
PLUG AND PLAY IN CONTROL LOOP DESIGN

Lars Pernebo and Bengt Hansson

ABB Automation Technology Products
lars.pernebo@se.abb.com bengt.g.hansson@se.abb.com

Abstract: Most modern control systems have libraries of building blocks for control
loops. A high functionality and a high degree of flexibility can often be achieved.
Unfortunately, it requires quite a lot of knowledge in control loop design and in the
function of the participating building blocks to construct and maintain the control loops.
In this paper a standardized interface for the signals between the building blocks is
presented. It is shown that control loops can be configured and maintained with less
detailed knowledge and a more reliable result with this interface.

Keywords: Control loop, PID-control, function block, industrial control system, design,
configuration.

1. INTRODUCTION This paper discusses a way to overcome these two

drawbacks. A common interface between all function
blocks, used to build control loops, is defined. The
interface makes it possible to build a control loop,
with full functionality, using only one connection
between any two participating function blocks. In
other words a “plug and play” method is used when
building control loops.

Before the time of the computerized control systems,
control loops were constructed by combining pieces
of hardware. Two PI-controllers were e.g. used,
together with sensors and an actuator, to build a
cascade control loop.

When computerized control systems entered the
scene this modular approach was retained. The
reason was that it gave a high degree of flexibility.
The pieces of hardware equipment were, in many
cases, substituted by software function blocks.
Function block diagrams were used to graphically
connect the function blocks to make control loops.

It is also shown that traditional function blocks, e.g.
as defined in the IEC 61131-3 standard, are not quite
sufficient for implementation of the suggested
interface. Some generalizations are needed and the
concept of control modules is introduced as an
alternative to traditional function blocks.

It is, of course, much easier to implement complex
control algorithms with computer programs than with
hardware equipment. This fact, together with the
rapid development of control algorithms in recent
decades, has lead to a tremendous increase of
possible control loop functionality. Autotuners,
adaptive controllers, optimising controllers and fuzzy
controllers are examples of this development.

2. INTERACTION WITHIN THE CONTROL

LOOP

A cascade control loop may be used to illustrate that
quite a lot of information has to be sent between the
different function blocks in order to achieve the
desired functionality of the loop.

Function blocks are still used in many systems as
building blocks for control loops and function block
diagrams are popular configuration tools. The
function blocks often have a very high functionality
and are quite complex. They also have many
configuration parameters, sometimes called
terminals.

Fig. 1 shows the main signal flow through a cascade
control loop. The loop works fine in normal
operation, but it is not able to handle exceptional
cases and is therefore not acceptable in a modern
control system.

Slave

Sp

PV

Out

PVIn Out

I/0

Master

Sp

PV

Out

PVIn Out

I/0

SpIn Out

I/0

Out I/OIn

There are two drawbacks of the increased complexity
of the function blocks used to build control loops.
The first drawback is that the user often has a lot of
parameters to connect and therefore needs quite a
detailed knowledge of the different function blocks.
The second drawback is the risk of making mistakes
when many parameters are to be connected. 3B

SE
02

87
58

Fig. 1. The main signal flow of a cascade control
loop.

mailto:lars.pernebo@se.abb.com
mailto:bengt.g.hansson@se.abb.com

2.1 Integrator wind-up, also called reset wind-up.

For a single PID-controller integrator wind-up may
occur when the control deviation Sp-PV, where Sp is
the setpoint and PV is the process value, has the
same sign for a long time.

The output of the controller is then driven to its
endpoint and remains there as long as the control
deviation has the same sign. The problem is that the
value of the integrator of the PID-controller
continues to grow even though the output has
reached its limit. When the control deviation changes
sign it may take a long time before the value of the
integrator has decreased enough to make the output
decrease. The result will be bad control loop
behaviour with e.g. large overshoots.

In a cascade control loop integrator wind-up may, of
course, occur in the slave controller as well as in the
master controller. But even if it is prevented in both
controllers integrator wind-up may occur in the
cascade loop. The reason is the interaction between
the two PID-controllers.

When the output of the slave controller has reached
e.g. its upper limit the output of the master controller
may still continue to grow, because it has not yet
reached its limit. When the control deviation of the
master controller then changes sign it may take some
time before the output of the master has decreased
enough to cause the output of the slave to decrease.

To be able to prevent this type of wind-up the master
controller has to receive additional information from
the slave. The output OutMaxReached in Fig. 2 is set
when the output of the slave has reached its upper
limit. The input InhibitInc will then prevent the
output of the master to increase further.
OutMinReached and InhibitDec work analogously.

Slave

Sp

PV

Out

OutMaxReached
OutMinReached

PVIn Out

I/0

Master

Sp

PV

InhibitInc
InhibitDec

Out

PVIn Out

I/0

SpIn Out

I/0

Out I/OIn

Fig. 2. A cascade loop with prevention of integrator

wind-up.

2.2 Bumpless transfer.

A PID-controller may work in different modes, e.g.
manual, automatic or tracking. The controller has to
“behave bumplessly” when the mode changes. This
is usually interpreted as a requirement that the
controller output shall be continuous.

Let us take the transfer from manual to automatic
mode as an example. In a single PID-controller
bumpless transfer is achieved by adjusting the

integrator so that the output becomes continuous. In a
P-controller this is not possible.

A cascade control loop is often configured with the
slave as a P-controller and the master as a PI-
controller. Even though the slave is not by itself able
to achieve bumpless transfer from manual to
automatic mode, the cascade loop is. The integrator
of the master may be adjusted so that its output gives
a control deviation, Sp-PV, for the slave, such that
the slave output becomes continuous.

To be able to adjust its integrator correctly the master
controller has to receive additional information from
the slave. It has to know when to adjust the value of
its integrator and the required value of its output.

The cascade loop in Fig. 2 has been extended with
two additional signals in Fig. 3. The Backtracking
signal is set when the slave is in manual mode.
BacktrackingValue gives the desired output value for
the master in order to achieve bumpless transfer to
automatic mode in the slave.

Slave

Sp

PV

Out

Backtracking
BacktrackingValue

OutMaxReached
OutMinReached

PVIn Out

I/0

Master

Sp

PV

Track
TrackValue
InhibitInc
InhibitDec

Out

PVIn Out

I/0

SpIn Out

I/0

Out I/OIn

Fig. 3. A cascade control loop with backtracking.

If the slave is a PI-controller it is able to achieve
bumpless transfer, in the sense of a continuous
output, by itself. But the behaviour of the cascade
loop can be approved if also the master participates.
In this case, BacktrackingValue from the slave is
equal to the process value of the slave. The effect is
that not just the output of the slave becomes
continuous, but also its derivative.

2.3 Signal quality.

The process value from the I/O-system often contains
some quality information. It may be anything from
hardware malfunction to overflow and underflow in
the converters.

The quality information may be used to influence the
behaviour of the loop. If the quality of the process
value of the master controller is bad the slave
controller may be required to go to some kind of safe
state. A quality signal has been added in Fig. 4.

In this case the quality information may be altered by
the master controller. If the quality of the process
value of the master is bad and the controller is in
automatic mode, the output of the controller will also
have bad quality. But if the master is in manual mode 3B

SE
02

87
58

the value of the output is entered by the operator and
the quality of the manual value is considered good.

The resulting cascade control loop in Fig. 5 has the
high functionality that is needed in most industrial
applications today. It has quite a lot of signals
transmitting information in the forward, as well as
backward, direction of the loop.

PVIn Out
OutQI/0

Master

Sp
SpQ
PV
PVQ

Track
TrackValue
InhibitInc
InhibitDec

Out
OutQ

Slave

Sp
SpQ
PV
PVQ

Out
OutQ

Backtracking
BacktrackingValue

OutMaxReached
OutMinReached

PVIn Out
OutQI/0

SpIn Out
OutQI/0

Out I/OIn
InQ

2.5 Override control of a heat pump

The compressor of a heat pump is controlled with an
override control strategy. A picture of the heat pump
is shown in Fig. 6 and the control scheme in Fig. 7. Fig. 4. A cascade loop with added quality signal.

Compressor Motor

Sea water input

Sea water output

District heating water

Flow

f(TIn,TOut,Flow)
High energy media

Heat
Exchanger

Cooling
media

Pressure Temperature

Current

Power

TOut

TIn

2.4 Signal ranges.

The first computerized control systems often
normalized the signals between the function blocks
to the interval 0 to 100. In modern control systems
the signals are usually represented in engineering
units. In this paper we assume that signals are
represented in engineering units.

The scaling of physical signals is done in the I/O-
system. The largest and smallest values of the signal
ranges are entered. Let us, for the sake of simplicity,
call the largest and smallest value the range of the
signal.

Fig. 6. The heat pump

The main control loop is a cascade loop with the
power controller as a master and a positioner for the
angle of the compressor blades as a slave. The angle
of the compressor blades controls the pressure of the
compressor.

The signal ranges are needed in some of the function
blocks of the control loop. A PID-controller needs
the ranges of its inputs and output e.g. to scale its
gain, which traditionally is presented as a
dimensionless entity. If the PID has an autotuner, the
autotuner needs to know the signal ranges in order to
design its probing signals. The PID controller also
has some kind of graphical interface with e.g. bar
graphs and trend graphs. This interface clearly needs
the signal ranges.

Min Out
OutQ

Selected

In1
In1Q
In2
In2Q
In3
In3Q
In4
In4Q

>=1

0 Sel
OutSel2

In1
In2

+

+ Sel
OutSel2

In1
In2

Tolerance

Int to
1.of N

Out1
Out2
Out3
Out4
Out5

In

Pressure

Sp
SpQ
PV
PVQ
PV Max
PV Min
Out Max
Out Min
ModifyInhibitLim
Track
TrackValue
InhibitInc
InhibitDec

Out
OutQ

Angle

Sp
SpQ
PV
PVQ
PV Max
PV Min
Out Max
Out Min

Out
OutQ

Backtracking
BacktrackingValue

OutMaxReached
OutMinReached

Out I/O
Max
Min

In
InQ

Power

Sp
SpQ
PV
PVQ
PV Max
PV Min
Out Max
Out Min
ModifyInhibitLim
Track
TrackValue
InhibitInc
InhibitDec

Out
OutQ

PVIn Out
OutQ
Max
Min

I/0

PVIn Out
OutQ
Max
Min

I/0

Current

Sp
SpQ
PV
PVQ
PV Max
PV Min
Out Max
Out Min
ModifyInhibitLim
Track
TrackValue
InhibitInc
InhibitDec

Out
OutQ

PVIn Out
OutQ
Max
Min

I/0

SpIn Out
OutQI/0

I/0
SpIn Out

OutQI/0

Temperature

Sp
SpQ
PV
PVQ
PV Max
PV Min
Out Max
Out Min
ModifyInhibitLim
Track
TrackValue
InhibitInc
InhibitDec

Out
OutQ

I/0
SpIn Out

OutQI/0

PVIn Out
OutQ
Max
Min

I/0

4

I/0
SpIn Out

OutQI/0

PVIn Out
OutQ
Max
Min

I/0

The range information is often entered manually in
each function block that needs it. The drawback is
that the same information has to be entered in many
different places. This makes the configuration
difficult to maintain.

PVIn Out
OutQ
Max
Min

I/0

Master

Sp
SpQ
PV
PVQ
PV Max
PV Min
Out Max
Out Min

Track
TrackValue
InhibitInc
InhibitDec

Out
OutQ

Slave

Sp
SpQ
PV
PVQ
PV Max
PV Min
Out Max
Out Min

Out
OutQ

Backtracking
BacktrackingValue

OutMaxReached
OutMinReached

PVIn Out
OutQ
Max
Min

I/0

SpIn Out
OutQI/0

Out I/O
Max
Min

In
InQ

Fig. 7. Override control of a heat pump compressor. Fig. 5. The resulting cascade control loop with signal

ranges added.

3B
SE

02
87

58

Between the master and the slave there is a Min-
selector. The Min-selector transmits the smallest of
its inputs to the output. There are three other
alternative master controllers connected to the Min-
selector.

An alternative approach is to enter the range
information only at one place, often the I/O-system,
and distribute the information via signal connections.
In Fig. 5 the range information, i.e. Max and Min of
the signals are distributed in this way.

The alternative masters control the current of the
motor of the compressor, the output temperature of
the heat exchanger and pressure in the compressor.
The setpoints of these controllers are upper limits of
the current, temperature and pressure, respectively.

The problems with integrator wind-up, bumpless
transfer, signal quality and distribution of signal
ranges are basically handled in the same way as in
the cascade loop. There are, however, additional
problems due to the Min-selector. Let us take the
problem of integrator wind-up as an example.

When the current controller is not active, its output is
on its upper limit. During start up of the heat pump
the current of the compressor often tends to become
too high. The output of the current controller then
starts to decrease and eventually becomes smaller
than the output from the power controller and the
current controller takes over the control of the loop.

The problem is that it takes too long time before the
current controller takes over. This is another type of
integrator wind-up in the current controller. To
prevent this wind-up the current controller has to
have information about the value of the output of the
active master controller, in this case the power
controller.

The problem is solved by adjustment of the
integrators of the non-selected masters. They are
made to follow the output of the selected master. A
small tolerance is needed to take care of noise.

2.6 Industrial control loops

The cascade control loop and the override control
loop are examples of control loops that often occur in
industrial applications. Many other types of loops
occur. A library of function blocks for construction
of control loops may typically contain some 40 to 80
different block types. The following list contains
some typical types.

PID-, adaptive-, fuzzy controllers
Input-, output blocks
Max-, Min-selectors
Other types of selectors
Filters, delays
Arithmetic functions
Branches, splits
Integrators, differentiators
Supervisors

In view of the two examples in this paper it is easy to
imagine that a large control loop, with many function
blocks, will result in a complex network of signals,
passing information forwards as well as backwards
in the loop.

Constructing such a control loop requires good
knowledge, not only in control loop design, but also
in the function of the function blocks of the control

library. The risk of connecting the signals incorrectly
is large and it will be difficult to maintain the loop.

3. THE CONTROL CONNECTION INTERFACE

The complexity of the loops can be reduced
considerably if a standard interface is defined for the
signals between the blocks. To be able to handle this
interface the blocks have to be constructed according
to object oriented principles.

3.1 A standard interface

A first attempt to define a standard interface to all the
function blocks of the control loop can be done by
studying the control loops in Fig. 5 and Fig. 7. Let us
define a data structure, which we may call
ControlConnection, which contains all the signals
that are sent between the function blocks of the
control loops.

Some of the signals are sent in the forward direction
of the loop and some are sent backwards. Let us
collect all the signals sent forwards in a substructure
called Forward and the signals sent backwards in a
substructure called Backward.

The ControlConnection structure may then look as
follows.

ControlConnection.Forward.Value
 .Status
 .Range.Max
 .Min
ControlConnection.Backward.Value
 .Backtracking
 .MaxReached
 .MinReached
 .Range.Max
 .Min

The Value component in the Forward structure
represents the main signal flow of the loop. The
Status component contains information about the
quality of the loop.

When the Backtracking component of the Backward
structure is set, the output of the preceding block is
requested to follow the value of the Value component
of the backward structure.

When the MaxReached component of the Backward
structure is set the output of the preceding block is
requested to treat the value of the Value component
of the backward structure as its upper limit. The
component MinReached is handled analogously.

3B
SE

02
87

58

The Range has to be included in the Forward, as well
as in the Backward, structure of ControlConnection.
The reason is that the Range sometimes has to be
transmitted in the forward direction of the loop and
sometimes in the backward direction.

The data structure ControlConnection is deduced
from the two examples in Fig. 5 and Fig. 7, but it
turns out that it contains all essential information
needed in the general case.

All the components of ControlConnection are
transmitted unaffected between the selected master
and the slave.

 The Backward components of the non-selected inputs
are computed from the Forward components of the
selected input in such a way that integrator wind-up
is handled, even in the noisy case. They are
computed from the Backward components of the
output in order to handle bumpless transfer when the
slave goes from manual to automatic mode.

If the blocks of the cascade loop in Fig. 5 are
connected with graphical connections of
ControlConnection type the loop appears as in Fig. 8.
Note that the loop in Fig. 8 looks graphically like the
loop in Fig. 1, but it has the complete functionality of
the loop in Fig. 5.

AI

AI AO

Master

AI

Slave

3.3 Ranges in the control connection

There have to be defined rules, which makes it
possible for a particular block to determine if the
Range in the Forward, or in the Backward,
component shall be used. Let us take the cascade
loop of Fig. 8 as an example. Fig. 8. The resulting cascade control loop but the

blocks are connected with ControlConnection
structures.

The range information, i.e. Max and Min are entered
in the I/O interface and are known to the control loop
via the input and output blocks.

3.2 The blocks of the control loop as objects The Range of the process value of the master

controller is transmitted in the forward direction from
the input block to the master controller. The Range
for the control output to the process is transmitted in
the backward direction from the output block to the
slave controller.

In the previous section we saw that a control loop is
configured in a much simpler way if the blocks are
connected with the ControlConnection structure. To
be able to maintain full flexibility in building control
loops all the blocks of the library have to use the
ControlConnection interface.

The Range of the process value of the slave
controller is transmitted in the forward direction from
the input block to the slave controller. This range is
transmitted further in the backward direction from
the setpoint of the slave controller to the output of the
master controller.

Thus, all blocks have to handle all the components of
ControlConnection in such a way that every block
behaves as anticipated in all conceivable
configurations.

AI

AI

AO

Power

Angle<

AI

AI

Current

AI

AI

Temperature

AI

AI

Pressure

AI

In this example of a cascade loop, as well as for the
override loop, it is clear how the range information
shall be transmitted to all points of the loop. In the
general case there may be parts of the loop where the
Ranges are undetermined or overdetermined. Rules
have to be specified how to take care of these cases.

4. REQUIREMENTS ON THE CONTROL
SYSTEM

In the previous section it was shown that a data
structure, called ControlConnection, can be defined
as the only signal interface between the blocks in a
control loop library. It was also indicated that it is
possible to define a behaviour of all the blocks in a
control loop library in such a way that any
appropriate combination of the blocks constitute a
control loop with high functionality concerning e.g.
integrator wind-up or bumpless transfer at mode
changes.

3B
SE

02
87

58

Fig. 9. The override control loop when the blocks are
connected with ControlConnection structures.

Let us consider the Min-selector of an override
control loop as an example. The override control
loop of Fig. 7 will appear as in Fig. 9 when
ControlConnection structures are used.

The implementation of such a control loop library
poses, however, a number of requirements on the
control system, in which it is implemented.

The first requirement is that the system allows
variables of structured data types. The IEC 61131-3
standard for control system languages does specify
structure data types. Therefore many modern systems
allow such data types.

5. CONCLUSIONS

Through the history of computerized control systems
the requirements on control loops have increased
steadily. This has lead to a high functionality of the
building blocks for the control loops. It has also lead
to libraries of building blocks with a high degree of
flexibility. It is thus possible to build a large variety
of complex control loops with a very high
functionality.

The second requirement is that it must be possible to
send information in both directions of a structured
interface. Also in this case IEC 61131-3 defines an
appropriate item, namely a parameter of direction
in_out.
 Unfortunately, the tools for implementation of

building blocks for control loops have not developed
in a pace to match the requirements on the control
loops. Traditional function blocks and function block
diagrams are still used to a large extent.

The third requirement is that the system must have a
graphical editor with graphical as well as non-
graphical connections. IEC 61131-3 suggests a
graphical representation of function block diagrams.
This representation is, however, not good enough.
Parameters with direction in_out are represented in a
way, which leads to messy control loops. This is also
true for most control systems on the market today.

It has been shown in this paper that, even though it is
possible to construct control loops with high
functionality using traditional function blocks, the
solutions tend to be more complex than necessary.
Good knowledge is required, not only in control loop
design, but also in the function of the individual
function blocks. The resulting control loops will be
difficult to understand and hard to maintain.

The fourth requirement is that the system must have
building blocks, which handle transmission of
information more efficiently than traditional function
blocks do.

In a traditional function block diagram the blocks are
executed in an order determined by their positions in
the diagram. It is therefore always possible to order
the function blocks in such a way that the
information transmitted in the forward direction of
the loop will be transmitted without delay. The
information transmitted in the backward direction of
the loop will, however, be delayed one or several
task execution scans.

In this paper the concept of control modules has been
introduced. It has been shown that a library of
building blocks for control loops can be built with
control modules and a standardized, structured
graphical interface for all signal transmissions
between the blocks.

It is then possible to achieve, in addition to a high
functionality and flexibility, a simplicity of
configuration, which makes the control loops easy to
configure and maintain. The risk of making mistakes
when configuring the loops is reduced drastically,
which increases the reliability of the loop.

In our case where all information is transmitted via
the ControlConnection interface it has to be
transmitted through all blocks of the loop. This
means that a large control loop, implemented with a
traditional function block diagram, may have severe
delays in the information transmitted in the backward
direction of the loop.

The control module concept is implemented in
ABB:s new control system Control IT as a
generalization of the traditional function blocks, as
they are specified in e.g. the IEC 61131-3 standard.
For more information see Control IT, AC800M/C
Control Functions – User´s Guide (2001).

The building blocks must thus be able to transmit
information in the forward, as well as in the
backward, direction of the loop without delays.
 With the ControlConnection interface and control

modules we have, in fact, achieved a plug and play
situation in control loop design.

Let us introduce the concept of control modules as a
generalization of function blocks and control module
diagrams as a generalization of function block
diagrams. The control modules can contain two parts
of code. The first part transmits information in the
forward direction of the loop and the second part in
the backward direction. The information is
transmitted without delay in both directions.

3B
SE

02
87

58

6. REFERENCES

Control IT, AC800M/C Control Functions – User´s
Guide (2001). ABB Automation Technology
Products 3BSE 021 351 R201.

The control modules have graphical, as well as non-
graphical, connections and can be freely placed in a
control module diagram. The control module
diagram for the cascade loop and the override control
loop are shown in Fig. 8 and Fig. 9, respectively.

