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Abstract: Most modern control systems have libraries of building blocks for control 
loops. A high functionality and a high degree of flexibility can often be achieved. 
Unfortunately, it requires quite a lot of knowledge in control loop design and in the 
function of the participating building blocks to construct and maintain the control loops. 
In this paper a standardized interface for the signals between the building blocks is 
presented. It is shown that control loops can be configured and maintained with less 
detailed knowledge and a more reliable result with this interface. 
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1. INTRODUCTION This paper discusses a way to overcome these two 

drawbacks. A common interface between all function 
blocks, used to build control loops, is defined. The 
interface makes it possible to build a control loop, 
with full functionality, using only one connection 
between any two participating function blocks. In 
other words a “plug and play” method is used when 
building control loops. 

 
Before the time of the computerized control systems, 
control loops were constructed by combining pieces 
of hardware. Two PI-controllers were e.g. used, 
together with sensors and an actuator, to build a 
cascade control loop.  
 
When computerized control systems entered the 
scene this modular approach was retained. The 
reason was that it gave a high degree of flexibility. 
The pieces of hardware equipment were, in many 
cases, substituted by software function blocks. 
Function block diagrams were used to graphically 
connect the function blocks to make control loops.  

 
It is also shown that traditional function blocks, e.g. 
as defined in the IEC 61131-3 standard, are not quite 
sufficient for implementation of the suggested 
interface. Some generalizations are needed and the 
concept of control modules is introduced as an 
alternative to traditional function blocks. 

  
It is, of course, much easier to implement complex 
control algorithms with computer programs than with 
hardware equipment. This fact, together with the 
rapid development of control algorithms in recent 
decades, has lead to a tremendous increase of 
possible control loop functionality. Autotuners, 
adaptive controllers, optimising controllers and fuzzy 
controllers are examples of this development. 

 
2. INTERACTION WITHIN THE CONTROL 

LOOP 
 
A cascade control loop may be used to illustrate that 
quite a lot of information has to be sent between the 
different function blocks in order to achieve the 
desired functionality of the loop.  

  
Function blocks are still used in many systems as 
building blocks for control loops and function block 
diagrams are popular configuration tools. The 
function blocks often have a very high functionality 
and are quite complex. They also have many 
configuration parameters, sometimes called 
terminals. 

Fig. 1 shows the main signal flow through a cascade 
control loop. The loop works fine in normal 
operation, but it is not able to handle exceptional 
cases and is therefore not acceptable in a modern 
control system. 
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There are two drawbacks of the increased complexity 
of the function blocks used to build control loops. 
The first drawback is that the user often has a lot of 
parameters to connect and therefore needs quite a 
detailed knowledge of the different function blocks. 
The second drawback is the risk of making mistakes 
when many parameters are to be connected. 3B
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Fig. 1.  The main signal flow of a cascade control 
loop.  
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2.1 Integrator wind-up, also called reset wind-up. 
 
For a single PID-controller integrator wind-up may 
occur when the control deviation Sp-PV, where Sp is 
the setpoint and PV is the process value, has the 
same sign for a long time.  
 
The output of the controller is then driven to its 
endpoint and remains there as long as the control 
deviation has the same sign. The problem is that the 
value of the integrator of the PID-controller 
continues to grow even though the output has 
reached its limit. When the control deviation changes 
sign it may take a long time before the value of the 
integrator has decreased enough to make the output 
decrease. The result will be bad control loop 
behaviour with e.g. large overshoots. 
 
In a cascade control loop integrator wind-up may, of 
course, occur in the slave controller as well as in the 
master controller. But even if it is prevented in both 
controllers integrator wind-up may occur in the 
cascade loop. The reason is the interaction between 
the two PID-controllers. 
 
When the output of the slave controller has reached 
e.g. its upper limit the output of the master controller 
may still continue to grow, because it has not yet 
reached its limit. When the control deviation of the 
master controller then changes sign it may take some 
time before the output of the master has decreased 
enough to cause the output of the slave to decrease. 
 
To be able to prevent this type of wind-up the master 
controller has to receive additional information from 
the slave. The output OutMaxReached in Fig. 2 is set 
when the output of the slave has reached its upper 
limit. The input InhibitInc will then prevent the 
output of the master to increase further. 
OutMinReached and InhibitDec work analogously.  
 

   

Slave

Sp

PV

Out

OutMaxReached
OutMinReached

PVIn Out

I/0

Master

Sp

PV

InhibitInc
InhibitDec

Out

PVIn Out

I/0

SpIn Out

I/0

Out I/OIn

 
Fig. 2. A cascade loop with prevention of integrator 

wind-up. 

 
2.2 Bumpless transfer. 
 
A PID-controller may work in different modes, e.g. 
manual, automatic or tracking. The controller has to 
“behave bumplessly” when the mode changes. This 
is usually interpreted as a requirement that the 
controller output shall be continuous. 
 
Let us take the transfer from manual to automatic 
mode as an example. In a single PID-controller 
bumpless transfer is achieved by adjusting the 

integrator so that the output becomes continuous. In a 
P-controller this is not possible. 
 
A cascade control loop is often configured with the 
slave as a P-controller and the master as a PI-
controller. Even though the slave is not by itself able 
to achieve bumpless transfer from manual to 
automatic mode, the cascade loop is. The integrator 
of the master may be adjusted so that its output gives 
a control deviation, Sp-PV, for the slave, such that 
the slave output becomes continuous. 
 
To be able to adjust its integrator correctly the master 
controller has to receive additional information from 
the slave. It has to know when to adjust the value of 
its integrator and the required value of its output.  
 
The cascade loop in Fig. 2 has been extended with 
two additional signals in Fig. 3. The Backtracking 
signal is set when the slave is in manual mode. 
BacktrackingValue gives the desired output value for 
the master in order to achieve bumpless transfer to 
automatic mode in the slave. 
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Fig. 3. A cascade control loop with backtracking. 

 
If the slave is a PI-controller it is able to achieve 
bumpless transfer, in the sense of a continuous 
output, by itself. But the behaviour of the cascade 
loop can be approved if also the master participates. 
In this case, BacktrackingValue from the slave is 
equal to the process value of the slave. The effect is 
that not just the output of the slave becomes 
continuous, but also its derivative. 
 
 
2.3 Signal quality. 
 
The process value from the I/O-system often contains 
some quality information. It may be anything from 
hardware malfunction to overflow and underflow in 
the converters. 
 
The quality information may be used to influence the 
behaviour of the loop. If the quality of the process 
value of the master controller is bad the slave 
controller may be required to go to some kind of safe 
state. A quality signal has been added in Fig. 4. 
 
In this case the quality information may be altered by 
the master controller. If the quality of the process 
value of the master is bad and the controller is in 
automatic mode, the output of the controller will also 
have bad quality. But if the master is in manual mode 3B
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the value of the output is entered by the operator and 
the quality of the manual value is considered good. 

 
The resulting cascade control loop in Fig. 5 has the 
high functionality that is needed in most industrial 
applications today. It has quite a lot of signals 
transmitting information in the forward, as well as 
backward, direction of the loop. 
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2.5 Override control of a heat pump 
 
The compressor of a heat pump is controlled with an 
override control strategy. A picture of the heat pump 
is shown in Fig. 6 and the control scheme in Fig. 7. Fig. 4. A cascade loop with added quality signal.  
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2.4 Signal ranges. 
 
The first computerized control systems often 
normalized the signals between the function blocks 
to the interval 0 to 100. In modern control systems 
the signals are usually represented in engineering 
units. In this paper we assume that signals are 
represented in engineering units. 
 
The scaling of physical signals is done in the I/O-
system. The largest and smallest values of the signal 
ranges are entered. Let us, for the sake of simplicity, 
call the largest and smallest value the range of the 
signal. 

Fig. 6. The heat pump 

 
The main control loop is a cascade loop with the 
power controller as a master and a positioner for the 
angle of the compressor blades as a slave. The angle 
of the compressor blades controls the pressure of the 
compressor. 

 
The signal ranges are needed in some of the function 
blocks of the control loop. A PID-controller needs 
the ranges of its inputs and output e.g. to scale its 
gain, which traditionally is presented as a 
dimensionless entity. If the PID has an autotuner, the 
autotuner needs to know the signal ranges in order to 
design its probing signals. The PID controller also 
has some kind of graphical interface with e.g. bar 
graphs and trend graphs. This interface clearly needs 
the signal ranges. 

 

Min Out
OutQ

Selected

In1
In1Q
In2
In2Q
In3
In3Q
In4
In4Q

>=1

0   Sel
OutSel2

In1
In2

+

+   Sel
OutSel2

In1
In2

Tolerance

Int to
1.of N

Out1
Out2
Out3
Out4
Out5

In

Pressure

Sp
SpQ
PV
PVQ
PV Max
PV Min
Out Max
Out Min
ModifyInhibitLim
Track
TrackValue
InhibitInc
InhibitDec

Out
OutQ

Angle

Sp
SpQ
PV
PVQ
PV Max
PV Min
Out Max
Out Min

Out
OutQ

Backtracking
BacktrackingValue

OutMaxReached
OutMinReached

Out I/O
Max
Min

In
InQ

Power

Sp
SpQ
PV
PVQ
PV Max
PV Min
Out Max
Out Min
ModifyInhibitLim
Track
TrackValue
InhibitInc
InhibitDec

Out
OutQ

PVIn Out
OutQ
Max
Min

I/0

PVIn Out
OutQ
Max
Min

I/0

Current

Sp
SpQ
PV
PVQ
PV Max
PV Min
Out Max
Out Min
ModifyInhibitLim
Track
TrackValue
InhibitInc
InhibitDec

Out
OutQ

PVIn Out
OutQ
Max
Min

I/0

SpIn Out
OutQI/0

I/0
SpIn Out

OutQI/0

Temperature

Sp
SpQ
PV
PVQ
PV Max
PV Min
Out Max
Out Min
ModifyInhibitLim
Track
TrackValue
InhibitInc
InhibitDec

Out
OutQ

I/0
SpIn Out

OutQI/0

PVIn Out
OutQ
Max
Min

I/0

4

I/0
SpIn Out

OutQI/0

PVIn Out
OutQ
Max
Min

I/0

 

 
The range information is often entered manually in 
each function block that needs it. The drawback is 
that the same information has to be entered in many 
different places. This makes the configuration 
difficult to maintain. 
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Fig. 7. Override control of a heat pump compressor. Fig. 5. The resulting cascade control loop with signal 

ranges added.  
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Between the master and the slave there is a Min-
selector. The Min-selector transmits the smallest of 
its inputs to the output. There are three other 
alternative master controllers connected to the Min-
selector. 

 
An alternative approach is to enter the range 
information only at one place, often the I/O-system, 
and distribute the information via signal connections.  
In Fig. 5 the range information, i.e. Max and Min of 
the signals are distributed in this way.  

     



The alternative masters control the current of the 
motor of the compressor, the output temperature of 
the heat exchanger and pressure in the compressor. 
The setpoints of these controllers are upper limits of 
the current, temperature and pressure, respectively. 
 
The problems with integrator wind-up, bumpless 
transfer, signal quality and distribution of signal 
ranges are basically handled in the same way as in 
the cascade loop. There are, however, additional 
problems due to the Min-selector. Let us take the 
problem of integrator wind-up as an example. 
 
When the current controller is not active, its output is 
on its upper limit. During start up of the heat pump 
the current of the compressor often tends to become 
too high. The output of the current controller then 
starts to decrease and eventually becomes smaller 
than the output from the power controller and the 
current controller takes over the control of the loop. 
 
The problem is that it takes too long time before the 
current controller takes over. This is another type of 
integrator wind-up in the current controller. To 
prevent this wind-up the current controller has to 
have information about the value of the output of the 
active master controller, in this case the power 
controller. 
 
The problem is solved by adjustment of the 
integrators of the non-selected masters. They are 
made to follow the output of the selected master. A 
small tolerance is needed to take care of noise. 
 
 
2.6 Industrial control loops 
 
The cascade control loop and the override control 
loop are examples of control loops that often occur in 
industrial applications. Many other types of loops 
occur. A library of function blocks for construction 
of control loops may typically contain some 40 to 80 
different block types. The following list contains 
some typical types. 
 
PID-, adaptive-, fuzzy controllers 
Input-, output blocks 
Max-, Min-selectors 
Other types of selectors 
Filters, delays 
Arithmetic functions 
Branches, splits 
Integrators, differentiators 
Supervisors 
 
In view of the two examples in this paper it is easy to 
imagine that a large control loop, with many function 
blocks, will result in a complex network of signals, 
passing information forwards as well as backwards 
in the loop. 
 
Constructing such a control loop requires good 
knowledge, not only in control loop design, but also 
in the function of the function blocks of the control 

library. The risk of connecting the signals incorrectly 
is large and it will be difficult to maintain the loop. 
 
 

3. THE CONTROL CONNECTION INTERFACE 
 
The complexity of the loops can be reduced 
considerably if a standard interface is defined for the 
signals between the blocks. To be able to handle this 
interface the blocks have to be constructed according 
to object oriented principles. 
 
 
3.1 A standard interface 
 
A first attempt to define a standard interface to all the 
function blocks of the control loop can be done by 
studying the control loops in Fig. 5 and Fig. 7. Let us 
define a data structure, which we may call 
ControlConnection, which contains all the signals 
that are sent between the function blocks of the 
control loops. 
 
Some of the signals are sent in the forward direction 
of the loop and some are sent backwards. Let us 
collect all the signals sent forwards in a substructure 
called Forward and the signals sent backwards in a 
substructure called Backward. 
 
The ControlConnection structure may then look as 
follows. 
 
ControlConnection.Forward.Value 
      .Status 
      .Range.Max 
     .Min 
ControlConnection.Backward.Value 
         .Backtracking 
         .MaxReached 
         .MinReached 
         .Range.Max 
       .Min 
 
The Value component in the Forward structure 
represents the main signal flow of the loop. The 
Status component contains information about the 
quality of the loop. 
 
When the Backtracking component of the Backward 
structure is set, the output of the preceding block is 
requested to follow the value of the Value component 
of the backward structure. 
 
When the MaxReached component of the Backward 
structure is set the output of the preceding block is 
requested to treat the value of the Value component 
of the backward structure as its upper limit. The 
component MinReached is handled analogously. 
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The Range has to be included in the Forward, as well 
as in the Backward, structure of ControlConnection. 
The reason is that the Range sometimes has to be 
transmitted in the forward direction of the loop and 
sometimes in the backward direction. 
 

     



The data structure ControlConnection is deduced 
from the two examples in Fig. 5 and Fig. 7, but it 
turns out that it contains all essential information 
needed in the general case. 

All the components of ControlConnection are 
transmitted unaffected between the selected master 
and the slave.  
 

 The Backward components of the non-selected inputs 
are computed from the Forward components of the 
selected input in such a way that integrator wind-up 
is handled, even in the noisy case. They are 
computed from the Backward components of the 
output in order to handle bumpless transfer when the 
slave goes from manual to automatic mode. 

If the blocks of the cascade loop in Fig. 5 are 
connected with graphical connections of 
ControlConnection type the loop appears as in Fig. 8. 
Note that the loop in Fig. 8 looks graphically like the 
loop in Fig. 1, but it has the complete functionality of 
the loop in Fig. 5. 
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3.3 Ranges in the control connection 
 
There have to be defined rules, which makes it 
possible for a particular block to determine if the 
Range in the Forward, or in the Backward, 
component shall be used. Let us take the cascade 
loop of Fig. 8 as an example.  Fig. 8. The resulting cascade control loop but the 

blocks are connected with ControlConnection 
structures. 

 
The range information, i.e. Max and Min are entered 
in the I/O interface and are known to the control loop 
via the input and output blocks.  

  
3.2 The blocks of the control loop as objects The Range of the process value of the master 

controller is transmitted in the forward direction from 
the input block to the master controller. The Range 
for the control output to the process is transmitted in 
the backward direction from the output block to the 
slave controller.  

 
In the previous section we saw that a control loop is 
configured in a much simpler way if the blocks are 
connected with the ControlConnection structure. To 
be able to maintain full flexibility in building control 
loops all the blocks of the library have to use the 
ControlConnection interface. 

 
The Range of the process value of the slave 
controller is transmitted in the forward direction from 
the input block to the slave controller. This range is 
transmitted further in the backward direction from 
the setpoint of the slave controller to the output of the 
master controller. 

 
Thus, all blocks have to handle all the components of 
ControlConnection in such a way that every block 
behaves as anticipated in all conceivable 
configurations. 
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In this example of a cascade loop, as well as for the 
override loop, it is clear how the range information 
shall be transmitted to all points of the loop. In the 
general case there may be parts of the loop where the 
Ranges are undetermined or overdetermined. Rules 
have to be specified how to take care of these cases. 
 
 

4. REQUIREMENTS ON THE CONTROL 
SYSTEM  

 
In the previous section it was shown that a data 
structure, called ControlConnection, can be defined 
as the only signal interface between the blocks in a 
control loop library. It was also indicated that it is 
possible to define a behaviour of all the blocks in a 
control loop library in such a way that any 
appropriate combination of the blocks constitute a 
control loop with high functionality concerning e.g. 
integrator wind-up or bumpless transfer at mode 
changes. 
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Fig. 9. The override control loop when the blocks are 
connected with ControlConnection structures. 

 
  
Let us consider the Min-selector of an override 
control loop as an example. The override control 
loop of Fig. 7 will appear as in Fig. 9 when 
ControlConnection structures are used. 

The implementation of such a control loop library 
poses, however, a number of requirements on the 
control system, in which it is implemented. 
 

     
 



The first requirement is that the system allows 
variables of structured data types. The IEC 61131-3 
standard for control system languages does specify 
structure data types. Therefore many modern systems 
allow such data types. 

5. CONCLUSIONS 
 
Through the history of computerized control systems 
the requirements on control loops have increased 
steadily. This has lead to a high functionality of the 
building blocks for the control loops. It has also lead 
to libraries of building blocks with a high degree of 
flexibility. It is thus possible to build a large variety 
of complex control loops with a very high 
functionality. 

 
The second requirement is that it must be possible to 
send information in both directions of a structured 
interface. Also in this case IEC 61131-3 defines an 
appropriate item, namely a parameter of direction 
in_out.  
 Unfortunately, the tools for implementation of 

building blocks for control loops have not developed 
in a pace to match the requirements on the control 
loops. Traditional function blocks and function block 
diagrams are still used to a large extent. 

The third requirement is that the system must have a 
graphical editor with graphical as well as non-
graphical connections. IEC 61131-3 suggests a 
graphical representation of function block diagrams. 
This representation is, however, not good enough. 
Parameters with direction in_out are represented in a 
way, which leads to messy control loops. This is also 
true for most control systems on the market today. 

 
It has been shown in this paper that, even though it is 
possible to construct control loops with high 
functionality using traditional function blocks, the 
solutions tend to be more complex than necessary. 
Good knowledge is required, not only in control loop 
design, but also in the function of the individual 
function blocks. The resulting control loops will be 
difficult to understand and hard to maintain. 

 
The fourth requirement is that the system must have 
building blocks, which handle transmission of 
information more efficiently than traditional function 
blocks do.  
  
In a traditional function block diagram the blocks are 
executed in an order determined by their positions in 
the diagram. It is therefore always possible to order 
the function blocks in such a way that the 
information transmitted in the forward direction of 
the loop will be transmitted without delay. The 
information transmitted in the backward direction of 
the loop will, however, be delayed one or several 
task execution scans. 

In this paper the concept of control modules has been 
introduced. It has been shown that a library of 
building blocks for control loops can be built with 
control modules and a standardized, structured 
graphical interface for all signal transmissions 
between the blocks. 
 
It is then possible to achieve, in addition to a high 
functionality and flexibility, a simplicity of 
configuration, which makes the control loops easy to 
configure and maintain. The risk of making mistakes 
when configuring the loops is reduced drastically, 
which increases the reliability of the loop. 

 
In our case where all information is transmitted via 
the ControlConnection interface it has to be 
transmitted through all blocks of the loop. This 
means that a large control loop, implemented with a 
traditional function block diagram, may have severe 
delays in the information transmitted in the backward 
direction of the loop. 

 
The control module concept is implemented in 
ABB:s new control system Control IT as a 
generalization of the traditional function blocks, as 
they are specified in e.g. the IEC 61131-3 standard. 
For more information see Control IT, AC800M/C 
Control Functions – User´s Guide (2001). 

 
The building blocks must thus be able to transmit 
information in the forward, as well as in the 
backward, direction of the loop without delays.  
 With the ControlConnection interface and control 

modules we have, in fact, achieved a plug and play 
situation in control loop design. 

Let us introduce the concept of control modules as a 
generalization of function blocks and control module 
diagrams as a generalization of function block 
diagrams. The control modules can contain two parts 
of code. The first part transmits information in the 
forward direction of the loop and the second part in 
the backward direction. The information is 
transmitted without delay in both directions. 
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graphical, connections and can be freely placed in a 
control module diagram. The control module 
diagram for the cascade loop and the override control 
loop are shown in Fig. 8 and Fig. 9, respectively. 
 
 
 

     




