IM300 Operational Manual

TABLE OF CONTENTS

1. INTRODUCTIONS	1
1.1. FUNCTION SPECIFICATION 1.2. FEATURES	
2. THE INSTALLATION, WIRING AND CONFIGURATION	3
2.1. DIMENSIONS AND INSTALLATION	
3. OPERATING INSTRUCTIONS	11
3.1. BUTTON OPERATION	
3.2. DATA READ (NON SOE)	
3.4. LOCAL OPERATION	
3.5. SOE AND STATISTIC INQUIRY	
4.1. MODBUS PROTOCOL OVERVIEW	
4.1.1 THE TRANSMISSION FORMAT.	
4.1.2 THE FRAME FORMAT.	
4.2. COMMUNICATION PROTOCOL ADDRESS TABLE AND DESCRIPTION4.3. EXPLANATION OF REGISTER ADDRESS	
4.5. EXPLANATION OF REGISTER ADDRESS	
5. TRANSPORTATION AND STORAGE	100
APPENDIX	101
A. The default value	
B. TECHNICAL INDICATORS	
C. ORDER INSTRUCTIONS	105

1. Introductions

1.1. Function Specification

IM300 is an intelligent multipurpose power parameter monitoring and control device which has an extensive range of applications in 6~35kV or 0.4kV power systems. It has the data acquisition, control and statistical functions, such as electrical parameters measurement, calculation and statistics, fault records, 2 ~ 31st harmonics monitoring function, 4-ch digital inputs and 2-ch relay outputs, 1-ch 4~20mA DC transmission output, over-limit alarm and other functions. IM300 is equipped with RS485 communications and MODBUS-RTU protocol for integration into any power monitoring and control system. The appearance is shown in fig 1.1.1.

Fig 1.1.1 The appearance of IM300

1.2. Features

1.2.1.IM300 functions

- Applied in 3-phase 3-wire system and 3-phase 4-wire system. It can measure and calculate 3-phase voltage, 3-phase current, Zero-sequence current, active power, reactive power, apparent power, power factor, system frequency, active energy and reactive energy.
- Harmonic distortion ratio of voltage and current.(Including total harmonic distortion ratio THD, odd harmonic distortion ratio, even harmonic distortion ratio), 2~31st harmonic occupancy of voltage, 2~31st harmonic occupancy of current, the RMS of voltage and current base wave, etc.
- 2-ch relay control outputs.

- 4-ch digital inputs, up to 32 SOE (the Sequence of Events) of digital inputs can be recorded.
- 1-ch 4 ~ 20mA DC transmission output which can be associated with any voltage, current, power.
- forward/reverse total active energy, reactive energy in four quadrants.
- Multi-rate energy statistics (4 rates, 48 time-periods) of the forward/reverse total active energy, reactive energy in four quadrants.
- The value and occurrence time of the maximum forward/reverse active and reactive power demand. The maximum/minimum value and occurrence time of the voltage, current, frequency, power factor, active power, reactive power, apparent power.
- Unbalanced degree of three-phase voltage and current.
- The over limit alarm function, such as over-current, zero-current, grounding, low-voltage, over-voltage, low-frequency, over- frequency, low-power factor, can be associated with relay outputs.
- Checking and modifying the various electrical parameters, running status and controlling the relays locally.
- Communication protocol is MODBUS-RTU.
- The clock can be set manually.
 - **Note:** The above functions are selected according to the specific models of the meter (see appendix C).

1.2.2.High safety and reliability

IM300 can run steadily in the complex power system.

- Electrostatic discharge immunity test : level 3
- Electric fast transient immunity test : level 3
- The surge immunity test : level 3
- Frequency magnetic field immunity test : level 3
- Oscillation wave immunity test : level 3
- The IP level of panel: IP50, the IP level of shell: IP20

1.2.3.Easy installation

IM300 dimensions conform DIN96 \times 96 standard. It can be mounted on the

cabinet panel easily.

1.2.4.The wiring of system

- 3-phase 4-wire 3CT (3P4W 3CT)
- 3-phase 4-wire 1CT (3P4W 1CT)
- 3-phase 3-wire 3CT (3P3W 3CT)
- 3-phase 3-wire 2CT (3P3W 2CT)
- 3-phase 3-wire 1CT (3P3W 1CT)

1.2.5.The human-machine interface

The LCD screen can display various of information with bright backlighting. It's very easy to operate IM300 by the human-machine interface.

1.2.6. Application field

Medium and low voltage distribution system, intelligent switch cabinet, load control system, industrial automation, building automation and Energy management system.

2. The installation, wiring and configuration

This chapter details the installation method, wiring and configuration of the IM300. Please read carefully before installation.

2.1. Dimensions and installation

2.1.1. Dimensions of mechanical devices

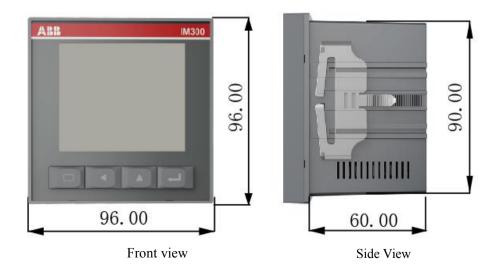
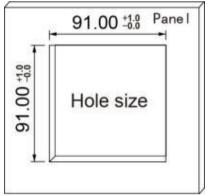



Fig 2.1.1. Device size fig. (Unit: mm)

2.1.2. Installation

The IM300 should be mounted on the switch gear panel.

• Panel opening dimensions shown in fig. 2-1-2-1:

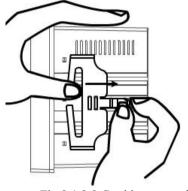


Fig 2.1.2.1 Slots on the panel (unit: mm)

Fig 2.1.2.2 Card is removed

- Taking into account the length of wire, the rear panel must be 100mm depth for accommodating IM300. Actual installation, it normally takes the rear there is some space (at least 130 × 130 × 100mm), ease of installation and wiring.
- Take off the installation card on both sides of the device., as shown in fig. 2.1.2.2, with the thumb and forefinger of one hand the fixed head gently lift (lift force is not too large, otherwise it may cause the fixed head fracture), the thumb of the other hand in the direction of the arrow shown in FIG by pushing the catches can be removed. When installing the device on the front panel push into the mounting hole, then from the trench along the rear of the device will be installed on clip. As shown in fig. 2.1.2.3, his hands were holding down the top and bottom sides of the device, the top two in the thumb of the clip ends, even before the direction of the arrow to push hard to make catches squeezing panel. After the installation of two cards are installed, the device will be firmly fixed on the panel.

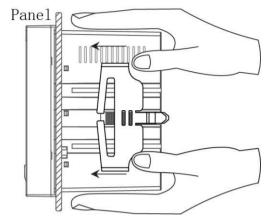


Fig 2.1.2.3 Fixed on the panel by the mounting blocks

2.1.3. Safety Warnings

- 警告!只能由专业电工进行安装。
- Warning! Installation by person with electrotechnicalexpertise only.
- Warnung! Installation nur durch elektrotechnische Fachkraft.
- Avvertenza! Fare installare solo da un elettricista qualificato.
- Avertissement! Installation uniquement par des personnes qualifiées en électrotechnique.
- ¡Advertencia! La instalacióndeberáserrealizadaúnicamentepor electricistasespecializados.

www.abb.com/lowvoltage/directives

2.1.4. Installation Notes

- Inside of the product is no user-adjustable components, do not open during installation.
- Installation with power on is not allowed..
- Run should meet the ambient temperature -25 °C ~ + 70 °C, humidity 0 to 95%, atmospheric pressure 70kPa ~ 106kPa. Avoid placing the device into strong source of interference, radiation, heat sources and dusty environment.

2.2. Wiring and Configuration

2.2.1. Terminal Definition

IM300 back of a total of three sets of terminals, terminal diagram shown in fig. 2-2-1:

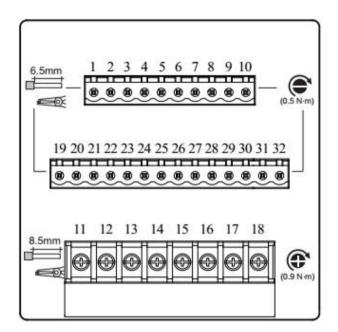
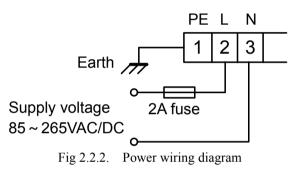


Fig 2.2.1. Terminals fig. (back view)

The definition of the terminals shown in table :


Power Supply	PE	1		I41	17
	L	2		I42	18
	N	3		RO1	19
Voltage Inputs	U1	4	Relay Outputs	RO1	20
	U2	5		RO2	21
	U3	6		RO2	22
	Un	7		NC	23
Communication	SHIEL	8	Analog Outputs	AO+	24
	RS+	9		AO-	25
	RS-	1		NC	26
Current Inputs	I11	1		NC	27
	I12	1		DI1	28
	I21	1	Digital Inputs	DI2	29
	I22	1		DI3	30
	I31	1		DI4	31
	I32	1		COM	32

Note: ① <u>IM300 device varies according to the specific models (see appendix C. Order description). The corresponding terminals that do not have functions are empty (NC).</u>

② In the 3-phase 4-wire system, the Un is connected to the voltage common end; In 3-phase 3-wire system, the Un is connected to B-phase voltage. DI means Digital Input; RO means Relay Output;Transmitter output is self-powered, AO + is forward current output, AO- is reverse current output.

2.2.2. Power supply wiring

Power supply range of IM300 is $85 \sim 265$ VAC or $85 \sim 265$ VDC, it suggested a independent power supply wiring as shown in fig. 2-2-2.

2.2.3. Electric wiring

• 3-phase 4-wire system: 3CT

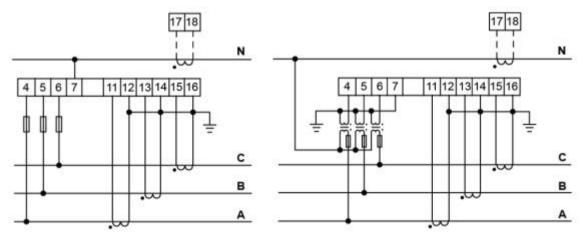


Fig 2.2.3.1 3P4W+3CT

• 3-phase 4-wire system: 1CT

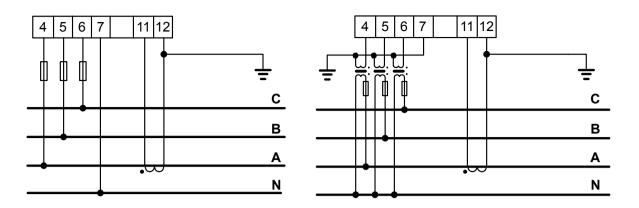
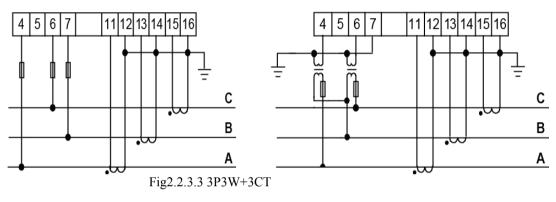
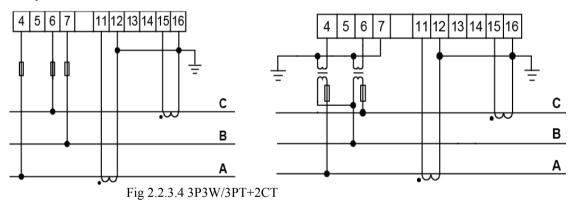
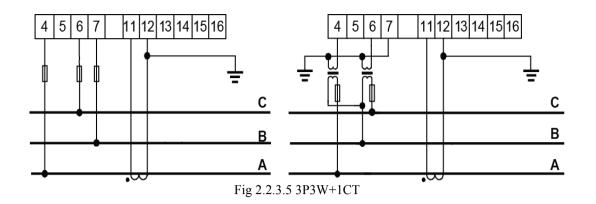




Fig 2.2.3.2 3P4W+1CT


• 3-phase 3-wire system: 3CT

• 3-phase 3-wire system: 2CT

• 3-phase 3-wire system: 1CT

2.2.4. Communication wiring

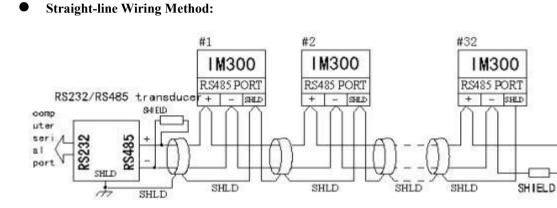


Fig. 2-2-3-6 RS485 straight-line wiring method

Note: The straight-line wiring method should consider impedance matching resistor is about $100 \sim 120\Omega$.

2.2.5. Digital input wiring

IM300 monitors the number of switches / digital inputs entered by 4 dry nodes, the use of optical isolation input, isolation voltage 1500VDC, The 24VDC isolated from the internal output of the device provides input circuit power for the dry node. Wiring is shown in fig. 2-2-4.

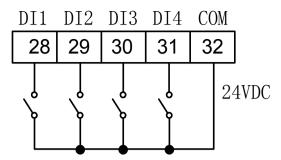


fig. 2-2-4 Digital inputs wiring diagram

2.2.6. Relay wiring

Control relay outputs node capacity 5A / 30VDC or 5A / 250VAC. When the load current is greater than the above value should use intermediate relay. Wiring as shown in fig. 2-2-5.

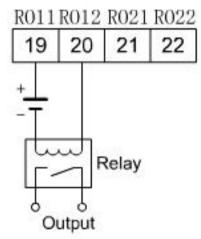


fig. 2-2-5 Relay wiring diagram.

IM300 provides "always maintain the output" and "pulse output" in two relay output modes, see "Parameter Settings seventh screen" description.

2.2.7. DC 4 ~ 20mA analog outputs wiring

DC 4 ~ 20mA analog outputs is optically isolated output, maximum isolation voltage 500VDC. Maximum load resistance RL 600 Ω (including line resistance), open-circuit voltage u is not greater than 24V, wiring is shown in fig. 2-2-6.

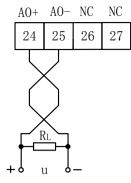


fig. 2-2-6 DC analog outputs wiring diagram

2.2.8. Wiring Precautions

- The conductor cross section of the connecting wire to the device should meet the following requirements: the cross section of current wires is not less than 2.5 mm², the cross section of voltage wires is not less than 1.0 mm².
- Communication lines must be shielded twisted pair, communication line RS485 +, RS485- can not be reversed.
- The wires of power supply and voltage input must be connected with 2A fuse in series..
- To reduce the impact of current at startup, it is recommended each power cord does not exceed 40 devices.
- When the communication connection using the linear connection, respectively access line should match $100 \sim 120\Omega$ resistor is located between the beginning and the ending of the communication cable at the RS485 + and RS485 terminals.
- Baud rate is 9600bps, the cable length <1200 meters.
- The maximum load of the analog outputs includes the line resistance. Be careful when wiring.

3. Operating Instructions

This chapter details IM300 man-machine interface, including how to read the data, set parameters, and local operations.

Note: IM300 means depending on each particular model (see Appendix C. ordering), does not have a corresponding function corresponding to the interface does not display.

3.1. Button operation

Fig 3.1.1 button

The operation of IM300 is divided into single button operate mode and combination button operate mode.

The single button operate mode only use one of the four buttons to display all the monitored data of the device:

- Single button The harmonic data show that the harmonic distortion ratio, the harmonic share, the voltage current and the voltage current are not equal.
- Single button = Display accumulated value: Displays various energy information.

Operation button combination:

- combined with : Output for local operations and other special functions.
- combined with : Used to modify local parameters.
- combined with : Queries the device memory SOE records, statistics, demand.
- Combined with : Inquire the time and the internal temperature Combination mode entry and exit introduction:

In the single button mode, press the combinatorial button at the same time and then loosen, you can enter the corresponding combinatorial button function; use the combinatorial button again you will go back to the single button display screen (except the fourth button combination).

Display content	Explanation
Four rows of \mathbf{B} in the data display field	Display measurement data, including: current, voltage, power, power factor, frequency and so on. Second, display parameters, SOE, time, local operations, etc.
$\begin{array}{cccc} ab & bc & ca & n \\ \hline \Sigma & \Sigma & \Sigma & Avg \end{array}$	The "a", "b", "c" denotes a ,b and C-phase respectively; "∑"denotes summation; "Avg" denotes average; "-" denotes minus; "n" denotes zero-sequence
Three at the top left corner	Consists of English semantic abbreviations, used to indicate the current interface meaning: such as voltage 'U', current 'I', etc.
Current load size indication.	The actual load current is relative to the percentage of rated load current, from left to right, respectively, Ia/Ib/Ic.
Digital identifier: on – – – – off – – –	The switch volume identification indicates the state of input of the corresponding switch in $1 \sim 4$ (on or off).
Load character identifier \neg	Inductance identifier(upper) indicate inductive load Capacitance identifier(below) indicate capacitive load
Communication status identifier	Display this identifier indicates the communication work in normal Does not display this identifier indicate the communication out of work
More warning signs	Display this sign indicates that there is more alarm, no indication that there is no more alarm.
Switch quantization SOE identification.	Display this sign indicates that there is a switch quantifier SOE record in memory, which does not show that there is no switch quantifier SOE record in memory.
10 little B in data accumulated display field	Display energy, temperature of the equipment and time.

3.2. Data read (non SOE)

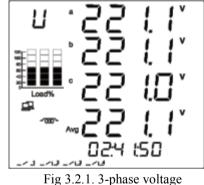
Units: kVA MkW % Mkvar MkVA Hz kWh kvarh	The unit of measuring data: Current: A, KA; Voltage: V, KV; Active power: W, KW, MW; Reactive power: Var, KVar, MVar; Apparent power: VA, KVA, MVA; Frequency: Hz; Percentage: %; Active energy: KWh; Reactive energy: Kvarh;
Total sharp peak shoulder off-peak electricity demand	Electrical ruler type and demand tips

3.2.1. Run the display of measurement data

In either a single bond display press \Box button, the measurement data display area will show the measured data. Time display area (bottom row small B) remains unchanged.

In the measurement data display mode, press \Box button until the top left of the screen display after the words 'UP', then press \Box button to scroll upward; press \Box button until the top left of the screen displays the word 'DWN', then scroll down to press \Box button.

Screen 1: Display the phase voltage Ua, Ub, Uc and UAvg (the average value of three phase voltages).

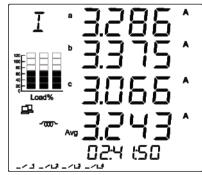
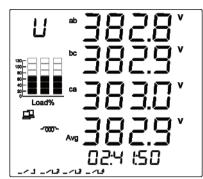

As shown in fig. 3.2.1: Ua = 221.1V; Ub = 221.1V;

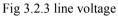
Uc = 221.0V; UAvg = 221.1V.

Note: Only when the 3-phase 4-wire system wiring for the displayed page, otherwise the page is not displayed.

Screen2 : Display the phase current Ia, Ib, Ic and IAvg(the average value of three phase currents).

As shown in fig. 3.2.2: Ia = 3.286A; Ib = 3.375A; Ic = 3.066A; IAvg = 3.243A.


Fig 3.2.2 3-phase current

Screen 3: Display the line voltage U_{ab}, U_{bc}, U_{ca} and U_{avg} (the average value of line voltage).

The parameter value is shown in fig 3.2.3:

$$U_{ab}=382.8V; U_{bc}=382.9V; U_{ca}=383.0V; U_{Avg}=382.9V$$

Screen 4:Display the phase current Ia, Ib, Ic and In (the zero-sequence current).

The parameter value is shown in fig 3.2.4:

Ia=3.286A; Ib=3.375A; Ic=3.066A; In=0.211A

PF displayed on the screen.

factor PF displayed only.

PF=0.988

PF=0.988; PFa=0.987;

PFb=0.988; PFc=0.989

4-wire,

regulation

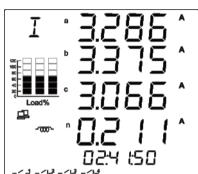


Fig 3.2.4 3-phase current and zero-sequence

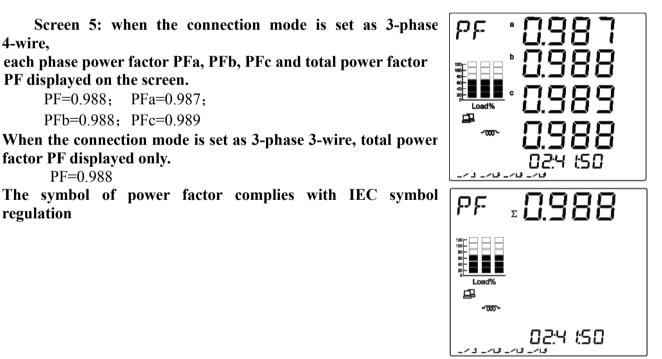


Fig 3.2.5 Power factor

Screen 6: Display the total active power P_{Σ} , total reactive power Q_{Σ} , total apparent power S_{Σ} and frequency F

The parameter value is shown in fig 3.2.6:

 $P\Sigma = 0.717 \text{KW}; \quad Q\Sigma = 0.114 \text{Kvar};$ SΣ=0.726KVA; F=50.03Hz

Screen 7: Display A-phase active power Pa, A-phase reactive power Oa, A-phase apparent power Sa and frequency Fa.

The parameter value is shown in fig 3.2.7:

Pa=0.239KW; Qa=0.038Kvar;

Sa=0.242KVA; Fa=50.03Hz.

The parameter value is shown in fig 3.2.8: Pb=0.239KW; Ob=0.038Kvar;

Sb=0.242KVA; Fb=50.03Hz.

mode is set as 3-phase 4-wire.

Note: This screen will be displayed when the connection mode is set as 3-phase 4-wire.

p ۲W Σ -12

Fig 3.2.6 Total power parameter and frequency

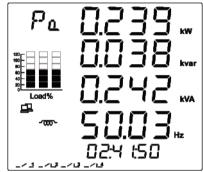


Fig 3.2.7 Power parameter and frequency of phase A

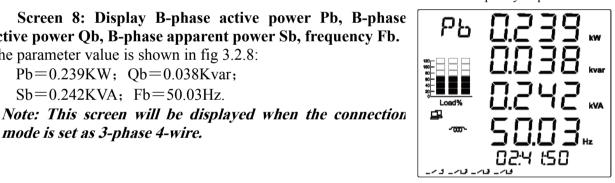


Fig 3.2.8 Power parameter and frequency of phase B

Screen 9: Display C-phase active power Pc, C-phase reactive power Qc, C-phase apparent power Sc, frequency Fc. The parameter value is shown in fig 3.2.9:

reactive power Qb, B-phase apparent power Sb, frequency Fb.

Pc=0.239KW; Oc=0.038Kvar;

Sc=0.242KVA; Fc=50.03Hz.

Note: This screen will be displayed when the connection mode is set as 3-phase 4-wire.

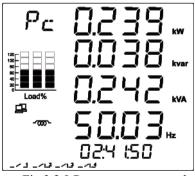


Fig 3.2.9 Power parameter and frequency of phase C

3.2.2. Harmonic distortion ratio and harmonic components

In either a single bond display press substitution display area harmonic distortion ratio, harmonic components, voltage /current unbalanced degree and K-factor of current, etc.

In the harmonic content display mode, press \square button until the top left of the screen display after the words 'UP', then press \square button to scroll upward; press \square button until the top left of the screen display after the words 'DWN', press \square button to scroll down.

Fig 3.2.10 THD of 3-phase voltage

Fig 3.2.11 THD of 3-phase line voltage

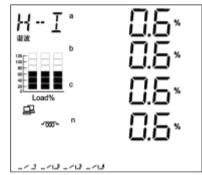


Fig 3.2.12 THD of 3-phase current and zero-sequence current

Screen 1: Display the total harmonic distortion ratio of 3-phase voltage

"H-U" displayed at the left top corner of the screen . When the connection mode is set as 3-phase 4-wire system, 3-phase voltage Ua, Ub, Uc of THD is shown as fig 3.2.10:

THD_Ua=0.6%; THD_Ub=0.6%; THD_Uc=0.6%;

When the connection mode is set as 3-phase 3-wire system, 3-phase line voltage Uab, Ubc, Uca of THD is shown as fig 3.2.11:

THD_Uab=0.6%; THD_Ubc=0.6%; THD_Uca=0.6%;

Screen 2: Display the total harmonic distortion ratio of 3-phase current and zero-sequence current.

"H-I" displayed at the left top corner of the screen.

The parameters are shown in fig 3.2.12: THD_Ia=0.6%; THD_Ib=0.6%;

THD_Ic=0.6%; THD_In=0.6%;

Screen 3: Display the odd harmonic distortion ratio of 3-phase voltage

"HUO" displayed at the left top corner of the screen. when the connection mode is set as 3-phase 4-wire system, 3-phase voltage Ua, Ub, Uc of odd THD is shown as fig 3.2.13:

THD_O_Ua=0.6%; THD_O_Ub=0.6%; THD O Uc=0.6%;

when the connection mode is set as 3-phase 3-wire system, 3-phase line voltage Uab, Ubc, Uca of odd THD is shown in fig 3.2.14: THD_O_Uab=0.6%; THD_O_Ubc=0.6%; THD_O_Uca=0.6%;

"HIO" displayed at the left top corner of the screen. Ia, Ib, Ic and In of odd THD is shown as fig 3.2.15: THD_O_Ia=0.5%; THD_O_Ib=0.5%; THD_O_Ic=0.5%; THD_O_In=0.5%;

Screen 4: Display the odd harmonic distortion ratio

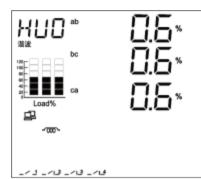


Fig 3.2.14 Odd THD of 3-phase line

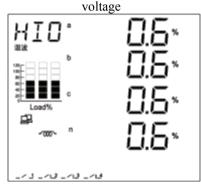


Fig 3.2.15 Odd THD of 3-phase current

Screen 5: Display the even harmonic distortion ratio of 3-phase voltage

"HUE" displayed at the left top corner of the screen denotes THD-U-E. The screen display is similar to screen 3.

Screen 6: Display the even harmonic distortion ratio of 3-phase current

"HIE" displayed at the left top corner of the screen denotes THD-I-E.

The screen display is similar to screen 4.

of 3-phase current

Screen 7: Display fundamental RMS of 3-phase voltage "H-U" displayed at the left top corner of the screen denotes harmonic voltage. The index is displayed at the bottom of the screen, "01" denotes fundamental wave.

When the connection mode is set as 3-phase 4-wire system, 3-phase voltage Ua,Ub, Uc of fundamental value is shown in fig 3.2.16:

Ua_1=220.1V; Ub_1=220.0V; Uc 1=220.1V;

When the connection mode is set as 3-phase 3-wire system, 3-phase voltage Uab, Ubc, Uca of fundamental value is shown in fig 3.2.17:

Uab_1=220.1V; Ubc_1=220.0V; Uca 1=220.1V.

Fig 3.2.16 Fundamental RMS of 3-phase voltage

Fig 3.2.17 Fundamental RMS of 3-phase voltage

Screen 8 to screen 37: Display the 2~31th harmonic ratio of 3-phase voltage in turn

"H-U" displayed at the left top corner of the screen denotes harmonic voltage. The index is displayed at the bottom of the screen.

When the connection mode is set as 3-phase 4-wire system. 3-phase voltage Ua, Ub, Uc of second harmonic ratio is shown in fig 3.2.18:

HP 2 Ua=0.4%; HP 2 Ub=0.4%; HP 2 Uc=0.4%;

3-phase line voltage Uab, Ubc, Uca of second

HP 2 Uab=0.4%; HP 2 Ubc=0.4%;

harmonic ratio is shown in fig 3.2.19:

HP 2 Uca=0.4%:

system.

Fig 3.2.18 2th harmonic ratio of 3-phase When the connection mode is set as 3-phase 3-wire

voltage

Fig3.2.19 2 the harmonic ratio of 3-phase line voltage

Screen 38: Display the fundamental value of 3-phase current and zero-sequence current

"H-I" displayed at the left top corner of the screen denotes harmonic voltage. The index is displayed at the bottom of the screen, "01" denotes fundamental wave. Fundamental value of 3-phase current is shown in fig 3.2.20:

> Ia 1=5000A; Ib 1=4999A; Ic 1 = 5001A; In 1 = 102A;

Fig 3.2.20 Fundamental value of current

Screen 39 to screen 68: Display the 2~31th harmonic ratio of 3-phase current in turn:

"H-I" displayed at the left top corner of the screen denotes harmonic current. The index is displayed at the bottom of the screen.

3-phase current Ia, Ib, Ic and zero-sequence current In of second harmonic is shown in fig 3.2.21:

HP 2 Ia=0.5%; HP 2 Ib=0.5%; HP 2 Ic=0.5%; HP 2 In=0.5%;

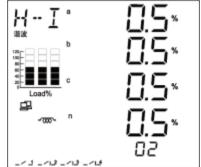


Fig 3.2.21 2th harmonic ratio of 3-phase current

Screen 69: Display voltage imbalance and current imbalance "UNB" displayed at the left top corner of the screen denotes

unbalanced degree. See in fig 3.2.22:

Unbalanced degree of current: 10.8%; Unbalanced degree of voltage: 9.6%;

Fig3.2.22 Voltage imbalance and current imbalance

3.2.3. Display operating parameters

Press \triangle button operating parameters displayed on the screen in either a single bond display.

After long press \bigtriangleup button until the top left of the screen displays the word 'DWN';

 \triangle in button operating parameters display mode, press \triangle button until the top left of the screen display after the words 'UP', then press the button to scroll up \triangle press \triangle button to scroll down.

Screen 1: Communication parameters

The upper left corner of the screen displays "PAR" parameter indicates the word (parameter), the top of the screen displays the word "COMM" indicates the communication. As shown in fig. 3-2-24: Address Number 16, the baud rate is 9.6k, transport format code 1.

Fig 3-2-24 Communication parameters

Transmission Format Code explanation:

Code number	Expression
0	1 start bit,8 data bits,no parity check,2 end bits
1	1 start bit, 8 data bits, odd check, 1 end bit.
2	1start bit, 8 data bits, even check, 1 end bit.
3	1 start bit,8 data bits,no parity check,1 end bit

Note: The default value of address number is 254 baud rate is 9.6k, transport format code is 0.

Screen 2: System Wiring

The upper display shows "SYS" the word that the system wiring, as shown in fig. 3-2-25: The system wiring for the 3-phase 4-wire system, 3PT, 3CT.

Note: The factory default is 3P4L, 3PT, 3CT.

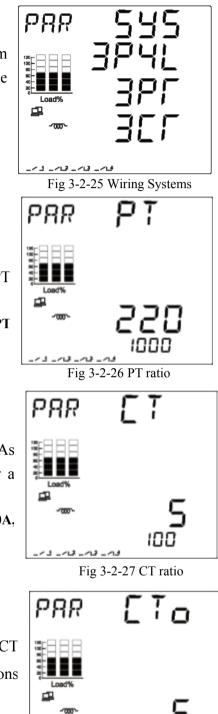
Screen 3: PT ratio

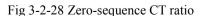
The upper display shows "PT" word represents PT ratio.

As shown in fig. 3-2-26: PT secondary rating is 220V, PT primary rating is 1000V.

Note: The factory default value, PT primary rating is 220V, PT secondary rating is 220V.

Screen 4: CT ratio


The upper display shows "CT" indicates the CT ratio. As shown in fig. 3-2-27: CT secondary rating two options for a total is1A and 5A, CT primary rating is 100A.


Note: The factory default values, CT primary rating is 5000A, CT secondary rating is 5A.

Screen 5: Zero-sequence CT ratio

The upper display shows "CT0" word for zero-sequence CT ratio. As shown in fig. 3-2-28: CT0 secondary rating two options for a total is 1A and 5A, CT0 primary rating is 100A.

Note: The factory default value, CT0 primary rating is 5000A, CT0 secondary rating is 5A.

13-13-13-13

Screen 6: Direction of CT wiring and system frequency

PRR

-000

-11 -12 -13 -13

The upper display shows "SYS2" word represents 2 system parameters, including direction of CT wiring and system frequency. As shown in fig. 3-2-29.

The first line shows ABC, used to represent the respective second row are A, B, C 3-phase CT.

The second line represents CT wiring direction: from left to right direction A, B, C 3-phase CT, and 0 represents a forward direction, represents the opposite direction.

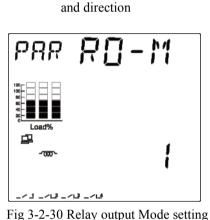
The third line represents the system frequency: 50 / 60Hz optionally, It's the frequency of analog capture when no Fig 3-2-29 Setting CT wiring system frequency voltage inputs..

Screen 7: Relay output mode

The upper display shows "RO-M" word indicates output mode.

As shown in fig. 3-2-30: output mode 1.

Output mode 1: relay output for the pulse output. That relay


after receiving the closing instructions, the node is closed, a certain time delay (relay output pulse width, see parameter setting eighth screen) is disconnected.

Output mode 2: relay output is self-maintained. Ie after receiving the closing instructions, the output node is closed; after receiving the opening command, output node disconnected.

Note: The factory default value, the output mode 1.

Screen 8: Relay output pulse width

The upper display shows "RO-T" word indicates relay output pulse width in milliseconds.

2000 13_19

As shown in fig. 3-2-31: Relay output pulse width is 2000 milliseconds.

Note: The factory default value, the relay output pulse width is 2000 milliseconds. Only when the output mode is selected as mode 1, that relay output pulse type, in order to enter this page.

Fig 3-2-31Relay output pulse width

Screen 9 : Transmission output

parameters

The upper display shows "AO" the word indicates the transmitter output parameters.

The first line indicates unidirectional / bidirectional: 0 for unidirectional, 1 for bidirectional;

The second line indicates the type of association, as described in the ninth parameter setting screen;

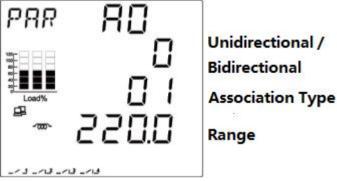
The third line indicates the electric parameters sent to the output range of the association.

Screen 10: Time of back-light lighting

The upper display shows "Ld-T" word represents the time of back-light lighting.

As shown in fig. 3-2-33: the time of back-light lighting is 30 minutes, that is, within 30 minutes of no buttons are pressed, the back-light lighting automatically turns off; When it is zero, indicating that the back-light lighting is on.

Note: the time of back-light lighting default is 5 minutes.


Screen 11: Statistical interval of the energy max/min

value

The upper display shows "S - T" word indicates the statistical interval of the energy max/min value.

As shown in fig. 3-2-34: the time of statistical interval of energy max/min value is 1440 minutes.

Note: The statistical interval of the energy max/min default value is 10 minutes.

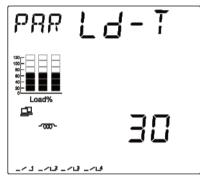


fig. 3-2-33 Backlight lighting time

Fig 3-2-34 Statistical interval of the energy max/min value

Screen 12: Over current alarm parameter

The word "w-oc" is displayed on the top of the screen indicating that the current is over limited.

When the over current is not allowed, the screen is shown in fig. 3-2-35: 'OFF' indicates that the over current alarm is not allowed.

When the overload alarm is allowed, the screen is shown as shown in fig. 3-2-35:

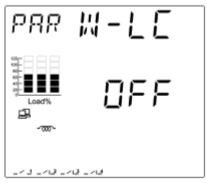
The "OFF" indicates that the current limit alarm is not related to the relay (' 1 'means the related relay 1; The '2' indicates the related relays 2).

'6.000A' indicates the primary side limit value of the over current arann.

The "5.400A" indicates primary side return value of the over current alarm.

The "600" indicates that the alarm delay time is 600ms.

Note: the over current alarm allows the default value to be not allowed; The default value of the correlation relay is not associated; The default value is 6000A; The default value of the return value is 5000A; The default value of the delay time is 60000ms.


Screen 13: Zero-current (low current) alarm parameters

The word "w-lc" is displayed on the top of the screen to indicate that the zero current alarm parameter.

When the zero-current alarm is not allowed, the screen is shown in fig. 3-2-36: 'OFF' indicates that the zero-current alarm is not allowed.

When the zero-current alarm is allowed, the screen is shown as shown in fig. 3-2-36: '1' indicates that the zero-current alarm relays 1.

ground current alarm is not allowed.

of the zero-current alarm.

zero-current is 600ms.

value of the zero-current alarm.

Screen 14 :

parameters.

When the over ground current alarm is allowed, the screen is shown as shown in fig. 3-2-37: '1' indicates that the over ground current alarm relays 1.

'6.000A' represents the primary side limit value of the over ground current alarm.

The '5.400A' indicates primary side return value of the alarm.

The '600' indicates that the delay time of over ground current is 600ms.

Note: the over ground current alarm allows the default value to be not allowed; The default value of the correlation relay is not associated; The default value is 6000A; The default value of the return value is 5000A; The default value of the delay time is 60000ms.

the delay time is 60000ms. Over ground current alarm

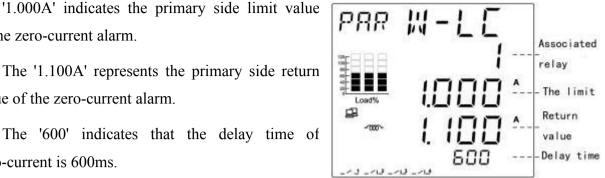
allows to be not allowed; The default value of the correlation relay is not associated; The default value is 0A; The default value of the return value is 200A; The default value of

The word "w-et" is displayed on the top of the screen to indicate the alarm parameters of over ground current.

Note: the default value of zero-current alarm

When the over ground current alarm is not allowed, the screen is shown in fig. 3-2-37: 'OFF' indicates that the over

> Return -----value Delay time 12-13


Associated relav

The limit

فالأر فالار فالار ف

Screen 15: Lower voltage alarm parameters.

The word "w-lv" is displayed on the top of the screen, indicating that the lower voltage alarm parameter.

When the lower voltage alarm is not allowed, the screen is shown in fig. 3-2-38: 'OFF' indicates that the lower voltage alarm is not allowed.

When the low voltage alarm is allowed, the screen is shown as shown in fig. 3-2-38:

The "1" indicates that the lower voltage alarm associated relay 1.

The '190.0V' indicates primary side limit value of the lower voltage.

"200.0v" indicates primary side return value of the lower voltage.

The '60.0' indicates that the lower voltage alarm delay time is 60s.

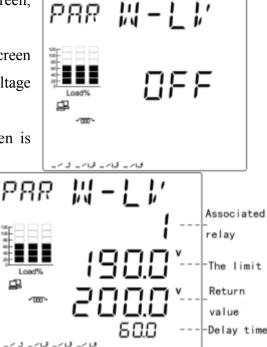
Fig. 3-2-38 Lower voltage alarm parameters.

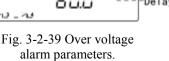
<u>889</u>

Note: the lower voltage alarm allows the default value to be not allowed; The default value of the correlation relay is not associated; The default value is 0V; The default value of the return value is 50V; The default value for delay time is 1800s.

Screen 16: Over voltage alarm parameter.

The word "w-ov" on the top of the screen indicates that the over voltage alarm parameter.


When the over voltage alarm is not allowed, the screen is shown in fig. 3-2-39: 'OFF' indicates that the over voltage alarm is not allowed.


When the over voltage alarm is allowed, the screen is shown in fig. 3-2-39:

The "1" indicates that the over voltage alarm relays 1.

"200.0v" indicates the primary side limit value

₩ - 🖽 ′ -PRRAssociated relav The limit Load% Return -7000 value Delay time - 21-12 213

口

of over voltage .

'190.0V' indicates primary side return value of the over voltage alarm.

'60.0' indicates that the over voltage alarm delay time is 60 seconds.

Note: the over voltage alarm allows the default value to be not allowed; The default value of the correlation relay is not associated; The default value is 260V. The default value of the return value is 220V; The default value for delay time is 1800s.

Screen 17: Lower frequency alarm parameters

The word "w-lf" is displayed on the top of the screen to indicate the lower frequency alarm parameters.

When the lower frequency is not allowed, the screen is shown in fig. 3-2-40: 'OFF' indicates that the lower frequency is not allowed.

When the lower frequency alarm is allowed, the screen is shown as shown in fig. 3-2-40:

The "1" indicates that the lower frequency alarm correlation relay 1.

The '47.00Hz' indicates that the primary side limit value of lower frequency alarm.

'49.50Hz' indicates primary side return value of lower frequency alarm.

The '60.0' indicates that the lower frequency of the alarm delay time is 60s.

Note: the lower frequency alarm allows the default value to be not allowed; The default value of the correlation relay is not associated; The default value is 45.0Hz; The default value of the return value is 46.0Hz; The default value for delay time is 1800s.

Screen 18: Over frequency alarm parameters.

The "w-of" is displayed above the screen to indicate the frequency OF the alarm parameters.

When the over-frequency alarm is not allowed, the screen display is shown in fig. 3-2-41: 'OFF' indicates that

11

PRR

the frequency limit is not allowed.

When the over-frequency alarm is allowed, the screen is shown as shown in fig. 3-2-41:

The "1" indicates the frequency limit alarm associated relay 1.

The "54.00Hz" indicates the primary side limit value of the alarm.

The '51.50Hz' indicates the primary side return value of the alarm.

The "60.0" indicates that the time limit of alarm delay is 60 seconds.

Note: the over-frequency alarm allows the default value to be not allowed; The default value of the correlation relay is not associated; The default value is 55.0Hz; The default value of the return value is 54.0Hz; The default value for delay time is 1800s.

Screen 19: Low power factor alarm parameters.

The word "w-pf" is displayed on the top of the screen to indicate the low power factor alarm parameters.

When the low power factor is not allowed, the screen is shown in fig. 3-2-42: 'OFF' indicates that the low power factor is not allowed.

When the low power factor is allowed, the screen is shown as shown in fig. 3-2-42:

The "OFF" indicates that the low power factor alarm unconnected relay.

The '0.900' indicates the primary side limit value of the low power factor alarm

The '0.950' indicates the primary side return value of the low power factor alarm.

The '60.0' indicates that the low power factor alarm delay time is 60s.

Note: the lower power factor alarm allows the default value to be not allowed; The default value of the correlation relay is not associated; The default value is 0.5; The default value of the return value is 0.6. The default value for delay time is 1800s.

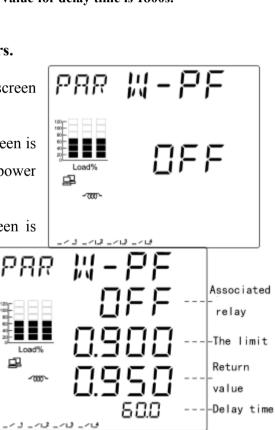


Fig. 3-2-42 Low power factor alarm parameters.

Associated

The limit

Return ' value

relay

Fig. 3-2-41 Over frequency alarm parameters

Screen 20: Hardware and software version numbers

Top of the screen to display "VER" word represents the version number.

At right 3-2-43: "H 1.0" represents the hardware version is version 1.0;

"S 1.0" indicates the software version number is version 1.0

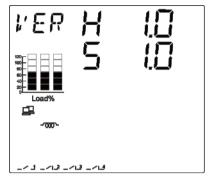


Fig 3-2-43 Hardware and software version numbers

3.2.4. Display energy

In the single button mode press \square button will display the energy.

Press the top left button = until the screen shows word 'UP', then press

■ button to scroll upward; press ■ button until the top left of the screen

display after the words 'DWN', press the button again will turn to next page.

Screen 1: Display the absolute value of total active energy

"EP" displayed on the top , " Σ " displayed in the accumulated display area.

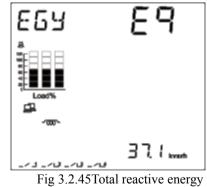

See in fig 3.2.44: Ep=5037.6 kWh

Fig 3.2.44 Total active energy

Screen 2: Display the absolute value of total reactive energy

Top of the screen shows "total"and " Eq" word. See in fig 3.2.45: Eq=37.1kvarh

Screen 3 to screen 5: Display the absolute value of per phase active energy

"EP" displayed on the top, "a", "b", "c" displayed in the accumulated display area respectively. The screen display is similar to screen 1.

Note: This screen will be displayed when the connection mode is set as 3-phase 4-wire.

Screen 6 to screen 8: Display the absolute value of per phase reactive energy "Eq" displayed on the top, "a", "b", "c" displayed in the accumulated display area respectively. The screen display is similar to screen 2.

Note: This screen will be displayed when the connection mode is set as 3-phase 4-wire.

Screen 9: Display the absolute value of total forward active energy

Top of the screen shows "total"and "+ Eq" word. See in fig 3.2.46: +EP=691.4 kWh

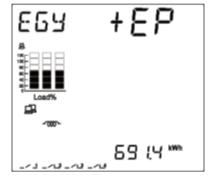


Fig 3.2.46 The absolute value of total

Screen 10 to screen 13: Display the absolute value of forward active energy forward active energy at sharp, peak, shoulder or off-peak rate

Top of the screen displays "+ EP" words, the top left of the screen with "sharp", "peak ", "shoulder", "off-peak" the words prompt, the screen display screen similar to the ninth.

Screen 14: Display the absolute value of total reverse active energy

Top of the screen shows "total" and "- Eq" word. -Ep=691.4 kWh.

Fig 3.2.47 The absolute value of total reverse active energy

Screen 15 to screen 18: Display the absolute value of reverse active energy at sharp, peak, shoulder or off-peak rate

Top of the screen shows "-EP" words, rate types are sharp peak, shoulder or off-peak , the screen display screen similar to the fourteenth.

Screen 19: Display the absolute value of total forward reactive energy

Top of the screen shows "total" and "+ Eq" word. See in fig 3.2.48: +Eq=571.1kvarh

Fig 3.2.48 The absolute value of total forward reactive energy

Screen 20 to screen 23: Display the absolute value of forward reactive energy at sharp, peak, shoulder or off-peak rate

Top of the screen displays "+ Eq" words, rate types are sharp, peak, shoulder or off-peak, the screen display screen similar to the nineteenth.

Screen 24: Display the absolute value of total reverse reactive energy

"-Eq" displayed on the top, " Σ " displayed in the accumulated

See in fig 3.2.49: -Eq=571.1kvarh

Screen 25 to screen 28: Display the absolute value of reverse reactive energy at sharp,peak, shoulder or off-peak rate

"-Eq" displayed on the top. The screen display is similar to screen 24.

Screen 29: Display the absolute value of

Fig 3.2.49 The absolute value of total reverse reactive energy

Fig 3.2.50 The absolute value of the 1th quadrant total reactive energy

the 1th quadrant total reactive energy

Top of the screen shows "total"and "+ Eq" word.

See in fig 3.2.50: -E_{q-1}=11.1kvarh

Screen 30 to screen 33: Display the absolute value of the 1th quadrant reactive energy at sharp, peak, shoulder or off-peak rate

"Eq-1" displayed on the top.the screen display is similar to screen 29.

Screen 34: Display the absolute value of the 4th quadrant total reactive energy

"Eq-4" displayed on the top, the screen display is similar to screen 29.

Screen 35 to screen 38: Display the absolute value of the 4th quadrant reactive energy at sharp,peak, shoulder or off-peak rate

"Eq-4" displayed on the top, the screen display is similar to screen 29.

Screen 39: Display the absolute value of the 2th quadrant total reactive energy

"Eq-2" displayed on the top, the screen display is similar to screen 29.

Screen 40 to screen 43: Display the absolute value of the 2th quadrant reactive energy at sharp, peak, shoulder or off-peak rate

"Eq-2" displayed on the top.the screen display is similar to screen 29.

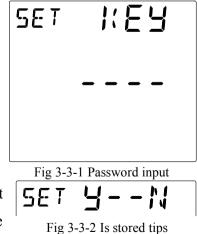
Screen 44:Display the absolute value of the 3th quadrant total reactive energy

"Eq-3" displayed on the top, the screen display is similar to screen 29.

Screen 45 to screen 48: Display the absolute value of the 3th quadrant reactive energy at sharp, peak, shoulder or off-peak rate

"Eq-3" displayed on the top. The screen display is similar to screen 29.

3.3. Parameter Settings


In the single button mode, you can enter the parameter setup mode by pressing "(I)" and "(I)" at the same time, "SET" will display at the left top corner of the screen.

3.3.1. button function in parameter setup mode

- Press "□", a bit of the parameter on the screen will twinkle, and the next bit will twinkle by pressing □ again. You can press "□" or "□" to plus or minus the value of the bit.
- \square is the plus button, the flash bit will plus 1 when you press " \square " once.
- Is the minus button, the flash bit will minus 1 when you press " \square " once..
- is the page down button and validated button. When parameter setting is accomplished, press "□" to validate the parameter, and "Y--N" (YES--NO) will displays on the top of the screen. Press "□" to select "Y" or "N". Select "Y" and press "□", the parameter will be saved , select "N" and press "□", the parameter will be not saved.

3.3.2. Parameter Settings

Starting interface parameter setting mode for password confirmation. Each time you enter the parameter setting mode are first prompted for a password, the password is displayed as "----." Password total of four, ranging from 0000 to 9999, the factory default is 0000. Press to toggle between four digit password to cycle selection, press or subtraction to choose positioning subtraction operation, range 0 to 9, the button to

confirm the entry is complete. Parameters can be set only after the confirmation

password, or to stay on this page.

When entering the parameter setting screen, as this page SET parameter setting is completed, press the top button is will be prompted to save the current screen to set the parameters as shown in fig. 3-3-2. "Y" on behalf of YES, that is, the set parameters are stored, "N" on behalf of NO, that is not stored parameters. Press D button to make "Y" or "N" option, press 🖃 button.

Select the parameters are valid after the "Y" and press the button to confirm ____, such as setting, then store the current parameters; if not legitimate, upper display shows "ERR" word prompts, as shown, the parameter is not stored 3-3-3. At this point press 🗇 button to re-set parameters, scroll buttons can also be 🖃.

Note: No matter which screen parameter setting page, press the button and □ button to exit the parameter setting mode, returns single button display mode. In the parameter setting page, if you do not press 🔲 button to activate the current settings page, this page or activation button and did not press \square or \square button parameter modification, then press *we button will scroll directly, this page is not* stored in the parameter. The screen will go back to the single button mode automatically if there is no operation on buttons in ten minute.

Press the top left button until the screen shows 📼 word 'UP', then press 📼 button to scroll upward; press 📼 button until the top left of the screen display after the words 'DWN', press the button down 📼 scroll.

Screen 1: Communication parameters settings

This page is used to set the IM300 communication address. baud rate and transmission format. Top of the screen displays the word "COMM", indicating the current page for the communications parameter setting page.

As shown in fig. 3-3-4, communication address range is 1 to 254; baud total of 1.2k,

2.4k, 4.8k, 9.6k, 19.2kbps five kinds to choose from;

there are four kind of transmission formats: 0,1,2,3. (The details refer to 3.2.3 display

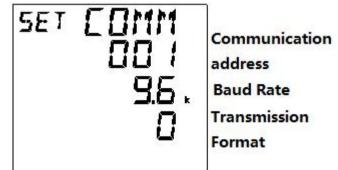


Fig. 3-3-4 Communication parameter settings page

Fig 3-3-3 Parameter error

system parameter, screen 1)

Screen 2: Wiring system settings

This page is used to set the system wiring. Top of the screen displays the word "SYS", indicates that the current page to the system wiring setup page, as shown in fig. 3-3-5.

There are five options:

Mode 1:	3P4L	3PT 3CT	
Mode 2:	3P4L	3PT 1CT	
Mode 3:	3P3L	3PT (2PT)	3CT
Mode 4:	3P3L	3PT (2PT)	2CT
Mode 5:	3P3L	3PT (2PT)	1CT

Fig 3-3-5 System wiring setup page

Screen 3: PT Settings

This page is used to set the PT primary side and the secondary side rated voltage value of PT. Top of the screen displays the word "PT", it indicates this page is PT settings page, as shown in fig. 3-3-6.

SET P 220 secondaly side primary side Fig 3-3-6 PT ratio settings page

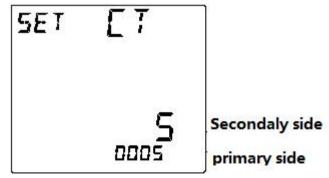
PT secondary rating range from 100V to 220V, PT primary rating range from 100V to 35000V.

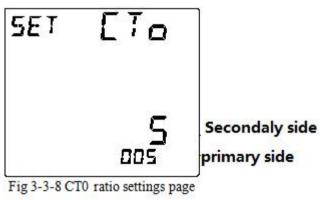
Screen 4: CT settings

This page is used to set the primary side and secondary side rated current value of CT. Top of the screen displays the word "CT", expressed this page as CT setup page, as shown in fig. 3-3-7.

CT secondary rating is 1A or 5A,CT primary rating range from 1A to 9999A.

Note: primary side of the rated




Fig 3-3-7 CT ratio settings page

current value can not be less than the rated current value of the secondary side.

Screen 5: CT0 (Zero-sequence CT) settings

This page is used to set the primary side and secondary side rated current value of CT.0 The upper display shows the word "CT0", expressed this page to CT0 Settings page, as shown in fig. 3-3-8.

CT0 secondary rating is 1A or 5A, CT0 primary rating range from 1A to 9999A.

Note: primary side of the rated current value

can not be less than the rated current value of the secondary side.

Screen 6: Direction of CT wiring and the system frequency settings

This page is used to set the direction of CT wiring and system frequency. The upper display shows the word "SYS2" indicates this page for the direction of CT wiring, and system frequency settings page, as shown in fig. 3-3-9.

The first row shows the ABC: the representative of a respective second row are A, B, C 3-phase CT connection settings.

The second row is used to set the direction of CT

wiring ; from left to right as A, B, C 3-phase CT , 0 represents a forward direction, represents the opposite direction.

The third row is used to set the system frequency: 50 / 60Hz optionally,It's the frequency of analog capture when no voltage inputs.

Fig 3-3-9 Input Mode Settings page

Screen 7: Relay output mode settings

This page is used to set the relay output mode. The upper display shows "RO-M" word, this page indicates relay output mode settings page, as shown in fig. 3-3-10.

There are two kinds of modes of relay output: Mode 1: relay output for the pulse output.

Mode 2: Relay output is self-maintained.

Screen 8: Relay output pulse width settings

When the relay is set to pulse output mode, the page is used to set the output pulse width. The upper display shows "RO-T" word to make prompt, as shown in fig. 3-3-11.

A pulse width range of 50 to 20000 milliseconds.

Note: Only when the output mode is selected as

mode 1,*t*his screen is displayed, otherwise the page Fi is not displayed.

Screen 9: Transmission output parameter settings

This screen is used to set the parameters of transmission output . "AO" on top of the page donates transmission output $_{\circ}$

The first row is used to set the direction of AO, unidirectional or bidirectional: 0 for unidirectional, 1 for bidirectional.

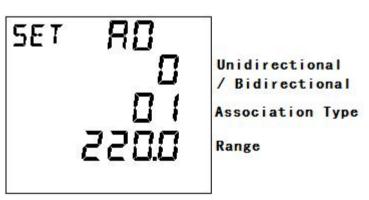


fig. 3-3-12 Transmission output settings page

The second row is used to set the associated type of AO. As shown in the table below.

The third row indicates the range of the corresponding electrical parameter, and the

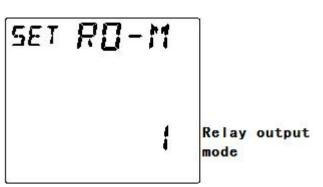
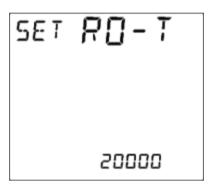
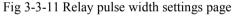




Fig 3-3-10 Relay output mode settings page

range is used to set the range of the measurement associated with the transmission output.

Only when the association type is active power, reactive power, power factor, or frequency, the direction can be set to Bidirectional. 4mA represents 0 and 20mA represents full scale when set to unidirectional. When set to Bidirectional, 4mA represents the reverse range, 20mA represents the forward range.

Example 1: When the range is set to 1.000kW, if set to unidirectional, the output of 4mA represents 0kW, the output of 20mA represents 1.000kW, the output of 12mA represents 0.500kW; if set to bidirectional, the output of 4mA represents -1.000kW, 20mA represents 1.000 kW, 12mA represents 0kW.

Example 2: If the frequency F is set to Bidirectional, real-scale range is $50Hz \pm range$, and 12mA represents 50Hz.

Association type is used to select energy which is associated to transmission output

Association Type	Description	Remark	Associatio n Type	Description	Remark
1	Related Uab	Unidirectional	16	Related P	Unidirectional / Bidirectional
2	Related Ubc	Unidirectional	17	Related Q	Unidirectional / Bidirectional
3	Related Uca	Unidirectional	18	Related S	Unidirectional
4	Related average of line voltage	Unidirectional	19	Related PFa	Unidirectional / Bidirectional
5	Related Uan	Unidirectional	20	Related PFb	Unidirectional / Bidirectional
6	Related Ubn	Unidirectional	21	Related PFc	Unidirectional / Bidirectional
7	Related Ucn	Unidirectional	22	Related Pa	Unidirectional / Bidirectional
8	Related average of phase voltage	Unidirectional	23	Related Pb	Unidirectional / Bidirectional
9	Related Ia	Unidirectional	24	Related Pc	Unidirectional / Bidirectional
10	Related Ib	Unidirectional	25	Related Qa	Unidirectional / Bidirectional
11	Related Ic	Unidirectional	26	Related Qb	Unidirectional / Bidirectional
12	Related average of current	Unidirectional	27	Related Qc	Unidirectional / Bidirectional
13	Related In	Unidirectional	28	Related Sa	Unidirectional
14	Related F	Unidirectional / Bidirectional , Bidirectional	29	Related Sb	Unidirectional

		indicates 50Hz ±range			
15	Related PF	Unidirectional / Bidirectional	30	Related Sc	Unidirectional

Screen 10: Back-light time settings

This page is used to set the backlight lighting time. The upper display shows the word "Ld-T", indicates that the current page as the backlight time setting page, as shown in fig. 3-3-13.

Backlight time range is from 0 to 30 minutes, when set to 0, the backlight is on.

Screen 11: Statistical interval of electric parameter maximum/minimum value settings

"S-T" on the top of the screen denotes the statistical interval of electric parameter maximum/minimum value settings page. as shown in fig 3-3-14: The range of maximum or minimum statistics interval is from 1 minute to 1440 minutes.

Screen 12: Over current alarm parameter settings.

.The word "w-oc" is displayed at the top of the screen, indicating that the current page is over current alarm parameter settings page.

The permitted range of the alarm is $0 \sim 1.0$ indicates that the alarm is not allowed, and 1 indicates that the Fig 3-3-15 Over current alarm parameter alarm is allowed.

The limit value and return value range from 0 to 6000A; the delay time range from 1 to 60000 ms.

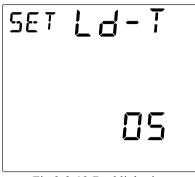


Fig 3-3-13 Backlight time settings page

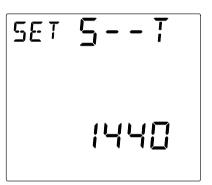
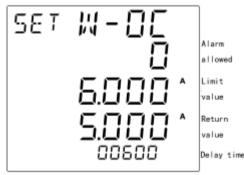



Fig 3-3-14 Statistical interval of electric parameter maximum/minimum value settings

settings page

Screen 13: zero-current (low current) alarm parameters settings

The top of the screen displays "W-LC", the screen display and settings similar to the twelfth screen.

Note: The limit value must be less than the return value.

Screen 14: Over ground current alarm parameters settings

The top of the screen shows "W-ET", the screen display and settings similar to the twelfth screen.

Note: The limit value must be more than the return value.

Screen 15: Low voltage alarm parameters settings

This page is used to set the low voltage alarm parameters. The word "W-LV" is displayed at the top of the screen, indicating the page is the low voltage alarm parameters settings page, as shown in fig. 3-3-16.

The allowed range of the alarm is $0 \sim 1$, 0 means the alarm is not allowed, and 1 means the alarm is allowed.

The limit value, the return value range is $0 \sim 42$ kV; delay time range is $0.1 \sim 1800.0$ s;

Note: The limit value must be less than the return value.

Screen 16: Over voltage alarm parameters settings

The top of the screen shows "W-OV", the screen display and settings similar to the fifteenth screen.

Note: The limit value must be more than the return value.

Screen 17 : Low frequency alarm parameters settings

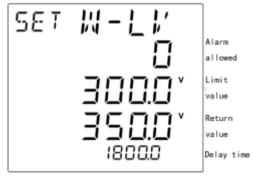
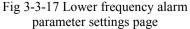



Fig 3-3-16 Low voltage alarm settings page

This page is used to set low frequency alarm parameters. The upper part of the screen displays "W-LF", indicating the page is the low frequency alarm parameters settings page, as shown in fig. 3-3-17.

The allowed range of the alarm is $0 \sim 1$, 0 means the alarm is not allowed, and 1 means the alarm is allowed.

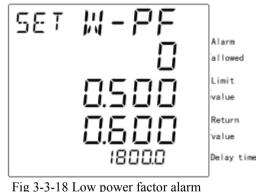
The limit value, the return value of the range of $0 \sim 99.99$ Hz; delay time range of $0.1 \sim 1800.0$ s;

Note: The limit value must be less than the return value.

Screen 18: Over frequency alarm parameters settings

The top of the screen shows the word "W-OF", the screen display and settings similar to the seventeenth screen.

Note: The limit value must be more than the return value.


Screen 19: Low power factor alarm parameters settings

This page is used to set the low power factor alarm parameters. The word "W-PF" is displayed at the top of the screen, indicating the page is the low power factor alarm parameters settings page.

The allowed range of the alarm is $0 \sim 1$, 0 means the alarm is not allowed, and 1 means the alarm is allowed.

The limit value, the range of return value is 0 \sim 0.999; The delay time range is 0.1 \sim 1800.0s;

Note: The limit value must be less than the return value.

parameter settings page.

Screen 20 : Over-limit alarm associated relay settings

This page is used to set the over-limit alarm associated relay. At the top of the screen, "RO-R" is displayed, indicating the page is the over-limit alarm related relay settings page.

As shown in fig. 3-3-19: The bottom 8 digits

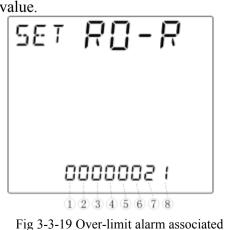


Fig 3-3-19 Over-limit alarm associated relay settings page.

Alarm association type code	Explanation
(1)	Low power factor alarm associated relay
2	Over frequency alarm associated relay
3	Low frequency alarm associated relay
(4)	Over voltage alarm associated relay
(5)	Low voltage alarm associated relay
(6)	Over ground current alarm associated
0	relay
\overline{O}	Zero-current alarm associated relay
8	Over current alarm associated relay

represent 8 kinds of alarm related relays, as the following table:

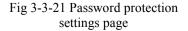
Alarm associated relays range from 0 to 2, 0 stands for no relays; 1 stands for relays 1; 2 stands for relays 2.

Note: A relay can not be associated with multiple alarms at the same time. Relay associated alarm, no longer subject to local and remote control.

Screen 21: System time settings

This page is used to set the system time. The upper display shows the word "TIME", indicates the page to the system time setup page, as shown in fig. 3-3-20.

As shown, showing at 16:19 on December 10 2008...



Screen 22: Password protection settings

This page is used to set the system password protection. Top of the screen displays the words "button", expressed this page to protect your password settings page, as shown in fig. 3-3-21.

Password has been set will be displayed on the screen the password range 0000 to 9999.

Note: The parameter settings and local operations with this password.

Screen 23: Period rates setting 1

This page is used to set $00:00 \sim 06:00$ of the period rates. Top of the screen displays "ET-1" displayed, it indicates this page to set the period rates 1, as shown in fig. 3-3-22.

Each digit represents a step time (0.5 hours), the display time period after activation, each number ranging from 1 to 4, the representative rates in the following table:

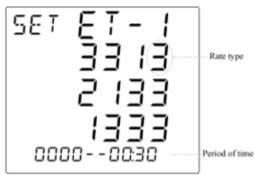


Fig. 3-3-22 Rates setting page.

Rate Type Code	Explanation
1	Sharp, Rates
2	Peak Rates
3	Shoulder Rates
4	Off-peak Rates

Screen 24: Period rates setting 2

This page is used to set $06:00 \sim 12:00$ of the period rates. Top of the screen

displays "ET-2" words, similar methods of operation and the display screen and the fourteenth.

Screen 25: Period rates setting 3

This page is used to set $12:00 \sim 18:00$ of the period rates. Top of the screen displays "ET-3" words, similar methods of operation and the display screen and the fourteenth.

Screen 26: Period rates setting 4

This page is used to set the 18: 00 hours fee rates: 00 to 24. Top of the screen displays "ET-4" words, similar methods of operation and the display screen and the fourteenth.

Screen 27: Setting the base value of total active energy

This page is used to setting the base value of total active

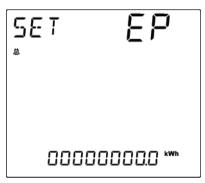


Fig 3-3-23 Setting the base value of total active energy

Fig 3-3-24 Setting the base value of total reactive energy

energy, as shown in fig. 3-3-23, top of the screen displays "EP" and "total" refers to the total active energy, the base value is displayed at the bottom of the screen and the range is from 0 to 99999999.9kWh.

Screen 28: Setting the base value of total reactive energy

This page is used to setting the base value of total reactive energy, as shown in fig. 3-3-24, the top of the screen shows "Eq" and "total" refers to the total reactive energy, the base value is displayed at the bottom of the screen and the range is from 0 to 99999999.9kvarh.

Screen 29: Setting the base value of A-phase active energy

5E T	69
0000	0000.0 ***

Fig 3-3-25 Setting the base value of A-phase active energy

When wiring for the 3-phase 4-wire system, the page used

to setting the base value of A-phase energy, as shown in fig. 3-3-25, top of the screen displays "EP", are setting the active energy, "a" represents the A-phase, the base value is displayed at the bottom of the screen and the range is from 0 to 99999999.9.

Screen 30, 31: Setting the base value of B/C-phase active energy

When wiring for the 3-phase 4-wire system, it was used to setting the base value of B,C-phase active energy. "b" represents phase B, "c" represents a C-phase. Similar methods of operation and the Twenty-screen display.

Screen 32~34: Setting the base value of A/B/C-phase reactive energy

When wiring for the 3-phase 4-wire system, it is used to setting the base value of A, B, C-phase reactive energy. The top of the screen shows "Eq", bottom right of the screen displays

58	T	+ E F)
	0000	0000.0	kWh

Fig 3-3-26 Setting the base absolute value of total forward active energy "kvarh" expressed as reactive power, "a" represents the A-phase, "b" represents phase B, "c" represents a C-phase. Similar methods of operation and the Twenty-screen display.

Screen 35: Setting the base absolute value of total forward active energy

This page is used to setting the base absolute value of total forward active energy. As shown in fig. 3-3-26: the top of the screen shows the "total" and "+ EP", the base value is displayed at the bottom of the screen and the range is from 0 to 99999999.9kWh.

Screen 36: Setting the forward base value of total active energy at sharp rate

This page is used to setting the forward base value of total active energy at sharp rate, similar to the methods of operation and the display screen with the twenty-sixth.

Screen 37~39:Setting the forward base value of total active energy at peak, shoulder or off-peak rate

They are used to setting the forward base value of total active energy at peak, shoulder, off-peak rates. Top of the screen displays "+ EP" type rate were similar peak, shoulder, off-peak, methods of operation and the display screen and twenty-sixth.

Screen 40: Setting the base absolute value of total reverse active energy

This page is used to setting the base absolute value of total reverse active energy. Top of the screen display similar to "-EP", methods of operation and the display screen and twenty-sixth.

Screen 41~44 : Setting the reverse base value of total active energy at sharp, peak, shoulder or off-peak rate

They are used to setting the reverse base value of total active energy at sharp,peak, shoulder or off-peak rate. Top of the screen displays "-EP" rate type were sharp,peak,shoulder, off-peak, methods of operation and display screen similar to the

twenty-sixth.

Screen 45 : Setting the base absolute value of total forward reactive energy

This page is used to setting the base absolute value of total forward reactive energy. As shown in fig. 3-3-27: the top of the screen shows the "total" and "+ Eq", the base value is displayed at the bottom of the screen and the range is from 0 to _____99999999.9kvarh.

SE T	+29
0001	30000.0 ×××

Fig 3-3-27 Setting the base absolute value of total forward reactive energy

Screen 46: Setting the forward base value of total reactive energy at sharp rate

This page is used to setting the forward base value of total reactive energy at sharp rate, methods of operation and the display screen similar to the thirty-sixth.

Screen 47~49: Setting the forward base value of total reactive energy at peak, shoulder or off-peak rate

They are used to setting the forward base value of total reactive energy at peak, shoulder or off-peak rates. Top of the screen displays "+ Eq" rate types are similar peak, shoulder, off-peak, methods of operation and the screen displays thirty-sixth.

Screen 50: Setting the base absolute value of total reverse reactive energy

This page is used to setting the base absolute value of total reverse reactive energy. Top of the screen display similar to "-Eq", methods of operation and the screen displays thirty-sixth.

Screen 51~54:Setting the reverse base value of total reactive energy at sharp,peak, shoulder or off-peak rate

They are used to setting the reverse base value of total reactive energy at sharp, peak, shoulder or off-peak rates. Top of the screen displays "-Eq" rate type were sharp, peak, shoulder, off-peak, methods of operation and the display screen similar to the thirty-sixth.

Screen 55: Setting the absolute base value of the 1th quadrant total reactive energy

This page is used to setting the absolute base value of the 1th Quadrant total reactive energy. The top of the screen shows "Eq-1", the bottom right of the screen displays "kvarh" expressed as reactive power, methods of operation and the display screen similar to the thirty-sixth.

Screen 56~59: Setting the base value of the 1th quadrant total reactive energy at sharp, peak, shoulder or off-peak rate

They are used to setting the base value of the 1th quadrant total reactive energy at sharp,peak, shoulder or off-peak rates. The top of the screen shows "Eq-1" rate type are sharp, peak, shoulder, off-peak, the bottom right of the screen displays "kvarh" expressed as reactive power, methods of operation and the display screen similar to the thirty-sixth.

Screen 60: Setting the absolute base value of the 4th quadrant total reactive energy

This page is used to setting the absolute base value of the 4th quadrant total reactive energy. The top of the screen shows "Eq-4", bottom right of the screen displays "kvarh" expressed as reactive power, methods of operation and the display screen similar to the thirty-sixth.

Screen 61~64 : Setting the base value of the 4th quadrant total reactive energy at sharp, peak, shoulder or off-peak rate

They are used to seting the base value of the 4th quadrant total reactive energy at sharp,peak, shoulder or off-peak rates. The top of the screen shows "Eq-4" rate type were sharp, peak, shoulder, off-peak, the bottom right of the screen displays "kvarh" expressed as reactive power, methods of operation and the display screen similar to the thirty-sixth.

Screen 65: Setting the absolute base value of the 2th quadrant total reactive energy

This page is used to setting the absolute base value of the 2th quadrant total reactive energy. The top of the screen shows "Eq-2", the bottom right of the screen displays "kvarh" expressed as reactive power, methods of operation and the display screen similar to the thirty-sixth.

Screen 56~69 : Setting the base value of the 2th quadrant total reactive energy at sharp, peak, shoulder or off-peak rate

They are used to setting the base value of the 2th quadrant total reactive energy at sharp,peak, shoulder or off-peak rate. The top of the screen shows "Eq-2" rate type were sharp, peak, shoulder, off-peak, the bottom right of the screen displays "kvarh" expressed as reactive power, methods of operation and the display screen similar to the thirty-sixth.

Screen 70: Setting the absolute base value of the 3th quadrant total reactive energy

This page is used to setting the absolute base value of the 3th quadrant total reactive energy. The top of the screen shows "Eq-3", the bottom right of the screen displays "kvarh" expressed as reactive power, methods of operation and the display screen similar to the thirty-sixth.

screen 71~74 : Setting the base value of the 3th quadrant total reactive

48

energy at sharp, peak, shoulder or off-peak rate

They are used to setting the base value of the 3th quadrant total reactive energy at sharp,peak, shoulder or off-peak rates. The top of the screen shows "Eq-3" type rate were sharp, peak, shoulder, off-peak, the bottom right of the screen displays "kvarh" expressed as reactive power, methods of operation and the display screen similar to the thirty-sixth.

After completing all of the parameter settings, press 📼 button to return to the first screen.

3.4. Local Operation

In the single button mode, you can enter the local operation mode by pressing " \square " and " \square " at the same time, "OPR" will display at the left top corner of the screen.

3.4.1. Local operation features

In local mode of operation can be performed:

- Control the two relays output are opened or closed;
- Clear SOE, clear power base, clear maximum demand;
- Maximum electrical parameters of the minimum reset;
- The alarm reset;
- System reset operation.

3.4.2. Each local operation screen presentation

Starting interface for local operation mode password confirmation each time to enter the local mode of operation are first prompted for a password, the password is displayed as "----." Password total of four, ranging from 0000 to 9999, the factory default value "0000." To enhance the confidentiality, is only display digital digit

password set, the other bits are displayed as "-." After the input is complete press is button to confirm, if you enter the correct password is entered the local operation of the first screen, otherwise stay on this page.

Screen 1: Output operation of relay 1

This page is used to control the on-off status of relay 1. The top of the screen shown in fig. 3-4-2 displays the word "OUT", expressed as output operation of relay 1, the middle of the screen displays "1" indicating that the relay 1.

Relay status after Press buttons "OP" blinking, press the button or solved bond can be "OP" or "CL" option. "OP" that is "OPEN" indicates relay operation points, "CL" ie "CLOSE" indicates relay closing operation.

Note: When the relay output is set to pulse output, you can not select "OP", can only choose to "CL".

After selecting relay status, press is button appears to confirm whether or not the current operation prompts, as shown in fig. 3-4-3. "Y" on behalf of YES, confirms that the local operation, "N" on behalf of NO, that is, no local operation. Press is button to make "Y" or "N" option, press is button.

Select "N" press is button to confirm, the relay does not operate. Select Y press is button is not immediately operate the relay, but first check the current status of the relay: If the relay is currently not operating, then the relay will be operated; current relay under operation, the relay will not operate while the top of the screen display "ERR" word indicates that the operation failed, as shown in fig. 3-4-4. Now press is button will turn to the next

screen; press \Box button to reset the relay status.

This page is used to control the on-off status of relay 2. The middle of the screen

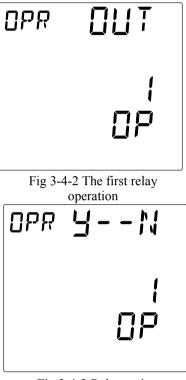


Fig 3-4-3 Relay action confirmation

Fig 3-4-4 Relay operation failed

shows "2", means the relay 2.

Operation method of relay 2 and the relay 1 is exactly the same, please refer to the operation method of relay 1.

Screen 3: Clear SOE of switching value

This page is used to clear SOE record of switching value. As shown in fig. 3-4-5, "CLR a" is shown in the upper left corner, and "SOE" is displayed at the top of the screen.

If you do not want to clear the , press the SOE button will skip this screen; if you want to clear, please press the button, the screen becomes as shown in fig. 3-4-6. Select the "Y" that is YES, to confirm the removal of SOE, select "N" that is NO, not clear SOE.

Screen 4: Clear SOE of the overlimit alarm

This page is used to clear SOE record of the overlimit alarm. The upper left

corner of the screen displays "CLR ^b". The word "SOE" is displayed at the top of the screen, indicating that the overlimit alarm SOE is cleared. Operation method and display similar to the third screen

Screen 5: Clear the accumulated value of electricity measurement

This page is used to clear the accumulated value of electricity measurement. As shown in fig. 3-4-7, the upper left corner of the screen displays "CLR" (CLEAR) means clear, the top of the screen displays "ENGY" (ENGERY) means clear the electric base, The operation to clear the accumulated value of electricity is the same as clearing the SOE.

Fig 3-4-6 Confirm the removal of SOE

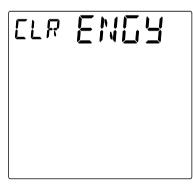


Fig 3-4-7 Clear the accumulated value of electricity measurement

Screen 6: Clear maximum demand

This page is used to clear the maximum demand. As shown in fig. 3-4-8, the upper left corner of the screen displays "CLR" (CLEAR) means clear the top of the screen displays the word "DMD" to clear maximum demand. The operation to clear the maximum demand is the same as clearing the SOE.

Screen 7: Electric parameters Max Min reset

This page is used to reset the electrical parameters Maximum Minimum. As shown in fig. 3-4-9, the upper left corner of the screen to display "RST" (RESET) indicates reset, the top of the screen displays "MXMN" (MAXMIN) represents the word reset Max Min. The operation to reset the electrical parameters Maximum Minimum is the same as clearing the SOE

After the electrical parameters of the reset maximum minimum, maximum and minimum values of various electrical parameters of the reset to the current measured value.

Screen 8: Alarm reset

This page is used to reset the alarm. As shown in fig. 3-4-1 indicates reset, and "ALRM" (ALARM) at the top of the screen indicates reset overlimit alarm. The operation to reset the overlimit alarm is the same as clearing the SOE.

Screen 9: System Reset

This page is used to reset the system. As shown in fig. 3-4-11, upper left corner of the screen "RST" (RESET) indicates reset, the top of the screen to display "SYS" (SYSTEM) represents the system.

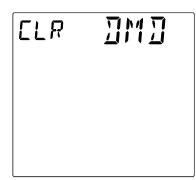


Fig 3-4-8 Clear maximum demand

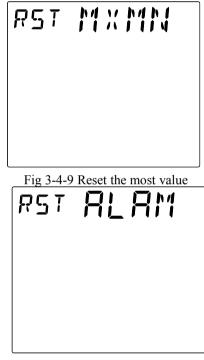


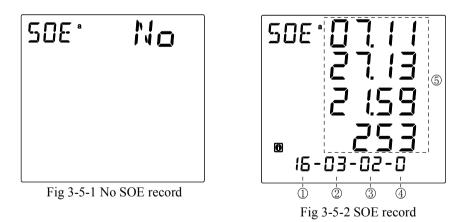
Fig. 3-4-10 Alarm reset

RST	542

Fig 3-4-11 Reset

The operation to system reset is the same as clearing SOE.

3.5. SOE and statistic Inquiry


3.5.1. Features

In the single button mode, press and a button to enter into the event log query mode, the upper left corner of the screen displays the word "SOE a", indicates the switch event log. Press a or a button up and down to view content. Press "a" will turn screen directly, The limit alam SOE "SOE b", the maximum minimum value of the electrical parameter, and the maximum demand "DMD" in turn.

Note: The screen will go back to the single button mode automatically if there is no operation on buttons in ten minutes.

3.5.2. Inquiry switching value SOE

If there is no SOE records in RAM, after entering inquiry SOE mode, the upper display shows "NO", as shown in fig. 3-5-1. If there is SOE records in RAM, The "O" sign is displayed in the lower left corner of the screen. After entering inquiry SOE mode, as shown in fig. 3-5-2:

- Total switch SOE event (up to 32). As shown there are currently a total of 16 events are recorded.
- ② Current event being viewed. As shown currently are visiting for the third events.
- ③ Types of events: in the following table.

Type Number	Type Description
1	Switching value input 1 shift event
2	Switching value input 2 shift event
3	Switching value input 3 shift event
4	Switching value input 4 shift event

- ④ Status of event. 0: "on" to "off"; 1: "off" to "on".
- (5) The time of the event occur.See in fig 3-5-2: the time of the event occurs is 2007-11-27 13:21:59 253ms
- If you have multiple SOE events, press is or is buttons to page up and down buttons to view.
- **Note:** If all SOE events have been uploaded via communication or all SOE events in memory have been cleared through local operations, the "**O**" mark in the lower left corner of the screen will disappear.

3.5.3. Inquiry the limit alarm SOE Operation

If there is no limit alarm SOE record in RAM, after entering the inquiry SOE mode, the "NO" is displayed on the top of the screen, as shown in fig. 3-5-3. If there is limit alarmSOE record in RAM, after entering the inquiry SOE mode, as shown in fig. 3-5-4.

50E °	No	БОЕ° <mark>СТІІ</mark> СПТІЗ СПП
D ¹ A C A N	COT (

Fig 3-5-3 No SOE events

Fig 3-5-4 SOE events

① The total number of limit alarm SOE events (the maximum is 16). There are 8 recorded events in the picture.

2 The sequence number of the current events. As pictured currently is the third event.

③ Type of the event:

Type NO.	Description
OC	Over-current alarm
LC	Zero-current alarm
ET	Over ground current alarm
OU	Over voltage alarm
LU	Low voltage alarm
OF	Over frequency alarm
LF	Low frequency alarm
PF	Low power factor alarm

④ Phase of event: "a" denotes phase A, "b" denotes phase B, "c" denotes phase

С.

(5) The time of the event occur.

See in fig 3.5.3.2: the time of the event occurs is 2007-11-27 13:21:59 253ms You can view all the SOE events pressing " \triangle " or " ∇ ".

3.5.4. Inquiry the electrical parameters of maximum and minimum operating presentation

After entering the electrical parameters of the maximum and minimum mode,

press \square or \square button to page up and down to view; press \square button to view the value of a electrical parameter and the time of occurrence, minimum and

"year-month-day" and "hour: minute: second" alternating displayed. The current statistical data viewed are all from last statistical interval

Screen 1: Maximum value of phase voltage

The screen shows a maximum value of 3-phase

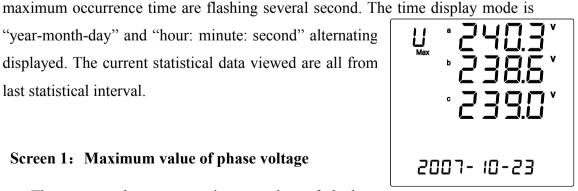
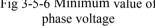


Fig 3-5-5 Maximum value of phase voltage


voltage, as 3-5-5: the upper left corner of the screen displays "U_max", represents the maximum voltage, 'a', 'b', 'c', respectively, A-phase, B-phase, C-phase voltage, unit is V or kV. Occurrence time of the maximum value is displayed at the bottom of the screen.

Note: The only show in the 3-phase 4-wire page.

Screen 2: Minimum value of phase voltage

The screen displays the minimum value of the 3-phase voltage, as shown in fig. 3-5-6: the upper left corner of the screen displays "U_min", represents the minimum voltage, 'a', 'b', 'c', respectively, A-phase, B-phase, C-phase voltage,unit is V or kV. Occurrence time of the minimum value is displayed at the bottom of the screen.

Note: The only show in the 3-phase 4-wire page.

Screen 3: Maximum value of line to line voltage

The screen displays the maximum value of line to line voltage, the upper left corner of the screen displays "U_max", represents the maximum value of line to line voltage, 'ab', 'bc', 'ca' denote the line voltage AB, BC, CA, with the first screen display similar .

Screen 4: Minimum value of line to line voltage

The screen displays the minimum value of line to line voltage, upper left corner of the screen displays "U_min", represents the minimum value of line to line voltage, 'ab', 'bc', 'ca' denote the line voltage AB, BC, CA, with a second similar screen display.

Screen 5: Maximum value of current

The screen shows the maximum value of current, the upper left corner of the screen displays "I_max", represents the maximum value of current, 'a', 'b', 'c', 'n' denote the A-phase, B-phase, C-phase, zero-sequence current ,unit is A. Similar to the first display screen.

Screen 6: Minimum value of current

The screen displays the minimum value of current, the upper left corner of the screen displays "I_min", represents the minimum value of current, 'a', 'b', 'c', 'n' denote the A-phase, B-phase, C-phase, zero-sequence current, unit is A. Similar to the second display screen.

Screen 7: Maximum value of power factor

The screen displays the maximum value of power factor, upper left corner of the screen displays the word "PF_max", represents the maximum value of the power factor, 'a', 'b', 'c', ", respectively, A-phase, B-phase, C-phase, total power factor, showed similar with the first screen.

Note: Do not display the A-phase ,B-phase, C-phase maximum value of power factor in the 3-phase 3-wire system, it displays the maximum value of total power factor only in the first row.

Screen 8: Minimum value of power factor

The screen displays the minimum value of power factor, the upper left corner of the screen displays the word "PF_min", indicates the minimum value of power factor, 'a', 'b', 'c', ", respectively, A-phase, B-phase, C-phase, the total power factor, with a second similar display screen.

Note: Do not display the A-phase ,B-phase, C-phase maximum value of power factor in the 3-phase 3-wire system, it displays the minimum value of total power factor only in the first row.

Screen 9: Maximum value of total power and frequency

The screen displays the maximum value of total power and frequency, and the upper left corner of the screen displays the word "P_ max", representsmaximum value of total power and frequency, ' Σ ' represents the total power, the first three rows are active power, reactive power, apparent power, units are kW, kvar, kVA. The fourth row is frequency, unit is Hz. Occurrence time of the maximum value is displayed at the bottom of the screen.

Screen 10: Minimum value of total power and frequency

The screen displays the minimum value of total power and frequency, top left corner of the screendisplay the word "P_ min", represents the minimum value of total power and frequency, with a ninth screen display similar.

Screen 11: Maximum value of A-phase power

The screen displays the maximum value of A-phase power, the upper left corner of the screen displays the word "Pa_ max", represents the maximum value of the A-phase power, ' Σ ' represents the total power, the first three rows are active power, reactive power, apparent power, unit is kW, kvar, kVA. Occurrence time of the maximum value is displayed at the bottom of the screen.

Note: This screen displayed in the 3-phase 4-wire system only.

Screen 12: Minimum value of A-phase power

The screen displays the minimum value of A-phase power,, top left corner of the screen displays the word "Pa_min", indicates the minimum value of A-phase power,, with an eleventh screen display similar.

Note: This screen displayed in the 3-phase 4-wire system only.

Screen 13: Maximum value of B-phase power

The screen displays the maximum value of B-phase power, the upper left corner of the screen displays the word "Pb_ max", represents the maximum value

of B-phase power, with an eleventh screen display similar.

Note: This screen displayed in the 3-phase 4-wire system only.

Screen 14: Minimum value of B-phase power

The screen displays the minimum value of B-phase power, the upper left corner of the screen displays the word "Pb_min", indicates the minimum value of B-phase power, with an eleventh screen display similar.

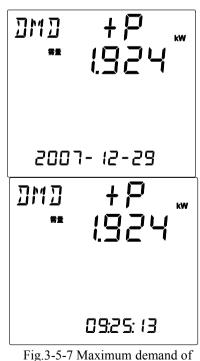
Note: This screen displayed in the 3-phase 4-wire system only.

Screen 15: Maximum value of C-phase power

The screen shows the maximum value of C-phase power, the upper left corner of the screen displays the word "Pc_ max", represents the maximum value of C-phase power, with an eleventh screen display similar.

Note: This screen displayed in the 3-phase 4-wire system only.

Screen 16: Minimum value of C-phase power


The screen displays the minimum value of C-phase power,, top left corner of the screen displays the word "Pc_min", C represents the minimum value of

C-phase power,, with an eleventh screen display similar. <u>Note: This screen displayed in the 3-phase 4-wire</u> <u>system only.</u>

3.5.5. Inquiry maximum demand operating presentation

Enter the maximum demand mode, press rianlelees or rianlelees buttons to page up and down to view; the occurrence time of the maximum are flashing several second. Display time of year - month - day and hours: minutes: seconds are displayed alternately. The current maximum demand are viewed on a demand period (15 minutes) statistics.

Screen 1 : Maximum demand of forward active power

forward active power

"DMD" at the left top corner denotes maximum demand, "+P" on the top denotes maximum demand of forward active power, unit is kW. See in Fig 3-5-7. "1.924" denotes the maximum demand of forward active power is 1.924kW. Occurrence time of the maximum demand is 2007-12-29 09:25:13.

Screen 2: Maximum demand of reverse active power

"DMD" at the left top corner denotes maximum demand, "-P" on the top denotes maximum demand of reverse active power, unit is kW. The screen display is similar to screen 1.

Screen 3: Maximum demand of forward reactive power

"DMD" at the left top corner denotes maximum demand, "+q" on the top denotes maximum demand of forward reactive power, unit is kvar.

Screen 4: Maximum demand of reverse reactive power

"DMD" at the left top corner denotes maximum demand, "-q" on the top denotes maximum demand of reverse reactive power, unit is kvar.

3.5.6. Other Inquiry

When single button mode measurement data display, press the button \Box and \Box button, you can view the three formats of the time and the current temperature of the device..

Screen 1: Time Format 1

At the bottom of this screen displays the system time and the format is "month-day hour: minute", see in Fig 3-6-1.

The system time is: 02-20 19:38.

Screen 2: Time Format 2

02-20 (9:38

סיץ יקה

Fig 3-6-2 Time Format 2

Fig 3-6-1 Time Format 1

the

At the bottom of this screen displays the system time and the format is "hour: minute: second", see in Fig 3-6-2.

The system time is: 02: 41: 50.

.

Screen 3: Temperature of device

At the bottom of this screen displays temperature of device, see in Fig 3-6-3.

The temperature of device is: 25.8°C

Screen 4: Time Format 3

At the bottom of this screen displays the system time and the format is "year: month: day", see in Fig 3-6-4.

The system time is: 2008-02-20.

Screen 5: No display

At the bottom of this screen displays nothing.

4. Communication

4.1. MODBUS protocol overview

MODBUS-RTU communication protocol is more commonly used as a communication protocol, the response from the main station and the slave station connection (half duplex). Themain station (for example PC) send a command to all the terminal devices (for example IM300), The addressed terminal device sends a response signal to the host.

4.1.1 The transmission format

Information is transmitted asynchronously and in bytes. The communication message passing between the main station and the slave station is the 11-bit word

2008-02-20

Fig 3-6-4 Time Format 3

°C Fig 3-6-3 Device temperature

format:

Odd-even check:

Start bit(1)	Data bits(8)				Parity check bit(1)	End bit(1)				
0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	1

No parity check:

Start bit(1)	Data bits(8)					End bit(1)	End bit(1)			
0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	1	1

4.1.2 The frame format

Data frame arrived at the terminal, The device removes the header of the data frame, read the data and perform the required tasks if it is detected correctly, Then put the generated data into the data frame and send it back to the requester. The returned data frames include: terminal address, executed command, data, check code.

Address	Function	Data	Check
8-Bits	8-Bits	N×8-Bits	16-Bits

Address code:

The address code is the first byte of each communication frame, ranging from 0 $\sim 255 (00H \sim FFH)$. Each slave station must have a unique address code, and only the one that conforms to the address code can respond and send back the message. When the information is sent back from the slave station, the return data is started with their respective address codes. The address code that is sent indicates the address that will be sent from the slave station, and the address code returned from the slave station indicates the return from the slave station address. The corresponding address code indicates where the information came from. 00H is the broadcast address, all slave substations respond to the broadcast command, but no information is returned.

Function code:

The function code takes up a byte, range $1 \sim 127$ (01H ~ 7 FH), and tells the terminal device to perform what operation. The function code used in the device is shown in the following table:

- 01H: read the output status of the relay.
- 02H: read the input status of remote.
- 03H: read register data.
- 04H: read the input data of register.
- 05H: single relay output.
- 06H: write a single register.
- 10H: write multiple registers.
- 55H: read the switch amount SOE information.
- 56H: read the alarm of SOE information.

Data code:

Data length is uncertain, data domain is the main station and slave station to read and write register to carry on data exchange.

Error code:

The error codes supported by IM300 include the following:

Error code	Name	Explain
01	Illegal function code	Function code not supported by sub-station.
02	Illegal address	The register address not supported by the sub-station.
03	Illegal data	Master station data not supported by sub-station.

Check:

The data may be interfered with and changed during the transmission. The check can detect whether the data has changed during the transmission, and ensure that the host or the terminal does not respond to the erroneous data. The 16-bit cyclic redundancy check (CRC16) is used for verification. The procedure for calculating CRC-16 is described below.

The relevant byte in the frame is defined as a string of binary data (0,1). The 16th checksum is obtained as follows: The stream of data streams is multiplied by 216 and then divided by the generator polynomial (X16 + X15 + X2 + 1), which is expressed in binary as 11000000000101, the quotient is ignored and the remainder of 16 bits is the CRC value . When calculating CRC-16 values, modulo two or XOR algorithms are used for all arithmetic operations. The CRC-16 checksum is generated as follows:

① Omit the most significant bits of the generator, and reverse the order of the

bits. Form a new polynomial, the result is 10100000000001 or hexadecimal A001.

2 Load all 1s or hexadecimal FFFFs into 16-bit registers.

③ 16-bit register with low-order byte of the first data byte XOR operation, the results stored in 16-bit register.

④ 16-bit register to the right one. If the overflow bit is 1, go to step 5, otherwise go to step 6.

⁽⁵⁾ MOR operation is performed on the 16-bit register with the new generator polynomial and the result is stored in the 16-bit register.

6 Repeat step 4 until it is shifted 8 times.

 \bigcirc XOR operation of the next data byte with the low byte of the 16-bit register,

the result is stored in a 16-bit register.

⁽⁸⁾ Repeat steps 4 to 7 until all bytes of data have been XORed with 16-bit registers.

(9) 16-bit register is the content of CRC-16.

4.2. Communication protocol address table and description

Relay operation address	table, supports	read function	of code 01	and remote
control function of code 05				

Address	Туре	Name	Register
00010	RW	RL1	1
00011	RW	RL2	1

Digital address table, supports read function of code 02

Address	Туре	Name	Register
10100	RO	DI1	1
10101	RO	DI2	1
10102	RO	DI3	1
10103	RO	DI4	1

System information address table, supports read function of code 03,04 and set the code 06,10

Address	Туре	Name	Ranges	Remark	Register
40010	RO	ASCII code indicates the hardware version number			1
40011	RO	ASCII code indicates the software version number			1
40012	RO	ASCII code indicates year			1
40013 ~40015	RO	ASCII code indicates the product sequence number		-	3
40020	RW	System time××Year××Month		Only support	1
40021	RW	System time××Day××Hour		all written and	1
40022	RW	System time××Minute××Second		broadcast all written	1
40023	RW	System time××Millisecond			1
40030	RW	Communication address	1~254	Defaults : 254	1
40032	RW	Communication baud rate	1~5	Defaults: 4	1
40034	RW	Communication check mode	0~3	Defaults: 0	1
40050	RO	Sub-station status			1
40055	WO	Sub-station setting			1
40060	RO	Freeze/Thaw state of energy			1

System parameter address table, supports read function of code 03,04 and set the code 06,10

Address	Туре	Name	Ranges	Remark	Register
40062	RW	The selection of system frequency	5000/6000		1

40065	RW	Electrical parameters of the maximum and minimum range of statistics	1~1440min	Defaults: 10	1
40067	RW	Direction of CT wiring		Defaults : 0x00000000	2(Write continu ously)
40070	RW	Telemetry wiring mode	1~5	Defaults: 1	1
40072 40073	RW RW	PT primary voltage rating PT secondary voltage rating	100~35000V 100~220V	Defaults: 220/220	2(Write continu ously)
		bit14-bit0 represents CT	Primary		
40075	RW	primary current rating bit $15 = 0/1$ indicates the secondary is $5A/1A$	current rating: 1~9999A	Defaults: 0x1388 (5000: 5)	1
40077	RW	bit 14-bit 0 indicates zero-sequence CT primary current rating bit $15 = 0/1$ indicates the secondary is $5A/1A$	Primary current rating: 1~9999A	Defaults: 0x1388 (5000: 5)	1
40081	RW	Relay output settings	1~2	Defaults: 1	1
40005		AO related electrical			
40085 40086		parameter rangeAO related electricalparameter types			2 (Write continuo usly)
40088	RW	Pulse length of relay output	50~20000	Defaults : 2000, Unit: ms	1

40090	RW	back-light time	0~30 minutes	Defaults: 5	1
40092~ 40097	RW	Time-sharing accounting settings(4 rates 48 periods))	Stepper: 0.5 hours	Defaults: 0xaa	6(Write continu ously)

Basic electric parameter address table, supports read function of code 03, 04

Address	Туре	Name	Register
40100	RO	Lin voltage Uab	1
40101	RO	Line voltage Ubc	1
40102	RO	Line voltage Uca	1
40103	RO	Average value of line voltage ULLAvg	1
40104	RO	Phase voltage Uan	1
40105	RO	Phase voltage Ubn	1
40106	RO	Phase voltage Ucn	1
40107	RO	Average value of phase voltage ULN Avg	1
40108	RO	Current Ia	1
40109	RO	Current Ib	1
40110	RO	Current Ic	1
40111	RO	Average of 3-phase current I Avg	1
40112	RO	Zero-sequence current In	1
40113	RO	Total frequency (F)	1
40115	RO	Total power factor (PF)	1
40116	RO	Total active power (W)	1
40117	RO	Total reactive power (Q)	1
40118	RO	Total apparent power (S)	1
40119	RO	Power factor of phase A (PFa)	1
40120	RO	Power factor of phase B (PFb)	1
40121	RO	Power factor of phase C (PFc)	1
40122	RO	Active power of phase A (Wa)	1

40123	RO	Active power of phase B (Wb)	1
40124	RO	Active power of phase C (Wc)	1
40125	RO	Reactive power of phase A (Qa)	1
40126	RO	Reactive power of phase B (Qb)	1
40127	RO	Reactive power of phase C (Qc)	1
40128	RO	Apparent power of Phase A (Sa)	1
40129	RO	Apparent power of phase B (Sb)	1
40130	RO	Apparent power of phase C (Sc)	1

Note 1: In the 3-phase 3-wire system, the data in $40104 \sim 40107$ and $40119 \sim 40130$ are invalid and value is 0.

Note 2: The correspondence between the above data (Ai) and the actual value is:

Voltage: U = $(Ai / 10) \times (PT1 / PT2)$, Ai is an unsigned integer, unitV.

Current: I = (Ai / 1000) × (CT1 / CT2), Ai is an unsigned integer, unit:A.

Zero-sequence current: In = $(Ai / 1000) \times (CT01 / CT02)$, Ai is an unsigned integer, unit:A.

Active power: $P = Ai \times (PT1 / PT2) \times (CT1 / CT2)$, Ai signed integers, unit:W.

Reactive power: $Q = Ai \times (PT1 / PT2) \times (CT1 / CT2)$, Ai signed integers, unit:var.

Apparent power: $S = Ai \times (PT1 / PT2) \times (CT1 / CT2)$, Ai is an unsigned integer, unit:VA.

Power factor: PF = Ai / 1000, Ai denote signed integers, no unit.

Frequency: F = Ai / 100, Ai as an unsigned integer, unit:Hz.

energy address table, supports read function of codes 03, 04 and set function of code 10.Only support writes continuously

Address	Туре	Data Definition	Regist er
40200	RW	The absolute value of total active energy	2

40202	RW	The absolute value of total reactive energy	2
40204	RW	The absolute value of phase A active energy	2
40206	RW	The absolute value of phase B active energy	2
40208	RW	The absolute value of phase C active energy	2
40210	RW	The absolute value of phase A reactive energy	2
40212	RW	The absolute value of phase B reactive energy	2
40214	RW	The absolute value of phase C reactive energy	2
40216	RW	The forward value of total active energy	2
40218	RW	The forward value of total active energy at sharp rate	2
40220	RW	The forward value of total active energy at peak rate	2
40222	RW	The forward value of total active energy at shoulder rate	2
40224	RW	The forward value of total active energy at off-peak rate	2
40226	RW	The reverse value of total active energy	2
40228	RW	The reverse value of total active energy at sharp rate	2
40230	RW	The reverse value of total active energy at peak rate	2
40232	RW	The reverse value of total active energy at shoulder rate	2
40234	RW	The reverse value of total active energy at off-peak rate	2
40236	RW	The forward value of total reactive energy	2
40238	RW	The forward value of total reactive energy at sharp rate	2
40240	RW	The forward value of total reactive energy at peak rate	2
40242	RW	The forward value of total reactive energy at shoulder rate	2
40244	RW	The forward value of total reactive energy at off-peak rate	2
40246	RW	The reverse value of total reactive energy	2
40248	RW	The reverse value of total reactive energy at sharp rate	2
40250	RW	The reverse value of total reactive energy at peak rate	2
40252	RW	The reverse value of total reactive energy at shoulder rate	2
40254	RW	The reverse value of total reactive energy at off-peak rate	2
40256	RW	The absolute value of the I quadrant total reactive energy	2
40258	RW	The absolute value of the I quadrant total reactive energy at sharp rate	2
40260	RW	The absolute value of the I quadrant total reactive energy at	2

		peak rate	
40262	RW	The absolute value of the I quadrant total reactive energy at shoulder rate	2
40264	RW	The absolute value of the I quadrant total reactive energy at off-peak rate	2
40266	RW	The absolute value of the IV quadrant total reactive energy	2
40268	RW	The absolute value of the IV quadrant total reactive energy at sharp rate	2
40270	RW	The absolute value of the IV quadrant total reactive energy at peak rate	2
40272	RW	The absolute value of the IV quadrant total reactive energy at shoulder rate	2
40274	RW	The absolute value of the IV quadrant total reactive energy at off-peak rate	2
40276	RW	The absolute value of the II quadrant total reactive energy	2
40278	RW	The absolute value of the II quadrant total reactive energy at sharp rate	2
40280	RW	The absolute value of the II quadrant total reactive energy at peak rate	2
40282	RW	The absolute value of the II quadrant total reactive energy at shoulder rate	2
40284	RW	The absolute value of the II quadrant total reactive energy at off-peak rate	2
40286	RW	The absolute value of the III quadrant total reactive energy	2
40288	RW	The absolute value of the III quadrant total reactive energy at sharp rate	2
40290	RW	The absolute value of the III quadrant total reactive energy at peak rate	2
40292	RW	The absolute value of the III quadrant total reactive energy at shoulder rate	2
40294	RW	The absolute value of the III quadrant total reactive energy at off-peak rate	2

Note 1: In the 3-phase 3-wire system, the data in $40204 \sim 40215$ are invalid and value is 0.

Note 2: The correspondence between the above data (Ai) and the actual value is:

Active energy:: <u>Ep=Ai/10,Ai denote unsigned long integer(0 \sim 999,999,999),unit is KWh</u>

Reactive energy:: Eq=Ai/10,Ai denote unsigned long integer(0 \sim

999,999,999),unit is kvarh

Note 3: when set at the bottom, you need to set the total branch amount and the total amount of electricity.

Note 4: When there is no multi-rate function, if you want to set the base number of four-quadrant energy, you still need to write 10 registers at a time, and the settings of the sharp, peak, shouder, and off-peak energy values are invalid.

Harmonic statistics (Harmonic distortion ratio/2-15th harmonic occupancy) address table, supports read function of codes 03, 04

Address	Туре	Data Definition	Register
40300	RO	Total harmonic distortion ratio (THD) of A-phase (Uab) voltage	1
40301	RO	Total harmonic distortion ratio (THD) of B-phase (Ubc) voltage	1
40302	RO	Total harmonic distortion ratio (THD) of C-phase (Uca) voltage	1
40303	RO	Total harmonic distortion ratio of current Ia	1
40304	RO	Total harmonic distortion ratio of current Ib	1
40305	RO	Total harmonic distortion ratio of current Ic	1
40306	RO	Total harmonic distortion ratio of zero-sequence current In	1
40308	RO	Odd harmonic distortion ratio of A-phase (Uab) voltage	1
40309	RO	Odd harmonic distortion ratio of B-phase (Ubc) voltage	1
40310	RO	Odd harmonic distortion ratio of C-phase (Uca) voltage	1
40311	RO	Odd harmonic distortion ratio of current Ia	1
40312	RO	Odd harmonic distortion ratio of current Ib	1
40313	RO	Odd harmonic distortion ratio of current Ic	1
40314	RO	Odd harmonic distortion ratio of zero-sequence current In	1
40315	RO	Even harmonic distortion ratio of A-phase (Uab) voltage	1
40316	RO	Even harmonic distortion ratio of B-phase (Ubc) voltage	1
40317	RO	Even harmonic distortion ratio of C-phase (Uca) voltage	1

40318	RO	Even harmonic distortion ratio of current Ia	1
40319	RO	Even harmonic distortion ratio of current Ib	1
40320	RO	Even harmonic distortion ratio of current Ic	1
40321	RO	Even harmonic distortion ratio of zero-sequence current In	1
40329	RO	The 2 nd harmonic ratio of phase A (Uab)voltage	1
40330	RO	The 3 rd harmonic ratio of phase A (Uab)voltage	1
40331	RO	The 4 th harmonic ratio of phase A (Uab)voltage	1
40332	RO	The 5 th harmonic ratio of phase A (Uab)voltage	1
40333	RO	The 6 th harmonic ratio of phase A (Uab)voltage	1
40334	RO	The 7 th harmonic ratio of phase A (Uab)voltage	1
40335	RO	The 8 th harmonic ratio of phase A (Uab)voltage	1
40336	RO	The 9 th harmonic ratio of phase A (Uab)voltage	1
40337	RO	The 10 th harmonic ratio of phase A (Uab)voltage	1
40338	RO	The 11 th harmonic ratio of phase A (Uab)voltage	1
40339	RO	The 12 th harmonic ratio of phase A (Uab)voltage	1
40340	RO	The 13 th harmonic ratio of phase A (Uab)voltage	1
40341	RO	The 14 th harmonic ratio of phase A (Uab)voltage	1
40342	RO	The 15 th harmonic ratio of phase A (Uab)voltage	1
40344	RO	The 2 nd harmonic ratio of phase B (Ubc)voltage	1
40345	RO	The 3 rd harmonic ratio of phase B (Ubc)voltage	1
40346	RO	The 4 th harmonic ratio of phase B (Ubc)voltage	1
40347	RO	The 5 th harmonic ratio of phase B (Ubc)voltage	1
40348	RO	The 6 th harmonic ratio of phase B (Ubc)voltage	1
40349	RO	The 7 th harmonic ratio of phase B (Ubc)voltage	1
40350	RO	The 8 th harmonic ratio of phase B (Ubc)voltage	1
40351	RO	The 9 th harmonic ratio of phase B (Ubc)voltage	1
40352	RO	The 10 th harmonic ratio of phase B (Ubc)voltage	1
40353	RO	The 11 th harmonic ratio of phase B (Ubc)voltage	1

		1	1
40354	RO	The 12 th harmonic ratio of phase B (Ubc)voltage	1
40355	RO	The 13 th harmonic ratio of phase B (Ubc)voltage	1
40356	RO	The 14 th harmonic ratio of phase B (Ubc)voltage	1
40357	RO	The 15 th harmonic ratio of phase B (Ubc)voltage	1
40359	RO	The 2 nd harmonic ratio of phase C(Uca) voltage	1
40360	RO	The 3 rd harmonic ratio of phase C(Uca) voltage	1
40361	RO	The 4 th harmonic ratio of phase C(Uca) voltage	1
40362	RO	The 5 th harmonic ratio of phase C(Uca) voltage	1
40363	RO	The 6 th harmonic ratio of phase C(Uca) voltage	1
40364	RO	The 7 th harmonic ratio of phase C(Uca) voltage	1
40365	RO	The 8 th harmonic ratio of phase C(Uca) voltage	1
40366	RO	The 9 th harmonic ratio of phase C(Uca) voltage	1
40367	RO	The 10 th harmonic ratio of phase C(Uca) voltage	1
40368	RO	The 11 th harmonic ratio of phase C(Uca) voltage	1
40369	RO	The 12 th harmonic ratio of phase C(Uca) voltage	1
40370	RO	The 13 th harmonic ratio of phase C(Uca) voltage	1
40371	RO	The 14 th harmonic ratio of phase C(Uca) voltage	1
40372	RO	The 15 th harmonic ratio of phase C(Uca) voltage	1
40374	RO	The 2 nd harmonic ratio of current Ia	1
40375	RO	The 3 rd harmonic ratio of current Ia	1
40376	RO	The 4 th harmonic ratio of current Ia	1
40377	RO	The 5 th harmonic ratio of current Ia	1
40378	RO	The 6 th harmonic ratio of current Ia	1
40379	RO	The 7 th harmonic ratio of current Ia	1
40380	RO	The 8 th harmonic ratio of current Ia	1
40381	RO	The 9 th harmonic ratio of current Ia	1
40382	RO	The 10 th harmonic ratio of current Ia	1
40383	RO	The 11 th harmonic ratio of current Ia	1

40384	RO	The 12 th harmonic ratio of current Ia	1
40385	RO	The 13 th harmonic ratio of current Ia	1
40386	RO	The 14 th harmonic ratio of current Ia	1
40387	RO	The 15 th harmonic ratio of current Ia	1
40389	RO	The 2 nd harmonic ratio of current Ib	1
40390	RO	The 3 rd harmonic ratio of current Ib	1
40391	RO	The 4 th harmonic ratio of current Ib	1
40392	RO	The 5 th harmonic ratio of current Ib	1
40393	RO	The 6 th harmonic ratio of current Ib	1
40394	RO	The 7 th harmonic ratio of current Ib	1
40395	RO	The 8 th harmonic ratio of current Ib	1
40396	RO	The 9 th harmonic ratio of current Ib	1
40397	RO	The 10 th harmonic ratio of current Ib	1
40398	RO	The 11 th harmonic ratio of current Ib	1
40399	RO	The 12 th harmonic ratio of current Ib	1
40400	RO	The 13 th harmonic ratio of current Ib	1
40401	RO	The 14 th harmonic ratio of current Ib	1
40402	RO	The 15 th harmonic ratio of current Ib	1
40404	RO	The 2 nd harmonic ratio of current Ic	1
40405	RO	The 3 rd harmonic ratio of current Ic	1
40406	RO	The 4 th harmonic ratio of current Ic	1
40407	RO	The 5 th harmonic ratio of current Ic	1
40408	RO	The 6 th harmonic ratio of current Ic	1
40409	RO	The 7 th harmonic ratio of current Ic	1
40410	RO	The 8 th harmonic ratio of current Ic	1
40411	RO	The 9 th harmonic ratio of current Ic	1
40412	RO	The 10 th harmonic ratio of current Ic	1
40413	RO	The 11 th harmonic ratio of current Ic	1

40414	RO	The 12 th harmonic ratio of current Ic	1
40415	RO	The 13 th harmonic ratio of current Ic	1
40416	RO	The 14 th harmonic ratio of current Ic	1
40417	RO	The 15 th harmonic ratio of current Ic	1
40419	RO	The 2 nd harmonic ratio of zero-sequence current In	1
40420	RO	The 3 rd harmonic ratio of zero-sequence current In	1
40421	RO	The 4 th harmonic ratio of zero-sequence current In	1
40422	RO	The 5 th harmonic ratio of zero-sequence current In	1
40423	RO	The 6 th harmonic ratio of zero-sequence current In	1
40424	RO	The 7 th harmonic ratio of zero-sequence current In	1
40425	RO	The 8 th harmonic ratio of zero-sequence current In	1
40426	RO	The 9 th harmonic ratio of zero-sequence current In	1
40427	RO	The 10 th harmonic ratio of zero-sequence current In	1
40428	RO	The 11 th harmonic ratio of zero-sequence current In	1
40429	RO	The 12 th harmonic ratio of zero-sequence current In	1
40430	RO	The 13 th harmonic ratio of zero-sequence current In	1
40431	RO	The 14 th harmonic ratio of zero-sequence current In	1
40432	RO	The 15 th harmonic ratio of zero-sequence current In	1

Note: The above data (Ai) and the actual value of the correspondence between:

<u>Percent harmonic distortion ratio</u>: THD = Ai / 10, Ai is an unsigned integer,

unit:%.

Harmonic occupancy: HP = Ai / 10, Ai is an unsigned integer, unit:%.

Remote signaling address table, supports read function of codes 03, 04

Address	Туре	Data Definition	Register
40500	RO	Status of digital input	1
40501	RO	The remote signal of electricity limit alarm	2

Address	Туре	Data Definition	Ranges	Defaults	Regis	Remarks
40510	RW	The limit value of	0~600000 meaning 0~6000A	6000A	ter 2	
40512	RW	current The return value of current	0~6000A 0~600000 meaning 0~6000A	5000A	2	Only supports
40514	RW	Delay time	1~60000,Unit: ms	60000ms	1	writes continuo
40515	RW	Allow	0x0000(prohibit); 0xCC33H(allow)	0x0000	1	usly
40516	RW	The limit value of zero current	0~600000 meaning 0~6000A	0A	2	Only
40518	RW	The return value of zero current	0~600000 meaning 0~6000A	200A	2	Only supports writes
40520	RW	Delay time	1~60000,Unit: ms	60000ms	1	continuo
40521	RW	Allow	0x0000(prohibit); 0xCC33H(allow)	0x0000	1	usly
40522	RW	The limit value of G	0~600000 meaning 0~6000A	6000A	2	Only
40524	RW	The return value of G	0~600000 meaning 0~6000A	5000A	2	supports writes
40526	RW	G delay time	1~60000,Unit: ms	60000ms	1	continuo
40527	RW	G allow	0x0000(prohibit); 0xCC33H(allow)	0x0000	1	usly
40528	RW	The limit value of low voltage	0~420000 meaning 0~42000V	0V	2	0.1
40530	RW	The return value of low voltage	0~420000 meaning 0~42000V	50V	2	Only supports
40532	RW	Delay time	1~18000 meaning 0.1~1800s	1800s	1	writes continuo
40533	RW	Allow	0x0000(prohibit); 0xCC33H(allow)	0x0000	1	usly
40534	RW	The limit value of over voltage	0~420000 meaning 0~42000V	260V	2	
40536	RW	The return value of over voltage	0~420000 meaning 0~42000V	220V	2	Only supports
40538	RW	Delay time	1~18000 meaning 0.1~1800s	1800s	1	writes continuo
40539	RW	Allow	0x0000(prohibit); 0xCC33H(allow)	0x0000	1	usly
40540	RW	The limit value of low voltage low frequency	0~9999 meaning 0~99.99Hz	45.0Hz	2	Only supports

System parameter address table, supports read function of code 03,04 and set function of code 06,10

40542	RW	The return value of low voltage low frequency	0~9999 meaning 0~99.99Hz	46.0Hz	2	writes continuo usly
40544	RW	Delay time	1~18000 meaning 0.1~1800s	1800s	1	
40545	RW	Allow	0x0000(prohibit); 0xCC33H(allow)	0x0000	1	
40546	RW	The limit value of over voltage low frequency	0~99999 meaning 0~99.99Hz	55.0Hz	2	
40548	RW	The return value of over voltage low frequency	0~9999 meaning 0~99.99Hz	54.0Hz	2	Only supports writes
40550	RW	Delay time	1~18000 meaning 0.1~1800s	1800s	1	continuo usly
40551	RW	Allow	0x0000(prohibit); 0xCC33H(allow)	0x0000	1	
40552	RW	The limit value of low voltage low power factor	0~1000 meaning 0~1.0	0.5	2	
40554	RW	The return value of low voltage low power factor	0~1000 meaning 0~1.0	0.6	2	Only supports writes
40556	RW	Delay time	1~18000 meaning 0.1~1800s	1800s	1	continuo usly
40557	RW	Allow	0x0000(prohibit); 0xCC33H(allow)	0x0000	1	
40566	RW	Over current alarm associated	00 (RL1) /01/ (RL2) /FFFFH (Not associated)	FFFFH	1	
40567	RW	Zero current alarm associated	00 (RL1) /01/ (RL2) /FFFFH (Not associated)	FFFFH	1	Only supports
40568	RW	Grounding alarm associated	00 (RL1) /01/ (RL2) /FFFFH (Not associated)	FFFFH	1	writes continuo usly
40569	RW	Low voltage alarm associated	00 (RL1)/01/(RL2) /FFFFH (Not associated)	FFFFH	1	
40570	RW	Over voltage alarm associated	00 (RL1) /01/ (RL2) /FFFFH (Not associated)	FFFFH	1	Only supports writes

40571	RW	Low frequency alarm association	00 (RL1)/01/(RL2) /FFFFH (Not associated)	FFFFH	1	continuo usly
40572	RW	Over frequency alarm correlation	00 (RL1) /01/ (RL2) /FFFFH (Not associated)	FFFFH	1	
40573	RW	Low power factor alarm associated	00 (RL1) /01/ (RL2) /FFFFH (Not associated)	FFFFH	1	

Note 1: The limit value and the return value are primary side set value;

Note 2: Alarm parameter data content

- The limit value, return value and time of current, the limit and return value is 100 times, the time data is expressed as 1 times, the unit is A, A, millisecond respectively.
- The limit value, return value and time of voltage, the limit and return value is 10 times, the time data is expressed as 10 times, the unit is V, V, second.
- The limit value, return value and time of frequency, the limit and return value is 100 times, the time data is expressed as 10 times, the unit is Hz, Hz, second.
- The limit value, return value of power factor is 1000 times, the time data is expressed as 10 times, unit is second.

Address	Туре	Data Definition	Register
40610	RO	The 16 th harmonic ratio of phase A (Uab)voltage	1
40611	RO	The 17 th harmonic ratio of phase A (Uab)voltage	1
40612	RO	The 18 th harmonic ratio of phase A (Uab)voltage	1
40613	RO	The 19th harmonic ratio of phase A (Uab)voltage	1
40614	RO	The 20 th harmonic ratio of phase A (Uab)voltage	1
40615	RO	The 21 th harmonic ratio of phase A (Uab)voltage	1
40616	RO	The 22 th harmonic ratio of phase A (Uab)voltage	1
40617	RO	The 23 th harmonic ratio of phase A (Uab)voltage	1
40618	RO	The 24 th harmonic ratio of phase A (Uab)voltage	1
40619	RO	The 25 th harmonic ratio of phase A (Uab)voltage	1

Harmonic statistics ($16 \sim 31^{th}$ Harmonic occupancy) address table, supports read function of codes 03, 04

1	The 26 th harmonic ratio of phase A (Uab)voltage	RO	40620
1	The 27 th harmonic ratio of phase A (Uab)voltage	RO	40621
1	The 28 th harmonic ratio of phase A (Uab)voltage	RO	40622
1	The 29 th harmonic ratio of phase A (Uab)voltage	RO	40623
1	The 20 th harmonic ratio of phase A (Uab)voltage	RO	40624
1	The 31 th harmonic ratio of phase A (Uab)voltage	RO	40625
1	The 16 th harmonic ratio of phase B (Ubc)voltage	RO	40630
1	The 17 th harmonic ratio of phase B (Ubc)voltage	RO	40631
1	The 18 th harmonic ratio of phase B (Ubc)voltage	RO	40632
1	The 19 th harmonic ratio of phase B (Ubc)voltage	RO	40633
1	The 20 th harmonic ratio of phase B (Ubc)voltage	RO	40634
1	The 21 th harmonic ratio of phase B (Ubc)voltage	RO	40635
1	The 22 th harmonic ratio of phase B (Ubc)voltage	RO	40636
1	The 23 th harmonic ratio of phase B (Ubc)voltage	RO	40637
1	The 24 th harmonic ratio of phase B (Ubc)voltage	RO	40638
1	The 25 th harmonic ratio of phase B (Ubc)voltage	RO	40639
1	The 26 th harmonic ratio of phase B (Ubc)voltage	RO	40640
1	The 27 th harmonic ratio of phase B (Ubc)voltage	RO	40641
1	The 28 th harmonic ratio of phase B (Ubc)voltage	RO	40642
1	The 29 th harmonic ratio of phase B (Ubc)voltage	RO	40643
1	The 30 th harmonic ratio of phase B (Ubc)voltage	RO	40644
1	The 31 th harmonic ratio of phase B (Ubc)voltage	RO	40645
1	The 16 th harmonic ratio of phase C(Uca) voltage	RO	40650
1	The 17 th harmonic ratio of phase C(Uca) voltage	RO	40651
1	The 18 th harmonic ratio of phase C(Uca) voltage	RO	40652
1	The 19 th harmonic ratio of phase C(Uca) voltage	RO	40653
1	The 20 th harmonic ratio of phase C(Uca) voltage	RO	40654
1	The 21 th harmonic ratio of phase C(Uca) voltage	RO	40655

40656	RO	The 22 th harmonic ratio of phase C(Uca) voltage	1
40657	RO	The 23 th harmonic ratio of phase C(Uca) voltage	1
40658	RO	The 24 th harmonic ratio of phase C(Uca) voltage	1
40659	RO	The 25 th harmonic ratio of phase C(Uca) voltage	1
40660	RO	The 26 th harmonic ratio of phase C(Uca) voltage	1
40661	RO	The 27 th harmonic ratio of phase C(Uca) voltage	1
40662	RO	The 28 th harmonic ratio of phase C(Uca) voltage	1
40663	RO	The 29 th harmonic ratio of phase C(Uca) voltage	1
40664	RO	The 30 th harmonic ratio of phase C(Uca) voltage	1
40665	RO	The 31 th harmonic ratio of phase C(Uca) voltage	1
40670	RO	The 16 th harmonic ratio of current Ia	1
40671	RO	The 17 th harmonic ratio of current Ia	1
40672	RO	The 18 th harmonic ratio of current Ia	1
40673	RO	The 19 th harmonic ratio of current Ia	1
40674	RO	The 20 th harmonic ratio of current Ia	1
40675	RO	The 21 th harmonic ratio of current Ia	1
40676	RO	The 22 th harmonic ratio of current Ia	1
40677	RO	The 23 th harmonic ratio of current Ia	1
40678	RO	The 24 th harmonic ratio of current Ia	1
40679	RO	The 25 th harmonic ratio of current Ia	1
40680	RO	The 26 th harmonic ratio of current Ia	1
40681	RO	The 27 th harmonic ratio of current Ia	1
40682	RO	The 28 th harmonic ratio of current Ia	1
40683	RO	The 29 th harmonic ratio of current Ia	1
40684	RO	The 30 th harmonic ratio of current Ia	1
40685	RO	The 31 th harmonic ratio of current Ia	1
40690	RO	The 16 th harmonic ratio of current Ib	1
40691	RO	The 17 th harmonic ratio of current Ib	1

40692	RO	The 18 th harmonic ratio of current Ib	1
40693	RO	The 19 th harmonic ratio of current Ib	1
40694	RO	The 20 th harmonic ratio of current Ib	1
40695	RO	The 21 th harmonic ratio of current Ib	1
40696	RO	The 22 th harmonic ratio of current Ib	1
40697	RO	The 23 th harmonic ratio of current Ib	1
40698	RO	The 24 th harmonic ratio of current Ib	1
40699	RO	The 25 th harmonic ratio of current Ib	1
40700	RO	The 26 th harmonic ratio of current Ib	1
40701	RO	The 27 th harmonic ratio of current Ib	1
40702	RO	The 28 th harmonic ratio of current Ib	1
40703	RO	The 29 th harmonic ratio of current Ib	1
40704	RO	The 30 th harmonic ratio of current Ib	1
40705	RO	The 31 th harmonic ratio of current Ib	1
40710	RO	The 16 th harmonic ratio of current Ic	1
40711	RO	The 17 th harmonic ratio of current Ic	1
40712	RO	The 18 th harmonic ratio of current Ic	1
40713	RO	The 19 th harmonic ratio of current Ic	1
40714	RO	The 20 th harmonic ratio of current Ic	1
40715	RO	The 21 th harmonic ratio of current Ic	1
40716	RO	The 22 th harmonic ratio of current Ic	1
40717	RO	The 23 th harmonic ratio of current Ic	1
40718	RO	The 24 th harmonic ratio of current Ic	1
40719	RO	The 25 th harmonic ratio of current Ic	1
40720	RO	The 26 th harmonic ratio of current Ic	1
40721	RO	The 27 th harmonic ratio of current Ic	1
40722	RO	The 28 th harmonic ratio of current Ic	1
40723	RO	The 29 th harmonic ratio of current Ic	1
40724	RO	The 30 th harmonic ratio of current Ic	1

40725	RO	The 31 th harmonic ratio of current Ic	1
40730	RO	The 16 th harmonic ratio of zero-sequence current In	1
40731	RO	The 17 th harmonic ratio of zero-sequence current In	1
40732	RO	The 18 th harmonic ratio of zero-sequence current In	1
40733	RO	The 19 th harmonic ratio of zero-sequence current In	1
40734	RO	The 20 th harmonic ratio of zero-sequence current In	1
40735	RO	The 21 th harmonic ratio of zero-sequence current In	1
40736	RO	The 22 th harmonic ratio of zero-sequence current In	1
40737	RO	The 23 th harmonic ratio of zero-sequence current In	1
40738	RO	The 24 th harmonic ratio of zero-sequence current In	1
40739	RO	The 25 th harmonic ratio of zero-sequence current In	1
40740	RO	The 26 th harmonic ratio of zero-sequence current In	1
40741	RO	The 27 th harmonic ratio of zero-sequence current In	1
40742	RO	The 28 th harmonic ratio of zero-sequence current In	1
40743	RO	The 29 th harmonic ratio of zero-sequence current In	1
40744	RO	The 30 th harmonic ratio of zero-sequence current In	1
40745	RO	The 31 th harmonic ratio of zero-sequence current In	1

Note: The above correspondence between the data (Ai) and the actual value is:

<u>Harmonic occupancy</u>: HP = Ai / 10, Ai is an unsigned integer, unit:%.

Voltage, current o	uality address	table.support	reads function	of codes 03, 04

Address	Туре	Data Definition	Register
40760	RO	Unbalanced degree of Voltage	1
40761	RO	Unbalanced degree of Current	1

Note: The above correspondence between the data (Ai) and the actual has is:

value is:

<u>Unbalanced degree</u>: Ai / 10, Ai = unsigned integer, unit:%.

Demand Statistics Address table, supports read function of codes 03, 04

Address	Туре	Data definition	Register
40770	RO	The maximum demand of forward total active power	2
40772	RO	The maximum demand of reverse total active power	2
40774	RO	The maximum demand of forward total reactive power	2
40776	RO	The maximum demand of reverse total reactive power	2
40800	RO	Maximum demand occurrence time of the forward total active power	3
40803	RO	Maximum demand occurrence time of the reverse total active power	3
40806	RO	Maximum demand occurrence time of the forward total reactive power	3
40809	RO	Maximum demand occurrence time of the reverse total reactive power	3

Note: The above correspondence between the data (Ai) and the actual value is:

<u>Active power maximum demand</u>: P = Ai / 10, Ai as an unsigned integer, unit:W.

<u>Reactive power maximum demand</u>: Q = Ai / 10, Ai as an unsigned integer, unit:var.

Electric parameter statistics address table, supports read function of codes 03, 04

Address	Туре	Data definition	Register
41000	RO	Maximum value of line voltage Uab	1
41001	RO	Maximum value of line voltage Ubc	1
41002	RO	Maximum value of line voltage Uca	1
41003	RO	Maximum value of phase voltage Uan	1
41004	RO	Maximum value of phase voltage Ubn	1
41005	RO	Maximum value of phase voltage Ucn	1
41006	RO	Maximum value of current Ia	1
41007	RO	Maximum value of current Ib	1
41008	RO	Maximum value of current Ic	1

41009	RO	Maximum value of current In	1
41010	RO	Maximum value of total frequency (F)	1
41011	RO	Maximum value of total power factor (PF)	1
41012	RO	Maximum value of A-phase power factor (PFa)	1
41013	RO	Maximum value of B-phase power factor (PFb)	1
41014	RO	Maximum value of C-phase power factor (PFc)	1
41015	RO	Maximum value of A-phase active power (Wa)	1
41016	RO	Maximum value of A-phase reactive power (Qa)	1
41017	RO	Maximum value of A-phase apparent power (Sa)	1
41018	RO	Maximum value of B-phase active power (Wb)	1
41019	RO	Maximum value of B-phase reactive power (Qb)	1
41020	RO	Maximum value of B-phase apparent power (Sb)	1
41021	RO	Maximum value of C-phase active power (Wc)	1
41022	RO	Maximum value of C-phase reactive power (Qc)	1
41023	RO	Maximum value of C-phase apparent power (Sc)	1
41024	RO	Maximum value of total active power (W)	1
41025	RO	Maximum value of total reactive power (Q)	1
41026	RO	Maximum value of total apparen power (S)	1
41030	RO	Minimum value of line voltage Uab	1
41031	RO	Minimum value of line voltage Ubc	1
41032	RO	Minimum value of line voltage Uca	1
41033	RO	Minimum value of phase voltage Uan	1
41034	RO	Minimum value of phase voltage Ubn	1
41035	RO	Minimum value of phase voltage Ucn	1
41036	RO	Minimum value of current Ia	1
41037	RO	Minimum value of current Ib	1
41038	RO	Minimum value of current Ic	1
41039	RO	Minimum value of current In	1
41040	RO	Minimum value of total frequency (F)	1

41041	RO	Minimum value of total power factor (PF)	1
41042	RO	Minimum value of A-phase power factor (PFa)	1
41043	RO	Minimum value of B-phase power factor (PFb)	1
41044	RO	Minimum value of C-phase power factor (PFc)	1
41045	RO	Minimum value of A-phase active power (Wa)	1
41046	RO	Minimum value of A-phase reactive power (Qa)	1
41047	RO	Minimum value of A-phase apparent power (Sa)	1
41048	RO	Minimum value of B-phase active power (Wb)	1
41049	RO	Minimum value of B-phase reactive power (Qb)	1
41050	RO	Minimum value of B-phase apparent power (Sb)	1
41051	RO	Minimum value of C-phase active power (Wc)	1
41052	RO	Minimum value of C-phase reactive power (Qc)	1
41053	RO	Minimum value of C-phase apparent power (Sc)	1
41054	RO	Minimum value of total active power (W)	1
41055	RO	Minimum value of total reactive power (Q)	1
41056	RO	Minimum value of total apparent power (S)	1
41060	RO	Maximum value occurrence time of line voltage (Uab)	3
41063	RO	Maximum value occurrence time of line voltage (Ubc)	3
41066	RO	Maximum value occurrence time of line voltage (Uca)	3
41069	RO	Maximum value occurrence time of phase voltage (Uan)	3
41072	RO	Maximum value occurrence time of phase voltage (Ubn)	3
41075	RO	Maximum value occurrence time of phase voltage (Ucn)	3
41078	RO	Maximum value occurrence time of current Ia	3
41081	RO	Maximum value occurrence time of current Ib	3
41084	RO	Maximum value occurrence time of current Ic	3
41087	RO	Maximum value occurrence time of current In	3
41090	RO	Maximum value occurrence time of total frequency (F)	3
41093	RO	Maximum value occurrence time of total power factor (PF)	3
41096	RO	Maximum value occurrence time of phase A power factor	3

		(PFa)	
41099	RO	Maximum value occurrence time of phase B power factor (PFa)	3
41102	RO	Maximum value occurrence time of phase C power factor (PFa)	3
41105	RO	Maximum value occurrence time of phase A active power (Wa)	3
41108	RO	Maximum value occurrence time of phase A reactive power (Qa)	3
41111	RO	Maximum value occurrence time of phase A apparent power (Sa)	3
41114	RO	Maximum value occurrence time of phase B active power (Wb)	3
41117	RO	Maximum value occurrence time of phase B reactive power (Qb)	3
41120	RO	Maximum value occurrence time of phase B apparent power (Sb)	3
41123	RO	Maximum value occurrence time of phase C active power (Wc)	3
41126	RO	Maximum value occurrence time of phase C reactive power (Qc)	3
41129	RO	Maximum value occurrence time of the phase C apparent power (Sc)	3
41132	RO	Maximum value occurrence time of total active power (W)	3
41135	RO	Maximum value occurrence time of total reactive power (Q)	3
41138	RO	Maximum value occurrence time of total apparent power (S)	3
41150	RO	Minimum value occurrence time of line voltage (Uab)	3
41153	RO	Minimum value occurrence time of line voltage (Ubc)	3
41156	RO	Minimum value occurrence time of line voltage (Uca)	3
41159	RO	Minimum value occurrence time of phase voltage (Uan)	3
41162	RO	Minimum value occurrence time of phase voltage (Ubn)	3
41165	RO	Minimum value occurrence time of phase voltage (Ucn)	3
41168	RO	Minimum value occurrence time of current Ia	3
41171	RO	Minimum value occurrence time of current Ib	3
41174	RO	Minimum value occurrence time of current Ic	3

41177	RO	Minimum value occurrence time of current In	3
41180	RO	Minimum value occurrence time of total frequency (F)	3
41183	RO	Minimum value occurrence time of total power factor (PF)	3
41186	RO	Minimum value occurrence time of phase A power factor (PFa)	3
41189	RO	Minimum value occurrence time of phase B power factor (PFa)	3
41192	RO	Minimum value occurrence time of phase C power factor (PFa)	3
41195	RO	Minimum value occurrence time of phase A active power (Wa)	3
41198	RO	Minimum value occurrence time of phase A reactive power (Qa)	3
41201	RO	Minimum value occurrence time of phase A apparent power (Sa)	3
41204	RO	Minimum value occurrence time of phase B active power (Wb)	3
41207	RO	Minimum value occurrence time of phase B reactive power (Qb)	3
41210	RO	Minimum value occurrence time of phase B apparent power (Sb)	3
41213	RO	Minimum value occurrence time of phase C active power (Wc)	3
41216	RO	Minimum value occurrence time of phase C reactive power (Qc)	3
41219	RO	Minimum value occurrence time of phase C apparent power (Sc)	3
41222	RO	Minimum value occurrence time of total active power (W)	3
41225	RO	Minimum value occurrence time of total reactive power (Q)	3
41228	RO	Minimum value occurrence time of total apparent power (S)	3

Note: The above correspondence between the data (Ai) and the actual value is:

Voltage: $U = (Ai / 10) \times (PT1 / PT2)$, Ai is an unsigned integer, unit:V.

Current: I = (Ai / 1000) \times (CT1 / CT2), Ai is an unsigned integer, unit:A.

Zero-sequence current: In = (Ai / 1000) \times (CT01 / CT02), Ai is an unsigned integer, unit:A.

Active power: $P = Ai \times (PT1 / PT2) \times (CT1 / CT2)$, Ai signed integers, unit:W. Reactive power: $Q = Ai \times (PT1 / PT2) \times (CT1 / CT2)$, Ai signed integers, unit:var. Apparent power: $S = Ai \times (PT1 / PT2) \times (CT1 / CT2)$, Ai signed integers, unit:VA.

Power factor: PF = Ai / 1000, Ai signed integers, no unit.

Frequency: F = Ai / 100, Ai as an unsigned integer, unit:Hz.

Voltage and current fundamental value address table, supports read function of codes 03,04

Address	Туре	Data definition	Register
41300	RO	Fundamental RMS of phase A voltage	1
41301	RO	Fundamental RMS of phase B voltage	1
41302	RO	Fundamental RMS of phase C voltage	1
41303	RO	Fundamental RMS of current Ia	1
41304	RO	Fundamental RMS of current Ib	1
41305	RO	Fundamental RMS of current Ic	1
41306	RO	Fundamental RMS of zero-sequence current In	1

Note: The above correspondence between the data (Ai) and the actual value is:

Voltage: $U = (Ai / 10) \times (PT1 / PT2)$, Ai is an unsigned integer, unit:V.

Current: I = (Ai / 1000) × (CT1 / CT2), Ai is an unsigned integer, unit:A.

Zero-sequence current: In = $(Ai / 1000) \times (CT01 / CT02)$, Ai is an unsigned integer, unit:A.

Important electrical parameters quick reading address table, supports reads function of codes 03,04

Address	Туре	Data Definition	Register
42000	RO	DI 1	1

42001	RO	DI 2	1
42002	RO	Current Ia	1
42003	RO	Current Ib	1
42004	RO	Current Ic	1
42005	RO	Zero-sequence current In	1
42006	RO	Line voltage Uab	1
42007	RO	Line voltage Ubc	1
42008	RO	Line voltage Uca	1
42009	RO	Phase voltage Uan (valid in 3-phase,4-wire system)	1
42010	RO	Phase voltage Ubn (valid in 3-phase,4-wire system)	1
42011	RO	Phase voltage Ucn (valid in 3-phase,4-wire system)	1
42012	RO	Frequency (F)	1
42013	RO	Total active Power (W)	1
42014	RO	Total reactive power (Q)	1
42015	RO	Total apparent power (S)	1
42016	RO	Total power factor (PF)	1
42017	RO	Total active energy (Ep)	2
42019	RO	Total reactive energy (Eq)	2
42021	RO	Retention	2
42023	RO	Retention	2

Note 1: In the 3-phase 3-wire system, the data in 42009~40011 are

invalid and value is 0.

Note 2: The correspondence between the above data (Ai) and the actual value is:

Voltage: $U = (Ai / 10) \times (PT1 / PT2)$, Ai is an unsigned integer, unit:V.

Current: I = (Ai / 1000) × (CT1 / CT2), Ai is an unsigned integer, unit:A.

Zero-sequence current: In = (Ai / 1000) \times (CT01 / CT02), Ai is an unsigned integer, unit:A.

Active power: $P = Ai \times (PT1 / PT2) \times (CT1 / CT2)$, Ai signed integers, unit:W.

Reactive power: $Q = Ai \times (PT1 / PT2) \times (CT1 / CT2)$, Ai signed integers, unit:var.

Apparent power: $S = Ai \times (PT1 / PT2) \times (CT1 / CT2)$, Ai is an unsigned integer, unit:VA.

Power factor: PF = Ai / 1000, Ai signed integers, no unit.

Frequency: F = Ai / 100, Ai as an unsigned integer, unit:Hz.

Active <u>energy</u>: Ep = Ai / 10, Ai unsigned long integer (0 \sim 999,999,999), unit:kWh.

Reactive <u>energy</u>: Eq = Ai / 10, Ai unsigned long integer (0 \sim 999,999,999), unit:kvarh.

Temperature address table, Suppors read function of codes 03, 04

Address	Туре	Data Definition	Register
48000	RO	Temperature	1

Note: The above correspondence between the data (Ai) and the actual value is:

Temperature: T = (Ai / 10), Ai is an unsigned integer, unit: °C.

4.3. Explanation of register address

- Hardware version register (40010): stored in the program memory.
- Software version register (40011): stored in the program memory.
- Year of production (40012): Specially download to E2p after production inspection.
- Serial number of production (40013 ~ 40015): pecially download to E2p after production inspection.
- System time register for year and month (40020): high bytes denote year, from 00 to 99, low bytes denote month, from 1 to12.
- System time register for day and hour (40021): high byte denotes day, from 1 to 31; low byte denotes hour, from 0 to 23.
- System time register for minute and second (40022): high byte denotes minute, from 00 to 59; low byte denotes second, from 00 to 59.

- System time millisecond register (40023): from 0 to 999.
- Communication address (40030): from 1 to 254, 0 and 255 are reserved as broadcast address. The default is 254.
- Communication baud rate (BAUD) (40032): 1 ~ 5 respectively baud rate, as follows:

Baud rate code	Explanation
1	1200 bps
2	2400 bps
3	4800 bps
4	9600 bps
5	19200 bps

• Check mode (PARITY) (40034): 0 to 3, representing the check mode, the following table:

Check mode Code	Explanation
0	No parity check, 2 end bits
1	Odd check, 1end bit
2	Even check, 1 end bit
3	No parity check, 1 end bit

• Sub-station status register (40050):

Address	Definitions	Default value	Remark	
Bit0	DI change sign	0 (None)	Cleared after DI inquiry	
Bit1	Existence sign of hard-SOE	0 (None)	Cleared after all communication SOE inquiry	
Bit2	Protection action sign	0 (None)	Cleared after communication inquiry or reset action	
Bit3	Sign of checking time	1 (Time was not ticked when power-on)	Cleared after remote time tick	
Bit4	Existence sign of soft-SOE	0 (None)	Cleared after all communication SOE inquiry	
Bit5	Retention	0		
Bit6	Retention	0		

Bit7	Retention	0	
Bit8	Retention	0	
Bit9	Retention	0	
Bit10	Retention	0	
Bit11	Retention	0	
Bit12	Retention	0	
Bit13	Retention	0	
Bit14	Retention	0	
Bit15	Retention	0	

•	Sub-station setting register (40055):	
Address	Definitions	Default value
Bit0	Clear hard-SOE	0
Bit1	Limit alarm reset	0
Bit2	Clear all the energy	0
Bit3	Clear soft-SOE	0
Bit4	Retention	0
Bit5	Retention	0
Bit6	Retention	0
Bit7	Retention	0
Bit8	Freeze all the energy	0
Bit9	Unfreeze all the energy	0
Bit10	Retention	0
Bit11	Clear the demand	0
Bit12	Retention	0
Bit13	Retention	0
Bit14	MAX/MIN value reset	0
Bit15	Forced reset	0

Note: It needn't to return messages when broadcast freeze or unfreeze. After sending the freeze command by the upper computer, all of the reading energy values are equal to the electric accumulated value of the frozen

moment, but the internal measurement of energy value continues to accumulate. If you want to refresh the reading total value of energy, the upper computer must sending the unfreeze command. This facilitates the user's unified meter reading

• energy freeze and unfreeze status register (40060):

The high byte is 00, BIT1 of low byte denote energy freeze and unfreeze status, other bits are inefficient.

1 denotes freeze and 0 denotes unfreeze.

• System frequency selection (40062):

5000 represents the system default frequency is 50Hz, 6000 represents the default frequency is 60Hz.

• Direction of CT wiring (40067,40068):

High byte of 40067 is the direction of A-phase CT wiring; Low byte of 40067 is the direction of B-phase CT wiring. High byte of 40068 is the direction of C-phase CT wiring. 0x00 denotes forward direction, 0xFF denotes opposite direction.

Wiring Code	Explanation
1	3-phase 4-wire 3CT (3P4W / 3PT + 3CT)
2	3-phase 4-wire 1CT (3P4W / 3PT + 1CT)
3	3-phase 3-wire 3CT (3P3W / 3PT + 3CT)
4	3-phase 3-wire 2CT (3P3W / 3PT (or 2PT) + 2CT)
5	3-phase 3-wire 1CT (3P4W / 3PT + 1CT)

• Telemetry wiring (40070): 1 to 5 show specific wiring in the following table:

• Outputs function settings (40081): $1 \sim 2$ respectively denote two relay outputs in the following table:

Relay outputs codes	Explanation
1	Pulse Output
2	Normally holding output

- The time of back-light (40090): 0 to 30 minutes, where 0 represents constant light.
- Association electricity parameter range of transmission output (40085):

used to set the range of corresponding related energy.

• Association transmission output type (40086):

BIT15 represents unidirectional/Bidirectional, 0 represents unidirectional, 1 represents bidirectional.

 $BIT14 \sim BIT0$ represents the association type of transmission output, See the specific table below.

Only when the association type is active power, reactive power, power factor, or frequency, the direction can be set to Bidirectional. 4mA represents 0 and 20mA represents full scale when set to unidirectional. When set to Bidirectional, 4mA represents the reverse range, 20mA represents the forward range.

Example 1: When the range is set to 1.000kW, if set to unidirectional, the output of 4mA represents 0kW, the output of 20mA represents 1.000kW, the output of 12mA represents 0.500kW; if set to bidirectional, the output of 4mA represents -1.000kW, 20mA represents 1.000 kW, 12mA represents 0kW.

Example 2: If the frequency F is set to Bidirectional, real-scale range is 50Hz \pm range, and 12mA represents 50Hz

Related type is used to select energy which is related to transmission output:

Association Type	Description	Remark	Association Type	Description	Remark
1	Related Uab	Unidirectional	16	Related P	Unidirectional / Bidirectional
2	Related Ubc	Unidirectional	17	Related Q	Unidirectional / Bidirectional
3	Related Uca	Unidirectional	18	Related S	Unidirectional
4	Related average of line voltage	Unidirectional	19	Related PFa	Unidirectional / Bidirectional
5	Related Uan	Unidirectional	20	Related PFb	Unidirectional / Bidirectional
6	Related Ubn	Unidirectional	21	Related PFc	Unidirectional / Bidirectional
7	Related Ucn	Unidirectional	22	Related Pa	Unidirectional / Bidirectional
8	Related average of phase voltage	Unidirectional	23	Related Pb	Unidirectional / Bidirectional

9	Related Ia	Unidirectional	24	Related Pc	Unidirectional / Bidirectional
10	Related Ib	Unidirectional	25	Related Qa	Unidirectional / Bidirectional
11	Related Ic	Unidirectional	26	Related Qb	Unidirectional / Bidirectional
12	Related average of current	Unidirectional	27	Related Qc	Unidirectional / Bidirectional
13	Related In	Unidirectional	28	Related Sa	Unidirectional
14	Related F	Unidirectional / Bidirectional, When the Bidirectional, indicates the range 50Hz ±	29	Related Sb	Unidirectional
15	Related PF	Unidirectional / Bidirectional	30	Related Sc	Unidirectional

• Time-partition accounting settings $(40092 \sim 40097)$: The registers are used

to set 4 rates, 48 time-periods; stepper is 0.5 hours.

The time-Period (stepper) rate is represented by 2 bits:

Bit1/bit0	00	01	10	11
Rates	Sharp	Peak	Shoulder	Off-peak

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
40092	time	-peri														
40092	od	. 4	od	13	oc	12	oc	11	od	18	oc	17	od	l 6	od	15
40093	time	-peri														
40095	od	12	od	11	od	10	od	19	od	16	od	15	od	14	od	13
40094	time	-peri														
40094	od	20	od	19	od	18	od	17	od	24	od	23	od	22	od	21
40095	time	-peri														
40095	od	28	od	27	od	26	od	25	od	32	od	31	od	30	od	29
40096	time	-peri														
40090	od	36	od	35	od	34	od	33	od	40	od	39	od	38	od	37
40097	time	peri	time	-peri												
4009/	od	44	od	43	od	42	od	41	od	48	od	47	od	46	od	45

Registers 40092 ~ 40097 denote 48 time-periods(stepper):

Note: Stepper is 0.5 hours, "1 time-period" denotes 00:00 \sim 00:30, "2

time-period" denotes $00:30 \sim 01:00$, "47 time-period" denotes $23:00 \sim 23:30$,

"48 time-period" denotes 23:30~00:00.

• 4 digital input (40500) : Status of digital input, bit0~bit3 of low byte denote 1~4 digital input respectively, the other bits are zero filled.

Bit site	7	6	5	4	3	2	1	0
High bits(zero-filled)	0	0	0	0	0	0	0	0
Low bits	0	0	0	0	DI4	DI3	DI2	DI1

• Remote Protection (40501 ~ 40502): Read the alarm status of the line. The data is explained as follows:

Bit site	7	6	5	4	3	2	1	0
40501 high byte	0	0	0	0	0	0	0	0
40501 low byte	Low power factor of phase A	Low frequenc y of phase A	Over frequenc y of phase A	low voltage of phase A	Over voltage of phase A	Over current of phase A	The zero current of phase A	Over ground current
40502 high byte	Low power factor of phase B	Retain	1	Low voltage of phase B	Over voltage of phase B	Over current of phase B	The zero current of phase B	Retain
40502 low byte	Low power factor of phase C	Retain	Retain	Low voltage of phase C	Over voltage of phase C	Over current of phase C	The zero current of phase C	Retain

 Register of demand occurrence time——Register 40800,40801 and 40802: The high bits of register 40800 denote year, range: 0~99; The low bits of register 40800 denote month, range: 1~12; The high bits of register 40801 denote day, range: 1~31; The low bits of register 40801 denote hour, range: 0~23; The high bits of register 40802 denote minute, range: 0~59; The low bits of register 40802 denote second, range: $0 \sim 59$.

• Register of electric parameters MAX/MIN value occurrence time——Register 41060,41061 and 41062:

The high bits of register 41060 denote year, range: $0 \sim 99$; The low bits of register 41060 denote month, range: $1 \sim 12$; The high bits of register 41061 denote day, range: $1 \sim 31$; The low bits of register 41061 denote hour, range: $0 \sim 23$; The high bits of register 41062 denote minute, range: $0 \sim 59$; The low bits of register 41062 denote second, range: $0 \sim 59$.

Bit site	7	6	5	4	3	2	1	0
42000 high byte	0	0	0	0	DI4	DI3	DI2	DI1
42000 low byte	Low power factor of phase A	Low frequenc y of phase A	Over frequenc y of phase A	low voltage of phase A	Over voltage of phase A	Over current of phase A	The zero current of phase A	Over ground current alarm
42001hi gh byte	Low power factor of phase B	Retain	Retain	Low voltage of phase B	Over voltage of phase B	Over current of phase B	The zero current of phase B	Retain
42001 low byte	Low power factor of phase C	Retain	Retain	Low voltage of phase C	Over voltage of phase C	Over current of phase C	The zero current of phase C	Retain

• Register of quick remote signal inquiry - Register 42000:

4.4. SOE Communication Format Description

The function code of SOE inquiry is 55H and alarm SOE inquiry is 56H which is the extension part of MODBUS RTU protocol. These function codes are used to ask SOE in the nominated address and do not support broadcasting command.

The communication format is as follows:

• Master query:

For example:

Field Name	Example(HEX)
Slave Address	2A
Function	55 (56)
CRC16Lo	DE (9E)
CRC16Hi	EF (EE)

• Sub-station response:

The length of the data-structure is 8 bytes:

Informat ion	Year	Month	Day	Time	Minu te	Second and high byte of millisecond	Low byte of millisecond
-----------------	------	-------	-----	------	------------	---	-------------------------

Information byte:

The BIT7 and BIT6 bits denotes the status of remote signal, as shown in the following table:

BIT7	BIT6	Definition
0	0	Remote signal from OFF to ON (0>1)
1	1	Remote signal from ON to OFF (1>0)
1	0	The limit alarm $(0>1)$ caused by this device
0	1	Undefined

BIT0~BIT5 denote the number of remote signal: single 0-31

				_	0		
7	6	5	4	3	2	1	0
Retention	Retentio n	Retentio n	Retention	DI4	DI3	DI2	DI1
15	14	13	12	11	10	9	8
Low power factor of phase A	Low frequency of phase A	Over frequency of phase A	low voltage of phase A	Over voltage of phase A	Over current of phase A	The zero current of phase A	Over ground current
23	22	21	20	19	18	17	16
Low power	Retain	Retain	Low voltage of	Over voltage of	Over current of	The zero current of	Retain

factor of			phase B	phase B	phase B	phase B	
phase B							
31	30	29	28	27	26	25	24
Low power factor of phase C	Retain	Retain	Low voltage of phase C	Over voltage of phase C	Over current of phase C	The zero current of phase C	Retain

Year bytes: Range $00 \sim 99$ represents (2000 ~ 2099 year);

Month bytes: Range $01 \sim 12$ represents $(01 \sim 12 \text{month})$;

Day bytes: Range $01 \sim 31$ represents $(01 \sim 31 \text{ day})$;

Hour bytes: Range $00 \sim 23$ represents ($00 \sim 23$ hour);

Minute bytes: Range $00 \sim 59$ represents ($00 \sim 59$ minute);

Millisecond high byte & second bytes : BIT7 and BIT6 represent millisecond high, from0 to 3; BIT5~BIT0 represent second, from 0 to 59.

Millisecond low bytes: Range $0 \sim 255$; (Milliseconds with millisecond High byte, Range 0 to 999).

Format for example: (the length of the SOE data structure is 8, Described time is 2002-3-25 10:32:24 300 millisecond. Status of the third remote signal change from ON to OFF.)

Field Name	Example(Hex)
Slave Address	2A
Function	55
Byte Count	09
SOE Status	00
SOE0-Information	C2
SOE0-Year	02
SOE0-Month	03
SOE0-Day	19
SOE0-hour	0A

SOE0-Minute	20
SOE0-Millisecond High byte & second	58
SOE0- Millisecond low byte	2C
CRC16 Lo	B6
CRC16 Hi	F0

The data length is decided by the SOE-number (M) and the SOE-data-structure, the range of M is from 0 to 4. when the number of sub-stations SOE provisions of not less than four, send four SOEs at a time, when the SOE number is less than four, send once. If there is no SOE records, fill 0 in byte-count field. When the sub station has a SOE record, the first byte after the byte count is the state byte of SOE (SOE status), and its lowest bit (BIT0) indicates whether there is a SOE record at the sub station, and when BIT0 is 0, the sub station has no SOE record; the BIT0 is 1, indicating that the sub station has a SOE record, waiting for the main station to query it. The other bits of this byte (BIT1 to BIT7) are reserved.

5. Transportation and storage

When being transported, the product should be packed. Violent vibration and strike must be avoided. The ambient temperature should be between -30° C and $+80^{\circ}$ C and the relative humidity should be less than 95%. There should be no corrosive gas and mildew in the air.

Appendix

A. The default value

No.	Description	Default	Remark				
1	COMM: Communication parameter	254, 9.6k, 0	Communication address is 254; Baud rate is 9600bps; Transmission format: 1 start bit, 8 data bits, no parity check, 2 end bits				
2	SYS:System wiring	1	3P4L 3PT 3CT				
3	PT1 primary voltage PT2 secondary voltage	220 220	Unit: V Unit: V				
4	CT1 primary current CT2 secondary current	5000 5	Unit: A Unit: A				
5	CT0 primary current CT0 secondary current	5000 5	Unit: A Unit: A				
6	System Frequency	50	The default frequency is 50Hz				
7	CT direction	000	3-phase CT wiring direction are forward				
8	Relay output mode	1	Relay output is pulse type				
9	The pulse length of relay output	2000	Unit: ms				
	Transmission output Association	9	Association of A phase current (Ia)				
10	Direction / Bidirectio	0	Direction				
10	The maximum value of the transmission output association	6.000	6.000 A				
11	Time of back-light lighting	5	Unit:minute				
12	Parameter statistical interval	10	Unit:minute				
	Is over current alarm allowed	0	Not allowed				
	Over current limit value	6.0	Unit: kA				
13	Over current return value	5.0	Unit: kA				
	Delay time of over current alarm	60000	Unit: ms				
	Over current associated relay		Indicates no associated relay				
14	Is zero-current alarm allowed	0	Not allowed				
14	Zero current limit value	0	Unit: A				

	zero-current return	200	Unit: A	
	Delay time of zero current alarm	60000	Unit: ms	
	zero-current associated relay	OFF	Indicates no associated relay	
	Is grounding alarm allowed	0	Not allowed	
	Over ground current value	6.0	Unit: kA	
15	Ground return value	5.0	Unit: kA	
	Delay time of grounding alarm	60000	Unit: ms	
	Ground associated relay	OFF	Indicates no associated relay	
	Is low voltage alarm allowed	0	Not allowed	
	Low voltage limit value	0	Unit: V	
16	Low voltage return	50	Unit: V	
	Delay time of low voltage alarm	1800	Unit: s	
	Low-voltage associated relay	OFF	Indicates no associated relay	
	Is over-voltage alarm allowed	0	Not allowed	
	Over-voltage limit	260	Unit: V	
17	Over-voltage return	220	Unit: V	
17	Delay time of over-voltage alarm	1800	Unit: s	
	Over voltage associated relay	OFF	Indicates no associated relay	
	Is low-frequency alarm allowed	0	Not allowed	
	Low frequency limit	45	Unit: Hz	
18	Low frequency return value	46	Unit: Hz	
	Delay time of low-frequency alarm	1800	Unit: s	
	Low frequency associated relay	OFF	Indicates no associated relay	
19	Is over-frequency alarm allowed	0	Not allowed	
	Over frequency limit	55	Unit: Hz	
	Over frequency return value	54	Unit: Hz	
	Delay time of over frequency alarm	1800	Unit: s	

	Over frequency associated relay	OFF	Indicates no associated relay	
	Is low power factor alarm allowed	0	Not allowed	
	Low power factor limit value	0.5		
20	Low power factor return value	0.6		
	Delay time of low power factor alarm	1800	Unit: s	
	Low power factor associated relays	OFF	Indicates no associated relay	
21	Password	0000		
22	Time-period rate	Each time period is 3	shoulder rate	

B. Technical Indicators

• Standards

Standard Code	Standard name	Level
GB/T 13729-2002	Remote terminal unit equipment	
GB/T17626.2-2006	Electrostatic discharge immunity test	Level 3
GB/T17626.4-2008	Electrical fast transients immunity test	Level 3
GB/T17626.5-2008	Surge immunity test	Level 3
GB/T 17626.8-2006	Frequency magnetic field immunity test	Level 3
GB/T 17626.12-1998	Oscillation wave immunity test	Level 3

• Monitor Technical index

Voltage	Precision: 0.2;	Range: 0-42000V	
Current	Precision: 0.2;	Range: 0-6000A	
Power factor	Precision: 0.5;	Range: $0 \le COS\Phi \le 1$	
Active power	Precision: 0.5;	Range: 0-756000kW	
Reactive power	Precision: 0.5;	Range: 0-756000kvar	
Apparent power	Precision: 0.5;	Range: 0-756000kVA	
Active energy	Precision: 0.5;	Range: 0~99999999.9 kWh	
Reactive energy	Precision: 0.5;	Range: 0~99999999.9 kvar	
Frequency	Precision: 0.01 Hz;	Range: 45-65Hz	
Harmonic precision	Precision: B		
Digital input	Resolution ratio: 2ms; debounce time: 60ms		
Transmission output	Precision: 0.5		

• Working parameters

Working power supply:	Range: 85VAC~265VAC/85VDC~265VDC		
Power consumption:	<5w		
Working environment:	-25°C \sim +70°C, 95% non-condensing		
Store temperature:	-30° C \sim $+80^{\circ}$ C		
Display:	Sectional form LCD, sight: 64mm×55mm		
Weight:	400g, Only IM301: 330g		
Internal protection:	Panel:IP50, shell:IP20		
Input characteristics:	Phase voltage rating: 220VAC ,range: 20VAC~264VAC Current rating:5A; range:0.05~6 A Current rating:1A; range:0.01~1.2 A Digital acquisition: passive node optically isolated input (isolation voltage 1500VDC)		
Output characteristics:	Relay output: 5A/250VAC (Resistive) or 5A/30VDC (Resistive) Transmission output: 4 ~ 20mA, the load resistance less than 600 ohm, 500VDC isolation voltage		
Communication:	Communication interface:RS485 Communication protocol:MODBUS-RTU Communication speed:1200/2400/4800/9600/19200bps		
Display refresher rate:	<3s		
Support wiring mode:	3-phase 4r-wire system 3CT, 1CT and 3-phase 3-wire 3CT, 2CT, 1CT		

C. Order instructions

Product model description	:
----------------------------------	---

Model Features	IM300-U	IM300-I	IM301	IM302	IM303
Voltage					
Current					
System frequency					
Power Factor					
Active / reactive / apparent power					
Basic energy					
Zero-sequence current					
Unbalance				•	•
Temperature of the equipment					
Four-quadrant power					
Maximum demand statistics					
Time rate statistics					
Limit alarm					
Extremum statistical					•
Harmonic distortion ratio					
Harmonic occupancy				2~15	2~31
Switch	2-ch	2-ch		2-ch	4-ch
2-ch relays					
1-ch transmitter output 4 ~ 20mA DC					
RS485 communication					
LCD					

According to the different selection of the specific type and function of the IM300 device (see Appendix C. order Instructions), Corresponding functions that do not have

the corresponding interface are not displayed.In the data uploaded by the communication, the corresponding value is invalid for functions that are not available.

Relevant standards (corresponding to nameplate content) to be marked when ordering

> The power supply standard configuration: AC or DC power supply $85VAC/DC \sim 265VAC/DC$, 5W;

The CT rated the standard input: 5AAC, continuous 2 times overload; Optional input: 1AAC, continuous 2 times overload.

联系我们

北京ABB低压电器有限公司

地址:北京市大兴区经济技术开发区康定街17号 邮编:100176 客户服务电话:+86 10 58085093 技术支持:+86 10 58085092 传真:+86 10 58085288

Contacts

ABB LV Installation Materials Company Limited

Address: No. 17 Kangding Street, BDA, Beijing, 100176, P.R.China Customer Service Tel.: +86 10 58085093 Technical Support Tel.: +86 10 58085092 Telefax: +86 10 58085288