (CF_SUCCEEDED(hr))
 PrintCategory(pShcCategoryEnum);

ISHCTimeSlice

Description
The C++ interface "ISHCTimeSlice" specifies the methods of a time slice.
The interface inherits from the "ICfUnknown" interface.

Members
"GetStartTime" method
Returns the start time of the "ISHCTimeSlice" instance.
CFRESULT GetStartTime(CFDATETIME64* pStartTime)
• pStartTime

[out]: Time stamp with the start time of the time slice

"GetDuration" method
Supplies the duration of the "ISHCTimeSlice" instance.
CFRESULT GetDuration(CFTIMESPAN64* pDuration)
• pDuration

[out]: The duration of the time slice

Runtime Openness
20.3 Runtime API

8144 System Manual, 11/2022

"GetCategory" method
Returns the time category time of the "ISHCTimeSlice" instance.
CFRESULT GetCategory(CFSTR* pstrCategoryName)
• pstrCategoryName

[out]: The name of the time category

"SetCategory" method
Sets the time category of the "ISHCTimeSlice" instance.
CFRESULT SetCategory(CFSTR pstrCategoryName)
• pstrCategoryName

[in]: The name of the new time category.

"SetStartTime" method
Sets the start time of the "ISHCTimeSlice" instance.
CFRESULT SetStartTime(CFDATETIME64 startTime)
• startTime

[in]: The new start time of the time slice.

"SetDuration" method
Sets the duration of the "ISHCTimeSlice" instance.
CRFESULT SetDuration(CFTIMESPAN64 duration)
• duration

[in]: The new duration of the time slice

ISHCTimeSliceEnumerator

Description
The C++ interface "ISHCTimeSliceEnumerator" specifies methods for handling the enumeration
of the time slices of an "ISHCShiftTemplate" instance or "ISHCShift" instance.
The enumeration is returned by the Read method of these instances.
The interface inherits from the "ICfUnknown" interface.

Members
"MoveNext" method
Go to the next element of the enumeration.
CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8145

CFRESULT Current(ISHCTimeSlice** ppItem)
• ppItem

[out]: The current "ISHCTimeSlice" instance

"Reset" method
Reset the current position in the enumeration. The "MoveNext" method moves afterwards to
the first element.
CFRESULT Reset()

"Count" method
Output the size of the enumeration or the number of its elements.
CRFESULT Count(uint32_t* pCount)
• pCount

[out]: Number of time slices

Example
Copy code
void printTimeSlice(const ISHCTimeSliceEnumeratorPtr& p_pShcTimeSliceEnum)
{
 uint32_t nCout = 0;
 p_pShcTimeSliceEnum->Count(&nCout);
 for (uint32_t nIndex = 0; nIndex < nCout; nIndex++)
 {
 p_pShcTimeSliceEnum->MoveNext();
 cout << endl;
 ISHCTimeSlicePtr pTimeSlice;
 p_pShcTimeSliceEnum->Current(&pTimeSlice);
 CCfString strCategoryName;
 pTimeSlice->GetCategory(&strCategoryName);
 std::cout << "Category= " << strCategoryName.ToUTF8().c_str() << std::endl;
 CCfTimeSpan64 tsDuration;
 pTimeSlice->GetDuration(&tsDuration);
 CCfString strDuration = tsDuration.GetTimeSpanString();
 std::cout << "Durations= " << strDuration.ToUTF8().c_str() << std::endl;
 CCfDateTime64 dtStartTime;
 pTimeSlice->GetStartTime(&dtStartTime);
 CCfString strStarttime = dtStartTime.GetDateTimeString(false);
 std::cout << "Start Time= " << strStarttime.ToUTF8().c_str() << std::endl;
 }
}

ISHCDay

Description
The C++ interface "ISHCDay" specifies the methods of a day.
The interface inherits from the "ICfUnknown" interface.

Runtime Openness
20.3 Runtime API

8146 System Manual, 11/2022

Members
"CreateShift" method
Returns a new "ISHCShift" instance.
CRFESULT CreateShift(ISHCShiftTemplate* pShiftTemplate,
CFTIMESPAN64 startTime, ISHCShift** pShift)
• pShiftTemplate

[in]: The "ISHCShiftTemplate" instance on which the new shift is to be based.
• startTime

[in]: Time stamp for the start time of the new shift.
• pShift

[out]: The new shift

"DeleteShift" method
Deletes an "ISHCShift" instance.
CRFESULT DeleteShift(ISHCShift* pShift)
• pShift

[in]: Reference to the shift to be deleted.

"GetShifts" method
Supplies an "ISHCShiftEnumerator" instance via which you access the "ISHCShift" instances of
the "ISHCDay" instance.
CRFESULT GetShifts(ISHCShiftEnumerator** ppSHCShiftEnumerator)
• ppSHCShiftEnumerator

[out]: The enumerator with which you access the shifts of the "ISHCDay" instance. The shifts
are contained in an array.

"GetComments" method
Supplies a map with the comments of the "ISHCDay" instance and their language code IDs.
CRFESULT GetComments(ICfMapIDToVariant** ppComments)
• ppComments

[out]: A map with int32/string pairs (language code ID for comment).
Example:
ICfMapIDToVariantPtr pComments;
pShcshift->GetComments(&pComments);
uint32_t nCount = 0;
pComments->Count(&nCount);
for (uint32_t nIndex1 = 0; nIndex1 < nCount; nIndex1++)
{
 int32_t nLanguageID;
 pComments->KeyAt(nIndex1, &nLanguageID);
 CCfVariant strComments;
 pComments->ValueAt(nLanguageID, &strComments);
 std::cout << "LangauageID =" << nLanguageID << " Comments=" <<
CCfSmartString(strComments).ToUTF8().c_str() << std::endl;

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8147

}

"SetComments" method
Adds a new comment in the specified language to the "ISHCDay" instance.
CRFESULT SetComment(CFLCID languageId , CFSTR pComments)
• languageId

[in]: The language code ID
• pComments

[in]: The comment text

"GetStartTime" method
Returns the start time of the "ISHCDay" instance.
CRFESULT GetStartTime(CFDATETIME64* pStartTime)
• pStartTime

[out]: The start time

"SetStartTime" method
Sets the start time of the "ISHCDay" instance.
CRFESULT SetStartTime(CFDATETIME64 startTime)
• startTime

[in]: The new start time

"GetIsCustomized" method
Supplies the information on whether the "ISHCDay" instance was edited by users.
CRFESULT GetIsCustomized)(CFBOOL* pIsCustomized)
• pIsCustomized

[out]:
– 0: Was not processed
– 1: Was processed

"GetDayTemplate" method
Supplies the "ISHCDayTemplate" instance on which the "ISHCDay" instance is based.
CRFESULT GetDayTemplate(CFSTR* pDayTemplate)
• pDayTemplate

[out]: The day template

"SetDayTemplate" method
Sets the "ISHCDayTemplate" instance of the "ISHCDay" instance.
CRFESULT SetDayTemplate(CFSTR pDayTemplate)
• pDayTemplate

[in]: The new day template

Runtime Openness
20.3 Runtime API

8148 System Manual, 11/2022

See also
Locale IDs of the supported languages (Page 7829)

ISHCDayEnumerator

Description
The C++ interface "ISHCDayEnumerator" specifies methods for handling the enumeration of the
days of an "ISHCCalendar" instance. The enumeration is returned by the "Read" method of an
"ISHCDayProvider" instance.
The interface inherits from the "ICfUnknown" interface.

Members
"MoveNext" method
Go to the next element of the enumeration.
CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.
CFRESULT Current(ISHCTimeSlice** ppItem)
• ppItem

[out]: The current "ISHCDay" instance

"Reset" method
Reset the current position in the enumeration. The "MoveNext" method moves afterwards to
the first element.

"Count" method
Output the size of the enumeration or the number of its elements.
CRFESULT Count(uint32_t* pCount)
• pCount

[out]: Number of days

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8149

Example
Copy code
void PrintDay(const ISHCDayEnumeratorPtr& p_pShcdayEnum)
{
 uint32_t nCount = 0;
 p_pShcdayEnum->Count(&nCount);
 for (uint32_t nIndex = 0; nIndex < nCount; nIndex++)
 {
 cout << endl;
 p_pShcdayEnum->MoveNext();
 ISHCDayPtr pShcday;
 p_pShcdayEnum->Current(&pShcday);
 CCfString strDaytemplate;
 pShcday->GetDayTemplate(&strDaytemplate);
 cout << "DayTemplate= " << strDaytemplate.ToUTF8().c_str() << endl;

 ICfMapIDToVariantPtr pComments;
 pShcday->GetComments(&pComments);
 std::cout << "comments:-" << std::endl << std::endl;
 uint32_t nCount1 = 0;
 pComments->Count(&nCount1);
 for (uint32_t nIndex1 = 0; nIndex1 < nCount1; nIndex1++)
 {
 int32_t nLanguageID;
 pComments->KeyAt(nIndex1, &nLanguageID);
 CCfVariant strComments;
 pComments->ValueAt(nLanguageID, &strComments);
 std::cout << "LangauageID = " << nLanguageID << " Comments= " <<
CCfSmartString(strComments).ToUTF8().c_str() << std::endl;
 }
 CFBOOL bIsCustomized;
 pShcday->GetIsCustomized(&bIsCostomized);
 cout << "IsCustomized=" << (uint32_t)bIsCostomized << endl;
 CCfDateTime64 dtStartTime;
 pShcday->GetStartTime(&dtStartTime);
 cout << "StartTime= " << dtStartTime.GetDateTimeString(false).ToUTF8().c_str() <<
endl;

 ISHCShiftEnumeratorPtr pDayShifts;
 pShcday->GetShifts(&pDayShifts);
 //printShift(pDayShifts);
 uint32_t nCout = 0;
 pDayShifts->Count(&nCout);
 for (uint32_t nIndex = 0; nIndex < nCout; nIndex++)
 {
 cout << endl;
 pDayShifts->MoveNext();
 ISHCShiftPtr pShcshift;
 pDayShifts->Current(&pShcshift);
 CCfString strshiftTemplateName;
 pShcshift->GetShiftTemplate(&strshiftTemplateName);
 std::cout << "ShiftTemplateName= " << strshiftTemplateName.ToUTF8().c_str() <<
std::endl;
 CCfTimeSpan64 tsDuration;
 pShcshift->GetDuration(&tsDuration);
 CCfString strDuration = tsDuration.GetTimeSpanString();

Runtime Openness
20.3 Runtime API

8150 System Manual, 11/2022

Copy code
 std::cout << "Durations= " << strDuration.ToUTF8().c_str() << std::endl;
 CFBOOL bIsCustomised;
 pShcshift->GetIsCustomized(&bIsCustomised);
 std::cout << "Is Customised= " << (uint32_t)bIsCustomised << std::endl;
 CFENUM ndeltaKind;
 pShcshift->GetDeltaKind(&ndeltaKind);
 std::cout << "deltaKind = " << ndeltaKind << std::endl;
 uint32_t nShiftId;
 pShcshift->GetShiftId(&nShiftId);
 std::cout << "ShiftId = " << nShiftId << std::endl;
 ICfMapIDToVariantPtr pComments;
 pShcshift->GetComments(&pComments);
 std::cout << "comments:-" << std::endl << std::endl;
 uint32_t nCount = 0;
 pComments->Count(&nCount);
 for (uint32_t nIndex1 = 0; nIndex1 < nCount; nIndex1++)
 {
 int32_t nLanguageID;
 pComments->KeyAt(nIndex1, &nLanguageID);
 CCfVariant strComments;
 pComments->ValueAt(nLanguageID, &strComments);
 std::cout << "LangauageID =" << nLanguageID << " Comments=" <<
CCfSmartString(strComments).ToUTF8().c_str() << std::endl;
 }
 ISHCTimeSliceEnumeratorPtr pShiftTimesliceEnum;
 pShcshift->GetTimeSlices(&pShiftTimesliceEnum);

 uint32_t nCout = 0;
 pShiftTimesliceEnum->Count(&nCout);
 for (uint32_t nIndex = 0; nIndex < nCout; nIndex++)
 {
 pShiftTimesliceEnum->MoveNext();
 cout << endl;
 ISHCTimeSlicePtr pTimeSlice;
 pShiftTimesliceEnum->Current(&pTimeSlice);
 CCfString strCategoryName;
 pTimeSlice->GetCategory(&strCategoryName);
 std::cout << "Category= " << strCategoryName.ToUTF8().c_str() << std::endl;

 CCfTimeSpan64 tsDuration;
 pTimeSlice->GetDuration(&tsDuration);
 CCfString strDuration = tsDuration.GetTimeSpanString();
 std::cout << "Durations= " << strDuration.ToUTF8().c_str() << std::endl;
 CCfDateTime64 dtStartTime;
 pTimeSlice->GetStartTime(&dtStartTime);
 CCfString strStarttime = dtStartTime.GetDateTimeString(false);
 std::cout << "Start Time= " << strStarttime.ToUTF8().c_str() << std::endl;
 }
 }
 }
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8151

ISHCDayProvider

Description
The C++ interface "ISHCDayProvider" provides you with access to an "ISHCDayEnumerator"
instance which contains an enumeration with the days of an "ISHCCalendar" instance. With the
methods of the provider, you can create, read, update and delete days. The provider is returned
by the "GetDayProvider" method of an "ISHCCalendar" instance.
The interface inherits from the "ICfUnknown" interface.

Members
"Browse" method
Supplies an "ISHCDayEnumerator" instance which has access to an enumeration with the
"ISHCDay" instances of a specific time period of the calendar.
CRFESULT Browse(CFDATETIME64 StartTime, CFDATETIME64 endTime,
ISHCDayEnumerator** ppISHCDayEnumerator)
• startTime

[in]: Start time
• endTime

[in]: End time
• ppISHCDayEnumerator

[out]: The enumerator

Runtime Openness
20.3 Runtime API

8152 System Manual, 11/2022

Example:

Copy code
CCfTimeSpan64 Get1Hour()
{
 CCfDateTime64 dt = CCfDateTime64::Now(false);
 CFDATETIMEST st2; 　
 dt.GetDateTimeStruct(st2);
 st2.cHours = st2.cHours - 1; 　
 CCfDateTime64 dt2;
 dt2.SetFromDateTimeStruct(&st2);
 return dt.GetDifference(dt2);
} 　
CCfDateTime64 GetStartoftheDay()
{
 CCfDateTime64 dt = CCfDateTime64::Now(false);
 CFDATETIMEST st;
 dt.GetDateTimeStruct(st);
 st.cHours = 0;
 st.cMinutes = 0;
 st.cSeconds = 0;
 st.sHundredNanoSeconds = 0;
 st.sMicroSeconds = 0;
 st.sMilliSeconds = 0; 　
 dt.SetFromDateTimeStruct(&st);
 return dt;
} 　 　
ISHCDayEnumeratorPtr pDayEnum; // Get day instances for a timespan of three days
CFRESULT hr = pShcDayProvider->Browse(GetStartoftheDay() - (Get1Hour() * 24),
GetStartoftheDay() + (Get1Hour() * 48), &pDayEnum);

"Create" method
Adds new days to the enumeration with the "ISHCDay" instances of the calendar.
CFRESULT Create(ICfArrayIUnknown* pDays)i
• pDays

[in]: An array with the days to be added.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8153

Example:

Copy code

void CreateDayWithShift()
{
 ISHCDayTemplateEnumeratorPtr pShcDayTemplates;
 CCfArrayIUnknown arrDays;
 ICfArrayIUnknownPtr pDays;
 m_pShcDayTemplateProvider->Browse(CF_FALSE, &pShcDayTemplates);
 uint32_t nCount = 0;
 pShcDayTemplates->Count(&nCount);
 pShcDayTemplates->MoveNext();
 ISHCDayTemplatePtr pShcDayTemplate;
 pShcDayTemplates->Current(&pShcDayTemplate);
 CCfString strDayTemplateName;
 pShcDayTemplate->GetName(&strDayTemplateName);
 ICfUnknownPtr pUnk;
 m_pCalendar->GetObject(ODK_SHC_DAY, &pUnk);
 ISHCDayPtr pShcDay = (ISHCDayPtr)pUnk;
 pShcDay->SetDayTemplate(strDayTemplateName);
 CCfDateTime64 dt = GetStartoftheDay();
 pShcDay->SetStartTime(dt);
 pShcDay->SetComment(1033, CCfString(L"DayComments"));
 arrDays.Append(pShcDay);
 arrDays.DetachEnumerator(&pDays);
 m_pShcDayProvider->Create(pDays);
 ISHCShiftTemplateEnumeratorPtr pShcShiftTemplateEnum;
 m_pShcShiftTemplateProvider->Browse(CF_FALSE, &pShcShiftTemplateEnum);
 pShcShiftTemplateEnum->MoveNext();
 ISHCShiftTemplatePtr pshcShiftTemplate;
 pShcShiftTemplateEnum->Current(&pshcShiftTemaplate);
 ISHCShiftPtr pShcdayShift;
 CCfTimeSpan64 starttime = Get1Hour() * 10;
 pShcDay->CreateShift(pshcShiftTemaplate, starttime, &pShcdayShift);
}

"Update" method
Updates "ISHCDay" instances of the enumeration.
CRFESULTUpdate(ICfArrayIUnknown* pDays)
• pDays

[in]: An array with the days to be updated.

Runtime Openness
20.3 Runtime API

8154 System Manual, 11/2022

Example:

Copy code
void UpdateDayWithShift()
{
 ISHCDayEnumeratorPtr pDayEnum;
 m_pShcDayProvider->Browse(GetStartoftheDay() - (Get1Hour() * 24), GetStartoftheDay() +
(Get1Hour() * 24), &pDayEnum);
 pDayEnum->MoveNext();
 CCfArrayIUnknown ArrayDays;
 ICfArrayIUnknownPtr pArrayDays;
 ISHCDayPtr pShcDay;
 pDayEnum->Current(&pShcDay);
 CCfDateTime64 dt;
 pShcDay->GetStartTime(&dt);
 dt.AddTimeSpan(Get1Hour());
 pShcDay->SetStartTime(dt);//Update StartTime Not Supported
 pShcDay->SetComment(1033, CCfString(L"DayComment"));
 ISHCShiftEnumeratorPtr pShiftEnum;
 pShcDay->GetShifts(&pShiftEnum);
 pShiftEnum->MoveNext();
 ISHCShiftPtr pShcShift;
 pShiftEnum->Current(&pShcShift);
 CCfTimeSpan64 ts;
 pShcShift->GetDuration(&ts);
 pShcShift->SetDuration(ts + Get1Hour());
 pShcShift->SetComment(1033, CCfString(L"UpdatedShiftComments"));
 ArrayDays.Append(pShcDay);
 ArrayDays.DetachEnumerator(&pArrayDays);
 m_pShcDayProvider->Update(pArrayDays);
}

"Delete" method
Deletes "ISHCDay" instances of the calendar from the enumeration.
CRFESULT Delete(ICfArrayIUnknown* pActionTemplates)
• pActionTemplates

[in]: An array with the days to be deleted.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8155

Example:

Copy code
void DeleteDayWithShift()
{
 ISHCDayEnumeratorPtr pDayEnum;
 m_pShcDayProvider->Browse(GetStartoftheDay() - (Get1Hour() * 24), GetStartoftheDay() +
(Get1Hour() * 48), &pDayEnum);
 uint32_t nSize = 0;
 pDayEnum->Count(&nSize);
 CCfArrayIUnknown ArrayDays;
 ICfArrayIUnknownPtr pArrayDays;
 for (uint32_t nIdnex = 0;nIdnex < nSize;nIdnex++)
 {
 pDayEnum->MoveNext();
 ISHCDayPtr pShcDay;
 pDayEnum->Current(&pShcDay);
 ISHCShiftEnumeratorPtr pShiftEnum;
 pShcDay->GetShifts(&pShiftEnum);
 pShiftEnum->MoveNext();
 ISHCShiftPtr pShcShift;
 pShiftEnum->Current(&pShcShift);
 pShcDay->DeleteShift(pShcShift);
 ArrayDays.Append(pShcDay);
 }
 ArrayDays.DetachEnumerator(&pArrayDays);
 m_pShcDayProvider->Delete(pArrayDays);
}

ISHCDayTemplate

Description
The C++ interface "ISHCDayTemplate" specifies the methods of a day template.
The interface inherits from the "ICfUnknown" interface.

Members
"GetName" method
Supplies the name of the "ISHCDayTemplate" instance.
CFRESULT GetName(CFSTR * pvarRet)
• pvarRet

[out]: The name of the day template

"SetName" method
Sets the name of the "ISHCDayTemplate" instance.
CRFESULT SetName(CFSTR value)

Runtime Openness
20.3 Runtime API

8156 System Manual, 11/2022

"GetDisplayNames" method
Supplies a map with the display names of the "ISHCDayTemplate" instance and their
language code IDs.
CFRESULT GetDisplayNames(ICfMapIDToVariant** ppDisplayNames)
• ppDisplayNames

[out]: A map with int32/string pairs (language code ID for display name).
Example:
ICfMapIDToVariantPtr pDisplayNames;
pShcDayTemplate->GetDisplayNames(&pDisplayNames);
std::cout << "DisplayNames::" << std::endl << std::endl;
uint32_t nCount2 = 0;
pDisplayNames->Count(&nCount2);
for (uint32_t nIndex2 = 0; nIndex2 < nCount2; nIndex2++)
{
 int32_t nLanguageID;
 pDisplayNames->KeyAt(nIndex2, &nLanguageID);
 CCfVariant strDIsplayname;
 pDisplayNames->ValueAt(nLanguageID, &strDIsplayname);
 std::cout << "LangauageID =" << nLanguageID << " DisplayName="
<< CCfSmartString(strDIsplayname).ToUTF8().c_str() << std::endl;
}

"SetDisplayName" method
Adds a new display name in the specified language to the "ISHCDayTemplate" instance.
CRFESULT SetDisplayName(CFLCID languageId, CFSTR pDisplayName)
• languageId

[in]: The language code ID
• pDisplayName

[in]: The comment text

"GetDescriptions" method
Supplies a map with the descriptions of the "ISHCDayTemplate" instance and their language
code IDs.
CFRESULT GetDescriptions(ICfMapIDToVariant** ppDisplayNames)
• ppDisplayNames

[out]: A map with int32/string pairs (language code ID for description).
Example: Similar to "GetDescriptions" of "ISHCCategory".

"SetDescription" method
Adds a new description in the specified language to the "ISHCDayTemplate" instance.
CRFESULT SetDescription)(CFLCID languageId, CFSTR pDescriptions)
• languageId

[in]: The language code ID
• pDescriptions

[in]: The description text

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8157

"GetShifts" method
Supplies an "ISHCShiftEnumerator" instance. The enumerator provides you with access to the
"ISHCShift" instances of the "ISHCDayTemplate" instance.
GetShifts(ISHCShiftEnumerator** ppSHCShiftEnumerator)
• ppSHCShiftEnumerator

[out]: The enumerator

"CreateShift" method
Adds an "ISHCShift" instance to the "ISHCDayTemplate" instance.
CRFESULT CreateShift(ISHCShiftTemplate* pShiftTemplate,
CFTIMESPAN64 pStartTime, ISHCShift** pShift)
• pShiftTemplate

[in]: Reference to the shift template on which the shift is based.
• pStartTime

[in] Time stamp with the start time of the shift
• pShift

[out] reference to the new shift

"DeleteShift" method
Deletes an "ISHCShift" instance of the "ISHCDayTemplate" instance.
CFRESULTDeleteShift(ISHCShift* pShift)
• pShift

[in]: Reference to the shift to be deleted

"GetIsDeleted" method
Supplies the information on whether the "ISHCDayTemplate" instance was deleted by users.
CFRESULT GetIsDeleted(CFBOOL* pIsDeleted)
• pIsDeleted

[out]:
– 0: Was not deleted
– 1: Was deleted

ISHCDayTemplatesProvider

Description
The C++ interface "ISHCDayTemplatesProvider" provides you with access to an
"ISHCDayTemplateEnumerator" instance which contains an enumeration with the day
templates of an "ISHCCalendar" instance. With the methods of the provider, you can create, read,
update and delete day templates. The provider is returned by the "GetDayTemplateProvider"
method of an "ISHCCalendar" instance.
The interface inherits from the "ICfUnknown" interface.

Runtime Openness
20.3 Runtime API

8158 System Manual, 11/2022

Members
"Browse" method
Supplies an "ISHCDayTemplateEnumerator" instance which has access to an enumeration
with the "ISHCDayTemplate" instances of the calendar.
CRFESULT Browse(CFBOOL includeDeleted, ISHCDayTemplateEnumerator**
ppISHCDayTemplateEnumerator)
• includeDeleted

Saves whether the enumerator also has access to the deleted day templates.
• ppISHCDayTemplateEnumerator

[out]: The enumerator
Example:
ISHCDayTemplateEnumeratorPtr pShcDayTemplates;
pShcDayTemplateProvider->Browse(CF_FALSE, &pShcDayTemplates);

"Create" method
Adds new "ISHCDayTemplate" instances to the enumeration with the"ISHCDayTemplate"
instances of the calendar.
CRFESULTUpdate(ICfArrayIUnknown* pDayTemplates)
• pDayTemplates

[in]: An array with the day templates to be added.
Example:

Copy code
void CreateDayTemplateWithShift()
{
 ICfUnknownPtr pUnk;
 m_pCalendar->GetObject(ODK_SHC_DAY_TEMPLATE, &pUnk);
 CCfArrayIUnknown ArrayTemplate;
 ICfArrayIUnknownPtr pArrayTemplate;
 ISHCDayTemplatePtr pShcDayTemplate = (ISHCDayTemplatePtr)pUnk;
 pShcDayTemplate->SetName(CCfString(L"DaytemplateName"));
 pShcDayTemplate->SetDisplayName(1033, CCfString(L"DayTemplateDisplayName"));
 pShcDayTemplate->SetDescription(1033, CCfString(L"DayTemplate Descriptions"));

 ArrayTemplate.Append(pShcDayTemplate);
 ArrayTemplate.DetachEnumerator(&pArrayTemplate);
 m_pShcDayTemplateProvider->Create(pArrayTemplate);
 ISHCShiftTemplateEnumeratorPtr pShcShiftTemplates;
 m_pShcShiftTemplateProvider->Browse(CF_FALSE, &pShcShiftTemplates);
 pShcShiftTemplates->MoveNext();
 ISHCShiftTemplatePtr pShcshiftTemplate;
 pShcShiftTemplates->Current(&pShcshiftTemplate);
 CCfString strShiftTemplateName;
 pShcshiftTemplate->GetName(&strShiftTemplateName);
 ISHCShiftPtr pShift;
 pShcDayTemplate->CreateShift(pShcshiftTemplate, Get1Hour() * 1, &pShift);
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8159

"Update" method
Updates "ISHCDayTemplate" instances of the enumeration.
CRFESULTUpdate(ICfArrayIUnknown* pDayTemplates)
• pDayTemplates

[in]: An array with the day templates to be updated.
Example:

Copy code
void UpdateDayTemplateWithShift()
{
 ISHCDayTemplateEnumeratorPtr pShcDayTemplates;
 hr = m_pShcDayTemplateProvider->Browse(false, &pShcDayTemplates);
 CCfArrayIUnknown ArrayDayTemplate;
 ICfArrayIUnknownPtr pArrayDayTemplate;
 uint32_t nCount = 0;
 pShcDayTemplates->Count(&nCount);
 for (uint32_t i = 0; i < nCount; i++)
 {
 pShcDayTemplates->MoveNext();
 ISHCDayTemplatePtr pShcDayTemplate;
 pShcDayTemplates->Current(&pShcDayTemplate);
 pShcDayTemplate->SetName(CCfString(L"UpdatedDayTemplateName"));
 ISHCShiftEnumeratorPtr pShiftEnum;
 pShcDayTemplate->GetShifts(&pShiftEnum);
 uint32_t nlength = 0;
 pShiftEnum->Count(&nlength);
 for (uint32_t nIndex = 0; nIndex < nlenght; nIndex++)
 {
 pShiftEnum->MoveNext();
 ISHCShiftPtr pShcShift;
 pShiftEnum->Current(&pShcShift);
 ISHCTimeSliceEnumeratorPtr pShcTimeSliceEnum;
 pShcShift->GetTimeSlices(&pShcTimeSliceEnum);
 pShcShift->SetDuration(Get1Hour() * 8);
 pShcShift->SetComment(1033, CCfString("ShiftComment"));
 uint32_t nCount1 = 0;
 pShcTimeSliceEnum->Count(&nCount1);
 for (uint32_t nIndex1 = 0; nIndex1 < nCount1; nIndex1++)
 {
 pShcTimeSliceEnum->MoveNext();
 ISHCTimeSlicePtr pShctimeslice;
 pShcTimeSliceEnum->Current(&pShctimeslice);
 pShctimeslice->SetCategory(CCfString(L"Working"));
 }
 ArrayDayTemplate.Append(pShcDayTemplate);
 }
 ArrayDayTemplate.DetachEnumerator(&pArrayDayTemplate);
 m_pShcDayTemplateProvider->Update(pArrayDayTemplate);
}

"Delete" method
Deletes "ISHCDayTemplate" instances of the calendar from the enumeration.

Runtime Openness
20.3 Runtime API

8160 System Manual, 11/2022

CRFESULT Delete(ICfArrayIUnknown* pDayTemplates)
• pDayTemplates

[in]: An array with the day templates to be deleted.
Example:

Copy code
void DeleteDaytemplateWithShift()
{
 ISHCDayTemplateEnumeratorPtr pShcDayTemplates;
 m_pShcDayTemplateProvider->Browse(CF_FALSE, &pShcDayTemplates);
 CCfArrayIUnknown ArrayDayTemplate;
 ICfArrayIUnknownPtr pArrayDayTemplate;
 uint32_t nCount = 0;
 pShcDayTemplates->Count(&nCount);
 for (uint32_t i = 0; i < nCount; i++)
 {
 pShcDayTemplates->MoveNext();
 ISHCDayTemplatePtr pShcDayTemplate;
 pShcDayTemplates->Current(&pShcDayTemplate);
 ISHCShiftEnumeratorPtr pShiftEnum;
 pShcDayTemplate->GetShifts(&pShiftEnum);
 uint32_t nlength = 0;
 pShiftEnum->Count(&nlength);
 for (uint32_t nIndex = 0; nIndex < nlenght; nIndex++)
 {
 pShiftEnum->MoveNext();
 ISHCShiftPtr pShcShift;
 pShiftEnum->Current(&pShcShift);
 pShcDayTemplate->DeleteShift(pShcShift);
 }
 ArrayDayTemplate.Append(pShcDayTemplate);

 ArrayDayTemplate.DetachEnumerator(&pArrayDayTemplate);
 m_pShcDayTemplateProvider->Delete(pArrayDayTemplate);
 }
}

ISHCShiftTemplate

Description
The C++ interface "ISHCShiftTemplate" specifies the methods of a shift template.
The interface inherits from the "ICfUnknown" interface.

Members
"GetName" method
Supplies the name of the "ISHCShiftTemplate" instance.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8161

GetName(CFSTR * pvarRet)
• pvarRet

[out]: Name

"SetName" method
Sets the name of the "ISHCShiftTemplate" instance.
CRFESULT SetName(CFSTR value)

"GetDisplayNames" method
Supplies a map with the display names of the "ISHCShiftTemplate" instance and their
language code IDs.
CFRESULT GetDisplayNames(ICfMapIDToVariant** ppDisplayNames)
• ppDisplayNames

[out]: A map with int32/string pairs (language code ID for display name).

"SetDisplayName" method
Adds a new entry to a map with the display names of the "ISHCShiftTemplate" instance and
their language code IDs.
CRFESULT SetDisplayName(CFLCID languageId, CFSTR pDisplayName)
• languageId

[in]: The language code ID
• pDisplayName

[in]: The comment text

"GetDescriptions" method
Supplies a map with the descriptions of the "ISHCShiftTemplate" instance and their language
code IDs.
CFRESULT GetDescriptions(ICfMapIDToVariant** ppDisplayNames)
• ppDisplayNames

[out]: A map with int32/string pairs (language code ID for description).

"SetDescription" method
Adds a new entry to a map with the description of the "ISHCShiftTemplate" instance and their
language code IDs.
CRFESULT SetDescription(CFLCID languageId, CFSTR pDescriptions)
• languageId

[in]: The language code ID
• pDescriptions

[in]: The description text

"GetIsDeleted" method
Supplies the information on whether the "ISHCShiftTemplate" instance was deleted by users.

Runtime Openness
20.3 Runtime API

8162 System Manual, 11/2022

CFRESULT GetIsDeleted(CFBOOL* pIsDeleted)
• pIsDeleted

[out]:
– 0: Was not deleted
– 1: Was deleted

"GetDuration" method
Supplies the duration of the "ISHCShiftTemplate" instance.
CFRESULT GetDuration(CFTIMESPAN64* pDuration)
• pDuration

[out]: The duration of the shift template

"SetDuration" method
Sets the duration of the "ISHCShiftTemplate" instance.
CFRESULT SetDuration(CFTIMESPAN64 duration)
• duration

[in]: The duration of the shift template

"GetTimeSlices" method
Supplies an "ISHCTimeSliceEnumerator" instance. The enumerator provides you with access
to the "ISHCTimeSlice" instances of the "ISHCShiftTemplate" instance.
CRFESULT GetTimeSlices(ISHCTimeSliceEnumerator**
ppSHCTimeSliceEnumerator)
• ppSHCTimeSliceEnumerator

[out]: The enumerator

"CreateTimeSlice" method
Adds an "ISHCTimeSlice" instance to the "ISHCShiftTemplate" instance.
CRFESULT CreateTimeSlice(ISHCTimeSlice* pSlice)
• pSlice

[in]: Reference to the new time slice

"DeleteTimeSlice" method
Deletes an "ISHCTimeSlice" instance of the "ISHCShiftTemplate" instance.
CRFESULT DeleteTimeSlice(ISHCTimeSlice* pSlice)
• pSlice

[in]: Reference to the time slice to be deleted

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8163

ISHCShiftTemplateEnumerator

Description
The C++ interface "ISHCShiftTemplateEnumerator" specifies methods for handling the
enumeration of the shift templates of an "ISHCCalendar" instance. The enumeration is returned
by the "Read" method of an "ISHCShiftTemplatesProvider" instance.
The interface inherits from the "ICfUnknown" interface.

Members
"MoveNext" method
Go to the next element of the enumeration.
CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.
CFRESULT Current(ISHCShiftTemplate** ppItem)
• ppItem

[out]: The current shift template

"Reset" method
Reset the current position in the enumeration. The "MoveNext" method moves afterwards to
the first element.
CFRESULT Reset()

"Count" method
Output the size of the enumeration or the number of its elements.
Supplies the number of shift templates in the list.
CRFESULT Count(uint32_t* pCount)
• pCount

[out]: Number of shift templates

Runtime Openness
20.3 Runtime API

8164 System Manual, 11/2022

Example
Copy code
void PrintShiftTemplate(const ISHCShiftTemplateEnumeratorPtr& p_pShcShiftTemplateEnum)
{
 uint32_t nCout = 0;
 p_pShcShiftTemplateEnum->Count(&nCout);
 for (uint32_t nIndex = 0; nIndex < nCout; nIndex++)
 {
 cout << endl;
 p_pShcShiftTemplateEnum->MoveNext();
 ISHCShiftTemplatePtr pShcShiftTemplate;
 p_pShcShiftTemplateEnum->Current(&pShcShiftTemplate);
 CCfString strName;
 pShcShiftTemplate->GetName(&strName);
 std::cout << "Name=" << strName.ToUTF8().c_str() << std::endl;

 CCfTimeSpan64 tsDuration;
 pShcShiftTemplate->GetDuration(&tsdurantion);
 CCfString strDuration = tsdurantion.GetTimeSpanString();
 std::cout << "Duration=" << strDuration.ToUTF8().c_str() << std::endl;

 CFBOOL bIsDeleted;
 pShcShiftTemplate->GetIsDeleted(&bIsDeleted);
 std::cout << "ISDeleted=" << (uint32_t)bIsDeleted << std::endl;

 ICfMapIDToVariantPtr pDescriptions;
 pShcShiftTemplate->GetDescriptions(&pDescriptions);
 std::cout << "Descriptions=" << std::endl << std::endl;
 uint32_t nCount = 0;
 pDescriptions->Count(&nCount);
 for (uint32_t nIndex1 = 0; nIndex1 < nCount; nIndex1++)
 {
 int32_t nLanguageID;
 pDescriptions->KeyAt(nIndex1, &nLanguageID);
 CCfVariant strDescription;
 pDescriptions->ValueAt(nLanguageID, &strDescription);
 std::cout << "LangauageID =" << nLanguageID << " Description=" <<
CCfSmartString(strDescription).ToUTF8().c_str() << std::endl;
 }

 ICfMapIDToVariantPtr pDisplayNames;
 pShcShiftTemplate->GetDisplayNames(&pDisplayNames);
 std::cout << "DisplayNames::" << std::endl << std::endl;
 uint32_t nCount = 0;
 pDisplayNames->Count(&nCount);
 for (uint32_t nIndex1 = 0; nIndex1 < nCount; nIndex1++)
 {
 int32_t nLanguageID;
 pDisplayNames->KeyAt(nIndex1, &nLanguageID);
 CCfVariant strDIsplayname;
 pDisplayNames->ValueAt(nLanguageID, &strDIsplayname);
 std::cout << "LangauageID =" << nLanguageID << " DisplayName=" <<
CCfSmartString(strDIsplayname).ToUTF8().c_str() << std::endl;
 }
 ISHCTimeSliceEnumeratorPtr pShiftTemplatetimeSlice;
 pShcShiftTemplate->GetTimeSlices(&pShiftTemplatetimeSlice);

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8165

Copy code

 uint32_t nCout = 0;
 pShiftTemplatetimeSlice->Count(&nCout);
 for (uint32_t nIndex = 0; nIndex < nCout; nIndex++)
 {
 pShiftTemplatetimeSlice->MoveNext();
 cout << endl;
 ISHCTimeSlicePtr pTimeSlice;
 pShiftTemplatetimeSlice->Current(&pTimeSlice);
 CCfString strCategoryName;
 pTimeSlice->GetCategory(&strCategoryName);
 std::cout << "Category= " << strCategoryName.ToUTF8().c_str() << std::endl;

 CCfTimeSpan64 tsDuration;
 pTimeSlice->GetDuration(&tsDuration);
 CCfString strDuration = tsDuration.GetTimeSpanString();
 std::cout << "Durations= " << strDuration.ToUTF8().c_str() << std::endl;
 CCfDateTime64 dtStartTime;
 pTimeSlice->GetStartTime(&dtStartTime);
 CCfString strStarttime = dtStartTime.GetDateTimeString(false);
 std::cout << "Start Time= " << strStarttime.ToUTF8().c_str() << std::endl;
 }
 }
}

ISHCShiftTemplatesProvider

Description
The C++ interface "ISHCShiftTemplatesProvider" provides you with access to an
"ISHCShiftTemplateEnumerator" instance which contains an enumeration with the shift
templates of an "ISHCCalendar" instance. With the methods of the provider, you can create, read,
update and delete shift templates. The provider is returned by the "GetShiftTemplateProvider"
method of an "ISHCCalendar" instance.
The interface inherits from the "ICfUnknown" interface.

Members
"Browse" method
Supplies an "ISHCShiftTemplateEnumerator" instance which has access to an enumeration
with the "ISHCShiftTemplate" instances of the calendar.
CRFESULT Browse(CFBOOL includeDeleted,
ISHCShiftTemplateEnumerator** ppISHCShiftTemplateEnumerator)
• includeDeleted

Saves whether the enumerator also has access to the deleted shift templates.
• ppISHCShiftTemplateEnumerator

[out]: The enumerator
Example:

Runtime Openness
20.3 Runtime API

8166 System Manual, 11/2022

ISHCDayTemplateEnumeratorPtr pShcDayTemplates;
CFRESULT hr = pShcDayTemplateProvider->Browse(CF_FALSE,
&pShcDayTemplates);

"Create" method
Adds new shift templates to the enumeration with the "ISHCShiftTemplate" instances of the
calendar.
CFRESULT Create(ICfArrayIUnknown* pShiftTemplates)
• pShiftTemplates

[in]: An array with the shift templates to be added.
Example:

Copy code
void CreateShiftTemplateWithTimeslice()
{
 ISHCShiftTemplatePtr pShcShiftTemplate;
 ICfUnknownPtr pUnk;
 m_pCalendar->GetObject(ODK_SHC_SHIFT_TEMPLATE, &pUnk);
 pShcShiftTemplate = (ISHCShiftTemplatePtr)pUnk;
 pShcShiftTemplate->SetName(CCfString(L"ShiftTemplateName"));
 pShcShiftTemplate->SetDisplayName(1033, CCfString(L"ShiftDisplayName"));
 pShcShiftTemplate->SetDescription(1033, CCfString(L"ShiftTemplateDescription"));
 pShcShiftTemplate->SetDuration(Get1Hour() * 8);

 ICfArrayIUnknownPtr pArrayShiftTemplate;
 CCfArrayIUnknown ArrayShiftTemplate;
 ArrayShiftTemplate.Append(pShcShiftTemplate);
 ArrayShiftTemplate.DetachEnumerator(&pArrayShiftTemplate);
 m_pShcShiftTemplateProvider->Create(pArrayShiftTemplate);

 ICfUnknownPtr pUnkTimeSlice;
 m_pCalendar->GetObject(ODK_SHC_TIME_SLICE, &pUnkTimeSlice);
 ISHCTimeSlicePtr pShcTimeSlice;
 pUnkTimeSlice->QueryInterface(IID_ISHCTimeSlice, (ICfUnknown**)&pShcTimeSlice);
 pShcTimeSlice->SetCategory(CCfString(L"Working"));
 pShcTimeSlice->SetDuration(Get1Hour() * 1);
 CCfDateTime64 dt = GetStartoftheDay();
 pShcTimeSlice->SetStartTime(dt);
 pShcShiftTemplate->CreateTimeSlice(pShcTimeSlice);
}

"Update" method
Updates the enumeration with the "ISHCShiftTemplate" instances of the calendar.
CRFESULT Update(ICfArrayIUnknown* pShiftTemplates)
• pShiftTemplates

[in]: An array with the shift templates to be updated.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8167

Example:

Copy code
void UpdateShiftTemplateWithTimeSlice()
{
 ISHCShiftTemplateEnumeratorPtr pShcShiftTemplates;
 m_pShcShiftTemplateProvider->Browse(CF_FALSE, &pShcShiftTemplates);
 CCfArrayIUnknown ArrayShiftTemplate;
 ICfArrayIUnknownPtr pArrayShiftTemplate;
 uint32_t nCount = 0;
 pShcShiftTemplates->Count(&nCount);
 for (uint32_t i = 0; i < nCount; i++)
 {
 pShcShiftTemplates->MoveNext();
 ISHCShiftTemplatePtr pShcShiftTemplate;
 pShcShiftTemplates->Current(&pShcShiftTemplate);
 pShcShiftTemplate->SetDuration(Get1Hour() * 6);
 pShcShiftTemplate->SetName(CCfString(L"UpdatedShiftTemplateName"));

 ISHCTimeSliceEnumeratorPtr pTimeSlilceEnum;
 pShcShiftTemplate->GetTimeSlices(&pTimeSlilceEnum);
 uint32_t nlength = 0;
 pTimeSlilceEnum->Count(&nlength);
 for (uint32_t nIndex = 0; nIndex < nlenght; nIndex++)
 {
 pTimeSlilceEnum->MoveNext();
 ISHCTimeSlicePtr pShcTimeSlice;
 pTimeSlilceEnum->Current(&pShcTimeSlice);
 pShcTimeSlice->SetDuration(Get1Hour() * 4);
 pShcTimeSlice->SetCategory(CCfString(L"Break"));
 }
 ArrayShiftTemplate.Append(pShcShiftTemplate);
 }
 ArrayShiftTemplate.DetachEnumerator(&pArrayShiftTemplate);
 m_pShcShiftTemplateProvider->Update(pArrayShiftTemplate);
}

"Delete" method
Deletes an "ISHCShiftTemplate" instance of the calendar from the enumeration.
CRFESULT Delete(ICfArrayIUnknown* pShiftTemplates)
• pShiftTemplates

[in]: An array with the shift templates to be deleted.

Runtime Openness
20.3 Runtime API

8168 System Manual, 11/2022

Example:

Copy code
void DeleteShiftTemplateWithTimeSlice()
{
 ISHCShiftTemplateEnumeratorPtr pShcShiftTemplates;
 m_pShcShiftTemplateProvider->Browse(CF_FALSE, &pShcShiftTemplates);
 CCfArrayIUnknown ArrayShiftTemplate;
 ICfArrayIUnknownPtr pArrayShiftTemplate;
 uint32_t nCount = 0;
 pShcShiftTemplates->Count(&nCount);
 for (uint32_t i = 0; i < nCount; i++)
 {
 pShcShiftTemplates->MoveNext();
 ISHCShiftTemplatePtr pShcShiftTemplate;
 pShcShiftTemplates->Current(&pShcShiftTemplate);
 ISHCTimeSliceEnumeratorPtr pTimeSlilceEnum;
 pShcShiftTemplate->GetTimeSlices(&pTimeSlilceEnum);
 uint32_t nlength = 0;
 pTimeSlilceEnum->Count(&nlength);
 for (uint32_t nIndex = 0; nIndex < nlenght; nIndex++)
 {
 pTimeSlilceEnum->MoveNext();
 ISHCTimeSlicePtr pShcTimeSlice;
 pTimeSlilceEnum->Current(&pShcTimeSlice);
 pShcShiftTemplate->DeleteTimeSlice(pShcTimeSlice);
 }
 ArrayShiftTemplate.Append(pShcShiftTemplate);
 }
 ArrayShiftTemplate.DetachEnumerator(&pArrayShiftTemplate);
 m_pShcShiftTemplateProvider->Delete(pArrayShiftTemplate);
}

ISHCShift

Description
The C++ interface "ISHCShift" specifies the methods of a shift.
The interface inherits from the "ICfUnknown" interface.

Members
"GetTimeSlices" method
Supplies an "ISHCTimeSliceEnumerator" instance. The enumerator provides you with access
to the "ISHCTimeSlice" instances of the "ISHCShift" instance.
CRFESULT GetTimeSlices(ISHCTimeSliceEnumerator**
ppSHCTimeSliceEnumerator)
• ppSHCTimeSliceEnumerator

[out]: The enumerator

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8169

"CreateTimeSlice" method
Adds an "ISHCTimeSlice" instance to the "ISHCShiftTemplate" instance.
CRFESULT CreateTimeSlice(ISHCTimeSlice* pSlice)
• pSlice

[in]: Reference to the new time slice
Example

Copy code
void CreateTimeSliceUsingShift()
{
 ISHCDayTemplateEnumeratorPtr pShcDayTemplates;
 m_pShcDayTemplateProvider->Browse(CF_FALSE, &pShcDayTemplates);
 uint32_t nCount = 0;
 pShcDayTemplates->Count(&nCount);

 pShcDayTemplates->MoveNext();
 ISHCDayTemplatePtr pShcDayTemplate;
 pShcDayTemplates->Current(&pShcDayTemplate);
 ISHCShiftEnumeratorPtr pShiftEnum;
 pShcDayTemplate->GetShifts(&pShiftEnum);
 uint32_t nlength = 0;
 pShiftEnum->Count(&nlength);
 pShiftEnum->MoveNext();
 ISHCShiftPtr pShcShift;
 pShiftEnum->Current(&pShcShift);
 ISHCTimeSlicePtr pShcTimeSlice;
 ICfUnknownPtr pUnk;
 m_pCalendar->GetObject(ODK_SHC_TIME_SLICE, &pUnk);
 pShcTimeSlice = (ISHCTimeSlicePtr)pUnk;
 pShcTimeSlice->SetCategory(CCfString(L"Break"));
 pShcTimeSlice->SetDuration(Get1Hour() * 1);
 CCfDateTime64 dt = GetStartoftheDay();
 dt.AddTimeSpan(Get1Hour() * 3);
 pShcTimeSlice->SetStartTime(dt);

 pShcShift->CreateTimeSlice(pShcTimeSlice);
}

"DeleteTimeSlice" method
Deletes an "ISHCTimeSlice" instance of the "ISHCShiftTemplate" instance.
CRFESULT DeleteTimeSlice(ISHCTimeSlice* pSlice)
• pSlice

[in]: Reference to the time slice to be deleted

Runtime Openness
20.3 Runtime API

8170 System Manual, 11/2022

Example:

Copy code
void DeleteTimeSliceUsingShift()
{
 ISHCDayTemplateEnumeratorPtr pShcDayTemplates;
 m_pShcDayTemplateProvider->Browse(CF_FALSE, &pShcDayTemplates);
 uint32_t nCount = 0;
 pShcDayTemplates->Count(&nCount);
 pShcDayTemplates->MoveNext();
 ISHCDayTemplatePtr pShcDayTemplate;
 ISHCShiftEnumeratorPtr pShiftEnum;
 pShcDayTemplate->GetShifts(&pShiftEnum);
 uint32_t nlength = 0;
 pShiftEnum->Count(&nlength);
 pShiftEnum->MoveNext();
 ISHCShiftPtr pShcShift;
 pShiftEnum->Current(&pShcShift);
 ISHCTimeSliceEnumeratorPtr pShcTimeSliceEnum;
 pShcShift->GetTimeSlices(&pShcTimeSliceEnum);
 uint32_t nCountTimeSlice = 0;
 pShcTimeSliceEnum->Count(&nCountTimeSlice);
 pShcTimeSliceEnum->MoveNext();
 ISHCTimeSlicePtr pShcTimeSlice;
 pShcTimeSliceEnum->Current(&pShcTimeSlice);
 pShcShift->DeleteTimeSlice(pShcTimeSlice);
}

"GetComments" method
Supplies a map with the comments of the "ISHCShift" instance and their language code IDs.
CRFESULT GetComments(ICfMapIDToVariant** ppComments)
• ppComments

[out]: A map with int32/string pairs (language code ID for comment).

"SetComments" method
Adds a new entry to a map with the comments of the "ISHCShift" instance and their language
code IDs.
CRFESULT SetComment(CFLCID languageId , CFSTR pComments)
• languageId

[in]: The language code ID
• pComments

[in]: The comment text

"GetDuration" method
Supplies the duration of the "ISHCShift" instance.
CFRESULT GetDuartion(CFTIMESPAN64* pDuration)
• pDuration

[out]: The duration of the shift

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8171

"SetDuration" method
Sets the duration of the "ISHCShift" instance.
CFRESULT SetDuration(CFTIMESPAN64 duration)
• duration

[in]: The duration of the shift

"GetShiftTemplate" method
Supplies the "ISHCShiftTemplate" instance on which the "ISHCShift" instance is based.
CRFESULT GetShiftTemplate(CFSTR* pSHCShiftTemplate)
• pSHCShiftTemplate

[out]: The shift template

"CreateAction" method
Adds an "ISHCAction" instance to the "ISHCShift" instance.
CRFESULT CreateAction(ISHCActionTemplate* pActionTemplate,
CFTIMESPAN64 offset, ISHCAction** pShcAction)
• pActionTemplate

[in]: The action template on which the new action is to be based.
• offset

[in]: The offset of the action in relation to the start time of the "ISHCShift" instance. Positive
and negative value allowed.

• pShcAction
[out]: The new action

"DeleteAction" method
Deletes an "ISHCAction" instance of the "ISHCShift" instance.
CFRESULT DeleteAction(ISHCAction* pShcAction)
• pShcAction

[in]: Reference to the action to be deleted.

"GetAction" method
Supplies an "ISHCActionEnumerator" instance via which you access the "ISHCAction"
instances of the "ISHCShift" instance.
CRFESULT GetActions(ISHCActionEnumerator** ppSHCActionEnumerator)
• ppSHCActionEnumerator

[out]: The enumerator

"GetIsCustomized" method
Supplies the information on whether the "ISHCShift" instance was edited by users.

Runtime Openness
20.3 Runtime API

8172 System Manual, 11/2022

CRFESULT GetIsCustomized)(CFBOOL* pIsCustomized)
• pIsCustomized

[out]:
– 0: Was not processed
– 1: Was processed

"GetDeltaKind" method
Supplies the delta type of the "ISHCShift" instance.
CRFESULT GetDeltaKind(CFENUM* pDeltaKind)
• pDeltaKind

[out]: Points to the enumeration "ShcDeltaType", which can contain the following values:
– Added (0)
– Modified (1)
– Deleted (2)

"GetShiftId" method
Supplies the ID of the "ISHCShift" instance.
CFRESULT GetShiftId(uint32_t* pShiftId)
• pShift

[out]: The ID

"SetShiftId" method
Sets the ID of the "ISHCShift" instance.
SetShiftId(uint32_t ShiftId)
• ShiftId

[in]: The new ID

See also
Locale IDs of the supported languages (Page 7829)

ISHCShiftEnumerator

Description
The C++ interface "ISHCShiftEnumerator" specifies methods for handling the enumeration of
shifts of an "ISHCDay" instance or "ISHCDayTemplate" instance.
The enumeration is returned by the "GetShifts" method of these instances.
The interface inherits from the "ICfUnknown" interface.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8173

Members
"MoveNext" method
Go to the next element of the enumeration.
CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.
CFRESULT Current(ISHCShift** ppItem)
• ppItem

[out]: The current shift

"Reset" method
Reset the current position in the enumeration. The "MoveNext" method moves afterwards to
the first element.
CFRESULT Reset()

"Count" method
Output the size of the enumeration or the number of its elements.
CRFESULT Count(uint32_t* pCount)
• pCount

[out]: Number of shifts

Runtime Openness
20.3 Runtime API

8174 System Manual, 11/2022

Example
Copy code
void printShift(const ISHCShiftEnumeratorPtr& p_pShcShiftEnum)
{
 uint32_t nCout = 0;
 p_pShcShiftEnum->Count(&nCout);
 for (uint32_t nIndex = 0; nIndex < nCout; nIndex++)
 {
 cout << endl;
 p_pShcShiftEnum->MoveNext();
 ISHCShiftPtr pShcshift;
 p_pShcShiftEnum->Current(&pShcshift);
 CCfString strshiftTemplateName;
 pShcshift->GetShiftTemplate(&strshiftTemplateName);
 std::cout << "ShiftTemplateName= " << strshiftTemplateName.ToUTF8().c_str() <<
std::endl;
 CCfTimeSpan64 tsDuration;
 pShcshift->GetDuration(&tsDuration);
 CCfString strDuration = tsDuration.GetTimeSpanString();
 std::cout << "Durations= " << strDuration.ToUTF8().c_str() << std::endl;
 CFBOOL bIsCustomised;
 pShcshift->GetIsCustomized(&bIsCustomised);
 std::cout << "Is Customised= " << (uint32_t)bIsCustomised << std::endl;
 CFENUM ndeltaKind;
 pShcshift->GetDeltaKind(&ndeltaKind);
 std::cout << "deltaKind = " << ndeltaKind << std::endl;
 uint32_t nShiftId;
 pShcshift->GetShiftId(&nShiftId);
 std::cout << "ShiftId = " << nShiftId << std::endl;
 ICfMapIDToVariantPtr pComments;
 pShcshift->GetComments(&pComments);
 std::cout << "comments:-" << std::endl << std::endl;
 uint32_t nCount = 0;
 pComments->Count(&nCount);
 for (uint32_t nIndex1 = 0; nIndex1 < nCount; nIndex1++)
 {
 int32_t nLanguageID;
 pComments->KeyAt(nIndex1, &nLanguageID);
 CCfVariant strComments;
 pComments->ValueAt(nLanguageID, &strComments);
 std::cout << "LangauageID =" << nLanguageID << " Comments=" <<
CCfSmartString(strComments).ToUTF8().c_str() << std::endl;
 }
 ISHCTimeSliceEnumeratorPtr pShiftTimesliceEnum;
 pShcshift->GetTimeSlices(&pShiftTimesliceEnum);

 uint32_t nCout = 0;
 pShiftTimesliceEnum->Count(&nCout);
 for (uint32_t nIndex = 0; nIndex < nCout; nIndex++)
 {
 pShiftTimesliceEnum->MoveNext();
 cout << endl;
 ISHCTimeSlicePtr pTimeSlice;
 pShiftTimesliceEnum->Current(&pTimeSlice);
 CCfString strCategoryName;
 pTimeSlice->GetCategory(&strCategoryName);

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8175

Copy code
 std::cout << "Category= " << strCategoryName.ToUTF8().c_str() << std::endl;

 CCfTimeSpan64 tsDuration;
 pTimeSlice->GetDuration(&tsDuration);
 CCfString strDuration = tsDuration.GetTimeSpanString();
 std::cout << "Durations= " << strDuration.ToUTF8().c_str() << std::endl;
 CCfDateTime64 dtStartTime;
 pTimeSlice->GetStartTime(&dtStartTime);
 CCfString strStarttime = dtStartTime.GetDateTimeString(false);
 std::cout << "Start Time= " << strStarttime.ToUTF8().c_str() << std::endl;
 }
 }
}

ISHCAction

Description
The C++ interface "ISHCAction" specifies the methods of an action.
The interface inherits from the "ICfUnknown" interface.

Members
"GetOffset" method
Returns the offset of the "ISHCAction" instance in relation to the starting point of its
"ISHCShift" instance.
CFRESULT GetOffset(CFTIMESPAN64* pOffsetType)
• pOffset

[out]: The offset in 100 nanoseconds. Positive and negative value allowed.

"SetOffset" method
Sets the offset of the "ISHCAction" instance in relation to the starting point of its "ISHCShift"
instance.
CFRESULT GetOffset(CFTIMESPAN64 OffsetType)
• OffsetType

[in]: The offset in 100 nanoseconds. Positive and negative value allowed.

"GetActionTemplate" method
Supplies the "ISHCActionTemplate" instance of the "ISHCAction" instance.
GetActionTemplate(CFSTR* p_strActionTemplate)
• p_strActionTemplate

[out]: The action template

Runtime Openness
20.3 Runtime API

8176 System Manual, 11/2022

"GetIsCustomized" method
Supplies the information on whether the "ISHCAction" instance was edited by users.
CRFESULT GetIsCustomized(CFBOOL* pIsCustomized)
• pIsCustomized

[out]:
– 0: Was not processed
– 1: Was processed

"GetElements" method
Supplies an "ISHCActionElementEnumerator" instance via which you access the action
elements of the "ISHCAction" instance.
GetElements(ISHCActionElementEnumerator**
ppSHCActionElementEnumerator)
• ppSHCActionElementEnumerator

[out]: The enumerator

ISHCActionEnumerator

Description
The C++ interface "ISHCActionEnumerator" specifies methods for handling the enumeration of
actions of an "ISHCShift" instance or "ISHCShiftTemplate" instance.
The enumeration is returned by the "GetActions" method of these instances.
The interface inherits from the "IcfUnknown" interface.

Members
"MoveNext" method
Go to the next element of the enumeration.
CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.
CFRESULT Current(ISHCAction** ppItem)
• ppItem

[out]: The current action

"Reset" method
Reset the current position in the enumeration. The "MoveNext" method moves afterwards to
the first element.
CFRESULT Reset()

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8177

"Count" method
Output the size of the enumeration or the number of its elements.
CRFESULT Count(uint32_t* pCount)
• pCount

[out]: Number of actions

Runtime Openness
20.3 Runtime API

8178 System Manual, 11/2022

Example
Copy code
void PrintAction(const ISHCActionEnumeratorPtr& pShcActionEnum)
{
 uint32_t nCount = 0;
 pShcActionEnum->Count(&nCount);
 for (uint32_t nIndex = 0; nIndex < nCount; nIndex++)
 {
 cout << endl;
 pShcActionEnum->MoveNext();
 ISHCActionPtr pShcAction;
 pShcActionEnum->Current(&pShcAction);
 CCfString strActionTemplateName;
 pShcAction->GetActionTemplate(&strActionTemplateName);
 std::cout << "ActionTemplateName = " << strActionTemplateName.ToUTF8().c_str() <<
std::endl;
 CFBOOL isCustomize;
 pShcAction->GetIsCustomized(&isCustomize);
 cout << "IsCustomize= " << (uint32_t)isCustomize << endl;

 CCfTimeSpan64 offset;
 hr = pShcAction->GetOffset(&offset);
 cout << "Offset=" << offset.GetTimeSpanString().ToUTF8().c_str() << endl;
 ISHCActionElementEnumeratorPtr pShcActionElementEnum;
 pShcAction->GetElements(&pShcActionElementEnum);

 cout << endl << "******PrintActionElement*******" << endl << endl;
 uint32_t nCount = 0;
 pShcActionElementEnum->Count(&nCount);
 for (uint32_t nIndex = 0; nIndex < nCount; nIndex++)
 {
 cout << endl;
 pShcActionElementEnum->MoveNext();
 ISHCActionElementPtr pShcActionElement;
 pShcActionElementEnum->Current(&pShcActionElement);
 CCfString strElementName;
 pShcActionElement->GetElementName(&strElementName);
 cout << "ActionElementName= " << strElementName.ToUTF8().c_str() << endl;
 CFENUM nType;
 pShcActionElement->GetElementType(&nType);
 cout << "Element Type= " << nType << endl;
 CFBOOL bIsEnable;
 pShcActionElement->GetEnabled(&bIsEnable);
 cout << "Is Enable = " << (uint32_t)bIsEnable << endl;
 CCfTimeSpan64 offset;
 pShcActionElement->GetOffset(&offset);
 cout << "Offset = " << offset.GetTimeSpanString().ToUTF8().c_str() << endl;
 CCfVariant vtValue;
 pShcActionElement->GetValue(&vtValue);
 cout << "value = " << vtValue.uint32 << endl;
 }
 }
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8179

ISHCActionElement

Description
The C++ interface "ISHCActionElement" specifies the methods of the action elements of an
"ISHCAction" instance.
The interface inherits from the "ICfUnknown" interface.

Members
"GetElementType" method
Supplies the type of the "ISHCActionElement" instance.
CRFESULT GetElementType(CFENUM* pElementType)
• pElementType

[out]: Points to the enumeration "ShcActionElementType", which can contain the following
values:
– Tag (0)

The action element controls a tag.

"GetEnabled" method
Supplies the information on whether the "ISHCActionElement" instance is activated.
CRFESULT GetEnabled(CFBOOL* pEnabled)
• pEnabled

[out]:
– 0: Deactivated
– 1: Activated

"SetEnabled" method
Sets whether the "ISHCActionElement" instance is activated.
CRFESULT SetEnabled(CFBOOL Enabled)
• Enabled

[in]:
– 0: Deactivated
– 1: Activated

"GetOffset" method
Returns the offset of the "ISHCActionElement" instance in relation to the anchor point of its
"ISHCAction" instance.
CFRESULT GetOffset(CFTIMESPAN64* pOffset)
• pOffset

[out]: The offset in 100 nanoseconds. Positive and negative value allowed.

Runtime Openness
20.3 Runtime API

8180 System Manual, 11/2022

"SetOffset" method
Sets the offset of the "ISHCActionElement" instance in relation to the anchor point of its
"ISHCAction" instance.
CFRESULT SetOffset(CFTIMESPAN64 offset)
• offset

[in]: The offset in 100 nanoseconds. Positive and negative value allowed.

"GetValue" method
Supplies the value of the tag controlled by the "ISHCActionElement" instance.
CFRESULT GetValue(CFVARIANT* pValue)
• pValue

[out]: The tag value

"SetValue" method
Sets the value of the tag controlled by the "ISHCActionElement" instance.
CRFESULT SetValue(CFVARIANT value)
• value

[in]: The new tag value

"GetElementName" method
Supplies the name of the tag controlled by the "ISHCActionElement" instance.
CFRESULT GetElementName(CFSTR* p_strActionElement)
• p_strActionElement

[out]: The tag name

"SetElementName" method
Sets the name of the tag controlled by the "ISHCActionElement" instance.
CFRESULT SetElementName(CFSTR ActionElement)
• ActionElement

[in]: The tag name

ISHCActionElementEnumerator

Description
The C++ interface "ISHCActionElementEnumerator" specifies methods for handling the
enumeration of action elements of an "ISHCAction" instance.
The enumeration is returned by the "GetElements" method of an "ISHCAction" instance.
The interface inherits from the "ICfUnknown" interface.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8181

Members
"MoveNext" method
Go to the next element of the enumeration.
CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.
CFRESULT Current(ISHCActionElement** ppItem)
• ppItem

[out]: The current action element

"Reset" method
Reset the current position in enumeration. The "MoveNext" method moves afterwards to the
first element.
CFRESULT Reset()

"Count" method
Output the size of the enumeration or the number of elements.
CRFESULT Count(uint32_t* pCount)
• pCount

[out]: Number of action elements

Runtime Openness
20.3 Runtime API

8182 System Manual, 11/2022

Example
Copy code
 void PrintActionElement(const ISHCActionElementEnumeratorPtr& pShcActionElementEnum)
{
 cout << endl << "******PrintActionElement*******" << endl << endl;
 uint32_t nCount = 0;
 pShcActionElementEnum->Count(&nCount);
 for (uint32_t nIndex = 0; nIndex < nCount; nIndex++)
 {
 cout << endl;
 pShcActionElementEnum->MoveNext();
 ISHCActionElementPtr pShcActionElement;
 pShcActionElementEnum->Current(&pShcActionElement);
 CCfString strElementName;
 pShcActionElement->GetElementName(&strElementName);
 cout << "ActionElementName= " << strElementName.ToUTF8().c_str() << endl;
 CFENUM nType;
 pShcActionElement->GetElementType(&nType);
 cout << "Element Type= " << nType << endl;
 CFBOOL bIsEnable;
 pShcActionElement->GetEnabled(&bIsEnable);
 cout << "Is Enable = " << (uint32_t)bIsEnable << endl;
 CCfTimeSpan64 offset;
 pShcActionElement->GetOffset(&offset);
 cout << "Offset = " << offset.GetTimeSpanString().ToUTF8().c_str() << endl;
 CCfVariant vtValue;
 pShcActionElement->GetValue(&vtValue);
 cout << "value = " << vtValue.uint32 << endl;
 }
}

ISHCActionTemplate

Description
The C++ interface "ISHCActionTemplate" specifies the methods of an action template.
The interface inherits from the "ICfUnknown" interface.

Members
"GetName" method
Supplies the name of the "ISHCActionTemplate" instance.
CFRESULT GetName(CFSTR * pvarRet)
• pvarRet

[out]: The name of the action template

"SetName" method
Sets the name of the "ISHCActionTemplate" instance

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8183

CFRESULT SetName(CFSTR value)
• value

[in]: The name

"GetDisplayNames" method
Supplies a map with the display names of the "ISHCActionTemplate" instance and their
language code IDs.
CFRESULT GetDisplayNames)(ICfMapIDToVariant** ppDisplayNames)
• ppDisplayNames

[out]: The map with String/String pairs (language code ID for display name).

"SetDisplayNames" method
Adds a display name and its language code ID to the map with the display name of the
"ISHCActionTemplate" instance.
CFRESULT SetDisplayNames)(CFLCID languageId, CFSTR pDisplayName)
• languageID

[in]: The language code ID of the display name
• pDisplayName

[in]: The display name

"GetDescriptions" method
Supplies a map with the descriptions of the "ISHCActionTemplate" instance and their
language code IDs.
CFRESULT GetDescriptions(ICfMapIDToVariant** value)
• value

[out]: The map with String/String pairs (language code ID for description).

"SetDescriptions" method
Adds a description and its language code ID to the map with the descriptions of the
"ISHCActionTemplate" instance.
CFRESULT SetDescription(CFLCID languageId, CFSTR pDescriptions)
• languageID

[in]: The language code ID of the description
• pDescriptions

[in]: The description text

"GetIsDeleted" method
Supplies the information on whether the "ISHCActionTemplate" instance was deleted by users.
CFRESULT GetIsDeleted(CFBOOL* pIsDeleted)
• pIsDeleted

[out]:
– 0: Was not deleted
– 1: Was deleted

Runtime Openness
20.3 Runtime API

8184 System Manual, 11/2022

"GetElements" method
Supplies an "ISHCActionTemplateElementEnumerator" instance. The enumerator provides
you with access to the "ISHCActionTemplateElement" instances of the "ISHCActionTemplate"
instance.
CRFESULT GetElements(ISHCActionTemplateElementEnumerator**
ppISHCActionTemplateElementEnumerator)
• ppISHCActionTemplateElementEnumerator

[out]: The enumerator

"CreateElement" method
Adds an "ISHCActionTemplateElement" instance to the "ISHCActionTemplate" instance.
CRFESULT CreateElement(ISHCActionTemplateElement*
pSHCActionTemplateElement)
• pSHCActionTemplateElement

[in]: Reference to the new action element

"DeleteElement" method
Deletes an action element of the "ISHCActionTemplate" instance.
CRFESULT DeleteElement(ISHCActionTemplateElement*
pSHCActionTemplateElement)
• pSHCActionTemplateElement

[in]: Reference to the action element to be deleted

See also
Locale IDs of the supported languages (Page 7829)

ISHCActionTemplateEnumerator

Description
The C++ interface "ISHCActionTemplateEnumerator" specifies methods for handling the
enumeration of the action templates of an "ISHCCalendar" instance.
The enumeration is returned by the "Read" method of an "ISHCActionTemplatesProvider"
instance.
The interface inherits from the "ICfUnknown" interface.

Members
"MoveNext" method
Go to the next element of the enumeration.
CFRESULT MoveNext()

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8185

"Current" method
Output the current element of the enumeration.
CFRESULT Current(ISHCActionTemplate** ppItem)
• ppItem

[out]: The current action template

"Reset" method
Reset the current position in the enumeration. The "MoveNext" method moves afterwards to
the first element.
CFRESULT Reset()

"Count" method
Output the size of the enumeration or the number of elements.
CRFESULT Count(uint32_t* pCount)
• pCount

[out]: Number of action templates

Runtime Openness
20.3 Runtime API

8186 System Manual, 11/2022

Example
Copy code
void PrintActionTemplate(const ISHCActionTemplateEnumeratorPtr& p_pShcActionTemplateEnum)
{
 uint32_t nCount = 0;
 p_pShcActionTemplateEnum->Count(&nCount);
 for (uint32_t nIndex = 0; nIndex < nCount; nIndex++)
 {
 cout << endl;
 p_pShcActionTemplateEnum->MoveNext();
 ISHCActionTemplatePtr pShcActionTemplate;
 p_pShcActionTemplateEnum->Current(&pShcActionTemplate);
 CCfString strActionTemplateName;
 pShcActionTemplate->GetName(&strActionTemplateName);
 cout << "ActionTemplateName=" << strActionTemplateName.ToUTF8().c_str() << endl;

 CFBOOL bIsDeleted;
 pShcActionTemplate->GetIsDeleted(&bIsDeleted);
 cout << "IsDeleted=" << (uint32_t)bIsDeleted << endl;
 ICfMapIDToVariantPtr pDescriptions;
 pShcActionTemplate->GetDescriptions(&pDescriptions);
 std::cout << "Descriptions=" << std::endl << std::endl;
 uint32_t nCount1 = 0;
 pDescriptions->Count(&nCount1);
 for (uint32_t nIndex1 = 0; nIndex1 < nCount1; nIndex1++)
 {
 int32_t nLanguageID;
 pDescriptions->KeyAt(nIndex1, &nLanguageID);
 CCfVariant strDescription;
 pDescriptions->ValueAt(nLanguageID, &strDescription);
 std::cout << "LangauageID =" << nLanguageID << " Description=" <<
CCfSmartString(strDescription).ToUTF8().c_str() << std::endl;
 }

 ICfMapIDToVariantPtr pDisplayNames;
 pShcActionTemplate->GetDisplayNames(&pDisplayNames);
 std::cout << "DisplayNames::" << std::endl << std::endl;
 uint32_t nCount1 = 0;
 pDisplayNames->Count(&nCount1);
 for (uint32_t nIndex1 = 0; nIndex1 < nCount1; nIndex1++)
 {
 int32_t nLanguageID;
 pDisplayNames->KeyAt(nIndex1, &nLanguageID);
 CCfVariant strDIsplayname;
 pDisplayNames->ValueAt(nLanguageID, &strDIsplayname);
 std::cout << "LangauageID =" << nLanguageID << " DisplayName=" <<
CCfSmartString(strDIsplayname).ToUTF8().c_str() << std::endl;
 }

 ISHCActionTemplateElementEnumeratorPtr pShcActionTemplateElementEnum;
 pShcActionTemplate->GetElements(&pShcActionTemplateElementEnum);

 uint32_t nCount2 = 0;
 pShcActionTemplateElementEnum ->Count(&nCount2);
 for (uint32_t nIndex = 0; nIndex < nCount2; nIndex++)
 {

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8187

Copy code
 pShcActionTemplateElementEnum ->MoveNext();
 ISHCActionTemplateElementPtr pShcActionTemplateElement;
 pShcActionTemplateElementEnum ->Current(&pShcActionTemplateElement);
 CCfString strElementName;
 pShcActionTemplateElement->GetElementName(&strElementName);
 cout << "TemplateElementName= " << strElementName.ToUTF8().c_str() << endl;
 CFENUM type;
 pShcActionTemplateElement->GetElementType(&Type);
 cout << "ElementType=" << Type << endl;
 CCfTimeSpan64 tsOffset;
 cout << "Element Offset=" << tsOffset.GetTimeSpanString().ToUTF8().c_str() << endl;
 CCfVariant vtValue;
 pShcActionTemplateElement->GetValue(&vtValue);
 cout << "Value=" << vtValue.uint32 << endl;
 }
 }
}

ISHCActionTemplatesProvider

Description
The C++ interface "ISHCActionTemplatesProvider" provides you with access to an
"ISHCActionTemplateEnumerator" instance which contains an enumeration with the action
templates of an "ISHCCalendar" instance. With the methods of the provider, you can create, read,
update and delete action templates. The provider is returned by the
"GetActionTemplatesProvider" method of an "ISHCCalendar" instance.
The interface inherits from the "ICfUnknown" interface.

Members
"Browse" method
Supplies an "ISHCActionTemplateEnumerator" instance which has access to an enumeration
with the "ISHCActionTemplate" instances of the calendar.
CRFESULT Browse(CFBOOL includeDeleted,OUT
ISHCActionTemplateEnumerator** ppISHCActionTemplateEnumerator)
• includeDeleted

Saves whether the enumerator also has access to the deleted action templates.
• ppISHCActionTemplateEnumerator

[out]: The enumerator
Example:
ISHCActionTemplateEnumeratorPtr pShcActionTemplateEnum;
pShcActionTemplateProvider->Browse(CF_FALSE,
&pShcActionTemplateEnum);

Runtime Openness
20.3 Runtime API

8188 System Manual, 11/2022

"Create" method
Adds new action templates to the enumeration with the "ISHCActionTemplate" instances of
the calendar.
CFRESULT Create(ICfArrayIUnknown* pActionTemplates)
• pActionTemplates

[in]: An array with the action templates to be added.
Example:

Copy code
void CreateActionTemplateWithActionTemplateElement()
{
 ICfUnknownPtr pUnk;
 m_pCalendar->GetObject(ODK_SHC_ACTION_TEMPLATE, &pUnk);
 CCfArrayIUnknown ArrayTemplate;
 ICfArrayIUnknownPtr pArrayTemplate;
 ISHCActionTemplatePtr pShcActionTemplate = (ISHCActionTemplatePtr)pUnk;
 pShcActionTemplate->SetName(CCfString(L"ActionTemplateName"));
 pShcActionTemplate->SetDisplayName(1033, CCfString(L"ActionTemplateDisplayName"));
 pShcActionTemplate->SetDescription(1033, CCfString(L"ActionTemplateDescription"));
 ArrayTemplate.Append(pShcActionTemplate);
 ArrayTemplate.DetachEnumerator(&pArrayTemplate);
 m_pShcActionTemplateProvider->Create(pArrayTemplate);
 m_pCalendar->GetObject(ODK_SHC_ACTION_TEMPLATE_ELEMENT, &pUnk);
 ISHCActionTemplateElementPtr pShcActionTemplateElement =
(ISHCActionTemplateElementPtr)pUnk;
 pShcActionTemplateElement->SetElementName(CCfString(L"HMI_RT_1::Unit1.Member_1"));
 CFTIMESPAN64 Offset = Get1Hour();
 pShcActionTemplateElement->SetOffset(Offset);
 uint32_t value = 1;
 pShcActionTemplateElement->SetValue(CCfVariant(value));
 pShcActionTemplate->CreateElement(pShcActionTemplateElement);
}

"Update" method
Updates "ISHCActionTemplate" instances of the enumeration.
CRFESULTUpdate(ICfArrayIUnknown* pActionTemplates)
• pActionTemplates

[in]: An array with the action templates to be updated.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8189

Example:

Copy code
void UpdateActionTemplateWithActionTemplateElement()
{
 ISHCActionTemplateEnumeratorPtr pShcActionTemplateEnum;
 m_pShcActionTemplateProvider->Browse(CF_FALSE, &pShcActionTemplateEnum);
 pShcActionTemplateEnum->MoveNext();
 CCfArrayIUnknown ArrayActionTemplate;
 ICfArrayIUnknownPtr pArrayActionTemplate;
 ISHCActionTemplatePtr pShcActionTemplate;
 pShcActionTemplateEnum->Current(&pShcActionTemplate);
 pShcActionTemplate->SetName(CCfString(L"UpdatedActionTemplate"));
 pShcActionTemplate->SetDisplayName(1033,
CCfString(L"UpdatedActionTemplateDisplayName"));
 ISHCActionTemplateElementEnumeratorPtr pShcActionTemplateElementEnum;
 pShcActionTemplate->GetElements(&pShcActionTemplateElementEnum);
 pShcActionTemplateElementEnum->MoveNext();
 ISHCActionTemplateElementPtr pShcActionTemplateElement;
 pShcActionTemplateElementEnum->Current(&pShcActionTemplateElement);
 CCfTimeSpan64 offset = Get1Hour() * 2;
 pShcActionTemplateElement->SetOffset(offset);
 uint32_t nValue = 2;
 pShcActionTemplateElement->SetValue(CCfVariant(nValue));

 ArrayActionTemplate.Append(pShcActionTemplate);
 ArrayActionTemplate.DetachEnumerator(&pArrayActionTemplate);
 m_pShcActionTemplateProvider->Update(pArrayActionTemplate);
}

"Delete" method
Deletes "ISHCActionTemplate" instances of the calendar from the enumeration.
CRFESULT Delete(ICfArrayIUnknown* pActionTemplates)
• pActionTemplates

[in]: An array with the action templates to be deleted.

Runtime Openness
20.3 Runtime API

8190 System Manual, 11/2022

Example:

Copy code
void DeleteActionTemplateWithActionTemplateElement()
{
 CFRESULT hr = CF_ERROR;
 ISHCActionTemplateEnumeratorPtr pShcActionTemplateEnum;
 m_pShcActionTemplateProvider->Browse(CF_FALSE, &pShcActionTemplateEnum);
 pShcActionTemplateEnum->MoveNext();
 CCfArrayIUnknown ArrayActionTemplate;
 ICfArrayIUnknownPtr pArrayActionTemplate;
 ISHCActionTemplatePtr pShcActionTemplate;
 pShcActionTemplateEnum->Current(&pShcActionTemplate);
 ISHCActionTemplateElementEnumeratorPtr pShcActionTemplateElementEnum;
 pShcActionTemplate->GetElements(&pShcActionTemplateElementEnum);
 pShcActionTemplateElementEnum->MoveNext();
 ISHCActionTemplateElementPtr pShcActionTemplateElement;
 pShcActionTemplateElementEnum->Current(&pShcActionTemplateElement);
 pShcActionTemplate->DeleteElement(pShcActionTemplateElement);

 ArrayActionTemplate.Append(pShcActionTemplate);
 ArrayActionTemplate.DetachEnumerator(&pArrayActionTemplate);
 m_pShcActionTemplateProvider->Delete(pArrayActionTemplate);
}

ISHCActionTemplateElement

Description
The C++ interface "ISHCActionTemplateElement" specifies the methods of an action template.
The interface inherits from the "ICfUnknown" interface.

Members
"GetElementType" method
Supplies the type of the "ISHCActionTemplateElement" instance.
CRFESULT GetElementType(CFENUM* pElementType)
• pElementType

[out]: Points to the enumeration "ShcActionElementType", which can contain the following
values:
– Tag (0)

The action element controls a tag.

"GetOffset" method
Returns the offset of the "ISHCActionTemplateElement" instance in relation to the anchor
point of its "ISHCActionTemplate" instance.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8191

CFRESULT GetOffset(CFTIMESPAN64* pOffset)
• pOffset

[out]: The offset in 100 nanoseconds. Positive and negative value allowed.

"SetOffset" method
Sets the offset of the "ISHCActionTemplateElement" instance in relation to the anchor point of
its "ISHCActionTemplate" instance.
CFRESULT SetOffset(CFTIMESPAN64 offset)
• offset

[in]: The offset in 100 nanoseconds. Positive and negative value allowed.

"GetElementName" method
Supplies the name of the tag controlled by the "ISHCActionTemplateElement" instance.
CFRESULT GetElementName(CFSTR* pElementName)
• pElementName

[out]: The tag name

"SetElementName" method
Sets the name of the tag controlled by the "ISHCActionTemplateElement" instance.
CFRESULT SetElementName(CFSTR pElementName)
• pElementName

[in]: The tag name

"GetValue" method
Supplies the value of the tag controlled by the "ISHCActionTemplateElement" instance.
CFRESULT GetValue(CFVARIANT* pValue)
• pValue

[out]: The tag value

"SetValue" method
Sets the value of the tag controlled by the "ISHCActionTemplateElement" instance.
CRFESULT SetValue(CFVARIANT pValue)
• pValue

[in]: The new tag value

ISHCActionTemplateElementEnumerator

Description
The C++ interface "ISHCActionTemplateElementEnumerator" specifies methods for handling the
enumeration of "ISHCActionTemplateElement" instances of an "ISHCActionTemplate" instance.
The enumeration is returned by the "GetElements" method of an "ISHCActionTemplate"
instance.

Runtime Openness
20.3 Runtime API

8192 System Manual, 11/2022

The interface inherits from the "ICfUnknown" interface.

Members
"MoveNext" method
Go to the next element of the enumeration.
CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.
CFRESULT Current(ISHCActionTemplateElement** ppItem)
• ppItem

[out]: The current action element of the action template

"Reset" method
Reset the current position in the enumeration. The "MoveNext" method moves afterwards to
the first element.
CFRESULT Reset()

"Count" method
Output the size of the enumeration or the number of elements.
CRFESULT Count(uint32_t* pCount)
• pCount

[out]: Number of "ISHCActionTemplateElement" instances

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8193

Example
Copy code
void PrintActionTemplateElement(const ISHCActionTemplateElementEnumeratorPtr&
pShcActionTemplateElementEnum)
{
 uint32_t nCount = 0;
 pShcActionTemplateElementEnum ->Count(&nCount);
 for (uint32_t nIndex = 0; nIndex < nCount; nIndex++)
 {
 pShcActionTemplateElementEnum ->MoveNext();
 ISHCActionTemplateElementPtr pShcActionTemplateElement;
 pShcActionTemplateElementEnum ->Current(&pShcActionTemplateElement);
 CCfString strElementName;
 pShcActionTemplateElement->GetElementName(&strElementName);
 cout << "TemplateElementName= " << strElementName.ToUTF8().c_str() << endl;
 CFENUM type;
 pShcActionTemplateElement->GetElementType(&Type);
 cout << "ElementType=" << Type << endl;
 CCfTimeSpan64 tsOffset;
 cout << "Element Offset=" << tsOffset.GetTimeSpanString().ToUTF8().c_str() << endl;
 CCfVariant vtValue;
 pShcActionTemplateElement->GetValue(&vtValue);
 cout << "Value=" << vtValue.uint32 << endl;
 }
}

20.3.9.8 Interfaces of the contexts

IContextLogging

Description
The C++ interface "IContextLogging" defines events and methods for creating and reading
"IContextDefinition" instances as well as for starting, stopping, monitoring and reading their
"ILoggedContext" instances. You can use "ILoggedContext" instances to filter runtime data, for
example, for alarms that fall within the time period of a particular "ILoggedContext" instance.
The interface implements the methods of the "ICfUnknown" interface.
All methods return CF_SUCCESS after successful execution. In the case of an error, the
methods return the corresponding error code.

Members
"CreateContextDefinitions" method
Creates ContextDefinitions in the database.

Runtime Openness
20.3 Runtime API

8194 System Manual, 11/2022

CRFESULT CreateContextDefintions(ICfArrayIUnknown*
pContextDefinitions, IContextLoggingCallBack *pContextCallBack)
• pContextDefinitions:

[in]: Collection with "IContextDefinition" instances
• *pContextCallBack:

[in]: Points to the "IContextLoggingCallBack" object that implements the callback interface.

"ReadContextDefinitions" method
Reads ContextDefinitions from the database. The instances can be filtered by plant object and
HMIContextProviderType .
CRFESULT ReadContextDefinitions(IContextLoggingCallBack*
pContextCallBack, ICfArrayString* plantViewPaths, ICfArrayVariant*
pProviderTypes, CFENUM sortingMode)
• pContextCallBack:

[in]: Points to the "IContextLoggingCallBack" object that implements the callback interface.
• plantViewPaths:

[in]: Limits the read operation to "IContextDefinition" instances from this collection of plant
objects.

• pProviderTypes:
[in/optional]: Limits the read operation to "IContextDefinition" instances with
HmiContextProvider types from this collection.
The enumeration "HmiContextProviderType" can contain the following values:
– NoContext = 0
– Calendar = 1

For "IContextDefinition" instances generated by the PI Option Calendar.
– PerformanceInsightMachineState = 2

For "IContextDefinition" instances generated by the PI Option Performance Insight.
– LineCoordinator = 3

For "IContextDefinition" instances generated by the PI Option Line Coordinator.
– UserDefined = 5

It is a user-defined "IContextDefinition" instance, created by ODK, for example.
• sortingMode:

[in]: Points to the enumeration HmiContextLoggingSortingMode, which can contain the
following values:
– Ascending = 1

Default setting
– Descending = 2

"ReadContexts" method
Reads "ILoggedContext" instances of a specific time period. The instances can be filtered
using a "IContextFilter" instance.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8195

CRFESULT ReadContexts(CFDATETIME64 start, CFDATETIME64
end, IContextLoggingCallBack* ContextCallBack, IContextFilter*
FilterObject, CFENUM type)
• start:

[in]: The start time of the period within which the "ILoggedContext" instances must lie.
• end:

[in]: The end time of the period within which the "ILoggedContext" instances must lie.
• ContextCallBack:

[in]: Points to the "IContextLoggingCallBack" object that implements the callback interface.
• FilterObject:

[in/optional]: The "IContextFilter" instance whose filter settings are used.
• type:

[in]: Points to the enumeration HmiContextLoggingSortingMode, which can contain the
following values:
– Ascending = 1

Default setting
– Descending = 2

"StartContext" method
Creates a new "ILoggedContext" instance for a "IContextDefinition" instance.
CRFESULT StartContext(CFSTR p_strContextName, CFENUM providerType,
CFSTR plantViewPath, CFVARIANT contextValue, CFDATETIME64
startTime, uint32_t qualityCode)
• p_strContextName:

[in]: The name of the "IContextDefinition" instance for which the context log entry is created.
• providerType:

[in]: The HmiContextProviderType that the "IContextDefinition" instance of the context log
entry must have.
The enumeration "HmiContextProviderType" can contain the following values:
– NoContext = 0
– Calendar = 1

For "IContextDefinition" instances generated by the PI Option Calendar.
– PerformanceInsightMachineState = 2

For "IContextDefinition" instances generated by the PI Option Performance Insight.
– LineCoordinator = 3

For "IContextDefinition" instances generated by the PI Option Line Coordinator.
– UserDefined = 5

It is a user-defined "IContextDefinition" instance, created by ODK, for example.
• plantViewPath:

[in]: Path to an "IPlantObject" instance
E.g.: ".hierarchy::PlantView/Ln_1/M_1"
Is used in combination with p_strContextName for unique identification of the
"IContextDefinition" instance.

Runtime Openness
20.3 Runtime API

8196 System Manual, 11/2022

• contextValue:
[in]: The context value of the context log entry

• startTime:
[in]: Start time of the new context log entry

• qualityCode:
[in]: The QualityCode of the context value of the context log entry

"StopContext" method
Stops the currently running "ILoggedContext" instance of an "IContextDefinition" instance.
CRFESULT StopContext(CFSTR p_strContextName, CFENUM providerType,
CFSTR plantViewPath, CFDATETIME64 endtime)
• p_strContextName:

[in]: The name of the "IContextDefinition" instance whose context log entry is stopped.
• providerType:

[in]: The HmiContextProviderType that the "IContextDefinition" instance of the context log
entry must have.
The enumeration "HmiContextProviderType" can contain the following values:
– NoContext = 0
– Calendar = 1

For "IContextDefinition" instances generated by the PI Option Calendar.
– PerformanceInsightMachineState = 2

For "IContextDefinition" instances generated by the PI Option Performance Insight.
– LineCoordinator = 3

For "IContextDefinition" instances generated by the PI Option Line Coordinator.
– UserDefined = 5

It is a user-defined "IContextDefinition" instance, created by ODK, for example.
• plantViewPath:

[in]: Path to an "IPlantObject" instance
E.g.: ".hierarchy::PlantView/Ln_1/M_1"
Is used in combination with p_strContextName for unique identification of the
"IContextDefinition" instance.

• endtime:
[in]: End time of the new context log entry

"Add" method
Adds a "IContextDefintion" instance to a vector. The methods Clear(), Subscribe() and
CancelSubscription() can be called for the instances of the vector.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8197

CRFESULT Add(CFSTR contextName, CFENUM type, CFSTR plantViewPath)
• contextName:

[in]: The name of the "IContextDefintion" instance
• type:

[in]: The HmiContextProviderType of the "IContextDefintion" instance
The enumeration "HmiContextProviderType" can contain the following values:
– NoContext = 0
– Calendar = 1

For "IContextDefinition" instances generated by the PI Option Calendar.
– PerformanceInsightMachineState = 2

For "IContextDefinition" instances generated by the PI Option Performance Insight.
– LineCoordinator = 3

For "IContextDefinition" instances generated by the PI Option Line Coordinator.
– UserDefined = 5

It is a user-defined "IContextDefinition" instance, created by ODK, for example.
• plantViewPath:

[in]: Path to an "IPlantObject" instance
E.g.: ".hierarchy::PlantView/Ln_1/M_1"
Is used in combination with contextName for unique identification of the
"IContextDefinition" instance.

"Clear" method
Deletes the "IContextDefintion" instances added via Add() from the vector.
CRFESULT Clear()

"Subscribe" method
Subscribes the "IContextDefinition" instances added to the vector via Add() for monitoring.
CRFESULT Subscribe(IContextLoggingCallBack* pContextLoggingCallback)
• pContextLoggingCallback:

[in]: Points to the "IContextLoggingCallBack" object that implements the callback interface.

"CancelSubscribe" method
Unsubscribes the "IContextDefinition" instances added to the vector with Add() from
monitoring.
CRFESULT CancelSubscribe()

Runtime Openness
20.3 Runtime API

8198 System Manual, 11/2022

Examples
Copying code
void CreateContextDefinitions(IRuntimePtr pRuntime)
{
 std::cout << std::endl << __FUNCTION__ << std::endl << std::endl;
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"ContextLogging"), &pUnk);
 IContextLoggingPtr pContextLoggingPtr(pUnk);

 std::vector<IContextDefinitionPtr> vecContextDefinitions;
 for (size_t index = 0; index < 10; index++)
 {
 ICfUnknownPtr pUnkCd;
 pRuntime->GetObject(CCfString(L"ContextDefinition"), &pUnkCd);
 IContextDefinitionPtr pContextDefinition(pUnkCd);
 CCfSmartString strID = std::to_string(std::rand());
 CCfSmartString strName(L"CD-");
 strName.Append(strID);
 ICfMapIDToVariantPtr pDisplayNames;
 std::map<int32_t, CCfVariant> DisplayNames;
 CCfSmartString strDeuName(L"Deutsch-");
 strDeuName.Append(strName);
 DisplayNames[1031] = strDeuName;
 CCfSmartString strEngName(L"English-");
 strEngName.Append(strName);
 DisplayNames[1033] = strEngName;
 CCfMapIDToVariant::CreateEnumerator(DisplayNames, &pDisplayNames);
 pContextDefinition->SetDisplayNames(pDisplayNames);

 CCfString str_Name = L".hierarchy::Plant/Node1_1";
 pContextDefinition->SetPlantViewPath(str_Name);

 CCfString m_strName = L"Contetx_";
 m_strName.Append(strName.AllocCFSTR());
 pContextDefinition->SetName(m_strName);

 pContextDefinition->SetDataType(HmiContextDataType::String);
 vecContextDefinitions.push_back(pContextDefinition);

 }
 ICfArrayIUnknownPtr pContextDefnitionsArray;
 ::CfCreateEnumerator(vecContextDefinitions, &pContextDefnitionsArray);
 CContextLoggingCB * pContextLoggingCB = new CContextLoggingCB();
 pContextLoggingCB->AddRef();
 pContextLoggingPtr->CreateContextDefintions(pContextDefnitionsArray, pContextLoggingCB);
}

void DisplayContextError(const std::vector<IContextErrorPtr>& pVecContext)
{
 for (const auto& pContext : pVecContext)
 {
 CCfString strContextName;
 pContext->GetContextName(&strContextName);
 uint32_t value;
 pContext->GetErrorCode(&value);
 }

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8199

Copying code
}

Copying code
void ReadContextDefinitionsWithFilter(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"ContextLogging"), &pUnk);
 IContextLoggingPtr pContextLoggingPtr(pUnk);
 CCfString str_Name = L".hierarchy::Plant/Node1_1";
 ICfArrayStringPtr pArrayPlantObjects;
 CCfArrayString ArrayPlantobjects;
 ArrayPlantobjects.Append(CCfVariant(str_Name));
 ArrayPlantobjects.DetachEnumerator(&pArrayPlantObjects);
 CCfVariant vtProviderTypes(static_cast<CFENUM>(HmiContextProviderType::UserDefined));
 CCfArrayVariant arryProvidertypes;
 arryProvidertypes.Append(vtProviderTypes);
 ICfArrayVariantPtr pArrayProvidertypes;
 arryProvidertypes.DetachEnumerator(&pArrayProvidertypes);
 CContextLoggingCB * pContextLoggingCB = new CContextLoggingCB();
 pContextLoggingCB->AddRef();
 pContextLoggingPtr->ReadContextDefinitions(pContextLoggingCB, pArrayPlantObjects,
pArrayProvidertypes);

 pContextLoggingCB->Release();
}

void DisplayContextDefinition(const std::vector<IContextDefinitionPtr>& ContextDef)
{
 for (auto& pValues : ContextDef)
 {
 uint32_t ErrorCode;
 pValues->GetErrorCode(&ErrorCode);
 CCfString strName;
 pValues->GetName(&strName);
 CFENUM pnum;
 pValues->GetProviderType(&pnum);
 HmiContextDataType dataType;
 pValues->GetDataType(&dataType);
 ICfMapIDToVariantPtr displayName;
 pValues->GetDisplayNames(&displayName);
 uint32_t nCount;
 displayName->Count(&nCount);
 for (uint32_t nIndex = 0; nIndex < nCount; nIndex++)
 {
 int32_t langID;
 displayName->KeyAt(index, &langID);
 CCfVariant vtName;
 displayName->ValueAt(langID, &vtName);
 }
 CCfString strPlantViewPath;
 pValues->GetPlantViewPath(&strPlantViewPath);
 }
}

Runtime Openness
20.3 Runtime API

8200 System Manual, 11/2022

Copying code
void StartContext(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"ContextLogging"), &pUnk);
 IContextLoggingPtr pContextLoggingPtr(pUnk);
 CCfDateTime64 dtStartTime = CCfDateTime64::Now();
 CCfVariant vtValue = L"Orange Juice";
 uint32_t nQuality = 192;
 CCfString strNameContextName = L"ContetxName_";
 strNameContextName.Append(strContext_Unique_Num);
 pContextLoggingPtr->StartContext(strNameContextName,
static_cast<CFENUM>(HmiContextProviderType::UserDefined), CCfString(L".hierarchy::Plant/
Node1_1"),vtValue, dtStartTime, nQuality);
}

Copying code
void StopContext(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"ContextLogging"), &pUnk);
 IContextLoggingPtr pContextLoggingPtr(pUnk);
 CCfDateTime64 dtEndTime = CCfDateTime64::Now();
 CCfString strNameContextName = L"ContetxName_";
 strNameContextName.Append(strContext_Unique_Num);
 pContextLoggingPtr->StopContext(strNameContextName,
static_cast<CFENUM>(HmiContextProviderType::UserDefined), CCfString(L".hierarchy::Plant/
Node1_1"), dtEndTime);
}

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8201

Copying code
void ReadContextWithFilter(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 IContextLoggingPtr pContextLoggingPtr(pUnk);
 CCfDateTime64 dtEndTime = CCfDateTime64::Now();
 CCfDateTime64 dtStartTime;
 IContextFilterPtr pFilter;
 ICfUnknownPtr pUnkFilter;
 pRuntime->GetObject(CCfString(L"ContextFilter"), &pUnkFilter);
 pFilter = pUnkFilter;
 CCfString strNameContextName = L"ContetxName_";
 strNameContextName.Append(strContext_Unique_Num);
 pFilter->SetContextName(strNameContextName);
 pFilter->SetProviderType(static_cast<CFENUM>(HmiContextProviderType::UserDefined));
 pFilter->SetOperator(CCfString(L"="));
 pFilter->SetValue(CCfVariant(L"Orange Juice"));
 pFilter->SetPlantViewPath(CCfString(L".hierarchy::Plant/Node1_1"));
 CContextLoggingCB * pContextLoggingCB = new CContextLoggingCB();
 pContextLoggingCB->AddRef();
 pContextLoggingPtr->ReadContexts(dtStartTime, dtEndTime, pContextLoggingCB, pFilter,
HmiContextLoggingSortingMode::Ascending);
 pContextLoggingCB->WaitForcompletion(MaxContextWaitTime);
 std::vector<ILoggedContextPtr> Context = pContextLoggingCB->GetContexts();
 DisplayContext(Context);
}

void DisplayContext(const std::vector<ILoggedContextPtr>& Context)
{
 for (const auto& item : Context)
 {
 uint32_t pError;
 item->GetErrorCode(&pError);
 CCfDateTime64 dtStartTime;
 item->GetStartTime(&dtStartTime);
 CCfString strStartTime = dtStartTime.GetDateTimeString();
 CCfDateTime64 dtEnd;
 item->GetEndTime(&dtEnd);
 CCfString strEndTime = dtEnd.GetDateTimeString();
 uint32_t pQuality;
 item->GetQuality(&pQuality);
 CCfString name;
 item->GetName(&name);
 CCfString viewPath;
 item->GetPlantViewPath(&viewPath);
 CFENUM providerType;
 item->GetProviderType(&providerType);
 CCfVariant vtValue;
 item->GetValue(&vtValue);
 PrintVariantType(vtValue);
 }
}

Runtime Openness
20.3 Runtime API

8202 System Manual, 11/2022

Copying code
void SubscribeContextLogging(IRuntimePtr pRuntime)
{
 ICfUnknownPtr pUnk;
 pRuntime->GetObject(CCfString(L"ContextLogging"), &pUnk);
 IContextLoggingPtr pContextLoggingPtr(pUnk);
 CContextLoggingCB * pContextLoggingCB = new CContextLoggingCB();
 pContextLoggingCB->AddRef();
 CreateContextDefinition(pRuntime);
 CCfString strNameContextName = L"ContetxName_";
 strNameContextName.Append(strContext_Unique_Num);
 CFENUM providerType = static_cast<CFENUM>(HmiContextProviderType::UserDefined);
 pContextLoggingPtr->Add(strNameContextName, providerType, CCfString(L".hierarchy::Plant/
Node1_1"));
 pContextLoggingPtr->Subscribe(pContextLoggingCB);
 StartContext(pRuntime);
 if (pContextLoggingCB->GetContexts().size()>0 || pContextLoggingCB-
>WaitForcompletion(MaxContextWaitTime) == CF_SUCCESS);
 {
 std::vector<ILoggedContextPtr> Context = pContextLoggingCB->GetContexts();
 DisplayContext(Context);
 pContextLoggingCB->clear();
 }
 StopContext(pRuntime);
 if (pContextLoggingCB->GetContexts().size() > 0 || pContextLoggingCB-
>WaitForcompletion(MaxContextWaitTime)==CF_SUCCESS);
 {
 std::vector<ILoggedContextPtr> Context = pContextLoggingCB->GetContexts();
 DisplayContext(Context);
 }
 pContextLoggingPtr->CancelSubscribe();
 pContextLoggingCB->Release();
}

void DisplayContext(const std::vector<ILoggedContextPtr>& Context)
{
 for (const auto& item : Context)
 {
 uint32_t pError;
 item->GetErrorCode(&pError);
 CCfDateTime64 dtStartTime;
 item->GetStartTime(&dtStartTime);
 CCfString strStartTime = dtStartTime.GetDateTimeString();
 CCfDateTime64 dtEnd;
 item->GetEndTime(&dtEnd);
 CCfString strEndTime = dtEnd.GetDateTimeString();
 uint32_t pQuality;
 item->GetQuality(&pQuality);
 CCfString name;
 item->GetName(&name);
 CCfString viewPath;
 item->GetPlantViewPath(&viewPath);
 CFENUM providerType;
 item->GetProviderType(&providerType);
 CCfVariant vtValue;
 item->GetValue(&vtValue);

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8203

Copying code
 PrintVariantType(vtValue);
 }
}

IContextLoggingCallBack

Description
The C++ interface "IContextLoggingCallBack" defines methods for implementing asynchronous
operations for monitoring "IContextDefinition" instances. The methods are used by the
"IContextLogging" interface.
The interface implements the methods of the "ICfUnknown" interface.
All methods return CF_SUCCESS after successful execution. In the case of an error, the
methods return the corresponding error code.

Members
"OnCreate" method
Callback method is called when a ContextDefintion is created in the database by calling the
"IContextLogging.CreateContextDefinitions" method.
CFRESULT OnCreate(uint32_t globalError, CFSTR SystemName,
IContextErrorEnumerator* errors, CFBOOL Completed)
• globalError:

[in]: Global ErrorCode when a global error occurs during the call. All other parameters are
invalid in this case.

• SystemName:
[in]: Name of the system on which the ContextDefinitions have been created.

• errors:
[in]: Enumerator for the instance-specific errors that were created when the
ContextDefinitions were created.

• Completed:
[in]: Status of the asynchronous transfer:
– True: All ContextDefinitions have been notified.
– False: Additional notifications are expected.

Runtime Openness
20.3 Runtime API

8204 System Manual, 11/2022

Members "OnRead"
Callback method is called:
• When a ContextDefintion is read from the database by calling the

"IContextLogging.ReadContextDefinitions" method.
The method with the following signature is called:
CFRESULT OnRead(uint32_t globalError, CFSTR SystemName,
IContextDefinitionEnumerator* contextLoggingResult, CFBOOL
Completed)
– globalError:

[in]: Global ErrorCode when a global error occurs during the call. All other parameters are
invalid in this case.

– SystemName:
[in]: Name of the system on which the ContextDefinitions have been created.

– contextLoggingResult:
[in]: Enumerator for the read "IContextDefinition" instances

– Completed:
[in]: Status of the asynchronous transfer:
True: All ContextDefinitions have been notified.
False: Additional notifications are expected.

• When a LoggedContext is read by calling the "IContextLogging.ReadContexts" method.
The method with the following signature is called:
CFRESULT OnRead(uint32_t globalError, CFSTR SystemName,
ILoggedContextEnumerator* loggedContexts, CFBOOL Completed)
– globalError:

[in]: Global ErrorCode when a global error occurs during the call. All other parameters are
invalid in this case.

– SystemName:
[in]: Name of the system on which the "ILoggedContext" instances have been created.

– contextLoggingResult:
[in]: Enumerator for the read "ILoggedContext" instances that were started or stopped.

– Completed:
[in]: Status of the asynchronous transfer:
True: All ContextDefinitions have been notified.
False: Additional notifications are expected.

– Completed:
[in]: Status of the asynchronous transfer:
True: All ContextDefinitions have been notified.
False: Additional notifications are expected.

"OnDataChanged" method
Callback method is called when a monitored "ILoggedContext" instance is started or stopped
by calling "IContextLogging.StartContext" or "IContextLogging.StopContext".

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8205

CFRESULT OnDataChanged(ILoggedContextEnumerator* pEnumerator)
• pEnumerator:

[out]: Points to an "ILoggedContextEnumerator" object which contains an enumeration with
"ILoggedContext" instances.

IContextDefinitionEnumerator

Description
The C++ interface "IContextDefinitionEnumerator" specifies methods for handling the
enumeration of "IContextDefinition" instances. The enumeration is returned by the "OnRead"
method of an "IContextLoggingCallBack" instance.
The interface inherits from the "ICfUnknown" interface.
All methods return CF_SUCCESS after successful execution. In the case of an error, the
methods return the corresponding error code.

Members
"MoveNext" method
Go to the next element of the enumeration.
CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.
CFRESULT Current(IContextDefinition **pItem)
• ppItem

[out]: The current "IContextDefinition" instance

"Reset" method
Reset the current position in the enumeration. The "MoveNext" method moves afterwards to
the first element.
CFRESULT Reset()

"Count" method
Output the size of the enumeration or the number of its elements.
CRFESULT Count(uint32_t* pCount)
• pCount

[out]: Number of "IContextDefinition" instances

Runtime Openness
20.3 Runtime API

8206 System Manual, 11/2022

IContextErrorEnumerator

Description
The C++ interface "IContextErrorEnumerator" specifies methods for handling the enumeration
of "IContextError" instances. The enumeration is returned by the "OnCreate" method of an
"IContextLoggingCallBack" instance.
The interface inherits from the "ICfUnknown" interface.
All methods return CF_SUCCESS after successful execution. In the case of an error, the
methods return the corresponding error code.

Members
"MoveNext" method
Go to the next element of the enumeration.
CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.
CFRESULT Current(IContextError **pItem)
• ppItem

[out]: The current "IContextError" instance

"Reset" method
Reset the current position in the enumeration. The "MoveNext" method moves afterwards to
the first element.
CFRESULT Reset()

"Count" method
Output the size of the enumeration or the number of its elements.
CRFESULT Count(uint32_t* pCount)
• pCount

[out]: Number of "IContextError" instances

ILoggedContextEnumerator

Description
The C++ interface "ILoggedContextEnumerator" specifies methods for handling the
enumeration of "ILoggedContext" instances. The enumeration is returned by the "OnRead"
method of an "IContextLoggingCallBack" instance.
The interface inherits from the "ICfUnknown" interface.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8207

All methods return CF_SUCCESS after successful execution. In the case of an error, the
methods return the corresponding error code.

Members
"MoveNext" method
Go to the next element of the enumeration.
CFRESULT MoveNext()

"Current" method
Output the current element of the enumeration.
CFRESULT Current(ILoggedContext **pItem)
• ppItem

[out]: The current "ILoggedContext" instance

"Reset" method
Reset the current position in the enumeration. The "MoveNext" method moves afterwards to
the first element.
CFRESULT Reset()

"Count" method
Output the size of the enumeration or the number of its elements.
CRFESULT Count(uint32_t* pCount)
• pCount

[out]: Number of "ILoggedContext" instances

IContextDefinition

Description
The C++ interface "IContextDefinition" specifies properties for defining "IContextDefinition"
instances. "ILoggingContext" instances can be created using the StartContext() and
StopContext() methods based on an "IContextDefiniton" instance.
The interface implements the methods of the "ICfUnknown" interface.
All methods return CF_SUCCESS after successful execution. In the case of an error, the
methods return the corresponding error code.

Members
"GetPlantViewPath" method
Sets the path to the plant object of the "IContextDefinition" instance.

Runtime Openness
20.3 Runtime API

8208 System Manual, 11/2022

CRFESULT GetPlantViewPath(CFSTR* p_strPlantViewPath)
• p_strPlantViewPath:

[out]: The path to the plant object
Example: ".hierarchy::Plant/Station"

"SetPlantViewPath" method
Sets the path to the plant object of the "IContextDefinition" instance.
CRFESULT SetPlantViewPath(CFSTR p_strPlantViewPath)
• p_strPlantViewPath:

[in]: The path to the plant object
Example: ".hierarchy::Plant/Station"

"GetProviderType" method
The source that creates the instance.
Is used together with "Name" to uniquely identify a "IContextDefinition" instance.
CRFESULT GetProviderType(CFENUM* pContextType)
• pContextType:

[out]: The enumeration "HmiContextProviderType" can contain the following values:
– NoContext = 0
– Calendar = 1

For "IContextDefinition" instances generated by the PI Option Calendar.
– PerformanceInsightMachineState = 2

For "IContextDefinition" instances generated by the PI Option Performance Insight.
– LineCoordinator = 3

For "IContextDefinition" instances generated by the PI Option Line Coordinator.
– UserDefined = 5

It is a user-defined "IContextDefinition" instance, created by ODK, for example.

"GetName" method
Supplies the name of the "IContextDefinition" instance.
CRFESULT GetName(CFSTR* pName)
• pName:

[out]: The name

"SetName" method
Sets the name of the "IContextDefinition" instance.
Sets the name of the "IContextDefinition" instance.
CRFESULT SetName(IN CFSTR name)
• name:

[in]: The name

"GetDisplayNames" method
Supplies the display name of the "IContextDefinition" instance

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8209

CRFESULT GetDisplayNames(ICfMapIDToVariant** ppDisplayName)
• ppDisplayName:

[out]: The display name

"SetDisplayNames" method
Sets the display name of the "IContextDefinition" instance.
CRFESULT SetDisplayNames(ICfMapIDToVariant* pDisplayName)
• pDisplayName:

[in]: The display name

"GetDataType" method
Supplies the data type of the "IContextDefinition" instance.
CRFESULT GetDataType(HmiContextDataType* pdatatype)
• pdatatype:

[out]: The data type
The enumeration "HmiContextDataType" can contain the following values:
– Bool = 0x01
– SInt = 0x02
– Int = 0x03
– DInt = 0x04
– LInt = 0x05
– USInt = 0x06
– UInt = 0x07
– UDInt = 0x08
– ULInt = 0x09
– Real = 0x0A
– LReal = 0x0B
– LTime = 0x0C
– DateTime = 0x0D
– Byte = 0x11
– Word = 0x12
– DWord = 0x13
– LWord = 0x14
– String = 0x32

"SetDataType" method
Sets the data type of the "IContextDefinition" instance.

Runtime Openness
20.3 Runtime API

8210 System Manual, 11/2022

CRFESULT SetDataType(HmiContextDataType datatype)
• datatype:

[in]: The data type
The enumeration "HmiContextDataType" can contain the following values:
– Bool = 0x01
– SInt = 0x02
– Int = 0x03
– DInt = 0x04
– LInt = 0x05
– USInt = 0x06
– UInt = 0x07
– UDInt = 0x08
– ULInt = 0x09
– Real = 0x0A
– LReal = 0x0B
– LTime = 0x0C
– DateTime = 0x0D
– Byte = 0x11
– Word = 0x12
– DWord = 0x13
– LWord = 0x14
– String = 0x32

"GetErrorCode" method
Supplies the error code of the "IContextDefinition" instance
CRFESULT GetErrorCode(uint32_t* error)
• error:

[out]:

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8211

Examples
Copy code
void DisplayContextDefinition(const std::vector<IContextDefinitionPtr>& ContextDef)
{
 for (auto& pValues : ContextDef)
 {
 uint32_t ErrorCode;
 pValues->GetErrorCode(&ErrorCode);
 CCfString strName;
 pValues->GetName(&strName);
 CFENUM pnum;
 pValues->GetProviderType(&pnum);
 HmiContextDataType dataType;
 pValues->GetDataType(&dataType);
 ICfMapIDToVariantPtr displayName;
 pValues->GetDisplayNames(&displayName);
 uint32_t nCount;
 displayName->Count(&nCount);
 for (uint32_t nIndex = 0; nIndex < nCount; nIndex++)
 {
 int32_t langID;
 displayName->KeyAt(index, &langID);
 CCfVariant vtName;
 displayName->ValueAt(langID, &vtName);
 }
 CCfString strPlantViewPath;
 pValues->GetPlantViewPath(&strPlantViewPath);
 }
}

ILoggedContext

Description
The C++ interface "ILoggedContext" defines properties of context log entries of an
"IContextDefinition" instance.
The context log entries are started and stopped using methods of the "IContextLogging"
interface.
The interface implements the methods of the "ICfUnknown" interface.
All methods return CF_SUCCESS after successful execution. In the case of an error, the
methods return the corresponding error code.

Members
"GetStartTime" method
Supplies the start time of the "IContextLogging" instance.

Runtime Openness
20.3 Runtime API

8212 System Manual, 11/2022

CRFESULT GetStartTime(CFDATETIME64* value)
• value:

[out]: The start time

"GetEndTime" method
Supplies the end time of the "IContextLogging" instance.
CRFESULT GetEndTime(CFDATETIME64* value)
• value:

[out]: The end time

"GetErrorCode" method
Supplies the error code of the "IContextLogging" instance.
CRFESULT GetErrorCode(uint32_t* error)
• error:

[out]: The error code

"GetValue" method
Supplies the value of the "IContextLogging" instance. The value has the same data type as is
specified by the "DataType" property of the "IContextDefinition" instance.
Example: An "IContextDefinition" instance has the name "Product" and the data type String.
Its "IContextLogging" instance has the value "Limo".
CRFESULT GetValue(CFVARIANT * value)
• value:

[out]: The name of the "IContextDefinition" instance in the user interface

"GetQuality" method
Supplies the QualityCode of the context value.
CRFESULT GetQuality(uint32_t* quality)
• quality:

[out]: The QualityCode

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8213

Examples
Copy code
void DisplayContext(const std::vector<ILoggedContextPtr>& Context)
{
 for (const auto& item : Context)
 {
 uint32_t pError;
 item->GetErrorCode(&pError);
 CCfDateTime64 dtStartTime;
 item->GetStartTime(&dtStartTime);
 CCfString strStartTime = dtStartTime.GetDateTimeString();
 CCfDateTime64 dtEnd;
 item->GetEndTime(&dtEnd);
 CCfString strEndTime = dtEnd.GetDateTimeString();
 uint32_t pQuality;
 item->GetQuality(&pQuality);
 CCfString name;
 item->GetName(&name);
 CCfString viewPath;
 item->GetPlantViewPath(&viewPath);
 CFENUM providerType;
 item->GetProviderType(&providerType);
 CCfVariant vtValue;
 item->GetValue(&vtValue);
 PrintVariantType(vtValue);
 }
}

IContextError

Description
The C++ interface "IContextError" specifies methods for accessing error results that occur when
creating ContextDefinitions in the database.
The interface implements the methods of the "ICfUnknown" interface.
All methods return CF_SUCCESS after successful execution. In the case of an error, the
methods return the corresponding error code.

Members
"GetContextName" method
Supplies the name of the "IContextDefintion" instance.
CRFESULT GetContextName(CFSTR* p_strName)
• p_strName:

[out]: The name

"GetContextErrorCode" method
Supplies the error code.

Runtime Openness
20.3 Runtime API

8214 System Manual, 11/2022

CRFESULT GetErrorCode)(OUT uint32_t* p_ErrorCode)
• p_ErrorCode:

[out]: The error code

Examples
Copy code
void DisplayContextError(const std::vector<IContextErrorPtr>& pVecContext)
{
 for (const auto& pContext : pVecContext)
 {
 CCfString strContextName;
 pContext->GetContextName(&strContextName);
 uint32_t value;
 pContext->GetErrorCode(&value);
}

IContextFilter

Description
The C++ interface "IContextFilter" defines methods for accessing properties of
"IContextDefinition" instances, according to whose "ILoggedContext" instances are to be
filtered.
The interface inherits from the "ICfUnknown" interface.
All methods return CF_SUCCESS after successful execution. In the case of an error, the
methods return the corresponding error code.

Members
"GetName" method
Supplies the name of the "IContextDefinition" instance according to whose "ILoggedContext"
instances the filtering is performed.
CFRESULT GetContextName(CFSTR* p_strName)
p_strName:
[out]: The name of the "IContextDefinition" instance

"SetName" method
Sets the name of the "IContextDefinition" instance according to whose "ILoggedContext"
instances the filtering is performed.
CFRESULT SetContextName(CFSTR p_strName)
p_strName:
[in]: The name of the "IContextDefinition" instance

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8215

"GetProviderType" method
The HmiContextProviderType that the "IContextDefinition" instance of the context log entry
must have.
CFRESULT GetProviderType(CFENUM* p_ProviderType)
• p_ProviderType:

[out]: The provider type.
The enumeration "HmiContextProviderType" can contain the following values:
– NoContext = 0
– Calendar = 1

For "IContextDefinition" instances generated by the PI Option Calendar.
– PerformanceInsightMachineState = 2

For "IContextDefinition" instances generated by the PI Option Performance Insight.
– LineCoordinator = 3

For "IContextDefinition" instances generated by the PI Option Line Coordinator.
– UserDefined = 5

It is a user-defined "IContextDefinition" instance, created by ODK, for example.

"SetProviderType" method
Sets the HmiContextProviderType of an "IContextDefinition" instance for whose
"ILoggedContext" instances the filtering is performed.
CFRESULT SetProviderType(CFENUM p_ProviderType)
• p_ProviderType:

[in]: The provider type.
The enumeration "HmiContextProviderType" can contain the following values: See
"GetProviderType".

"GetOperator" method
Supplies the filter operator.
CFRESULT GetOperator(CFSTR* p_Operator)
• p_Operator:

[out]: The operator.
The operator is applied to the value.

"SetOperator" method
Sets the filter operator.

Runtime Openness
20.3 Runtime API

8216 System Manual, 11/2022

CFRESULT SetOperator(CFSTR p_Operator)
• p_Operator:

[in]: The operator
The operator is applied to the value. The following operators are allowed:
For values with data type Int and Real:
– =
– !=
– <
– >
– <=
– >=
For values with data type String:
– LIKE
– =
Strings must always be fully specified.

"GetValue" method
Supplies the "Value" of the "ILoggedContext" instance
CFRESULT GetValue(CFVARIANT* p_vtValue)
• p_vtValue:

[out]: The value

"SetValue" method
Sets the "Value" of the "ILoggedContext" instance
CFRESULT SetValue(CFVARIANT p_vtValue)
• p_vtValue:

[in]: The value

20.3.10 Reference of the ODK error codes

Reference
Below you will find an overview of the error codes and error descriptions of the ODK interface.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8217

General errors

Error name Error code Error description
OPN_E_GENERAL_FAILED 2147496936 General error occurred.
OPN_E_GENERAL_CONNECT_FAILED 2147496967 Connection to runtime failed.
OPN_E_GENERAL_TYPE_NOT_SUPPOR‐
TED

2147496985 The type isn't supported.

OPN_E_GENERAL_UNKNOWN_NAME 2147496986 The given name is unknown.
OPN_E_GENERAL_LOADING_FAILED 2147496987 The option can't be loaded.
OPN_E_GENERAL_RESPONSE_TIMEOUT 2147496951 The operation has timed out.
OPN_E_GENERAL_NOT_IMPLEMENTED 2147496954 Error Description Not Availbale
OPN_E_GENERAL_INVALID_SYSTEM 2147498006 Invalid system name.
OPN_E_GENERAL_REQUEST_REJECTED 2147496981 Your request has been rejected.
OPN_E_GENERAL_LICENSE_MISSING 2147496988 There are missing or expired Licenses.
OPN_E_GENERAL_LICENSE_COMPRO‐
MISED

2147496989 License: The Module integrity has been
compromised.

OPN_E_GENERAL_LICENSE_DISCON‐
NECTED

2147496990 The License is disconnected.

Tag errors
Error name Error code Error description
OPN_E_TAG_FAILED 2148545512 General error in Tag model occurred.
OPN_E_TAG_INVALIDARG 2148545513 Invalid arguments passed to function.
OPN_E_TAG_ACCESS_DENIED 2148545532 No access
OPN_E_TAG_INVALIDCREF 2148545514 Invalid CRef found during conversion.
OPN_E_TAG_INVALIDOBJECTSTATE 2148545515 Object not properly initialized.
OPN_E_TAG_NOTSUPPORTED 2148545516 Function not supported.
OPN_E_TAG_OUTOFRANGE 2148545517 The given value is out of range.
OPN_E_TAG_NOTEXISTING 2148545518 The given tag does not exist.
OPN_E_TAG_WRITE_FALS 2148545545 The write operation was partly successful
OPN_E_TAG_READ_FALSE 2148545546 The read operation was partly successful
OPN_E_TAG_DUPLICATE_CREF 2148545549 Duplicate CRef found during conversion.
OPN_E_TAG_INVALID_POINTER 2148545550 Function returned an invalid pointer
OPN_E_TAG_CONVERSION_NOT_AL‐
LOWED

2148545551 Conversion not allowed

OPN_E_TAG_PLC_NOT_CONNECTED 2148545552 PLC not connected
OPN_E_TAG_PLC_PROTOCOL_ERROR 2148545553 Error Description Not Availbale
OPN_E_TAG_INVALID_SUBSCRIPTION 2148545554 Invalid tag subscription
OPN_E_TAG_NO_INIT 2148545519 HmiRuntime not properly initialized.
OPN_E_TAG_UNSUPPORTED_VAL‐
UE_TYPE

2148545560 Unsupported value type

OPN_E_TAG_EXISTS 2148545521 The given tag already exists

Runtime Openness
20.3 Runtime API

8218 System Manual, 11/2022

Error name Error code Error description
OPN_E_TAGSET_ALREADY_SUBSCRIBED 2148545610 The TagSet already Subscribed
OPN_E_EMPTY_COLLECTION_SUBSCRIP‐
TION

2148545611 No Tags to Subscribe

Alarm errors

Error name Error code Error description
OPN_E_ActiveAlarm_FAILED 2149594088 General error in Alarm model occurred.
OPN_E_ActiveAlarm_INVALID_SUB‐
SCRIPTION

2149594130 Invalid alarm subscription

OPN_E_ActiveAlarm_INVALIDARG 2149594089 Invalid arguments passed to function.
OPN_E_ActiveAlarm_NOINIT 2149594095 HmiRuntime not properly initialized.
OPN_E_ActiveAlarm_INVALIDCREF 2149594090 Invalid CRef found during conversion.
OPN_E_ActiveAlarm_INVALIDOBJECT‐
STATE

2149594091 Object not properly initialized.

OPN_E_ActiveAlarm_WRONGALARM‐
STATE

2149594096 The active alarm can't be acknowledged
or reset in current state.

OPN_E_ActiveAlarm_INVALID_POINTER 2149594126 Function returned an invalid pointer
OPN_E_ActiveAlarm_NOT_EXISTING 2149594094 The given alarm does not exist.
OPN_E_ActiveAlarm_DUPLICATE_CREF 2149594125 Dublicate CRef found during conversion.
OPN_E_ActiveAlarm_CREATE_FAILED 2149594098 Alarm Create Failed
OPN_E_ActiveAlarm_TIMEOUT 2149594103 Response TimeOut

Plant model errors
Error name Error code Error description
OPN_E_CPM_FAILED 2151691240 General error in PlantModel model oc‐

curred.
OPN_E_CPM_INVALIDARG 2151691241 Invalid arguments passed to function.
OPN_E_CPM_NODE_NOT_FOUND 2151691275 PlantModel Node Not Exists
OPN_E_CPM_NODEMEM‐
BER_NOT_FOUND

2151691276 PlantModel Node Member Not Exists

OPN_E_CPM_INVALID_POINTER 2151691278 Function returned an invalid pointer
OPN_E_CPM_NO_MEMORY 2151691283 Function returned null pointer
OPN_E_CPM_INVALID_OBJECT_STATE 2151691243 Object not properly initialized.
OPN_E_CPM_UNKNOWN_IDENTIFIER 2151691284 Function returned unknow identifier
OPN_E_CPM_REQUEST_REJECTED 2151691285 Method returned request rejected
OPN_E_CPM_INVALID_CREF 2151691242 Invalid CRef found during conversion.
OPN_E_CPM_INVALID_SUBSCRIPTION 2151691282 Invalid PlantModel node subscription
OPN_E_CPM_NO_INIT 2151691247 HmiRuntime not properly initialized.

Runtime Openness
20.3 Runtime API

System Manual, 11/2022 8219

Connection errors
Error name Error code Error description
OPN_E_CONNECTION_INVALID_PARAM‐
ETERS

2154837060 Invalid arguments passed to function.

OPN_E_CONNECTION_CONNEC‐
TION_LOST

2154837061 Connection lost

OPN_E_CONNECTION_INVALID_CREF 2154837062 Invalid connection name passed to func‐
tion

OPN_E_CONNECTION_INVALID_POINT‐
ER

2154837063 Invalid pointer

OPN_E_CONNECTION_NOT_EXISTING 2154837064 The connection with the given name
does not exist.

OPN_E_CONNECTION_FAILED 2154837065 General error in connection model oc‐
curred.

Context errors
Error name Error code Error description
OPN_E_CONTEXTLOGGING_CRE‐
ATE_FAILED

2162178060 Create Context Definition failed

OPN_E_CONTEXTLOGGING_TIMEOUT 2162177015 Request TimeOut
OPN_E_CONTEXTLOGGING_INVA‐
LID_PARAMETERS

2162177001 Invalid Arguments Passed

OPN_E_CONTEXTLOGGING_NOT_SUP‐
PORTED

2162177004 Not Supported

OPN_E_CONTEXTLOG‐
GING_START_FAILED

2162178061 Failed to start ContextLogging

OPN_E_CONTEXTLOGGING_FAILED 2162177000 General Error Occurred
OPN_E_CONTEXTLOGGING_NO_INIT 2162177007 Initialization Failed
OPN_E_CONTEXTLOGGING_OB‐
JECT_STATE

2162177003 Object State is Invalid or CHmiRuntime
not properly initialized

OPN_E_CONTEXTLOG‐
GING_STOP_FAILED

2162178062 Failed to stop ContextLogging

OPN_E_CONTEXTLOG‐
GING_NODE_NOT_FOUND

2162177035 Plant node not found

OPN_E_CONTEXTLOGGING_DEFINI‐
TION_NOTEXISTS

2162177006 The given object doesn't exist

OPN_E_CONTEXTLOGGING_DEFINI‐
TION_EXISTS

2162177009 The given object already exist

OPN_E_CONTEXTLOGGING_SUBSCRIP‐
TION_EXITS

2162178063 There is already Open Subscription

OPN_E_CONTEXTLOGGING_SUBSCRIP‐
TION_NOT_OPEN

2162177042 There is no Open Subscription

Runtime Openness
20.3 Runtime API

8220 System Manual, 11/2022

20.4 WinCC Unified GraphQL

20.4.1 Introduction

WinCC Unified GraphQL API
GraphQL API is a web-based interface for implementing applications (GraphQL clients) that have
read and write access to runtime data.

Functional scope
GraphQL enables access to the following runtime data of an HMI device:

 Read Write Subscribe to changes
Process values of tags ✓ ✓ ✓
Active alarms ✓ - ✓

Benefits
Use of Unified GraphQL clients offers the following benefits:
• High user-friendliness, easy integration and few dependencies
• Growing prevalence of GraphQL
• No installation of Unified Runtime on the developer device and when operating the client

application
• GraphQL API can be used by all applications that access a network via HTTP and WebSockets

(e.g. web applications, desktop applications, console applications).
• You can integrate ready-to-use GraphQL client libraries for a variety of programming

languages into your project.
You can easily extend these libraries through a user-defined GraphQL layer.

• There are ready-to-use GraphQL clients you can use to execute GraphQL operations without
having to develop them yourself. An example is the Apollo client used in the quick start
section of this user help.

• Built-in API documentation that is available online and always up-to-date
• Precise control of the client over the data processed and transferred by the server

Technical details
• HTTP and WebSockets are the transport layer for client operations and server responses.
• The operations and responses use a JSON-based format.
• The structure of client queries and server responses is described by a schema.
• Each operation specifies a selection set. Only the attributes specified in the selection set are

contained in the server response.

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8221

20.4.2 Basics

20.4.2.1 Limitations
Unified GraphQL API is subject to the following limitations:
• Access is limited to the runtime to which the GraphQL client is logged in. Access to HMI

devices connected via Runtime Collaboration is not possible.
• If a GraphQL client subscribes to two tags and their tag names are renamed in a delta

download such that they swap their names, the subscription is closed.
The GraphQL client must subscribe to the tags again.

• In the existing version of Unified GraphQL, several alarm properties cannot be used as a filter
in activeAlarms subscriptions and acitveAlarms queries.
For a list of these alarm properties, see section Filtering alarms (Page 8248).

20.4.2.2 Security
This section provides security-relevant information on the GraphQL server.

Secure communication via IIS web server
To ensure secure communication and to protect the GraphQL server and runtime, the GraphQL
server is accessed via the IIS web server of Unified Runtime.
Direct access to GraphQL is not supported.

Session duration
A session between the GraphQL server and GraphQL client remains open as long as there is
activity, e.g. a regularly executed query.
All sessions of all users are closed in the following cases:
• Start of the GraphQL server with a different manager number
• Deletion of the internal session database

Closing all sessions of a user
You have the following options:
• The user logs out from one of his sessions and, in so doing, passes the value True for

parameter allSessions.
• The administrator changes the password of the user in the engineering system. The

administrator logs in to GraphQL with the changed login data of the user. The administrator
logs the user out and, in so doing, passes the value True for parameter allSessions.

Runtime Openness
20.4 WinCC Unified GraphQL

8222 System Manual, 11/2022

20.4.2.3 More information
You can find more information on GraphQL here:
• About GraphQL in general: https://graphql.org/ (https://graphql.org/)
• About Apollo Studio: https://www.apollographql.com/ (https://www.apollographql.com/)
• Solutions to technical problems concerning GraphQL: https://stackoverflow.com/ (https://

stackoverflow.com/)

20.4.3 Quick start

20.4.3.1 Purpose of this quick start
This quick start demonstrates, using a ready-to-use GraphQL client freely available in Apollo
Studio, how to establish a connection to a Unified GraphQL server, log in to runtime and then
query, manipulate and subscribe to runtime data.
The quick start sets you up for subsequent experimentation with the GraphQL client of
Apollo and helps you to get started working with WinCC Unified GraphQL.

20.4.3.2 Requirements
To follow the instructions and examples of the quick start, the following general requirements
must be met:
• WinCC Unified Runtime is installed on a PC.
• A runtime project is running on the PC.
• The GraphQL Server Manager on this PC is effective via IIS through: https://localhost/

graphql/

See also
Setting up the GraphQL client (Page 8224)

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8223

https://graphql.org/
https://www.apollographql.com/
https://stackoverflow.com/
https://stackoverflow.com/

20.4.3.3 Setting up the GraphQL client

Procedure
1. Start a web browser on a device that has access to the runtime server.
2. Enter the following address in the address line and press Enter:

https://studio.apollographql.com/sandbox/explorer (https://studio.apollographql.com/
sandbox/explorer)
Apollo Studio opens:

3. Click on the gear icon in the address line.
The configuration settings for the GraphQL client open. Apply the following settings:

Runtime Openness
20.4 WinCC Unified GraphQL

8224 System Manual, 11/2022

https://studio.apollographql.com/sandbox/explorer
https://studio.apollographql.com/sandbox/explorer

Schema introspection is active for Unified GraphQL Server. That is why you see a green dot
in the address line after configuration of the GraphQL client. In addition, the documentation
of the GraphQL API is available in the client:

See also
Requirements (Page 8223)
Basics on the schema (Page 8234)

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8225

20.4.3.4 Logging in to the GraphQL server

Note
For information on the SWAC login, see section "loginSWAC" mutation (Page 8251).

In order for a GraphQL client to access runtime data, it must be logged in to Runtime with a
user.

Requirement
In addition to the general requirements, the following is required:
• The GraphQL server has been set up.

Procedure
1. Log the GraphQL client in to the GraphQL server by calling the mutation login, as shown

below.
Pass the login data of a UMC user configured for runtime to the operation as input parameter.

Result
The server opens a session. The server response contains the ID of the authorization token:

Runtime Openness
20.4 WinCC Unified GraphQL

8226 System Manual, 11/2022

You use this token for subsequent requests of GraphQL operations. If the client has been
inactive for a while, the token expires. The client must log in again.

Note
By requesting the extendSessionmutation, you keep the session open in spite of inactivity.

See also
Requirements (Page 8223)
Setting up the GraphQL client (Page 8224)
Authorizing an operation request (Page 8231)
"login" mutation (Page 8250)
"extendSession" mutation (Page 8252)

20.4.3.5 Executing a GraphQL operation

Requirement
In addition to the general requirements, the following is required:
• The GraphQL server has been set up.
• The GraphQL client is logged in to the server. The authorization token issued at login is still

valid.
• The user with whom the GraphQL client is logged in has the following function rights:

– Query or subscription: "GraphQL - read access" or "GraphQL - read/write access"
– Mutation: "GraphQL - read/write access"

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8227

Procedure
To execute GraphQL operations for a Unified GraphQL client, proceed as described below. The
basic procedure is the same for all three operation types.
1. In Apollo Studio, select the Explorer view and input the desired operation in the "Operation"

panel.
You have the following options:
– Manually entering the operation request in the panel
– Pointing the mouse to the desired position in the panel, changing to the Documentation

view, selecting the desired operation there and adding it with the "+" icon
2. Specify the input parameters.

You have the following options:
– Manually passing the parameters in the operation request:

Runtime Openness
20.4 WinCC Unified GraphQL

8228 System Manual, 11/2022

– Creating a tag in the "Variables" panel and using it in the "Operation" panel. For this you
enter the character "$" followed by the tag name in the "Operation" panel:

Note
Tag as input parameter
Ensure that the tag exists in the connected runtime and that the tag name is written correctly.

3. In the "Headers" panel, define additional HTTP header values, e.g. obligatory authorization
tokens for access to tags and active alarms.

4. Click the button for executing the operation.

Result
• The operation is executed.
• If the client is logged in, you see the response of the GraphQL server in the "Response" panel.

If the client is not logged in, you see a corresponding error message in the "Response" panel.

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8229

Examples for the various operation types
• Query type:

• Mutation type:

If you execute a query for the tag after the mutation, you receive the modified value.
• Subscription type:

Runtime Openness
20.4 WinCC Unified GraphQL

8230 System Manual, 11/2022

If you execute a mutation for the tag after the subscription, you receive a notification.

Closing a subscription
To close a subscription, click "X" button in the "Subscriptions" panel.

Note
Subscriptions in Apollo Studio
There is only one active subscription in the GraphQL client in Apollo Studio. If you start a second
subscription, it replaces the first one. The second subscription is then the active subscription.

See also
Requirements (Page 8223)
Authorizing an operation request (Page 8231)

20.4.3.6 Authorizing an operation request

Requirement
In addition to the general requirements, the following is required:
• The GraphQL server has been set up.
• The GraphQL client is logged in to the server. The authorization token issued at login is still

valid.
• The desired operation is displayed in the "Operation" panel.

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8231

Procedure
1. Select the "Headers" panel of the operation.
2. Add a header if necessary.
3. Enter the following header data:

– Key: "Authorization"
– Value: "Bearer <Token ID from the login response>"

4. Activate the header.

See also
Requirements (Page 8223)
Executing a GraphQL operation (Page 8227)
Logging in to the GraphQL server (Page 8226)

20.4.3.7 Using the syntax highlighting and autocompletion functions of Apollo

Introduction
This section describes how to integrate the Apollo GraphQL extension for syntax highlighting
and autocompletion into Visual Studio Code.

Runtime Openness
20.4 WinCC Unified GraphQL

8232 System Manual, 11/2022

Procedure
1. Download the Apollo GraphQL extension from the Visual Studio Marketplace (https://

marketplace.visualstudio.com/items?itemName=apollographql.vscode-apollo).
2. Install it.
3. Apply the following settings:

Result
When the schema inspection of the GraphQL server is active and the GraphQL server is running,
Visual Studio supports you with additional features.

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8233

https://marketplace.visualstudio.com/items?itemName=apollographql.vscode-apollo
https://marketplace.visualstudio.com/items?itemName=apollographql.vscode-apollo

Example:
• Hover the mouse pointer over a GraphQL code. A tooltip with additional information opens:

• When entering GraphQL code, you receive autocomplete suggestions:

20.4.4 Schema

20.4.4.1 Basics on the schema
The GraphQL schema is an object in JSON format that describes the GraphQL API, which is
understandable by humans and applications alike.
If the schema of the GraphQL server is known to the GraphQL client, the client supports you
with autocompletion and syntax checking.
In Apollo Studio, you can see that the client knows the schema by the green dot in the
address bar. The documentation of the GraphQL API is then available in the client:

Runtime Openness
20.4 WinCC Unified GraphQL

8234 System Manual, 11/2022

Automatically querying the schema
The schema inspection is active for GraphQL server by default. Therefore, GraphQL clients
automatically query the schema from the server.

Manually downloading the schema
You can also download the schema manually, e.g. by executing the following npx command in
the Windows command line:
npx apollo-cli download-schema http://localhost:4000/graphql --
output schema.json
More information on the manual download of the schema can be found here (https://
stackoverflow.com/questions/37397886/get-graphql-whole-schema-query).

Syntax highlighting and autocompletion in editors
To make use of syntax highlighting and autocompletion in editors when implementing a
GraphQL client, extensions suitable for the development environment must be installed. For
example, you can install the Apollo GraphQL extension for Visual Studio Code.
See also Using the syntax highlighting and autocompletion functions of Apollo (Page 8232).

20.4.4.2 Structure of a client query

Overview
1 query
2 {
3 tagValues(names: "DEMO_CPU_TEMPERATURE")
4 {
5 value

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8235

https://stackoverflow.com/questions/37397886/get-graphql-whole-schema-query
https://stackoverflow.com/questions/37397886/get-graphql-whole-schema-query

6 {
7 value
8 timestamp
9 quality
10 {
11 quality
12 }
13 }
14 error
15 {
16 code
17 description
18 }
19 }
20 }

Line Description
1 The operation type of the requested operation, in this example: query
3 Name of the requested operation and list of input parameters in the following format:

(<Name_Parameter1>: "<Value>", <Name_Parameter2>: "<Value>")
4 to 19 The selection set with the attributes requested from the server

Structure of the selection set
The selection set is where you specify for the operation request which attributes the server
returns. You can request all the attributes defined in the return type of the operation.
Notation:
Operation name (<Input parameter>) {<Selection set> }
Where <Selection set> stands for a comma-separated list of the attribute names requested by
the server.
Specification of type-based attributes:
<Name of type-based attribute> { <Comma-separated list of attribute names> }
Example of type-based attributes: The attributes value, quality and error from the
selection set above.

20.4.5 Reference of GraphQL API

20.4.5.1 General information on GraphQL API
An important feature of GraphQL API is its high user-friendliness. For Unified GraphQL API, this
means:
• Tags and active alarms from runtime are addressed using their name and not their ID.

The names are configured in the engineering.
• QualityCodes are represented by the string assigned to them in an enumeration. This

improves readability of the code.

Runtime Openness
20.4 WinCC Unified GraphQL

8236 System Manual, 11/2022

• Color values are translated to the standard RGBA notation.
• Date information is represented according to ISO 8601 (https://en.wikipedia.org/wiki/

ISO_8601).
• To execute bulk operations, it is possible to pass GraphQL operations as input parameter lists.

The operation is then applied to each list element.
• Internal error messages are translated into user-level messages.

20.4.5.2 GraphQL operation types

Overview
GraphQL operations have one of the following operation types:
• Query
• Mutation
• Subscription

Queries
You use queries for read operations. The query sends an HTTPS request to the GraphQL server.
Example: Querying tag values or alarms that satisfy a filter criterion

Mutations
You use mutations for write operations. The mutation sends a one-time query to the GraphQL
server.
Example: Writing the value and QualityCode of the value to a tag

Subscriptions
You use subscriptions so that your GraphQL client can react to runtime events promptly without
having to continually query the runtime status. The subscription creates a permanent
WebSocket connection between the GraphQL server and client. When a client subscribes to an
alarm or tag, the server notifies the client when changes to the alarm or tag are active.
Example: The GraphQL client is to execute a certain operation when the value of a tag
changes.
Subscriptions are usually closed by the client, but they can also be closed by the server or
mutually by both sides, e.g. in the event of a network failure.
Subscriptions use the graphql-transport-ws protocol. Configure this protocol for your
GraphQL library or implement WebSocket communication based on this protocol.
Client-side GraphQL libraries provide different options for closing subscriptions, depending
on the programming language being used. For example, Python uses an asynchronous
iterator that the notification runs through. When the loop is exited, the subscription is closed.

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8237

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601

See also
Disconnection by server (Page 8266)

20.4.5.3 Operations for tags

"tagValues" query

Requirements
• The user who is logged in to runtime for the GraphQL client has the rights "GraphQL - read

access" or "GraphQL - read/write access" in runtime.

Description
tagValues(names: [String]): [TagValueResult]

Operation name tagValues
Operation type query
Function Reads the tags specified in input parameter names.

Read access is possible to tags with a simple data type, as well as to elements of structure tags
and arrays with a simple data type.

Input parameters names
• Mandatory parameter
• Data type: String
• List of names of the tags whose properties you want to read.

Notation: names:["<Name Tag1>", "<Name Tag2>", "<...>"]
Example: names:["motor1.tempMax", "motor1.tempMin"]
Addressing of tags:
– Addressing a tag with simple data type: <Tag name>
– Addressing an element of a structure tag: <Structure tag name>.<Element

name>
Example: motor1.speed

– Addressing an individual element of an array: <Array name>[<Index>]
Example: FloatArrayTag[0]

– Address all tags of an array: <Array name>
Example: FloatArrayTag
The tags are returned in an array in the response.

Selection set Mandatory specification
Specify which attributes the server returns for the queried tags. You can request the attributes
defined in the TagValueResult type. For information on the notation, see section Structure
of a client query (Page 8235).

Runtime Openness
20.4 WinCC Unified GraphQL

8238 System Manual, 11/2022

Server response Supplies the attributes requested in the selection set for all tags specified with names as key-
value pairs of a JSON data record.

Error messages
(code: description)

• 0: Success
• 2: Cannot resolve provided name
• 202: Only leaf elements of a Structure Tag can be addressed

Example
queryExampleTagQuery{
 tagValues(names:[“ExampleTagName1”, “ExampleTagName2”]){
 name
 value{
 value
 timestamp
 quality
 {
 quality
 subStatus
 }
 }
 error{
 description
 code
 }
 }
}

See also
"TagValueResult" type (Page 8261)

"writeTags" mutation

Requirements
• The user who is logged in to runtime for the GraphQL client has the right "GraphQL - read/

write access" in runtime.

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8239

Description
writeTagValues(
 input: [TagValueInput],
 timestamp: Timestamp
 quality: QualityInput
): [WriteTagValuesResult]

Operation name writeTagValues
Operation type mutation
Function Writes the tags specified in input parameter input.

Write access is possible to tags with a simple data type, as well as to elements of structure tags
and arrays with a simple data type.
The mutation allows you to write multiple tags or multiple properties of the same tag with a
single operation request.

Input parameters input
• Mandatory parameter
• Data type: String
• A list of the tags and values that you want to write

Notation: input:[{<Information on tag 1>}, {<Information on tag
2>},{<...>}]
Example: input: [{name: "motor1.speed", value: "100"}, {name:
"motor2.speed", value: "140"}]
Make the following entries for each tag:
– name: For addressing the tag

Addressing a tag with simple data type: <Tag name>
Addressing an element of a structure tag: <Structure tag name>.<Element
name>
Example: motor1.speed
Addressing an individual element of an array: <Array name>[<Index>]
Example: FloatArrayTag[0]
It is not possible to address all elements of an array together.

– value: The process value that is written to the tag
The data type of the passed value must be convertible to the data type of the tag.

– (Optional) timestamp: The time stamp of the process value as Timestamp1

– (Optional) quality: The QualityCode of the process value as QualityInput
timestamp
• Optional

Written to all tags from input for which no time stamp has been passed.1

If the input parameter is empty, the current system time is used as the time stamp.
• Data type: Timestamp
quality
• Optional

Written to all tags from input for which no QualityCode has been passed.
If the input parameter is empty, "GOOD" is used as QualityCode.

• Data type: QualityInput

Runtime Openness
20.4 WinCC Unified GraphQL

8240 System Manual, 11/2022

Selection set Mandatory specification
Specify which attributes the server returns for the written tags. You can request the attributes
defined in the WriteTagValueResult type. For information on the notation, see
section Structure of a client query (Page 8235).

Server response Supplies the attributes requested in the selection set for all tags specified with input as key-
value pairs of a JSON data record.

Error messages
(code: description)

• 0: Success
• 2: Cannot resolve provided name
• 201: Cannot convert provided value to data type
• 202: Only leaf elements of a Structure Tag can be addressed

1 The timestamp must be newer that the current timestamp of the tag and must not be in the future.

Example
mutation ExampleTagValueWrite {
 writeTagValues(input:[
 {
 name:"ExampleStringTag",
 value: "Example value text”
 },
 {
 name:"ExampleIntegerTag",
 value: 42,
 timestamp:"2022-07-26T06:25:15Z"
 }
], quality:{quality: GOOD_NON_CASCADE}){
 name
 error{
 code
 description
 }
 }
}

See also
"WriteTagValueResult" type (Page 8263)
"QualityInput" type (Page 8259)

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8241

"tagValues" subscription

Requirements
• The user who is logged in to runtime for the GraphQL client has the rights "GraphQL - read

access" or "GraphQL - read/write access" in runtime.

Description
tagValues(names: [String]): TagValueNotification

Operation name tagValues
Operation type subscription
Function Subscribes the tags specified in input parameter names.
Input parameters names

• Mandatory parameter
• Data type: String
• List of names of the tags whose properties you want to subscribe to.

Notation: names:["<Name Tag1>", "<Name Tag2>", "<...>"]
Addressing of tags:
– Address an element of a structure tag: <Name of the structure tag>.<Name

of the element>
– Address a single element of an array: <Name of the array>[<Index>]

Example: FloatArrayTag[0]
– Address all tags of an array: <Name of the array>

Example: FloatArrayTag
The tags are returned in an array in the response.

Selection set Mandatory specification
Specify which attributes the server returns for the subscribed tags. You can request the at‐
tributes defined in the TagValuesNotification type. For information on the notation, see
section Structure of a client query (Page 8235).
Recommendation: Request name and notifcationReason.

Server response Until the subscription is closed, supplies an initial notification for the subscribed tags with the
current values of the attributes requested in the selection set as key-value pairs of a JSON data
record, and supplies subsequent notifications when a subscribed tag changes.

Error messages
(code: description)

• 0: Success
• 2: Cannot resolve provided name
• 202: Only leaf elements of a Structure Tag can be addressed

Closing a subscription
The subscription of a tag closes implicitly:
• When the tag is renamed.
• When the tag is deleted.
When you close the subscription in the GraphQL client explicitly, all previously subscribed
tags are no longer subscribed.

Runtime Openness
20.4 WinCC Unified GraphQL

8242 System Manual, 11/2022

Example
subscriptionSubscription{
 tagValues(names:["Example_Tag_1", "Example_Tag_2"]){
 name
 value{
 value
 timestamp
 quality{
 quality
 substatus
 }
 }
 error{
 code
 description
 }
 notificationReason
 }
}

See also
"TagValueNotification" type (Page 8260)

20.4.5.4 Operations for alarms

"activeAlarms" query

Requirements
• The user who is logged in to runtime for the GraphQL client has the rights "GraphQL - read

access" or "GraphQL - read/write access" in runtime.

Description
activeAlarms(
 systemNames: [String]
 filterString: String
 filterLanguage: String

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8243

 languages: [String]
): [ActiveAlarm]

Operation name activeAlarms
Operation type query
Function Queries the active alarms from the server.
Input parameters systemNames

• Optional
• Data type: String
• Reserved for future versions.
• Specifies the runtime whose alarms are queried.

In the current version, the queried alarms are always the alarms of the runtime connected
to the GraphQL server.

filterString
• Optional
• Data type: String
• Defines filter criteria for the alarms. See section Filtering alarms (Page 8248).

If you do not define a filter, the server returns all alarms active in runtime.
filterLanguage
• Optional
• Data type: String
• When filterString uses a string with a translatable alarm property, you

use filterLanguage to define which language is used for the comparison.1

• Default value: "en-US"
languages
• Optional
• Data type: String array
• Defines the languages in which the server returns the texts of translatable alarm properties

and the order of the requested languages.1

Example:
queryLanguageExample { activeAlarms(languages:["en-US", "de-DE"]
{ name, eventText, alarmText1, alarmClassName, state, raiseTime,
priority } }
The server response supplies the attributes specified in the selection set for the queried
alarms. Translatable properties, such as eventText, are each returned in a string array.
The element with index 0 always contains the English text and the element with index 1
the German text.

• Default value: "en-US"
Selection set Mandatory specification

Specify which attributes the server returns for the queried alarms. You can request the attrib‐
utes defined in the ActiveAlarm type. For information on the notation, see section Structure
of a client query (Page 8235).

Runtime Openness
20.4 WinCC Unified GraphQL

8244 System Manual, 11/2022

Server response Supplies the attributes requested in the selection set for the queried alarms as key-value pairs
of a JSON data record.

Error messages (code
and description)

• 0: Success
• 301: Syntax error in query string
• 302: At least one of the requested languages is invalid
• 303: The provided filter language is invalid

1 Languages must be specified in ISO language code format (e.g. "en-US", "de-DE"). Note that the entry is case-sensitive.

Example
queryExampleAlarmQuery
{
 activeAlarms(languages:["en-US", "de-DE"],
 filterLanguage:"en-US",
 filterString:(raiseTime <= '2022-07-26T09:00' AND userName
LIKE '* Doe') OR priority > 2")
 {
 name
 eventText
 alarmText1
 alarmClassName
 state
 raiseTime
 priority
 }
}

See also
"ActiveAlarm" and "ActiveAlarmNotification" types (Page 8254)
"Error" type (Page 8258)

"activeAlarms" subscription

Requirements
• The user who is logged in to runtime for the GraphQL client has the rights "GraphQL - read

access" or "GraphQL - read/write access" in runtime.

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8245

Description
activeAlarms(
 systemNames: [String]
 filterString: String
 filterLanguage: String
 languages: [String]
): ActiveAlarmNotification

Operation name activeAlarms
Operation type subscription
Function Subscribes to active alarms.
Input parameters systemNames

• Optional
• Data type: String
• Reserved for future versions.
• Specifies the runtime whose alarms are subscribed to.

In the current version, the queried alarms are always the alarms of the runtime connected
to the GraphQL server.

filterString
• Optional
• Data type: String
• Defines filter criteria for the alarms. See section Filtering alarms (Page 8248).

If you do not define a filter, you subscribe to all alarms active in runtime.
filterLanguage
• Optional
• Data type: String
• When filterString uses a string with a translatable alarm property, you

use filterLanguage to define which language is used for the comparison.1

• Default value: "en-US"
languages
• Optional
• Data type: String array
• Defines the languages in which the server returns the texts of translatable alarm properties

and the order of the requested languages.1

Example:
queryLanguageExample { activeAlarms(languages:["en-US", "de-DE"]
{ name, eventText, alarmText1, alarmClassName, state, raiseTime,
priority } }
The initial notification and the subsequent notifications supply the attributes specified in
the selection set for the subscribed alarm. Translatable properties, such as eventText,
are each returned in a string array. The element with index 0 always contains the English
text and the element with index 1 the German text.

Selection set Mandatory specification
Specify which attributes the server returns for the subscribed alarms. You can request the
attributes defined in the ActiveAlarmNotification type. For information on the nota‐
tion, see section Structure of a client query (Page 8235).
Recommendation: Request name and notifcationReason.

Runtime Openness
20.4 WinCC Unified GraphQL

8246 System Manual, 11/2022

Server response Until the subscription is closed, the server sends an initial notification and sends subsequent
notifications when an attribute of one of the subscribed alarms specified in the selection set
changes.
The notifications contain the current values of the attributes requested in the selection set as
key-value pairs of a JSON data record.

Error messages (code
and description)

• 0: Success
• 301: Syntax error in query string
• 302: At least one of the requested languages is invalid
• 303: The provided filter language is invalid

1 Languages must be specified in ISO language code format (e.g. "en-US", "de-DE"). Note that the entry is case-sensitive.

Example
queryExampleAlarmQuery
{
 activeAlarms(languages:["en-US", "de-DE"],
 filterLanguage:"en-US",
 filterString:(raiseTime <= '2022-07-26T09:00' AND userName
LIKE '* Doe') OR priority > 2")
 {
 name
 notificationReason
 eventText
 alarmText1
 alarmClassName
 state
 raiseTime
 priority
 }
}

See also
"Error" type (Page 8258)
"ActiveAlarm" and "ActiveAlarmNotification" types (Page 8254)

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8247

Filtering alarms

Introduction
You use input parameters of activeAlarms queries and activeAlarms subscriptions to
define filters that control which alarms are read or subscribed to. This improves the performance
of your GraphQL clients.

Limitation
In the current version of Unified GraphQL, you cannot filter by the following alarm properties:
• state
• stateMachine
• changeReason
• sourceType
• suppressionState
• invalidFlags
• producer
• userResponse
• textColor
• backColor
• valueQuality
• quality

Input parameter "filterString"
You use input parameter filterString to define the filter criteria. The filter string corresponds
to the WHERE part of a valid ChromQueryLanguage string with addition of the keyword WHERE.

Note
ChromQueryLanguage (QCL) is based on SQL. You can also use most of the valid, simple SQL
expressions in CQL.

Wildcards permitted in filterString:

* Replaces any number of characters.
? Replaces exactly 1 character.
Operators permitted in filterString:

>
>
=

Runtime Openness
20.4 WinCC Unified GraphQL

8248 System Manual, 11/2022

LIKE
() For grouping of expressions
AND
OR

For logically combining expressions

Note
Filtering by the "path" property
path is the full name of the alarm. It has the following components:
• Alarm of a tag: <System name>::<Tag name>:<Alarm name>
• Alarm of an element of a structure tag or array: <System name>::<Tag name>.<Element

path>:<Alarm name>
Delimiter for the components of the element path: "."

If the GraphQL client only has access to one runtime system or you want to query the alarms of
all connected systems, you can replace the system name with the wildcard "*".

Input parameter "filterLanguage"
If filterString uses a translatable alarm property, use input parameter filterLanguage
to specify the language of the text.
Specify the language in ISO language code format (e.g. "en-US", "de-DE"). Note that the entry
is case-sensitive.

Examples
• filterString: "alarmClassName = 'SystemNotification'"

Returns all active alarms with alarm class "SystemNotification".
• filterString: "(raiseTime <= '2022-07-26T09:00' AND userName LIKE

'* Doe') OR priority > 2"
Returns all alarms that were active before 2022-07-26 9:00 and whose associated user has
the last name "Doe" or whose priority is greater than 2.

• filterString: "eventText LIKE 'Maximum value exceeded'"
and filterLanguage: "en-US"
The response returns only alarms that have the value "Maximum value exceeded"
for eventText in English.
Note
You specify the languages and the order in which the texts of the translatable alarm
properties are returned with input parameter languages in the operation request.

• filterString: "path LIKE '*::motor1.currentSpeed:*'"
Supplies all active alarms of the currentSpeed element of the motor1 structure tag.

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8249

See also
"activeAlarms" query (Page 8243)
"activeAlarms" subscription (Page 8245)

20.4.5.5 Other operations

"login" mutation

Requirements
• The login data of a UMC user configured for runtime is known.

Description of "login"
 login (
 username: String
 password: String
): Session

Operation name login
Operation type mutation
Function Logs the GraphQL client in to the GraphQL server with the login data of a UMC user config‐

ured for Runtime.
The user remains logged in until the session is closed, the user is logged out or the connection
is disconnected.

Input parameters username
• Mandatory parameter
• Data type: String
• The user name of a UMC user configured for Runtime
password
• Mandatory parameter
• Data type: String
• The password of the UMC user

Selection set Mandatory specification
Specify which attributes the server returns. You can request the attributes defined in
the Session type. For information on the notation, see section Structure of a client query
(Page 8235).
Request at least token. You require token for subsequent server requests. You pass token in
the HTTP header Authorization, with appended Bearer prefix.

Server response Supplies the attributes of the Session instance requested in the selection set as key-value
pairs of a JSON data record.

Error messages
(code: description)

• 0: Success
• 101: Incorrect credentials provided
• 102: UMC error

Runtime Openness
20.4 WinCC Unified GraphQL

8250 System Manual, 11/2022

See also
Disconnection by server (Page 8266)
"extendSession" mutation (Page 8252)
Logging in to the GraphQL server (Page 8226)
"Session" type (Page 8260)

"loginSWAC" mutation

Requirements
• The login data of a UMC user configured for runtime is known.
• The GraphQL client obtained a valid Nonce instance by calling nonce from the server.
• The GraphQL client has logged in to UMC with its user name and password and transmitted

the nonce to UMC when logging in. In response, UMC sent a claim with a built-in nonce as
well as a signed claim with a built-in nonce with a private key.

Description of "loginSWAC"
loginSWAC(
 claim: String
 signedClaim: String
): Session

Operation name loginSWAC
Operation type mutation
Function Transmits the claim and signed claim that the GraphQL client received when logging in to UMC

to the GraphQL server. When the Nonce contained in claim or signedClaim is valid, the
client is logged on to the server.
The user remains logged in until the session is closed, the user is logged out or the connection
is disconnected.

Input parameters claim
• Mandatory parameter
• Data type: String
• The claim submitted by UMC.
signedClaim
• Mandatory parameter
• Data type: String
• The SignedClaim submitted by UMC.

Selection set Mandatory specification
Specify which attributes the server returns. You can request the attributes defined in
the Session type. For information on the notation, see section Structure of a client query
(Page 8235).
Request at least token. You require token for subsequent server requests. You pass token in
the HTTP header Authorization, with appended Bearer prefix.

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8251

Server response Supplies the attributes requested in the selection set of the Session instance generated for
the login as key-value pairs of a JSON data record.

Error messages
(code: description)

• 0: Success
• 101: Incorrect credentials provided
• 103: Nonce expired

See also
"nonce" query (Page 8253)
"Nonce" type (Page 8258)
Disconnection by server (Page 8266)

"extendSession" mutation

Requirement
• The GraphQL client is logged in to the server with a valid UMC user.

Description
extendSession: Session

Operation name extendSession
Operation type mutation
Description Extends the session of the GraphQL client.

Call the operation to prevent clients that are mainly waiting for notifications from a subscrip‐
tion, for example, from becoming inactive and having to log in again.

Input parameters -
Selection set Mandatory specification

Specify which attributes the server returns. You can request the attributes defined in
the Session type. For information on the notation, see section Structure of a client query
(Page 8235).

Server response Supplies the attributes of the Session instance requested in the selection set as key-value
pairs of a JSON data record.

Error messages
(code: description)

-

See also
"login" mutation (Page 8250)
"Session" type (Page 8260)

Runtime Openness
20.4 WinCC Unified GraphQL

8252 System Manual, 11/2022

"session" query

Requirement
• The GraphQL client is logged in to the server.

Description
session(
 allSessions: Boolean
): [Session]

Operation name session
Operation type query
Description Queries the current session data from the server.
Input parameters allSessions

• Optional
• Data type: Bool
• Default: False:
• True: The server sends the data for all sessions of the logged-in user.

Selection set Mandatory specification
Specify which attributes the server returns. You can request the attributes defined in
the Session type. For information on the notation, see section Structure of a client query
(Page 8235).

Server response Supplies the attributes of the Session instance or instances requested in the selection set as
key-value pairs of a JSON data record.

Error messages
(code: description)

-

See also
"Session" type (Page 8260)

"nonce" query

Description
nonce: Nonce

Operation name nonce
Operation type query
Function Queries a Nonce instance from the GraphQL server.

The nonce is required for the SWAC login.
Input parameters -

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8253

Selection set Mandatory specification
Specify which attributes the server returns. You can request the attributes defined in
the Nonce type. For information on the notation, see section Structure of a client query
(Page 8235).
Request value.

Server response Supplies the attributes of the Nonce instance requested in the selection set as key-value pairs
of a JSON data record.

Error messages
(code: description)

• 0: Success
• 101: Incorrect credentials provided
• 103: Nonce expired

See also
"Nonce" type (Page 8258)
"loginSWAC" mutation (Page 8251)

20.4.5.6 Reference for Unified-specific types and enumerations

Introduction
This section describes the Unified data types used in the GraphQL client queries and server
responses.
For information about the enumerations used in these types, see the interface
documentation that is available online when schema introspection is enabled.

"ActiveAlarm" and "ActiveAlarmNotification" types

Description
Instances of the type ActiveAlarm represent the information about alarms that you can
request in activeAlarms queries from the server. Instances of
type ActiveAlarmNotification represent information that you can request
through activeAlarm subscriptions.
This includes:
• Properties of active alarms

The table below provides a reference for the alarm properties.
Translatable properties are returned as a string array. The array contains the alarm property
texts in the languages requested and the order defined with input parameter languages in
the operation request.

• The languages attribute
A string array with the languages that the user has specified with input
parameter languages in the activeAlarms request.
For correct processing of the strings returned in the arrays for translatable alarm properties.

Runtime Openness
20.4 WinCC Unified GraphQL

8254 System Manual, 11/2022

Reference of the alarm properties
The following table lists the alarm properties provided in the ActiveAlarm
and ActiveAlarmNotification types in alphabetical order:

Name Data type Description
acknowledgmentTime Timestamp Timestamp instance for the time at which the alarm was acknowl‐

edged
alarmClassID Int User-defined ID of the alarm class of the alarm
alarmClassName String Name of the alarm class of the alarm
alarmClassSymbol [String] The symbols configured for the alarm class

Translatable property
alarmGroupID Int User-defined ID of the alarm group to which alarm belongs
alarmParameterValue
s

[Variant] To dynamize the following texts:
alarmText1 to alarmText9
these values can be used as parameters in these texts.

alarmText1
bis
alarmText9

[String] Additional texts for the alarm
Translatable properties

alarmType [String] Supplies details regarding the alarm condition. The values can be
user-defined or product-specific.
Translatable property

area String Name of the area to which the alarm belongs
backColor Color Background color of the alarm in the alarm control
changeReason [AlarmChangeReason] Reason for changes to the alarm as defined in enumera‐

tion AlarmChangeReason
clearTime Timestamp Timestamp instance for the time at which the alarm became inac‐

tive
connectionName String Only for PLC alarms

Name of the HMI connection
deadBand Variant Hysteresis for valueLimit for suppressing the noise component

during alarm generation
duration Timespan The time interval between the time when the alarm became active

and the time when the alarm state changed the last time
eventText [String] Main text for the alarm, typically describes the cause of the alarm

Translatable property
flashing Boolean True: The alarm flashes in the alarm control
hostName String Name of the device that hosts the source of the alarm

In the case of alarms triggered by operator input, this is the client on
which the operator made the input.

infoText [String] More information for the operator, such as instructions or standard
procedures for handling this alarm
Translatable property

instanceID Int Alarm ID of the active alarm
For unambiguous alarm identification of configured alarms that can
have more than one active alarm instance at a time.

invalidFlags AlarmInvalidFlags AlarmInvalidFlags instance that indicates whether attributes
or configuration of the alarm are invalid.

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8255

Name Data type Description
loopInAlarm String A script function that jumps to the screen that has triggered the

alarm.
loopInAlarmParamete
rValues

Variant Parameters for loop-in-alarms

modificationTime Timestamp Timestamp instance for the last time one of the properties of the
alarm was changed

name String Name of the configured alarm
notificationReason String Only for ActiveAlarmNotification

Reason for the notification
Possible values:
• "Added"

An active alarm was added to the subscription.
• "Modified"

A subscribed alarm was modified.
• "Removed"

A subscribed alarm was removed from the subscription because
it became inactive or no longer satisfies the filter criteria.

origin String Name of the object that activated this alarm instance, e.g. an HMI
device or function block.

path String The full alarm name
Can be used for filtering the activeAlarm query or subscription.
See section Filtering alarms (Page 8248).

priority Int The current priority of the active alarm
Possible values:
• 0: No priority assigned
• 1-5: Low (primarily an informative function)
• 6-10: Medium (warnings)
• 11-15: High (errors)
• 16: Highest (critical alarms)

producer AlarmProducer The Siemens product or the function of a domain to which the alarm
source belongs, as defined in enumeration AlarmProducer

quality Quality Quality of state as Quality instance
raiseTime Timestamp Timestamp instance for the time at which the alarm became active
resetTime Timestamp Timestamp instance for the time at which the alarm was reset
sourceID String Identifies the source of the alarm instance

For controller alarms, the communication driver assigns the ID
based on the reference of the external alarm source, such as the
alarm area ID of the S7 PLC.
For application alarms, the application or the service assigns the ID
so that the alarm has a relationship with a service-specific object,
e.g. recipe name/ID by the service of the parameter set control.

sourceType AlarmSourceType Type of source from which the alarm was generated, e.g. tag-based,
PLC-based or system-based, as defined in enumera‐
tion AlarmSourceType

state AlarmState The current state of the active alarm as defined in enumera‐
tion AlarmState

Runtime Openness
20.4 WinCC Unified GraphQL

8256 System Manual, 11/2022

Name Data type Description
stateMachine AlarmStateMachine State machine of the active alarm

The state machine defines possible states of the alarm and transi‐
tions between these states, as defined in enumera‐
tion AlarmStateMachine

stateText [String] The user-defined description of the alarm state
Translatable property

suppressionState AlarmSuppressionSta
te

Visibility of the alarm
Shelved alarms are not visible in the alarm control but are still active,
as defined in enumeration AlarmSuppressionState

systemSeverity Int Alarm severity from the perspective of the system
The number of severe alarms in a system provides an indication of
the health of the system. In redundant systems, the healthier host
becomes the active host and the less healthy host becomes the
passive host.

textColor Color Text color of the alarm in the alarm control
userName String Name of the user associated with the last alarm event
userResponse AlarmUserResponse The expected operator response as defined in enumera‐

tion AlarmUserResponse
value Variant The value of the alarm
valueLimit Variant Limit for value as of which the alarm becomes active.

If a dynamic limit has been configured for the alarm, then the up‐
dated limit

valueQuality Quality Quality of value as Quality instance

See also
"activeAlarms" query (Page 8243)
"activeAlarms" subscription (Page 8245)
"AlarmInvalidFlags" type (Page 8257)
"Time span" type (Page 8261)
"Time stamp" type (Page 8262)
"Quality" type (Page 8259)

"AlarmInvalidFlags" type

Description
The AlarmInvalidFlags type defines attributes for invalid attributes or configurations of
alarms.

Name Data type Description
invalidConfigura
tion

Boolean The alarm has an invalid configuration.

invalidTimestamp Boolean The alarm has an invalid time stamp.

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8257

Name Data type Description
invalidAlarmPara
meter

Boolean The alarm has an invalid alarm parameter.

invalidEventText Boolean The alarm has an invalid event text.

See also
"ActiveAlarm" and "ActiveAlarmNotification" types (Page 8254)

"Error" type

Description
The Error type defines the attributes of item-level errors.
For GraphQL operations with item-level errors, you can request these attributes from the
server via the selection set when the operations call is made.
Attributes:

Name Data type Description
code String Numeric code of the error message
description String Detailed description of the error message

See also
Top-level and item-level errors (Page 8267)
"TagValueResult" type (Page 8261)
"WriteTagValueResult" type (Page 8263)
"TagValueNotification" type (Page 8260)
"Session" type (Page 8260)

"Nonce" type

Description
The Nonce type defines attributes of a nonce that are required to log in to a GraphQL client via
SWAC login.
Attributes:

Name Data type Description
value String The nonce string
validFor Int Time span in seconds until the nonce instance expires

Runtime Openness
20.4 WinCC Unified GraphQL

8258 System Manual, 11/2022

See also
"nonce" query (Page 8253)
"loginSWAC" mutation (Page 8251)

"Quality" type

Description
An instance of type Quality represents the quality of a tag value or alarm value (value
attribute).
Attributes:

Name Data type Description
quality MainQuality The main QualityCode, as defined in

enumeration MainQuality
subStatus QualitySubSta

tus
The reason for the main QualityCode, as defined in enumera‐
tion QualitySubStatus

limit QualityLimit Information on whether or how the QualityCode is related to
defined limit values, as defined in enumera‐
tion QualityLimit

extendedSubSt
atus

QualityExtend
edSubStatus

More detailed information on subStatus, as defined in enu‐
meration QualityExtendedSubStatus

sourceQuality Boolean The source that set value also set quality.
sourceTime Boolean The source that set value also set a time stamp.
timeCorrected Boolean The time stamp set by the source has been corrected.

"QualityInput" type

Description
The QualityInput type describes the attributes that are passed when writeTags is called in
the input parameter quality.

Name Data type Description
quality MainQuality Mandatory specification

The main QualityCode, as defined in
enumeration MainQuality

subStatus QualitySubSta
tus

The reason for the main QualityCode, as defined in enumera‐
tion QualitySubStatus

See also
"writeTags" mutation (Page 8239)

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8259

"Session" type

Description
The Session type defines attributes of a session.
Attributes:

Name Data type Description
token String ID of the authorization token for this session

In subsequent server requests, pass the ID of the authorization token in the
HTTP header Authorization, preceded by the Bearer prefix.
When operations are called that require a user to be logged on to the server,
this ID must be passed in the HTTP header Authorization, preceded by
a Bearer prefix.

expires Timestamp Time at which the session expires, as Timestamp instance
error Error Error instance of possible item-level errors

See also
"session" query (Page 8253)
"UserGroup" type (Page 8262)
"User" type (Page 8262)
"login" mutation (Page 8250)
"extendSession" mutation (Page 8252)
"Error" type (Page 8258)

"TagValueNotification" type

Description
The TagValueNotification type defines which attributes the notifications for subscribed
tags can contain.
Attributes:

Name Data type Description
name String Name of the subscribed tag
value Value Value instance of the tag

Runtime Openness
20.4 WinCC Unified GraphQL

8260 System Manual, 11/2022

Name Data type Description
error Error Error instance of possible item-level errors
notificationReas
on

String Possible values:
• "Added"

The subscription of the tag was started. The property values of the tag
are sent at the start time of the subscription.

• "Modified"
The tag was modified. Your current property values are sent.

• "Removed"
The subscription of the tag was closed.

See also
"Error" type (Page 8258)
"tagValues" subscription (Page 8242)

"TagValueResult" type

Description
The TagValueResult type defines which attributes the server can supply in its response after
the tagValues query is called.
Attributes:

Name Data type Description
name String Tag name
value Value Value instance of the tag
error Error Error instance of possible item-level errors

See also
"tagValues" query (Page 8238)
"Error" type (Page 8258)
"Value" type (Page 8263)

"Time span" type

Description
Type used to define a time span.
Data type of time span: RAW (integer in 100 ns)

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8261

See also
"ActiveAlarm" and "ActiveAlarmNotification" types (Page 8254)

"Time stamp" type

Description
Type for the definition of a time stamp according to ISO 8601 (https://en.wikipedia.org/wiki/
ISO_8601).

See also
"ActiveAlarm" and "ActiveAlarmNotification" types (Page 8254)

"User" type

Description
The User type defines attributes of the user logged in to GraphQL.
Attributes:

Name Data type Description
id String User ID
name String User name
groups [UserGroup] The user group to which the users belong, as UserGroup instance
fullName String The full user name, such as first name and last name
language String The language set for the user in UMC

Can be empty.
autoLoggOffSec Int Time period in seconds for which the user can be inactive before their au‐

thorization token expires

See also
"Session" type (Page 8260)
"UserGroup" type (Page 8262)

"UserGroup" type

Description
The UserGroup type defines attributes of a user group.

Runtime Openness
20.4 WinCC Unified GraphQL

8262 System Manual, 11/2022

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601

Attributes:

Name Data type Description
id String ID of the user group
name String Name of the user group

See also
"User" type (Page 8262)

"Value" type

Description
An instance of type Value represents a tag value.
Attributes:

Name Data type Description
value Variant The current process value
timestamp Timestamp Timestamp of the last change of value
quality Quality Quality of value

See also
"TagValueResult" type (Page 8261)
"Quality" type (Page 8259)
"TagValueNotification" type (Page 8260)

"WriteTagValueResult" type

Description
An instance of type WriteTagValueResult represents a feedback for the write access to a tag.
Attributes:

Name Data type Description
name String Tag name
error Error Error instance of possible item-level errors

See also
"writeTags" mutation (Page 8239)
"Error" type (Page 8258)

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8263

20.4.6 Code examples
Numerous code examples in multiple programming languages are included in the scope of
delivery of WinCC Unified GraphQL.

Overview
Programming language Covered topics
Python Login

Querying and changing data
Subscribing to data

HTML and Javascript Subscribing to data and displaying in Google diagrams
C# Purely WebSocket-based subscription without GraphQL library
SWAC Login with a SWAC-based login method

Installation
The GraphQL examples are an integral component of the Openness SDK and available on the
WinCC Unified installation medium.
You can find information on installing the SDK in the "Installation SDK" user help.

20.4.7 Recommended procedures

20.4.7.1 Performance optimization
The performance capability of a GraphQL client depends on how the GraphQL API is being used.
Below are tips on how you can optimize the performance of your GraphQL application.

Limiting the selection
In its response to the client, the GraphQL server transmits the fields in the selection set that were
specified by the client for the operation request. In most cases, fields that were not requested are
not processed by the server.
Improve the performance of your client by using selection sets that are precisely tailored to
your requirements.

Runtime Openness
20.4 WinCC Unified GraphQL

8264 System Manual, 11/2022

Example
• activeAlarms query with extensive selection set:

query {activeAlarms(languages: ["en-US", "de-DE"]filterLanguage:
"en-US") {name instanceID alarmGroupID raiseTime
acknowledgmentTime clearTime resetTime modificationTime state
textColor backColor flashing alarmClassName alarmClassSymbol
alarmClassID stateMachine priority alarmParameterValues languages
alarmType eventText infoText alarmText1 alarmText2 alarmText3
alarmText4 alarmText5 alarmText6 alarmText7 alarmText8 alarmText9
stateText origin area changeReason connection valueLimit
sourceType suppressionState hostName userName value valueQuality
{ quality subStatus } quality { quality subStatus } invalidFlags
{ invalidAlarmParameter invalidConfiguration invalidEventText
invalidTimestamp } deadBand producer duration sourceID
systemSeverity loopInAlarm loopInAlarmParameterValues tag
userResponse } }

• activeAlarms query with limited selection set:
query { activeAlarms(languages: ["en-US", "de-DE"]
filterLanguage: "en-US") { name instanceID eventText } }

Bulk operations
Method calls of a web client have a larger overhead than method calls of locally connected DLLs
or RPCs (Remote Procedure Calls) because a connection between the client and server has to be
established in the background. This also applies to GraphQL.
Reduce this overhead by calling a method once and passing a list of objects as input
parameter instead of individually calling the method for each object. The GraphQL server
executes the operation for all objects from the list and supplies the result in a response.
Example

Objective Read out the timestamp of multiple tags
Query query{ tagValues(names: ["Tag_1"],["Tag_2"],["Tag_3"]) {value {value

timestamp} error { description }}
Response {"data": {"tagValues": [{"value": {"value": 75, "timestamp":

"2022-07-20T07:50:46.476" }, "error": {"description": "Succeeded" }},
{"value": {"value": false, "timestamp": "1970-01-01T00:00:00.000Z" },
"error": {"description": "Succeeded" }},{{"value": "value": false,
"timestamp": "1970-01-01T00:00:00.000Z" }, "error": {"description":
"Succeeded" }}]}}

Tip for working efficiently

Change the same tag in the same mutation request multiple times.
Example: A GraphQL client is to document the values of a tag for audit purposes. The client subscribes to the tag and caches
the reported value changes (value and timestamp). At regular intervals, the client executes a mutation to which it passes the
cached values with their associated timestamps.

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8265

Using efficient client libraries
Libraries for GraphQL clients hide the details on HTTP and WebSockets from the developers. They
convert the responses of the server into objects that correspond to the programming language,
check whether the client code violates the schema, and more. This simplifies programming of a
GraphQL client but slows down its execution.
How useful and performant a library is depends on which functions the library takes on, how
well it is programmed and the programming language used.
Test a variety of libraries in advance before deciding which library is best suited to your needs.

Using a custom client
If performance is the most important factor, you can use the GraphQL API directly with an HTTP
and/or WebSocket library instead of a client library.
Queries and mutations are HTTP POST messages in which the operation is sent in the POST
body and the authorization in the HTTP header.
Subscriptions are WebSocket connections. Their input parameters are transferred as
WebSocket messages.
You can examine the details of the messages, e.g. with the Google Chrome developer tools,
while operations are executed in Apollo Studio.

See also
Filtering alarms (Page 8248)

20.4.7.2 Disconnection by server

Overview
Normally, the client closes the connection to the GraphQL server by requesting the logout
mutation. In rare cases, the server closes the connection, e.g. when it is stopped.
When the server closes the connection, the GraphQL client library receives a notification
regarding this. The client must reestablish the connection. If the server is still running, the
client must execute the subscription again.

Handling of subscriptions after connection reestablishment
If the server is still running, the client can execute the subscription again.
If the server has been stopped, the client must cyclically query the server until it is available
again, e.g. by executing the subscription operation until it is successful.

Runtime Openness
20.4 WinCC Unified GraphQL

8266 System Manual, 11/2022

Examples
• Folder "Support\Openness\GraphQL\Examples\PythonClient" on the WinCC Unified

installation medium contains the following code example: "gql_subscription.py"
In the example, the iterator is closed and a specific exception is thrown.

• The following Python code snippet shows how the client closes the subscription and how it is
notified when the server closes the subscription:

See also
"login" mutation (Page 8250)

20.4.8 Troubleshooting

20.4.8.1 Top-level and item-level errors

Error groups
The following error groups exist in GraphQL:
• Top-level errors

The entire method request has failed. Only the error message is supplied, and no result data.
• Item-level errors

The method was able to be requested, but parts of the method call were not successful.
Result data is supplied. The parts of the method request that were not successful contain an
error code other than "0" in the error attribute and an error description other than
"Succeeded".

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8267

Note
Error attributes specified in the selection set
In order for the server response to contain error information about item-level errors, you must
request the desired error attributes when calling the operation with the selection set.
It is recommended that the code or description attribute, or both, be requested.

Example for a top-level error
If the requested language is invalid, this results in the following error message:
{
 "errors": [
 {
 "message": "At least one of the requested languages is
invalid.",
 "locations": [
 {
 "line": 2,
 "column": 3
 }],
 "path": ["activeAlarms"],
 "extensions":
 {
 "code": "INTERNAL_SERVER_ERROR"
 }
 }],
 "data":
 {
 "activeAlarms": null
 }
}
Attributes:
• message: Easy-to-understand error description
• locations and path The part of the query that contains errors
• code: A general or specific error code

INTERNAL_SERVER_ERROR is the default error code if no specific error code exists.
• (when development mode is enabled) stackTrace: For further error diagnostics

Example for an item-level error
A writeTagValues call is to write values to two tags. The write operation was able to be
successfully performed for tag "TrainingString1" but not for tag "Intern_Int_2". The result data
for "Intern_Int_2" contains the error code and an error description. The reason for the error is that
the passed data type (String) could not be converted to the expected data type (DTInt):

Runtime Openness
20.4 WinCC Unified GraphQL

8268 System Manual, 11/2022

{
 "data": {
 "writeTagValues": [
 {
 "name": "TrainingString1",
 "error":
 {
 "code": "0",
 "description": "Succeeded"
 }
 },
 {
 "name": "Intern_Int_2",
 "error":
 {
 "code": "201",
 "description": "Can't convert provided value to data type
'DTInt': 'failing string value'"
 }
 }]
 }
}

See also
Structure of a client query (Page 8235)
"Error" type (Page 8258)

20.4.8.2 GraphQL server doesn't start

Problem GraphQL server doesn't start
Identify the cause 1. In the installation folder of WinCC Unified, double-click the "RTILtraceViewer.exe" file under "

WinCCUnified\bin".
The "TraceViewer" application is started.

2. Browse the traces for the trace entry documenting the failed start of the GraphQL server.
Examples of possible
causes

• The port configured for the GraphQL server is being used by another application.
• A configured plug-in could not be loaded.

Port occupied
If the port needed for the GraphQL server is being used by another application, the GraphQL
server cannot start.
Resulting trace entry:
• Severity "Fatal"
• Message: "Port 4000 already in use. Exiting..."

Runtime Openness
20.4 WinCC Unified GraphQL

System Manual, 11/2022 8269

Remedy: Select a different port for the other application.

Runtime Openness
20.4 WinCC Unified GraphQL

8270 System Manual, 11/2022

Index

A
Activate

Project language, 229
Add

Graphic to project graphics, 239
Alarms

Task trigger, 6858
Asian operating system, 228
Automation system

Setting up, 6975
Axis

common, 675
Multiple, 675

C
Communication

S7-1500, 6996
S7-300, 7003
S7-400, 7003

Communication drivers, 6991
Communication network

PROFINET, 6979
Configuring

Data source of the process control, 692
Data source of the trend control, 692
GRAPH overview, 6881
PLC code view, 6884
Process control, 688

Connection
Configuring, 7006
Creating, 6988

Connection resources, 6988
Controller alarm, 711
Creating

Cycle, 224
HMI connection, 6988

Cycle
Creating, 224

Cyclic operation, 7007

D
Data types

S7-300/400, 7003
Valid, 7003

Device
Inserting, 6975

Devices
Connecting, 6975
Networking, 6975

Devices & Networks, 6975, 6985
Devices and networks, 6975

HMI connections, 6988
Disabling

Project language, 229

E
Editing language, 226

Selecting, 230
Editor

Graphics, 238
Export

Project texts, 235
External image file

Add to project graphics, 240

G
GRAPH overview, 6877

Configuring, 6881
Graphic

Add to project graphics, 239
Graphics

Editor, 238

H
HMI connection, 6975

Configuring, 6988
Integrated, 6988
non-integrated, 6992

HMI connections
Devices & Networks, 6988

I
Image file

Storing in the image browser project
graphics, 240

Import
Project texts, 237

System Manual, 11/2022 8271

Integrated
HMI connection, 6988

L
Language

Activate project language, 229
Asian languages, 228
Asian operating system, 228
Disabling the project language, 229
Editing language, 230
Language-dependent format, 227
Language-specific graphic, 238
Multilingual project, 231
Reference language, 230
Regional format of the date, time, currency, and
numbers, 227

N
Named connections

Configuring a connection, 7006
Network

Ethernet, 6979
Networking

Devices, 6985
Non-integrated

HMI connection, 6992

NOT DEFINED

add external graphic, 240

O
OLE object

Storing in the image browser project
graphics, 240

Operating system
Asian language setting, 227
Setting to Western, 227

P
PLC code view, 6877

Configuring, 6884
PLC data type, 703
PLC data types, 701, 705

PLC UDTs
WinCC, 705

Process control
Configuring, 688
Configuring the data source, 692

PROFINET, 6978
Project

Multilingual, 231
Project graphics, 240
Project language, 225

Activate, 229
Disabling, 229

Project languages
System texts, 232
User texts, 232

Project text
Exporting, 235

Project texts
Displaying reference text, 234
Importing, 237
Translating individual texts, 233
Translation into project languages, 232

R
Reference language, 226

Selecting, 230
Runtime language, 226

S
S7-1200 V2

Data types, 705
S7-1500

Communication, 6996
Data types, 703

S7-300
Communication, 7003

S7-300/400
Data types, 701, 7003

S7-400
Communication, 7003

Setting
Languages in the operating system, 227

Symbolic addressing
of a tag, 6998

T
Tag

Symbolic addressing, 6998

Index

8272 System Manual, 11/2022

Tags
Task trigger, 6857

Task trigger
Alarms, 6858
Tags, 6857
Time, 6856

Time
Task trigger, 6856

Time zone
Define, 755

Translate
Editor, 231

Trend
Common axes, 675
Format patterns, 677
Multiple axes, 675

Trend control
Configuring the data source, 692
Format patterns, 677

U
User interface language, 225

Selecting, 228

V
Valid

Data types, 7003

Index

System Manual, 11/2022 8273

Index

8274 System Manual, 11/2022

	
	Legal information - Warning notice system
	Table of contents
	1 Installation
	1.1 Notes on the installation
	1.2 Licensing
	1.2.1 Notes on licenses
	1.2.2 Licensing STEP 7 and WinCC
	1.2.3 Licensing of WinCC Unified options
	1.2.3.1 Logging
	1.2.3.2 Parameter sets
	1.2.3.3 Process diagnostics
	1.2.3.4 Client
	1.2.3.5 Reporting
	1.2.3.6 Openness
	1.2.3.7 Unified Collaboration
	1.2.3.8 Audit

	1.2.4 Licensing of Plant Intelligence options
	1.2.4.1 Calendar
	1.2.4.2 Performance Insight
	1.2.4.3 Sequence
	1.2.4.4 Line Coordination

	1.2.5 Handling licenses and license keys

	1.3 System requirements for installation
	1.3.1 Notes on licenses
	1.3.2 General software and hardware requirements
	1.3.3 Product-specific special characteristics
	1.3.3.1 Uninstalling WinCC Unified
	1.3.3.2 Installation of WinCC Runtime Unified

	1.4 Overview of processes and services of TIA Portal components
	1.5 Using Security Logging
	1.5.1 Security Logging in the TIA Portal
	1.5.2 Activating and deactivating Security Logging
	1.5.3 Overview of events
	1.5.4 Displaying and managing events

	1.6 Installation log
	1.7 Starting installation
	1.8 Displaying the installed software
	1.9 Modifying or updating installed products
	1.10 Repairing installed products
	1.11 Starting to uninstall
	1.12 Installing updates and support packages
	1.12.1 Checking availability of updates and support packages and installing them
	1.12.2 Working with a company-internal server
	1.12.2.1 Properties and advantage of a corporate server
	1.12.2.2 Configuring a corporate server for updates
	1.12.2.3 Distributing updates to different areas
	1.12.2.4 Providing updates on a corporate server

	1.13 Installing support packages automatically
	1.13.1 Installing support packages automatically
	1.13.2 Return values from the installation process
	1.13.3 Log file

	2 Read me
	2.1 Security information (Unified)
	2.2 Breaking changes
	2.3 Notes on use
	2.4 Screens and screen objects
	2.5 Alarms and alarm view
	2.6 "Smoothing" property for logging tags
	2.7 System functions and scripts
	2.8 Parameter sets and parameter set display
	2.9 WinCC Unified PC
	2.9.1 Notes on the operation of Unified PC
	2.9.2 Internet browsers for WinCC Unified PC
	2.9.3 Activating and testing ASIA licenses

	2.10 Notes on the operation of Unified Comfort Panel
	2.11 Remote access to a Unified device
	2.12 Working with plant objects and plant views
	2.13 Audit

	3 WinCC Unified
	3.1 Introduction
	3.2 Additional documentation
	3.3 Creating a user interface efficiently
	3.4 Controlling with parameter sets
	3.5 Using distributed systems
	3.6 Dynamization and automation through scripts
	3.7 Central user management
	3.8 Connectivity
	3.9 Logging and traceability
	3.10 Configuring plant hierarchies
	3.11 Working with libraries
	3.11.1 Re-using libraries
	3.11.2 Basics on libraries
	3.11.3 Types and master copies
	3.11.4 Creating types and master copies
	3.11.5 Managing libraries
	3.11.5.1 Overview of the library management
	3.11.5.2 Opening library management
	3.11.5.3 Filtering types in the library management
	3.11.5.4 Creating a global library
	3.11.5.5 Saving a Shared Library
	3.11.5.6 Opening a global library
	3.11.5.7 Showing logs of global libraries
	3.11.5.8 Updating a project with the contents of a project library
	3.11.5.9 Updating a library with the contents of another library
	3.11.5.10 Exporting and importing library texts

	3.11.6 Managing objects in a library
	3.11.6.1 Displaying library objects
	3.11.6.2 Storing an object as master copy
	3.11.6.3 Inserting a library object

	3.11.7 Using types and their versions
	3.11.7.1 Status of versions of a type
	3.11.7.2 Adding types to a project library
	3.11.7.3 Create a new version of a type
	3.11.7.4 Editing a type
	3.11.7.5 Consistency status of types
	3.11.7.6 Generating a faceplate as a type
	3.11.7.7 Generating a HMI user data type as type
	3.11.7.8 Generating HMI user data type from PLC data type
	3.11.7.9 Creating a graphic and dynamic SVG as type
	3.11.7.10 Editing dynamic SVG type
	3.11.7.11 Creating a script module as a type

	3.11.8 Using master copies
	3.11.8.1 Basics
	3.11.8.2 Using a script as a master copy
	3.11.8.3 Using a screen as a master copy

	3.12 Using WinCC version compatibility
	3.12.1 Basics on version compatibility
	3.12.1.1 Installed Runtime version for Unified Comfort Panel
	3.12.1.2 Installed Runtime version for Unified PC
	3.12.1.3 Use cases

	3.12.2 Upgrade project
	3.12.3 Devices not fully supported
	3.12.4 Unsupported devices
	3.12.5 Matching objects after upgrading
	3.12.6 Replacing the configured HMI device
	3.12.6.1 Basics for replacing the configured HMI device
	3.12.6.2 Replacing the configured HMI device
	3.12.6.3 Adapting the configuration of the connection

	3.12.7 Upgrading a global library
	3.12.8 Changing the configured runtime version
	3.12.9 Upgrading the installed Runtime version of a device
	3.12.9.1 Upgrading a Unified PC
	3.12.9.2 Upgrading a Unified Comfort Panel

	3.12.10 Replacing a device
	3.12.10.1 Basics
	3.12.10.2 Replacing a Unified Comfort Panel
	3.12.10.3 Replacing a Unified PC
	3.12.10.4 Adjusting screens to the new HMI device

	3.13 Using cross-references
	3.13.1 General notes about cross-references
	3.13.2 Textual cross-references
	3.13.3 Invalid cross-references
	3.13.4 Displaying the "Cross-references" editor
	3.13.5 Display cross-references in the Inspector window
	3.13.6 Restoring cross-references after project upgrade

	3.14 Configuring cycles
	3.14.1 Basics of cycles
	3.14.2 Defining cycles

	3.15 Configuring in multiple languages
	3.15.1 Languages in WinCC
	3.15.2 Settings for languages in the operating system
	3.15.3 Settings for Asian languages in the operating system
	3.15.4 Setting project languages
	3.15.4.1 Selecting the user interface language
	3.15.4.2 Enabling project languages
	3.15.4.3 Selecting the reference language and editing language

	3.15.5 Creating one project in multiple languages
	3.15.5.1 Working with multiple languages
	3.15.5.2 Basics of project texts
	3.15.5.3 Translating texts directly
	3.15.5.4 Translating texts using reference texts
	3.15.5.5 Exporting project texts
	3.15.5.6 Importing project texts

	3.15.6 Using language-specific graphics
	3.15.6.1 "Project graphics" editor
	3.15.6.2 Storing an image in the project graphics
	3.15.6.3 Storing an external image in the project graphics
	3.15.6.4 Editing a graphic

	3.15.7 Languages and fonts in runtime
	3.15.7.1 Using multiple runtime languages
	3.15.7.2 Own fonts
	3.15.7.3 Methods for language switching
	3.15.7.4 Starting a project in a different language
	3.15.7.5 Enabling the runtime language
	3.15.7.6 Standardizing font for all languages
	3.15.7.7 Specific features of Asian and Eastern languages in runtime

	3.16 Performance features
	3.16.1 General technical data
	3.16.1.1 SIMATIC Unified Comfort Panel
	3.16.1.2 SIMATIC Unified PC

	3.16.2 Permitted special characters

	4 Configuring screens
	4.1 Basics
	4.1.1 Basics of screens
	4.1.2 Changing the screen resolution
	4.1.3 Using styles
	4.1.3.1 Basics on working with styles
	4.1.3.2 Defining the style
	4.1.3.3 Switching styles by means of user-defined functions

	4.1.4 Task cards
	4.1.5 Defining the start screen:
	4.1.6 Screen zooming

	4.2 Overview of screen objects
	4.2.1 Show object type and name in the tooltip
	4.2.2 Basic objects
	4.2.2.1 Text box
	4.2.2.2 Graphic view
	4.2.2.3 Line
	4.2.2.4 Rectangle
	4.2.2.5 Circle
	4.2.2.6 Ellipse
	4.2.2.7 Polyline
	4.2.2.8 Polygon
	4.2.2.9 Circular arc
	4.2.2.10 Elliptical arc
	4.2.2.11 Circle segment
	4.2.2.12 Ellipse segment
	4.2.2.13 Example: Configuring a rectangle

	4.2.3 Elements
	4.2.3.1 IO field
	4.2.3.2 Symbolic IO field
	4.2.3.3 List box
	4.2.3.4 Button
	4.2.3.5 Switch
	4.2.3.6 Bar
	4.2.3.7 Slider
	4.2.3.8 Gauge
	4.2.3.9 Clock
	4.2.3.10 Check box
	4.2.3.11 Radio button
	4.2.3.12 Touch area
	4.2.3.13 Examples

	4.2.4 Controls
	4.2.4.1 Configuring the toolbar and information bar
	4.2.4.2 Alarm control
	4.2.4.3 Trend control
	4.2.4.4 Function trend control
	4.2.4.5 Trend companion
	4.2.4.6 Screen window
	4.2.4.7 Faceplate container
	4.2.4.8 Parameter set control
	4.2.4.9 System diagnostics display
	4.2.4.10 Process control
	4.2.4.11 Web control
	4.2.4.12 Media Player
	4.2.4.13 GRAPH overview
	4.2.4.14 PLC code view

	4.2.5 My Controls
	4.2.5.1 Using custom web controls
	4.2.5.2 Updating Custom Web Controls
	4.2.5.3 My Controls - Overview

	4.2.6 Graphics
	4.2.6.1 External graphics
	4.2.6.2 Managing external graphics
	4.2.6.3 Managing SVG graphics
	4.2.6.4 Restrictions on SVG graphics

	4.2.7 Dynamic widgets
	4.2.7.1 Managing dynamic SVG graphics

	4.3 Configuring screen objects
	4.3.1 Select multiple objects
	4.3.2 Copying objects
	4.3.3 Creating objects automatically
	4.3.4 Defining the output format
	4.3.5 Disable remote control
	4.3.6 Hotkeys
	4.3.7 Configuring object properties
	4.3.7.1 Managing object properties
	4.3.7.2 "Filter" function
	4.3.7.3 Adding an object property to favorites
	4.3.7.4 Changing a property for multiple objects
	4.3.7.5 Automatically filling in of property values for an object collection

	4.3.8 Designing objects
	4.3.8.1 Changing the object size
	4.3.8.2 Changing the position of an object
	4.3.8.3 Transfer format
	4.3.8.4 Designing the fill pattern
	4.3.8.5 Designing the border of an object
	4.3.8.6 Configuring reordering of the columns
	4.3.8.7 Rearranging columns in runtime

	4.3.9 Moving objects
	4.3.9.1 Aligning objects
	4.3.9.2 Move objects
	4.3.9.3 Rotating object
	4.3.9.4 Rotating an object around a pivot point

	4.3.10 Designing colors
	4.3.10.1 Designing the background color
	4.3.10.2 Defining color gradients
	4.3.10.3 Central color management

	4.3.11 Formatting text in the object
	4.3.11.1 Enter text directly into the object
	4.3.11.2 Entering multiline text
	4.3.11.3 Show default entry of text and graphic list in the object
	4.3.11.4 Displaying tag value in the object dynamically
	4.3.11.5 Dynamically displaying a text list in the object

	4.3.12 Linking objects
	4.3.12.1 Linking an object to a text list
	4.3.12.2 Linking an object to a graphic list
	4.3.12.3 Linking an object to tags

	4.3.13 Using layers
	4.3.13.1 Basic information on using layers
	4.3.13.2 Renaming a layer
	4.3.13.3 Moving objects between layers
	4.3.13.4 Specifying the active layer
	4.3.13.5 Hiding and showing layers
	4.3.13.6 Toggle the visibility of layers in runtime in the ES
	4.3.13.7 Toggling the visibility of layers in runtime using the JScript function

	4.3.14 Using groups
	4.3.14.1 Basics of groups
	4.3.14.2 Grouping objects
	4.3.14.3 Managing groups
	4.3.14.4 Changing the size of the group
	4.3.14.5 Moving a group
	4.3.14.6 Moving groups between layers
	4.3.14.7 Groups in editing mode
	4.3.14.8 Adding an object to the group
	4.3.14.9 Managing objects in groups
	4.3.14.10 Rotating a group and objects in the group
	4.3.14.11 Aligning objects in the group
	4.3.14.12 Properties of the group
	4.3.14.13 Adding a property of the group to favorites
	4.3.14.14 Aggregated properties of the objects in groups
	4.3.14.15 Group as part of a multiple selection

	4.3.15 Two-hand operation of operator controls
	4.3.15.1 Two-hand operation of operator controls
	4.3.15.2 Locking and unlocking operator controls
	4.3.15.3 Configuring the release button in the screen

	4.4 Configuring text lists and graphics lists
	4.4.1 Configuring text lists
	4.4.1.1 Basics of text lists
	4.4.1.2 Creating a text list
	4.4.1.3 Assigning texts and values to an area text list
	4.4.1.4 Assigning texts and values to a bit text list
	4.4.1.5 Assigning texts and values to a bit number text list
	4.4.1.6 Configuring object with a text list

	4.4.2 Configuring graphics lists
	4.4.2.1 Basics of graphic lists
	4.4.2.2 Creating a graphic list
	4.4.2.3 Assigning graphics and values to an area graphic list
	4.4.2.4 Assigning graphics and values to a bit graphic list
	4.4.2.5 Assigning graphics and values to a bit number graphic list
	4.4.2.6 Configuring objects with a graphic list

	4.5 Configuring dynamization
	4.5.1 Basics of dynamizing screens
	4.5.2 Displaying dynamization of the properties
	4.5.3 Find type of dynamization
	4.5.4 Changing a dynamization for multiple objects
	4.5.5 Dynamizing object properties
	4.5.5.1 Dynamizing an object property with a tag
	4.5.5.2 Dynamizing an object property with a script
	4.5.5.3 Dynamizing an object property with a resource list
	4.5.5.4 Dynamizing an object property with flashing
	4.5.5.5 Dynamization by expressions
	4.5.5.6 Examples

	4.6 Trigger events
	4.6.1 Basics on the events
	4.6.2 Triggering "Activated" and "Deactivated" events
	4.6.3 Triggering a "Press" event
	4.6.4 Triggering a "Release" event
	4.6.5 "Press key" and "Release key" events:
	4.6.6 Trigger "Click left mouse button" event
	4.6.7 Trigger "Click right mouse button" event
	4.6.8 "Loaded" event
	4.6.9 "Cleared" event
	4.6.10 "Connected" event
	4.6.11 Triggering the "Status changed" event
	4.6.12 Trigger "Command fired" event
	4.6.13 Trigger "Gesture detected" event
	4.6.14 Triggering events through touch operation
	4.6.15 Example: Configure the system function "Screen change"
	4.6.16 Events on the "Media Player" object
	4.6.16.1 Trigger "Pause" event
	4.6.16.2 Triggering a "Play" event
	4.6.16.3 Triggering a "Playback finished" event

	4.6.17 Events at the "Plant overview" object
	4.6.17.1 Triggering a "Selection changed" event
	4.6.17.2 Triggering an "Expand" event
	4.6.17.3 Triggering an "Expand all" event
	4.6.17.4 Triggering a "Minimize" event
	4.6.17.5 Triggering a "Minimize all" event

	4.7 Configuring faceplates
	4.7.1 Basics
	4.7.1.1 Basics of faceplates
	4.7.1.2 Device dependency of faceplates
	4.7.1.3 "Faceplate types" editor
	4.7.1.4 Lowest device version of a faceplate type
	4.7.1.5 Faceplates and TIA version upgrade

	4.7.2 Creating and managing faceplates
	4.7.2.1 Creating a faceplate type in the project library
	4.7.2.2 Creating a faceplate type from a screen
	4.7.2.3 Working with faceplate types and versions
	4.7.2.4 Editing the visualization of a faceplate type
	4.7.2.5 Configuring multilingualism for objects of a faceplate type
	4.7.2.6 Configuring tags in the faceplate type
	4.7.2.7 Interface properties in faceplates
	4.7.2.8 Interface events in faceplates
	4.7.2.9 Checking the version consistency and fixing inconsistencies
	4.7.2.10 Checking the consistency at the faceplate type and fixing inconsistencies
	4.7.2.11 Releasing a faceplate version of a type
	4.7.2.12 Creating a faceplate instance
	4.7.2.13 Using a PLC user data type
	4.7.2.14 Using an HMI user data type
	4.7.2.15 Using a faceplate type in another faceplate type
	4.7.2.16 Copying faceplate types and faceplate instances to other projects

	4.7.3 Connecting faceplate types to OPC UA
	4.7.4 Dynamizing faceplates
	4.7.4.1 Basics for the dynamization of faceplates
	4.7.4.2 Dynamizing a faceplate type
	4.7.4.3 Dynamizing a faceplate instance
	4.7.4.4 Accessing properties of the faceplate container with a script
	4.7.4.5 Configure faceplate as pop-up

	4.7.5 Example: Creating and using faceplates
	4.7.5.1 Example: Configuring faceplates
	4.7.5.2 Example: Introduction
	4.7.5.3 Example: Create HMI tags
	4.7.5.4 Example: Creating faceplate types
	4.7.5.5 Example: Configuring interface tags in faceplate types
	4.7.5.6 Example: Configure local tags in faceplate types.
	4.7.5.7 Instead of tags: Using PLC user data type in the faceplate type
	4.7.5.8 Example: Instantiate the inner faceplate type in the outer faceplate type
	4.7.5.9 Example: Configuring interface properties in faceplate types
	4.7.5.10 Example: Create an interface event
	4.7.5.11 Example: Using e script to change tags
	4.7.5.12 Example: Creating a local script for opening the pop-up
	4.7.5.13 Example: Create local script to close the pop-up
	4.7.5.14 Example: Configure the screen and instantiate the faceplate type.
	4.7.5.15 Example: Displaying a project in runtime.

	5 Configuring tags
	5.1 Basics
	5.1.1 Basics of tags
	5.1.2 Overview of HMI tag tables
	5.1.3 External tags
	5.1.4 Addressing external tags
	5.1.5 Indirect addressing
	5.1.6 Internal tags
	5.1.7 System tags
	5.1.8 Updating the tag value in runtime
	5.1.9 Limits and start values of a tag
	5.1.10 Data logging
	5.1.11 Basics of tag management
	5.1.12 Basics of user data types
	5.1.13 Export and import of tags

	5.2 Configuring tags
	5.2.1 Working with tag tables
	5.2.2 Creating external tags
	5.2.3 Creating OPC tags
	5.2.4 Creating internal tags
	5.2.5 Configuring multiple tags
	5.2.6 Adapting the data type of a tag
	5.2.7 Defining the acquisition cycle for a tag
	5.2.8 Specify tag persistency
	5.2.9 Defining limits for a tag
	5.2.10 Specify "Local session" scope
	5.2.11 Synchronizing tags
	5.2.12 Importing and exporting tags
	5.2.13 Defining a substitute value
	5.2.14 Connecting a tag to another PLC

	5.3 Configuring user data types
	5.3.1 Creating an HMI user data type
	5.3.2 Creating HMI user data type elements
	5.3.3 Adding a PLC user data type to the project library
	5.3.4 Managing versions of user data types
	5.3.5 Setting a user data type version as default
	5.3.6 Creating tags with a HMI user data type

	5.4 Logging tags
	5.4.1 Basics
	5.4.1.1 Basics of data logging
	5.4.1.2 Size of a log entry in the data log
	5.4.1.3 Logging modes and logging process

	5.4.2 Configuring logging tags
	5.4.3 Configuring multiple logging tags
	5.4.4 Configuring tag triggers
	5.4.5 Configuring limit values
	5.4.6 Configuring smoothing
	5.4.7 Configuring compression

	5.5 Displaying tags
	5.5.1 Basics
	5.5.1.1 Outputting the tag values
	5.5.1.2 Outputting tag values as trends
	5.5.1.3 Representing multiple trends
	5.5.1.4 Basics of time range
	5.5.1.5 Representing trend directions
	5.5.1.6 Outputting tag values in tabular format
	5.5.1.7 Configuring tag evaluation

	5.5.2 Configuring a trend control
	5.5.3 Configuring the function trend control
	5.5.4 Configuring bit-triggered trends
	5.5.5 Configuring the process control
	5.5.6 Configuring the trend companion
	5.5.7 Configuring the toolbar and information bar
	5.5.8 Defining the data source

	5.6 Reference
	5.6.1 Quality codes of HMI tags
	5.6.2 Data types
	5.6.2.1 Data types for SIMATIC S7-300/400
	5.6.2.2 Data types for SIMATIC S7-1200
	5.6.2.3 Data types for SIMATIC S7-1500
	5.6.2.4 User-defined PLC data types (UDT)

	6 Configuring alarms
	6.1 Basics
	6.1.1 Alarm system
	6.1.2 Alarms
	6.1.2.1 User-defined alarms
	6.1.2.2 System-defined alarms

	6.1.3 Alarm states
	6.1.4 Acknowledgment model
	6.1.5 Alarm classes
	6.1.6 Acknowledging alarms
	6.1.7 Alarm components and properties

	6.2 Configuring alarms
	6.2.1 Workflow for configuring alarms
	6.2.2 Creating alarm classes
	6.2.3 Using common alarm classes
	6.2.4 Configuring state texts of alarms
	6.2.5 Configuring discrete alarms
	6.2.5.1 Configuring discrete alarms
	6.2.5.2 Configure trigger
	6.2.5.3 Sending alarm acknowledgments to the PLC

	6.2.6 Configuring analog alarms
	6.2.6.1 Configuring analog alarms
	6.2.6.2 Configure trigger

	6.2.7 Integrating OPC UA server alarm instances
	6.2.8 Configuring alarm texts
	6.2.9 Configuring info texts
	6.2.10 Parameter output in a discrete or analog alarm
	6.2.11 Configuring optional parameters for discrete alarms and analog alarms
	6.2.12 Configuring multilingual alarm texts
	6.2.13 Editing system events
	6.2.14 Filtering controller alarms via display classes
	6.2.15 Configuring alarm acknowledgment

	6.3 Exporting and importing alarms
	6.3.1 Exporting alarms
	6.3.2 Importing alarms

	6.4 Configuring an alarm control
	6.4.1 Configuring an alarm control
	6.4.2 Display all information about an alarm
	6.4.3 Configuring the toolbar
	6.4.4 Configuring the information bar
	6.4.5 Configuring columns and sorting
	6.4.6 Configuring filters in the alarm control
	6.4.7 Configuring alarm export
	6.4.8 Configuring the printing of alarms
	6.4.9 Show logged alarms
	6.4.10 Configuring alarm statistics
	6.4.11 Configuring the display of system diagnostic alarms

	6.5 Logging alarms
	6.5.1 Basics of alarm logging
	6.5.2 Size of a log entry in the alarm log
	6.5.3 Assign alarm class
	6.5.4 Multilingual logging of alarms

	6.6 Displaying and using alarms
	6.6.1 Operating the alarm control and displaying it in runtime
	6.6.2 Sorting alarms in runtime
	6.6.3 Filtering alarms in runtime
	6.6.4 Displaying logged alarms in runtime
	6.6.5 Displaying alarm statistics
	6.6.6 Operating alarm statistics
	6.6.7 Acknowledging alarms
	6.6.8 Group acknowledgement of alarms
	6.6.9 Exporting alarms
	6.6.10 Shelving alarms
	6.6.11 Unshelving an alarm
	6.6.12 Lock alarms
	6.6.13 Printing alarms in runtime

	6.7 Display security events
	6.7.1 Display security events on the HMI device
	6.7.2 Configuring the display of security events

	6.8 Sending complete alarm from the controller to the HMI device
	6.8.1 Sending and automatically updating complete alarm from the controller to the HMI device
	6.8.2 Configuring automatic update of controller alarms on the HMI device

	6.9 Reference
	6.9.1 Terminology used for alarms
	6.9.2 System events
	6.9.2.1 Basics of System Events
	6.9.2.2 S7Plus system events
	6.9.2.3 Parameter set system events
	6.9.2.4 Reporting system events
	6.9.2.5 Scripting system events
	6.9.2.6 Communication system events
	6.9.2.7 VCS system events
	6.9.2.8 Runtime system events

	7 Archiving data
	7.1 Log basics
	7.2 How it works
	7.3 Storage locations of logs
	7.4 Creating a data log and an alarm log
	7.5 Editing log contents with scripts and system functions

	8 Configuring parameter sets
	8.1 Basics
	8.1.1 Basics of parameter control
	8.1.2 Limitations
	8.1.3 "Parameter set types" editor
	8.1.4 Parameter set control

	8.2 Configuring parameter sets
	8.2.1 Creating a parameter set type with elements via an HMI user data type
	8.2.2 Creating a parameter set type with elements via a PLC user data type
	8.2.3 Changing a parameter set type with elements
	8.2.4 Assigning a tag of the data type HMI user data type to a parameter set type
	8.2.5 Assigning a tag of the data type "PLC user data type" to a parameter set type
	8.2.6 Transferring and deleting parameter sets automatically
	8.2.7 Transferring parameter sets via scripts
	8.2.8 Configuring the parameter set view
	8.2.9 Assigning an edit tag to a parameter set item
	8.2.10 Configuring parameter sets without parameter set control

	8.3 Using parameter sets in runtime
	8.3.1 Managing parameter sets
	8.3.2 Exporting and importing parameter sets
	8.3.3 Transferring parameter sets

	9 Using system functions
	9.1 Working with function lists
	9.1.1 Basics of the function list
	9.1.2 Input support
	9.1.3 Configuring a function list
	9.1.4 Editing a function list
	9.1.5 Using a screen item to specify the value of a parameter
	9.1.6 Adapt the function list to changed scripts

	9.2 System functions
	9.2.1 LogOff
	9.2.2 UpdateTag
	9.2.3 InsertElectronicRecord
	9.2.4 ExecuteReport
	9.2.5 EjectStorageMedium
	9.2.6 IncreaseTag
	9.2.7 CreateParameterSet
	9.2.8 CreateScreenshot
	9.2.9 CreateOperatorInputInformation
	9.2.10 CreateSystemInformation
	9.2.11 CreateSystemAlarm
	9.2.12 ExportParameterSets
	9.2.13 GoToPLC
	9.2.14 ImportParameterSets
	9.2.15 InvertBitInTag
	9.2.16 IsAlarmJumpPossible
	9.2.17 LoadParameterSet
	9.2.18 LoadAndWriteParameterSet
	9.2.19 GetDHCPState
	9.2.20 GetBrightness
	9.2.21 GetIPV4Address
	9.2.22 GetNetworkInterfaceState
	9.2.23 ReadParameterSet
	9.2.24 ReadParameterSetName
	9.2.25 ReadParameterSetTypeName
	9.2.26 GetSmartServerState
	9.2.27 ReadAndSaveParameterSet
	9.2.28 ClearAlarmLog
	9.2.29 DeleteParameterSet
	9.2.30 ClearTagLog
	9.2.31 OpenScreenInPopup
	9.2.32 OpenScreenWithNumberInPopup
	9.2.33 OpenViewGRAPHByBlock
	9.2.34 OpenGRAPHViewFromOverview
	9.2.35 OpenPLCCodeViewByAlarm
	9.2.36 ResetBitInTag
	9.2.37 ShiftAndMask
	9.2.38 ClosePopup
	9.2.39 WriteParameterSet
	9.2.40 WriteManualValue
	9.2.41 SetBitInTag
	9.2.42 SetDHCPState
	9.2.43 SetPropertyValue
	9.2.44 SetBrightness
	9.2.45 SetIPV4Address
	9.2.46 SetNetworkInterfaceState
	9.2.47 SetLanguage
	9.2.48 SetSmartServerState
	9.2.49 SetTagValue
	9.2.50 SetConnectionMode
	9.2.51 SaveParameterSet
	9.2.52 StartProgram
	9.2.53 StopRuntime
	9.2.54 LookUpText
	9.2.55 RenameParameterSet
	9.2.56 ToggleGRAPHViewerMode
	9.2.57 ToggleNetworkDisplay
	9.2.58 ToggleLanguage
	9.2.59 ZoomIn
	9.2.60 ZoomOut
	9.2.61 DecreaseTag
	9.2.62 ChangeScreen
	9.2.63 ChangeScreenAsync
	9.2.64 ChangeScreenAsyncWithNumber
	9.2.65 ChangeScreenWithNumber
	9.2.66 ChangeConnection
	9.2.67 Next
	9.2.68 ShowControlPanel
	9.2.69 ShowSoftwareVersion
	9.2.70 Previous

	10 Programming scripts
	10.1 Runtime scripting
	10.1.1 Introduction to runtime scripting
	10.1.2 Basics
	10.1.3 Notes on creating scripts
	10.1.3.1 Data types
	10.1.3.2 Object instances
	10.1.3.3 Enumerations
	10.1.3.4 Asynchronous operations
	10.1.3.5 Support for errors
	10.1.3.6 Global modules
	10.1.3.7 Local scripts

	10.1.4 "Scripts" editor
	10.1.4.1 Structure of the "Scripts" editor
	10.1.4.2 Input support
	10.1.4.3 Script and execution context
	10.1.4.4 Configuring a script to an event
	10.1.4.5 Dynamizing object properties by script
	10.1.4.6 Creating a global definition in a local script

	10.1.5 Examples
	10.1.5.1 Notes on the code examples
	10.1.5.2 Dynamizing the position of an object
	10.1.5.3 Reading and writing tag values
	10.1.5.4 Simulating value changes in tags
	10.1.5.5 Using tag values globally
	10.1.5.6 Converting values
	10.1.5.7 Change language
	10.1.5.8 Dynamically changing the output format of an object
	10.1.5.9 Reading and writing binary files
	10.1.5.10 Reading and writing text files
	10.1.5.11 Setting bits
	10.1.5.12 Changing the date format
	10.1.5.13 Monitoring alarms
	10.1.5.14 Set alarm filter
	10.1.5.15 Creating an alarm subscription
	10.1.5.16 Creating alarms with multilingual alarm texts
	10.1.5.17 Opening and closing a screen in a pop-up window
	10.1.5.18 Triggering a screen change with a tag

	10.1.6 Troubleshooting
	10.1.6.1 RTIL Trace Viewer
	10.1.6.2 Integrate RTIL Trace Viewer as an external application
	10.1.6.3 Tracing with the RTIL Trace Viewer

	10.1.7 Debugging scripts
	10.1.7.1 Basics of debugging
	10.1.7.2 Design and function of the debugger
	10.1.7.3 Enabling the debugger
	10.1.7.4 Starting the debugger
	10.1.7.5 Working with breakpoints
	10.1.7.6 Step-by-step execution of scripts
	10.1.7.7 Show values

	10.2 WinCC Unified object model
	10.2.1 WinCC Unified object model
	10.2.2 HMIRuntime
	10.2.2.1 HMIRuntime.Language
	10.2.2.2 HMIRuntime.GetDetailedErrorDescription()
	10.2.2.3 HMIRuntime.Trace()
	10.2.2.4 Alarming
	10.2.2.5 AlarmLogging
	10.2.2.6 Audit
	10.2.2.7 Connections
	10.2.2.8 Database
	10.2.2.9 Device
	10.2.2.10 FileSystem
	10.2.2.11 Math
	10.2.2.12 OLEAutomation
	10.2.2.13 ParameterSetTypes
	10.2.2.14 PlantModel
	10.2.2.15 Reporting
	10.2.2.16 Resources
	10.2.2.17 TagLogging
	10.2.2.18 Tags
	10.2.2.19 Timers
	10.2.2.20 UI
	10.2.2.21 UserManagement

	11 Planning tasks
	11.1 Basics
	11.1.1 Field of application of the Scheduler
	11.1.2 Basic of the scheduler

	11.2 Creating tasks with the "Time" trigger
	11.3 Creating tasks with the "Tags" trigger
	11.4 Creating tasks with the "Alarms" trigger

	12 Using the diagnostics functions
	12.1 Configuring system diagnostics objects
	12.1.1 Activating system diagnostics (S7-1200/1500)
	12.1.2 Configuring diagnostics indicators (S7-1200/1500)
	12.1.3 Configuring system diagnostics of the controller (S7-1200/1500)
	12.1.4 System diagnostics display

	12.2 Example: System diagnostics with all objects
	12.2.1 Example: Procedures overview

	12.3 Process diagnostics
	12.3.1 Basics of supervision with ProDiag
	12.3.2 Requirements and licensing
	12.3.3 Objects for the supervision and diagnostics of plants
	12.3.4 GRAPH overview
	12.3.5 Configuring a GRAPH overview
	12.3.6 PLC code view
	12.3.7 Configuring the PLC code view

	13 Configuring users and roles
	13.1 Basics
	13.1.1 User management in the TIA Portal
	13.1.2 Central user management and UMC
	13.1.3 Local and central user management
	13.1.4 Roles and function rights

	13.2 Configuring user management in the engineering system for Runtime
	13.2.1 Specifying local or central user management
	13.2.2 Configuring a connection to the central user management
	13.2.3 Server ID
	13.2.4 Users and user groups
	13.2.4.1 Managing local users
	13.2.4.2 Downloading local user management
	13.2.4.3 Managing central users and user groups
	13.2.4.4 Loading central user management

	13.2.5 HMI roles
	13.2.5.1 Managing HMI roles
	13.2.5.2 Assigning HMI roles
	13.2.5.3 HMI role "HMI Monitor Client"

	13.2.6 Function rights
	13.2.6.1 System-defined function rights
	13.2.6.2 User-defined function rights
	13.2.6.3 Assigning function rights to an HMI role

	13.2.7 Examples
	13.2.7.1 Example: Setup of the local user management
	13.2.7.2 Example: Add user and assign to a role
	13.2.7.3 Example: Add roles and assign function rights
	13.2.7.4 Example: Configuring a button with access protection

	13.3 Using the user management on the Unified Comfort Panel
	13.3.1 Notes on commissioning
	13.3.2 User management on the Unified Comfort Panel
	13.3.3 Protecting the Control Panel from being accessed
	13.3.4 Managing local users
	13.3.4.1 Options for local user management
	13.3.4.2 Using local user management in the Control Panel
	13.3.4.3 Opening local user management in the "Browser" screen object
	13.3.4.4 Opening local user management in the Internet browser
	13.3.4.5 Managing local users in Runtime

	13.3.5 Using central user management
	13.3.5.1 Using central user management in the Control Panel
	13.3.5.2 Simulating a central user management

	13.4 Using user management on the WinCC Unified PC
	13.4.1 Notes on commissioning
	13.4.2 Setting the user management with WinCC Unified Configuration
	13.4.3 Managing multiple projects in the SIMATIC Runtime Manager
	13.4.4 SIMATIC Runtime Manager users
	13.4.5 Managing local users
	13.4.5.1 Checking local user management in the SIMATIC Runtime Manager
	13.4.5.2 Managing local users in Runtime

	13.4.6 Using central user management
	13.4.6.1 Setting central user management in the SIMATIC Runtime Manager
	13.4.6.2 Simulating a central user management
	13.4.6.3 SwacLogin: Errors after complete download

	14 Connectivity
	14.1 Basics
	14.1.1 Basics of communication
	14.1.1.1 Communication between devices
	14.1.1.2 Configuring communication
	14.1.1.3 Secure communication and certificates
	14.1.1.4 Networks and connections
	14.1.1.5 Synchronization

	14.1.2 Configuring an HMI connection
	14.1.2.1 Configuring an integrated HMI connection
	14.1.2.2 Configuring a non-integrated HMI connection
	14.1.2.3 Setting up switch on/switch off of a connection in runtime

	14.1.3 Device configuration
	14.1.3.1 HMI devices
	14.1.3.2 Inserting a HMI device into the project

	14.2 Communication with SIMATIC PLCs
	14.2.1 Communicating with SIMATIC S7-1200/1500
	14.2.1.1 Communication with S7-1200/1500
	14.2.1.2 Permitted data types for SIMATIC S7-1200/1500
	14.2.1.3 Symbolic addressing
	14.2.1.4 Interface and communication parameters
	14.2.1.5 Troubleshooting for SIMATIC S7-1200/1500

	14.2.2 Communicating with SIMATIC S7-300/400
	14.2.2.1 Communication with SIMATIC S7-300/400
	14.2.2.2 Permissible data types for SIMATIC S7-300/400
	14.2.2.3 Interface and communication parameters
	14.2.2.4 Configuring a connection via "Named connections"
	14.2.2.5 Cyclic operation
	14.2.2.6 Troubleshooting for SIMATIC S7-300/400

	14.3 Communication with other devices
	14.3.1 Communication with WinCC Unified Open Pipe

	14.4 OPC UA - Open Platform Communications
	14.4.1 Introduction
	14.4.1.1 Principle
	14.4.1.2 OPC UA specifications and compatibility

	14.4.2 Using OPC UA certificates
	14.4.2.1 Introduction to OPC UA certificates
	14.4.2.2 Providing certificates on a Unified PC
	14.4.2.3 Providing certificates on a Unified Comfort Panel
	14.4.2.4 Providing certificates for the engineering systems as OPC UA client

	14.4.3 WinCC Unified OPC UA server
	14.4.3.1 General information about Unified OPC UA servers
	14.4.3.2 Using the Unified PC as OPC UA server
	14.4.3.3 Using the Unified Comfort Panel as OPC UA server

	14.4.4 WinCC Unified OPC UA client
	14.4.4.1 Using the WinCC Unified OPC UA client
	14.4.4.2 Defining connection settings to the OPC UA server
	14.4.4.3 Defining the security settings for communication with the OPC UA server
	14.4.4.4 Integrating OPC UA server alarm instances into a Unified client

	15 Configuring plant hierarchies
	15.1 Basics
	15.1.1 Introduction
	15.1.2 Applications
	15.1.3 Type/instance concept in object-oriented configuration
	15.1.4 Configuration concept
	15.1.5 Plant model and target systems
	15.1.6 Structure of a plant model
	15.1.7 Contexts

	15.2 Elements and basic settings
	15.2.1 Overview
	15.2.2 Options for creating plant objects

	15.3 Object- and technology-oriented configuration
	15.3.1 Working with plant views
	15.3.1.1 Creating a plant hierarchy
	15.3.1.2 Assigning a plant hierarchy to a HMI device
	15.3.1.3 Creating plant nodes

	15.3.2 Working with plant objects and plant object types
	15.3.2.1 Creating plant object types
	15.3.2.2 Creating plant objects
	15.3.2.3 Configure plant object types
	15.3.2.4 Configuring plant object types from the data blocks of an S7-1500
	15.3.2.5 Assigning process data to plant objects

	15.3.3 Configuring screens
	15.3.3.1 Basic information on configuring screens
	15.3.3.2 Configuring screens for plant objects

	15.3.4 Configuring the controls
	15.3.4.1 Configuring "Plant overview" control and companion controls
	15.3.4.2 Configuring an alarm control for plant objects
	15.3.4.3 Configuring trend control for plant objects

	15.3.5 Configuring alarms
	15.3.5.1 Basic information on configuring alarms
	15.3.5.2 Configure discrete alarms for plant objects
	15.3.5.3 Configuring analog alarms for plant objects

	15.3.6 Configuring the logging of plant object types
	15.3.7 Good Manufacturing Practice
	15.3.8 Example
	15.3.8.1 Example: Scenario
	15.3.8.2 Example: Implementation concept
	15.3.8.3 Example: Determine plant object type
	15.3.8.4 Example: Creating a plant view
	15.3.8.5 Example: Creating plant objects and plant object types
	15.3.8.6 Example: Configuring screens for brewery production lines
	15.3.8.7 Example: Configuring plant overview and companion controls
	15.3.8.8 Example: Configuring analog alarms for temperature monitoring
	15.3.8.9 Example: Configuring the alarm control for fill level monitoring
	15.3.8.10 Example: Configuring a trend view for temperature monitoring
	15.3.8.11 Example: Configuring the logging of production values

	15.4 Visualizing plant objects in runtime
	15.4.1 Displaying plant objects in runtime
	15.4.2 Operating "Plant overview" in runtime
	15.4.3 Display process data of the plant objects in a trend control
	15.4.4 Displaying alarms for plant objects in runtime

	15.5 Options
	15.5.1 Plant Intelligence Options

	16 Compiling and loading
	16.1 Basics
	16.1.1 Overview
	16.1.2 Power Tags
	16.1.3 Workflow
	16.1.4 Secure communication
	16.1.5 Loading project encrypted
	16.1.6 Loading project unencrypted
	16.1.7 Restrictions in compiling and loading changes

	16.2 Unified Comfort Panel
	16.2.1 Specifying runtime settings
	16.2.1.1 Introduction
	16.2.1.2 General
	16.2.1.3 Alarms
	16.2.1.4 Services
	16.2.1.5 Language & font
	16.2.1.6 Remote access
	16.2.1.7 Storage system
	16.2.1.8 Settings for tags
	16.2.1.9 Good Manufacturing Practice
	16.2.1.10 User management
	16.2.1.11 OPC UA server
	16.2.1.12 Layers
	16.2.1.13 Reporting

	16.2.2 Compiling a project
	16.2.3 Downloading projects
	16.2.3.1 Basics for downloading projects
	16.2.3.2 Initial download of a project
	16.2.3.3 Complete reloading of a project
	16.2.3.4 Download changes only
	16.2.3.5 Loading projects of multiple HMI devices simultaneously
	16.2.3.6 Using external storage medium

	16.2.4 Compiling and loading with team engineering
	16.2.4.1 Compiling and loading with team engineering (overview)
	16.2.4.2 Compiling in the server project view

	16.2.5 Error messages during loading of projects
	16.2.6 Starting runtime
	16.2.7 Reducing the project size
	16.2.8 Maintenance of the HMI device
	16.2.8.1 Overview of the service for Unified Comfort Panels
	16.2.8.2 ProSave
	16.2.8.3 Data backup of the HMI device
	16.2.8.4 Backing up and restoring data of the HMI device
	16.2.8.5 Updating the operating system
	16.2.8.6 Updating the operating system of the HMI device
	16.2.8.7 Updating the operating system of the HMI device from a data storage medium

	16.3 WinCC Unified PC
	16.3.1 Specifying runtime settings
	16.3.1.1 Introduction
	16.3.1.2 General
	16.3.1.3 Alarms
	16.3.1.4 Process diagnostics
	16.3.1.5 Services
	16.3.1.6 Language & font
	16.3.1.7 Collaboration
	16.3.1.8 Storage system
	16.3.1.9 Settings for tags
	16.3.1.10 Good Manufacturing Practice
	16.3.1.11 User management
	16.3.1.12 OPC UA server
	16.3.1.13 Layers
	16.3.1.14 Reporting

	16.3.2 Compiling a project
	16.3.3 Downloading projects
	16.3.3.1 Basics of downloading projects
	16.3.3.2 Initial download of a project
	16.3.3.3 Complete reloading of a project
	16.3.3.4 Download changes only
	16.3.3.5 Loading projects of multiple HMI devices simultaneously
	16.3.3.6 Using external storage medium

	16.3.4 Compiling and loading with team engineering
	16.3.4.1 Basics on compiling and loading with team engineering
	16.3.4.2 Compiling in the server project view and in the exclusive session

	16.3.5 Error messages during loading of projects
	16.3.6 Starting and stopping runtime
	16.3.7 Managing users in Runtime

	16.4 Simulating control with PLCSIM
	16.4.1 Using PLCSIM
	16.4.2 Starting simulation and simulating behavior
	16.4.3 Preparing simulation with PLCSIM
	16.4.4 Working with PLCSIM

	17 Runtime and simulation
	17.1 Simulate runtime
	17.1.1 Simulate Unified Comfort Panel
	17.1.1.1 Basics of simulation
	17.1.1.2 Skip "Load preview" dialog
	17.1.1.3 Simulating a project
	17.1.1.4 Simulating a central user management

	17.1.2 Simulating Unified PC
	17.1.2.1 Basics of simulation
	17.1.2.2 Skip "Load preview" dialog
	17.1.2.3 Simulating a project
	17.1.2.4 Simulating a central user management

	17.2 Operating Unified Panel
	17.2.1 Users in runtime
	17.2.2 Viewing memory card data
	17.2.2.1 Basics
	17.2.2.2 Working with backups

	17.2.3 Operation in Unified Runtime
	17.2.3.1 Overview
	17.2.3.2 Operation with the touch screen
	17.2.3.3 Triggering an action
	17.2.3.4 Entering a value
	17.2.3.5 Moving operator controls
	17.2.3.6 Changing Runtime language
	17.2.3.7 Web browser of WebKit engine

	17.2.4 Entering barcodes via handheld readers

	17.3 Operating Unified PC
	17.3.1 Basics
	17.3.1.1 Process screens
	17.3.1.2 Tags
	17.3.1.3 Alarms
	17.3.1.4 Logs
	17.3.1.5 Contexts

	17.3.2 Starting and displaying runtime
	17.3.2.1 Internet browsers for WinCC Unified PC
	17.3.2.2 Displaying runtime
	17.3.2.3 Installing a certificate when accessing via web client (Unified PC)
	17.3.2.4 SwacLogin: Errors after complete download
	17.3.2.5 Logging out user
	17.3.2.6 Changing users in runtime
	17.3.2.7 Starting and stopping a project
	17.3.2.8 Switching the Runtime language

	17.3.3 Runtime operation
	17.3.3.1 Overview
	17.3.3.2 Operation with the touch screen
	17.3.3.3 Triggering an action
	17.3.3.4 Entering a value
	17.3.3.5 Moving operator controls
	17.3.3.6 Placing the focus on objects
	17.3.3.7 Operating objects with transparent fill
	17.3.3.8 Flashing

	17.3.4 Controls
	17.3.4.1 Overview of controls
	17.3.4.2 Operating alarms
	17.3.4.3 Displaying tags in Runtime
	17.3.4.4 Screen window
	17.3.4.5 Web control
	17.3.4.6 Media player
	17.3.4.7 System diagnostics view
	17.3.4.8 Plant overview
	17.3.4.9 Plant overview with companion controls
	17.3.4.10 Parameter set control
	17.3.4.11 Reports
	17.3.4.12 Rearranging columns at runtime
	17.3.4.13 Process diagnostics

	17.3.5 Elements
	17.3.5.1 Overview of elements
	17.3.5.2 Using elements

	17.3.6 Basic objects
	17.3.7 Popup window
	17.3.8 Tests and error analysis
	17.3.8.1 Trace logs for function calls and tag values
	17.3.8.2 Debugging scripts

	17.4 SIMATIC Runtime Manager
	17.4.1 Functions in the SIMATIC Runtime Manager
	17.4.2 Start Runtime Manager
	17.4.3 The Runtime Manager user interface
	17.4.4 Starting the project
	17.4.5 Adding a project
	17.4.6 Selecting an autostart project
	17.4.7 Restoring and deleting log segments
	17.4.8 Enter password
	17.4.9 Setting general settings
	17.4.10 Activating automatic login
	17.4.11 Allowing start of external processes
	17.4.12 Managing certificates
	17.4.13 Exporting tags via the OPC UA server
	17.4.14 Activating user management
	17.4.15 Setting the Runtime Script Debugger settings
	17.4.16 Enabling telemetry service
	17.4.17 Operation via command line

	17.5 Certificate Manager
	17.5.1 Basics
	17.5.1.1 Introduction to the WinCC Unified Certificate Manager
	17.5.1.2 Certificate authority
	17.5.1.3 Required certificates
	17.5.1.4 Password requirements

	17.5.2 Certificate Manager interface
	17.5.2.1 Structure of the user interface
	17.5.2.2 "CA configuration" tab
	17.5.2.3 "Installed certificates" tab
	17.5.2.4 Customize surface
	17.5.2.5 Changing the user interface language

	17.5.3 Making certificates available
	17.5.4 Creating a certificate authority and root certificate
	17.5.5 Adding devices
	17.5.6 Add application certificates
	17.5.7 Export options
	17.5.8 Exporting, importing and installing for Unified PCs
	17.5.8.1 Exporting certificate configuration (Unified PC)
	17.5.8.2 Importing certificate configuration (Unified PC)
	17.5.8.3 Installing certificates (Unified PC)

	17.5.9 Export, import and installation for Unified Comfort Panels
	17.5.9.1 Exporting the certificate configuration (UCP)
	17.5.9.2 Importing and installing certificate configuration (UCP)
	17.5.9.3 Importing and installing certificates manually (UCP)

	17.5.10 Exporting a single application certificate
	17.5.11 Exporting root certificate and CRL file
	17.5.12 Installing root certificate for access via web client (Unified PC)
	17.5.13 Recreating certificates
	17.5.13.1 Recreating the entire configuration
	17.5.13.2 Recreating application certificates
	17.5.13.3 Updating a CRL file

	17.5.14 Create backup

	18 Using distributed systems
	18.1 Overview
	18.2 Unified Collaboration
	18.2.1 Basics
	18.2.1.1 Basics
	18.2.1.2 Requirements
	18.2.1.3 Restrictions
	18.2.1.4 User management
	18.2.1.5 System functions and scripts

	18.2.2 Preparing Unified Collaboration
	18.2.2.1 Creating certificates
	18.2.2.2 Distributing and installing certificates
	18.2.2.3 Configuring system events for Unified Collaboration
	18.2.2.4 Defining collaboration settings
	18.2.2.5 Changing the collaboration settings

	18.2.3 Using Unified Collaboration
	18.2.3.1 Configuring a screen window within a project
	18.2.3.2 Configuring screen windows from different projects
	18.2.3.3 Display messages from participating devices

	18.2.4 Example: Connecting HMI devices from two projects with Unified Collaboration

	18.3 Web Client
	18.3.1 Web client basics
	18.3.2 Mode of operation of the web client
	18.3.3 Activate web client for Unified Comfort Panel
	18.3.4 Using the web client
	18.3.5 Installing a certificate in the browser when accessing via web client (Unified PC)
	18.3.6 Installing a certificate in the browser when accessing via web client (UCP)
	18.3.7 SwacLogin: Errors after complete download
	18.3.8 Logging out user

	18.4 WinCC Smart Server
	18.4.1 General
	18.4.2 Application scenarios
	18.4.3 Security concept for the Smart Server
	18.4.4 Settings in the TIA Portal
	18.4.5 Settings in the Control Panel of the Smart Server
	18.4.6 Configuring the Smart Client application
	18.4.6.1 Dialog "New SmartServer: Connection"
	18.4.6.2 "Options" dialog, "Connections" tab
	18.4.6.3 "Options" dialog, "Globals" tab

	18.4.7 Remote control by means of the Smart Client application
	18.4.8 Use and limitations of the Smart Server

	19 Options
	19.1 WinCC Audit
	19.1.1 Basics
	19.1.1.1 GMP compliance
	19.1.1.2 GMP-compliant configuration
	19.1.1.3 Audit option
	19.1.1.4 Scope of logging
	19.1.1.5 Performance features of the GMP-compliant configuration

	19.1.2 Using the Audit trail
	19.1.2.1 Enabling GMP compliant configuration
	19.1.2.2 Creating an audit trail
	19.1.2.3 Audit Trail reports
	19.1.2.4 Audit trail logging concept

	19.1.3 Configuring audit functions
	19.1.3.1 Logging tag value changes
	19.1.3.2 Logging user actions
	19.1.3.3 Recording system functions
	19.1.3.4 Standard entries in the Audit Trail

	19.2 Creating production reports
	19.2.1 Basics
	19.2.1.1 Introduction
	19.2.1.2 Basics of Reporting
	19.2.1.3 General requirements and restrictions
	19.2.1.4 Version compatibility

	19.2.2 Complete workflow for using production reports
	19.2.3 Configuring production reports in the engineering system
	19.2.3.1 Configuring Reporting-specific Runtime settings
	19.2.3.2 Inserting a "Reporting" control in a screen

	19.2.4 Creating report templates for production reports
	19.2.4.1 Requirements
	19.2.4.2 Login
	19.2.4.3 Setting up a data source
	19.2.4.4 Configuring report templates
	19.2.4.5 Making general settings
	19.2.4.6 Undo and redo
	19.2.4.7 Tips on design and layout

	19.2.5 Working with production reports in Runtime
	19.2.5.1 Workflow for working with reports in Runtime
	19.2.5.2 The user interface of the "Reports" control
	19.2.5.3 Setting global email settings
	19.2.5.4 Configuring task parameters
	19.2.5.5 Configuring report tasks
	19.2.5.6 Running a report job manually
	19.2.5.7 Downloading reports
	19.2.5.8 Exporting an offline configuration file
	19.2.5.9 Transferring the control configuration
	19.2.5.10 Configuring enable paging
	19.2.5.11 Inconsistencies and error diagnostics
	19.2.5.12 Dynamic placeholder

	20 Runtime Openness
	20.1 WinCC Unified Open Pipe
	20.1.1 Introduction
	20.1.2 Safety-related settings
	20.1.3 Behavior of the browse commands
	20.1.4 Using basic syntax
	20.1.4.1 Basics of basic syntax
	20.1.4.2 Commands
	20.1.4.3 Reference

	20.1.5 Using expert syntax
	20.1.5.1 Basics of expert syntax
	20.1.5.2 Commands
	20.1.5.3 Reference
	20.1.5.4 Syntax of the alarm filter

	20.2 Programming Custom Web Controls
	20.2.1 Custom web controls
	20.2.2 General structure and folder structure
	20.2.3 Contract-based interaction and the manifest file
	20.2.3.1 Basics for the manifest
	20.2.3.2 Manifest structure
	20.2.3.3 Data types and references in the manifest

	20.2.4 Interaction between control and container via the API
	20.2.5 Extensions
	20.2.5.1 Basics of extensions
	20.2.5.2 HMI extension
	20.2.5.3 Formatting extension
	20.2.5.4 Dialog extension

	20.2.6 Revision of a graphical user interface
	20.2.7 Creating the ZIP file
	20.2.8 Restrictions
	20.2.9 Installing and using Custom Web Controls
	20.2.10 Updating Custom Web Controls

	20.3 Runtime API
	20.3.1 Basics
	20.3.2 Creating a minimal ODK client
	20.3.3 Authorizing users
	20.3.4 Startup and shutdown behavior of an ODK application
	20.3.4.1 Autostart of an ODK application
	20.3.4.2 Shutdown behavior
	20.3.4.3 Restart behavior

	20.3.5 Syntax of the alarm filter
	20.3.6 Locale IDs of the supported languages
	20.3.7 Code samples
	20.3.8 Description of the C# interfaces
	20.3.8.1 Releasing objects
	20.3.8.2 Interfaces of the Runtime environment
	20.3.8.3 Error-handling interfaces
	20.3.8.4 Interfaces of the tags
	20.3.8.5 Interfaces of the alarms
	20.3.8.6 Interfaces for connections
	20.3.8.7 Interfaces of the Plant Model
	20.3.8.8 Interfaces of the Calendar option
	20.3.8.9 Interfaces of the contexts

	20.3.9 Description of the C++ interfaces
	20.3.9.1 Error codes of the C++ interfaces
	20.3.9.2 Interfaces of the Runtime environment
	20.3.9.3 Interfaces of the tags
	20.3.9.4 Interfaces of the alarms
	20.3.9.5 Interfaces for connections
	20.3.9.6 Interfaces of the Plant Model
	20.3.9.7 Interfaces of the Calendar option
	20.3.9.8 Interfaces of the contexts

	20.3.10 Reference of the ODK error codes

	20.4 WinCC Unified GraphQL
	20.4.1 Introduction
	20.4.2 Basics
	20.4.2.1 Limitations
	20.4.2.2 Security
	20.4.2.3 More information

	20.4.3 Quick start
	20.4.3.1 Purpose of this quick start
	20.4.3.2 Requirements
	20.4.3.3 Setting up the GraphQL client
	20.4.3.4 Logging in to the GraphQL server
	20.4.3.5 Executing a GraphQL operation
	20.4.3.6 Authorizing an operation request
	20.4.3.7 Using the syntax highlighting and autocompletion functions of Apollo

	20.4.4 Schema
	20.4.4.1 Basics on the schema
	20.4.4.2 Structure of a client query

	20.4.5 Reference of GraphQL API
	20.4.5.1 General information on GraphQL API
	20.4.5.2 GraphQL operation types
	20.4.5.3 Operations for tags
	20.4.5.4 Operations for alarms
	20.4.5.5 Other operations
	20.4.5.6 Reference for Unified-specific types and enumerations

	20.4.6 Code examples
	20.4.7 Recommended procedures
	20.4.7.1 Performance optimization
	20.4.7.2 Disconnection by server

	20.4.8 Troubleshooting
	20.4.8.1 Top-level and item-level errors
	20.4.8.2 GraphQL server doesn't start

	Index

