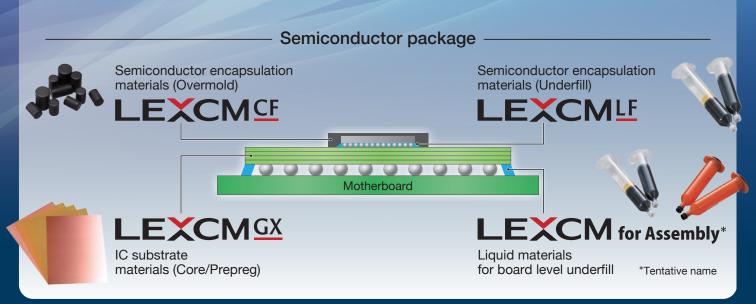


Innovative semiconductor device materials to meet the challenges of leading-edge devices


LEXCM

[léksim]

Panasonic is proud to launch LEXCM brand semiconductor packaging materials.

Innovation through collaboration is our path to developing advanced IC Substrates and IC Encapsulants ready for the demands of next-generation devices.

Circuit board materials for IC substrate EXCMGX Series

Enables thinner and smaller IC substrates with lower warpage.

Line-up

Module

CSP · DRAM · NAND/PMIC

Mini LED

LEXCMGX

Product

Ultra Low CTE / High Reliability

R-1515V / R-1515K Low warpage · Stress release R-G535S / R-G535E Low warpage · High modulus

Low CTE / High Heat Resistance

R-1515W

Low warpage · High modulus R-1515A ge · High heat resistance

Low Dk / Low Df

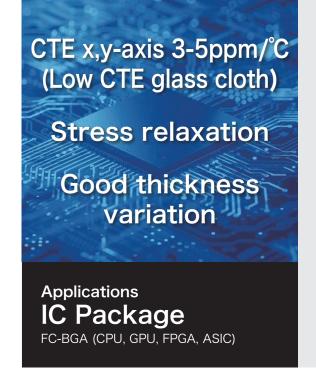
R-G545L / R-G545E

- · Excellent transmission loss
- · Excellent low Dk/Df performance in wide frequency
- · Low warpage

Low CTE / Ultra Thin Material

R-G515S / R-G515E

- · Low warpage
- · Fine laminate-ability
- · Ultra thin prepreg line-up


R-1515E

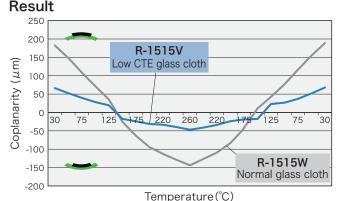
- · Low warpage
- · High modulus

ltem	Glass transition	CTE x-axis	CTE y-axis	Dielectric constant(Dk)*1	Dissipation factor(Df)*1	Flexural modulus*1		Peel strength	Draduct	
	temp.(Tg)	α	1	1G	Hz			1/3oz(12 µm)	Product thickness	
Test method	DMA*2	Internal	method	IPC-TM-6	50 2.5.5.9	JIS C	6481	IPC-TM-650 2.4.8	line-up	
Condition	А	A	4	C-24/	23/50	25°C	250°C	А		
Unit	°C	ppm	n /°C	-	_	GI	Pa	kN/m(lb/inch)	mm	
R-1515V	260	3-5	3-5	4.4	0.016	30	14	0.6(3.4)	0.20~1.8	
R-1515K	260	7	7	4.6	0.015	27	12	0.6(3.4)	0.20~1.8	
R-G545L	230	10	10	3.6	0.002	23	10	0.6(3.4)	0.04~0.2	
R-G545E	230	10	10	4.1	0.002	27	13	0.6(3.4)	0.04~0.2	
R-1515E	270	9	9	4.7	0.011	33	18	0.9(5.1)	0.04~0.2	
R-G535S	260	4-6	4-6	4.4	0.015	32-34	20-22	0.7(4.0)	0.20~1.8	
R-G535E	260	7-8	7-8	4.6	0.015	28-30	18-20	0.7(4.0)	0.20~1.8	
R-G515S	220-240	4-6	4-6	4.2	0.008	28	_	0.7(4.0)	0.03~0.1	
R-G515E	220-240	6-8	6-8	4.4	0.008	24	_	0.7(4.0)	0.03~0.1	
R-1515W	250	9	9	4.8	0.015	35	21	0.9(5.1)	0.20~0.8	
R-1515A	205	12	12	4.8	0.015	27	10	0.9(5.1)	0.10~0.8	

The sample thickness is 0.1 mm.

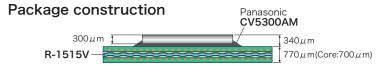
^{*1 0.8}mm *2 Measurement in tensile mode, R-1515W, R-1515A; Measurement in bending mode,

R-1515V*

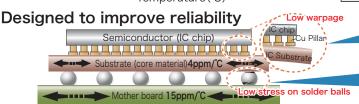

R-1515K

Low CTE glass cloth type

Low CTE IC substrate materials designed to improve reliability


Low CTE reduces warping and addresses a critical challenge with the IC packaging process. Flexibility and buffering features improve the reliability of the assembly process. Offers excellent thickness tolerances.

IC package warpage


Sample

Core thickness	700μmt (12-12μm)
Package size	35 x 35mm (Die size 15 x 15mm)

A wide range of thickness options

R-1515V (Low CTE glass cloth)	0.21~1.8mm
R-1515K (Normal glass cloth)	0.21~1.8mm

Low CTE

Low thermal expansion coefficient (CTE): close to that of silicon IC chips, which reduces warping and addresses a critical challenge with the IC chip packaging process.

Stress relaxation

Combines flexibility and buffering features while retaining low thermal expansion properties through a stress relaxation technology, improving the reliability of the assembly process.

General properties

ltem		Test method	Condition	Unit	R-1515V Low CTE glass cloth	R-1515K Normal glass cloth	Conventional Normal glass cloth
Glass transition temp	o.(Tg)	DMA*2	А	°C	260	260	260
CTE x-axis	α1	TMA*2	A	ppm/°C	3-5	7	8-10
CTE y-axis	αι	I IVIA 2	A	ррпі/ С	3-5	7	8-10
Dielectric constant(Dk)*1	1 GHz	IPC-TM-650 2.5.5.9	C-24/23/50		4.4	4.6	4.8
Dissipation factor(Df)*1	IGHZ	IPC-11VI-050 2.5.5.9			0.016	0.015	0.015
Elastic modulus*1		IPC-TM-650 2.4.4*3	25°C	GPa	30	27	33
Elastic modulus .		IFC-11VI-050 2.4.4 ⁻	250°C	GFa	14	12	21
Peel strength	1/3oz(12 μ m)	IPC-TM-650 2.4.8	А	kN/m(lb/inch)	0.6(3.4)	0.6(3.4)	0.9(5.1)

The sample thickness is $100\mu m$. *1 $700\mu m$ *2 Measurement in tensile mode. *3 The IPC standard determines the test sample size, methods and conditions, etc. but there is no formula for calculating the elastic modulus. Therefore, we quantified it according to JIS C 6481.

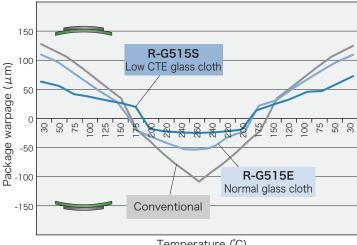
Laminate

R-G515S* R-G515E

Prepreg

R-G510S* R-G510E

*Low CTE glass cloth type


Low CTE ultra-thin IC substrate materials

With an insulation layer thickness of 15μ m or less, these low-profile materials enable thinner IC package designs. The low CTE reduces warpage and increases reliability.

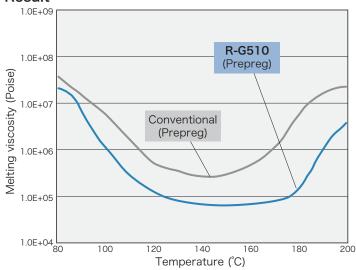
IC package warpage

R-G515S, with low CTE glass cloth, reduces warpage to about half that of conventional Panasonic materials.

Result

Temperature (°C)

Package construction



Package size	12.5 x 12.5mm
Die size	10 x 10 x 0.10mmt
CUF material	Panasonic CV5300AM
Substrate thickness	0.2mmt (2L Cu:12μm)

Melting and curling behavior

R-G510 has a wider melting area and higher moldability than conventional Panasonic materials.

Result

Item		Test method	Condition	Unit	LEXCMGX R-G515S Low CTE glass cloth	LEXCMGX R-G515E Normal glass cloth
Glass transition temp.(T	_g)	DMA*	А	Ç	220-240	220-240
CTE x-axis	a, 1	Internal method	^	12 12 12 1°C	4-6	6-8
CTE y-axis	α1	internal method	A	ppm/°C	4-6	6-8
Young's modulus		ASTM D3039	25°C	GPa	23-28	22-27
Peel strength	1/3oz	IPC-TM-650 2.4.8	А	kN/m(lb/inch)	0.7(4.0)	0.7(4.0)

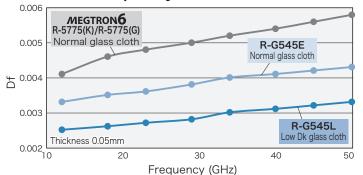
The sample thickness is 0.1mm.

^{*} DMA: Measurement in tensile mode

Laminate

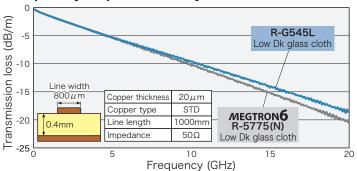
R-G545L* R-G545E

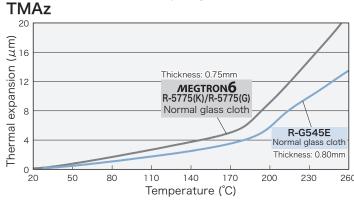
Prepreg


R-G540L* R-G540E

*Low Dk glass cloth type

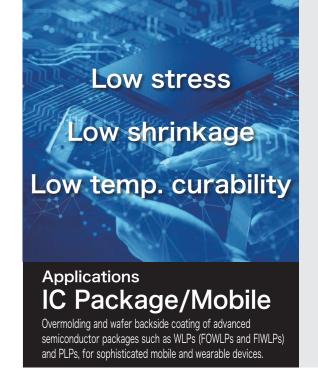
Ultra-low transmission loss circuit board materials for IC substrate/Module


Low Dk/Df coupled with low CTE enables devices to evolve and keep pace with changing demands.


Df at wide-frequency band

TMAxy (H 7) 25 Thickness: 0.75mm l expansion (500) MEGTRON**6** R-5775(K)/R-5775(G) Normal glass cloth R-G545E Normal glass cloth Thermal 10 Thickness: 0.80mm 5 0 20 50 80 140 170 200 230 260 Temperature (°C)

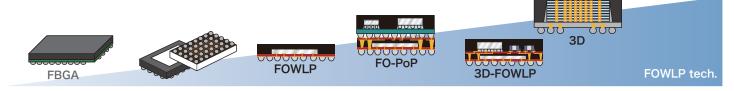
Frequency dependence by transmission loss



ltem		Test method	Condition	Unit	LEXCMGX R-G545L Low Dk glass cloth	LEXCMGX R-G545E Normal glass cloth
Glass transition temp.(T	- g)	DMA*	А	°C	230	230
CTE x, y-axis	a. 1	Internal method	^	1°C	10	10
CTE z-axis	α1	IPC-TM-650 2.4.24	A	ppm/°C	22	22
Dielectric constant(Dk)	12GHz	Balanced type circular	^		3.5	4.0
Dissipation factor(Df)	12GHZ	disk resonator	A	_	0.003	0.004
Water absorption		IPC-TM-650 2.6.2.1	D-24/23	%	0.06	0.06

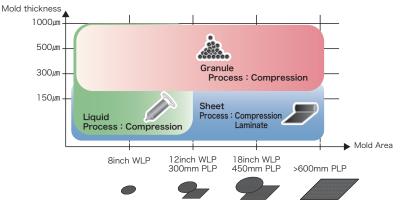
The sample thickness is 0.1mm

^{*} DMA: Measurement in tensile mode

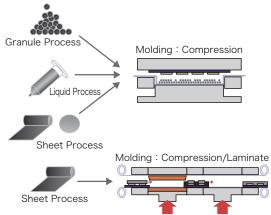

LEXCMCF CV8511C LEXCMLF CV5788

Encapsulation materials for FOWLP/PLP

Various delivery formats (granule, tablet, liquid and sheet) are offered for different molding processes (compression, transfer and lamination). Each material is matched to the required encapsulation design and performance requirements. Responsive to demands of larger and thinner package size as well as low warpage, these materials contribute to the increased productivity of advanced semiconductor packages.


FOWLP technology trend

Contribute to low warpage and thinner product

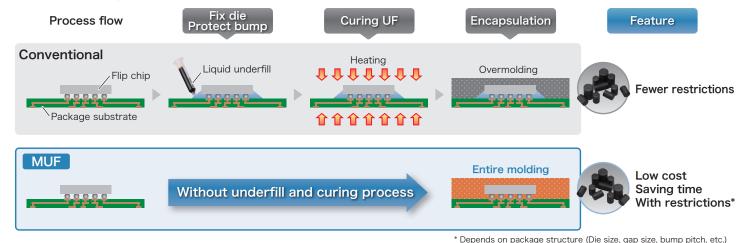


Each material and corresponding package

We have wide range of encapsulation line-up for WLP/PLP

Encapsulation method

ltem	Unit	LEXCM ^{CF} CV8511C	LEXCM ^{LE} CV5788		
Mold Size	-	Wafer Level	/ Panel Level		
Process	-	Chip First / Chip Last			
Form	-	Granule	Liquid		
Mold shrinkage	%	0.1	0.06		
Tg	°C	210	180		
C.T.E.1	ppm/°C	9	10		
C.T.E.2	ppm/°C	52	49		
F.Modulus (R.T.)	GPa	9	18		

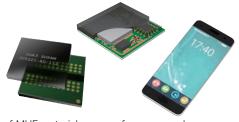


CV8710 CV8713

Molded underfill (MUF) semiconductor encapsulation molding compounds

MUF technology is a process that can fill the narrow gap under the flip-chip without voids and overmold the die in one-step. Panasonic proprietary high filler loading and resin design technologies are the features of this material.

Process comparison


Excellent fillability for narrow gap and narrow pitch

Application

Flip-chip package

- FC-CSP
- FC-SiP module Other

We have various options of MUF materials proven for many packages. Please contact us.

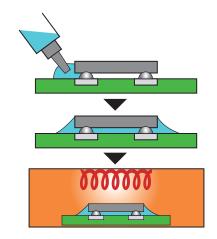
General properties

Item	Unit	LEXCMCF CV8710TAC	LEXCMCF CV8710TLC	CV8710U	LEXCMCF CV8715BU	LEXCMCF X8710U-F1	LEXCM ^{CF} CV8713
EMC type	_	Green	Green	Green	Green	Green	Green
Filler cut point	μm	3	0	2	0	10	20
Flexural modulus (R.T.)	GPa	24	20	25	12	25	25
Tg (TMA)	°C	135	150	143	140	156	145
C.T.E.1	ppm/°C	10	13	10	21	10	10
Mold shrinkage	%	0.20	0.30	0.21	0.55	0.19	0.20

The above data are typical values and not guaranteed values.

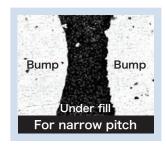
CV5300 series

Capillary underfill (CUF) semiconductor encapsulation materials


High capillary flow rate fills narrow gaps without voiding.

Line-up

Conventional

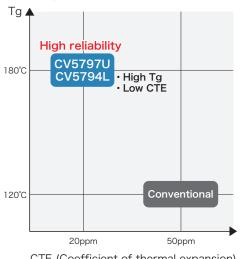

- Compatible with narrow gap
- 2 Uniform penetration
- 3 High-speed fillability
- 4 Compatible with low-k film
- 5 High moisture reflow resistance

Part Number	Features
CV5300 series	High fluidity, Short-time curing

Excellent fillability for narrow gap/pitch

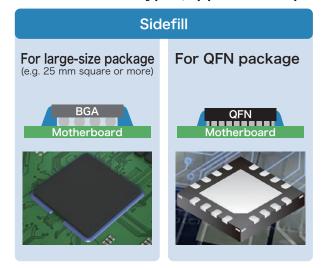
Reduced void/bleed

ltem	Unit	LEXCMLF CV5300 series
Filler size Max	μm	1
C.T.E.	ppm/°C	33
Tg (TMA)	°C	110
Modulus	GPa	7



CV5797 series CV5794 series

High heat resistance secondary mounting sidefill/underfill materials


Achieves automotive grade assembly-level reliability requirements with the industry's highest heat resistance and low CTE. Package periphery (edge and corner) reinforcement materials available. RoHS compliant.

Concept

CTE (Coefficient of thermal expansion)

Reinforcement type (Applicable IC package)

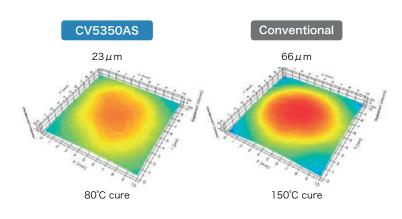
Correspond to temperature cycle test under automotive environment

CV5797U/ CV5794L

Item	CV5797U	Conventional
perature cycling test (TCT) :5°C⇔125°C 30min	6000 cycles Pass	3000 cycles Pass

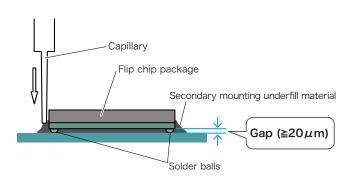
ltem	Unit	LEXCM for Assembly CV5797 series Sidefill (Corner glue)	LEXCM for Assembly CV5794 series Underfill
Glass transition temp. (Tg)	°C	160	160
C.T.E.1	ppm/°C	14	21
Elastic modulus (25°C)	GPa	18	15
Storage condition	_	-20°C/ 6months	

LEXCM for Assembly*


*Tentative name

CV5350AS

Low-temperature curing secondary mounting underfill materials


Cures at low temperature; provides high temperature reliability. Ideal for the reinforcement of precision components. Improves the reliability of automotive assemblies where high bonding strength is required.

Moire data at room temperature

Suitable for mounting in areas with small gaps

Cross section of a circuited board being mounted

Correspond to temperature cycle test under automotive environment

Item	CV5350AS	Conventional
Temperature cycling test (TCT) -55°C ⇔125°C	1000 cycles Pass	300 cycles Pass

We also have "Corner reinforce type" suitable for partial reinforcement

General properties

ltem	Unit	LEXCM for Assembly CV5350AS
Minimum flow gap	μm	20
Viscosity (25°C)	mPa∙s	4000
Glass transition temp. (Tg)	°C	150
C.T.E.1	ppm/°C	30
Elastic modulus (25°C)	GPa	10
Potential for reworking	_	Not possible

The above data are typical values and not guaranteed values.

Notes before you use

- User must verify the suitability and fitness for intended application by quality testing, evaluation or other means at your own option before any adoption, use or change of use conditions of a product listed in this catalog.
- We would like to have a delivery specifications mutually agreed for the product that you have decided to use. The agreements defined in the delivery specifications are assigned higher priority.
- Please note that images shown may differ from the actual product in color.
- · Please note that specifications and external design are subject to change without notice.
- For details on products in this catalog, please contact your distributor or our sales department.

Safety Information

- Before using the product, please read the delivery specifications carefully or contact the distributor from which you purchased the product or our sales department.
- The products in this catalog are Electronic circuit board materials for electronic and electrical devices. Do not use them for other than specified use.

Panasonic Industrial Devices Sales Company of America Electronic Materials Division

205 Ravendale Dr, Mountain View, CA, 94043 phone: 1-408-861-3946

website: na.industrial.panasonic.com

Q Panasonic Industrial

Search